@ Sun

Sun Java™ System

Application Server 7
Developer’s Guide to Enterprise
JavaBeans Technology

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-5049

2004Q2

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. hasintellectual property rights relating to technology embodied in the product that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at ht t p: / / www. sun. cond pat ent s and one or more
additional patents or pending patent applicationsin the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSY STEMS, INC. USE, DISCLOSURE OR
REPRODUCTION ISPROHIBITED WITHOUT THE PRIOR EXPRESSWRITTEN PERMISSION OF SUN MICROSY STEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the FAR and its supplements.

Useissubject to license terms. This distribution may include materials devel oped by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, JDK, VM, JavaNaming and Directory Interface, JavaMail, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX isaregistered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biologica weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject
to U.S. embargo or to entitiesidentified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationalslistsis
strictly prohibited.

DOCUMENTATION ISPROVIDED “ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERSARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Cdifornia 95054, Etats-Unis. Tous droits réserveés.

Sun Microsystems, Inc. détient les droits de propriété intellectuel s relatifs & la technol ogie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sanslimitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a |’ adresse

http://wmv sun. coni pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les autres pays.

CE PRODUIT CONTIENT DESINFORMATIONS CONFIDENTIELLESET DES SECRETS COMMERCIAUX DE SUN MICROSY STEMS, INC. SON
UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’ AUTORISATION EXPRESSE, ECRITE ET PREALABLE
DE SUN MICROSY STEMS, INC.

L’ utilisation est soumise auix termes de la Licence. Cette distribution peut comprendre des composants dével oppés par des tierces parties.

Sun, Sun Microsystems, lelogo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, DK, VM, Java Naming and Directory Interface, JavaMail, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’ autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Ce produit est soumis alalégidation américaine en matiere de contrdle des exportations et peut étre soumis a la réglementation en vigueur dans d' autres pays
dans le domaine des exportations et importations. L es utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. L es exportations ou réexportations vers les pays sous embargo
américain, ou vers des entités figurant sur les listes d’ exclusion d’ exportation américaines, y compris, mais de maniére non exhaustive, laliste de personnes qui
font objet d’ un ordre de ne pas participer, d' une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régis par lalégislation
américaine en matiere de contrdle des exportations et laliste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITERELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ ABSENCE DE
CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

cContents

ADbOoUt This GUITE ... o e 11
Who Should Use ThiSGUIAEot e e e e e e e e 11
UsSiNg the DOCUMENtatiON ottt e et e et e e e et e e e e e 12
How ThisGuUIide ISOrganizedt e e e e e e e et 14
Related INfOrmation e e e 15
Documentation CONVENLIONSttt ittt e e e et e e e e e e e et et e 15
General CONVENLIONSttt et e et et e e e e et e et e e et et e 16
Conventions Referring to DIreCtONESottt e e e et 17
CONtBCIING SUN .« . . ettt et e e e e e e e e s 17
Give USFeedbacKo 17
(© o) =17 0 I =1 1 o 18
ContaCt ProdUCE SUPPOIT o ettt e e e e e e e e e e e e s 18

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology .. 19

Summary of EJB 2.0 Changes . . .« oottt ettt et e e e e 20
EJB ArChIteCtUNEot 21
ValUe AdAed FEAIUIESottt e e e e e e e 22
REA0-ONlY BOANS . ..\ttt e 23
PaSS Y- TE I ONCEottt 23
Pooling and Caching FEatUrest e e e e 23
1170 11 (o 1o 24
IntegrationWith SUN ONE StUdIO S oot e e e e 24
Dynamic Deploymentand REIOadingt 24
High Availability and Load BalanCingo ov it e e 25
AbOUt ENterprise JAVaBEaNSottt 25
What Isan Enterprise JavaBean? oottt e 25
TYPES Of BEANSottt 26
BB FlOW ..ot 27
ThEEIB CONaINES . .. oottt ettt e e e e e e e e e e e 28
01 =0T 29

HOme INtEr ate . . .o 29

ReEMOtE NI ate . . .o 29

Local INterface oo 30
Poolingand Cachingo 30
POO0IING Parameters 31
Caching ParameterSttt e e e e e 31

How Enterprise BeanS ACCESSRESOUICES oo o ittt ittt e e et e 32
INDI CONNECHION ettt et e et e e e e e et e e e e e e et et e 32
Dataase CONNECHIONottt et et e e e e e et e e 32

URL CONNECLIONS . . o vttt et ettt e et et e e e e e e e e e e e e e e 33
Transaction Managementttt e e e e 33
How Application Security WOrkso 33
About Developing an Effective Application e 34
General Processfor Creating Enterprise Beans 34
Bean Usage GUIEIINESot e e 35
Client View GUIGEIINES o e e e et e e 36
Remote or Local Interface GUIEIINESot e 37
Accessing Sun Java System Application Server Functionality 37
About EJB Assembly and Deployment e 38
Chapter 2 Using SesSion Beans e e 39
ADOUL SESSION BEANS o oottt e 40
SesSioN Bean CharaCteristiCsottt e e e s 40
LIS 0 1= 1= 41
A @SS CONAINES ettt e 41
Stateful CoNtaiNEro 42
Developing SESSION BEaNS oot 42
Development REQUIFEMENESottt e e e e e e et e et 43
Determining SesSion Bean USA0E oottt e 43
Stateless Session Bean ConSIderationsttt 43
Stateful Session Bean CoNSIAErationsSttt et ettt 44
Providing Interfaces oo 45
Creating aRemote Interface e 45
Creatingalocal INnterface i 46
Creatingthe Local Home Interface 47
Creating the Remote Home Interface 48
Creating the Bean Class DEfinition o i 49
SesSION SYNCHIONIZALIONottt e e e e e e e e e e 50
Abstract MEthoOSo 50
Stateful Session Bean Failover (Enterprise EQItion) i 51
ChoosiNg aPerSiStenCe StOreottt e e 53
Using the Administration Interface e 54
Editing the server Xxml File 55

Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Enabling SFSB Checkpointing o 55

Server Instance and EJB Container LEVEISo 56
Applicationand EJB Module Levels 57

SESB LeVEl .o 58
Specifying SFSB Methodsto Be Checkpointed s 59
Restrictions and OptimiZationst e e e 60
Optimizing Session Bean Performance it e 60
Restricting TranSaCtionSttt e e e 60
Chapter 3 Using Entity Beans 61
ADOUL ENtity BeaNS 62
Entity Bean CharaCteristiCso e e 62
ThE CONtAINEYttt e e e e e 63

P S S ENCE . ..ttt 63
Bean-Managed PerSiStenCeottt s 64
Container-Managed PerSiStenCeottt e e 65
Read-ONly BEaNSottt 65
Developing Entity BEaNSottt e e 65
Determining Entity Bean USage oottt e e 66
Responsibilities of the Bean Developer 66
Definingthe Primary Key Classot e e e 67
Defining Remote Interfaces 67
Creating the Remote Home Interface i 67
findByPrimaryKey Method o 68
Example of aRemote Homeinterface 69
Defining Local Interfaceso 70
Creatingthe Local Home Interface e 70
Creatingalocal Interface i 70
Creating aRemote Interface 72
Creating the Bean Class Definition (for Bean-Managed Persistence)c. it 74
USING G DCIEate oo s 75

Using gibActivate and g/bPassivate 76

Using gibLoad and g/bStore s 76

Using setEntityContext and unsetEntityContextottt 78

USING G 0REMOVE 79

Using Finder Methodso 79

USiNg Read-Only BEANS oo e e e e 79
Read-Only Bean Characteristicsand LifeCycle e 80
Read-Only Bean GoOd PraCliCeSttt et e e e e e e e e e e et 81
Refreshing Read-Only BEans oo e 81
Invoking aTransactional Method 81
Refreshing Periodically 81
Refreshing Programmatically 82

Contents 5

Deploying Read Only BEaNSottt e e e e e e 82

Handling Synchronization of CONCUMENt ACCESSttt e e e 83
Chapter 4 Using Container-Managed Persistence for Entity Beans 85
Sun Java System Application Server SUPPOIT ot e e 86
About Container-Managed PersiStencet e 87
CMP COMPONENES . ..ottt e e e et e et e e e e e e e e e 87
RE L ONSNI DS . . .ttt 88
One-to-ONe RElAtiONSNIPSot e e e e 90
One-to-Many Relationshipsot e e 90
Many-to-Many Relationships e 90
ADSIract SChema 90
Deployment DESCIIPIONS oottt ettt e e e e e e e 91
PErSi S ENCE MaANAOES . . . ottt e 92
Using Container-Managed Persistence oot e e 92
PrOCESS OVEIVIBIW . . oo ottt et et e e e e e e e e e e e 93
Phase 1. Creating the mapping deployment descriptor file o i it 93

Phase 2. Generating and compiling concretebeansand delegates, 94

Phase 3. Running in the Sun Java System Application Server runtime 95
Mapping Capabilities 95
MappIiNg FEAIUIESo e et e e e 95
MapPiNg TOO0l ... 95
Mapping TEChNIQUES 96
Supported Data Typesfor Mappingot e e e et e e 96
BLOB SUDPOIT . .ttt ettt e e e e e e e e e e e 98
Using the capture-schema Utility o s 99
Mapping Fields and RElationshipst e 100
Specifying the Beansto BeMappedot 101
Specifying the Mapping COMPONENES oottt e e e et e 102
Specifying Field Mappingso 105
Specifying RElationShipso 108
Configuring the ReSOUrCE Managero ittt e e e e e e e 110
USING EJB QL . . ot 111
Configuring Queriesfor LLFINderst e e e 111
Query Filter EXPreSSIONottt et et e e e 112
QUENY ParamEler . . .o e 113
Query Variableso 114
Third-Party Pluggable Persistence Manager APlo 115
Restrictions and OptimiZationsttt e e e 116
Unique Database SchemaNamesin EARFile. i e 116
Data AlIaSiNg . ..o 116
Eager Loading of Fleld State o e 117
Restrictions on Remote INterfaces 117

Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Sybase Finder Limitation 117

Dateand Time FieldsasCMP Feld TYPES . .. oottt e e 118
Elementsin the sun-cmp-mappingsxml File e 118
B S . o e 127

Sample SchemaDefinition 127

Sample CMP Mapping XML File o 128

SaMpPIe EJB QL QUENES . . . oottt et e e et e e e e 130
Chapter 5 Using Message-Driven Beanst 135
About Message-DIivVEN BEANS oottt e 136

Message-Driven Beans Differences e 136

Message-Driven Bean CharaCteristiCsot e e e e 137

Transaction Managementttt et e e e e 137

Concurrent Message PrOCESSING . . .« . oottt ettt e e e e e e e e e e e 138
Developing Message-Driven BEaNSot e 138

Creating the Bean Class Definition e 138

USING g DCIEateo 139

Using setMessageDrivenCoNteXtttt e e 139

USING ONMESSA0E - . o e ittt et e et e e e e et e e et e e e e e e e e e 139

USING G 0REMOVE 140
CoNfIgUIALION . . . o 141
Connection Factory and Destination it 141
Message-Driven Bean Pool 141
Server instance-wide AHDULES oot 142
Automatic Reconnection to IMS Provider i 142
Restrictions and OptimiZationst e e 143

IMS LIMITBIION & o o vt ettt e e e e e e e e e e e e 143

Pool Tuning and MONITOIINGot et e e e e e e e e e 144

onMessage RUNtIME EXCEPLION o e e e 144
Sample Message-Driven Bean XML Files 145

Sample glb-jar Xml File ... 145

Sample sun-gib-jarXml File 146
Chapter 6 Handling Transactions with EnterpriseBeans 149
JTA and JTS TransaCtion SUPPOIttt ettt e e e e e et e e e ettt e 150
About Transaction Handlingt e 150

Flat TransaCtionso oot e 151

Global and Local TransaCtionSo oo v vttt 151

Demarcation MOQEIS oo i 152

Container-Managed TranSaCtionS u ittt e ettt e e 152
Bean-Managed TransaCtionso vttt ettt e 152
COMMIt OPtiONS .« .o\ttt ettt e e e e e e e 153

Contents 7

8

Administration and MONITOrNGttt e 154

Using Container-Managed TranSaCtionsSttt e et et e e e e 155
Specifying Transaction AttribULteS 156
Differing Attribute Requirementst 157
AttHDUtE ValUBS . . o 157
Rolling Back a Container-Managed Transaction oot e e 159
Synchronizing a Session Bean'sInstance Variables i 160
Methods Not Allowed in Container-Managed Transactionsouiiieininenennann. 161
Using Bean-Managed TranSaCtionsottt e ettt e et e e e e e 161
Choosing the Type of TransaCtionst e e e e e 161
JDBC TranSaCtionSottt et ettt e e e et e e e e 162

JTA TranSACHIONS ettt et ettt e e e e e e e e e 162
Returning Without Committing o e 162
Methods Not Allowed in Bean-Managed Transactionst aens 163
Setting Transaction TIMEOULS oottt e e e e e et e et et e e e 163
Handling 1S0lation LEVEIS oo e e 163
Chapter 7 Developing Secure EnterpriseBeans i, 165
About Secure ENterpriSE BEaNS oottt e 166
Authorization and AUthentiCationot 166
SECUNY ROIES . . o 166
DD oY MENt . . 167
Defining SeCUrity ROIES e e e 167
Declaring Method Permissionst e e e et e 168
Declaring Security ROIE REFEreNCES oo e 169
Specifying Security [dentities o 170
Therun-as ldentity e 170
UsSiNg Programmatic SECUNTYottt et e et e e e e e e et e e e e 171
Handling Unprotected EJB-Tier RESOUICES oottt ittt e et e e e e e e 172
Chapter 8 Assembling and Deploying EnterpriseBeans 173
EJB SIUCIUIE . . o oottt ettt et e et e e et e 174
Creating Deployment DESCIIPIONS . .. ottt et ettt e e 174
Deploying ENterpriSE BEaNS oottt 175
Using the Administration Interface i e e 176
Using the Command-Linelnterface e e e e 176
Usingthe SUNONE StUdIO S IDEot e e e e e 177
Reloading ENterpriSE BEANS oottt et 178
Deployingto a Cluster (Enterprise EQItion)t e e 178
Thesun-gib-jar_2 0-0.dtd File Structureot e e 179
SUDBIEIMENES 179
15 = 180

Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

AT ULES . .o e 180

Elementsinthe sun-gb-jarxml File 181
General Blementso 181
Role Mapping Elements e 187
ReferenCe BlementS 189
MeSSaging Elements e 195
SECUNtY Bl OmMentso 196
Persistence Elements o e 201
Pooling and Caching Elements oot e 208
ClasS Elaments 215

SAMPIE EJB XML FilES . . oot e e e 217
Sample glb-jar Xml File 217
Sample sun-gib-jarXxml File 218

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 221

MappPIiNg CMP BEaANSottt ettt e e e e 221
CaptUNNg @ SCNEMA . . oot 221
Mapping Existing Enterprise BeanstoaSchema. i 223
Mapping Relationship Flelds i e e e 226

EJB PersistenCe Propertiesottt 229

Appendix B Elements LiStingsc. . e e 231

sun-gib-jarxml File Elements 231

sun-cmp-mappingsxml File Elements 234

N X . 237

Contents 9

10 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

About This Guide

This Developer’s Guide to Enterprise JavaBeans Technology describes how to create and
implement Java™ 2 Platform, Enterprise Edition (J2EE™ platform) applications that
follow the Enterprise JavaBeans™ (EJB™) specification in the Sun Java™ System
Application Server Standard and Enterprise Editions 7 environment. In addition to briefly
describing EJB programming concepts and tasks, this guide offers sample code,
implementation tips, and reference material. Topicsinclude container-managed persistence,
read-only beans, and the XML and DTD files associated with enterprise beans.

This preface addresses the following topics:
* Who Should Use This Guide

e Using the Documentation

* How This Guide Is Organized

* Related Information

» Documentation Conventions

e Contacting Sun

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and deploys
beansin a corporate enterprise.

This guide assumes you are familiar with the following topics:
» Javaprogramming

» JavaAPlsasdefined in the Java™ Servlet, JavaServer Pages™ (JSP™), Enterprise
JavaBeans™ (EJB™), and Java™ Database Connectivity (JDBC™) specifications

11

Using the Documentation

e The SQL structured database query languages
» Relationa database concepts

» Software development processes, including debugging and source code control

Using the Documentation

The Sun Java System Application Server Standard and Enterprise Edition manuals are
available as online files in Portable Document Format (PDF) and Hypertext Markup

Language (HTML).

The following table lists tasks and concepts described in the Sun Java System Application
Server manuals. The manuals marked (updated for 7 2004Q2) have been updated for the
Sun Java System Application Server Standard and Enterprise Edition 7 2004Q2 release.
The manuals not marked in this way have not been updated since the version 7 Enterprise

Edition release.

Table1l SunJavaSystem Application Server Documentation Roadmap

For information about

See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

Sun Java System Application Server 7 overview, including the features available
with each product edition.

Diagrams and descriptions of server architecture and the benefits of the Sun Java
System Application Server architectural approach.

(Updated for 7 2004Q2) How to get started with the Sun Java System Application
Server product. Includes a sample application tutorial. There are two guides, one for
Standard Edition and one for Enterprise Edition.

(Updated for 7 2004Q2) Installing the Sun Java System Application Server Standard
Edition and Enterprise Edition software and its components, such as sample
applications and the Administration interface. For the Enterprise Edition software,
instructions are provided for implementing the high-availability configuration.

(Updated for 7 2004Q2) Evaluating your system needs and enterprise to ensure that
you deploy Sun Java System Application Server in a manner that best suits your
site. General issues and concerns that you must be aware of when deploying an
application server are also discussed.

Release Notes

Product Overview

Server Architecture

Getting Sarted Guide

Installation Guide

System Deployment Guide

12 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Using the Documentation

Table1l SunJavaSystem Application Server Documentation Roadmap (Continued)

For information about

See the following

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components such as servlets, Enterprise
JavaBeans™ (EJBs™), and JavaServer Pages™ (JSPs™). Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

(Updated for 7 2004Q2) Creating and implementing J2EE web applications that
follow the Java™ Servlet and JavaServer Pages (JSP) specifications on the Sun
Java System Application Server. Discusses web application programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include results caching, JSP precompilation, session management, security,
deployment, SHTML, and CGl.

(Updated for 7 2004Q2) Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the Sun Java System
Application Server. Discusses Enterprise JavaBeans (EJB) programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include container-managed persistence, read-only beans, and the XML and
DTD files associated with enterprise beans.

(Updated for 7 2004Q2) Creating Application Client Container (ACC) clients that
access J2EE applications on the Sun Java System Application Server.

Creating web services in the Sun Java System Application Server environment.

(Updated for 7 2004Q2) Java™ Database Connectivity (JDBC™), transaction, Java
Naming and Directory Interface™ (JNDI), Java™ Message Service (JMS), and
JavaMail™ APIs.

Creating custom NSAPI plug-ins.

(Updated for 7 2004Q2) Information and instructions on the configuration,
management, and deployment of the Sun Java System Application Server
subsystems and components, from both the Administration interface and the
command-line interface. Topics include cluster management, the high-availability
database, load balancing, and session persistence. A comprehensive Sun Java
System Application Server glossary is included.

(Updated for 7 2004Q2) Editing Sun Java System Application Server configuration
files, such as the server. xn file.

Configuring and administering security for the Sun Java System Application Server
operational environment. Includes information on general security, certificates, and
SSL/TLS encryption. HTTP server-based security is also addressed.

Developer’s Guide

Developer’s Guide to Web
Applications

Developer’s Guide to Enterprise
JavaBeans Technology

Developer’s Guide to Clients

Developer’s Guide to Web
Services

Developer’s Guide to J2EE
Services and APIs

Developer’s Guide to NSAPI

Administration Guide

Administrator’s Configuration
File Reference

Administrator’s Guide to
Security

About This Guide 13

How This Guide Is Organized

Table1l SunJavaSystem Application Server Documentation Roadmap (Continued)

For information about

See the following

Configuring and administering service provider implementation for J2EE™
Connector Architecture (CA) connectors for the Sun Java System Application
Server. Topics include the Administration Tool, Pooling Monitor, deploying a JCA
connector, and sample connectors and sample applications.

(Updated for 7 2004Q2) Migrating your applications to the new Sun Java System
Application Server programming model, specifically from iPlanet Application Server
6.x and Sun ONE Application Server 7.0. Includes a sample migration.

(Updated for 7 2004Q2) How and why to tune your Sun Java System Application
Server to improve performance.

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
problems.

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
error messages.

(Updated for 7 2004Q2) Utility commands available with the Sun Java System
Application Server; written in manpage style.

Using the Sun™ Java System Message Queue 3.5 software.

J2EE CA Service Provider
Implementation Administrator’s
Guide

Migrating and Redeploying
Server Applications Guide

Performance Tuning Guide
Troubleshooting Guide
Error Message Reference
Utility Reference Manual

The Sun Java System
Message Queue
documentation at:
http://docs. sun. com db?p=
prod/ s1. slnsgqu

How This Guide Is Organized

This guide contains the following documentation components:

e “Using Session Beans”
e “Using Entity Beans’

“Sun Java System Application Server and Enterprise JavaBeans Technology”

» “Using Container-Managed Persistence for Entity Beans”

» “Using Message-Driven Beans’

» “Handling Transactions with Enterprise Beans’
e “Developing Secure Enterprise Beans”

e “Assembling and Deploying Enterprise Beans’

e “CMP Mapping with the Sun ONE Studio 5 Interface’

14 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

http://docs.sun.com/db?p=prod/s1.s1msgqu

Related Information

e “Elements Listings’

Related Information

In addition to the information in the Sun Java System Application Server documentation
collection listed in “Using the Documentation” on page 12, the following resources may be
helpful:

e J2EE Specifications
http://java. sun. con product s/
e Enterprise JavaBeans Specification, Version 2.0
http://java. sun. com product s/ ej b/ docs. ht m #specs
e General EJB product information:
http://java. sun.com products/ejb
+ Java Software tutorias:
http://java. sun. com docs/ books/tutorial /

» Enterprise JavaBeans, by Richard Monson-Haefel, O’ Reilly Publishing,
ISBN 0-596-00226-2

http://waw oreilly.conm catal og/ entj beans3/
» Enterprise Beans Technology book index

http://devel oper.java. sun. coni devel oper/ Books/ €] bt echnol ogy. ht m
» Enterprise JavaBeans Design Patterns, ISBN 0-471-20831-0

» Core J2EE Patterns, ISBN 0-13-064884-1

Documentation Conventions

This section describes the types of conventions used throughout this guide:
* General Conventions

e Conventions Referring to Directories

About This Guide 15

http://java.sun.com/products/
http://java.sun.com/products/ejb/docs.html#specs
http://java.sun.com/products/ejb
http://java.sun.com/docs/books/tutorial/
http://www.oreilly.com/catalog/entjbeans3/
http://developer.java.sun.com/developer/Books/ejbtechnology.html

Documentation Conventions

General Conventions

The following general conventions are used in this guide:

* Fileand directory pathsare given in UNIX® format (with forward slashes separating
directory names). For Windows versions, the directory paths are the same, except that
backd ashes are used to separate directories.

* URLsaregivenin theformat:
http://server .domain/path/file.ntml

In these URLS, server isthe server name where applications are run; domain is your
Internet domain name; path isthe server’sdirectory structure; and fileisan individual
filename. Italic itemsin URLSs are placeholders.

* Font conventionsinclude:

o Thenonospace font is used for sample code and code listings, APl and language
elements (such as function names and class names), file names, pathnames,
directory names, and HTML tags.

o Italictypeisused for code variables.

o Italictypeisalso used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

v Bold typeisused as either a paragraph lead-in or to indicate words used in the
literal sense.

e Installation root directoriesfor most platforms are indicated by install_dir in this
document. Exceptions are noted in “ Conventions Referring to Directories’ on page 17.

By default, the location of install_dir on most platformsis:
o Solarisand Linux file-based installations:
user’shomedirectory/ sun/ appser ver 7
o Windows, all installations:
systemdrive: \ Sun\ AppSer ver 7

For the platforms listed above, default_config_dir and install_config_dir are identical
toinstall_dir. See“ Conventions Referring to Directories’ on page 17 for exceptions
and additional information.

e Instanceroot directoriesareindicated by instance dir in this document, which isan
abbreviation for the following:

default_config_dir/ domai ns/ domair/ instance

16 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Contacting Sun

» UNIX-specific descriptions throughout this manual apply to the Linux operating
system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories

By default, when using the Solaris package-based or Linux RPM-based installation, the
application server files are spread across several root directories. This guide uses the
following document conventionsto correspond to the various default installation directories
provided:

e install_dir refersto/ opt / SUN\Wappser ver 7, which contains the static portion of the
installation image. All utilities, executables, and libraries that make up the application
server reside in this location.

e default_config_dir refersto/ var/ opt/ SUN\ppser ver 7/ donai ns, which is the default
location for any domains that are created.

» install_config_dir refersto/ et ¢/ opt/ SUN\Wappser ver 7/ conf i g, which contains
installation-wide configuration information such as licenses and the master list of
administrative domains configured for this installation.

Contacting Sun

Y ou might want to contact Sun Microsystems in order to:
* Give Us Feedback

e Obtain Training

» Contact Product Support

Give Us Feedback

If you have general feedback on the product or documentation, please send this to:

ht t p: // waw. sun. con hwdocs/ f eedback/

About This Guide 17

http://www.sun.com/hwdocs/feedback/

Contacting Sun

Obtain Training

Application Server training courses are available at:
http://training.sun. com US cat al og/ ent er pri se/ web_appl i cation. htni/
Visit this site often for new course availability on the Sun Java System Application Server.

Contact Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

» Theonline support web site at:

htt p: // waw. sun. com suppor trai ni ng/

» Thetelephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems:

e Description of the problem, including the situation where the problem occurs and its
impact on your operation

» Machinetype, operating system version, and product version, including any patches
and other software that might be affecting the problem. Here are some of the
commonly used commands:

o Solaris: pkgi nfo, show ev

o Linux: rpm

o All: asadmin version --verbose
» Detailed steps on the methods you have used to reproduce the problem
e Any error logs or core dumps
e Configuration files such as:

o instance_dir/ confi g/ server. xm

o aweb application’sweb. xm file,
when aweb application isinvolved in the problem

» For an application, whether the problem appears when it is running in a cluster or
standalone

18 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

http://training.sun.com/US/catalog/enterprise/web_application.html/
http://www.sun.com/supportraining/

Chapter 1

Sun Java System Application Server
and Enterprise JavaBeans
Technology

This section provides an overview of how the Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) Enterprise JavaBeans™ (EJB™) technology works in the application
programming model of the Sun Java™ System Application Server Standard and Enterprise
Editions 7.1 environment.

NOTE If you are unfamiliar with the EJB technology, refer to the Java Software
tutorias:

http://java. sun. com docs/ books/tutorial/
and the J2EE specifications:
http://java. sun. com product s/

Overview materia on the Sun Java System Application Server is contained
in the Sun Java System Application Server Product Introduction.

This section addresses the following topics:

e Summary of EJB 2.0 Changes

* EJIB Architecture

* Vaue Added Features

» About Enterprise JavaBeans

* About Developing an Effective Application
e About EJB Assembly and Deployment

19

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/products/

Summary of EJB 2.0 Changes

Relevant files supplied with the Sun Java System Application Server are contained in the
following locations:

Sun Java System Application Server DTD files:
ingtall_dir/ | i b/ dt ds

Sun Java System Application Server sample applications:
ingall_dir/ sanpl es

Summary of EJB 2.0 Changes

Sun Java System Application Server supports the Sun Microsystems Enterprise JavaBeans
(EJB) architecture as defined by the Enterprise JavaBeans Specification, v2.0 and is
compliant with the Enterprise JavaBeans Specification, v1.1.

NOTE Y ou can deploy existing 1.1 beans in the Sun Java System Application

Server, but new beans should be devel oped as 2.0 enterprise beans.

This section summarizes the changes in the Enterprise JavaBeans Specification, v2.0 that
impact enterprise beans in the Sun Java System Application Server environment:

Container-managed persistence—Provides a new way of handling container-managed
persistence. See “Using Contai ner-Managed Persistence for Entity Beans’ on page 85.

Container-managed relationships—Allows you to define rel ationships between entity
beans. See “ Assembling and Deploying Enterprise Beans’ on page 173.

M essage-driven beans—This new type of enterprise bean is a Java Message Service
consumer. “Using Message-Driven Beans’ on page 135.

Local interfaces—Session and entity beans can implement alocal interface.
Container-managed EJB relationships are now based on the local interface. See
“Creating a Local Interface” on page 70.

Additional methods on the home interface—Allow you to implement business logic
that is independent of a specific entity bean instance. See “ Creating the Remote Home
Interface” on page 67.

New query language (EJB QL)—Thenew EJB Query Language (EJB QL) providesfor
navigation across a network of entity beans defined by container-managed
relationships. See “Using EJB QL” on page 111.

20 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

EJB Architecture

EJB Architecture

The Sun Java System Application Server reduces the complexity of devel oping middleware
by providing automatic support for middleware services such as transactions, security,
database connectivity, and more.

The following figure illustrates where enterprise beansfit in the J2EE environment. In this
figure the client machine is running a web browser or application client, the J2EE server
machine is running (or hosting) the Sun Java System Application Server, and the database
server machine hosts the databases, such as Oracle and LDAP. Enterprise beansreside in
the business tier, with JavaServer Pages™ (JSP™ pages) and servlets providing the
interface to the client tier, and the Sun Java System Application Server managing the
relationships between the client and database machines.

J2EE J2EE
Application 1 Application 2
Application Dynamic Client Client
Client HTML Pages Tier Machine
Web
Tier J2EE
Server
i y i Machine
Enterprise ¢ Enterprise Business
Beans Beans Tier
Database
'Filg' Server
Machine

The Sun Java System Application Server is responsible for providing the base of the EJB
execution systems, which include:

* A standard set of EJB services
» Distributed transaction management services
* A means of data store access or backend system connection

* AnEJB container to implement the management and control services for the EJB
classes

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 21

Value Added Features

Thefollowing figure illustrates further details of the J2EE environment. The business logic
layer shows the EJB flow.

Client | Presentation Business Data | Data
layer : layer Logic layer Access layer : layer
: Web container EJB container :
| |
» > <4 EJB 4—»| JDBC |¢——>»
<_JT / |
Browser “ | A |
-I_IL | RDBMS
|
I-} v |
: »(Connector)4 :
| |
| |
Browser |¢+P(HTML «—* [
| |
| v |
Web ' '
Service)¢ p(Servlet J&——>»(EJIB '
client : :
—— | | v
Application | | Legacy
Client container > 1S
: > EJB)4»(Connector)4 ™| application
RMI/IIOP ! | A
client | |
| |
| |
| |
IMS <+ »(MDB)4»(Connector)4
client I I
| |
| |
: _—»| IMS provider |¢— :
| |
Client I Server I EIS

Value Added Features

The Sun Java System Application Server provides anumber of value additions that rel ate to
EJB development. These capabilities are discussed in the following sections (references to
more in-depth material areincluded):

e Read-Only Beans

22 Application Server 7 2004Q2 +« Developer’s Guide to Enterprise JavaBeans Technology

Value Added Features

e pass-by-reference

» Pooling and Caching Features

* Monitoring

* Integration with Sun ONE Studio 5

e Dynamic Deployment and Reloading
e High Availability and Load Balancing

Read-Only Beans

Another feature that the Sun Java System Application Server providesisthe read-only
bean, an entity bean that is never modified by an EJB client. Read-Only beans avoid
database updates completely.

A read-only bean can be used to cache adatabase entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by aread-only beanis
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Sun Java System Application Server provides anumber of ways by which aread-only
bean’s state can be refreshed. By setting the r ef r esh- per i od- i n- seconds element and the
transaction attribute of the bean, it is easy to configure aread-only bean that is (a) aways
refreshed, (b) periodically refreshed, (c) never refreshed, or (d) programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changesinfrequently. For further information and usage guidelines, see “ Read-Only Beans’
on page 65.

pass-by-reference

The pass- by-ref erence element in the sun- ¢j b-j ar. xn file allows you to specify the
passing method/argument type used by enterprise beans. Thisis an opportunity to improve
performance. See “ pass-by-reference” on page 191.

Pooling and Caching Features

The Sun Java System Application Server provides a highly configurable bean pooling
mechanism that allows the deployer to configure bean pools according to the needs of the
enterprise.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 23

Value Added Features

In addition, the Sun Java System Application Server supports a number of tunable
parameters that can be used to control the number of beans cached as well as the duration
they are cached. Multiple bean instances that refer to the same database row in atable can
be cached.

Refer to “Pooling and Caching” on page 30 for information on this functionality.

Monitoring

The Sun Java System Application Server supports monitoring of many aspects of the
runtime environment, including various elements of the EJB container which can be useful
for debugging your application's correctness as well as tuning its performance.

See the Sun Java System Application Server Administration Guide (Monitoring and
Managing Sun Java System Application Server section) and the Performance Tuning Guide
for more information on monitoring.

Integration with Sun ONE Studio 5

Sun ONE Studio 5, Enterprise Edition for Javais an integrated development environment
(IDE) that allows you to create, assemble, deploy, and debug code in the Sun Java System
Application Server from a single, easy-to-use interface. Behind the scenes, a plug-in
integrates the Sun ONE Studio 5 IDE with the Sun Java System Application Server.

For more information about using the Sun ONE Studio 5, see the Sun ONE Studio 5,
Enterprise Edition tutorial and “ CMP Mapping with the Sun ONE Studio 5 Interface” on
page 221.

Dynamic Deployment and Reloading

Y ou can deploy, redeploy, and undeploy an application or standalone module. If thisisdone
while the server isrunning, it is considered dynamic. The following dynamic processes are
available in Sun Java System Application Server:

» Dynamic reloading—Enabl es reloading the classes that congtitute an application when
they change on disk.

» Dynamic redeployment (for the developer community)—Enables redeploying an
existing application without restarting the server. Y ou can AL SO disable and enable an
application or module without undeploying it.

24 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

About Enterprise JavaBeans

For more information on dynamic deployment, refer to the Sun Java System Application
Server Developer’s Guide and Administration Guide.

High Availability and Load Balancing

Stateful session bean sessions and HT TP sessions can be saved in a persistent storein casea
server instance fails. For more information, see“ Stateful Session Bean Failover (Enterprise
Edition)” on page 51, the Sun Java System Application Server Administration Guide, and
the Sun Java System Application Server Developer’s Guide to Web Applications.

Sticky round-robin load balancing is supported in the Sun Java System Application Server
through the load balancer plug-in for web servers. For information about the load balancer
plug-in, see the Sun Java System Application Server Administration Guide.

About Enterprise JavaBeans

If you are already familiar with enterprise beans and how they work, you may prefer to
proceed to “ About Devel oping an Effective Application” on page 34.

The following topics are discussed in this section:
e What Isan Enterprise JavaBean?

» Typesof Beans

* EJBFlow

* TheEJIB Container

* Interfaces

* Pooling and Caching

» How Enterprise Beans Access Resources

e Transaction Management

» How Application Security Works

What Is an Enterprise JavaBean?

An enterprise bean, or Enterprise JavaBean (EJB), is a self-contained, reusable component
that has data members, properties, and methods. Each enterprise bean encapsul ates one or
more application tasks or objects, including data structures and operation methods.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 25

About Enterprise JavaBeans

Enterprise bean methods can take parameters and send back return val ues.
Enterprise bean creation and management is handled at runtime by the container.

Client access mediation is handled by the container and the server where the beanis
deployed.

Enterprise beans are restricted to using standard container services defined by the
Enterprise JavaBeans Specification, v2.0. This guarantees that the bean is portable and
deployable in any EJB-compliant container.

Enterprise beans are components that can be assembled, without recompiling, into a
composite application.

A client’sbean definition view is controlled entirely by the bean developer. Theview is
not affected by the container in which the bean runs or the server where the bean is
deployed.

For several reasons, enterprise beans simplify the development of large, distributed

appl

ications.

Container-provided services—Because the EJB container provides system-level
services to enterprise beans, the bean developer can concentrate on solving business
problems. The EJB container—not the bean devel oper—isresponsible for system-level
services such as transaction management and security authorization.

Remote clients—Because the enterprise beans, not the clients, contain the application's
business logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules or
access databases. As aresult, the clients are thinner, a benefit that is particularly
important for clients that run on small devices.

Bean reusability—Because enterprise beans are portable components, the application
assembler can build new applications from existing beans. These applications can run
on any compliant J2EE server.

Types of Beans

There are three distinct types of enterprise beans:

Session bean, stateful or stateless

o A dtateful session bean isintended to represent objects and processes that maintain
state across invocations, such as adocument copy for editing, or specialized
business objects for individual clients.

26 Application Server 7 2004Q2 +« Developer’s Guide to Enterprise JavaBeans Technology

About Enterprise JavaBeans

o A stateless session bean encapsulates atransient or temporary piece of business
logic needed by a specific client that does not maintain state across invocations.

o Referto“Using Session Beans’ on page 39 for information on developing session
beans.

» Entity bean—An entity bean commonly represents persistent data which is maintained
directly in a database or accessed through an Enterprise Information System (EIS)
application as an object.

v Bean-managed persistence—The bean is responsible for its own persistence. The
entity bean code that you write contains the calls that access the database. For
information on devel oping entity beans in general and bean-managed persistence
in particular, refer to “Using Entity Beans” on page 61.

o Container-managed persistence—The enterprise bean container handles all
database access required by the entity bean by interacting through the persistence
manager. For information on contai ner-managed persistence, refer to “Using
Container-Managed Persistence for Entity Beans’ on page 85.

* Message-driven bean—A message-driven bean represents a statel ess service; it is
essentially an asynchronous message consumer, invoked by the Java™ Message Service
(IMS), that is completely anonymous and has no client-visible identity.

Refer to “Using Message-Driven Beans” on page 135, for information on developing
message-driven beans.

EJB Flow

When auser invokes a Sun Java System Application Server servlet from a browser, the
servlet may invoke one or more enterprise beans. For example, the servlet may load a
JavaServer Page (JSP) to the user’ s browser to request a user name and password, then pass
the user input to a session bean to validate the input.

Servlet/JSP - EJB >
User Interface - Business Logic = DB
App Client

After avalid user name and password combination is accepted, the servlet might instantiate
one or more entity and session beans to run the application’s business logic, then terminate.
The beans themselves might instantiate other entity or session beans to do further business
logic and data processing.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 27

About Enterprise JavaBeans

Sample Scenario

A servlet invokes a session bean that gives a customer service representative access to an
order database. This access might include the ability to:

* Browse the database

e Queueitemsfor purchase

» Place customer orders

» Permanently reduce number of partsin the database
* Bill the customer

» Reorder parts when the stock is low or depleted.

As part of the customer order process, a servlet creates a session bean that manages a
shopping cart to keep temporary track of items as a customer selects them. When the order
completes, the shopping cart data transfers to the order database and the shopping cart
session bean is freed.

The EJB Container

Enterprise beans always work within the context of a container. The container serves as a
link between the enterprise beans and the hosting server. The EJB container enables
distributed application building using your own components and components from other
suppliers.

Through the container, the Sun Java System Application Server provides high-level
transaction management, security management, state management (persistence),
multithreading, and resource pooling wrappers, thereby shielding you from having to know
the low-level API details. By handling concurrency, the container shields you from worry
about entities (hence, threads) simultaneously accessing an enterprise bean. This container
provides all standard container services denoted by the Enterprise JavaBeans Specification,
v2.0, and also provides additional services specific to the Sun Java System Application
Server.

The Sun Java System Application Server servicesinclude remote access, naming service,
Security service, concurrency, transaction control, and database access. The following
figureillustrates the EJB container provided by the Sun Java System Application Server.

28 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Enterprise JavaBeans

Sun Java System Application Server

EJB Container

Transactions DB Persistence Naming
Remote Access Security Concurrency
Interfaces

A client never accesses session or entity EJB instances directly. Instead, a client uses the
bean’ s remote interface to access a bean instance. The EJB object class that implements a
bean’ s remote interface is provided by the container.

Home Interface

The home interface provides a mechanism for clients to create and destroy and find EJBs.
The EJB supplies ahome interface for the container that extendsthe j avax. ej b. EJBHone
interface defined in the EJB specification. At its most basic, the home interface defines zero
or more cr eat e methods for each way to create a bean.

Entity beans must define finder methods for each way that can be used to look up a bean or
a collection of beans.

Remote Interface

A remoteinterface (and remote home interface) provides a mechanism for remote clientsto
access session or entity beans. A remote client can be another EJB deployed in the same or
adifferent container, or a Java program, such as an application, applet, or servlet. The
remote client view of an EJB islocation independent and can be mapped to non-Java client
environments.

The remote home interface is defined by the EJB developer and implemented by the EJB
container.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 29

About Enterprise JavaBeans

Local Interface

A local interface (and local home interface) provides a mechanism for aclient that is
located in the same Java™ Virtual Machine (JVM ™) with the session or entity bean to
access that bean.This providesthelocal client view. A local client may betightly coupled to
the associated bean; session and entity beans can have many local clients.

The container provides the class that implements the local home interface and local
interface. The objectsthat implement these interfaces are local Java objects. Thelocal client
view of an EJB is not location independent.

The following diagram shows alocal client connecting through the local interfaces within
the two enterprise beans in the container.

Java Virtual Machine

EJB local home

EJB local object

| |
| |
| |
| / |
| Client ——— | |
| |
| Container |
| |
| |
| |
| |
| |
| |

EJB object

EJB home

Thelocal interface may be defined for a bean during devel opment, to allow streamlined
callsto the bean if acaller isin the same container.

Pooling and Caching

The EJB container of the Sun Java System Application Server pools anonymous instances
(message-driven beans, stateless session beans, and entity beans) to reduce the overhead of
creating and destroying objects. The EJB contai ner maintains the free pool for each bean
that is deployed. Bean instances in the free pool have no identity (that is, no primary key
associated) and are used to serve the method calls of the home interface. The free beans are
also used to serve al methods for stateless session beans.

30 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

About Enterprise JavaBeans

Bean instances in the free pool transition from a Pooled state to a Cached state after
ej bOr eat e and the business methods run. The size and behavior of each pool can be
controlled using the pool-related propertiesin the server. xni and sun-ej b-j ar. xm files.

The EJB container caches "stateful" instances (stateful session beans and entity beans) in
memory to improve performance. The EJB container maintains acache for each bean that is
deployed.

To achieve scalability, the container will selectively evicts some bean instances from the
cache, usually when cache overflows. These evicted bean instances return to the free bean
pool. The size and behavior of each cache can be controlled using the cache-related
propertiesin the server. xni and sun-ej b-j ar. xm files.

Pooling and caching parameters for the sun- ej b-j ar. xm file are discussed in “Pooling and
Caching Elements’ on page 208.

Pooling Parameters

One of the most important parameters of Sun Java System Application Server pooling is

st eady- pool - si ze. When st eady- pool - si ze is set to greater than 0, the container not only
pre-popul ates the bean pool with the specified number of beans, but also attempts to ensure
that there is always this many beans in the free pool. This ensures that there are enough
beansin the ready to serve state to process user requests.

Another parameter, pool -i dl e-ti meout - i n- seconds, allows the administrator to specify,
through the amount of time a bean instance can be idlein the pool. When

pool -i dl e-ti meout - i n- seconds is set to greater than O, the container removes/destroys any
bean instance that isidle for this specified duration.

Caching Parameters

Sun Java System Application Server provides a way that completely avoids caching of
entity beans, using commit-c option. Commit-c option is particularly useful if beans are
accessed in large number but very rarely reused. For additional information, refer to
“Commit Options” on page 153.

The Sun Java System Application Server caches can be either bounded or unbounded.
Bounded caches have limits on the number of beans that they can hold beyond which beans
are passivated. For stateful session beans, there are three ways (LRU, NRU and FIFO) of
picking victim beans when cache overflow occurs. Caches can also be configured to
passivate beans that were idle (not accessed for a specified duration) to be passivated.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 31

About Enterprise JavaBeans

How Enterprise Beans Access Resources

Enterprise beans can access awide variety of resources, including databases, JavaMail ™
sessions, JM S objects, and URLs. The J2EE platform provides mechanismsthat allow you
to access all of these resourcesin a similar manner.

This section discusses the following:
* JINDI Connection
» Database Connection

 URL Connections

JNDI Connection

J2EE components locate the objects they need to access by invoking the | ookup method of
the Java Naming and Directory Interface™ (JNDI) API. The value returned by this call
represents the object that the caller wants to access. In the case of an enterprise beans, the

| ookup call returns an object reference to the home interface of the bean. This reference may
be used for all future invocations on the EJB home interface.

Context initial = new Initial Context();
(bj ect objref =
initial.lookup("java: conp/env/ejb/ CompString");

A J2EE component on the server (a JSP, servlet, or enterprise bean) that wants to access a
deployed enterprise bean, uses an EJB reference element in its deployment descriptor to
specify this access. The EJB reference is mapped at deployment time to the INDI name
corresponding to the enterprise bean that the component wishes to access. This mapping
serves to decouple components accessing enterprise beans from the JINDI names of the
beans being accessed. Thus, the INDI name to which an EJB's home is bound may be
changed at deployment time without requiring the caller's code to change.

Database Connection

The persistence type of an enterprise bean determines whether or not you will code the
connection routine for accessing a database.

» For beansthat access a database and do not use container-managed persistence—Y ou
are responsible for writing persistence code. Such beans include entity beans that use
bean-managed persistence and session beans.

e For beansthat use container-managed persistence—Connection routines are generated
for you at deployment. Applies only to entity beans.

32 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Enterprise JavaBeans

URL Connections

A Uniform Resource Locator (URL) specifies the location of aresource on the web, such as
web pages. These URL s then can be mapped to JINDI names so that developers can lookup
the URLs.

Transaction Management

By dividing the application’ swork into units called transactions, you are freed from dealing
with the complex issues of database failure recovery and maintaining database integrity.

Asadeveloper, you can choose between using programmeati ¢ transaction demarcation in the
EJB code (bean-managed) or declarative demarcation (container-managed). Regardl ess of
whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the EJB container
and the Sun Java System Application Server. The container and the server implement the
necessary low-level transaction protocols, such as the two-phase commit protocol, between
a transaction manager and a database system or Sun Java™ System M essage Queue.

For information on transaction handling, refer to “Handling Transactions with Enterprise
Beans’ on page 149.

How Application Security Works

The J2EE application programming model insul ates devel opers from mechani sm-specific
implementation details of application security. For the most part, the container provides the
implementation of the security infrastructure. J2EE provides thisinsulation in away that
enhances the portability of applications, allowing them to be deployed in diverse security
environments with no additional coding.

The declarative security mechanisms used in an application are expressed in the
deployment descriptor. The deployer then uses specific Sun Java System Application
Server tools to map the application requirements that are in a deployment descriptor to the
security mechanisms that are implemented by the container.

Refer to “Developing Secure Enterprise Beans” on page 165 for further information. For
information on security realms, refer to the Sun Java System Application Server
Developer’'s Guide.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 33

About Developing an Effective Application

About Developing an Effective Application

Partitioning a Sun Java System Application Server application’s business logic and data
processing into the most effective set of servlets, JSPs, session beans, entity beans, and
message-driven beansis the crux of your job as a devel oper. There are no specific rules for
object-oriented design with enterprise beans, other than that entity bean instancestend to be
long lived, persistent, and shared among clients, while session bean instances tend to be
short lived and used only by asingle client. Message-driven beans arein their own category
as the only asynchronous receivers of JM S messages.

In general, your goal isto create a Sun Java System Application Server application that
effectively balances the need for execution speed with the need for sharing enterprise beans
(among applications and clients) and easily deploying applications across servers.

High-level information and guidelines which can help you develop enterprise beansin the
Sun Java System Application Server environment are addressed in the following sections:

e General Process for Creating Enterprise Beans
» Bean Usage Guidelines

* Client View Guidelines

* Remoteor Local Interface Guidelines

e Accessing Sun Java System Application Server Functionality

General Process for Creating Enterprise Beans

The procedure in this section outlines the general process of creating an enterprise bean.
Specific instructions on creating the various types of enterprise beans are contained in the
sections referenced in the following steps.

To create an enterprise bean:
1. Createadirectory for al the enterprise bean’ sfiles.
2. Decide on the type of enterprise bean you are creating:
o Session bean (Refer to “Developing Session Beans'’ on page 42.)
- Stateful
o Stateless
o Entity bean (Refer to “ Devel oping Entity Beans’ on page 65.)
« With bean-managed persistence

34 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Developing an Effective Application

» With container-managed persistence (Refer to “ Using Container-Managed
Persistence” on page 92.)

o Message-driven bean (Refer to “ Devel oping Message-Driven Beans’ on
page 138.)

Write the code for the enterprise bean according to the EJB specification, including:
o Aloca and/or remote home interface
o Alocal and/or remote interface

o Animplementation class (for a message-driven bean, thisis all you need; refer to
“Developing Message-Driven Beans' on page 138)

Compile the interfaces and classes.

Create the META- | NF directory and the other structural requirements of an enterprise
bean.

Create the deployment descriptor files, ej b-j ar. xm and sun-ej b-j ar. xni . (Refer to
“Assembling and Deploying Enterprise Beans’ on page 173.)

If the bean is an entity bean with contai ner-managed persistence, you must also create a
sun- cnp- nappi ngs. xni file and a.dbschena file. (Refer to “ Using Container-Managed
Persistence” on page 92.)

Package the class and the XML filesto aJJAR file, if desired. If you are using directory
deployment, thisis optional.

Deploy the bean by itself or include it in a J2EE application. (Refer to the Sun Java
System Application Server Developer’s Guide.)

It'sagood ideato verify the structure of these files using the verifier tool as described in the
Sun Java System Application Server Developer’s Guide.

Bean Usage Guidelines

Deciding which parts of an application are candidates for entity beans and which are
candidates for session beans (stateful or statel ess) or message-driven beans will have a
significant impact on the effectiveness of your application. In general:

Use astateful bean to store non-shared data that corresponds to the user conversational
state, that is, a state specific to asingle user.

Use a statel ess session bean to access data or perform transactional operations.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 35

About Developing an Effective Application

Create session beans that are small, generic, and narrowly task focused. Ideally, these
enterprise beans encapsulate behavior that is used in many applications.

Ask the application assembler to co-locate enterprise beans with your presentation
logic (servlets and JSPs) on the same server. This reduces the number of Remote
Procedure Calls (RPCs) when the application runs.

The applications should explicitly remove the beans using the ej bRenove method when
they are no longer required, thereby reducing the overhead on the container (by
eliminating the passivation process).

Unique naming is optional across enterprise beans in different applications, although
applications do need to be named uniquely within the context of a single application
server instance. That is, enterprise beans within an application cannot have the same
name.

For further information on EJB devel oper guidelines, refer to “Using Session Beans’ on
page 39, “Using Entity Beans” on page 61, and “Using Message-Driven Beans’ on
page 135.

Client View Guidelines

The choice between the use of local and remote interfaces is a design decision that you, the
developer, make when developing an enterprise bean. The following facts should be taken
into account in determining whether the local or remote programming model should be
used:

The remote programming model provides location independence and flexibility with
regard to deployment. The client and enterprise bean are loosely coupled.

Remote callsinvolve pass-by-value, providing alayer of isolation between caller and
callee. This protects against inadvertent modification of data.

For local objects, pass-by-reference is optional and is not mandated by the 2EE
specification
Remote calls are potentially expensive.

Remote calls require that objects that are passed as parameters be serializable.

Narrowing remote types requires the use of
javax.rm . Port abl eRenot e. Qvj ect . nar r owrather than Java language casts.

Remote callsinvolve error cases that are not expected in local calls. The client hasto
explicitly program handlers for these remote exceptions.

36 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

About Developing an Effective Application

Because of the overhead of remote programming, it istypically used for relatively
coarse-grained component access.

Local calls can optionally involve pass-by-reference. The client and the bean may be
programmed to rely on pass-by-reference semantics. Locals callsimply that the local
client and the enterprise bean must be co-located.

Because local programming provides lighter-weight access to a component, it better
supports more fine-grained component access.

Be aware of the potential sharing of objects passed through the local interface.

For additional information, refer to the Enterprise JavaBeans Specification, v2.0.

Remote or Local Interface Guidelines

With all object-oriented development, you must determine the granularity level needed for
your business logic and data processing. Granularity level refers to how many piecesto
divide an application into.

A low level of granularity (alow number of beans and bean method invocations)—A
more monolithic application is devel oped, creating an application that is not aslikely to
promote sharing and reuse, but usually executes more quickly.

A highlevel of granularity (ahigh number of beans and bean method invocations)—An
application isdivided into many, smaller, more narrowly defined enterprise beans. This
creates an application that may promote greater sharing and reuse of enterprise beans
among different applications at your site.

Dividing adistributed application into a moderate to large number of separate beans
degrade performance degradation and more overhead. Enterprise beans are not simply
Java objects; they are higher-level entities with remote call interface semantics,
security semantics, transaction semantics, and properties. This complexity creates
overhead.

Accessing Sun Java System Application Server
Functionality

Y ou can devel op entity beans that adhere strictly to the Enterprise JavaBeans Specification,
v2.0, or you can develop entity beans that take advantage of both the specification and
additional, value-added Sun Java System Application Server features.

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology = 37

About EJB Assembly and Deployment

The Sun Java System Application Server offers several features available only in the Sun
Java System Application Server container. The Sun Java System Application Server APIs
enable applications to take programmatic advantage of specific Sun Java System
Application Server environment features.

NOTE Use these APIs only if you plan on using those beans exclusively in a Sun
Java System Application Server environment.

About EJB Assembly and Deployment

The process of assembling modules and applications in Sun Java System Application
Server conformsto all customary J2EE specifications. However, you can include Sun Java
System Application Server-specific deployment descriptors that enhance the functionality
of the Sun Java System Application Server beyond the J2EE specifications.

A J2EE moduleis a collection of one or more J2EE components with two deployment
descriptors of that type. One descriptor is J2EE standard, the other is specific to Sun Java
System Application Server. For enterprise beans, the following deployment descriptor files
apply:

e ¢jb-jar.xm —J2EE standard file
e sun-ejb-jar.xm —Sun Java System Application Server-specific file

* sun-cnp- mappi ngs. xn —Sun Java System Application Server-specific file used for
container-managed persistence mapping

Information on the EJB DTDs and XML filesis contained in “ Assembling and Deploying
Enterprise Beans” on page 173. An alphabetical list of al EJB-related elementsis contained
in“Elements Listings” on page 231.

General information on assembly and deployment is contained in the Sun Java System
Application Server Developer’s Guide.

Deployment procedures are contained in the Sun Java System Application Server
Administration Guide and the Administration interface online help.

38 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Chapter 2

Using Session Beans

This section provides guidelines for creating session beansin the Sun Java System
Application Server environment.

NOTE If you are unfamiliar with session beans or the EJB technology, refer to the
Java Software tutorials:

http://java. sun. conij 2ee/ docs. ht m

Extensive information on session beansis contained in chapters 6, 7, and 8
of the Enterprise JavaBeans Specification, v2.0.

Overview materia on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

This section addresses the following topics:

* About Session Beans

e Developing Session Beans

e Stateful Session Bean Failover (Enterprise Edition)
» Restrictions and Optimizations

Extensive information on session beansis contained in the chapters 6, 7, and 8 of the
Enterprise JavaBeans Specification, v2.0.

39

http://java.sun.com/j2ee/docs.html

About Session Beans

About Session Beans

This section provides an overview of what you need to be aware of about session beansin
order to develop effective models for your business processes.

This section addresses the following topics:
* Session Bean Characteristics

e The Container

Session Bean Characteristics

The defining characteristics of a session bean have to do with its non-persistent,
independent status within an application. One way to think of a session beanisasa
temporary, logical extension of a client application that runs on the Sun Java System
Application Server. Generally, a session bean does not represent shared data in a database,
but obtains a data snapshot. However, a session bean can update data.

Session beans have the following characteristics:
e Executefor asingleclient.
* Can be transaction aware.

» Do not represent directly shared datain an underlying database, although they may
access and update this data.

e Areshort lived.
* Arenot persisted in a database.
* Areremoved if the container crashes; the client has to establish a new session.

Much of a standard, distributed application consists of logical code units that perform
repetitive, time-bound, and user-dependent tasks. These tasks can be simple or complex,
and are often needed in different applications. For example, banking applications must
verify auser’s account 1D and balances before performing any transaction. Such discrete
tasks, transient by nature, are candidates for session beans.

40 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Session Beans

Sample Scenario

The shopping cart employed by many web-based, online shopping applicationsis a typical
use for asession bean. It is created by the online shopping application only when an itemis
selected by the user. When selection is completed, the item prices in the cart are calculated,
the order is placed, and the shopping cart object is released, or freed. A user can continue
browsing merchandise in the online catalog, and if the user decidesto place another order, a
new shopping cart is created.

Often, a session bean has no dependencies on or connections to other application objects.
For exampl e, a shopping cart bean might have a data list member for storing item
information, a data member for storing the total cost of items currently in the cart, and
methods for adding, subtracting, reporting, and totaling items. On the other hand, the
shopping cart might not have a live connection to the database at al.

The Container

Like an entity bean, a session bean can access a database through Java™ Database
Connectivity (JDBC™) calls. A session bean can also provide transaction settings. These
transaction settings and JDBC calls are referenced by the session bean’ s container, allowing
it to participate in transaction managed by the container.

A container managing statel ess session beans has a different charter from a container
managing stateful session beans.

Stateless Container

The statel ess container manages the statel ess session beans, which, by definition, do not
carry client-specific states. Therefore, all session beans (of a particular type) are considered

equal.

A statel ess session bean container uses a bean pool to service requests. The Sun Java
System Application Server-specific XML file contains the properties that define the pool:

» steady-pool -size

* resize-quantity

* max- pool -si ze

e pool -idle-tineout-in-seconds

These properties are defined for the deployment descriptor in “Elementsin the
sun-gjb-jar.xml File” on page 181.

Chapter 2 Using Session Beans 41

Developing Session Beans

Stateful Container

The stateful container manages the stateful session beans (SFSBs), which, by definition,
carry the client-specific state. There is a one-to-one relationship between the client and the
SFSBs. At creation, each SFSB is given a unique session ID that is used to access the
session bean so that an instance of an SFSB is accessed by asingle client only.

SFSBs are managed using cache. The size and behavior of SFSBs cache can be controlled
by specifying the following parameters:

* nax-cache-si ze

e resize-quantity

e cache-idle-tinmeout-in-seconds
* renoval -timeout-i n-seconds

e victimselection-policy

The max- cache- si ze element specifies the maximum number of session beansthat are
held in cache. If the cache overflows (when the number of beans exceeds

max- cache- si ze), the container then passivates some beans or writes out the serialized
state of the bean into afile. The directory in which the fileis created is obtained from the
server. xni fileusing the configuration APIs.

These properties are defined in the deployment descriptor. See “Elementsin the
sun-gjb-jar.xml File” on page 181 for more information.

The passivated beans are stored on the file system.The sessi on- st or e attribute in the
server elementintheserver. xm filealowsthe administrator to specify the directory
where passivated beans are stored. By default, passivated SFSBs are stored in
application-specific subdirectories created under instance_dir/ sessi on- st or e.

Developing Session Beans

When aclient is done with the session bean, it is released, or freed. When designing an
application, you should designate each temporary, single client object as a potential session
bean.

The following sections discuss how to develop effective session beans:
» Development Requirements
» Determining Session Bean Usage

e Providing Interfaces

42 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Developing Session Beans

e Creating the Bean Class Definition

Development Requirements

When devel oping a session bean, you must provide the following:

* Session bean’ s remote interface and remote home interface, if the session bean
provides aremote client view

e Session bean'slocal interface and local home interface, if the session bean provides a
local client view

» Bean classimplementation

* Assembly and deployment data

Requirements of a session bean implementation class:

e Implementsthej avax. ej b SessionBean interface.

e Theclassisdefined as public, and cannot be defined as abstract or final.
e Implementsone ej bCr eat e method that takes no arguments.

* Implements the business methods.

» Contains a public constructor with no parameters.

e Must not definethef i nal i ze method.

Determining Session Bean Usage

This section provides some guidelines for determining whether to implement stateful or
statel ess session beans.

e Stateless Session Bean Considerations
o Stateful Session Bean Considerations

Stateless Session Bean Considerations
Y ou might choose a stateless session bean if any of these conditions exist:

e Thebean's state has no data for a specific client, that is, user conversational state does
not have to be retained across method invocations on the bean.

Chapter 2 Using Session Beans 43

Developing Session Beans

* Inasingle method invocation, the bean performs an atomic task that is generic across
all clients. For example, a stateless bean could be used to return the weather forecast
based on a ZIP code.

» Thebean fetches a set of read-only data (from a database) that is often used by clients.
Such a bean, for example, could retrieve the table rows that represent the products that
are on sale this month.

Use a statel ess session bean to access data or perform transactional operations. Stateless
session beans provide high scalability because a small number of such beans managed by
the container in a stateless bean pool) can help serve alarge number of clients. Thisis
possible because statel ess beans have no association with the clients. When arequest for a
service provided by a statel ess session bean is received, the container isfree to dispatch the
request to any bean instance in the pool.

* Thecr eat e method of the remote home interface must return the session bean’s
remote interface.

* Thecreat e method of the local interface must return the session bean’s local
interface.

* There can be no other cr eat e methods in the home interface.

* A stateless session bean must not implement the
javax. ej b. Sessi onSynchr oni zat i on interface.

Stateful Session Bean Considerations
SFSBs are appropriate if any of the following conditions are true:

» Thebean's state represents the interaction between the bean and a specific client.

* The bean needs to hold session state information about, or on behalf of, the client user
across method invocations.

e The bean mediates between the client and the other components of the application,
presenting asimplified view to the client.

» Behind the scenes, the bean manages the work flow of several enterprise beans.

» Theapplication must accept requests from non-web-based clients aswell as web-based
clients, at the same time preserving session state information.

Because SFSBs are private to a client, their demand on server resources increases as the
number of users accessing an application increases. The beans remain in the container until
they are explicitly removed by the client, or are removed by the container when they are
timed out.

44 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Session Beans

The container needs to passivate SFSBs to secondary storage as its cache fills up and the
beans in the cache timeout. If the client subsequently accesses the bean, the container is
responsible for activating the bean. This passivation/activation process imposes a
performance overhead on the server.

For information about how a stateful session bean’s state can be saved in a persistent store
in case aserver instance fails, see “ Stateful Session Bean Failover (Enterprise Edition)” on

page 51.

Providing Interfaces

Asthe developer, you are responsible for providing interfaces for the bean. If you
implement aremote view for your bean, provide aremote component interface and aremote
home interface. If you implement alocal view, provide alocal component interface and a
local home interface.

To useinterfaces safely, you need to carefully consider potential deployment scenarios,
then decide which interfaces can be local and which remote, and finally, develop the
application code with these choicesin mind.

The following sections discuss creating interfaces:
» Creating a Remote Interface

» Creatingaloca Interface

e Creating the Local Home Interface

e Creating the Remote Home Interface

Creating a Remote Interface

A session bean’ s remote interface defines a client’ s access to a bean’ s methods. All remote
interfaces extend j avax. ej b. EJIBObj ect . For example:

inport javax.ejb.*;
inport java.rm.*;
public interface M/Session extends EJBObj ect {
/1 define business nethods here...
public String get Account nane() throws RenoteException;

}

For each method you define in the bean class, you must supply a corresponding method in
the remote interface. The remote interface method must have the same name, signature,
return type, and exceptions thrown as the corresponding method in the bean class. In
addition, the remote interface method must throw a Renot eExcept i on.

Chapter 2 Using Session Beans 45

Developing Session Beans

For exampl e, the implementation class for MySessi on might look like this:

public class M/SessionBean inpl ements SessionBean {
private String account nane;

public MySessionBean() { }
public void ejbCreate() { }

public String get Accountname() {
return account nane;

}

Creating a Local Interface

Thelocal interface may be defined for a bean during devel opment to allow streamlined calls
tothe bean if acaller isin the same container, that is, running in the same address space or
Java Virtual Machine (JVM). Thisimproves the performance of applicationsin which
co-location is planned.

However, the calling semantics of local interfaces are different from those of remote
interfaces. For example, remote interfaces pass parameters using pass-by-val ue semantics,
while local interfaces use pass-by-reference. As a developer, you must be aware of the
potential sharing of objects passed through the local interface. In particular, be careful that
the state of one enterprise bean is not assigned to the state of another. Y ou must also
exercise caution in determining which objects to pass across the local interface, particularly
in the case where there is a change in transaction or security content.

Thelocal interface extendsthej avax. ej b. EJBLocal Qbj ect interface, and isallowed to
have super interfaces. Thet hr ows clause of a method defined in the local interface must
not includej ava. r mi . Renot eExcept i on. For example:

inport javax.ejb.*;
public interface M/Local Session extends EJBLocal Cbject {
/1 define business nethod nethods here....

}

For each method defined in the local interface, there must be a matching method in the
session bean’ s class. The matching method must have the same name, the same number and
types of arguments, and the same return type. All exceptions defined in thet hr ows clause
of the matching method of the session bean class must be defined in thet hr ows clause of
the method of the local interface. The methods should not throw a

java. rm . Renot eExcepti on.

46 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Developing Session Beans

Creating the Local Home Interface

The home interface defines the methods that enable a client using the application to create
and remove session beans. An enterprise bean’ s local home interface defines the methods
that allow local clientsto create, find, and remove EJB objects, as well as home business
methods that are not specific to abean instance (session beans do not have finders and home
business methods). The local home interface is defined by you and implemented by the
container. A client locates a session bean’ s home interface using JNDI.

Thelocal home interface allows alocal client to:

» Create anew session object

* Remove a session object

A local homeinterface always extendsj avax. ej b. EJBLocal Hone. For example:
inport javax.ejb.*;
inport java.rm.*;

public interface MySessi onLocal BeanHorme extends EJBLocal Honme {
M/Sessi onLocal Bean create() throws O eateException;

}

Create Methods

Asthis exampleillustrates, a session bean's home interface defines one or morecr eat e
methods. Each method must be named cr eat e, and must correspond in number and
argument types to an ej bQr eat e method defined in the session bean class. The return type
for each cr eat e method, however, does not match its corresponding ej bCr eat e method's
return type. Instead, it must return the session bean's local interface type.

All exceptions defined in the t hr ows clause of an ej bCr eat e method must be defined in
thet hr ows clause of the matching cr eat e method in the remote interface. In addition, the
t hr ows clause in the home interface must alwaysincludej avax. ej b. Cr eat eExcept i on.

Remove Methods

A remote client may remove a session object using the r emove method on the

j avax. ej b. EJBOoj ect interface, or ther enove(Handl e handl e) method of the
j avax. ej b. EJBHone interface.

Because session objects do not have primary keysthat are accessibleto clients, invoking the
j avax. ej b. EBJHone. r enove(Qbj ect pri mar yKey) method on asession resultsin
j avax. ej bRemoveExcept i on.

Chapter 2 Using Session Beans 47

Developing Session Beans

Creating the Remote Home Interface

The container provides the implementation of the remote home interface for each session
bean that defines aremote home interface that is deployed in the container. The object that
implements this is called a session EJBHone object. The remote home interface allows a
client to do the following:

e Create anew session object

* Remove a session object

* Getthej avax. ej b. EJBMet aDat a interface for the session bean
* Obtain ahandle for the remote home interface

The remote home interface must extend thej avax. ej b. EJBHome interface, and is allowed
to have super interfaces. The methods defined in the interface must follow the rules for
RMI/IIOP.

The remote home interface must define one or more cr eat e<METHOD>(. . .) methods.
A remote home interface always extendsj avax. ej b. EJBHore. For example:

inport javax.ejb.*;
inport java.rm.*;

public interface M/Sessi onHome extends EJBHome {
M/Session create() throws O eateException, RenoteException;

}

Asthis exampleillustrates, a session bean’s home interface defines one or more cr eat e
methods. The return type for each cr eat e method, however, does not match its
corresponding ej bCr eat e method's return type. Instead, it must return the session bean's
remote interface type.

All exceptions defined in the t hr ows clause of an ej bCr eat e method must be defined in
thet hr ows clause of the matching cr eat e method in the remote interface. In addition, the
throws clause in the home interface must alwaysinclude j avax. ej b. Or eat eExcept i on
and j ava. r nmi . Renot eExcept i on.

NOTE For stateless session beans, the home interface must have exactly one
cr eat e method and the bean must have exactly one ej bCr eat e method.
Both methods take no arguments.

48 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Session Beans

Creating the Bean Class Definition

For a session bean, the bean class must be defined as publ i ¢, must not befi nal , and
cannot be abst r act . The bean class must implement thej avax. ej b. Sessi onBean
interface.

inport java.rm.*;

inport java.util.*;

inport javax.ejb.*;

public class M/SessionBean inpl ements SessionBean {
/1 Session Bean inplenmentation. These nmethods nust al ways i ncl uded.
public void ejbActivate() {

}

public void ejbPassivate() {

}
public void ej bRenove() {

}
public void set Sessi onCont ext (Sessi onCont ext ctx) {

}

/] other code onitted here....

}

The session bean must implement one or more ej bCreat e(. . .) methods. There must be
one method for each way a client invokes the bean. For example:

public void ejbOreate() {
string[] userinfo = {"User Name", "Encrypted Password"} ;

Each ej bOreat e(. ..) method must be declared as publ i ¢, return voi d, and be named
ej bOr eat e. Arguments must be legal Java RMI types. Thet hr ows clause may define
application specific exceptionsand j ava. ej b. O eat eExcept i on.

Session beans also implement one or more business methods. These methods are usually
unique to each bean and represent its particular functionality. For example, if asession bean
manages user logins, it might include a unique function called val i dat eLogi n.

Business method names can be anything, but must not conflict with the method names
defined in the EJB interfaces. Business methods must be declared as publ i c. Method
arguments and return value types must be legal for Java RMI. Thet hr ows clause may
define application specific exceptions.

Chapter 2 Using Session Beans 49

Developing Session Beans

Session Synchronization

There is oneinterface implementation permitted in an SFSB class definition, particularly
j avax. ej b. Sessi onSynchr oni zat i on, that enables a session bean instance to be
notified of transaction boundaries and synchronize its state with those transactions.

The j avax. ej b. Sessi onSynchr oni zat i on interface allows an SFSB instance to be
notified by its container of transaction boundaries. A session bean classis optional to
implement this interface. A session bean class should implement this interface only if you
want to synchronize its state with the transactions. For example, an SFSB that implements
thisinterface will get callbacks after a new transaction begins, but before a transaction
commits, and after commitment.

For more information about thisinterface, see the Enterprise JavaBeans Specification, v2.0.

NOTE The container will only invoke the session synchronization interface
methods for SFSBs that use container-managed transactions.

Abstract Methods

Besides the business methods you define in the remote interface, the EJBOj ect interface
defines several abstract methods that enable you to:

* Retrieve the bean’s home interface

e Retrieve the bean’s handle (a unique identifier)

e Compare the bean to another bean to seeif it isidentical
e Freeor remove the bean when it is no longer needed.

For more information about these built-in methods and how they can be used, see the
Enterprise JavaBeans Specification, v2.0.

The deployment tools provided by the container are responsible for the generation of
additional classes when the session bean is deployed.

50 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Stateful Session Bean Failover (Enterprise Edition)

Stateful Session Bean Failover (Enterprise
Edition)

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state
of an SFSB is saved to the persistent store at predefined pointsinitslifecycle. Thisiscalled
checkpoainting. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of abean method. Since the bean’s state might be
undergoing transition as aresult of the method invocation, thisis not an appropriate instant
to checkpoint the bean’ s state. In this case, the EJB container checkpoints the bean’ s state at
the end of the corresponding method, provided the bean is not in the scope of another
transaction when that method ends. If a bean-managed transaction spans across multiple
methods, checkpointing is delayed until there is no active transaction at the end of a
subsequent method.

The state of an SFSB is not necessarily transactional and could be significantly modified as
aresult of non-transactional business methods. If thisisthe case for an SFSB, you can
specify alist of checkpointed methods. If SFSB checkpointing is enabled, checkpointing
occurs after any checkpointed methods are completed.

The following table lists the types of references that SFSB failover supports. All objects
bound into an SFSB must be one of the supported types. In the table, No indicates that
failover for the object type may not work in all cases and that no failover support is
provided. However, failover may work in some cases for that object type. For example,
failover may work because the class implementing that type is serializable.

Table 2-1 Object Types Supported for J2EE Stateful Session Bean State Failover

Java Object Type Failover Support
EntityBean local home reference, local object Yes

reference

Stateful SessionBean local home reference Yes

Stateful SessionBean local object reference Yes

Stateless SessionBean local home reference, Yes

local object reference

Co-located EntityBean remote home reference, Yes
remote reference

Co-located Stateful SessionBean remote home Yes
reference

Chapter 2 Using Session Beans 51

Stateful Session Bean Failover (Enterprise Edition)

Table 2-1 Object Types Supported for J2EE Stateful Session Bean State Failover (Continued)

Java Object Type Failover Support
Co-located Stateful SessionBean remote Yes

reference

Co-located Stateless SessionBean remote Yes

home reference, remote reference

Distributed EntityBean remote home reference, Yes
remote reference

Distributed Stateful SessionBean remote home Yes
reference, remote reference

Distributed Stateless SessionBean remote Yes
home reference, remote reference

JNDI Context Yes, InitialContext and j ava: conp/ env

UserTransaction Yes, but if the instance that fails is never
restarted, any prepared global transactions are
lost and may not be correctly rolled back or

committed

JDBC DataSource No
Java™ Message Service (JMS) No
ConnectionFactory, Destination

JavaMail™ Session No
Connection Factory No
Administered Object No

Web service reference No
Serializable Java types Yes

For more information about the I ni t i al Cont ext , transaction recovery, and Administered
Objects, see the Sun Java System Application Server Developer's Guide to J2EE Services
and APIs.

52 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Stateful Session Bean Failover (Enterprise Edition)

NOTE Idempotent URL s are supported along the HTTP path, but not the
RMI/11OP path. For more information, see the Sun Java System Application
Server Administration Guide.

If aserver instance to which an RMI/I1OP client request is sent crashes
during the request processing (before the response could be prepared and
sent back to the client), an error is propagated to the client. The client must
retry the request explicitly. When the client retries the request, the request
issent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP sessions can also be saved in a persistent store in case a server
instance fails. In addition, if a distributable web application references an
SFSB, and the web application’s session fails over, the EJB referenceis
also failed over. For more information, see the Sun Java System Application
Server Release Notes.

If you undeploy an SFSB that uses session persistence while the Sun Java
System Application Server instance is stopped, the session datain the
persistence store may not be cleared. To prevent this, undeploy the SFSB
while the Sun Java System Application Server instance is running.

Y ou configure SFSB failover by:

e Choosing a Persistence Store

e Enabling SFSB Checkpointing

» Specifying SFSB Methods to Be Checkpointed (optional)

Choosing a Persistence Store

Two types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

e Thelocd file system - Allows asingle server instance to recover the SFSB state after a
failure and restart. This store also provides passivation and activation of the state to
help control the amount of memory used. This option is not supported in a production
environment that requires SFSB state persistence. Thisis the default storage
mechanism.

Chapter 2 Using Session Beans 53

Stateful Session Bean Failover (Enterprise Edition)

e Thehigh-availability database (HADB) - Allows a cluster of server instances to
recover the SFSB state if any server instance fails. The HADB is also used as the
passivation and activation store. Use this option in a production environment that
requires SFSB state persistence. For information about how to set up and configure this
database, see the Administration Guide.

Y ou can choose the persistence store in the following ways:
» Using the Administration Interface

e Editing the server.xml File

Using the Administration Interface

Y ou can use the Administration interface to choose the HADB persistence store. To use this
tool, follow these steps:

1. Openthe Availability Service component under your server instance.
2. Gotothe Availability Service page.

3. Check the Instance Level Availability box.

4. Click on the Save button.

o

Click Properties under Persistence Store Properties.
6. Inthe Namefield, type st or e- pool -j ndi - nane.

7. IntheValuefield, type the INDI name of the HADB JDBC Resource. The assumed
default isj dbc/ hast or e. For more information, see the Administration Guide.

8. Click on the Save button.
9. Gotothe server instance page.
10. Apply Changes and restart the server.

For information about how to configure the HADB persistence store, see the
Administration Guide.

If availability is disabled, the local file system is used for SFSB state passivation, but not
persistence. To change the location where the SFSB state is stored, follow these steps:

1. Gotothe server instance page.

2. Click on the Advanced tab.

3. Edit the Session Store Location value.
4. Click on the Save button.

54 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Stateful Session Bean Failover (Enterprise Edition)

5. Click on the Genera tab.
6. Apply Changes and restart the server.

Editing the server.xml File

The presence of the st or e- pool - j ndi - nane property intheser ver. xn file specifies
that the HADB is used for SFSB state persistence. Note that

avai | abi | i ty-enabl ed="true" must also be set. The absence of this property and
attribute specifies that the local file system is used. The element hierarchy in the
server. xnl filelookslike this when the HADB is configured:

<server name="serverl" ... >

<avai |l abi | i ty-service avail ability-enabl ed="true">
<persi st ence- st or e>

<property nane="store-pool -j ndi -name" val ue="j dbc/ hastore"/>

</ per si st ence- st ore>
</avail ability-service>

</ server >

For information about how to configure the persistence store, see the Administration Guide.

The sessi on- st or e attributeintheserver. xn file determines where the SFSB state is
stored if the local file system is used for SFSB state persistence. For example:

<server nane="serverl" ... session-store="/export/sfshstore">

These changesto the server . xm file take effect when you restart the server.

Enabling SFSB Checkpointing

SFSB checkpointing can be enabled at five different levels:
1. Theserver instance

2. TheEJB container

3. Theapplication

4. TheEJB module

5. The SFSBitself

For SFSB checkpointing to be enabled at a given level, it must be enabled at al higher
levels as well. For example, to enable SFSB checkpointing at the application level, you
must also enable it at the server instance and EJB container levels.

Chapter 2 Using Session Beans 55

Stateful Session Bean Failover (Enterprise Edition)

The default for agiven level isthe setting at the next level up. For example, if SFSB
checkpointing is enabled at the EJB container level, it is enabled by default at the
application level.

When SFSB checkpointing is disabled at the server instance level (the default setting),
enabling it at any other level has no effect. When SFSB checkpointing is enabled at the
server instance level, it isenabled at all levels unless explicitly disabled.

The following sections describe how to enable SFSB checkpointing:
* Server Instance and EJB Container Levels

e Application and EJB Module Levels

e SFSB Level

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance level, see “Choosing a Persistence
Store” on page 53.

Y ou can enable SFSB checkpointing at the EJB container level in the following ways:
e Using the Administration Interface

e Using the asadmin Command

e Editing the server.xml File

Using the Administration Interface

To enable SFSB checkpointing at the EJB container level using the Administration
interface, follow these steps:

1. Openthe Availability Service component under your server instance.
2. Gotothe Availability Service page.

3. Make surethat Instance Level Availability is checked.

4

Make sure that Ejb Container Availability is set to either Enabled or Specified by
I nstance.

5. Click on the Save button.
6. Goto the server instance page.

7. Apply Changes and restart the server.

56 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Stateful Session Bean Failover (Enterprise Edition)

Using the asadmin Command

To enable SFSB checkpointing at the EJB container level, usethe asadni n set command
asfollows, then restart the server:

asadm n set --user admin user [--password admn passaord] [-- passwordfile
passnvord file] [--host |ocal host] [--port 4848] [--secure | -s]
indance_name. ej b- cont ai ner. avai | abi | i t yEnabl ed=t r ue

Editing the server.xml File

To enable SFSB checkpointing at the EJB container level, set
avai | abi | i ty-enabl ed="true" intheej b- cont ai ner element of theserver. xn file
as follows, then restart the server:

<server nane="serverl">
<ej b-container ... availability-enabl ed="true"/>
<[server >

Application and EJB Module Levels

Y ou can enable SFSB checkpointing at the application or EJB module level during
deployment. For details, see “ Deploying Enterprise Beans” on page 175.

Asan dternative, you can edit the ser ver . xn file. To enable SFSB checkpointing at the
application level, set avai | abi | i t y- enabl ed="true" inthej 2ee- appl i cati on
element of theserver. xm file asfollows, then restart the server:

<server nane="serverl1">
<appl i cati ons>
<j 2ee-appl i cation
nare="y App"
| ocat i on="instance dir/ appl i cati ons/j 2ee- apps/ MyApp"
avai | abi | i ty-enabl ed="true">
</ j 2ee- appl i cati on>
</ applications>

</ server >

Chapter 2 Using Session Beans 57

Stateful Session Bean Failover (Enterprise Edition)

To enable SFSB checkpointing at the EJB module level, set
avai | abi | i ty-enabl ed="true" intheej b- nodul e element of theserver. xm fileas
follows, then restart the server:

<server nane="server1">
<appl i cati ons>
<ej b- nodul e
name="M/Bean"
| ocat i on="instance dir/ appl i cati ons/j 2ee- modul es/ MyBean"

avai | abi | i ty-enabl ed="true">
</ ej b- modul e>

</ applications>
</ server>
SFSB Level

To enable SFSB checkpointing at the SFSB level, set avai | abi | i ty- enabl ed="true" in
the ej b element of the SFSB’ssun- ej b-j ar. xm fileasfollows:

<sun-ej b-jar>
<enterpri se- beans>
<ej b avail ability-enabl ed="true">
<ej b- nane>M/SFSB</ ej b- nane>

</ ej b>

</ enterprise-beans>
</sun-ej b-jar>

58 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Stateful Session Bean Failover (Enterprise Edition)

Specifying SFSB Methods to Be Checkpointed

If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction
involving the SFSB is completed, even if the transaction rolls back.

Y ou can specify additional optional checkpointing of SFSBs at the end of non-transactional
business methods that cause important modifications to the bean’s state. To do so, you
specify a semicolon-separated list of method signatures in the checkpoi nt ed- et hods
element withinthe ej b element in sun- ej b-j ar. xm . The listed methods must have the
same signatures as those in the corresponding home or client interface of the SFSB, and the
parameter class names must be fully qualified (for example, j ava. | ang. St ri ng rather
than just St ri ng).

For example:

<sun-ej b-jar>
<enterpri se- beans>

<ej b avail ability-enabl ed="true">
<ej b- nanme>Shoppi ngCar t EJB</ ej b- nane>
<checkpoi nt ed- net hods>
create(int);addToCart (int, java.lang.String, CartDAO
</ checkpoi nt ed- net hods>
</ ej b>

</ enterprise-beans>
</sun-ej b-jar>
The non-transactional methods in the checkpoi nt ed- et hods list can be:

e create() methods defined in the home interface of the SFSB, if you want to
checkpoint the initial state of the SFSB immediately after creation

e For SFSBsusing container managed transactions only, methods in the remote interface
of the bean marked with the transaction attribute TX_NOT_SUPPORTED or
TX_NEVER

» For SFSBs using bean managed transactions only, methods in which a bean managed
transaction is neither started nor committed

Any other methods mentioned in thislist are ignored. At the end of invocation of each of
these methods, the EJB container saves the state of the SFSB to persistent store.

Chapter 2 Using Session Beans 59

Restrictions and Optimizations

NOTE If an SFSB does not participate in any transaction, and if none of its
methods are explicitly specified in the checkpoi nt ed- net hods element,
the bean’ s state is not checkpointed at all even if
avai | abi | i ty-enabl ed="true" for this bean.

For better performance, specify asmall subset of methods. The methods
chosen should accomplish a significant amount of work in the context of
the J2EE application or should result in some important modification to the
bean’s state.

Restrictions and Optimizations

60

This section discusses restrictions on developing session beans and provides some
optimization guidelines:

e Optimizing Session Bean Performance

» Restricting Transactions

Optimizing Session Bean Performance

For SFSBs, co-locating the stateful beans with their clients so that the client and bean are
executing in the same process address space will improve performance.

Restricting Transactions

The following restrictions on transactions are enforced by the container and must be
observed as you develop session beans:

e A session bean can participate in, at most, a single transaction at atime.

» |If asession beanis participating in atransaction, aclient cannot invoke amethod on the
bean such that the transaction attribute in the deployment descriptor would cause the
container to execute the method in a different or unspecified transaction context or an
exception is thrown.

» |f asession bean instance is participating in a transaction, a client cannot invoke the
r enove method on the session object’ s home or component interface object or an
exception is thrown.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Chapter 3

Using Entity Beans

This section describes entity beans and explains the requirements for creating them in the
Sun Java System Application Server environment.

NOTE If you are unfamiliar with entity beans or the EJB technology, refer to the
Java Software tutorials:

http://java. sun. conij 2ee/ docs. ht m

Extensive information on entity beansis contained in chapters9, 10, 12, 13,
and 14 of the Enterprise JavaBeans Specification, v2.0.

Overview materia on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

This section addresses the following topics:
e About Entity Beans

» Developing Entity Beans

» Using Read-Only Beans

» Handling Synchronization of Concurrent Access

NOTE If you are already familiar with entity beans and are only concerned with
container-managed persistence, go to “Using Container-Managed
Persistence for Entity Beans’ on page 85.

61

http://java.sun.com/j2ee/docs.html

About Entity Beans

About Entity Beans

An entity bean implements an object view of an entity stored in an underlying database, or
an entity implemented by an existing enterprise application (for example, by a mainframe
program or by an ERP application). Some examples of business objects are customers,
orders, and products. The data access protocol for transferring the state of the entity
between the entity bean instances and the underlying database is referred to as object
persistence.

The following topics are discussed in this section:
e Entity Bean Characteristics

* TheContainer

» Persistence

* Read-Only Beans

Entity Bean Characteristics

Entity beans differ from session beans in several ways. Entity beans are persistent, can be
accessed simultaneously by multiple clients, have primary keys, and may participatein
relationships with other entity beans.

Entity beans have the following characteristics:
* Provide an object view of datain a database.
» Allow shared access by multiple users.

» Persist for aslong as needed by all clients, using either bean-managed persistence or
container-managed persistence.

e Trangparently survive server crashes.
» Represent shared datain a database.

A good situation for using entity beansincludes awell encapsulated, transactional, and
persistent interaction with databases, documents, and other business objects.

62 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

About Entity Beans

The Container

Entity beans rely on the enterprise bean container to manage security, concurrency,
transactions, and other container-specific services for the entity objects it manages.
Multiple clients can access an entity object at the same time, while the container
transparently handles simultaneous accesses through transactions.

Each entity has a unique object identifier. A customer entity bean, for example, might be
identified by a customer number. This unique identifier, or primary key, enables the client
to locate a particular entity bean.

Like a session bean, an entity bean can access a database through JDBC callsinside
methods whose transaction attributes can be set using deployment descriptors. The container
supports both bean-managed and container-managed persistence as described in the
following section.

Persistence

Because the state of an entity bean is saved in a some durable storage, it is persistent.
Persistence means that the entity bean's state exists beyond the lifetime of the application or
the server process.

Persistence of entity beans may done explicitly by the bean and programmed by the bean
developer. Thisis known as bean-managed persistence (BMP).

Persistence management can also be delegated to the container, leveraging the Sun Java
System Application Server and the persistence management APIs of the enterprise beans.
This approach is called container-managed persistence (CMP). In the CMP mechanism, a
persistence manager, integrated with the Sun Java System Application Server, isrequired to
ensure reliable persistence. Refer to “Using Container-Managed Persistence for Entity
Beans’ on page 85 for additional information on container-managed persistence.

The following figure illustrates how persistence works in the Sun Java System Application
Server environment.

Chapter 3 Using Entity Beans 63

About Entity Beans

Entity Bean Flow

Sun Java System Application Server

EJB with BMP - -

Database

. > Persistence
EJB with CMP Manager

Transaction Manager

Guidelines for selecting the most appropriate persistence method for your applications are
contained in “Determining Entity Bean Usage” on page 66.

The following topics are addressed in this section:
e Bean-Managed Persistence

e Container-Managed Persistence

Bean-Managed Persistence

In bean-managed persistence, the bean is responsible for its own persistence. The entity
bean code that you write contains the calls that access the database.

Y ou code a bean-managed entity bean by providing database access calls—through JDBC
and SQL—directly in the bean class methods. Database access calls must be in the

ej bOr eat e, ej bRenove, ej bFi ndXXX, ej bLoad, and ej bSt or e methods. The advantage
of this approach is that these beans can be deployed to the application server without
requiring much effort. The disadvantage is that database accessis expensive and, in some
cases, the application server can do a better job of optimizing database access than the
application programmer can. Also, bean-managed persistence requires the devel oper to
write JDBC code.

For details about using JDBC to work with data, see the Sun Java System Application
Server Developer’s Guide to J2EE Services and APIs.

64 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

Container-Managed Persistence

In container-managed persistence, the enterprise bean container handles all database access
required by the entity bean by interacting through the persistence manager. The bean's code
contains no database access (JCBC) calls. As aresult, the bean's codeis not tied to a
specific persistent storage mechanism (database). Because of this flexibility, evenif you
redeploy the same entity bean on a different database, you won't need to modify the bean's
code. In short, your entity beans are more portable.

The bean devel oper provides abstract bean classes. Typically, the container-managed
persistence runtime generates concrete implementation classes that know how to load and
save the bean state (in the ej bLoad and ej bSt or e methods).

To generate the data access calls, the container needs information that you provide in the
entity bean's abstract schema. Additional information on the abstract schemais containedin
“Abstract Schema’ on page 90.

Read-Only Beans

A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents may be updated externally by other enterprise beans, or by other
means, such as direct database updates.

NOTE For this release of the Sun Java System Application Server, only entity
beans that use bean-managed persistence can be designated as read-only.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. Instructions for creating read-only beans are contained in “Using
Read-Only Beans” on page 79.

Developing Entity Beans

When creating an entity bean, you must provide a number of classfiles. The tasks required
are discussed in the following topics:

e Determining Entity Bean Usage
» Responsihilities of the Bean Developer
e Defining the Primary Key Class

» Defining Remote Interfaces

Chapter 3 Using Entity Beans 65

Developing Entity Beans

e Defining Local Interfaces

» Creating the Bean Class Definition (for Bean-Managed Persistence)

Determining Entity Bean Usage

Y ou should probably use an entity bean when the bean represents a business entity, not a
procedure, and/or the bean’s state must be persistent (the bean’s state till existsin the
database if the server is shut down).

Unlike session beans, entity bean instances can be accessed simultaneously by multiple
clients. The container is responsible for synchronizing the instance state using transactions.
Because this responsihility is delegated to the container, you do not need to consider
concurrent access methods from multiple transactions.

Y our choice of persistence method also has an impact:

* Bean-managed persistence—When you implement an entity bean to manage its own
persistence, you implement persistence code (such as JDBC calls) directly in the EJB
class methods. The downside is portability loss (that is, the risk of associating the bean
with a specific database).

» Container-managed persistence—When entity bean persistence is managed by the
container, the container transparently manages the persistence state. Y ou do not need to
implement any data access code in the bean methods. Not only is this method simpler
to implement, but it makes the bean portable to different databases. Refer to “Using
Container-Managed Persistence for Entity Beans’ on page 85 for on implementation
guidelines.

Responsibilities of the Bean Developer

This section describes what you need to do to ensure that an entity bean with bean-managed
persistence can be deployed on the Sun Java System Application Server.

The entity bean developer isresponsible for providing the following class files:
* Primary key class

» Entity bean remote interface and remote home interface, if the entity bean provides a
remote client view

» Entity bean local interface and local home interface, if the entity bean provides alocal
client view

e Entity bean class

66 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

Defining the Primary Key Class

The EJB architecture allows a primary key classto be any classthat isalegal Value Typein
RMI/11OP. The class must provide suitable implementation of the hashCode and equals
(Object other) methods. The primary key class may be specific to an entity bean class, that
is, each entity bean class may define a different class for its primary key, but it is possible
for multiple entity beans to use the same primary key class.

Y ou must specify a primary key class in the deployment descriptor.

Defining Remote Interfaces

This section discusses the following topics:
» Creating the Remote Home Interface

» Creating a Remote Interface

Creating the Remote Home Interface

Asabean developer, you must provide the bean's remote home interface (if it is applicable).
The home interface defines the methods that enable a client accessing an application to
create, find, and remove entity objects. Y ou must create aremote home interface that meets
the following regquirements:

* Theinterface must extend thej avax. ej b. EJBHome interface.

e The methods defined in this interface must follow the rules for RMI/I1OP. This means
that their argument and return types are of valid types for RMI/I1OP, and that their
throws clauses includej ava. r nmi . Renot eExcept i on.

» Each method defined in the remote home interface must be one of the following:
o A create method.

o Theremote home interface must always include the f i ndByPri mar yKey method,
which is always a single-object finder. The method must declare the primary key
class as the method argument.

o A finder method.

o A home method. Home methods can have arbitrary names, provided they do not
clash with the create, find, and remove method names. The matching ej bHone
method specified in the entity bean class must have the same number and types of
arguments, and must return the same type as the home method specified in the
remote home interface of the bean.

Chapter 3 Using Entity Beans 67

Developing Entity Beans

Remote Create Methods

Each create method must be named createX XX, where XXX is a unique method name
continuation that matches one of the ej bCr eat eXXX methods defined in the enterprise
bean class. For example, cr eat eEnpl oyee(...), createLargeOder(....).

The matching ej bQr eat eXXX in the bean must have the same number and types of its
arguments. However, the return type is different.

The return type for acreateX XX method must be the entity bean remote interface type.

All the exceptions defined in the throws clause of the matching ej bOr eat eXXX and

ej bPost O eat eXXX methods of the enterprise bean class must be included in the
throws clause of the matching create method of the remote home interface (that is, the
set of exceptions defined for the create method must be a superset of the union of
exceptions defined for the ej bCr eat eXXX and ej bPost O eat e XXX methods).

The throws clause of a create method must include javax. ej b. O eat eExcept i on.

Remote Find Methods

A home interface can define one or more find methods. Each method must be named
findX XX, where XXX is a unique method name continuation. For example,
f i ndAppl esAndOr anges.

Each finder method must correspond to one of the finder methods defined in the entity
bean class definition.

The number and argument types must also correspond to the finder method definitions
in the bean class.

Thereturn type for afind <METHOD> method must be the entity bean’ s remote interface
type (for a single-object finder), or a collection thereof (for a multi-object finder).

All the exceptions defined in the throws clause of an ej bFi nd method of the entity
bean class must be included in the throws clause of the matching find method of the
remote home interface.

The throws clause of afinder method must includej avax. ej b. Fi nder Except i on.

findByPrimaryKey Method

Every remote home interface must always include the f i ndByPr i mar yKey method,
which is always a single-object finder.

The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of an ej bFi ndByPr i mar yKey method
of the entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

68 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

e Thethrows clause of afi ndByPri mar yKey method must include
javax. ej b. Fi nder Except i on.

Remote Remove Methods

All homeinterfaces automatically (by extending j avax. ej b. EJBHone) definetwor enove

methods for destroying an enterprise bean when it is no longer needed:

public void renove(java.lang. Cbj ect pri maryKey)
throws java.rn . Renot eException, RermoveExcept i on

public void renove(Handl e handl e)
throws java.rni.Renot eException, RenoveException

NOTE Do not override these remove methods.

Example of a Remote Home interface

inport javax.ejb.*;
inport java.rm.*;

public interface M/EntityBeanLocal Hone
ext ends EJBHone
{

/**

* Oreate an Enpl oyee
* @aram enpNane Enpl oyee nane
* @xception COeateException |f the enpl oyee cannot be
created
* @eturn The renote interface of the bean
*/
public MEntity create(String enpNare)
throws O eat eException;
/**
* Find an Enpl oyee
* @aram enpNane Enpl oyee nane
* @xception FinderException if the enpNanme is not found
* @eturn The renote interface of the bean
*/
public MEntity findByPrimaryKey(String enpNane)
throws Fi nder Excepti on;

Chapter 3 Using Entity Beans

69

Developing Entity Beans

Defining Local Interfaces

To build an enterprise bean that allows local access, you must code the local interface and
thelocal home interface. Thelocal interface defines the bean’ s business methods; the local
home interface definesitslife cycle (create/remove) and finder methods.

This section addresses the following topics:
» Creating the Local Home Interface
e Creatingaloca Interface

Creating the Local Home Interface

The home interface defines the methods that enable a client using the application to create
and remove entity beans. A bean’slocal home interface defines the methods that allow local
clientsto create, find, and remove EJB objects, as well as home business methods that are
not specific to a bean instance (session beans do not have finders and home business
methods). The local home interface is defined by you and implemented by the container. A
client locates a bean’s home using JNDI.

The local homeinterface allows alocal client to:

» Create new entity objects within the home

« find existing entity objects within the home

» Remove an entity object from the home

* Execute ahome business method

A local homeinterface always extendsj avax. ej b. EJBLocal Hone. For example:

inport javax.ejb.*;
public interface M/EntityLocal BeanHone extends EJBLocal Hone {
M/EntityLocal Bean create() throws O eateException;

}

Creating a Local Interface

If an entity bean is the target of a container-managed relationship, it must have local
interfaces. The direction of the relationship determines whether or not a bean is atarget.
Because they require local access, entity beans that participate in a container-managed
relationship must reside in the same EJB JAR file. The primary benefit of thislocality is
improved performance—Ilocal calls are faster than remote calls.

70 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

Since local interfaces follow pass by reference semantics, you must be aware of the
potential sharing of objects passed through the local interface. In particular, be careful that
the state of one enterprise bean is not assigned as the state of another. Y ou must also
exercise caution in determining which objects to pass across the local interface, particularly
in the case where there is a change in transaction or security content.

e Theinterface must extend thej avax. ej b. EJBLocal Hone interface.

* Thethrows clause of amethod on the local home interface must not include the
java.rm . Renot eExcepti on.

» Each method defined in the local home interface must be one of the following:
o A create method
o A finder method
o A home method

(Local) Create Methods

» Each create method must be named createX X X, where XXX is a unique method name
continuation, and it must match one of the ej bCr eat eXXX methods defined in the
enterprise bean class. For example, cr eat eEnpl oyee(. ..),
createlLargeOder(....).

e Thematching ej bQr eat eXXX in the bean must have the same number and types of its
arguments. (Note that the return typeis different.)

e Thereturn type for acreateX XX method must be the entity bean's local interface type.

» All the exceptions defined in the throws clause of the matching ej bQr eat exXXX and
ej bPost O eat eXXX methods of the enterprise bean class must be included in the
throws clause of the matching create method of the remote home interface (that is, the
set of exceptions defined for the create method must be a superset of the union of
exceptions defined for the ej bOr eat exXXX and ej bPost O eat eXXX methods).

» Thethrows clause of acreate method must includej avax. ej b. Cr eat eExcept i on.

(Local) Find Methods

* A homeinterface can define one or more find methods. Each method must be named
findX XX, where XXX is a unique method name continuation. For example,
f i ndAppl esAndOr anges.

» Each finder method must correspond to one of the finder methods defined in the entity
bean class definition.

e The number and argument types must also correspond to the finder method definitions
in the bean class.

Chapter 3 Using Entity Beans 71

Developing Entity Beans

72

e Thereturn type for afind <METHOD> method must be the entity bean'slocal interface
type (for asingle-object finder), or a collection thereof (for a multi-object finder).

» All the exceptions defined in the throws clause of an ej bFi nd method of the entity
bean class must be included in the throws clause of the matching find method of the
remote home interface.

» Thethrows clause of afinder method must include the javax.ejb.FinderException.

findByPrimaryKey Method

e Every local home interface must always include the f i ndByPr i nmar yKey method,
which is always a single-object finder.

e The method must declare the primary key class as the method argument.

» All the exceptions defined in the throws clause of an ej bFi ndByPri mar yKey method
of the entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

» Thethrows clause of afi ndByPri mar yKey method must include
j avax. ej b. Fi nder Except i on.

(Local) home Methods

» Home methods can have arbitrary names, provided that they do not clash with create,
find, and remove method names.

e The matching ej bHome method specified in the entity bean class must have the same
number and types of arguments and must return the same type as the home method as
specified in the local home interface of the bean.

Creating a Remote Interface

Besides the business methods you define in the remote interface, the EJBObject interface
defines several abstract methods that enable you to:

* Retrieve the bean's home interface

» Retrieve the bean's handle-to retrieve the bean's primary key which uniquely identifies
the bean'sinstance

e Compare the bean to another bean to seeif it isidentical
* Remove the bean when it is no longer needed

For more information about these built-in methods and how they are used, see the
Enterprise JavaBeans Specification, v2.0.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

NOTE The Enterprise JavaBeans Specification, v2.0 permits the bean class to
implement the remote interface's methods, but you should be careful not to
inadvertently pass adirect reference (through't hi s) to aclient in violation
of the client-container-EJB protocol intended by the Enterprise JavaBeans
Specification, v2.0.

* Anentity bean's remote interface defines a user's access to a bean's methods.
» Theinterface must extend thej avax. ej b. EJIBObj ect interface.
» The methods defined in the remote interface must follow the rules for RMI/11OP.

» Thismeansthat their argument and return value types must be valid types for
RMI/11OP, and their throws clauses must include the java.rmi.RemoteException.

e For each method defined in the remote interface, there must be a matching method in
the entity bean s class. The matching method must have The same name. The same
number and types of its arguments, and the same return type.

e All the exceptions defined in the throws clause of the matching method of the
enterprise bean class must be defined in the throws clause of the method of the remote
interface.

» Theremote interface methods must not expose local interface types, local home
interface types, or the managed collection classes that are used for entity beans with
container-managed persistence as arguments or results.

Example of a Remote Interface

The following fragment is an example of aremote interface
inport javax.ejb.*;

inport java.rm.*;

public interface M/Entity

ext ends EJBbj ect

{
public String get Address() throws Renot eException;

public void set Address(String addr) throws Renot eException;

Chapter 3 Using Entity Beans 73

Developing Entity Beans

74

Creating the Bean Class Definition (for
Bean-Managed Persistence)

For an entity bean that uses bean-managed persistence, the bean class must be defined as
publ i ¢ and cannot be abst r act . The bean class must implement the
j avax. ej b. Enti t yBean interface. For example:

inport java.rm.*;
inport java.util.*;
inport javax.ejb.*;
public class MEntityBean inplenents EntityBean {
/] Entity Bean inplementation. These nethods nust al ways be
i ncl uded.
public void ejbActivate() {
}
public void ejbLoad() {
}
public void ejbPassivate() {
}
public void ej bRenove() {
}
public void ejbStore() t{
}
public void setEntityContext(EntityContext ctx) {

}
public void unsetEntityContext() {

}

/] other code onitted here....

}

In addition to these methods, the entity bean class must also define one or more ej bQr eat e
methods and the ej bFi ndByPr i mar yKey finder method. Optionally, it may define one

ej bPost O eat e method for each ej bQOr eat e method. It may provide additional,
developer-defined finder methods that take the form ej bFi nd XXX, where XXX represents a
unique method name continuation (for example, ej bFi ndAppl esAndQr anges) that does
not duplicate any other method names.

Entity beanstypically implement one or more business methods. These methods are usually
unique to each bean and represent its particular functionality. Business method names can
be anything, but must not conflict with the method names used in the EJB architecture.
Business methods must be declared as publ i c. Method arguments and return value types
must be JavaRMI legal. Thet hr ows clause may define application-specific exceptions and
may includej ava. r m . Renot eExcept i on.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

There are two business method types to implement in an entity bean:

The following sections address the various methods in an entity bean’s class definition:

Internal methods—Used by other business methods in the bean, but never accessed

outside the bean itself.

Developing Entity Beans

External methods—referenced by the entity bean’s remote interface.

Using gbCreate

Using gjbActivate and gjbPassivate

Using gjbL oad and gjbStore

Using setEntityContext and unsetEntity Context
Using gjbRemove

Using Finder Methods

Using ejbCreate

The entity bean must implement one or more ej bQr eat e methods. There must be one
method for each way aclient is allowed to invoke the bean. For example:

public String ejbCreate(String orderld, String custonerld,

String status, double total Price)
throws O eateException {

try {
InitialContext ic = new Initial Context();

Dat aSource ds = (DataSource) ic. | ookup(dbNane);

con = ds. get Connection();
String insertStatement =

"insert into orders values (?, ?, 2?2, ?)";

PreparedSt at enent prepStnt =
con. prepareStatenent (i nsert Stat enent) ;
prepStnt.setString(l, orderld);
prepStnt.setString(2, custonerld);
prepStnt. set Doubl e(3, total Price);
prepStnt.set String(4, status);
prepSt nt . execut eUpdat e() ;
prepStnt. close();
} catch (Exception ex) {
throw new O eat eException("ej bCreate: '
+ex. get Message()) ;

n

Chapter 3

Using Entity Beans

75

Developing Entity Beans

public String ejbPostCreate(String orderld, String customerld, String
status, double total Price)
throws Oreat eException

Each ej bCr eat e method must be declared as publ i c, return the primary key type, and be
named ej bCr eat e. The return type can be any legal Java RMI type that convertsto a
number for key purposes. All arguments must be legal Java RMI types. Thet hr ows clause
may define application-specific exceptions, and may include

java. ej b. O eat eExcept i on.

This isthe method in which relationships are established. For each ej bOr eat e method, the
entity bean class may define a corresponding ej bPost O eat e method to handle entity
services immediately following creation. Each ej bPost O eat e method must be declared
aspubl i ¢, must return void, and be named ej bPost O eat e. The method arguments, if
any, must match in number and argument type its corresponding ej bCQr eat e method. The
t hr ows clause may define application-specific exceptions, and may include

java. ej b. O eat eExcepti on.

Using ejbActivate and ejbPassivate

When an entity bean instance is needed by a server application, the bean’s container
invokes ej bAct i vat e to ready a bean instance for use. Similarly, when an instance is no
longer needed, the bean’ s container invokes ej bPassi vat e to disassociate the bean from
the application.

If specific application tasks need to be performed when abean is first made ready for an
application, or when a bean is no longer needed, you should program those operations
within the ej bAct i vat e and ej bPassi vat e methods. For example, you may release
references to database and backend resources during ej bPassi vat e and regain them
during ej bAct i vat e.

Using ejbLoad and ejbStore

An entity bean can collaborate with the container to store the bean state informationin a
database, for synchronization purposes. In the case of bean-managed persistence, you are
responsible for coding ej bLoad and ej bSt or e. The container ensures that the state of the
bean is synchronized with the database by calling ej bLoad at the beginning of atransaction
and calling ej bSt or e when the transaction completes successfully.

Use your implementation of ej bSt or e to store state information in the database, and use
your implementation of ej bLoad to retrieve state information from the database.

76 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Entity Beans

The following example shows ej bLoad and ej bSt or e method definitions that store and
retrieve active data.

public void ejbLoad()
throws java.rm . Renot eException
{
String itemd;
javax. sql . Connection dc = null;
java.sgl.Staterment stnt = null;
java.sgl.ResultSet rs = null;

itemd = (String) mctx.getPrimaryKey();
Systemout. println("nyBean: Loading state for item" + itemd);

String query =
"SELECT s.total Sold, s.quantity " +
" FROMItems " +
" WHERE s.itemid =" + itenid;

dc = new Dat abaseConnection();

dc. creat eConnect i on(Dat abaseConnect i on. G.OBALTX) ;
stmt = dc.createStatenent();

rs = stnt.executeQuery(query);

if (rs!=null) {
rs.next();
mtotal Sold = rs.getint(1);
maquantity = rs.getlnt(2);

}

public void ejbStore()
throws java.rni . Renot eException
{
String itemd;
itemMd = (String) mctx.getPrimaryKey();
Dat abaseConnection dc = nul | ;
java.sqgl. Staterment stntl = null;
java.sqgl.Staterment stnt2 = null;

Systemout. printIn("nmyBean: Saving state for item=" +itenld);
String updl =

"UPDATE Item" +
" SET quantity =" + maquantity +

Chapter 3 Using Entity Beans 77

Developing Entity Beans

" WERE itemid =" + itemd;

String upd2 =
"UPDATE Item" +
" SET totalSold =" + mtotal Sold +
" WERE itemid =" + itenid;

dc = new Dat abaseConnection();

dc. creat eConnect i on(Dat abaseConnect i on. G.OBALTX) ;
stm 1l = dc.createStatenent();

st nt 1. execut eUpdat e(updl) ;

stnt 1. cl ose();

stm2 = dc.createStatenent();

st nt 2. execut eUpdat e(upd2) ;
st 2. cl ose();

}

For more information about bean isolation levels that access transactions concurrently with
other beans, see “Handling Synchronization of Concurrent Access’ on page 83.

Using setEntityContext and unsetEntityContext

A container callsset Ent i t yCont ext after it creates an entity bean instance to provide the
bean with an interface to the container. Implement this method to store the entity context
passed by the container. Y ou can later use this reference to get the primary key of the
instance, and so on.

public void setEntityContext(javax.ejb.EntityContext ctx)
{

mctx = ctx;

}

Similarly, acontainer callsunset Ent i t yCont ext to remove the container reference from
theinstance. Thisisthe last bean class method a container calls before the bean instance
becomes a candidate for removal. After this call, the Java garbage collection mechanism
eventually callsfi nal i ze on the instance to clean it up and dispose of it.

public void unsetEntityContext()
{

mctx = null;

}

78 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Read-Only Beans

Using ejbRemove

The client can invoke the remove methods on the entity bean's home or component interface
to remove the associated record from the database. The container invokes the ej bRenove
method on an entity bean instance in response to a client invocation on the entity bean's
home or component interface, or as the result of a cascade-delete operation.

Using Finder Methods

Because entity beans are persistent, shared among clients, and may have more than one
instance instantiated at the same time, an entity bean must implement at least one

ej bFi ndByPr i mar yKey method. This enables the client and the container to locate a
specific bean instance. All entity beans must provide a unique primary key as an identifying
signature. Implement the ej bFi ndByPr i mar yKey method in the bean’s class to enable a
bean to return its primary key to the container.

The following example shows a definition for Fi ndByPri mar yKey:

public String ej bFi ndByPrimaryKey(String key)
throws java.rm . Renot eExcepti on,
j avax. ej b. Fi nder Excepti on

In some cases, you find a specific entity bean instance based on what the enterprise bean
does, on certain values the instance is working with, or on other criteria. These
implementation-specific finder method names take the form ej bFi ndXXX, where XXX
represents a unique continuation of a method name (for example,

ej bFi ndAppl esAndCr anges) that does not duplicate any other method names.

Finder methods must be declared aspubl i ¢, and their arguments, and return values must be
legal Java RMI types. Each finder method return type must be the entity bean’ s primary key
type or a collection of objects of the same primary key type. If the return typeisa
collection, the return type must be one of the following:

e JDK 1.1java.util.Enuneration interface
e Java2java.util.Collectioninterface

Thet hr ows clause of afinder method is an application-specific exception, and may include
j ava.rm . Renot eExcept i on and/or j ava. ej b. Fi nder Except i on.

Using Read-Only Beans

A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents may be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Chapter 3 Using Entity Beans 79

Using Read-Only Beans

NOTE For this release of Sun Java System Application Server, only entity beans
that use bean-managed persistence can be designated as read-only.

Read-only beans are specific to Sun Java System application server and are
not part of the Enterprise JavaBeans Specification, v2.0.

The following topics are addressed in this section:

* Read-Only Bean Characteristics and Life Cycle
* Read-Only Bean Good Practices

e Refreshing Read-Only Beans

e Deploying Read Only Beans

Read-Only Bean Characteristics and Life Cycle

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, aread-only bean can be used to represent a stock quote
for a particular company, which is updated externally. In such a case, using aregular entity
bean may incur the burden of calling ej bSt or e, which can be avoided by using aread-only
bean.

Read-only beans have the following characteristics:
e Only entity beans can be read-only beans.
e Only bean-managed persistence is allowed.

» Only container-managed transactions are allowed; read-only beans cannot start their
own transactions.

» Read-only beans don’t update any bean state.
* ej bStoreisnever caled by the container.

e ej bLoad will be called only when atransactional method is called or when the bean is
initially created (in the cache), or at regular intervals controlled by the bean's
ref resh- peri od-i n-seconds.

e The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary

keys).

80 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Read-Only Beans

e |f the data that the bean represents can change, thenr ef r esh- peri od- i n- seconds
must be set to refresh the beans at regular intervals. ej bLoad is called at this regular
interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as avictim to make room in the cache, ej bPassi vat e is called
and the bean is returned to the free pool. When in the free pool, the bean has no identity and
will be used only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices

* Avoid having any cr eat e or r enove methods in the home interface

» Useany of thevalid EJB 2.0 transaction attributes for the transaction attribute for
methods

The reason for having TX_SUPPCRTED is to alow reading uncommitted data in the
same transaction. Also, the TX attributes can be used to force ej bLoad.

Refreshing Read-Only Beans

There are several ways of refreshing read-only beans as addressed in the following sections:
* Invoking a Transactional Method

» Refreshing Periodically

» Refreshing Programmatically

Invoking a Transactional Method
Invoking any transactional method will invoke ej bLoad.

Refreshing Periodically

Read-only beans can be refreshed periodically by specifying the
ref resh- peri od-i n- seconds element in the Sun Java System Application
Server-specific XML file.

Chapter 3 Using Entity Beans 81

Using Read-Only Beans

e |f thevalue specified inr ef r esh- peri od- i n- seconds is zero, the bean is never
refreshed (unless a transactional method is accessed).

» If thevalueisgreater than zero, the bean is refreshed at the rate specified.

NOTE Thisisthe only way to refresh the bean state if the data can be modified
externa to the Sun Java System Application Server.

Refreshing Programmatically

Typically, beans that update any datathat is cached by read-only beans need to notify the
read-only beans to refresh their state. Y ou can use ReadOnl yBeanNot i fi er to forcethe
refresh of read-only beans. To do this, invoke the following methods on the

ReadOnl yBeanNot i fi er bean:

public interface ReadOnl yBeanNoti fi er
extends java.rni.Renote

{
refresh(Chj ect PrimaryKey)

throws Renot eException;

}

The implementation of the ReadOnl yBeanNot i fi er interfaceis provided by the container.
The user can look up ReadOnl yBeanNot i fi er using the following fragment of code:

com sun. ej b. ReadOnl yBeanNoti fier notifier =

com sun. ej b. cont ai ner s. ReadOnl yBeanHel per . get ReadOnl yBeanNot i fi er
(<ej b-name-of -the-target>);
notifier.refresh(<PrimaryKey>);

Beans that update any datathat is cached by read-only beans need to call ther ef r esh
methods. The next (non-transactional) call to the read-only bean will invoke ej bLoad.

Deploying Read Only Beans

Read-only beans are deployed in the same manner as other entity beans. However, in the
entry for the bean in the Sun Java System Application Server-specific XML file, the
i s-read- onl y- bean element must be set to true. That is:

<i s-read-onl y- bean>true</i s-read- onl y- bean>

Also, ther ef resh- peri od- i n- seconds element may be set to some value that specifies
the rate at which the bean is refreshed. If this element is missing, a default of 600 (seconds)
is assumed.

82 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Handling Synchronization of Concurrent Access

All requests with the same transaction context are routed to the same read-only bean
instance. The deployer can specify if such multiple requests have to be serialized by setting
theal | ow concurrent - access element to either true (to allow concurrent accesses) or
false (to serialize concurrent access to the same read-only bean). The default isfalse.

For further information on these elements, refer to the Sun Java System Application Server
Administrator’s Configuration File Reference.

Handling Synchronization of Concurrent Access

As an entity bean devel oper, you generally do not have to be concerned about concurrent
access to an entity bean from multiple transactions. The bean’s container automatically
provides synchronization in these cases. In the Sun Java System Application Server, the
container activates one entity bean instance for each simultaneously occurring transaction
that uses the bean.

Transaction synchronization is performed automatically by the underlying database during
database access calls. Y ou typically perform this synchronization in conjunction with the
underlying database or resource. One approach would be to acquire the corresponding
database locksin the ej bLoad method, for example by choosing an appropriate isolation
level or by using asel ect for updat e clause. The specifics vary depending on the
database being used.

For more information, see the Enterprise JavaBeans Specification, v2.0 asit relates to
concurrent access.

Chapter 3 Using Entity Beans 83

Handling Synchronization of Concurrent Access

84 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Chapter 4

Using Container-Managed
Persistence for Entity Beans

This section contains information on how container-managed persistence worksin the Sun
Java System Application Server environment. |mplementation procedures are included.

NOTE To implement container-managed persistence, you should already be

familiar with entity beans, which are discussed in “Using Entity Beans’ on
page 61.

This section addresses the following topics:

Sun Java System Application Server Support
About Container-Managed Persistence

Using Container-Managed Persistence
Third-Party Pluggable Persistence Manager AP
Restrictions and Optimizations

Elements in the sun-cmp-mappings.xml File

Examples

Extensive information on container-managed persistenceis contained in chapters 10, 11,
and 14 of the Enterprise JavaBeans Specification, v2.0.

85

Sun Java System Application Server Support

Sun Java System Application Server Support

Sun Java System Application Server support for container-managed persistence includes:

» Full support for the J2EE v 1.3 specification’ s container-managed persistence model.

u]

Support for commit options B and C for transactions as defined in the Enterprise
JavaBeans Specification, v2.0. Refer to “ Commit Options’ on page 153 for further
information.

The primary key class must be a subclass of j ava. | ang. Qbj ect . This ensures
portability, and is noted because some vendors allow primitive types (such asi nt)
to be listed as the primary key class.

» The Sun Java System Application Server container-managed persistence
implementation which provides:

[n}

An Object/Relational (O/R) mapping tool (part of the Sun Java System
Application Server Assembly Tool) that creates XML deployment descriptors for
EJB JAR files that contain beans that use container-managed persistence

Support for compound (multi-column) primary keys
Support for sophisticated custom finder methods
Standards-based query language (EJB QL)

Container-managed persistence runtime support. The following JDBC driver and
database combinations are supported for Sun Java System Application Server
Standard and Enterprise Editions 7.1. The combinations listed here have been
tested with the Sun Java System Application Server and are found to be J2EE
compatible.

« DataDirect Connect IDBC3.0/ Typed Driver for Oracle 8.1.7 Databases

For an up to date list of the JDBC drivers currently supported by the Sun Java
System Application Server, see the Sun Java System Application Server 7.1
Platform Summary.

Other JDBC drivers have been used with Sun Java System Application Server 7.1,
but J2EE compliance tests have not been completed with these drivers.

- Oreacle8i, Oracle9

* Sybase12

» Microsoft SQL Server 2000
« Pointbase 4.2

86 Application Server 7 2004Q2 +« Developer’'s Guide to Enterprise JavaBeans Technology

About Container-Managed Persistence

Support for third-party object-to-relational (O/R) mapping tools. An explanation of the
third-party API is contained in “Third-Party Pluggable Persistence Manager API” on
page 115.

About Container-Managed Persistence

An entity bean using contai ner-managed persistence del egates the management of its state
(or persistence) to the Sun Java System Application Server container. Rather than write the
JDBC code that is needed to implement bean-managed persistence, a devel oper
implementing contai ner-managed persistence uses tools to create the bean’ s depl oyment
descriptors. The deployment descriptors then provide the information that the container
uses to map bean fieldsto columnsin arelational database.

An EJB container needs two things to support contai ner-managed persistence:

M apping—Information on how to map an entity bean to aresource, such asatableina
relational database

Runtime environment—A container-managed persistence runtime environment that
uses the mapping information to perform persistence operations on each bean

This section addresses the following container-managed persistence topics:

CMP Components
Relationships

Abstract Schema
Deployment Descriptors

Persistence Manager

CMP Components

Unlike bean-managed persistence, container-managed persistence does not require you to
write database access calls in the methods of the entity bean class. Because persistence is
handled by the container at runtime, you must specify in the deployment descriptor those
persistence fields and rel ationships for which the container must handle data access. Y ou
access persistent data using the accessor methods that are defined for the abstract
persistence schema.

Chapter 4 Using Container-Managed Persistence for Entity Beans 87

About Container-Managed Persistence

An entity bean that uses contai ner-managed persistence consists of several components that
interoperate:

The abstract bean class, written by you.

The remote interface, written by you.
Thelocal interface, written by you.

The deployment descriptor, written by you.
An optional primary key class, written by you.

The concrete bean class, generated by the container-managed persistence
implementation.

This class inherits from the abstract bean class and uses information from the
deployment descriptor. Accessor (read) and mutator (write) methods in the bean class
are implemented here to the concrete state class.

The concrete remote bean implementation class, generated by the contai ner-managed
persistence implementation.

The EJBObject (skeleton), generated by the container-managed persistence
implementation.

The remote stub, generated by the contai ner-managed persistence implementation.

The following classes are used for contai ner-managed persistence:

Generation class—Called from the ej bc compile utility; generates the concrete classes.

Generated classes—Use container-managed persistence to effect persistence behavior
at server runtime.

Management classes—Collect and report statistics at server runtime.

Relationships

NOTE This section applies only if you are using contai ner-managed persistence

2.0 beans.

88 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

About Container-Managed Persistence

A relationship allows you to navigate from an object to its related objects. Relationships
can be either bidirectional or unidirectional.

» Bidirectional—Each entity bean has a relationship field that refers to the other bean.
Through the relationship field, an entity bean's code can accessits related object. If an
entity bean has arelationship field, we often say it "knows" about its related object.

» Unidirectional—Only one entity bean has a relationship field that refers to the other.

NOTE Even if arelationship is unidirectional, if you make a change to that
relationship, other enterprise beans will be affected if they are associated
with that relationship.

A container-managed relationship (CMR) between fieldsin apair of classes alows
operations on one side of the relationship to affect the other side. At runtime, if afieldin
oneinstance is modified to refer to another instance, the referred instance will have its
relationship field modified to reflect the change in relationship.

NOTE No warning is given if you delete one object in a managed relationship.
Container-managed persistence automatically nullifies the relationship on
the foreign key side and deletes the object without asking for confirmation.

In the Java code, relationships are represented by object reference (either collections or
fieldsthat are typed to an EJB local interface), depending on the relationship cardinality. A
relationship can be one-to-one, one-to-many, or many-to-many, depending on the number
of instances of each class in the relationship. In the database, this might be represented by
foreign key columns and, in the case of many-to-many relationships, join tables.

The following sections describe the various types of relationships:
* One-to-One Relationships

* One-to-Many Relationships

* Many-to-Many Relationships

Chapter 4 Using Container-Managed Persistence for Entity Beans 89

About Container-Managed Persistence

One-to-One Relationships

With one-to-one relationships, there is a single-valued field in each class whose type is the
local interface of the other bean type. Any change to the field on either side of the
relationship is handled as arelationship change. If thefield on one side is changed from null
to non-null, then the field on the other side is changed to refer to thisinstance. If thefield on
the other side had been non-null, that other relationship is made null before the change is
made.

One-to-Many Relationships

With one-to-many relationships, there is asingle-valued field on the many side and a
multi-valued field (collection) on the one side.

If an instance is added to the collection field, the field in the new instance is updated to
reference the instance containing the collection field. If an instance is deleted from the
collection, the field on the instance is nullified.

Any change, addition or removal of afield on the many sideis handled as arelationship
change. If the field on the many side is changed from null to non-null, thisinstance is added
to the collection-valued field on the one side. If the field on the many side is changed from
non-null to null, then this instance is removed from the collection-valued field on the one
side.

Many-to-Many Relationships

With many-to-many relationships, there are multi-valued, or collection, fields on both sides
of the relationship. Any change to the contents of the collection on either side of the
relationship is handled as a relationship change. If an instance is added to the collection on
this side, then this instance is added to the collection on the other side. If aninstance is
removed from a collection on this side, then thisinstance is removed from the collection on
the other side.

Abstract Schema

Part of an entity bean's deployment descriptor, the abstract schema defines the bean's
persistent fields and relationships. The term abstract distinguishes this schemafrom the
physical schema of the underlying data store.

Y ou specify the name of an abstract schemain the deployment descriptor. Thisnameis
referenced by queries written in the EJB Query Language (EJB QL). For an entity bean
using contai ner-managed persistence, you must define an EJB-QL query for every finder
method (except f i ndByPri mar yKey). The EJB-QL query determines the query that is
executed by the EJB container when the finder method isinvoked.

90 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Container-Managed Persistence

Example
<ej b-relation>

<ej b-rel ati on- name>Cr der Li nel t enx/ ej b-r el at i on- nane>
<ej b-rel ationship-rol e>
<ej b-rel ationshi p-rol e- name>
O der HasLi nel tens
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Cne</multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Qr der </ ej b- narme>
</rel ati onshi p-rol e-sour ce>
<cnr-field>
<cnr-fiel d-nane>l i nel t ens</ cnr - fi el d- name>
<cnr-field-type>java.util.Collection</cnm-field-type>
</fcmr-field>
</ ej b-rel ati onshi p-rol e>

<ej b-rel ationship-rol e>

<ej b-rel ationshi p-rol e- name>
Li nel t em nCr der
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- source>
<ej b- nane>Li nel t enEJB</ ej b- name>
</rel ati onshi p-rol e-sour ce>
</ ej b-rel ati onshi p-rol e>

</ ejb-rel ati on>

Deployment Descriptors

If your container-managed fields are to be mapped to database fields, you must provide
mapping information to the deployer. Each module with container-managed persistence
beans must have the following files for the deployment process

ej b-j ar. xm —Contains information such as the transactional attributes of the beans
and the fields of a bean that are going to be contai ner-managed.

sun- ej b-j ar. xm —The standard file for assembling enterprise beans. Refer to
“Elements in the sun-gjb-jar.xml File” on page 181 and “ Sample EJB XML Files’ on
page 217 for information.

sun- crp- nappi ngs. xnt —The file for mapping container-managed persistence.
Refer to “Elements in the sun-cmp-mappings.xml File” on page 118 and “ Sample
Schema Definition” on page 127 for information.

Chapter 4 Using Container-Managed Persistence for Entity Beans 91

Using Container-Managed Persistence

Persistence Manager

In the Sun Java System Application Server, the container-managed persistence model is
based on the Pluggable Persistence Manager APl which provides the role of the persistence
manager in defining and supporting the mapping between an entity bean and the persistence
store.

The persistence manager is the component responsible for the persistence of the entity
beansinstalled in the container. The classes provided by the persistence manager vendor are
responsible for managing the relationshi ps between the entity beans, and for managing
accessto their persistent state. The persistence manager vendor is also responsible for
providing the implementation of the Java classes that are used in maintaining the
container-managed relationships. The persistence manager uses the data source registry
provided by the container to access data sources.

The following figure illustrates how persistence works in the Sun Java System Application
Server environment.

Entity Bean Flow

Sun Java System Application Server

EJB with BMP > -

Database

. - Persistence
EJB with CMP Manager

Transaction Manager

It is also possible to write custom persistence managers to support legacy systems, or to
implement caching strategies that improve performance for your container-managed
persistence solution.

Using Container-Managed Persistence

92

Implementation for entity beans that use container-managed persistence is mostly a matter
of mapping and assembly/depl oyment.

NOTE Java types assigned to the container-managed fields must be restricted to
the following: Java primitive types, Java serializable types, and references
to EJB remote or remote home interfaces.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

This section addresses the following topics:
* Process Overview

* Mapping Capabilities

» Supported Data Types for Mapping
 BLOB Support

e Using the capture-schema Utility

» Mapping Fields and Relationships

» Configuring the Resource Manager

« UsingEJB QL

e Configuring Queriesfor 1.1 Finders

Process Overview

The contai ner-managed persistence process consists of three operations: mapping,
deploying, and running. These operations are accomplished as described in the following
phases:

» Phase 1. Creating the mapping deployment descriptor file
» Phase 2. Generating and compiling concrete beans and del egates

e Phase 3. Running in the Sun Java System Application Server runtime

Phase 1. Creating the mapping deployment descriptor file

NOTE The Sun ONE Studio IDE will create this descriptor automatically for
deployment.

This phase can be done concurrent with development of the container-managed persistence
beansin the Sun ONE Studio 5 IDE, or after development while preparing for deployment.

During this phase, you map CMP fields and CMR fields (relationships) to the database. A
primary tableis selected for each container-managed persistence bean, and optionally,
multiple secondary tables. CMP fields are mapped to columnsin either the primary or
secondary table(s). CMR fields are mapped to pairs of column lists (hormally, column lists
arethelist of columns associated with pairs of primary and foreign keys).

Chapter 4 Using Container-Managed Persistence for Entity Beans 93

Using Container-Managed Persistence

e Themapping is saved in afile which conformsto the sun- cnp- mappi ng_1_0. dt d.
Theresulting XML fileis packaged with the user-defined bean classesin an EJB JAR
file and must be named META- | NF/ sun- cnp- mappi ngs. xni .

» Errorsare reported during the deployment process. Errors may be triggered from
within the Sun ONE Studio 5 environment or at the command line.

» The mapping information is developed in conjunction with the database schema file.
Thisfile must be captured using the Sun ONE Studio 5 IDE (“ Capturing a Schema” on
page 221) or the capture-schema utility (“Using the capture-schema Utility” on

page 99).

» |f the database table structure is changed, you first capture the schema of the updated
tables after the database administrator updates the tables. Y ou then remap the CMP
fields and relationships.

NOTE There is no automatic procedure for performing this remapping; you must
do it manually.

Phase 2. Generating and compiling concrete beans and delegates

This phase is done during deployment of an EJB application to the Sun Java System
Application Server. During this phase, deployment information is combined with the
mapping information created during Phase 1.

The following files are generated:
e The concrete bean file, which extends the abstract bean written by you

The concrete bean implements the EJB life cycle methods ej bSet Ent i t yCont ext ,

ej bUnset Ent i t yCont ext , ej bOr eat e, ej bRenove, ej bLoad, ej bSt ore. It also
contains implementation of get XXX and set XXX for each CMP field and the CMR
field, ej bFi ndByPr i mar yKey, other finder methods, and any selector methods defined
by the user.

» Thecompiled EJB-QL for finder and selector methods, stored as a propertiesfile

This file contains the container-managed persistence query parameter list, the query
filter, the query ordering expression, the query candidate class name, and the query
result type.

e A generation log file that reports errors to you, including EJB-QL syntax and usage
errors

e State and helper classes

94 Application Server 7 2004Q2 « Developer’'s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Phase 3. Running in the Sun Java System Application Server runtime

At runtime, the information provided at deployment is used to service requests on entities
implemented as enterprise beans.

Mapping Capabilities

Mapping refers to the ability to tie an object-oriented model to arelational model of data,
usually the schema of arelational database. The container-managed persistence
implementation provides the ability to tie a set of interrelated classes containing data and
associated behaviors to the interrelated meta-data of the schema. Y ou can then use this
object representation of the database to form the basis of a Java application. Y ou can also
customize this mapping to optimize these underlying classes for the particular needs of an
application.

Theresult isasingle data model through which you can access both persistent database
information and regular transient program data. Y ou only need to understand the Java
programming language objects; you do not need to know or understand the underlying
database schema.

Information on the container-managed persistence DTD and XML file elementsis
contained in “Elements in the sun-cmp-mappings.xml File” on page 118.

Mapping Features
The mapping capabilities provided by the Sun Java System Application Server include:

» Mapping a container-managed persistence bean to asingle table

» Mapping a container-managed persistence bean to multiple tables

e Mapping container-managed persistence fields to columns

e Mapping container-managed persistence fields to different column types

* Mapping tables with compound primary keys

» Mapping container-managed persistence relationships to foreign key columns

* Mapping tables with overlapping primary and foreign keys

Mapping Tool

The mapping tool generates information that maps the entity bean’s container-managed
fields to adata source, such asa column in arelational database table. This mapping
information is stored in an XML file.

Chapter 4 Using Container-Managed Persistence for Entity Beans 95

Using Container-Managed Persistence

96

The meet-in-the-middle mapping of the container-managed persistence implementation
creates a custom mapping between an existing schema and existing Java classes, using the
Mapping Tool.

Mapping Techniques

A container-managed persistence class should represent a data entity, such as an employee
or adepartment. To model a specific data entity, you add persistent fields to the class that
correspond to the columns in the data store.

The simplest kind of modeling isto have a persistence-capabl e class represent asingle table
in the data store, with a persistent field for each of the table’s columns. An Enpl oyee
class, for example, would have persistent fields for all the columns found in the EMPLOYEE
table of the data store, such as| ast nane, fi r st nane, depart nent,and sal ary.

NOTE Y ou can choose to have only a subset of the data store columns used as
persistent fields, but if afield is persistent, it must be mapped.

Information on how to use Sun ONE Studio 5 to map container-managed persistence for
enterprise beansis contained in the Sun Java System Application Server Integration Module
for the Sun ONE Studio 5 online help.

Supported Data Types for Mapping

Container-managed persistence supports a set of JDBC 1.0 SQL datatypesthat are used in
mapping Java datafields to SQL types. Supported JDBC 1.0 SQL datatypes are as follows:

Bl G NT DOUBLE SMALLI NT BIT FLOAT
TIME BLOB I NTEGER TI MESTAMP CHAR
LONGVARCHAR ~ TI NYI NT DATE NUMER C VARCHAR
DECI NAL REAL

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

The following table contains suggested mappings.

Using Container-Managed Persistence

Table 4-1 Suggested Data Type Mappings

Java Type JDBC Type Nullability
bool ean BI T NON NULL
j ava. | ang. Bool ean BIT NULL

byt e TI NYI NT NON NULL
java. |l ang. Byt e TI NYI NT NULL
doubl e FLOAT NON NULL
j ava. | ang. Doubl e FLOAT NULL
doubl e DOUBLE NON NULL
j ava. | ang. Doubl e DOUBLE NULL

f1 oat REAL NON NULL
java. | ang. Fl oat REAL NULL

int | NTEGER NON NULL
java. |l ang. | nt eger | NTEGER NULL

| ong Bl G NT NON NULL
java. | ang. Long Bl G NT NULL

| ong DECI MAL (scal e==0) NON NULL
java. |l ang. Long DECI MAL (scal e==0) NULL

| ong NUMERI C (scal e==0) NON NULL
java. | ang. Long NUMERI C (scal e==0) NULL
short SMALLI NT NON NULL
java. | ang. Short SMALLI NT NULL

j ava. mat h. Bi gDeci nal DECI MAL (scal e! =0) NON NULL
j ava. mat h. Bi gDeci nal DECI MAL (scal e! =0) NULL

j ava. mat h. Bi gDeci nal NUMERI C NULL

j ava. mat h. Bi gDeci nal NUMERI C NON NULL
java.lang. String CHAR NON NULL
java.lang. String CHAR NULL
java.lang. String VARCHAR NON NULL
serializable BLOB NULL

Chapter 4

Using Container-Managed Persistence for Entity Beans

97

Using Container-Managed Persistence

BLOB Support

Binary Large Object (BLOB) isadatatype used to store and retrieve complex object fields.
BLOBs are binary or serializable objects, such as pictures, that trandate into large byte
arrays which are then serialized into CMP fields.

NOTE On Oracle, using the Oracle thin driver (JDBC type 4), it is not possible to
insert more than 2000 bytes of datainto a column. To circumvent this
prablem, use the OCI driver (JDBC type 2).

To enable BLOB support in the Sun Java System Application Server environment:
1. Declarethe variable in the bean class with a seriaizable type.

2. Edit the XML file by declaring the CM P mapping deployment descriptor in the
sun- cnp- nappi ngs. xm file.

3. Create the BLOB in the database.

NOTE Performance may be negatively impacted due to the size of the BLOB
object.

Example
<cnp-fi el d- mappi ng>

<fi el d- nane>syl | abus</fi el d- name>

<col umm- nane>C0OURSE. SYLLABUS</ col unn- namre>
</ cnp-fi el d- mappi ng>

Example

/**

Serializable class Syllabus : BLOB Testing

**/

package col | egei nfo
public class Syllabus inplements java.io.Serializable

{
public String author;

public String syllabi;

98 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Schema for Course:

tabl e course

courseld Nunber
dept1d Nunber

cour seNarre Var char
syl | abus BLCB

Using the capture-schema Utility

Mapping information is developed by first capturing the database schema. Use the

capt ur e- schema command to store the database metadata (schema) in afile for usein
mapping and execution. Y ou can aso use the Sun ONE Studio IDE to capture the database
schema; refer to “ Capturing a Schema” on page 221.

NOTE The database user running capt ur e- schema needs ANALYZE ANY
TABLE privilegesif that user does not own the schema. These privileges
are granted to the user by the database administrator.

The capture-schema utility does not modify the schemain any way. Itsonly
purpose is to provide the persistence engine with information about the
structure of the database (the schema).

Syntax

capture-schema -dburl url -usernane name -password passaord -dri ver gjdbedriver
[-schenmanane name] [-tabl e TableNamgl * [-out filenamg]

Where:

- dbur | url: Specifiesthe IDBC URL expected by the driver for accessing a database.
- user nanme name: Specifies the user name for authenticating access to a database.

- passwor d password: Specifies the password for accessing the selected database.

-dri ver ajdbcdriver: Specifiesthe JDBC driver class name. This class must be in your
CLASSPATH.

- schemanane name: Specifiesthe name of the user schemabeing captured. If not specified,
the default will capture metadata for all tables from all the schemas accessible to this user.

Chapter 4 Using Container-Managed Persistence for Entity Beans 99

Using Container-Managed Persistence

NOTE If more than one schema is accessible for this user, more than one table
with the same name might be captured, which will cause problemsif this
parameter is not set.

- t abl e TableName: Specifies atable name. Multiple table names can be specified. If not
specified, all the tablesin the database schemawill be captured.

- out : Specifiesthe output target. Defaults to st dout . To be able to use the output for the
CMP mapping, the output file name must have the .dbschena suffix.

For container-managed persistence mapping, the - out parameter correlates to the
schema subelement of the sun- cnp- mappi ng e ement in the
sun- cnp- nappi ng_1_0. dtd file:

<! ELEMENT sun-cnp-mappi ng (schema, entity-nappi ng+) >

In the sun- cnp- mappi ngs. xm file, this element must be represented without the
.dbschenma suffix. For example:

<schema>Rost er Schenma</ schema>

NOTE If no table flags are given, all the tables in the database are captured in the
schema

Example
capt ure-schema -dburl jdbc: poi nt base: server://Iocal host: 9092/ sanpl e

-usernane public -password public -driver
com poi nt base. j dbc. j dbcUni versal Driver -out RosterSchena. dbschema

Mapping Fields and Relationships

This section discusses how to map the fields and rel ationships of your entity beans by
editing the sun- cnp- mappi ngs. xm deployment descriptor. This can be done either
manually (provided you are proficient in editing XML) or using the Sun Java System
Application Server deploytool.

A container-managed persistence bean has aname, aprimary table, one or morefields, zero
or more relationships, and zero or more secondary tables, plus flags for consistency
checking. Y ou will need to map the CMP fields and CMR fields to the database using the
elementsin the sun- cnp- mappi ngs. xnm file. CMP fields are mapped to columnsin either
the primary or secondary database table(s); CMR fields are mapped to pairs of column lists.

100 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

NOTE Relationships should always be mapped to the primary key field(s) of the
related table.

An alphabetic listing of the mapping elements in the container-managed persistence
deployment descriptors is contained in “ Elements in the sun-cmp-mappings.xml File’ on
page 118. A sample XML fileis contained in “ Sample Schema Definition” on page 127.

This section contains instructions for accomplishing the following mapping tasks:
» Specifying the Beans to Be Mapped

e Specifying the Mapping Components

» Specifying Field Mappings

» Specifying Relationships

Specifying the Beans to Be Mapped

You must start by using the following elements to specify the database schema and the
container-managed persistence beans being mapped:

e sun-cmp-mappings
e sun-cmp-mapping
* schema

e entity-mapping

sun-cmp-mappings
Specifies the collection of subelementsfor all the beans that will be mapped in an EJB JAR
collection.

Subelement is sun- cnp- mappi ng.
Example
Refer to “ Sample Schema Definition” on page 127.

sun-cmp-mapping
Specifies beans mapped to a particular schema.

Subelements are schena, ent i t y- mappi ng.

Chapter 4 Using Container-Managed Persistence for Entity Beans 101

Using Container-Managed Persistence

schema

Specifies the path to the schema file. Only oneis required. For further information, refer to
“Sample EJB QL Queries’ on page 130 and “ Capturing a Schema’ on page 221.

Example
<schenma>Rost er Schenma</ schema>

entity-mapping
Specifies the mapping of beans to database columns.
Subelements are ej b- nane, t abl e- name, cnp-f i el d- mappi ng, cnr - fi el d- mappi ng,

secondary-tabl e, consi st ency.

Example
For an example, see “entity-mapping” on page 102.

Specifying the Mapping Components

The next step isto use the following elements to specify components that are part of the
mapping, and to indicate how consistency checking will occur.

e entity-mapping

* gb-name

» table-name

e secondary-table

e consistency

entity-mapping

Specifies the mapping of beans to database columns.

Subelements are ej b- nane, t abl e- name, cnp-f i el d- mappi ng, cnr - fi el d- mappi ng,
secondary-tabl e, consi st ency.

Example
<entity- mappi ng>
<ej b- nane>Pl ayer </ ej b- nane>
<t abl e- name>PLAYER</ t abl e- nane>
<cnp-fi el d- mappi ng>
<fi el d- name>sal ary</fi el d- name>
<col um- nane>PLAYER. SALARY</ col umm- nane>

102 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- nane>pl ayer | d</fi el d- name>
<col um- nane>PLAYER PLAYER | D</ col urm- nane>
</ cnp-fi el d- nappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>posi ti on</fi el d- nane>
<col um- nane>PLAYER. PCS| TI ON</ col umm- nanme>
</ cnp-fi el d- mappi ng>
<fi el d- name>nane</ fi el d- nane>
<col umm- nane>PLAYER NAME</ col umn- name>
</ cnp-fi el d- mappi ng>
<cnr-fi el d- mappi ng>
<cnr-fi el d-nane>t eani d</ cnr - fi el d- nane>
<col um- pai r >
<col um- nane>PLAYER PLAYER | D</ col urm- nane>
<col um- nanme>TEAMPLAYER PLAYER | D</ col urm- name>
</ col um- pai r >
<col um- pai r >
<col um- nane>TEAMPLAYER TEAM | D</ col urm- nanme>
<col um- name>TEAM TEAM | D</ col umm- nane>
</ col umm- pai r >
</cnr-fiel d- mappi ng>
</ entity- mappi ng>

g b-name
Specifies the name of the entity bean intheej b-j ar. xm fileto which the
container-managed persistence beans relates. Oneis required.

Example

<ej b- nane>Pl ayer </ ej b- nane>

table-name

Specifies the name of a database table. The table must be present in the database schema
file. Oneisrequired.

Example
<t abl e- name>PLAYER</ t abl e- nane>

Chapter 4 Using Container-Managed Persistence for Entity Beans 103

Using Container-Managed Persistence

secondary-table
Specifies a bean’s secondary table(s). Optional.

Subelements are t abl e- nane, col um-pai r.

Example
This secondary table example adds an email field in the St udent B b class.

public abstract class StudentEJB inplenents EntityBean {
/***

Wite ur set,get methods for Entity bean variables and
busi ness met hods here

***/

/1 Access nethods for COWP fields

public abstract Integer getStudent!ld();

public abstract void setStudentld(!lnteger studentld);
public abstract String getStudent Narme();

public abstract void set Student Nane(String student Nane) ;

public abstract void setEmail (String Email); <----- Col urm from
Secondary Tabl e

The Student and the Email table should be related by aforeign key. The schema for the
Email table may look like this:

Table Email :

St udent _i d Nunber
emai | varchar

Tabl e Student:

Student | d Nunber

St udent Nane var char
deptld Nunber
Addressl d Nunber
Account | d Var char

When adding the secondary table, the tables will both apply to the same enterprise bean.

consistency

Specifies container behavior in guaranteeing transactional consistency of the datain the
bean. Optional. If the consistency checking flag element is not present, none is assumed.

The following table describes the elements used for consistency checking.

104 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Table 4-2 Consistency Flags

Flag Element Description

check-all -at-conmm t This flag is not implemented for Sun Java System
Application Server 7.1.

check- nodi fi ed- at - conmi t Checks modified instances at commit time.
| ock- when- | oaded A lock is implemented when the data is loaded.
| ock-when- nodi fi ed This flag is not implemented for Sun Java System

Application Server 7.1.

none No consistency checking occurs.

Specifying Field Mappings

Field mapping is done using the following elements:
e cmp-field-mapping

o field-name

e column-name

* read-only
» fetched-with
o leve

e named-group

i none

cmp-field-mapping

Thecnp-fi el d- nappi ng element associates afield with one or more columnsthat it maps
to. The column can be from abean’ s primary table or any defined secondary table. If afield
is mapped to multiple columns, the column listed first is used as a SOURCE for getting the
value from the database. The columns are updated in the order they appear. Thereis one
cnp-fi el d- mappi ng element for each cnp-fi el d element defined in the EJB JAR file.

A field can be marked as read-only.

Subelements aref i el d- nane, col um- nane, r ead- onl y, and f et ched-wi t h.

Chapter 4 Using Container-Managed Persistence for Entity Beans 105

Using Container-Managed Persistence

Example
<cnp-fi el d- mappi ng>

<fi el d- nanme>nane</ fi el d- name>

<col um- nane>LEAGUE. NAME</ col um- name>
</ cnp-fi el d- mappi ng>

field-name

Specifies the Javaidentifier of afield. Thisidentifier must match the value of the
fi el d- nanme subelement of the cnp- fi el d that is being mapped. Oneis required.

Example
<fi el d- nane>nane</ fi el d- name>

column-name

Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One or more is
required.

NOTE When mapping multiple columns, any JAV A type can be used.

Example
<col um- nane>PLAYER NAME</ col um- name>

Example

Use thiswith non-normalized tables where the same information appearsin multiple places,
and the information needs to be kept synchronized if it is updated.

public abstract class StudentEJB inplenents EntityBean {

public abstract String getlnstallnents();

The three columns from the student table can be mapped to asingle installments columnin
the Student enterprise bean.

106 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Tabl e student:

instal | ment1 Nunber
instal | ment2 Nunber
instal | ment 3 Nunber

The same value will be written to al the columns in the database.

read-only
Ther ead- onl y flag indicates that afield is read-only.

Example
<r ead- onl y>nane</ r ead- onl y>

fetched-with

Specifies the fetch group configuration for fields and relationships. A field may participate
in ahierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

» Ifthereisnof et ched- wi t h sub-element of acnp-fi el d- mappi ng, the default value
is assumed to be:

<f et ched- wi t h><| evel >0</ | evel ></ f et ched- wi t h>

e Ifthereisnof et ched- wi t h sub-element of acnr-fi el d- mappi ng, the default value
is assumed to be:

<f et ched- wi t h><none/ ></ f et ched- wi t h>

Subelements are | evel , naned- gr oup, Or none.

level

Specifies the name of a hierarchical fetch group. The value must be an integer. Fields and
relationships that belong to a hierarchical fetch group of equal (or lesser) value are fetched
at the sametime. The value of | evel must be greater than zero. Only oneis allowed.

named-group

Specifies the name of an independent fetch group. All the fields and relationships that are
part of a named group are fetched at the same time. Only oneis allowed.

Chapter 4 Using Container-Managed Persistence for Entity Beans 107

Using Container-Managed Persistence

none
A consistency level flag that indicates that thisfield or relationship is fetched by itself.

Specifying Relationships
The following elements are used to specify the mapping for container-managed
relationships:

» cmr-field-mapping
o cmr-field-name
e column-pair

» fetched-with

cmr-field-mapping

A container-managed relationship field has a name and one or more column pairs that
define the relationship. Thereisonecnr -fi el d- mappi ng element for eachcnr-fiel d. A
relationship can also participate in a fetch group.

Subelements are cnr - f i el d- name, col um- pai r, f et ched-wi t h.

Example
<cnr-fi el d- mappi ng>
<cnr-fi el d-nane>t eani d</ cnr - fi el d- nane>
<col um- pai r >
<col umm- name>PLAYER. PLAYER | D</ col um- nane>
<col um- nanme>TEAMPLAYER PLAYER | D</ col urm- name>
</ col um- pai r >
<col um- pai r >
<col um- nane>TEAM TEAM | D</ col unn- nane>
<col um- nane>TEAMPLAYER TEAM | D</ col urm- nanme>
</ col urm- pai r >
<f et ched-wi t h>
<none/ >
</fetched-wth>
</cnr-fi el d- mappi ng>

cmr-field-name

Specifies the Javaidentifier of afield. This must match the value of thecnr - fi el d- nane
subelement of thecnr - fi el d that is being mapped. Oneis required.

108 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Example
<cnr-fi el d-nane>t eanx/ cnr-fi el d- nanme>

column-pair
Specifies the pair of related columns in two database tables. One or moreis required.

The columns names are specified in the col um- narme element.

Example

<col um- pai r >
<col um- nane>PLAYER PLAYER | D</ col urm- nane>
<col um- nanme>TEAMPLAYER PLAYER | D</ col urm- name>
</ col urm- pai r >

column-name

Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. Two are required as
subelements of a column-pair.

Example
<col um- nane>PLAYER NAME</ col um- name>

fetched-with

Specifies the fetch group configuration for fields and relationships. A field may participate
in ahierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

e Ifthereisnof et ched- wi t h sub-element of acnp-fi el d- mappi ng, the default value
is assumed to be:

<f et ched- wi t h><| evel >0</ | evel ></ f et ched- wi t h>

e Ifthereisnof et ched- wi t h sub-element of acnr-fi el d- mappi ng, the default value
is assumed to be:

<f et ched- wi t h><none/ ></ f et ched- wi t h>

Subelements are | evel , naned- gr oup, Or none.

Chapter 4 Using Container-Managed Persistence for Entity Beans 109

Using Container-Managed Persistence

Configuring the Resource Manager

The resource manager used by the container-managed persistence implementation is
Per si st enceManager Fact or y, which is configured using the ser ver . xni file.

Refer to the Sun Java System Application Server Administration Guide for information on
creating a new persistence manager.

To deploy an EJB module that contains container-managed persistence beans, you need to
add the following information to the sun- ej b-j ar. xm deployment descriptor.

1. Specify the Persistence Manager used for deployment in the sun- ej b-j ar . xni file:

<pm descri pt or s>
<pm descri ptor>
<pmidentifier>Sun</pmidentifier>
<pm ver si on>1. 0</ pm ver si on>
<pm cl ass- gener at or >com sun. ent er pri se. persi st ence. i nternal . ej b. ej bc. JDOCodeGener at or
</ pm cl ass- gener at or >
<pm mappi ng- f act or y>com sun. ent er pri se. cnp. Nul | Fact or y</ pm mappi ng-f act or y>
</ pm descri pt or
<pm i nuse>
<pmidentifier>Sun</pmidentifier>
<pm ver si on>1. 0</ pm ver si on>
</ pminuse>
</ pm descri pt or s>

2. Specify the INDI name of the Persistence Manager’s resource (listed under
per si st ence- manager - f act ory- r esour ce entry intheserver. xm file) and the
JNDI name for cnp- r esour ce. This nameis used at run time to manage persistent
resources.

For example, if you have the following entry in theser ver. xm file:

<per si st ence- manager - f act or y- r esour ce
factory-cl ass="com sun. j do. spi . per si st ence. support . sql store. i npl . Per si st enceManager Fact oryl npl "
enabl ed="true"
j ndi - nane="j do/ pnf"
j dbc-resour ce-j ndi - name="j do/ pnf PM' />

Set the CMP resourcein the sun-ej b-j ar. xni file as:

<cnp-r esour ce>
<j ndi - nanme>j do/ pnf </ j ndi - nanme
</ cnp-resour ce>

NOTE The Sun ONE Studio IDE creates pm descri pt or s automatically for
deployment. Information on how to set up the container-managed
persistence resources is contained in the Sun Java System Application
Server Integration Module for the Sun ONE Studio 5 online help.

110 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

Using EJB QL

The Enterprise JavaBeans Specification, v2.0 specifiesanew query language (EJB QL) that
can be used to define portable queries for the finder and select methods of CMP beans.
These queries use a SQL -like syntax to select entity objects or field values based on the
abstract schema types and relationships of CMP beans.

Finder methods are defined in the home and/or local home interfaces of the bean, and return
instances of the same bean. Select methods are defined only in the abstract bean class, and
can be used for selecting entity objects of any local or remote type aswell asfield values for
beans from the same schema.

For more information, refer to the Chapter 11, “EJB QL: EJB Query Language for
Container-Managed Persistence Query Methods” in the Enterprise JavaBeans Specification,
v2.0.

Some EJB QL sample queries are contained in “ Sample EJB QL Queries’ on page 130.

Configuring Queries for 1.1 Finders

The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the finder
method description. The Sun Java System Application Server uses Java Data Objects Query
Language (JDOQL) queries to implement finder and sel ector methods. For EJB 2.0, the
container automatically maps an EJB QL query to JDOQL. For EJB 1.1, this mapping is
partially done by the developer. Y ou can specify the following elements of the underlying

JDOQL query:

» Filter expression—A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clausein EJB QL.

e Query parameter declaration—Specifies the name and the type of one or more query
input parameters. Follows the syntax for formal parametersin the Java language.

» Query variable declaration—Specifies the name and type of one or more query
variables. Follows the syntax for local variablesin the Javalanguage. Query variables
might be used in the filter to implement joins.

The Sun Java System Application Server-specific deployment descriptor
(sun-ej b-j ar. xm) provides the following elements to store the EJB 1.1 finder method
settings:

query-filter
quer y- par ans
query-vari abl es

Chapter 4 Using Container-Managed Persistence for Entity Beans 111

Using Container-Managed Persistence

The Sun Java System Application Server constructs a JDOQL query using the persistence
capable class of the EJB 1.1 entity bean as the candidate class. It adds the filter, parameter
declarations, and variable declarations as specified by the developer to the IDOQL query. It
executes the query and passes the parameters of the finder method to the execut e call. The

objects from the IDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ej bFi nd method.

The JDO specification (see JSR 12) provides a comprehensive description of JDOQL. The

following information summarizes the elements used to define EJB 1.1 finders.

Query Filter Expression

Thefilter expression is a String containing a boolean expression eval uated for each instance
of the candidate class. If the filter is not specified, it defaults to true. Rules for constructing

valid expressions follow the Javalanguage, with the following differences:

Equality and ordering comparisons between primitives and instances of wrapper
classesarevalid.

Equality and ordering comparisons of Date fields and Date parameters are valid.
Equality and ordering comparisons of String fields and String parameters are valid.

White space (non-printing characters space, tab, carriage return, and line feed) isa
separator and is otherwise ignored.

The following assignment operators are not supported:

o =, 4= ete.

o pre- and post-increment

o pre- and post-decrement

Methods, including object construction, are not supported, except for:

Col | ecti on. contai ns((Chj ect 0)
Col | ection.isEmty()
String.startsWth(String s)
String.endsWth(String e)

112 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Persistence

In addition, the Sun Java System Application Server supports the following
non-standard JDOQL methods:

String.like(String pattern)

String.like(String pattern, char escape)
String.substring(int start, int |ength)
String.indexOr(String str), String.indexO'(String str, int
start)

String. | ength()

Mat h. abs(numeric n), and Mat h. sgrt (doubl e d)

» Navigation through a null-valued field, which would throw Nul | Poi nt er Except i on,
istreated asif the subexpression returned false.

NOTE Comparisons between floating point values are by nature inexact.
Therefore, equality comparisons (== and !=) with floating point values
should be used with caution. Identifiersin the expression are considered to
be in the name space of the candidate class, with the addition of declared
parameters and variables. Asin the Javalanguage, thisis areserved word,
and refers to the current instance being eval uated.

The following expressions are supported:
» Operators applied to al types where they are defined in the Java language:
o relationa operators (==, I=, >, <, >=, <=)
o boolean operators (&, &&, |, ||, = !)
o arithmetic operators (+, -, *, /)
String concatenation is supported only for String + String.
» Parenthesesto explicitly mark operator precedence
* Cast operator

» Promotion of numeric operands for comparisons and arithmetic operations. The rules
for promotion follow the Javarules (see the numeric promotions of the Javalanguage
specification) extended by BigDecimal, Biglnteger, and numeric wrapper classes.

Query Parameter

The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Chapter 4 Using Container-Managed Persistence for Entity Beans 113

Using Container-Managed Persistence

Query Variables
The type declarations follow the Java syntax for local variable declarations.

Examplel

The following query returns all players called Michael. It defines afilter that compares the
name field with a string literal:

"name == \"Mchael\""

Thefinder element of thesun-ej b-j ar. xm file would look like this:

<finder>
<net hod- nane>f i ndPl ayer ByNane</ net hod- nane>
<query-filter>name == "M chael "</ query-filter>
</ finder>
Example 2

This query returns all productsin a specified price range. It defines two query parameters
which are the lower and upper bound for the price: double low, double high. The filter
compares the query parameters with the price field:

"low < price & price < high"
Thefinder element of thesun-ej b-j ar. xm filewould look like this:

<fi nder>
<net hod- nane>f i ndl nRange</ et hod- narme>
<query- par anms>doubl e | ow, doubl e hi gh</ query- par ans>
<query-filter>low &t; price &anp; &np; price &t
hi gh</ query-filter
</ finder>

Example 3

This query returns all players having a higher salary than the player with the specified
name. It definesa query parameter for thenamej ava. | ang. Stri ng name. Furthermore, it
defines avariable for the player to compare with. It has the type of the persistence capable
class that corresponds to the bean:

nypackage. Pl ayer EJB_170160966_JDCstate p

Thefilter compares the salary of the current player denoted by this keyword with the salary
of the player with the specified name:

(this.salary > p.salary) & (p.nane == nane)

114 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Third-Party Pluggable Persistence Manager API

Thefinder element of thesun-ej b-j ar. xn filewould look like this:

<finder>
<net hod- nane>f i ndByH gher Sal ar y</ net hod- name>
<query- par anms>j ava. | ang. String nane</ query- par ans>
<query-filter>
(this.salary > p.salary) &anp; &np;
(p. nane ==nane)
</query-filter>
<query-vari abl es></ query-vari abl es
</ finder>

Third-Party Pluggable Persistence Manager API

Container-managed persistencein the EJB container can support persistence vendors
integrating their runtimes into the Sun Java System Application Server using the Sun Java
System Application Server Pluggable Persistence Manager API. The API describes
integration requirements at deployment, at code-generation, and at runtime. It supports
callouts to implement the concrete bean implementations when EJBs are compiled.

The Sun Java System Application Server enables the container-managed persistence
implementation to use its startup framework to load classes and to register the persistence
manager. The Pluggable Persistence Manager APl also supports integration requirements
with regard to transactions and dynamic deployment.

In general, the objective isthat any third-party container-managed persistence solution that
fully supports the Enterprise JavaBeans Specification, v2.0 can be made to work with the
Sun Java System Application Server.

To use a third-party tool:
1. Build your enterprise beans using the third-party O/R mapping tool.
2. Deploy the beans using the Assembly Tool or the command-line interface.

Third-party persistence tools must use Java Database Connectivity (JDBC) resources or
Java Connector API (JCA) resources at runtime to access relational data sources. This
allows the pluggabl e persistence managers to automatically use the connection pooling,
transaction handling, and security management features of the container. Third-party
vendors will be able to plug in their concrete class generators and their mapping factory to
generate avalid vendor-specific mapping object model.

Chapter 4 Using Container-Managed Persistence for Entity Beans 115

Restrictions and Optimizations

The configuration requirements specify a number of properties which must be defined for a
bean, including:

» The persistence mechanism
* The persistence vendor/version

» Additional information required by the persistence mechanism

Restrictions and Optimizations

This section discusses any restrictions and performance optimizations you should be aware
of in implementing contai ner-managed persistence for entity beans.

» Unique Database Schema Namesin EAR File
» DataAliasing

e Eager Loading of Field State

* Restrictions on Remote Interfaces

e Sybase Finder Limitation

» Dateand Time Fieldsas CMP Field Types

Unique Database Schema Names in EAR File

In a situation where there are multiple JAR files within an EAR file, for examplej ar 1 and
j ar 2, any corresponding . dbschena filesfor j ar 1 and j ar 2 must have unique fully
qualified names.

Data Aliasing

If container-managed fields of multiple entity beans map to the same dataitem in the
underlying database, the entity beans may see an inconsistent view of the dataitem if the
multiple entity beans are invoked in the same transaction.

116 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Restrictions and Optimizations

Eager Loading of Field State

By default, the EJB container |oads the state for all CMP fields (except BLOB and CLOB
fields) beforeinvoking the ej bLoad method of the abstract bean. This approach may not be
optimal for entity objects with large state if most business methods require access to only
parts of the state. If thisis an issue, use the <f et ched- wi t h> element for fields that are
used infrequently.

Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an entity bean that uses
container-managed persistence:

* Do not expose the get and set methods for CMR fields or the persistence Collection
classesthat are used in contai ner-managed rel ationshi ps through the remote interface of
the bean.

However, you are free to expose the get and set methods that correspond to the CMP
fields of the entity bean through the bean’ s remote interface.

» Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

» Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface,
and can be included in the client EJB JAR file.

Sybase Finder Limitation

If you execute any finder method with an input greater than 255 characters and map the
primary key column to aVARCHAR column, Sybase attemptsto convert type VARCHAR
to type TEXT and generates the following error:

com sybase. j dbc2. j dbc. SybSQLException: Inplicit conversion from datatype
"TEXT" to 'VARCHAR is not allowed. Use the CONERT function to run this

query.
To avoid this error, make sure your finder method input is less than 255 characters.

Chapter 4 Using Container-Managed Persistence for Entity Beans 117

Elements in the sun-cmp-mappings.xml File

Date and Time Fields as CMP Field Types

If aCMPfidld typeisaJavadate or timetype (j ava. uti |l . Dat e, j ava. sql . Dat e,
java. sqgl . Ti ne, j ava. sql . Ti mest anp), make sure that the field value exactly matches
the value in the database.

For example, the following code uses aj ava. sql . Dat e type as a primary key field:

java.sql.Date nyDate = new java.sql.Date(SystemcurrentTineM|1is())
beanHorne. creat e(nyDate, ...);

This code resultsin only the year, month, and date portion of the field value being stored in
the database. Later on if the client tries to find this bean by primary key as follows:

nyBean = beanHone. fi ndByPri mar yKey(nyDate) ;

the bean is not found in the database because the val ue does not match the one that is stored
in the database.

Similar problems can happen if the database truncates the timestamp value while storing it,
or if acustom query has a date or time value comparison in its WHERE clause.

Elements in the sun-cmp-mappings.xml File

“ Assembling and Deploying Enterprise Beans’ on page 173, provides general information
and guidelines on assembling your enterprise beans for deployment. Additional deployment
information and instructions are contained in the Sun Java System Application Server
Developer’s Guide.

“Persistence Elements’ on page 201 provides information on the information on
persistence-related elementsin the sun- ej b-j ar. xm file.

A sample XML fileis contained in “ Sample Schema Definition” on page 127.
This section describes the elements in the sun- cnp- mappi ngs. xnm file:

» check-all-at-commit

» check-modified-at-commit

e cmr-field-mapping

+ cmr-field-name

* column-name

e column-pair

e consistency

118 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-cmp-mappings.xml File

e gb-name
e entity-mapping
« fetched-with

+ field-name

* leve

* lock-when-loaded

* lock-when-modified

* named-group

* none
* read-only
» schema

* sun-cmp-mapping
* sun-cmp-mappings

e table-name

check-all-at-commit
Thisflag is not implemented for Sun Java System Application Server 7.1.

Subelements
none

check-modified-at-commit
A consistency level flag that indicates to check modified bean instances at commit time.

Subelements
none

cmp-field-mapping

Thecnp-fi el d- nappi ng element associates afield with one or more columnsthat it maps
to. The column can be from abean’ s primary table or any defined secondary table. If afield
is mapped to multiple columns, the column listed first is used as a SOURCE for getting the
value from the database. The columns are updated in the order they appear. Thereis one
cnp-fi el d- mappi ng element for each cnp-fi el d element defined in the EJB JAR file.

Chapter 4 Using Container-Managed Persistence for Entity Beans 119

Elements in the sun-cmp-mappings.xml File

A field can be marked as read-only.

A field may participate in afetch group if the f et ched- wi t h element is not specified. The
following is assumed:

<f et ched- wi t h><| evel >0</ | evel ></ f et ched- wi t h>

Subelements
The following table describes subelements for the cnp- fi el d- mappi ng element.

Table 4-3 cnp-fi el d- mappi ng Subelements

Subelement Required Description

fiel d-name only one Specifies the Java identifier of a field. This
identifier must match the value of the
fi el d- name subelement of the cnp-field
that is being mapped. One is required.

col um- nane one or more Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table. One is required.

read-only zero or one Flag that indicates a field is read-only.
Optional.
fetched-with zero or one Specifies the fetch group configuration for

fields and relationships. Optional.

cmr-field-mapping

A container-managed relationship field has a name and one or more column pairs that
define the relationship. Thereisonecnr -fi el d- mappi ng element for eachcnr-fiel d. A
relationship can also participate in a fetch group.

If thef et ched- wi t h element is not present, the following value is assumed:
<f et ched- wi t h><none/ ></ f et ched-wi t h>.

Subelements
The following table describes subelements for the cnr - f i el d- mappi ng element.

120 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-cmp-mappings.xml File

Table 4-4 cnr-fi el d- mappi ng Subelements

Subelement Required Description

cnr-field-name only one Specifies the Java identifier of a field. Must
match the value of the cnr - fi el d- name
subelement of the cnr - fi el d that is being

mapped.

col um- pai r one or more The name of the pair of columns in a database
table.

fetched-with zero or one Specifies the fetch group configuration for

fields and relationships. Optional.

cmr-field-name

Specifies the Javaidentifier of afield. Must match the value of thecnr - f i el d- nare
subelement of thecnr - fi el d that is being mapped.

Subelements
none

column-name

Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One is required.

Subelements
none

column-pair
The name of the pair of related columnsin two database tables. Oneis required.

Subelements
The following table describes subelements for the col unm- pai r element.

Table 4-5 col umm- pai r Subelements

Subelement Required Description

col um- nane two Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table.

Chapter 4 Using Container-Managed Persistence for Entity Beans

121

Elements in the sun-cmp-mappings.xml File

consistency

Specifies container behavior in guaranteeing transactional consistency of the datain the
bean. Optional. If the consistency checking flag element is not present, none is assumed.

Subelements

The following table describes the elements used for consistency checking.

Table 4-6 Consistency Flags

Flag Element Description

check-al |l -at-comit Checks modified instances at commit time.

check- nodi fi ed- at - commi t This flag is not implemented for Sun Java System
Application Server 7.1.

| ock-when- | oaded An exclusive lock is obtained when the data is loaded.

| ock-when- nodi fi ed This flag is not implemented for Sun Java System
Application Server 7.1.

none No consistency checking occurs.

g b-name

Specifies the name of the entity bean intheej b-j ar. xn fileto which the
container-managed persistence beans relates. Oneis required.

Subelements
none

entity-mapping

Specifies the mapping a bean to database columns.

Subelements
The following table describes subelements for the ent i t y- mappi ng element.

Table 4-7 entity- mappi ng Subelements

Subelement Required Description

ej b- nane only one Specifies the name of the entity bean in the
ej b-j ar. xni file to which the
container-managed persistence beans relates.
One is required.

122 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-cmp-mappings.xml File

Table 4-7 entity- mappi ng Subelements (Continued)

Subelement Required Description

t abl e- nanme only one Specifies the name of a database table. The
table must be present in the database schema
file.

cnp-fi el d- mappi ng one or more Associates a field with one or more columns

cnr-field-mapping

secondary-tabl e

consi st ency

Zero or more

Zero or more

Zero or one

that it maps to. The column can be from a
bean’s primary table or any defined secondary
table. If a field is mapped to multiple columns,
the column listed first is used as a SOURCE
for getting the value from the database. The
columns are updated in the order they appear.
There is one cnp- f i el d- nappi ng element
for each cnp-fi el d element defined in the
EJB JAR file.

A field can be marked as read-only.

A container-managed relationship field has a
name and one or more column pairs that
define the relationship. There is one

cnr -fi el d- mappi ng element for each
cnr-fiel d. Arelationship can also participate
in a fetch group.

Describes the relationship between a bean’s
primary and secondary table. Column pairs are
used to describe this relationship.

Specifies container behavior in guaranteeing
transactional consistency of the data in the
bean. If the consistency checking flag element
is not present, none is assumed.

fetched-with

Specifies the fetch group configuration for fields and relationships. Optional .

A field may participate in ahierarchical or independent fetch group. If thef et ched-wi t h
element is not present, the following value is assumed:
<f et ched- wi t h><none/ ></ f et ched-wi t h>.

Subelements

The following table describes subelements for the f et ched- wi t h element.

Chapter 4

Using Container-Managed Persistence for Entity Beans

123

Elements in the sun-cmp-mappings.xml File

Table 4-8 fetched-w t h Subelements

Subelement Required Description

| evel exactly one of Specifies the name of a hierarchical fetch
these group. The value must be an integer. Fields
elements is and relationships that belong to a hierarchical
required fetch group of equal (or lesser) value are

fetched at the same time. The value of | evel
must be greater than zero.

naned- gr oup Specifies the name of an independent fetch
group. All the fields and relationships that are
part of a named group are fetched at the same
time.

none A consistency level flag that indicates that this
field or relationship is fetched by itself.

field-name

Specifies the Javaidentifier of afield. Thisidentifier must match the value of the
fi el d- name subelement of the cnp- fi el d that is being mapped. Oneis required.

Subelements
none

level

Specifies a hierarchical fetch group. The value of this element must be an integer. Fields
and relationships that belong to a hierarchical fetch group of equal (or lesser) value are
fetched at the same time. The value of level must be greater than zero. Only oneis allowed.

Subelements
none

lock-when-loaded
A consistency leve flag that indicates alock will be implemented when the data is |oaded.

Subelements
none

124 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-cmp-mappings.xml File

lock-when-modified
Thisflag is not implemented for Sun Java System Application Server 7.1.

Subelements
none

named-group

Specifies the name of an independent fetch group. All the fields and relationships that are
part of a named group are fetched at the same time. One is allowed.

Subelements
none

none

A consistency level flag that indicates that thisfield or relationship is fetched with no other
fields or relationships, or it specifiesthe f et ched- wi t h semantics.

Subelements
none

read-only
Flag that indicates afield is read-only.

Subelements
none

schema

Specifies the path to the schema file. Only one is required. For further information, refer to
“Capturing a Schema” on page 221.

Subel ements

none

secondary-table
Specifies a bean’s secondary table(s).

Subelements
The following table describes subelements for the secondar y- t abl e element.

Chapter 4 Using Container-Managed Persistence for Entity Beans 125

Elements in the sun-cmp-mappings.xml File

Table 4-9 secondary t abl e Subelements

Subelement Required Description

t abl e- nanme only one Specifies the name of a database table. The
table must be present in the database schema
file.

col ume- pai r one or more The name of the pair of related columns in two

database tables.

sun-cmp-mapping
Specifies beans mapped to a particular schema.

NOTE A bean cannot be related to a bean that maps to a different schema, even if
the beans are deployed in the same EJB JAR file.

Subelements
The following table describes subelements for the sun- cnp- mappi ng element.

Table 4-10 sun- cnp- mappi ng Subelements

Subelement Required Description

schema only one Specifies the path to the schema file.

entity-nmappi ng one or more Specifies the mapping of beans to database
columns.

sun-cmp-mappings
Specifies the collection of subelementsfor all the beans that will be mapped in an EJB JAR
collection.

Subelements
The following table describes subelements for the sun- cnp- mappi ngs e ement.

126 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Examples

Table 4-11 sun- cnp- mappi ngs Subelements

Subelement Required Description

sun- cnp- mappi ng one or more Specifies beans mapped to a particular
schema.

table-name

Specifies the name of a database table. The table must be present in the database schema
file. Oneisrequired.

Subelements
none

Examples

The following examples are contained in this section:
e Sample Schema Definition

e Sample CMP Mapping XML File

» Sample EJB QL Queries

Sample Schema Definition

CREATE TABLE Pl ayer

(
pl ayer _1d VARCHAR(255) PRI MARY KEY,
name VARCHAR(255) ,
position VARCHAR(255) |,
sal ary DOUBLE PRECI S| ON NOT NULL ,
pi cture BLCB,

);

CREATE TABLE League

(
| eague_I d VARCHAR(255) PRI MARY KEY,
name VARCHAR(255) ,
sport VARCHAR(255) |,

);

Chapter 4 Using Container-Managed Persistence for Entity Beans 127

Examples

CREATE TABLE Team

(
team | d VARCHAR(255) PR MARY KEY,
city VARCHAR(255) |,
name VARCHAR(255) ,
| eague_I d VARCHAR(255) ,
FOREl GN KEY (league_ld) REFERENCES League (| eague_ld) ,
);
CREATE TABLE TeanP! ayer
(
pl ayer _1d VARCHAR(255) ,
team | d VARCHAR(255),
CONSTRAI NT pk_TeanPl ayer PRI MARY KEY (player_Id , teamld) ,
FOREI GN KEY (team | d) REFERENCES Team (team | d),
FOREl GN KEY (player _Id) REFERENCES Pl ayer (player_Id) ,

Sample CMP Mapping XML File

For information on these elements, refer to “ Elements in the sun-cmp-mappings.xml File”
on page 118.

The following sample mapping file would have the name
META- | NF/ sun- crp- nappi ngs. xni in adeployable EJB JAR file:

<?xnm version="1.0" encodi ng="UTF-8"?>
<sun- cnp- mappi ngs>
<sun- cnp- mappi ng>
<schema>Rost er Schema</ schena>
<entity-mappi ng>
<ej b- nane>League</ ej b- nane>
<t abl e- name>LEAGUE</ t abl e- name>
<cnp-fi el d- mappi ng>
<fi el d- name>nane</ f i el d- nane>
<col um- nane>LEAGUE. NAME</ col umm- narre>
</ cnp-fi el d- nappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>| eaguel d</fi el d- nane>
<col um- nane>LEAGUE. LEAGE | D</ col um- nane>
</ cnp-fi el d- nappi ng>
<cnp-fi el d- mappi ng>
<fiel d-name>sport</fi el d- name>
<col umm- nane>LEAGUE. SPCRT</ col umm- nane>
</ cnp-fi el d- mappi ng>

128 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Examples

<cnr-fi el d- mappi ng>
<cnr -fi el d- nanme>t eanx/ cnr-fi el d- nane>
<col um- pai r >
<col um- nane>LEAGUE. LEAGE | D</ col um- nane>
<col um- nane>TEAM LEAGE | D</ col umm- nane>
</ col umm- pai r >
</cnr-fiel d- mappi ng>
</entity-mappi ng>
<entity-mappi ng>
<ej b- nane>Teanx/ ej b- nane>
<t abl e- name>TEAW/ t abl e- nane>
<cnp-fi el d- mappi ng>
<fi el d- name>nane</ fi el d- nane>
<col umm- nane>TEAM NAME</ col urm- nane>
</ cnp-fi el d- nappi ng>
<cnp-fi el d- mappi ng>
<fi el d-name>ci t y</fi el d- nane>
<col um- nane>TEAM C TY</ col unn- nane>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>t earm d</fi el d- name>
<col um- name>TEAM TEAM | D</ col umm- nane>
</ cnp-fi el d- mappi ng>
<cnr-fi el d- mappi ng>
<cnr-fiel d-name>pl ayer | d</cnr-fi el d- nane>
<col um- pai r >
<col um- nane>TEAM TEAM | D</ col unn- nane>
<col um- nane>TEAMPLAYER TEAM | D</ col urm- nanme>
</ col urm- pai r >
<col um- pai r >
<col um- nanme>TEAMPLAYER PLAYER | D</ col urm- name>
<col um- nane>PLAYER PLAYER | D</ col umrm- nane>
</ col umm- pai r >
<f et ched-wi t h>
<none/ >
</fetched-wth>
</cnr-fiel d- mappi ng>
<cnr-fi el d- mappi ng>
<cnr - fi el d- nane>l eaguel d</cnr-fi el d- name>
<col um- pai r >
<col um- nane>TEAM LEAGE | D</ col umm- nane>
<col um- nane>LEAGLE. LEAGE | D</ col um- nane>
</ col umm- pai r >
<f et ched-wi t h>
<none/ >

Chapter 4 Using Container-Managed Persistence for Entity Beans

129

Examples

</fetched-wth>
</cnr-fiel d- mappi ng>
</entity-mappi ng>
<entity- mappi ng>
<ej b- nane>Pl ayer </ ej b- nanme>
<t abl e- name>PLAYER</ t abl e- nane>
<cnp-fi el d- mappi ng>
<fi el d- name>sal ary</fi el d- name>
<col umm- nane>PLAYER SALARY</ col umm- nane>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- nane>pl ayer | d</fi el d- name>
<col utm- name>PLAYER. PLAYER | D</ col um- nane>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>posi ti on</fi el d- nane>
<col um- nane>PLAYER. PCS| TI ON</ col umm- nanme>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>nane</ fi el d- nane>
<col umm- nane>PLAYER NAME</ col umn- name>
</ cnp-fi el d- mappi ng>
<cnr-fi el d- mappi ng>
<cnr-fi el d-nane>t eani d</ cnr - fi el d- nane>
<col um- pai r >
<col um- name>PLAYER. PLAYER | D</ col um- nane>
<col um- nanme>TEAMPLAYER PLAYER | D</ col urm- name>
</ col umm- pai r >
<col um- pai r >
<col um- nane>TEAMPLAYER TEAM | D</ col urm- nanme>
<col um- nane>TEAM TEAM | D</ col unn- nane>
</ col um- pai r >
</cnr-fiel d- mappi ng>
</ entity- mappi ng>
</ sun- cnp- mappi ng>
</ sun- cnp- nappi ngs>

Sample EJB QL Queries

<query>
<descri ption></ descri pti on>
<quer y- et hod>
<net hod- nane>f i ndAl | </ et hod- name>

130 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Examples

<net hod- parans />
</ query- net hod>
<ej b- gl >sel ect object(l) fromLeague |</ejb-qgl>
</ query>

<query>
<descri ption></ descri pti on>
<quer y- net hod>
<net hod- nane>f i ndByNane</ met hod- name>
<net hod- par ans>
<net hod- par anpj ava. | ang. Stri ng</ et hod- par an»
</ met hod- par ans>
</ query- net hod>
<ej b-gl >sel ect object(l) fromLeague | where |.name = ?1</ejb-ql >
</ query>

<query>
<descri ption></ descri pti on>
<quer y- net hod>
<net hod- nane>f i ndByPosi t i on</ net hod- nane>
<net hod- par ans>
<net hod- par anpj ava. | ang. Stri ng</ et hod- par an»
</ met hod- par ans>
</ query- net hod>
<ej b- gl >sel ect distinct object(p) fromPlayer p where p.position = ?1</ejb-ql >
</ query>

<query>
<description>Sel ector returning SET</description>
<quer y- net hod>
<net hod- nane>ej bSel ect Teans G t y</ net hod- name>
<net hod- par ans>
<net hod- par anpt eam Local League</ net hod- par an»
</ met hod- par ans>
</ query- et hod>
<ej b-gl >sel ect distinct t.city fromTeamt where t.|eague = ?1</ejb-ql >
</ query>

<query>

<description>Sel ector returning single object Locallnterface</description>
<quer y- net hod>

<net hod- nane>ej bSel ect TeanByd t y</ met hod- nane>

<net hod- par ans>

<net hod- par anpj ava. | ang. Stri ng</ et hod- par an»

</ met hod- par ans>

</ query- et hod>

Chapter 4 Using Container-Managed Persistence for Entity Beans

131

Examples

<resul t-type- mappi ng>Local </ resul t -t ype- mappi ng>

<ej b-gl >sel ect distinct Cbject(t) fromLeague |, in(l.teans) as t where t.city =
?1</ej b-ql >
</ query>

<query>
<description>Sel ector returning single object String</description>
<quer y- et hod>
<net hod- nane>ej bSel ect TeansNaneBy G t y</ met hod- name>
<net hod- par ans>
<net hod- par anpj ava. | ang. Stri ng</ et hod- par an»
</ met hod- par ans>
</ query- et hod>
<ej b-gl >sel ect distinct t.nane fromLeague |, in(l.teans) as t where t.city =
?1</ej b-ql >
</ query>

<query>
<description>Sel ector returning Set using multiple collection
decl arati ons</ descri ption>
<quer y- net hod>
<net hod- nane>ej bSel ect Pl ayer sByLeague</ met hod- name>
<net hod- par ans>
<net hod- par anpt eam Local League</ net hod- par an»
</ met hod- par ans>
</ quer y- net hod>
<resul t -t ype- mappi ng>Local </ resul t - t ype- mappi ng>
<ej b-gl >sel ect Cbject(p) fromLeague |, in(l.teans) as t, in(t.players) p where | =
?1</ej b-ql >
</ query>

<query>
<descri ption>Sel ector single object int</description>
<quer y- et hod>
<net hod- nane>ej bSel ect Sal ar yO' Pl ayer | nTeanx/ met hod- nanme>
<net hod- par ans>
<net hod- par anpt eam Local Teanx/ met hod- par an»
<net hod- par an®j ava. | ang. Stri ng</ met hod- par an»
</ et hod- par ans>
</ query- net hod>
<ej b-gl >sel ect p.salary fromTeamt, in(t.players) as p where t = ?1 and p. name =
?2</ej b-ql >
</ query>

132 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Examples

<query>
<descri ption>Fi nder using the I N Expression</description>
<quer y- net hod>
<net hod- nane>f i ndByPosi t i onsGoal keeper O Def ender </ net hod- nane>
<net hod- par ans/ >
</ quer y- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where p.position IN (' goal keeper',
" def ender') </ ej b-ql >
</ query>

<query>
<descri ption>Fi nder using the LIKE Expression</description>
<quer y- net hod>
<net hod- nane>f i ndByNaneEndi ngW t hON</ et hod- nanme>
<net hod- par ans/ >
</ quer y- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where p.name LIKE ' %n' </ ¢ejb-qgl >
</ query>

<query>
<description>Fi nder using the I'S NULL Expressi on</descri ption>
<quer y- net hod>
<net hod- nane>f i ndByNul | Narme</ net hod- nane>
<net hod- par ans/ >
</ query- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where p.name 1S NULL</ej b-gl >
</ query>

<query>
<descri ption>Fi nder using the MEMBER CF Expressi on</descri ption>
<quer y- net hod>
<net hod- nane>f i ndBy Teanx/ met hod- name>
<net hod- par ans>
<net hod- par anpt eam Local Teanx/ met hod- par an»
</ met hod- par ans>
</ quer y- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where ?1 MEMBER p.teans</egjb-ql >
</ query>

<query>
<descri ption>Fi nder using the ABS function</description>
<quer y- net hod>
<net hod- nane>f i ndBySal ar ayWt hAri t hnet i cFunct i onABS</ et hod- nane>
<net hod- par ans>
<net hod- par anrdoubl e</ met hod- par an»

Chapter 4 Using Container-Managed Persistence for Entity Beans

133

Examples

</ met hod- par ans>
</ query- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where p.salary = ABS(?1)</ejb-qgl >
</ query>

<query>
<descri ption>Fi nder using the SQRT function</description>
<quer y- net hod>
<net hod- nane>f i ndBySal ar ayWt hAri t hnet i cFunct i onSQRT</ net hod- name>
<net hod- par ans>
<net hod- par anrdoubl e</ met hod- par an»
</ met hod- par ans>
</ query- net hod>
<ej b- gl >sel ect object(p) fromPlayer p where p.salary = SQRT(?1)</ejb-qgl >
</ query>

134 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Chapter 5

Using Message-Driven Beans

This section describes message-driven beans and explains the requirements for creating
them in the Sun Java System Application Server environment.

NOTE If you are unfamiliar with message-driven beans or the EJB technology,
refer to the Java Software tutorials:

http://java. sun. conij 2ee/ docs. ht m

Extensive information on message-driven beansis contained in chapters 15
and 16 of the Enterprise JavaBeans Specification, v2.0.

Overview materia on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

This section contains the following topics:
e About Message-Driven Beans

e Developing Message-Driven Beans

* Restrictions and Optimizations

» Sample Message-Driven Bean XML Files

135

http://java.sun.com/j2ee/docs.html

About Message-Driven Beans

About Message-Driven Beans

136

A message-driven bean is an enterprise bean that allows J2EE applications to process
messages asynchronoudly. It acts as message listener, which is similar to an event listener
except that it receives messages instead of events. The messages may be sent by any J2EE
component—an application client, another enterprise bean, or aweb component—or by an
application or system that does not use J2EE technology.

The following topics are addressed in this section:
e Message-Driven Beans Differences

* Message-Driven Bean Characteristics

» Transaction Management

» Concurrent Message Processing

Message-Driven Beans Differences

Session beans and entity beans allow you to send JM'S messages and to receive them
synchronously, but not asynchronously. To avoid tying up server resources, you may prefer
to use asynchronous receives in a server-side component. To receive messages
asynchronously, use a message-driven bean.

The most visible difference between message-driven beans and session and entity beansis
that clients do not access message-driven beans through interfaces. Unlike a session or
entity bean, a message-driven bean has only a bean class.

In several respects, a message-driven bean resembl es a statel ess session bean:

* A message-driven bean'sinstances retain no data or conversationa state for a specific
client.

» All instances of a message-driven bean are equal, allowing the container to pool these
message-driven bean instances. This allows streams of messages to be processed
concurrently.

e A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across
the handling of client messages—for example, a JIM S connection, an open database
connection, or an object reference to an EJB object.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Message-Driven Beans

Message-Driven Bean Characteristics

A message-driven bean instance is an instance of amessage-driven bean class. It has neither
ahome nor aremote interface; message-driven beans are anonymous. They have no
client-visible identity.

A client accesses a message-driven bean through JM S by sending messages to the message
destination for which the message-driven bean class is the MessagelLi st ener. A
message-driven bean's Queue and Topic are assigned during deployment using the Sun Java
System Application Server resources.

M essage-driven beans have the following characteristics:
e Execute upon receipt of asingle client message.

e Areasynchronously invoked.

» Arereatively short lived.

» Do not represent directly shared datain the database, but may access and update this
data

e Can be transaction-aware.

* Arestateless.

Transaction Management

Both container-managed and bean-managed transactions as defined in the Enterprise
JavaBeans Specification, v2.0 are supported.

With contai ner-managed transactions, a message may be delivered to a message-driven
bean within atransaction context, so that all operations within the onMessage method are
part of a single transaction. If message processing is rolled back, the message will be
redelivered.

Refer to “Handling Transactions with Enterprise Beans’ on page 149 for additional
information on transactions.

Chapter 5 Using Message-Driven Beans 137

Developing Message-Driven Beans

Concurrent Message Processing

A container allows many instances of a message-driven bean classto be running
concurrently, thus allowing for the concurrent processing of a stream of messages. No
guarantees are made as to the exact order in which messages are delivered to the instances
of the message-driven bean class, although the container attempts to deliver messagesin
chronological order when this does not impair the concurrency of message processing.

M essage-driven beans should, therefore, be prepared to handle messages that are out of
sequence. For example, a message to cancel areservation may be delivered before the
message to make the reservation.

Developing Message-Driven Beans

The goal of the message-driven bean model isto make developing an enterprise bean that is
asynchronously invoked to handle incoming messages as simple as developing the same
functionality in any other IMS listener. A further goal isto allow for concurrent processing
of astream of messages by means of container-provided pooling of message-driven bean
instances.

The following sections provide guidelines on creating message-driven beans:
» Creating the Bean Class Definition

» Configuration

Creating the Bean Class Definition

Unlike session and entity beans, message-driven beans do not have the remote or local
interfaces that define client access. Client components do not locate message-driven beans
and invoke methods directly on them.

Although message-driven beans do not have business methods, they may contain helper
methods that are invoked internally by the onMessage method.

For message-driven beans, the class requirements are:

* The class must implement, directly or indirectly, the
j avax. ej b. MessageDr i venBean interface.

e The class must implement, directly or indirectly, thej avax. ej b. MessageLi st ener
interface.

e The class must be defined as public and must not be defined as abstract or final.

138 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Message-Driven Beans

e Theclassmust have a public constructor that takes no arguments (used by the contai ner
to create instances of the message-driven bean class).

» Theclassmust not definethe f i nal i ze method.

» The class must implement the onMessage method.

» The class must implement one ej bCr eat e method, with no arguments.
e The class must implement one ej bRenove method with no arguments.

The following sections address the various methods in a message-driven bean’s class
definition.

» Using gjbCreate
» Using setMessageDrivenContext
* Using onMessage

e Using gjbRemove

Using ejbCreate

The message-driven bean class defines one ej bQr eat e method whose signature must
follow these rules:

e The method hame must be ej bCr eat e.

* Themethod must be declared as publ i ¢ and must not be declared asfi nal orstati c.
» Thereturn type must bevoi d.

e The method must have no arguments.

e Thet hrows clause must not define any application exceptions.

Using setMessageDrivenContext

The container provides the message-driven bean instance with a
MesssageDri venCont ext . This gives the message-driven bean instance access to the
instance's context maintained by the container.

Using onMessage

The onMessage method has a single argument: the incoming message. The onMessage
method is called by the bean’ s container when amessage has arrived for the bean to service.
This method contains the business |ogic that handles the processing of the message. It isthe
message-driven bean's responsibility to parse the message and perform the necessary
businesslogic.

Chapter 5 Using Message-Driven Beans 139

Developing Message-Driven Beans

The message-driven bean class defines one onMessage method whose signature must
follow these rules:

* Themethod must be declared as publ i ¢ and must not be declared asf i nal orstati c.
» Thereturn type must bevoi d.
» The method must have a single argument of typej avax. j ns. Message.

e Thet hrows clause must not define any application exceptions. Refer to “onMessage
Runtime Exception” on page 144 for semantics on throwing an exception from
onMessage.

The onMessage method is invoked in the scope of atransaction that is determined by the
transaction attribute specified in the deployment descriptor.

NOTE If the bean is specified as using container-managed transaction
demarcation, either the Requi r ed or Not Support transaction attribute
must be specified in its deployment descriptor.

Using ejbRemove

The message-driven bean class defines one ej bRenmove method to free abean whenitisno
longer needed. The signature must follow these rules:

e The method nhame must be ej bRenove.

* Themethod must be declared as publ i ¢ and must not be declared asf i nal orstati c.
» Thereturn type must bevoi d.

e The method must have no arguments.

e Thet hrows clause must not define any application exceptions.

NOTE Y ou cannot assume that the container will always invoke the ej bRenove
method on a message-driven bean instance.

The ej bRenove method is not called if the EJB container crashes, or if an exceptionis
thrown from the instance’ sonMessage method to the container. If the message-driven bean
instance allocates resourcesin the ej bCr eat e method, and/or the onMessage method, and
releases the resourcesin the ej bRenove method, these resources will not be automatically
released. Y our application should provide a mechanism to periodically clean up the

unrel eased resources.

140 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Developing Message-Driven Beans

Configuration

This section addresses the following configuration topics:
» Connection Factory and Destination

* Message-Driven Bean Pool

* Server instance-wide Attributes

» Automatic Reconnection to JM S Provider

Connection Factory and Destination

A message-driven bean isaJMS client. Therefore, the message-driven bean container uses
the IM S service integrated into the Sun Java System Application Server. IMS clients use
JMS Connection Factory- and Destination-administered objects. A IMS Connection
Factory administered object is aresource manager Connection Factory object that is used to
create connections to the JIM S provider.

The ndb- connect i on-f act ory element in the sun- ej b-j ar. xm filefor a
message-driven bean can be used to specify the connection factory used by the container to
create the container connection to the IMS provider. This element can be used to work with
athird-party IM S provider.

If the ndb- connect i on-f act ory element is not specified, a default one created at server
startup is used. This provides connection to the built-in Sun Java System Message Queue
broker on the port that is specified in the j ns- ser vi ce element (if enabled) in the
server. xni file, using the default user name/password (resource principal) of the Sun Java
System Message Queue. Refer to the Sun Java System Message Queue Developer’s Guide
for more information.

Thej ndi - nane element of theej b element insun-ej b-j ar. xm file specifiesthe JNDI
name of the administered object for the IMS Queue or Topic destination that is associated
with the message-driven bean.

Message-Driven Bean Pool

The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The Sun Java System Application Server-specific bean deployment
descriptor contains the elements that define the pool (that is, the bean- pool element):

» steady-pool -size
* resize-quantity

e max- pool -si ze

Chapter5 Using Message-Driven Beans 141

Developing Message-Driven Beans

e pool -idle-tineout-in-seconds

For information on these elements, refer to “Pooling and Caching Elements’ on page 208.

Server instance-wide Attributes

An administrator can control the following server instance-wide message-driven bean
attributes for the ndb- cont ai ner element inthe server. xni file:

« steady-pool -size

e pool-resize-quantity

* max- pool -si ze
 idle-timeout-in-seconds
* log-level

e nonitoring-enabl ed

For further explanation on these attributes, refer to “Pooling and Caching Elements’ on
page 208 and the Sun Java System Application Server Administrator’s Configuration File
Reference.

For information on monitoring message-driven beans, see the Sun Java System Application
Server Administration interface online help and Administration Guide.

NOTE Running monitoring when it is not need may impact performance, so you
may choose to turn monitoring off using the asadmin command or the
Administration interface when it is not in use.

Automatic Reconnection to JMS Provider

When the Sun Java System Application Server is started, for each deployed message-driven
bean, its container keeps a connection to the JIMS provider. When the connection is broken,
the container is not able to receive messages from the JM S provider and, therefore, is
unable to deliver messages to its message-driven bean instances. When the auto
reconnection feature is enabled, the container automatically tries to reconnect to the IMS
provider if the connection is broken.

The nmdb- cont ai ner element intheser ver. xn file contains auto reconnection
properties. By default, r econnect - enabl ed is set to true and

reconnect - del ay- i n- seconds isset to 60 seconds. That is, thereisadelay of 60 seconds
before each attempt to reconnect, and r econnect - max-retri es is set to 60.

The container logs messages for each reconnect attempt.

142 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Restrictions and Optimizations

NOTE Depending on where the message processing stage is, if the connection is
broken, the onMessage method may not be able to complete successfully,
or the transaction may be rolled back due to a JIMS exception. When the
container reestablishes connection to the IM S provider, JIM S message
redelivery semantics apply.

Refer to the Sun Java System Application Server Administrator’s Configuration File
Reference for information on auto reconnect properties of the ndb- cont ai ner element in
theserver. xm file.

Restrictions and Optimizations

This section discusses the foll owing restrictions and performance optimizations that you
should be aware of in devel oping message-driven beans:

e JMSLimitation
e Pool Tuning and Monitoring
» onMessage Runtime Exception

JMS Limitation

The Sun Java System Application Server supports JIM S messaging through a built-in IMS
service provided by Sun Java System Message Queue 3.5, Platform Edition. Asa

standal one product, Sun Java System M essage Queue 3.5 supportsthe IMS 1.1
specification. However, Sun Java System Application Server 7.1 supports the J2EE 1.3
specification, which encompasses only the more limited IMS 1.02b specification. For this
reason, the additional features embodied in IMS 1.1 are not available to applications
running on the Sun Java System Application Server 7.1.

Developers of IM S messaging applications should, therefore, limit IMS client components
that run in a Sun Java System Application Server environment to IMS 1.02b. For more
information, see the Sun Java System Message Queue Developer’s Guide or Release
Notes.

Chapter 5 Using Message-Driven Beans 143

Restrictions and Optimizations

Pool Tuning and Monitoring

The message-driven bean pool isalso a pool of threads, with each message-driven bean
instance in the pool associating with a server session, and each server session associating
with athread. Therefore, alarge pool size a'so means a high number of threads, which will
impact performance and server resources.

When configuring message-driven bean pool properties, you must consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server
resources (threads, memory, and so on), and any concurrency requirements and limitations
from other resources that the message-driven bean may access.

Performance and resource usage tuning should also consider potential IM S provider
properties for the connection factory that is used by the container

(mdb- connect i on-f act or y element in deployment descriptor). For example, the Sun Java
System Message Queue flow control related properties for connection factory should be
tuned in situations where the message incoming rate is much higher than nax- pool - si ze
can handle.

Refer to the Sun Java System Application Server Administration Guide for information on
how to get message-driven bean pool statistics.

onMessage Runtime Exception

M essage-driven beans, like other well-behaved IMS M essagel isteners, should naot, in
general, throw runtime exceptions. If a message-driven bean's onMessage method
encounters a system-level exception or error that does not allow the method to successfully
complete, the Enterprise JavaBeans Specification, v2.0 provides the following guidelines:

» | the bean method encounters a runtime exception or error, it should simply propagate
the error from the bean method to the container.

e |If the bean method performs an operation that resultsin a checked exception that the
bean method cannot recover, the bean method should throw the
j avax. ej b. EJBExcept i on that wraps the original exception.

» Any other unexpected error conditions should be reported using
j avax. ej b. EJBExcepti on (j avax. ej b. EJBExcept i on is asubclass of
j ava. | ang. Runt i neExcepti on).

Under container-managed transaction demarcation, upon receiving a runtime exception
from amessage-driven bean's onMessage method, the container will roll back the
container-started transaction and JM S message will be redelivered. Thisis because the
message delivery itself is part of the container-started transaction. By default, the Sun Java
System Application Server container closes the container's connection to the IM S provider

144 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Sample Message-Driven Bean XML Files

when the first runtime exception is received from a message-driven bean instance's
onMessage method. This avoids potential message redelivery looping and protects server
resources if the message-driven bean's onMessage method continues misbehaving. This
default container behavior can be changed using the cnt - max- r unt i ne- except i ons
property of the mdb- cont ai ner element intheserver. xm file.

The cnt - max- runt i me- except i ons property specifies the maximum number of runtime
exceptions allowed from a message-driven bean's onMessage method before the container
starts to close the container's connection to the IM S provider. By default thisvalueis 1; -1
disables this container protection.

A message-driven bean's onMessage method can use thej avax. j ns. Message
get JVMSRedel i ver ed method to check whether a received message is aredelivered

message.

NOTE Thecnt - max-runt i me- except i ons property may be deprecated in the
future.

Sample Message-Driven Bean XML Files

This section includes the following samplefiles:

e Sample gb-jar.xml File

» Sample sun-gjb-jar.xml File

For information on the elements associated with message-driven beans, refer to “Elements

in the sun-gjb-jar.xml File” on page 181 and the Sun Java System Application Server
Developer’s Guide.

Sample ejb-jar.xml File

<?xnm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE €j b-jar PUBLIC '-//Sun Mcrosystens, Inc.//DID Enterprise JavaBeans 2.0//EN
"http://java.sun.conidtd/ejb-jar_2 0.dtd >

<ejb-jar>
<enterpri se- beans>
<message- dri ven>
<ej b- nane>MessageBean</ ej b- nane>
<ej b- cl ass>sanpl es. ndb. ej b. MessageBean</ gj b- cl ass>
<transact i on-type>Cont ai ner </transact i on-type>

Chapter 5 Using Message-Driven Beans 145

Sample Message-Driven Bean XML Files

<message- dri ven-desti nati on>
<desti nation-type>j avax. j ms. Qleue</ desti nati on-type>
</ message-dri ven-desti nati on>
<resource-ref>
<r es-r ef - nane>j ns/ QueueConnect i onFact or y</r es- r ef - name>
<res-type>j avax. j ns. QueueConnecti onFact ory</res-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
</ message- dri ven>
</ enterprise-beans>
<assenbl y- descri pt or>
<cont ai ner -t r ansact i on>
<net hod>
<ej b- nane>MessageBean</ ej b- nanme>
<net hod- i nt f >Bean</ net hod- i nt f >
<net hod- nane>onMessage</ net hod- nane>
<net hod- par ans>
<net hod- par an®j avax. j ns. Message</ net hod- par an»
</ et hod- par ans>
</ et hod>
<trans-attribut e>Not Supported</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or
</ejb-jar>

Sample sun-ejb-jar.xml File

For information on these elements, refer to “ Elements in the sun-gjb-jar.xml File” on
page 181.

<?xnm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE sun-gj b-jar PUBLIC '-//Sun Mcrosystens, Inc.//DID Sun ONE Application Server
7.1 EJB 2.0//EN
"http://ww. sun. cond sof t war e/ sunone/ appser ver/ dt ds/ sun-e¢j b-jar_2 0-0.dtd" >

<sun-ej b-jar>

<enterpri se- beans>

<ej b>
<ej b- nane>MessageBean</ ej b- nane>
<j ndi - name>j ns/ sanpl e/ Queue</j ndi - nane>
<resource-ref >
<r es- r ef - name>j ns/ QueueConnect i onFact or y</ r es- r ef - nane>
<j ndi - nanme>j ns/ sanpl e/ QueueConnect i onFact or y</ j ndi - nane>
<def aul t - resour ce- pri nci pal >

146 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Sample Message-Driven Bean XML Files

<nane>guest </ name>
<passwor d>guest </ passwor d>
</ def aul t - resour ce- pri nci pal >
</resource-ref>
<ndb- connect i on- f act or y>
<j ndi - nanme>j ns/ sanpl e/ QueueConnect i onFact or y</ j ndi - nane>
<def aul t - resour ce- pri nci pal >
<nane>guest </ name>
<passwor d>guest </ passwor d>
</ def aul t - resour ce- pri nci pal >
</ mdb- connecti on-f act ory>
</ ej b>
</ enterprise-beans>
</sun-ej b-jar>

Chapter 5 Using Message-Driven Beans 147

Sample Message-Driven Bean XML Files

148 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Chapter 6

Handling Transactions with
Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans (EJBS)
programming model for Sun Java System Application Server.

NOTE If you are unfamiliar with transaction handling in the EJB technology, refer
to the Java Software tutorials:

http://java. sun. conij 2ee/ docs. ht m

Extensive information on EJB transaction support is contained in Chapter
17, “ Support for Transactions,” of the Enterprise JavaBeans Specification,
v2.0.

Overview materia on the Sun Java System Application Server is contained
in “ Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

This section addresses the following topics:
e JTA and JTS Transaction Support

e Using Container-Managed Transactions
» Using Bean-Managed Transactions

» Setting Transaction Timeouts

» Handling Isolation Levels

149

http://java.sun.com/j2ee/docs.html

JTA and JTS Transaction Support

JTA and JTS Transaction Support
J2EE includes support for distributed transactions through two specifications:
e Java™ Transaction API (JTA)
e Java™ Transaction Service (JTS)

The JTA isahigh-level, implementati on-independent protocol API that allows applications
and application servers to access transactions.

JT'S specifies the implementation of a transaction manager which supports the JTA and
implements the Java mapping of the OMG Object Transaction Service (OTS) 1.1
specification at the level below the API. JTS propagates transactions using the Internet
Inter-ORB Protocol (110P).

The current transaction manager implementation supports JTS and the JTA. The EJB
container itself uses the Java Transaction API interface to interact with JTS.

The J2EE transaction manager controls all EJB transactions, except for bean-managed Java
Database Connectivity (JBDC) transactions, and allows an enterprise bean to update
multiple databases within a transaction.

About Transaction Handling

As a developer, you can write an application that updates data in multiple databases which
may be distributed across multiple sites. The site may use EJB servers from different
vendors.

This section provides overview information on the following topics:
* Flat Transactions

* Global and Local Transactions

* Demarcation Models

e Commit Options

e Administration and Monitoring

150 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Transaction Handling

Flat Transactions

The Enterprise JavaBeans Specification, v2.0 requires support for flat (as opposed to
nested) transactions. In aflat transaction, each transaction is decoupled from and
independent of other transactions in the system. Y ou cannot start another transaction in the
same thread until the current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial
database systems. Although nested transactions offer a finer granularity of control over
transactions, they are supported by far fewer commercial database systems.

Global and Local Transactions

Understanding the distinction between global and local transactionsis crucial in
understanding the Sun Java System Application Server support for transactions.

» Global transactions—Transactions that are managed and coordinated by a resource
manager, and can span multiple databases and processes. The resource manager uses
the XA two-phase commit protocol to interact with the Enterprise Information System
(EIS) or database.

» Local transactions—Transactions that are native to asingle EIS or database, use
non-XA data sources, and are restricted within asingle process. Local transactions do
not involve multiple data sources.

Both local and global transactions are demarcated using the
j avax. t ransacti on. User Tr ansact i on interface, which the client must use. Local
transactions bypass the transaction manager and are faster.

Initially, all transactions are local. If anon-XA data source connection is the first resource
connection enlisted in atransaction scope, it will become a global transaction when a
(second) XA data source connection joinsit. If asecond non-XA data source connection
attemptsto join, an exception is thrown.

The Sun Java System Application Server operatesin either global or local transaction
mode, but the two modes cannot be mixed in the same transaction.

NOTE If your application uses global transactions, you must configure and enable
the corresponding Sun Java System Application Server resource
managers. For more information, see the Sun Java System Application
Server Administration interface online help and the and Administration
Guide.

Chapter 6 Handling Transactions with Enterprise Beans 151

About Transaction Handling

Demarcation Models

Asadeveloper, you can choose between using programmeatic transaction demarcation in the
EJB code (bean-managed) or declarative demarcation (container-managed). Regardl ess of
whether an enterprise bean uses bean-managed or contai ner-managed transaction
demarcation, the burden of implementing transaction management is on the EJB container
and the Sun Java System Application Server. The container and the server implement the
necessary low-level transaction protocols, such as the two-phase commit protocol between
atransaction manager and a dustbowls system or Sun Java System Message Queue,
transaction context propagation, and distributed two-phase commit.

These demarcation models are addressed in the following sections:
e Container-Managed Transactions

e Bean-Managed Transactions

Container-Managed Transactions

One primary advantage of enterprise beansis the support they provide for
container-managed transactions, also known as declarative transactions. In an enterprise
bean with container-managed transactions, the EJB container sets the boundaries of the
transactions.

NOTE Y ou can use contai ner-managed transactions with any type of enterprise
bean (session, entity, or message-driven), but an entity bean can only use
container-managed transactions.

Container-managed transactions simplify development because the EJB code does not
explicitly mark the transaction's boundaries. That is, the code does not include statements
that begin and end the transaction. The container is responsible for:

» Demarcating and transparently propagating the transactional context

* Inconjunction with a transaction manager, ensuring that all participantsin the
transaction see a consistent outcome

Bean-Managed Transactions

The EJB specification supports bean-managed transaction demarcation, also known as
programmer-demarcated transactions, using j avax. t r ansact i on. User Tr ansact i on.
With bean-managed transactions, you must perform a Java Naming and Directory Interface
(JNDI) lookup to obtain a User Tr ansact i on object.

152 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

About Transaction Handling

NOTE Y ou can use bean-managed transactions with session or message-driven
beans, but an entity bean must use container-managed transactions.

There are two types of bean-managed transactions:

» JDBC type—Y ou delimit JDBC transactions with the commit and rollback methods of
the connection interface.

» JTA type—You invoke the begin, commit, and rollback methods of the
UserTransaction interface to demarcate JTA transactions.

Commit Options

The EBJ protocol is designed to give the container the flexibility to select the disposition of
theinstance state at the time a transaction is committed. This allows the container to best
manage caching an entity object’s state and associating an entity object identity with the
EJB instances.

There are three commit-time options:

» Option A—The container caches aready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent
storage.

In this case, the container does not have to synchronize the instance’ s state from the
persistent storage at the beginning of the next transaction.

NOTE Commit option A is not supported for Sun Java System Application Server
7.1

e Option B—The container caches a ready instance between transactions, but the
container does not ensure that the instance has exclusive access to the state of the object
in persistent storage. Thisis the default.

In this case, the container must synchronize the instance’ s state by invoking ej bLoad
from persistent storage at the beginning of the next transaction.

e Option C—The container does not cache a ready instance between transactions, but
instead returns the instance to the pool of available instances after atransaction has
compl eted.

Chapter 6 Handling Transactions with Enterprise Beans 153

About Transaction Handling

Thelife cycle for every business method invocation under commit option C looks like
this:

ej bActivate->
ej bLoad ->
busi ness nethod ->
ejbStore ->
ej bPassi vate

If there is more than one transactional client concurrently accessing the same entity
EJBLj ect , thefirst client gets the ready instance and subsegquent concurrent clients
get new instances from the poal.

The Sun Java System Application Server deployment descriptor has an element,
commi t - opt i on, that specifies the commit option to be used. Based on the specified
commit option, the appropriate handler isinstantiated.

NOTE It isassumed that if commit option A is used, the developer is responsible
for ensuring that only this application is updating the database. In other
words, thisis not the container's responsibility.

Administration and Monitoring

An administrator can control the following instance-wide transaction service attributes for
thetransacti on- servi ce element intheserver. xni file:

* autonatic-recovery
* timeout-in-seconds
e tx-log-directory

* heuristic-decision
* keypoint-interval

* log-level

* nmonitoring-enabl ed

For further explanation on these attributes, refer to the Sun Java System Application Server
Administrator’s Configuration File Reference.

154 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Transactions

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions
completed/rolled back/recovered since server startup, and transactions presently being
processed.

For information on administering and monitoring transactions, see the Sun Java System
Application Server Administration interface online help and the Sun Java System
Application Server Administration Guide.

Using Container-Managed Transactions

Typically, the container begins atransaction immediately before an EJB method starts, and
commits the transaction just before the method exits. Each method can be associated with a
single transaction.

NOTE Nested or multiple transactions are not allowed within a method.

Container-managed transactions do not require all methods to be associated with
transactions. When deploying an enterprise bean, you specify which of the bean's methods
are associated with transactions by setting the transaction attributes.

Although beans with container-managed transactions require less coding, they have one
limitation:

When amethod is executing, it can only be associated with either a single transaction
or no transaction at al.

If this limitation will make coding your bean difficult, bean-managed transactions may be
your best choice.

When acommit occurs, the transaction signals the container that the bean has completed its
useful work and tells the container to synchronize its state with the underlying data source.
The container permits the transaction to complete and then frees the bean. Result sets
associated with a committed transaction are no longer valid. Subsequent requests for the
same bean cause the container to issue aload to synchronize state with the underlying data
source.

NOTE Transactionsinitiated by the container are implicitly committed.

Any participant can roll back atransaction.

Chapter 6 Handling Transactions with Enterprise Beans 155

Using Container-Managed Transactions

The following sections are related to devel oping enterprise beans with container-managed
transactions:

» Specifying Transaction Attributes
* Ralling Back a Container-Managed Transaction
* Synchronizing a Session Bean's Instance Variables

e Methods Not Allowed in Container-Managed Transactions

Specifying Transaction Attributes

A transaction attribute is a parameter that controls the scope of a transaction.

Because transaction attributes are stored in the deployment descriptor, they can be changed
during several phases of J2EE application development: at EJB creation, at assembly
(packaging), or at deployment. However, as an EJB developer, it is your responsibility to
specify the attributes when creating the EJB. The attributes should be modified only when
you (or whoever is assembling) are assembling components into larger applications.

NOTE Do not expect the person who is deploying the J2EE application to specify
the transaction attributes.

Y ou can specify the transaction attributes for the entire enterprise bean or for individual
methods. If you've specified one attribute for a method and another for the bean, the
attribute for the method takes precedence.

TIP If you're unsure about how to set up transactions in the EJB’ s deployment
descriptor, specify contai ner-managed transactions. Then, set the Requi r ed
transaction attribute for the entire enterprise bean. This approach will work
most of the time.

For more information, on the EJB deployment descriptor file, refer to “ Creating
Deployment Descriptors’ on page 174.

This section addresses the following topics:
» Differing Attribute Requirements
o Attribute Values

156 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Transactions

Differing Attribute Requirements

When specifying attributes for individual methods, the requirements differ with the type of
bean.

» Session beans—Need the attributes defined for business methods, but do not allow
them for the create methods.

» Entity beans—Require transaction attributes for the business, create, remove, and
finder methods.

* Message-driven beans—Require transaction attributes (either Requi r ed or
Not Suppor t ed) for the onMessage method.

Attribute Values
A transaction attribute may have one of the following values:

e Required

* RequiresNew
* Mandatory

* NotSupported

e Supports
* Never
Required

If the client is running within atransaction and invokes the enterprise bean's method, the
method executes within the client's transaction. If the client is not associated with a
transaction, the container starts a new transaction before running the method.

TIP The Requi r ed attribute will work for most transactions. Therefore, you
may want to use it as a default, at least in the early phases of development.
Because transaction attributes are declarative, you can easily change them
at alater time.

RequiresNew

If the client is running within atransaction and invokes the EJB's method, the container
takes the following steps:

1. Suspendsthe client's transaction.

2. Starts anew transaction.

Chapter 6 Handling Transactions with Enterprise Beans 157

Using Container-Managed Transactions

3. Delegatesthe call to the method.
4. Resumesthe client's transaction after the method compl etes.

If the client is not associated with atransaction, the container starts a new transaction before
running the method.

Y ou should use the Requi r esNewattribute when you want to ensure that the method always
runs within a new transaction.

Mandatory

If the client is running within atransaction and invokes the EJB's method, the method
executes within the client's transaction. If the client is not associated with a transaction, the
container throws aTr ansact i onRequi r edExcept i on.

Use the Mandat or y attribute if the EJB's method must use the transaction of the client.

NotSupported

If the client is running within atransaction and invokes the EJB's method, the container
suspends the client's transaction before invoking the method. After the method has
completed, the container resumes the client's transaction.

If the client is not associated with a transaction, the container does not start a new
transaction before running the method.

Supports

If the client is running within atransaction and invokes the EJB's method, the method
executes within the client's transaction. If the client is not associated with atransaction, the
container does not start a new transaction before running the method.

NOTE Because the transactional behavior of the method may vary, you should use
the Suppor t s attribute with caution.

Never

If the client is running within atransaction and invokes the enterprise bean's method, the
container throws a Renot eExcept i on. If the client is not associated with atransaction, the
container does not start a new transaction before running the method.

Use the Not Suppor t ed attribute for methods that don't need transactions. Because
transactions involve overhead, this attribute may improve performance.

Thefollowing table summarizesthe effects of the transaction attributes. Transactions can be
T1, T2, or None. (Both T1 and T2 transactions are controlled by the container.)

158 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Container-Managed Transactions

T1 transaction—Is associated with the client that calls amethod in the enterprise bean.
In most cases, the client is another enterprise bean.

T2 transaction—Is started by the container, just before the method executes.

None—In the third column, the word None means that the business method does not
execute within atransaction controlled by the container. However, the database callsin
such a business method might be controlled by the transaction manager of the database.

Table 6-1 Transaction Attributes and Scope

Transaction Attribute Client's Transaction Business Method's Transaction
Requi r ed None T2
T1 T1
Requi r esNew None T2
T1 T2
Mandat ory None Error
T1 T1
Not Support ed None None
T1 None
Supports None None
T1 T1
Never None None
Ti Error

Rolling Back a Container-Managed Transaction

There are two waysto roll back a container-managed transaction:

First, if a system exception is thrown, the container automatically rolls back the

transaction.

Second, by invoking the set Rol | backOnl y method of the EJBCont ext interface, the
bean method instructs the container to roll back the transaction. If the bean throws an
application exception, the rollback is not automatic, but may be initiated by a call to
set Rol | backOnl y.

Chapter 6 Handling Transactions with Enterprise Beans 159

Using Container-Managed Transactions

When the container rolls back atransaction, it always undoes the changes to data made by
SQL calls within the transaction. However, only in entity beans will the container undo
changes made to instance variables. (It does so by automatically invoking the entity bean's
ej bLoad method, which loads the instance variables from the database.)

A session bean must explicitly reset any instance variables changed within the transaction
when arollback occurs. The easiest way to reset a session bean's instance variablesis by
implementing the Sessi onSynchr oni zat i on interface.

Synchronizing a Session Bean's Instance
Variables

The Sessi onSynchr oni zat i on interface, which is optional in session beans, allows you
to synchronize the instance variables with their corresponding values in the database. The
container invokes the Sessi onSynchr oni zat i on methods—af t er Begi n,

bef or eConpl et i on, and af t er Conpl et i on—at each of the main stages of a transaction.

» afterBegi n method—Informs the instance that a new transaction has begun. The
container invokes af t er Begi n immediately before it invokes the business method.
The af t er Begi n method is agood place to load the instance variables from the
database.

* bef oreConpl et i on method—The container invokes bef or eConpl et i on method
after the business method has finished, but just before the transaction commits. The
bef or eConpl et i on method is the last opportunity for the session bean to roll back the
transaction (by calling set Rol | backOnl y).

If it hasn't already updated the database with the values of the instance variables, the
session bean may do so in the bef or eConpl et i on method.

e afterConpl eti on method—Indicates that the transaction has completed. It hasa
single boolean parameter, whose value istrue if the transaction was committed, and
falseif it wasrolled back.

If arollback occurred, the session bean can refresh its instance variables from the
database in the af t er Conpl et i on method.

160 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Bean-Managed Transactions

Methods Not Allowed in Container-Managed
Transactions

For container-managed transactions, you should not invoke any method that might interfere
with the transaction boundaries set by the container. Prohibited methods are:

e Thecomit,set Aut oConmit, androl | back methods of j ava. sgl . Connect i on
e Theget User Transact i on method of j avax. ej b. EJBCont ext
* Any method of j avax. t ransact i on. User Tr ansact i on

Y ou may, however, use these methods to set boundaries in bean-managed transactions.

Using Bean-Managed Transactions

In a bean-managed transaction, the code in the session or message-driven bean explicitly
marks the boundaries of the transaction. By moving transaction management to the bean
level, you gain the ability to place all the bean’s activities—even those not directly tied to
database access—under the same transaction control asyour database calls. This guarantees
that all application parts controlled by a bean run as part of the same transaction.

In afailure situation, either everything the bean undertakes is committed, or everything is
rolled back.

The following sections are related to devel oping enterprise beans with bean-managed
transactions:

» Choosing the Type of Transactions
* Returning Without Committing
* Methods Not Allowed in Bean-Managed Transactions

Choosing the Type of Transactions

When coding a bean-managed transaction for session or message-driven beans, you must
decide whether to use JDBC or JTA transactions.

NOTE In a session bean with bean-managed transactions, it is possible to mix
JDBC and JTA transactions. However, this could make your code difficult
to debug and maintain.

Chapter 6 Handling Transactions with Enterprise Beans 161

Using Bean-Managed Transactions

The following sections discuss both types of transactions:
» JDBC Transactions

e JTA Transactions

JDBC Transactions

JDBC transaction is controlled by the transaction manager of the database. Y ou may want
to use JDBC transactions when wrapping legacy code inside a session bean.

To code a JDBC transaction, you invoke the commit and rollback methods of the

j ava. sgl . Connect i on interface. The beginning of atransaction isimplicit. A transaction
begins with the first SQL statement that follows the most recent commit, rollback, or
connect statement. (This rule is generaly true, but may vary with database vendor.)

For additional information on JDBC, refer to the Sun Java System Application Server
Developer’s Guide to J2EE Services and APIs.

JTA Transactions

JTA allowsyou to demarcate transactions in amanner that isindependent of the transaction
manager implementation. The J2EE SDK implements the transaction manager with the
JTS. But your code doesn't call the JTS methods directly. Instead, it invokes the JTA
methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the J2EE transaction manager. Y ou may want to use a
JT A transaction because it can span updates to multiple databases from different vendors. A
particular database’ s transaction manager may not work with heterogeneous databases.

The J2EE transaction manager does have one limitation—it does not support nested
transactions. In other words, it cannot start a transaction for an instance until the previous
transaction has ended.

For additional information on the JTA, refer to the Sun Java System Application Server
Developer’s Guide to J2EE Servicesand APIs.

Returning Without Committing

A statel ess session bean with bean-managed transactions that has begun atransactionin a
business method must commit or roll back a transaction before returning. However, a
stateful session bean does not have this restriction. In a stateful session bean with a JTA
transaction—The association between the bean instance and the transaction is retained
across multiple client calls.

162 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Setting Transaction Timeouts

Methods Not Allowed in Bean-Managed
Transactions

For bean-managed transactions, do not invoke the get Rol | backOnl y and
set Rol | backOnl y methods of the EJBCont ext interface. These methods should be used
only in container-managed transactions.

NOTE For bean-managed transactions, invoke the get St at us and r ol | back
methods of the User Tr ansact i on interface.

Setting Transaction Timeouts

For container-managed transactions, you control the transaction timeout interval by setting
the value of thet i meout - i n- seconds property intheser ver. xn file. For example, you
would set the timeout value to 5 seconds as follows:

timeout -i n- seconds=5

With this setting, if the transaction has not completed within 5 seconds, the EJB container
rolls the transaction back.

NOTE Only enterprise beans using contai ner-managed transactions are affected by
theti meout - i n- seconds property. For enterprise beans using
bean-managed JTA transactions, you invoke the
set Transact i onTi neout method of the User Tr ansact i on interface.

Handling Isolation Levels

Transactions not only ensure the full completion (or rollback) of the statements that they
enclose, but also isolate the data modified by the statements. The isolation level describes
the degree to which data being updated is visible to other transactions.

If the transaction allows other programs to read uncommitted data, performance may
improve because the other programs don't have to wait until the transaction ends. But this
may also cause a problem—if the transaction subsequently rolls back, another program
might read the wrong data.

Chapter 6 Handling Transactions with Enterprise Beans 163

Handling Isolation Levels

For entity beans with bean-managed persistence and for all session beans, you can set the
isolation level programmatically with the API provided by the underlying database. A
database, for example, might allow you to permit uncommitted reads by invoking the

set Transact i onl sol ati on method.

For entity beans that use contai ner-managed persistence, you can use the consi st ency
element in the sun- cnp- mappi ng. xn fileto set the isolation level.

CAUTION Do not change the isolation level in the middle of atransaction. Usualy,
such a change causes the database software to issue an implicit commit.
Because the isolation levels offered by database vendors may vary, you
should check the database documentation for more information. Isolation
levels are not standardized for the J2EE platform.

164 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Chapter 7

Developing Secure Enterprise Beans

This section describes how security management worksin the EJB architecture and
provides guidelines for devel oping secure enterprise beans for the Sun Java System
Application Server environment.

NOTE If you are unfamiliar with the EJB technology, refer to the Java Software
tutorias:

http://java. sun. conij 2ee/ docs. ht m

Extensive information on EJB security is contained in Chapter 21,
“Security Management,” of the Enterprise JavaBeans Specification, v2.0.

General information on application security is contained in the Sun Java
System Application Server Developer’s Guide.

This section addresses the following topics:

e About Secure Enterprise Beans

e Defining Security Roles

» Declaring Method Permissions

» Declaring Security Role References

» Specifying Security Identities

e Using Programmatic Security

» Handling Unprotected EJB-Tier Resources

General information on application security is contained in the Sun Java System Application
Server Developer’s Guide.

165

http://java.sun.com/j2ee/docs.html

About Secure Enterprise Beans

About Secure Enterprise Beans

Your main role as an EJB developer isto declare the security requirements of your
applications in such away that these requirements can be satisfied during application
deployment. In most cases, the EJB’ s business methods should not contain any
security-related logic.

The following topics are addressed in this section:
* Authorization and Authentication

e Security Roles

* Deployment

Authorization and Authentication

Authorization provides controlled access to protected resources; it is based on identification
and authentication. Identification is the process that enables recognition of an entity by a
system. Authentication is the process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resourcesin a
system.

Enterprise beans can be configured to permit access only to users with the appropriate
authorization level. Thisis done by using the Sun Java System Application Server
Administration interface to generate the deployment descriptor for the application EAR and
EJB JAR files.

Security Roles

A security role is an application-specific logical grouping of users, classified by common
trait, such as a customer profile or job title. When an application is deployed, roles are
mapped to security identities, such as principals (identities assigned to users as a result of
authentication) or groups, in the operational environment. Based on this, a user with a
certain security role has associated access rights to an enterprise bean. The link is the actual
name of the security role that is being referenced.

A group also represents a category of users, but its scope is different from the scope of a
role.

e AroleisaJ2EE application-specific abstraction.

e A groupisaset of environment-specific users from the current realm. Group
membership is determined by the underlying realm implementation.

166 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Defining Security Roles

NOTE When defining method restrictions and role mappings, it isa common error
to confuse realm groups and J2EE application roles. Such confusion can
lead to unintended access consegquences or inoperable application
configurations. For information on realms, refer to the Sun Java System
Application Server Developer’s Guide.

Deployment

The security role reference defines a mapping between the name of arolethat iscalled from
an ENTERPRISE BEAN usingi sCal | er I nRol e (String name) and the name of a security role
that has been defined for the application. This security role reference allows an enterprise
bean to reference an existing security role.

When an application is deployed, the deployer maps the roles to the security identities that
exist in the operational environment. When you are devel oping enterprise beans, you should
know the roles of your users, but you probably won't know exactly who the users will be.
That's taken care of in the J2EE security architecture. After your component has been
deployed, the system administrator maps the roles to the J2EE users (or groups) of the
default realm (usually the file realm).

Defining Security Roles

To create arole for a J2EE application, you declare it for the EJB JAR file or for the WAR
file that is contained in the application. The security roles defined by thesecurity-rol e
elements are scoped to the EJB JAR file level and apply to all enterprise beansin the EJB
JAR files.

Example

Thefollowing example of a security role definition in adeployment descriptor specifiestwo
role-name elements, enpl oyee and adni n.

<assenbl y- descri pt or>
<security-rol e>

<descri ption>
This role includes the enpl oyees of the enterprise who
are allowed to access the enpl oyee self service
application. This role is allowed to access only
her/hi's information

</ desci pti on>

Chapter 7 Developing Secure Enterprise Beans 167

Declaring Method Permissions

<r ol e- nane>enpl oyee<r ol e- nane>
</security-rol e>
<security-rol e>
<descri pti on>
This role shoul d be assigned to the personnel
aut hori zed to performadm nistrative functions
for the enpl oyee self service application. This
rol e does not have direct access to
sensi tive enpl oyee and payroll information
</ desci pti on>
<r ol e- nane>adni n<r ol e- nanme>
</security-rol e>

</ assenbl y- descri pt or >

Declaring Method Permissions

Method permissions indicate which roles are allowed to invoke which methods. The
application assembler declares the method permission relationships in the deployment

descriptor using the method permission elements as follows:

e Each et hod- per ni ssi on element includes alist of one or more security rolesand a

list of one or more methods.

All listed security roles are allowed to invoke al listed methods. Each security rolein
thelist isidentified by ther ol e- nane element, and each method (or set of methods, as
described below) isidentified by the method element. An optional description can be
associated with anet hod- per nmi ssi on element using the description element.

» The method permissions relationship is defined as the union of all method permissions

defined in the individual method permission elements.

* A security role or a method may appear in multiple et hod- per m ssi on elements.

Example

The following deployment descriptor example illustrates how security roles are assigned
method permissions in the deployment descriptor. These are converted into security

elements at deployment.

<net hod- per m ssi on>
<r ol e- nane>enpl oyee</ r ol e- nane>

<net hod>
<ej b- nane>Enpl oyeeSer vi ce</ ej b- nane>

168 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Declaring Security Role References

<net hod- nane>* </ net hod- nane>
</ et hod>
</ met hod- per ni ssi on>

<net hod- per m ssi on>
<r ol e- nane>enpl oyee</ r ol e- nane>
<net hod>
<ej b- nane>Aar dvar kPayr ol | </ e] b- nane>
<net hod- nane>f i ndByPr i mar yKey</ net hod- nane>
</ met hod>
<net hod>
<ej b- nanme>Aar dvar kPayr ol | </ ej b- nane>
<net hod- nane>get Enpl oyeel nf o</ met hod- name>
</ met hod>
<net hod>
<ej b- nane>Aar dvar kPayr ol | </ e b- nane>
<net hod- nane>updat eEnpl oyeel nf o</ net hod- nanme>
</ met hod
</ met hod- per ni ssi on>

Declaring Security Role References

Asthe EJB developer, you are responsible for declaring all security role names used in the
enterprisebeaninthesecuri ty-rol e-ref elementsof the deployment descriptor for roles
which are used programmatically from within the respective enterprise beans.

» Theapplication assembler is responsible for linking all security role references
declared inthe securi ty-rol e-ref elementsto the security roles defined in the
security-rol e elements.

» The application assembler links each security role reference to a security role using the
rol e-1ink element.

NOTE Ther ol e-1i nk element value must be one of the security role names
definedinasecurity-rol e element.

Example

The following deployment descriptor example shows how to link the security role reference
named payr ol | to the security role named payr ol | - depar t ment .

Chapter 7 Developing Secure Enterprise Beans 169

Specifying Security Identities

<enterpri se- beans>
<entity>
<ej b- nane>Aar dvar kPayr ol | </ e] b- nane>
<ej b- cl ass>com aar dvar k. payrol | . Payr ol | Bean</ ej b- cl ass>

<security-rol e-ref>

<description> This rol e should be assigned to the payrol
department's enpl oyees. Menbers of this role have access to
anyone's payroll record. The role has been linked to the
payrol | -departnent role.

</ descri ption>

<rol e- nane>payr ol | </ r ol e- name>

<rol e-link>payrol | -departnent</rol e-1ink>
</security-role-ref>

</entity>
</ enterprise-beans>

This role should be assigned to the payroll department’s employees. Members of thisrole
have access to anyone's payroll record. The role has been linked to the
payr ol | - depart nent role.

Further information on security roles can be found in the Sun Java System Application
Server Developer’s Guide. More information on EJB access control configuration can be
found in the Enterprise JavaBeans Specification, v2.0.

Specifying Security Identities

170

Optionally, the EJB assembler can specify whether the caller’ sidentity should be used for
executing the EJB methods or whether a specific run-asidentity should be used. The
security-identity element in the deployment descriptor is used for this purpose. The
value of thesecurity-identity elementisuse-cal l er-identity orrun-as.

Unless specified, the caller identity is used by default.

The run-as Identity

The run-asidentity establishes the identity the enterprise bean will use when it makes calls.
It does not affect the identities of its callers, which are the identities tested for permission to
access the methods of the enterprise bean.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Using Programmatic Security

The EJB assembler can usether un- as element to define arun-as identity for an enterprise
bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a
whole, that is, to all methods of the EJB’s home and component interface, or to the
onMessage method of a message-driven bean, and all internal methods of the enterprise
bean that might, in turn, be called.

Because the assembl er does not generally know the security environment of the operational
environment, the run-as identity is designated by alogical role-name which corresponds to
one of the security roles defined in the deployment descriptor. The deployer must then
assign a security principal (defined in the operational environment) to be used as the
principal for the run-as identity. The security principal should be a principal that has been
assigned to the security role as specified by ther ol e- nane element.

Using Programmatic Security

In general, security management should be enforced by the container in amanner that is
transparent to the EJB’ s business methods.

NOTE Enterprise beans can use programmatic login just as servlets do. For more
information, see the Sun Java System Application Server Developer’s
Guide.

Programmatic security in the EJB tier consists of the get Cal | er Pri nci pal and the

i sCal | er I nRol e methods. Y ou can use the get Cal | er Pri nci pal method to determine
the caller of the enterprise bean, and thei sCal | er | nRol e method to determine the caller's
role.

Theget Cal | er Pri nci pal method of the EJBCont ext interface returns the

java. security. Principal objectthat identifiesthe caller of the enterprise bean. (In this
case, aprincipal isthe sameasauser.) In the following example, the get User method of an
enterprise bean returns the name of the J2EE user that invoked it:

public String getUser()
{

}

Y ou can determine whether an EJB's caller belongs to a particular role by invoking the
i sCal | er I nRol e method:

return context.getCallerPrincipal ().getNane();

bool ean result = context.isCallerlnRol e("Customer");

Chapter 7 Developing Secure Enterprise Beans 171

Handling Unprotected EJB-Tier Resources

For details on how to implement programmatic security, refer to Chapter 21, Security
Management,” of the Enterprise JavaBeans Specification, v2.0.

Handling Unprotected EJB-Tier Resources

172

All users have the anonymous role. By default, the value of the anonymous roleis
ANYONE, which is configurableintheserver. xm file. So, if amethod permission
specifiesthat therolerequired is ANY ONE (or whatever the anonymousroleis set to), then
any user can access this method.

NOTE If amethod permission covering a method does not exist, the method is
accessibleto al.

If amethod permission exists, it is always enforced. For example, if amethod permissionis
set so that the updat eEnpl oyeel nf o method can only be accessed by the enpl oyee role,
then it is never possible to access this method without role enpl oyee. If the enpl oyee role
is not mapped to any user or group, no one will be able to invoke the

updat eEnpl oyeel nf o method.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Chapter 8

Assembling and Deploying Enterprise
Beans

This section describes how enterprise beans are assembled and deployed in the Sun Java
System Application Server environment and provides information on the elements and
subelements used to create the EJB XML files.

NOTE For general assembly and deployment information, see the Sun Java
System Application Server Developer’s Guide.Y ou should already be
familiar with that deployment material before proceeding with EJB
assembly.

This section contains the following topics:

* EJB Structure

e Creating Deployment Descriptors

» Deploying Enterprise Beans

» Thesun-gb-jar_2 0-0.dtd File Structure
» Elementsin the sun-gjb-jar.xml File

* Sample EJB XML Files

An alphabetical list of all EJB-related elementsis contained in “ Elements Listings’ on
page 231.

173

EJB Structure

EJB Structure

The EJB Java ARchive (JAR) fileisthe standard format for assembling enterprise beans.
This file contains the bean classes (home, remote, local, and implementation), all the utility
classes, and the deployment descriptors (ej b-j ar. xm and sun-ej b-j ar. xmi).

An EJB JAR file produced by a developer contains one or more enterprise beans and
typically does not contain assembly instructions. An EJB JAR file produced by an
assembler contains one or more enterprise beans plus application assembly instructions
describing how the enterprise beans are combined into a single application deployment unit.

An EJB JAR file can stand alone without being part of an Enterprise ARchive (EAR) file,
or be part of an EAR file.

Sample application files are located in install_root/ sanpl es/ .

Creating Deployment Descriptors

A J2EE module is a collection of one or more J2EE components of the same container type
with two deployment descriptors of that type. One descriptor is J2EE standard, the other is
specific to Sun Java System Application Server. For enterprise beans, two deployment
descriptor files apply:

e ejb-jar.xn

A J2EE standard file, described in the Enterprise JavaBeans Specification, v2.0.
e sun-ejb-jar.xm

A Sun Java System Application Server-specific file described in this chapter.
* sun-cnp- mappi ngs. xm

A Sun Java System Application Server-specific file used if the deployed bean uses
container-managed persistence.

NOTE For information on the XML file associated with container-managed
persistence, refer to “ Elements in the sun-cmp-mappings.xml File” on
page 118.

174 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Deploying Enterprise Beans

The easiest way to create the deployment descriptor filesisto deploy an EJB module using
the Administration interface or Sun ONE Studio 5 IDE. For more information, see the Sun
Java System Application Server Developer’s Guide. For example EJB XML files, see
“Sample EJB XML Files” on page 217.

After you have created these files, you can edit them using the Sun ONE Studio 5 IDE or a
combination of an editor and command line utilities such as Ant to reassembl e and redeploy
the updated deployment descriptor information.

NOTE Y ou can create the deployment descriptor manually if you prefer.

The J2EE standard deployment descriptors are described in the 1.3 J2EE Specification. For
more information on EJB deployment descriptors, see Chapter 22 in the Enterprise
JavaBeans Specification, v2.0. Our sample applications develop some ANT targets that
help in assembly and deployment. Refer to the ANT information in the Sun Java System
Application Server Developer’s Guide.

Deploying Enterprise Beans

When you deploy or undeploy an enterprise bean, you do not need to restart the server.
When you redeploy an enterprise bean, you do not need to restart the server unless you are
changing the bean’ s deployment settings.

NOTE Stubs and skeletons are generated during deployment. Y ou can retrieve the
client JAR file with the stubs and skeletons for use with arich client.

This section addresses the following topics:

e Using the Administration Interface

» Using the Command-Line Interface

» Using the Sun ONE Studio 5 IDE

* Reloading Enterprise Beans

» Deploying to a Cluster (Enterprise Edition)

For more detailed information about deployment, see the Sun Java System Application
Server Developer’s Guide.

Chapter 8 Assembling and Deploying Enterprise Beans 175

Deploying Enterprise Beans

Using the Administration Interface

Y ou can use the Administration interface to deploy modules and applications to both local
and remote Application Server sites. To use thistool, follow these steps:

1. Open the Applications component under your server instance.

2. Gotothe Enterprise Apps or EJB Modules page.

3. Click on the Deploy button. (Y ou can also undeploy, enable, or disable an application
or module from this page.)

4. Enter the full path to the module or application directory or archive file (or click on
Browse to find it), then click on the OK button.

5. Enter the module or application name.

6. Assign the application or web module to one or more virtual servers by checking the
boxes next to the virtual server names.

7. You can aso redeploy the module or application if it already exists (called forced
deployment) by checking the appropriate box. Thisis optional.

8. Youcanrunthe verifier to check your deployment descriptor files. Thisisoptional. For
details about the verifier, see the Devel oper’s Guide.

9. Toenable SFSB checkpointing, make sure Availability Enabled is set to either true or
Specified by Container (if availability is enabled for the EJB container).

10. Other fields are displayed depending on the type of module. Check appropriate boxes
and enter appropriate values. Required fields are marked with asterisks (*).

11. Click onthe OK button.

12. Restart the server if you are redeploying and have changed settingsin Step 9 or
Step 10.

NOTE The Availability Enabled setting isin the Sun Java System Application

Server Enterprise Edition only.

Using the Command-Line Interface

To deploy an enterprise bean using the command line;

1.
2.

Edit the deployment descriptor files (ej b-j ar. xmi and sun- ej b-j ar. xni) by hand.

Execute an Ant build command (such asbui | d j ar) to reassemble the JAR module.

176 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

3.

Deploying Enterprise Beans

Usetheasadm n depl oy command to deploy a JAR module, or the asadmi n
depl oydi r command to deploy a module in an open directory structure. The syntax is
as follows, with defaults shown for optional parameters that have them:

asadnmi n depl oy --user admn user [--password admin passaword] [--passwordfile
passnvord file] [--host |ocal host] [--port 4848] [--secure | -S]

[--virtual servers virtual_servers] [--type application|ej b| web| connect or]
[--contextroot contextroot] [--force=true] [--preconpilejsp=false]
[--verify=fal se] [--nanme component_namg] |[--upl oad=true]
[--availabilityenabled] [--retrieve loca _dirpath] [--instance instance name]
filepath

asadm n depl oydir --user admn user [--password admin_password]
[--passwordfile password filg] [--host |ocal host] [--port 4848] [--secure |
-s] [--virtual servers virtual_serverg [--type

appl i cation| ej b| web| connector] [--contextroot contextroof] [--force=true]
[--preconpil ej sp=fal se] [--verify=false] [--name component name
[--availabilityenabled] [--instance indance name] dirpath

To enable SFSB checkpointing, make sure - - avai | abi | i t yenabl ed iseither set to
t r ue or not specified (if availability is enabled for the EJB container).

NOTE The--avai | abi | i t yenabl ed setting isin the Sun Java System

Application Server Enterprise Edition only.

After using either of these commands for redeployment, you must restart the server for
any deployment setting changes to take effect.

For example, the following command deploys an EJB JAR module:

asadm n deploy --type ejb --instance instl nyEJB.jar

Using the Sun ONE Studio 5 IDE

Y ou can use Sun ONE Studio 5 IDE to assemble and deploy enterprise beans. For
information about using Sun ONE Studio 5, see the Sun ONE Studio 5, Enterprise Edition
tutorial.

NOTE In Sun ONE Studio 5, deploying aweb application isreferred to as

executing it.

Chapter 8 Assembling and Deploying Enterprise Beans 177

Deploying Enterprise Beans

Reloading Enterprise Beans

If you make code changes to an enterprise bean and dynamic reloading is enabled, you do
not need to redeploy the enterprise bean or restart the server. Y ou can simply drop the
changed files into the application’ s deployed directory (such as,

instance-dir/ appl i cat i ons) and the changes will be picked up.

To enable dynamic reloading with the Administration interface:
1. Inthe Administration interface, select your server instance
2. Select Applications.

The Application Properties page is displayed.
3. Check the Reload Enabled box to enable dynamic rel oading.

4. Enter anumber of secondsin the Reload Poll Interval field to set the interval at which
applications and modules are checked for code changes and dynamically rel oaded.

5. Click Save.
For details, see the Sun Java System Application Server Administration Guide.

In addition, to load new servlet files, reload EJB related changes, or reload deployment
descriptor changes, you must do the following:

1. Create an empty file named . r el oad at the root of the deployed application:
ingance dir/ appl i cati ons/j 2ee- apps/ app_name . r el oad
or individually deployed module:
ingance dir/ appl i cati ons/j 2ee- modul es/ module name/ . r el oad

2. Explicitly update the. r el oad file'stimestamp (t ouch . rel oad in UNIX) each time
you make changes to the bean or deployment descriptor.

The reload monitor thread periodically looks at the timestamp of the .r el oad filesto
detect any changes. Thisinterval is, by default, two seconds and can be modified by
changing the value of dynami c-r el oad- pol | -i nt erval -i n- seconds in the
server. xn file

Deploying to a Cluster (Enterprise Edition)

If aserver instanceis part of acluster, you should deploy the same modules and
applicationsto each instance in the cluster using the cl adm n command. For details, seethe
un Java System Application Server Administration Guide.

178 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

The sun-ejb-jar_2_0-0.dtd File Structure

The sun-ejb-jar_2_ 0-0.dtd File Structure

Thesun-ej b-jar_2_ 0-0. dtd file defines the structure of the sun- ej b-j ar. xn file,
including the elements it can contain and the subelements and attributes these elements can
have. The sub- ej b-j ar _2_0-0. dt d fileislocated in the install-dir/ | i b/ dt ds directory.

NOTE Do not edit thesun-ej b-j ar_2_0- 0. dt d file; its contents change only
with new versions of the Sun Java System Application Server.

For general information about DTD files and XML, see the XML specification at:
htt p: // waw. w3. or g/ TR REG xni

Each element defined in aDTD file (which may be present in the corresponding XML file)
can contain the following:

e Subelements
« Data
o Attributes

An alphabetical list of all EJB-related elementsis contained in “ Elements Listings’ on
page 231.

Subelements

Elements can contain subelements. For example, the following file fragment defines the
cnp-resour ce €lement;

<! ELEMENT cnp-resource (jndi-nane, default-resource-principal ?)>

This ELEMENT tag specifies that a resource element called cnp- r esour ce can contain
subelements called j ndi - nane and def aul t - r esour ce- pri nci pal , with the question
mark (?) indicating that there can be zero or one of the def aul t - r esour ce- pri nci pal
subelement.

Each subelement can be suffixed with an optional character to determine the number of
timesit can occur.

The following table shows how optional suffix characters of subelements determine the
requirement rules, or number of allowed occurrences, for the subel ements.

Chapter 8 Assembling and Deploying Enterprise Beans 179

http://www.w3.org/TR/REC-xml

The sun-ejb-jar_2_0-0.dtd File Structure

180

Table 8-1 Requirement Rules for Subelement Suffixes

Suffix Number of Occurrences

element* Can contain zero or more of this subelement.
?element Can contain zero or one of this subelement.
element+ Must contain one or more of this subelement.
element (no suffix) Must contain only one of this subelement.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of alist
of element names in parentheses.

Data

Some elements contain character data instead of subelements. These elements have
definitions of the following format:

<! ELEMENT eement-name (#PCDATA) >
For example:
<! ELEMENT descri ption (#PCDATA) >

In the Sun Java System Application Server XML files, white space is treated as part of the
datain a data element. Therefore, there should be no extra white space before or after the
data delimited by a data element. For example:

<descri ption>cl ass nane of session manager </ description>

<passwor d>secr et </ passwor d>

Attributes

Elements can contain attributes (name, value pairs). Attributes are defined in attributes lists
using the ATTLIST tag. For example:

<I ATTLI ST ej b avai | abi lity-enabl ed %ool ean; "fal se">

Attribute declarations specify the type of the attribute. For example, %oool ean isa
predefined enumeration. Wherever possible, explicit defaults for optional attributes (such as
"fal se") arelisted.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Elements in the sun-ejb-jar.xml File

An alphabetical list of all EJB-related elementsis contained in “ Elements Listings’ on
page 231.

NOTE For information on the DTD and XML file associated with
container-managed persistence mapping, refer to “Elementsin the
sun-cmp-mappings.xml File” on page 118.

This section describes the XML elementsinthesun-ej b-jar_2_0-0. dt d file. For your
convenience, the elements are grouped as follows:

* General Elements

* Role Mapping Elements

* Reference Elements

e Security Elements

* Persistence Elements

* Pooling and Caching Elements

e Class Elements

NOTE If any configuration for an enterprise bean is not specified in the
sun-ej b-jar. xm file, it can default to a corresponding value in the
ej b- cont ai ner element of theser ver. xm fileif an equivalency exists.
Y ou can change the default valuesin the ser ver . xn file; these changes
will be reflected in any enterprise bean that does not have that value
defined.

General Elements
General elements are asfollows:
. ¢b

* gb-name

* enterprise-beans

Chapter 8 Assembling and Deploying Enterprise Beans 181

Elements in the sun-ejb-jar.xml File

e isread-only-bean

» refresh-period-in-seconds

e sun-gb-jar

* unique-id

gb

Defines runtime properties for a single enterprise bean within the application. The
subelements listed below apply to particular enterprise beans as follows:

e All types of beans—ej b- nane, ej b-ref, resour ce-ref, resour ce-env-ref, cnp,
i or-security-config,gen-classes,jndi - name

e Stateless session beans and message-driven beans—bean- pool
e Stateful session beans and entity beans—bean- cache

» Entity beans (BMP)—i s-r ead- onl y- bean, r ef r esh- peri od- i n- seconds,
conmmi t - opti on, bean- cache

* Message-driven bean—ntb- connecti on-factory,
j ms-dur abl e- subscri pti on- nare, j ms- max- messages- | oad, bean- pool

Subelements
The following table describes subelements for the ej b element.

Table 8-2 ej b Subelements

Subelement Required Description
ej b- nane only one Matches the display name of the bean to which it refers.
j ndi - nane zero or more Specifies the absolute j ndi - nane. In the case of

message-driven beans, this is the JNDI name of the Java
Message Service Queue or Topic destination resource object
associated with the message-driven bean class. Whether it is
Queue or Topic type depends on the destination type in the
message-driven deployment descriptor
message-driven-destination. If no
message-driven-destination deployment descriptor is
specified, this defaults to Queue type.

ej b-ref zero or more Maps the absolute JINDI name to the ej b-r ef element in the
corresponding J2EE XML file.

resour ce-ref zero or more Maps the absolute JNDI name to the r esour ce-r ef in the
corresponding J2EE XML file.

182 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Table 8-2

ej b Subelements (Continued)

Elements in the sun-ejb-jar.xml File

Subelement

Required

Description

resour ce- env-r ef

pass-by-reference

cnp

pri nci pal

mdb- connecti on-factory

j ms-dur abl e- subscri pti on- nane

j ms- max- messages- | oad

ior-security-config

i s-read-onl y-bean

refresh-period-in-seconds

conmi t - option

gen-cl asses

bean- pool

bean- cache

checkpoi nt ed- et hods

Zero or more

Zero or one

Zero or one

Zero or one

Zero or one

Zero or one

Zero or one

Zero or one
Zero or one

Zero or one

Zero or one

Zero or one

zero or one
bean- pool

zero or one
bean- pool

Zero or one

Maps the absolute JNDI name to the r esour ce- env-ref in
the corresponding J2EE XML file.

When a servlet or EJB calls another bean that is co-located
within the same process, the Sun Java System Application
Server does not automatically perform marshalling of all call
parameters.

Specifies runtime information for a container-managed
persistence (CMP) EntityBean object for EJB1.1 and EJB2.0
beans. This is a pointer to a file that describes the mapping
information of a bean.

Specifies the principal (user) name in an enterprise bean that
has the r un- as role specified.

Specifies the connection factory associated with a
message-driven bean.

Contains data that specifies the durable subscription
associated with a message-driven bean.

Specifies the maximum number of messages to load into a
Java Message Service session at one time for a
message-driven bean to serve. The default is 1.

Specifies the security information for the IOR.
Flag specifying this bean is a read-only bean.

Specifies the rate at which a read-only-bean must be
refreshed from the data source. If this is less than or equal to
zero, the bean is never refreshed; if greater than zero, the
bean instances are refreshed at the specified interval. This
rate is just a hint to the container. Default is 600.

Contains data that has valid values of A, B, or C. Default
value is B.

Specifies all the generated class names for a bean.

Specifies the bean pool properties. Used for stateless session
beans, entity beans, and message-driven bean pools.

Specifies the bean cache properties. Used only for stateful
session beans and entity beans

Specifies a user-defined semicolon-separated list of method
signatures. Used only for stateful session beans

These methods can be an SFSB’s non-transactional business
methods or cr eat e() methods. At the end of invocation of
each of these methods, the bean’s state is checkpointed. For
details about checkpointing, see .

Chapter 8

Assembling and Deploying Enterprise Beans 183

Elements in the sun-ejb-jar.xml File

Attributes
The following table describes attributes for the ej b element.

Table 8-3 ej b Attributes

Attribute Default Description

avai |l abi li ty-enabl ed Enabled or (optional) If set to t r ue, SFSB state
disabled setting persistence is enabled for this SFSB. For
of EJB container details, see “Enabling SFSB Checkpointing”
on page 55.

Example
<ej b>
ej b- name>Cust orrer EJB</ ej b- nane>
<j ndi - name>cust oner </ j ndi - nane>
<resource-ref >
<r es-ref - nane>j dbc/ Si npl eBank</r es-r ef - nanme>
<j ndi - name>j dbc/ Poi nt Base</ j ndi - nane>
</resource-ref>
<i s-read-onl y- bean>f al se</i s-read-onl y- bean>
<commi t - opt i on>B</ conmi t - opti on>
<bean- pool >
<st eady- pool - si ze>10</ st eady- pool - si ze>
<resi ze-quanti ty>10</resi ze-quanti ty>
<max- pool - si ze>100</ nax- pool - si ze>
<pool -i dl e-ti meout -i n- seconds>
600
</ pool -idl e-timeout-in-seconds>
</ bean- pool >
<bean- cache>
<max- cache- si ze>100</ max- cache- si ze>
<resi ze-quantity>10</resi ze-quantity>
<renoval -ti meout - i n- seconds>3600</ r enoval - ti meout - i n- seconds>
<victimsel ection-policy>LRU/victimsel ection-policy>
</ bean- cache>
</ ej b>

g b-name

Matches the display hame of the enterprise bean to which it refers. Thisname is assigned by
the EJB JAR file producer to name the enterprise bean in the EJB JAR file's deployment
descriptor. The name must be unique among the names of the enterprise beans in the same
EJB JARfile.

184 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

There is no architected relationship between the ej b- name in the deployment descriptor
and the INDI name that the deployer will assign to the EJB's home.

Subelements
none

Example
<ej b- nane>Enpl oyeeSer vi ce</ ej b- nane>
enter prise-beans

Specifies al the runtime properties for an EJB JAR file in the application.

Subelements
The following table describes subelements for the ent er pri se- bean element.

Table 8-4 enterpri se- beans Subelements

Subelement Required Description
nane Zero or one Specifies the name string.
uni que-id zero or one Specifies a unique system identifier. This data is

automatically generated and updated at
deployment/redeployment.

ejb zero or more Defines runtime properties for a single enterprise bean within
the application.

pmdescriptors zeroorone Describes the persistence manager descriptors. One of them
must be in use at a given time. This basically applies to Sun
Java System Application Server pluggable persistence
manager APIs.

cnp-resource Zero or one Specifies the database to be used for storing
container-managed persistence (CMP) beans in an EJB JAR
file.
Example
<enterpri se- beans>

<ej b>

ej b- nane>Cust orrer EJB</ ej b- nane>

<j ndi - name>cust oner </ j ndi - name>

<resour ce-ref >
<r es- r ef - name>j dbc/ Si npl eBank</ r es-r ef - nane>
<j ndi - name>j dbc/ Poi nt Base</ j ndi - nanme>

‘

Chapter 8 Assembling and Deploying Enterprise Beans 185

Elements in the sun-ejb-jar.xml File

</resource-ref>
<i s-read- onl y- bean>f al se</i s-read- onl y- bean>
<conmmi t - opt i on>B</ comni t - opt i on>
<bean- pool >
<st eady- pool - si ze>10</ st eady- pool - si ze>
<resi ze-quantity>10</resi ze-quanti ty>
<max- pool - si ze>100</ max- pool - si ze>
<pool -i dl e-ti meout - i n- seconds>
600
</ pool -i dl e-ti neout -i n- seconds>
</ bean- pool >
<bean- cache>
<max- cache- si ze>100</ max- cache- si ze>
<resi ze-quantity>10</resi ze-quantity>
<renoval - ti nmeout - i n- seconds>3600</ renoval - ti neout - i n- seconds>
<vi ctimsel ection-policy>LRU/ victimsel ection-policy>
</ bean- cache>
</ ejb>
</ enterprise-beans

is-read-only-bean
A flag specifying that this bean is aread-only bean.

Subelements
none

Example
<i s-read- onl y-bean>f al se</i s-read- onl y- bean>

r efr esh-period-in-seconds

Specifies the rate at which aread-only-bean must be refreshed from the data source. If the
value islessthan or equal to zero, the bean is never refreshed; if the value is greater than
zero, the bean instances are refreshed at specified intervals. Thisrate isjust ahint to the
container. Default is 600.

Subelements
none

186 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml

sun-gb-jar

File

Defines the Sun Java System Application Server-specific configuration for an EJB JAR file

in the application. Thisisthe root element; there can only be one sun- ej b-j ar element
ansun-ej b-jar. xn file.

Refer to “ Sample sun-gjb-jar.xml File” on page 218 for example of thisfile.

Subelements
The following table describes subelements for the sun- ej b-j ar element.

Table 8-5 sun-ej b-j ar Subelements

in

Subelement Required Description

security-rol e- mappi ng zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

ent erpri se-beans only one Describes all the runtime properties for an EJB
JAR file in the application.

unique-id
Specifies a unique system identifier. This data is automatically generated and updated at

deployment/redeployment. Devel opers should not change these values after deployment.

Subelements
none

Role Mapping Elements

The role mapping element maps arole, as specified in the EJB JART ol e- nane entries, to a

environment-specific user or group. If it mapsto a user, it must be a concrete user which

existsin the current realm who can log into the server using the current authentication
method. If it mapsto a group, the realm must support groups and it must be a concrete

group which existsin the current realm. To be useful, there must be at |east one user in that

realm who belongs to that group.

Role mapping elements are as follows:
* group-name

e principal

e principa-name

Chapter 8 Assembling and Deploying Enterprise Beans

187

Elements in the sun-ejb-jar.xml File

* role-name
* security-role-mapping

s server-name
group-name
Specifies the group name.

Subelements
none

principal

Defines anode that specifies a user name on the platform.

Subelements
The following table describes subelements for the pri nci pal element.

Table 8-6 princi pal Subelements

Subelement Required Description

nane only one Specifies the name of the user.

principal-name
Specifies the principal (user) name in an enterprise bean that has the r un- as role specified.

Subelements
none

role-name
Specifiesther ol e- name inthesecuri ty-rol e element of theej b-j ar. xni file.

Subelements
none

188 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File
Example
<r ol e- nanme>enpl oyee</r ol e- nane>
security-role-mapping
Maps roles to users and groups.
Subelements
The following table describes subelements for the securi t y-r ol e- mappi ng element.
Table 8-7 security-rol e- mappi ng Subelements
Subelement Required Description
rol e- nane only one Specifies the r ol e- nare from the ej b-j ar . xni
file being mapped.

princi pal - name requires at least one Specifies the principal (user) name in a bean that

princi pal -name or has the run-as role specified.

gr oup- nane
group- nane requires at least one Specifies the group name.

pri nci pal - name or

gr oup- nane
server-name
Specifies the name of the server where the application is being deployed.
Subelements
none
Reference Elements
Reference elements are as follows:
e gb-ref
e gb-ref-name
e jndi-name
e pass-by-reference
* resref-name

Chapter 8 Assembling and Deploying Enterprise Beans 189

Elements in the sun-ejb-jar.xml File

e resource-env-ref
e resource-env-ref-name

* resource-ref

NOTE If adistributable web application references a stateful session bean, and the
web application’s session fails over, the EJB reference is lost. For
information about how to work around this limitation, see the Sun Java
System Application Server Application Design Guidelines for Soring
Session State,

gb-ref
Maps the absolute j ndi - nane nameto the ej b- ref element in the corresponding J2EE

XML file. Theej b-ref element isused for the declaration of areferenceto an EJB’s
home.

Appliesto session beans or entity beans.

Subelements
The following table describes subelements for the ej b-r ef element.

Table 8-8 ej b-ref Subelements

Subelement Required Description

ej b-ref-nane only one Specifies the ej b- r ef - nane in the corresponding J2EE EJB
JAR file ej b-r ef entry.

j ndi - nane only one Specifies the absolute j ndi - narre.

g b-ref-name

Specifiesthe ej b- r ef - nane in the corresponding J2EE XML fileej b-ref entry. The
name must be unique within the enterprise bean, and should be prefixed with ej b/ .

Subelements
none

Example
<ej b- r ef - name>ej b/ Payr ol | </ €] b- r ef - name>

190 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

jndi-name
Specifies the absolute j ndi - nare.

Appliesto all enterprise beans.

Subelements
none

Example
<j ndi - name>j dbc/ Poi nt Base</ j ndi - name>

pass-by-reference

Specifies the passing method used by a servlet or enterprise bean calling aremote interface
method in another bean that is co-located within the same process.

» |If fal se (thedefault if this element is not present), this application uses pass-by-value
semantics.

» If true, thisapplication uses pass-by-reference semantics.

NOTE The pass- by-r ef er ence flag only applies to remote calls. As defined in
the EJB 2.0 specification, section 5.4, callsto local interfaces use
pass-by-reference semantics.

If the pass- by-ref er ence flag is set to its default value of f al se, the
passing semantics for calls to remote interfaces comply with the EJB 2.0
specification, section 5.4. If settot r ue, remote callsinvolve
pass-by-reference semanticsinstead of pass-by-value semantics, contrary
to this specification.

Portable programs should not assume that a copy of the object is made
during such acall, and thusthat it's safe to modify the original. Nor should
they assume that a copy is not made, and thus that changesto the object are
visible to both caller and callee. When thisflagissettotrue, parameters
and return values should be considered read-only. The behavior of a
program that modifies such parameters or return values is undefined.

When aservlet or enterprise bean calls aremote interface method in another bean that is
co-located within the same process, by default the Sun Java System Application Server
makes copies of all the call parametersin order to preserve the pass-by-value semantics.
Thisincreases the call overhead and decreases performance.

Chapter 8 Assembling and Deploying Enterprise Beans 191

Elements in the sun-ejb-jar.xml File

However, if the calling method does not mutate the object being passed as a parameter, itis
safe to pass the object itself without making a copy of it. To do this, set the
pass-by-reference valuetot r ue.

To apply pass-by-reference semantics to an entire J2EE application containing multiple
EJB modules, you can set the same element in the sun- appl i cati on. xm file. If you want
to use pass- by- r ef er ence at both the bean and application level, the bean level takes
precedence. For information about the sun- appl i cati on. xm file, see the Sun Java
System Application Server Developer’s Guide.

Subelements
none

res-ref-name

Specifiesther es- r ef - nane in the corresponding J2EE ej b-j ar. xn filer esour ce-r ef
entry. Ther es-r ef - nane element specifies the name of a resource manager connection
factory reference. The nameisa JNDI name relative to the java:comp/env context. The
name must be unique within an enterprise bean.

Subelements
none

Example
<res- r ef - name>j dbc/ Si npl eBank</r es-r ef - name>

r esour ce-env-r ef

Maps ther esour ce- env- r ef - nane in the corresponding J2EE ej b-j ar. xn file
resour ce-env-ref entry to an absolutej ndi - nane inther esour ces element in the
server. xni file. Theresour ce- env-ref element contains a declaration of an enterprise
bean's reference to an administered object associated with aresource in the bean's
environment.

Used in entity, message-driven, and session beans.

Subelements
The following table describes subelements for ther esour ce- env-r ef element.

192 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Table 8-9 resour ce- env-r ef Subelements

Subelement Required Description

resour ce- env-r ef - nane only one Specifies the r esour ce- env-r ef - nane in
the corresponding J2EE ej b-j ar . xni file
resour ce- env-ref entry.

j ndi - nane only one Specifies the absolute j ndi - narre.

Example
<resource-env-ref>

<resour ce- env-ref - nane>

j ms/ St ockQueueNane

</ resour ce- env- r ef - name>

<j ndi - name>j ns/ St ockQueue</ j ndi - name>
</ resour ce-env-ref >

r esour ce-env-r ef-name

Specifiesther esour ce- r ef - nanme in the corresponding 2EE ej b-j ar. xni file

resour ce- env-ref entry. Ther esour ce- env-r ef - name element specifies the name of a
resource environment reference; its value is the environment entry name used in the EJB
code. The name is aJNDI name relative to the java:comp/env context and must be unique
within an enterprise bean.

Subelements
none

Example
<resour ce- env-r ef - name>j ns/ St ockQueue</ r esour ce- env- r ef - nane>

Chapter 8 Assembling and Deploying Enterprise Beans 193

Elements in the sun-ejb-jar.xml File

r esour ce-r ef

Maps ther es- r ef - name in the corresponding J2EE ej b-j ar . xni filer esour ce-r ef
entry to the absolute j ndi - nane inther esour ces element inthe ser ver.. XM file. The
resour ce-ref element contains a declaration of an EJB’ s reference to an external
resource. Used in entity, message-driven, and session beans.

NOTE Connections acquired from JM S connection factories are not shareable in
the current release of the Sun Java System Application Server. The
res-sharing- scope elementintheej b-j ar. xnl fileresource-ref
element isignored for IM S connection factories.

Whenr esour ce-ref specifiesaJMS connection factory for the Sun Java
System Message Queue, the def aul t - r esour ce- pri nci pal
(name/password) must exist in the Sun Java System Message Queue user
repository. Refer to the Security Management chapter in the Sun Java
System Message Queue Administrator's Guide for information on how to
manage the Sun Java System Message Queue user repository.

Subelements
The following table describes subelements for ther esour ce-r ef element.

Table 8-10 resour ce-ref Subeements

Subelement Required Description

res-ref - name only one Specifies the r es-r ef - name in the corresponding
J2EE ej b-j ar. xm file resour ce-ref entry.

j ndi - nane only one Specifies the absolute j ndi - nare.

defaul t-resource- zero or one Specifies the default sign-on (hame/password) to the
princi pal resource manager.

Example

<resource-ref >
<r es- r ef - name>j dbc/ Enpl oyeeDBNane</ r es- r ef - nane>
<j ndi - nanme>j dbc/ Enpl oyeeDB</ j ndi - name>
</resource-ref>

194 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Messaging Elements

This section contains the following elements associated with messaging:
* jms-durable-subscription-name
* jms-max-messages-load

* mdb-connection-factory

jms-durable-subscription-name

Specifies the durable subscription associated with a message-driven bean class. Only
applies to the Java Message Service Topic Destination type, and only when the
message-driven bean deployment descriptor subscription durability is Durable.

Subelements
none

jms-max-messages-load

Specifies the maximum number of messages to load into a Java Message Service session at
one time for a message-driven bean to serve. The default is 1.

Subelements
none

mdb-connection-factory

Specifies the connection factory associated with a message-driven bean. Queue or Topic
type must be consistent with the Java M essage Service Destination type associated with the
message-driven bean class.

Subelements
The following table describes subelements for the ndb- connect i on-f act ory element.

Table 8-11 mdb- connecti on-f act ory Subelements

Subelement Required Description

j ndi - narme only one Specifies the absolute j ndi - nare.

def aul t -resource- zero or one Specifies the default sign-on (name/password) to the
princi pal resource manager.

Chapter 8 Assembling and Deploying Enterprise Beans 195

Elements in the sun-ejb-jar.xml File

Security Elements

This section describes the el ements that are associated with authentication, authorization,
and general security. The following elements are included:

e as-context

» auth-method

e caller-propagation

e confidentidity

» default-resource-principal
* establish-trust-in-client
» establish-trust-in-target
e integrity

e ior-security-config

* name

» password

* redm

* required

» sas-context

e transport-config

as-context

Specifies the authentication mechanism that will be used to authenticate the client. If
specified, it will be USERNAVE_PASSWORD.

Subelements
The following table describes subelements for the as- cont ext element.

Table 8-12 as-cont ext Subelements

Subelement Required Description

aut h-nethod onlyone Specifies the authentication method. The only supported value is
USERNAME_PASSWORD.

real m only one Specifies the realm in which the user is authenticated.

196 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Table 8-12 as- cont ext Subelements (Continued)

Subelement Required Description

required only one Specifies if the authentication method specified is required to be
used for client authentication. If so, the EstablishTrustInClient bit will
be set in the target_requires field of as-context. The value is either
true or false.

auth-method
Specifies the authentication method. The only supported value is USERNAMVE _PASSWORD.

Subelements
none

caller-propagation
Specifiesif the target will accept propagated caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

confidentiality

Specifiesif the target supports privacy-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

default-resour ce-principal
Specifies the default sign-on (name/password) to the resource manager.
Subelements

The following table describes subelements for the def aul t - r esour ce- pri nci pal
element.

Chapter 8 Assembling and Deploying Enterprise Beans 197

Elements in the sun-ejb-jar.xml File

Table 8-13 defaul t-resource-princi pal Subelements

Subelement Required Description

nane only one Specifies the default resource principal name used to sign on to a
resource manager.

passwor d only on Specifies password of the default resource principal.

establish-trust-in-client
Specifiesif the target is capable of authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

establish-trust-in-tar get
Specifiesif the target is capable of authenticating to a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

integrity
Specifiesif the target supports integrity-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

ior-security-config
Specifies the security information for the input-output redirection (10R).

Subelements
The following table describes subelements for thei or - securi t y- confi g element.

198 Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Table 8-14 i or-security-config Subelements

Subelement Required Description
transport-config zero or one Specifies the security information for transport.
as- cont ext zero or one Describes the authentication mechanism that will

be used to authenticate the client. If specified, it
will be USERNAME_PASSWORD.

sas- cont ext Zero or one Describes the sas-context fields.

name
Specifies an identity.

Subelements
none

password
Specifies the password that security needs to compl ete authentication.

Subelements
none

realm
Specifies the realm in which the user is authenticated.

Subelements
none

required

Specifiesif the authentication method specified is required to be used for client
authentication. If so, the Est abl i shTrust I nd i ent bit will be setinthe
target _requires field of as- cont ext . Thevalueis either true or false.

Subelements
none

Chapter 8 Assembling and Deploying Enterprise Beans 199

Elements in the sun-ejb-jar.xml File

sas-context
Describes the sas-context fields.

Subelements
The following table describes subelements for the sas- cont ext element.

Table 8-15 sas-cont ext Subelements

Subelement Required Description

cal | er-propagati on only one Specifies if the target will accept propagated
caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

transport-config
Specifies the security transport information.

Subelements
The following table describes subelements for thet r ansport - conf i g e ement.

Table 8-16 transport-confi g Subelements

Subelement Required Description

integrity only one Specifies if the target supports integrity-protected
messages. The values are NONE, SUPPORTED,
or REQUIRED.

confidentiality only one Specifies if the target supports privacy-protected
messages. The values are NONE, SUPPORTED,
or REQUIRED.

establish-trust-in- only one Specifies if the target is capable of authenticating to

t ar get a client. The values are NONE, SUPPORTED, or
REQUIRED.

establish-trust-in- only one Specifies if the target is capable of authenticating a

client client. The values are NONE, SUPPORTED, or
REQUIRED.

200 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Persistence Elements

This section describes the el ements associated with contai ner-managed persistence (CMP),
the persistence manager, and the persistence vendor. For information on using these
elements, refer to “ Using Container-Managed Persistence” on page 92.

The following elements are included:
» checkpointed-methods
e cmp

* cmp-resource

» concrete-impl

o finder

* is-one-one-cmp

* mapping-properties
* method-name

* one-one-finders

* pc-class

* pm-class-generator

* pm-config

e pm-descriptor

e pm-descriptors

e pm-identifier

* pm-inuse

* pm-mapping-factory
* pm-version

e query-filter

* query-params

e (uery-variables

Chapter 8 Assembling and Deploying Enterprise Beans 201

Elements in the sun-ejb-jar.xml File

checkpointed-methods

Specifies a user-defined semicolon-separated list of method signatures. Used only for
stateful session beans. These methods can be an SFSB’ s non-transactional business
methods or cr eat e() methods. At the end of invocation of each of these methods, the
bean’s state is checkpointed. For details, see “ Specifying SFSB Methods to Be
Checkpointed” on page 59.

Subelements
none

cmp

Describes runtime information for a contai ner-managed persistence (CMP) entity bean
object for EJB1.1 and EJB2.0 beans. Thisis a pointer to afile that describes the mapping
information of abean.

Subelements
The following table describes subelements for the cnp element.

Table 8-17 cnp Subelements

Subelement Required Description

mappi ng- properties only one Contains data that specifies the location of the
persistence vendor’s specific object-to-relational
(O/R) database mapping file.

concrete-inpl only one Contains data that specifies the location of the
persistence vendor’s specific concrete class
name.

pc-cl ass Zero or one Contains data that specifies the persistence

vendor’s specific class.

i s-one-one-cnp zero or one Contains the boolean specifics for
container-managed persistence (CMP) 1.1.
Used to identify CMP 1.1 with old descriptors.

one-one-finders zero or one Describes the finders for container-managed
persistence (CMP) 1.1.

202 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

cmp-resour ce

Specifiesthe database to be used for storing container-managed persistence (CMP) beansin
an EJB JAR file.

Subelements
The following table describes subelements for the cnp- r esour ce element.

Table 8-18 cnp- r esour ce Subelements

Subelement Required Description

j ndi - nane only one Specifies the absolute j ndi - nane.

def aul t-resource- zero or one Specifies the default runtime bindings of a resource
princi pal | reference.

concr ete-impl

Specifies the location of the persistence vendor’ s specific concrete class name.

Subelements
none

finder
Describes the finders for contai ner-managed persistence 1.1 with a method name and query.

Subelements
The following table describes subelements for the f i nder element.

Table 8-19 fi nder Subelements

Subelement Required Description
nmet hod- nare only one Specifies the method name for the query field.
query- par ans only one Optional data that specifies the query parameters for the

container-managed persistence (CMP) 1.1 finder.

query-filter only one Specifies the query filter for the container-managed
persistence (CMP) 1.1 finder.

query-variabl es only one Optional data that specifies variables in query expression for
the container-managed persistence 1.1 finder.

Chapter 8 Assembling and Deploying Enterprise Beans 203

Elements in the sun-ejb-jar.xml File

Is-one-one-cmp

Specifies the boolean specifics for container-managed persistence 1.1. Used to identify
CMP 1.1 with old descriptors.

Subelements
none

mapping-properties

Specifies the location of the persistence vendor’ s specific object-to-relational (O/R)
database mapping file. Most persistence vendors use the concept of a project, which
represents all the related beans and their dependent classes, and can be deployed asasingle
unit. There can be a vendor-specific XML file associated with the project.

Subelements
none

method-name

Specifies the method name for the query field. The method-name element contains a name
of an EJB method or the asterisk (*) character. The asterisk is used when the element
denotes all the methods of an EJB's component and home interfaces.

Examples
<met hod- nane>cr eat e</ net hod- nane>

<met hod- nane>* </ net hod- nane>

Subelements
none

one-one-finders
Describes the finders for container-managed persistence (CMP) 1.1.

Subelements
The following table describes subelements for the one- one- fi nder s element.

Table 8-20 one-one- fi nder s Subelements

Subelement Required Description

finder one or more Describes the finders for container-managed persistence (CMP)
1.1 with a method name and query.

204 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

pc-class
Specifies the persistence vendor’s specific class.

Subelements
none

pm-class-gener ator

Elements in the sun-ejb-jar.xml File

Specifies which vendor-specific concrete class generator isto be used. Thisis the name of

the class specific to the vendor.

Subelements
none

pm-config

Specifies the vendor-specific configuration file to be used.

Subelements
none

pm-descriptor

Describes the properties of the persistence manager associated with an entity bean.

Subelements

The following table describes subelements for the pm descri pt or element.

Table 8-21 pmdescri pt or Subelements

Subelement Required Description

pmidentifier only one Specifies the vendor who provided the persistence
manager implementation. For example, this could be
Sun Java System Application Server

container-managed persistence or a third-party vendor.

pm ver si on only one Specifies which version of the persistence manager
vendor product is to be used.

pm config zero or one Specifies the vendor-specific configuration file to be
used.
pmconfig zero or one Specifies which vendor-specific concrete class

generator is to be used. This is the name of the class

specific to the vendor.

Chapter 8

Assembling and Deploying Enterprise Beans

205

Elements in the sun-ejb-jar.xml File

Table 8-21 pm descri pt or Subelements (Continued)

Subelement Required Description

pm mappi ng-factory zeroorone Specifies which vendor-specific mapping factory is to be
used. This is the name of the class specific to the
vendor.

pm-descriptors

Describes the persistence manager descriptors. One of them must be in use at a given time.
This basically appliesto Sun Java System Application Server pluggable persistence
manager APIs.

Subelements
The following table describes subelements for the pm descri pt or s element.

Table 8-22 pmdescri ptors Subelements

Subelement Required Description

pm descri pt or one or more Describes the properties of the persistence
manager associated with an entity bean.

pm i nuse only one Specifies whether this particular persistence
manager must be used or not.

pm-identifier

Specifies the vendor who provided the persistence manager implementation. For example,
this could be Sun Java System Application Server container-managed persistence or a
third-party vendor.

Subelements
none

pm-inuse
Specifies whether this particular persistence manager must be used or not.

Subelements
The following table describes subelements for the pm i nuse element.

206 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Table 8-23 pm i nsue Subelements

Subelement Required Description

pmidentifier onlyone Contains data that specifies the vendor who provided the
persistence manager implementation. For example, this could be
Sun Java System Application Server container-managed
persistence or a third-party vendor.

pm versi on only one Contains data that specifies which version of the persistence
manager vendor product is to be used.

pm-mapping-factory
Specifies which vendor-specific mapping factory isto be used. Thisisthe name of the class
specific to the vendor.

Subelements
none

pm-version
Specifies which version of the persistence manager vendor product isto be used.

Subelements
none

query-filter
Specifies the query filter for the container-managed persistence 1.1 finder. Optional.

Subelements
none

query-params
Specifies the query parameters for the container-managed persistence 1.1 finder.

Subelements
none

Chapter 8 Assembling and Deploying Enterprise Beans 207

Elements in the sun-ejb-jar.xml File

208

guery-variables
Specifies variables in query expression for the container-managed persistence 1.1 finder.
Optional.

Subelements
none

Pooling and Caching Elements

This section describes the elements associated with cache, timeout, and the EJB pool. These
elements are used to control memory usage and performance tuning. For more information,
refer to the Sun Java System Application Server Performance Tuning Guide.

The following elements are discussed:

bean-cache

bean-pool
cache-idle-timeout-in-seconds
commit-option
is-cache-overflow-allowed
max-cache-size
max-pool-size
max-wait-time-in-millis
pool-idle-timeout-in-seconds
removal-timeout-in-seconds
resize-quantity
steady-pool-size

victim-selection-policy

bean-cache
Specifies the entity bean cache properties. Used for entity beans and stateful session beans.

Subelements
The following table describes subelements for the bean- cache element.

Application Server 7 2004Q2 « Developer’s Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Table 8-24 bean- cache Subelements

Subelement Required Description
max- cache-si ze zero or one Specifies the maximum number of beans allowable in cache.
i s-cache-overfl ow al | owed zero or one Deprecated.

cache-idl e-tineout-in-seconds zeroorone Specifies the maximum time that a stateful session bean or
entity bean is allowed to be idle in cache before being
passivated. Default value is 10 minutes (600 seconds).

renoval - ti neout -i n- seconds zero or one Specifies the amount of time a bean remains before being
removed. If removal - ti meout - i n- seconds is less than
i dl e-ti meout, the bean is removed without being
passivated.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max- pool - si ze limit). Values are from
0 to MAX_INTEGER.

vi ctimsel ection-policy zero or one Specifies the algorithm that must be used by the container to
pick victims. Applies only to stateful session beans.

Example
<bean- cache>
<max- cache- si ze>100</ max- cache- si ze>
<cache-resi ze- quant i t y>10</ cache-resi ze- quanti ty>
<renoval -ti neout -i n- seconds>3600</ r enoval - ti neout -i n- seconds>
<vi cti msel ection-policy>LRU/ victimsel ection-policy>
<cache-idl e-tinmeout -i n- seconds>
600
</ cache-i dl e-ti meout -i n- seconds>
<renoval -ti neout -i n- seconds>5400</ r enoval -t i neout -i n- seconds>
</ bean- cache>

bean-pool

Specifies the pool properties of stateless session beans, entity beans, and message-driven
bean.

Subelements
The following table describes subelements for the bean- pool element.

Chapter 8 Assembling and Deploying Enterprise Beans 209

Elements in the sun-ejb-jar.xml File

Table 8-25 bean- pool Subelements

Subelement Required Description

st eady- pool - si ze zero or one Specifies the initial and minimum number of beans maintained
in the pool. Default is 32.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max- pool - si ze limit). Values are from
0 to MAX_INTEGER.

max- pool - si ze zero or one Specifies the maximum number of beans in the pool. Values
are from 0 to MAX_INTEGER. Default is to ser ver . xm or 60.

max-wait-time-in-millis zero or one Deprecated.

pool -idl e-tinmeout-in-seconds zeroorone Specifies the maximum time that a bean is allowed to be idle in
the pool. After this time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10 minutes).

Example
<bean- pool >

<st eady- pool - si ze>10</ st eady- pool - si ze>

<resi ze-quantity>10</resi ze-quantity>

<max- pool - si ze>100</ max- pool - si ze>

<pool -i dl e-ti meout - i n- seconds>600</ pool -i dl e-ti meout -i n- seconds>
</ bean- pool >

cache-idle-timeout-in-seconds

Optionally specifies the maximum time that a bean can remain idle in the cache. After this
amount of time, the container can passivate this bean. A value of 0 specifies that beans may
never become candidates for passivation. Default is 600.

Appliesto stateful session beans and entity beans.

Subelements
none

commit-option
Optionally specifies the commit option that will be used on transaction completion. Valid
values for the Sun Java System Application Server are B or C. Default valueis B.

210 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

NOTE Commit option A is not supported for the Sun Java System Application
Server 7.1 release.

Appliesto entity beans.

Subelements
none

Example
<conmi t - opt i on>B</ commi t - opt i on>

is-cache-over flow-allowed
This element is deprecated and should not be used.

max-cache-size

Optionally specifies the maximum number of beans allowable in cache. A value of zero
indicates an unbounded cache. In reality, thereis no hard limit. The max-cache-sizelimitis
just a hint to the cache implementation. Default is 512.

Appliesto stateful session beans and entity beans.

Subelements
none

Example
nmax- cache- si ze>100</ max- cache- si ze>

max-pool-size
Optionally specifies the maximum number of bean instances in the pool. Vaues are from 0

(1 for message-driven bean) to MAX_INTEGER. A value of 0 means the pool is
unbounded. Default is 64.

Appliesto all beans.

Subelements
none

Example
<max- pool - si ze>100</ max- pool - si ze>

Chapter 8 Assembling and Deploying Enterprise Beans 211

Elements in the sun-ejb-jar.xml File

max-wait-time-in-millis
This element is deprecated and should not be used.

pool-idle-timeout-in-seconds

Optionally specifies the maximum time, in seconds, that a bean instance is allowed to
remain idle in the pool. When this timeout expires, the bean instance in a pool becomes a
candidate for passivation or deletion. Thisis ahint to the server. A value of 0 specifiesthat
idle beans can remain in the pool indefinitely. Default value is 600.

Applies to stateless session beans, entity beans, and message-driven beans.

NOTE For a statel ess session bean or a message-driven bean, the bean can be
removed (garbage collected) when the timeout expires.

Subelements
none

Example
<pool -i dl e-ti meout - i n- seconds>600</ pool -i dl e-ti neout -i n- seconds>

removal-timeout-in-seconds

Optionally specifies the amount of time a bean instance can remain idle in the container
beforeit isremoved (timeout). A value of 0 specifies that the container does not remove
inactive beans automatically. The default value is 5400.

If renoval - ti neout - i n- seconds islessthan or equal to
cache-i dl e-ti meout - i n- seconds, beans are removed immediately without being
passivated.

Appliesto stateful session beans.

For related information, see cache-i dl e-ti meout - i n- seconds.

Subelements
none

Example
<renoval -ti meout -i n- seconds>3600</ r enoval - t i meout -i n- seconds>

212 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

resize-quantity
Optionally specifies the number of bean instances to be:

Created, if arequest arrives when the pool has less than st eady- pool - si ze quantity
of beans (appliesto pools only for creation). If the pool has more than

st eady- pool -si ze minusr esi ze- quant i ty of beans, thenresi ze-quantity is
still created.

Removed, when the pool -i dl e-ti meout - i n- seconds timer expires and a cleaner
thread removes any unused instances.

o For caches, when max- cache- si ze isreached, r esi ze- quant i t y beanswill be
selected for passivation using vi ct i m sel ecti on- pol i cy. In addition, the
cache-idl e-ti meout -i n-seconds or cache- r enove-ti neout -i n- seconds
timers will passivate beans from the cache.

o For pools, when the max- pool - si ze isreached, r esi ze- quant i t y beanswill be
selected for removal. In addition the pool -i dI e-ti neout -i n- seconds timer
will remove beans until st eady- pool - si ze isreached.

Vauesarefrom0to MAX_INTEGER. The pool is not resized below the
st eady- pool - si ze. Default is 16.

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the default value can be the value of the ej b- cont ai ner element
pool -resi ze-quantity intheserver. xn file. Default is 16.

For EJB caches, the default value can be the value of the ej b- cont ai ner element
cache-resi ze-quantity intheserver. xni file. Defaultis32.

For message-driven beans, the default can be the value of the nmdb- cont ai ner
pool -resi ze-quant ity elementintheserver. xn file. Defaultis 2.

Subelements
none

Example
<resi ze-quantity>10</resi ze-quanti ty>

steady-pool-size
Optionally specifies the initial and minimum number of bean instances that should be
maintained in the pool. Default is 32.

Chapter 8 Assembling and Deploying Enterprise Beans 213

Elements in the sun-ejb-jar.xml File

NOTE If st eady- pool - si ze isset to avalue greater than 0, the beans are created
when the server starts. If abean relies on caching information during the
set | ni ti al Cont ext method that isnot available at server startup (such as
auser's security role), then the bean should throw EJBExcept i on during
theset I ni ti al Cont ext . The container handles this exception and does
not instantiate the beans. If the bean swollows this exception, then
st eady- pool - si ze should be set to O inthesun- ej b-j ar. xm file.

Applies to stateless session beans and message-driven beans.

Subelements
none

Example
<st eady- pool - si ze>10</ st eady- pool - si ze>

victim-selection-policy

Optionally specifies how stateful session beans are selected for passivation. Possible values
areFirst In, First Out (FIFO), Least Recently Used (LRU), Not Recently Used (NRU). The
default value is NRU, which is actually pseudo-L RU.

NOTE The user cannot plug in his own victim selection algorithm.

The victims are generally passivated into a backup store (typically afile system or
database). This storeis cleaned during startup, and also by a periodic background process
that removesidle entries as specified by r enoval - t i meout - i n- seconds. The backup
storeis monitored by a background thread (or sweeper thread) to remove unwanted entries.

Appliesto stateful session beans.

Subelements
none

Example
<vi ctimsel ection-policy>LRU/ victimsel ection-policy>

214 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Elements in the sun-ejb-jar.xml File

Class Elements

This section describes the elements associated with classes. The following elements are

included:

* gen-classes

* local-home-impl

e local-impl

e remote-home-impl

* remote-impl

gen-classes

Specifies al the generated class names for a bean.

NOTE Thisis automatically generated by the server at deployment/redepl oyment
time. It should not be specified by the developer or changed after
deployment.

Subelements

The following table describes subelements for the gen- cl ass element.

Table 8-26 gen-cl asses Subelements

Subelement Required Description

renot e- i npl zero or one Specifies the fully-qualified class name of the

generated EJBOoj ect impl class.

| ocal -i npl zero or one Specifies the fully-qualified class hame of the

generated EJBLocal Obj ect impl class.

r enot e- hone- i npl zero or one Specifies the fully-qualified class name of the

generated EJBHome impl class.

| ocal - hone-i npl zero or one Specifies the fully-qualified class name of the

generated EJBLocal Hone impl class.
local-home-impl

Specifies the fully-qualified class name of the generated EJBLocal Hone i npl class.

Chapter 8 Assembling and Deploying Enterprise Beans 215

Elements in the sun-ejb-jar.xml File

NOTE Thisis automatically generated by the server at deployment/redepl oyment
time. It should not be specified by the developer or changed after
deployment.

Subelements
none

local-impl
Specifies the fully-qualified class name of the generated EJBLocal Cbj ect i npl class.

NOTE Thisisautomatically generated by the server at deployment/redepl oyment
time. It should not be specified by the developer or changed after
deployment.

Subelements
none

remote-home-impl
Specifies the fully-qualified class name of the generated EJBHone i npl class.

NOTE Thisisautomatically generated by the server at deployment/redepl oyment
time. It should not be specified by the developer or changed after
deployment.

Subelements
none

remote-impl
Specifies the fully-qualified class name of the generated EJBObj ect i npl class.

NOTE Thisisautomatically generated by the server at deployment/redepl oyment
time. It should not be specified by the developer or changed after
deployment.

216 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Sample EJB XML Files

Subelements
none

Sample EJB XML Files

This section includes the following sample files:
e Sample gb-jar.xml File
e Sample sun-gjb-jar.xml File

For information on the elements associated with enterprise beans, refer to “Elements in the
sun-gjb-jar.xml File” on page 181 and the Sun Java System Application Server Developer’s

Guide.

Sample ejb-jar.xml File

<?xnm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE €j b-jar PUBLIC '-//Sun Mcrosystens, Inc.//DID Enterprise JavaBeans 2.0//EN
"http://java.sun.conidtd/ejb-jar_2 0.dtd >

<ejb-jar>
<description>no description</description>
<di spl ay- name>Cust oner JAR</ di spl ay- name>
<enterpri se- beans>

<entity>
<descri ption>no description</description>
<di spl ay- nane>Cust orer EJB</ di spl ay- nane>
<ej b- nane>Qust onmer EJB</ ej b- name>
<hone>sanpl es. Si npl eBankBMP. gj b. Cust orer Hone</ honme>
<r enot e>sanpl es. Si npl eBankBMP. ej b. Qust orrer </ r enot >
<ej b- cl ass>sanpl es. Si npl eBankBMP. ej b. Qust orer EJB</ ej b- cl ass>
<per si st ence- t ype>Bean</ per si st ence- t ype>
<primkey-cl ass>j ava. | ang. String</pri mkey-cl ass>
<reent rant >Fal se</reentrant >
<security-identity>
<descri pti on></ descri pti on>
<use-cal l er-identity></use-caller-identity>
</security-identity>
<resource-ref >
<r es- r ef - name>j dbc/ Si npl eBank</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>

Chapter 8 Assembling and Deploying Enterprise Beans

217

Sample EJB XML Files

<r es- aut h>Cont ai ner </ r es- aut h>
<r es- shari ng- scope>Shar eabl e</ r es- shari ng- scope>
</resource-ref>
</entity>
</ enterprise-beans
<assenbl y-descri pt or>
<cont ai ner-transacti on>
<net hod>
<ej b- nane>Cust oner EJB</ ej b- nanme>
<net hod- nane>* </ et hod- name>
</ met hod>
<trans-attribut e>Not Supported</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
</ejb-jar>

Sample sun-ejb-jar.xml File

For information on these elements, refer to “ Elements in the sun-gjb-jar.xml File” on
page 181.

<?xnm version="1.0" encodi ng="UTF- 8" ?>

<I DOCTYPE sun-ejb-jar PUBLIC '-//Sun Mcrosystens, Inc.//DID Sun ONE Application Server
7.1 EJB 2.0//EN
"http://ww. sun. conl sof t war e/ sunone/ appser ver/ dt ds/ sun-ej b-jar_2 0-0.dtd" >

<sun-ej b-jar>
<di spl ay- name>Fi rst Mdul e</ di spl ay- nane>
<enterpri se- beans>
<ej b>
<ej b- nane>Cust onmer EJB</ ej b- name>
<j ndi - name>cust oner </ j ndi - name>
<resource-ref >
<res- r ef - name>j dbc/ Si npl eBank</ r es-r ef - nane>
‘ <j ndi - name>j dbc/ Poi nt Base</ j ndi - nanme>
</resource-ref>
<i s-read- onl y- bean>f al se</i s-read- onl y- bean>
<conmi t - opt i on>B</ commi t - opt i on>
<bean- pool >
<st eady- pool - si ze>10</ st eady- pool - si ze>
<resi ze-quantity>10</resi ze-quantity>
<max- pool - si ze>100</ max- pool - si ze>
<pool -i dl e-ti meout - i n- seconds>600</ pool -i dl e-ti meout -i n- seconds>
</ bean- pool >

218 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Sample EJB XML Files

<bean- cache>
<max- cache- si ze>100</ max- cache- si ze>
<resi ze-quantity>10</resi ze-quanti ty>
<renoval -timeout -i n- seconds>3600</ renoval - ti meout - i n- seconds>

<vi cti msel ection-policy>LRU/ victimsel ection-policy>
</ bean- cache>

</ ej b>

</ enterprise-beans>

</sun-ej b-jar>

Chapter 8 Assembling and Deploying Enterprise Beans 219

Sample EJB XML Files

220 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Appendix A

CMP Mapping with the Sun ONE
Studio 5 Interface

This section provides guidelines on mapping between a set of Java programming language
classes and arelational database using the Sun ONE Studio 5 interface.

This section addresses the following topics:
* Mapping CMP Beans
e EJB Persistence Properties

Y ou should already be familiar with “Using Container-Managed Persistence for Entity
Beans’ on page 85and chapter 10 of the Enterprise JavaBeans Specification, v2.0 before
using these procedures.

Mapping CMP Beans

To map container-managed persistence beans, you must first capture the schema, then map
the beans to the schema.

This section contains the following sections:
e Capturing a Schema
» Mapping Existing Enterprise Beans to a Schema

Capturing a Schema

Before mapping any enterprise beans to a database schema, you need to capture the schema
to create a working copy in your file system. This allows you to do your work without
affecting the database itself.

221

Mapping CMP Beans

NOTE

It is best to store the captured schemain a package. If you do not have a
package to contain the schema, create one by right-clicking on thefile
system and selecting New Package.

1. You have three waysto display the Mapping Tool:

[n}

[n}

u]

Right-click on the file system and select New > Databases > Database Schema.

Choose New from the File menu and then, in the Template Chooser, double-click
Databases and select Database Schema.

Select Capture Database Schema from the Tools menu.

2. Inthe Target Location pane, type afile name for the working copy of your schema,
then select a package for the captured schema.

3. Inthe Database Connection pane, if you have a connection established, you can select
it from the Existing Connection menu. Otherwise, under New Connection, enter the
following information:;

[n}

u]

u]

The name of the database you are connecting to. (If your databaseis not listed in
the dropdown menu, you might need to quit the Mapping Tool and install the
driver in the IDE before continuing.)

Y our system’s JDBC driver.

The JDBC URL for the database, including the driver identifier, server, port, and
database name. For example,
j dbc: poi nt base: / /| ocal host : 9092/ sanpl e.

The format of a JDBC URL varies depending on which kind of database
management system (DBMS) you use and the version of that DBMS. Ask your
system administrator for the correct URL format for your DBMS.

A user name for your database.

The password for that user.

4. Inthe Tablesand Views pane, choose the tables and views you want to capture, then
click Finish.

NOTE

If you choose one table and exclude another that is referenced to the
included table by aforeign key, both tables will be captured even though
you specified only one.

222 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Mapping CMP Beans

The database and its schemawill be represented as shown in following figure.

P g roew

§ @ roem
Pl CustwER_TEL
& fl Courvs
Ll

& B Fovn s
o= i eS0T _CO0E_TRL
ol eeNFACTURE TR
o [l RS0 WERFETE TR
o= oFRcE_TEL
o] OFFCE_TYRE_CODE_THEL
o= |J ORDER_TEL

Mapping Existing Enterprise Beans to a Schema

This section discusses how to use container-managed persistence to customize mappings or
to create a mapping for an existing object model.

Before you can map an enterprise bean to a database schema, you must make sure that the
database schemais captured and mounted in your Explorer file system. See “ Capturing a
Schema’ on page 221 for instructions on how to do this.

Y ou can set up or edit a mapping piecemeal by editing the individual propertiesin the
Properties window. All the mapping and persistence information can be accessed through
the Properties window. The mapping fields property editor provides away to view and edit
groups of classes and fields at one time, providing a useful overview of your mapping
model.

1. Under Filesystem, open the EJB Module.
The enterprise beans in that module are listed.

2. Select the enterprise bean from its containing EJB module.
The properties table for the enterprise bean is displayed.

3. If you have completed the preliminary tasks, click Next to bring up the Select Tables
pane of the Mapping Toal.

Otherwise, click Cancel, complete the tasks, and restart the Mapping Tool.

4. Select aprimary table from the Primary Table combo box, or click Browse to open the
Select Primary Table dialog.

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 223

Mapping CMP Beans

5. If you open the Select Primary Table dialog, find a schema and expand it to find its
tables.

6. Select atableand click OK.
The table you select as the primary table should be the one that most closely matches

your class.
| 5ehct Prmaiy Table x|
@ Fiszystens | =
L= R T &
o do_smp :
B O sosmpdesx o
= O tudorial __
P iy emples —
a G irplicr
&= B CUSTORER_TEL
B B DEOHT _CO0E_ TR
=l HANUFACTURE TEL -

|a+¢|-:me.u|;uh|

7. Oncethe primary tableis set up, you can map one or more secondary tables by clicking
Add.

This opens the Secondary Table Settings dialog box.

A secondary table enables you to map fields in your enterprise bean to columns that are
not part of your primary table. For example, you might add a DEPARTMENT table as
a secondary table in order to include a department name in your Employee class. A
secondary table differs from arelationship, in which one class is related to another by
way of arelationship field. In a secondary table mapping, fields in the same class are
mapped to two different tables. A secondary table enables you to map your field
directly to columnsthat are not part of your primary table. Y ou can use this pane to
select secondary tables, and to show how they are linked to the primary table.

A secondary table must be related to the primary table by one or more columns whose
associated rows have the same valuesin both tables. Normally, thisis defined as a
foreign key between the tables. When you select a secondary table from the drop-down
menu, the Mapping Tool checks for aforeign key between the two tables. If aforeign
key exists, it is displayed as the reference key by default.

224 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Mapping CMP Beans

a. Select asecondary table from the combo box.

Once you select a secondary table, the contai ner-managed persistence
implementation checksto see if there is aforeign key between the primary and
secondary tables. If so, the foreign key is displayed as the default reference key. If
there is no foreign key, the editor displays Choose Column, and you must set up a
reference key.

b. To set up areference key, click Choose Column and select a column from the
dropdown menu.

Once you pick a primary column, the choices in the secondary column are limited
to columns of compatible types. If no column is compatible, the field displays No
Compatible Columns. If you select a primary column that is incompatible with
your secondary column, the value of the secondary column reverts to Choose
Column.

NOTE If no pair of columns seemsto relate in alogical manner, preventing a
logical reference key, you may want to reconsider your choice of a
secondary table.

Y ou can select the Add Pair key to set up acomplex key using more than one pair
of columns.

8. Click OK to save your selections.

9. Click Next inthe Mapping Tool to bring up the Field Mappings panel of the Mapping
Tool.

The Field Mappings panel displays all the persistent fields of the enterprise bean and
their mapping status. Y ou can map afield to a column by selecting the column in the
drop-down menu for that field, or try to map all unmapped fields by selecting
Automap. Automap will make the most logical selections, ignoring any relationship
fields and any fields that have already been mapped. It will not change any existing

mappings.

If you want to map afield to a column from another table that is not available, click
Previous to return to the previous Mapping Tool page and add a secondary table that
contains the column you want.

Unmap works on whatever field or fields are selected. Y ou can unmap agroup of fields
at once by holding down the Shift key or Control key while selecting the fields you
want. If you want to unmap one item, choose Unmapped in the drop-down menu for
that field.

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 225

Mapping CMP Beans

To map afield to multiple columns, click the ellipsis button (...) for the appropriate
field in the Field Mappings pane to display the Map Field to Multiple Columns
dialog box.

In this dialog box, you add columns to the list of mapped columns. Columns are
from the tables you have mapped to this class.Y ou can change the order of the
columns by using Move Up/Move Down.

If you do not see the column you want to map, you might need to add a secondary
table to your mapping, or change the primary table you have selected. If no
columns are listed, you have not yet mapped a primary table, or you have mapped
atable that has no columns.

If you map afield to more than one column, all columns will be updated with the
value of thefirst column listed. Therefore, if the value of one of the columnsis
changed outside of a container-managed persistence application, the value will
only be read if the change was made to that first column. Writing a value to the
database overwrites any conflicting changes made to any other columns.

Y ou must also make sure that if you map more than one field to any of these
columns, the mappings cannot partially overlap. Consider the following three
scenarios:

» Field A mapped to Columns A and B, Field B mapped to Column B. Sincethe
mappings only partially overlap, this example will get avalidation error at
compilation.

« Field A mapped to Column A, and Field B mapped to Column B. Since there
isno overlap, this mapping is allowed.

« Field A mapped to Columns A and B, Field B mapped to Columns A and B.
Since the mappings completely overlap, this mapping is allowed.

Click OK to save the mapping.

Mapping Relationship Fields

When you have foreign keys between database tables, you usually want to preserve those
relationships in Java class references. Mapping CMR fields lets you specify the
relationships that correspond to the class reference fields.

To Map aRelationship Field, click the ellipsis button (...) in the Field Mappings panel
next to the drop-down menu of arelationship field to bring up the Relationship
Mapping editor.

226 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Mapping CMP Beans

To use the Relationship Mapping editor outside of the Mapping Tool, click the relationship
field in Explorer and edit its Mapping property.

a. Inthispane, verify that the Related Classis set. If the related classis not set, then
set it. If the class you want to select is not persistence-capable, you might need to
cancel out of the editor, convert the class to persistence-capable, then return.

b. Verify that the Related Field (if any) is aso correct, and that the Primary Tableis
set for the related class.

NOTE If you have alogical related field, you should choose a Primary Table. That
will create a managed relationship.

c. Select between linking the tables directly, or through ajoin table.

2. If your relationships are one-to-one or one-to-many, choose to link the tables directly.
Clicking Next opens the Map to Key pane of the Relationship Mapping editor.

This pane shows:

[n}

An existing mapping if thereis one and there were no changes on the initial setup
page.

The default mapping if there is no existing mapping or the mapping is no longer
valid.

The editor attempts to determine the most logical key column pairs between the
two related classes, based on existing foreign keys. If there are no foreign keys,
you need to create the key column pairs by selecting local and foreign columns.
The columns in each pair are expected to have the same value.

To create acomplex key, use the Add Pair button to add additional Key Column
Pairs.

If the Finish button is disabled, you need to choose a key column pair.

3. If your relationship is many-to-many, link tables through ajoin table. Click Next to
open the Map to Key: Local to Join pane.

This pane shows:

[n}

[n}

Thefirst classand field in the relationship
Thejoin table to be used to create the relationship between the fields

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 227

Mapping CMP Beans

o Key column pairs between the field join table and the table to which the related
classis mapped

In this pane, you choose a join table, then map the relationship field to akey. This
isonly the relationship between the table This Class is mapped to and the join
table. If you don't have ajoin table, go back to the previous panel and select Link
the Mapped Tables Directly.

Choose ajoin table that sits between the two tables that your classes are mapped
to. The Editor will attempt to determine the most logical key column pairs between
the join table and the table that This Classis mapped to.

If the tables have aforeign key between them, the editor will usethe foreign key as
the default key column pair. If there is no foreign key, then you must create a key
by choosing a pair of columns that will allow navigation from the join table to the
table to which This Class is mapped. The columnsin each pair are expected to
have the same value.

To create a compound key, use Add pair to add additional Key Column Pairs.

If the Next button is disabled, you need to pick ajoin table or make sure that at
least one key column pair exists that has columns on both sides.

Click Next to open the Map to Key: Join to Foreign pane.
In this pane, you relate a second table to the join table you chose in the previous pane.

The editor will attempt to determine the most logical key column pairs between the join
table and the table that the Related Class is mapped to.

If the tables have aforeign key between them, the editor will use the foreign key asthe
default key column pair. If thereis no foreign key, then you must create a key by
choosing a pair of columnsthat will allow navigation from the join table to the table to
which the Related Class is mapped. The columns in each pair are expected to have the
same value.

To create a compound key, use Add Pair to add additional key column pairs.
If the Finish button is disabled, you need to choose a valid key column pair.
Click Finish to return to the Field Mappings pane of the Mapping Tool.

Click Finish to close the Field Mappings pane and map the Java classes to the database
schema.

228 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

EJB Persistence Properties

EJB Persistence Properties

Enterprise beans that use container-managed persistence have several unique properties that
can be specified outside the Mapping Tool.

The following table describes these unique properties.

Table A-1 Properties for CMP Enterprise Beans

Property Description

Mapped primary table The primary table you select for a persistence-capable class should be
the table in the schema that most closely matches the class. You must
specify a primary table in order to map a persistence-capable class. See
“Mapping Existing Enterprise Beans to a Schema” on page 223 for
information on how to do this.

Mapped schema The schema containing the tables to which you are mapping the
persistence-capable class. The primary table, secondary tables, and
related classes must be from this schema. This setting cannot be made
until you capture the schema as described in “Capturing a Schema” on

page 221.
Mapped secondary Secondary tables let you map columns that are not part of your primary
table(s) table to your class fields. For example, you might add a DEPARTMVENT

table as a secondary table in order to include a department name in your
Enpl oyee class. You can add multiple secondary tables, but no
secondary table is required. This property is only enabled when Mapped
Primary Table is set. See page 104 and page 225 for more information
on adding a secondary table.

Consistency levels Specifies container behavior in guaranteeing transactional consistency of
the data in the bean. If the consistency checking flag element is not
present, none is assumed. For further information on consistency levels,
see “consistency” on page 122.

Fetch groups The f et ched- wi t h property specifies the fetch group configuration for
fields and relationships. A field may participate in a hierarchical or
independent fetch group. If the f et ched- wi t h element is not present,
the following value is assumed:
<f et ched-w t h><none/ ></ f et ched- wi t h>. Refer to “fetched-with”
on page 123 for further information.

Y ou can unmap a class by choosing <unnmapped> from the drop-down menu for the
Mapped Primary Table property. When you unmap a currently mapped class, a warning
appears if there are field mappings or secondary tables. Click OK if you are sure that you
want to unmap the class. Otherwise, click Cancel to cancel the mapping status change and
leave the class mapped.

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 229

EJB Persistence Properties

Click the Field Mapping tab at the bottom of the Properties window to see the field mapping
properties for a persistence-capable class.

230 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Appendix B

Elements Listings

This section provides al phabetic listings of the elements for the DTD files associated with
Enterprise JavaBeans (EJBs) in the Sun Java System Application Server environment.

This section addresses the following topics:
e sun-gb-jar.xml File Elements

e sun-cmp-mappings.xml File Elements

sun-ejb-jar.xml File Elements

Explanations on these elements are contained in “ Elements in the sun-gjb-jar.xml File” on
page 181.

as- cont ext

aut h- met hod

bean- cache

bean- pool

cache-idl e-ti neout - i n- seconds
cal | er-propagation
cnp

cnp- r esour ce
comit-option
concrete-inpl
confidentiality

def aul t - resour ce- pri nci pal

231

sun-ejb-jar.xml File Elements

ejb

ej b- nane

ej b-ref

ej b-ref-nanme

ent er pri se- beans
establish-trust-in-client
establish-trust-in-target
fi nder

gen-cl asses

gr oup- nanme

integrity
ior-security-config

i s-cache-overfl ow al | oved
i s- one- one-cnp

i s-read- onl y-bean

j ms-dur abl e- subscri pti on- nane
j ms- max- nessages- | oad

j ndi - narre

| ocal - hore- i npl

| ocal -i npl

mappi ng- properties

max- cache-si ze
max- pool - si ze
max-wait-tinme-in-mllis
ndb- connect i on-factory
net hod- nare

nane

one-one-finders

pass- by-reference

passwor d

232 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

sun-ejb-jar.xml File Elements

pc-cl ass

pm cl ass- gener at or

pm config

pm descri pt or
pmdescriptors
pmidentifier

pm i nuse

pm nappi ng-f act ory

pm versi on

pool -i dl e-ti nmeout - i n- seconds
princi pa

princi pal - nane
query-filter

query- par ans
query-vari abl es

real m
refresh- peri od-i n-seconds
r enot e- hone- i npl
renote-inp

removal - ti neout - i n- seconds
required

res-ref-nane

resi ze-quantity
resour ce- env-ref
resour ce- env-ref - name
resour ce-ref

rol e- nane

sas- cont ext
security-rol e-nappi ngser ver - nane

st eady- pool - si ze

Appendix B

Elements Listings

233

sun-cmp-mappings.xml File Elements

sun-ej b-j ar
transport-config
uni que-id

vi cti msel ection-policy

sun-cmp-mappings.xml File Elements

Explanations on these elements are contained in “Mapping Fields and Relationships’ on
page 100 and “Elements in the sun-cmp-mappings.xml File” on page 118.

check-al | -at - conmi t
check-nodi f i ed- at - commi t
cnp-fi el d- mappi ng
cnr-fi el d- mappi ng
cnr-fiel d-nane

col um- narre

col umm-pai r
consi st ency

ej b- nane
entity-nappi ng
fetched-wth

fiel d-nane

| evel

| ock-when- | oaded

| ock-when-modi fi ed
naned- gr oup

none

read-only

schema
secondary-tabl e

sun- chp- mappi ng

234 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

sun-cmp-mappings.xml File Elements

sun- cnp- mappi ngs

t abl e- nane

Appendix B Elements Listings 235

sun-cmp-mappings.xml File Elements

236 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

Index

A B
abstract schema 90, 221 bean class definition
access creating for BMP entity beans 74
overview 29 creating for sessions beans 49
to resources 32 bean-cache element 208
administering message-driven beans 142 bean-managed persistence 64
administering transactions 154 bean class definition 74
afterBegin 160 overview 32
afterCompletion 160 bean-managed security 171
allow-concurrent-access element 83 bean-managed transactions 152, 162

prohibited methods 163
return without commit 162

bean-pool element 209
beforeCompletion 160

BLOB support 98

business methods for session beans 49

anonymousrole 172
ANYONE role 172
architecture 21, 27

entity beans 63
as-context element 196
assembling EJBs 173-217
attributes

for transactions 156

in deployment descriptor 180
authentication 166 C
auth-method element 197
authorization 166
auto reconnection feature 142

cache management 24
caching elements for the sun-gjb-jar.xml file 208
caller-propagation element 197

avalelna;)tl)lllitrilg e capture-schema utility 94
setting during deployment 176, 177 capturing aschemell 221
availability-enabled attribute 184 check-all-at-commit element 119

check-modified-at-commit element 119
checkpointed-methods element 59, 202
checkpointing 51

enabling 55

237

Section D

selecting methods for 59
cladmin command 178
class elements for the sun-egjb-jar.xml file 215
client view guidelines 36
clients accessing EJBs 29
cluster, deployment to 178
cmp element 202
cmp-field-mapping element 105, 119
cmp-impl element 203
cmp-resource 110
cmp-resource element 203
CMR fields 226
cmr-field-mapping element 120
cmr-field-name element 108, 121
Collection fields 90
column-name element 106, 109, 121
column-pair element 109, 121
commit options 153, 161
commit-option element 210
concurrent access 83, 138
confidentiality element 197
configuring

for 1.1 finders (CMP) 111

resource manager (CMP) 110
connection factory 141, 144
connection pooling 115
connections to resources 32
consistency element 104, 122, 229
container

entity beans 63

overview 28

session beans 41
container-managed persistence 65, 85-128

assembly and deployment 91

configuring 1.1 finders 111

datatype for mapping 96

deployment 110

elements 118

implementing 92-128

mapping 96, 221-230

operations 93

overview 32, 87-91

properties 229

relationships 89

resource manager 110
schema mapping 223
setting isolation level 164
support 86

third-party support 115

container-managed transactions 50, 152, 155-161
attributes 156
for message-driven beans 142
prohibited methods 161
rollback 159

D

data types for mapping 96
database connections, overview 32
database schema, capturing 94, 95, 221
databases, supported 86
default-resource-principal element 197
demarcation models for transactions 152
deployment
container-managed persistence 110
dynamic 175
overview 38
read-only beans 83
setting availability 176, 177
toacluster 178
deployment descriptors 38, 174
design factors 34
dynamic deployment 175

E

EJB 2.0 summary of changes 20
gjb element 182

EJB QL 20, 90, 111
gibActivate 76

EJBContext 163, 171

gbCreate 47, 49, 74, 76
gjbFindByPrimaryKey 74, 79

238 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

gbFindXXX 79
gib-jar.xml file 145, 174
gblLoad 77
gjb-name element 122, 184
EJBObject 50
gjbPassivate 81
gjbPostCreate 74
EJB-QL 86, 90
gjb-ref element 190
gjb-ref-name element 190
eibRemove 79, 140
EJBs
container 28
design factors 34
elements 185
general usage guidelines 35
interfaces 29
overview 25-33
transaction attributes 157
user authorization 166
gjbStore 77
elementsin XML files 118, 185, 231
enterprise-beans element 185
entity beans 61
abstract schema 90
container-managed persistence mapping 221
developing 65-83
overview 27, 62-65
persistence 63
read-only beans 79
transaction attributes 157
entity-mapping 102, 122
establish-trust-in-client element 198
establish-trust-in-target element 198

F

failover
for web module sessions 53
of stateful session bean state 51
references supported for 51

fetched-with element 107, 109, 123, 229

Section F

field mapping 226
field-name element 124
finder element 203
finder methods 79, 111
flat transactions 151

G

general elementsin sun-gjb-jar.xml file 181
getCallerPrincipal 171

getRollbackOnly 163

getStatus 163

getUser 171

getUserTransaction 161

global transactions 151

granularity 37

group-name element 188

H

HADB 54
high-availability database (HADB) 54
home interface 29

IDE 24
idempotent URLs 53
identification 166
integrity element 198
interfaces
entity beans 67, 70
local or remote 36
overview 29
providing 45
ior-security-config element 198
isCalerInRole 171

Index

239

Section J

isolation levels for transactions 163
is-one-one-cmp element 204
is-read-only-bean element 82, 186

J

J2EE transaction manager 150
JAR file, overview 174
Java language casts 36
Java Message Service. See IMS.
Java Transaction APl 150

transactions 153

transactions (bean-managed) 162
Java Transaction Service 150
java.ejb.CreateException 49, 76
java.gjb.FinderException 79
java.rmi.RemoteException 48, 74, 79
java.sgl.Connection 162
javax.ejb.CreateException 48
javax.ejb.EJBContext 161
javax.ejb.EJBHome 48
javax.ejb.EJBLocalHome 47, 70
javax.ejb.EJBLocalObject 46
javax.gjb.EJBMetaData 48
javax.ejb.SessionSynchronization 44, 50
javax.rmi.PortableRemote.Object.narrow 36
javax.transactionUserTransaction 161
JDBC

supported drivers 86

transaction type 153

transactions (bean-managed) 162
JDBC or JTA 162
JDOQL 111
JMS 141, 142, 143
jms-durabl e-subscription-name element 195
jms-max-messages-load 195

JNDI 32, 33
for message-driven beans 141
for transactions 152

name for container-managed persistence 110

jndi-name 110

jndi-name element 191

L

level element 124
load balancing 25

local home interface 47, 70
overview 30

local interface
entity beans 70
overview 30
session beans 46

local programming model 37
local transactions 151
lock-when-loaded element 124
lock-when-modified element 125

M

Mandatory attribute 158
many-to-many relationships 90
mapping 115

datatypes 96

elementsin sun-gjb-jar.xml file 118

features 95

for CMP 221-230

multiple columns (CMP) 226

primary table 229

relationship fields 226

schema 223, 229

secondary table 225, 229

tool 95
mapping property 227
Mapping Tool (CMP) 222, 225
mapping-properties element 204
max-cache-size element 211
max-pool-size element 211
MDB file samples 145
mdb-connection-factory 141, 144
mdb-connection-factory element 195

240 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

mdb-container 142
mdb-container element 142
meet-in-the-middle mapping 96
message-driven beans 135-145
administering 142
bean class definition 138
connection factory 141
developing 138
JMS limitation 143
monitoring 142
onMessage runtime exception 144
overview 27, 136-142
pool monitoring 144
pooling 141
sample XML files 145
sun-gjb-jar.xml file elements 195
transaction attributes 157
transactions 137
using run-as 171
messaging elements 195
method permissions, declaring 168
method-name element 204
method-permission element 168
Microsoft SQL Server 2000 86
monitoring 24
monitoring transactions 155

multiple columns 106
mapping 226

N

name element 199
named-group element 125
nested transactions 151
none element 108, 125
NotSupported attribute 158

O

O/R mapping tool 115

Section N

object references supported for failover 51
one-one-finders element 204

one-to-many relationships 90

one-to-one relationships 90

onMessage 139, 144, 171

Oracle 86,98

overview of EJBs 19-33

P

packaging. See assembly.
param-name element 188, 190, 191, 192, 193
pass-by-reference element 23, 191
pass-by-value semantics 191
password element 199
pc-class element 205
persistence elements for the sun-gjb-jar.xml file 201
persistence manager 110
persistence overview 63
persistence properties 229
persistence store
for stateful session bean state 51
selecting 53
persistence-manager-factory-resource 110
pm-class-generator element 205
pm-config element 205
pm-descriptor element 205
pm-descriptors 110
pm-descriptors element 206
pm-identifier element 206
pm-inuse element 206
pm-mapping-factory element 207
pm-version element 207
Pointbase 86
pool monitoring for MDBs 144
pool-idle-timeout-in-seconds 212, 213
pooling
of message-driven beans 138, 141
of read-only beans 81
of resources for EJBs 28
of stateless session beans 41, 44

Index

241

Section Q

pooling elements for the sun-gjb-jar.xml file 208
primary key class 86

primary table 223

primary table mapping 229

principal element 188

principal-name element 188

programmatic security 171

properties (persistence) 229

Q

query-filter element 207
query-params element 207
query-variables element 208

R

read-only beans 23, 65, 79-83
deploying 82
pooling 81
refreshing 81
read-only element 107, 125
ReadOnlyBeanNotifier 82
realm element 199
reference elements in the sun-gjb-jar.xml file 189
references supported for failover 51
refresh-period-in-seconds 81, 186
relationships 89
many-to-many 90
mapping fields 226
one-to-many 90
one-to-one 90
remote home interface
overview 29
session beans 48
remote interface
overview 29
session beans 45
remote programming model 36
removal-timeout-in-seconds element 212

remove methods for session beans 47, 69
Required attribute 157
required element 199
RequiresNew attribute 158
resize-quantity element 213
resource-env-ref element 192
resource-env-ref-name element 193
resource-ref element 194
resources, unprotected 172
res-ref-name element 192
restrictions

message-driven beans 143

on container-managed persistence 117
on session bean transactions 60
return without commit (bean-managed) 162
rich client 175
RMI/IIOP 48
role mapping elements for sun-gjb-jar.xml file 187
role-link element 169
role-name element 188
roles, security 166
declaring references 169
defining 167
rollback 159
method 161, 163
transactions 163

rom 18
run-asidentity 170

S

sample XML files 145, 217
sas-context element 200
schema 101

schema capture 94, 127, 221
schemaelement 125
schema mapping 223, 229

secondary table 93, 100, 105, 106, 119
example 104
mapping 225, 229
secondary-table element 104

242 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

security 165-172
assembly and deployment 167
declaring method permissions 168
declaring role reference 169
overview 166-167
programmatic security 171
rolereference 167
roles 166
specifying identifies 170
sun-gjb-jar.xml file elements 196
unprotected EJB-tier resources 172
security-identity element 170
security-role element 167, 169
security-role-mapping element 189
security-role-ref element 169
server.xml file
and EJB security 172
message-driven-bean configuration 142
persistence manager configuration 110
session storage 55
setting availability 55, 57
transaction configuration 154
server-name element 189
session beans 39-50
container 41
creating bean class definition 49
developing 42, 60
overview 40
restrictions 60
setting isolation levels 164
transaction attributes 157
session persistence
for stateful session beans 51
for web modules 53
object types supported 51
session-store attribute 55
SessionSynchronization interface 160
setAutoCommit 161
setEntityContext 78
setM essageDrivenContext 139
setRollbackOnly 160, 163
setTransactionlsolation 164
setTransactionTimeout 163
showrev 18
stateful session beans 44

Section T

overview 26
session persistence 51
transactions 162
stateless session beans 43
overview 27
steady-pool-size 213
steady-pool-size element 213
store-pool-jndi-name property 54, 55
stubs and skeletons 175
subelements 179
Sun customer support 18
Sun Java System Application Server
value-added features 20
Sun ONE Studio 5
and CMP 93, 94, 221
and deployment 175, 177
integration 24
sun-cmp-mapping element 101, 126
sun-cmp-mappings element 101, 126
sun-cmp-mappings.xml file 91, 100, 174
elements 118
sample 128
sun-gb-jar element 187
sun-gjb-jar.xml file 58, 59, 110, 174
caching elements 208
class dlements 215
general elements 181
messaging elements 195
persistence elements 201
pooling elements 208
reference elements 189
role mapping elements 187
sample 146, 218
security elements 196
sun-gjb-jar_2_0-0.dtd file 179, 181
Supports attribute 158
Sybase 86
synchronization 83

T

table-name element 126, 127

Index

243

Section U

third-party support for CMP 115
timeouts, setting for transactions 163
transaction attributes for EJBs 157
transaction.timeout property 163
TransactionRequiredException 158
transactions 149-164

administration and monitoring 154

and session persistence 51, 59

bean-managed 152

commit options 153

container-managed 152

demarcation models 152

flat 151

globa 151

isolation levels 163

local 151

message-driven beans 137

nested 151

overview 33, 150-155

rollback 163

setting timeouts 163

specifications 150
transaction-service element 154
transport-config element 200
tutorial for Sun ONE Studio 5 24

U

unique-id element 187
unprotected resources 172
unsetEntityContext 78
URL connections 33
use-caller-identity 170

Vv

validateLogin 49

value added features 20
value additions for product 22
vendors 115, 204

verifier tool 35
victim-selection-policy element 214

X

XA protocol 151

XML files 174
elements 181
overview 38
sample 145, 217

244 Application Server 7 2004Q2 « Developer's Guide to Enterprise JavaBeans Technology

	Application Server 7 Developer’s Guide to Enterprise JavaBeans Technology
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support

	Sun Java System Application Server and Enterprise JavaBeans Technology
	Summary of EJB 2.0 Changes
	EJB Architecture
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching Features
	Monitoring
	Integration with Sun ONE Studio 5
	Dynamic Deployment and Reloading
	High Availability and Load Balancing

	About Enterprise JavaBeans
	What Is an Enterprise JavaBean?
	Types of Beans
	EJB Flow
	The EJB Container
	Interfaces
	Home Interface
	Remote Interface
	Local Interface

	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	How Enterprise Beans Access Resources
	JNDI Connection
	Database Connection
	URL Connections

	Transaction Management
	How Application Security Works

	About Developing an Effective Application
	General Process for Creating Enterprise Beans
	Bean Usage Guidelines
	Client View Guidelines
	Remote or Local Interface Guidelines
	Accessing Sun Java System Application Server Functionality

	About EJB Assembly and Deployment

	Using Session Beans
	About Session Beans
	Session Bean Characteristics
	The Container
	Stateless Container
	Stateful Container

	Developing Session Beans
	Development Requirements
	Determining Session Bean Usage
	Stateless Session Bean Considerations
	Stateful Session Bean Considerations

	Providing Interfaces
	Creating a Remote Interface
	Creating a Local Interface
	Creating the Local Home Interface
	Creating the Remote Home Interface

	Creating the Bean Class Definition
	Session Synchronization
	Abstract Methods

	Stateful Session Bean Failover (Enterprise Edition)
	Choosing a Persistence Store
	Using the Administration Interface
	Editing the server.xml File

	Enabling SFSB Checkpointing
	Server Instance and EJB Container Levels
	Application and EJB Module Levels
	SFSB Level

	Specifying SFSB Methods to Be Checkpointed

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Entity Beans
	About Entity Beans
	Entity Bean Characteristics
	The Container
	Persistence
	Bean-Managed Persistence
	Container-Managed Persistence

	Read-Only Beans

	Developing Entity Beans
	Determining Entity Bean Usage
	Responsibilities of the Bean Developer
	Defining the Primary Key Class
	Defining Remote Interfaces
	Creating the Remote Home Interface
	findByPrimaryKey Method
	Example of a Remote Home interface

	Defining Local Interfaces
	Creating the Local Home Interface
	Creating a Local Interface
	Creating a Remote Interface

	Creating the Bean Class Definition (for Bean-Managed Persistence)
	Using ejbCreate
	Using ejbActivate and ejbPassivate
	Using ejbLoad and ejbStore
	Using setEntityContext and unsetEntityContext
	Using ejbRemove
	Using Finder Methods

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read Only Beans

	Handling Synchronization of Concurrent Access

	Using Container-Managed Persistence for Entity Beans
	Sun Java System Application Server Support
	About Container-Managed Persistence
	CMP Components
	Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships

	Abstract Schema
	Deployment Descriptors
	Persistence Manager

	Using Container-Managed Persistence
	Process Overview
	Phase 1. Creating the mapping deployment descriptor file
	Phase 2. Generating and compiling concrete beans and delegates
	Phase 3. Running in the Sun Java System Application Server runtime

	Mapping Capabilities
	Mapping Features
	Mapping Tool
	Mapping Techniques

	Supported Data Types for Mapping
	BLOB Support
	Using the capture-schema Utility
	Mapping Fields and Relationships
	Specifying the Beans to Be Mapped

	sun-cmp-mappings
	sun-cmp-mapping
	schema
	entity-mapping
	Specifying the Mapping Components

	entity-mapping
	ejb-name
	table-name
	secondary-table
	consistency
	Specifying Field Mappings

	cmp-field-mapping
	field-name
	column-name
	read-only
	fetched-with
	level
	named-group
	none
	Specifying Relationships

	cmr-field-mapping
	cmr-field-name
	column-pair
	column-name
	fetched-with
	Configuring the Resource Manager
	Using EJB QL
	Configuring Queries for 1.1 Finders
	Query Filter Expression
	Query Parameter
	Query Variables

	Third-Party Pluggable Persistence Manager API
	Restrictions and Optimizations
	Unique Database Schema Names in EAR File
	Data Aliasing
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	Sybase Finder Limitation
	Date and Time Fields as CMP Field Types

	Elements in the sun-cmp-mappings.xml File
	check-all-at-commit
	Subelements

	check-modified-at-commit
	Subelements

	cmp-field-mapping
	Subelements

	cmr-field-mapping
	Subelements

	cmr-field-name
	Subelements

	column-name
	Subelements

	column-pair
	Subelements

	consistency
	ejb-name
	Subelements

	entity-mapping
	Subelements

	fetched-with
	Subelements

	field-name
	Subelements

	level
	Subelements

	lock-when-loaded
	Subelements

	lock-when-modified
	Subelements

	named-group
	Subelements

	none
	Subelements

	read-only
	Subelements

	schema
	secondary-table
	Subelements

	sun-cmp-mapping
	Subelements

	sun-cmp-mappings
	Subelements

	table-name
	Subelements

	Examples
	Sample Schema Definition
	Sample CMP Mapping XML File
	Sample EJB QL Queries

	Using Message-Driven Beans
	About Message-Driven Beans
	Message-Driven Beans Differences
	Message-Driven Bean Characteristics
	Transaction Management
	Concurrent Message Processing

	Developing Message-Driven Beans
	Creating the Bean Class Definition
	Using ejbCreate
	Using setMessageDrivenContext
	Using onMessage
	Using ejbRemove

	Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Server instance-wide Attributes
	Automatic Reconnection to JMS Provider

	Restrictions and Optimizations
	JMS Limitation
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	JTA and JTS Transaction Support
	About Transaction Handling
	Flat Transactions
	Global and Local Transactions
	Demarcation Models
	Container-Managed Transactions
	Bean-Managed Transactions

	Commit Options
	Administration and Monitoring

	Using Container-Managed Transactions
	Specifying Transaction Attributes
	Differing Attribute Requirements
	Attribute Values

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean's Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Using Bean-Managed Transactions
	Choosing the Type of Transactions
	JDBC Transactions
	JTA Transactions

	Returning Without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Setting Transaction Timeouts
	Handling Isolation Levels

	Developing Secure Enterprise Beans
	About Secure Enterprise Beans
	Authorization and Authentication
	Security Roles
	Deployment

	Defining Security Roles
	Declaring Method Permissions
	Declaring Security Role References
	Specifying Security Identities
	The run-as Identity

	Using Programmatic Security
	Handling Unprotected EJB-Tier Resources

	Assembling and Deploying Enterprise Beans
	EJB Structure
	Creating Deployment Descriptors
	Deploying Enterprise Beans
	Using the Administration Interface
	Using the Command-Line Interface
	Using the Sun ONE Studio 5 IDE
	Reloading Enterprise Beans
	Deploying to a Cluster (Enterprise Edition)

	The sun-ejb-jar_2_0-0.dtd File Structure
	Subelements
	Data
	Attributes

	Elements in the sun-ejb-jar.xml File
	General Elements
	ejb
	Subelements
	Attributes

	ejb-name
	Subelements

	enterprise-beans
	Subelements

	is-read-only-bean
	Subelements

	refresh-period-in-seconds
	Subelements

	sun-ejb-jar
	Subelements

	unique-id
	Subelements

	Role Mapping Elements
	group-name
	Subelements

	principal
	Subelements

	principal-name
	Subelements

	role-name
	Subelements

	security-role-mapping
	Subelements

	server-name
	Subelements

	Reference Elements
	ejb-ref
	Subelements

	ejb-ref-name
	Subelements

	jndi-name
	Subelements

	pass-by-reference
	Subelements

	res-ref-name
	Subelements

	resource-env-ref
	Subelements

	resource-env-ref-name
	Subelements

	resource-ref
	Subelements

	Messaging Elements
	jms-durable-subscription-name
	Subelements

	jms-max-messages-load
	Subelements

	mdb-connection-factory
	Subelements

	Security Elements
	as-context
	Subelements

	auth-method
	Subelements

	caller-propagation
	Subelements

	confidentiality
	Subelements

	default-resource-principal
	Subelements

	establish-trust-in-client
	Subelements

	establish-trust-in-target
	Subelements

	integrity
	Subelements

	ior-security-config
	Subelements

	name
	Subelements

	password
	Subelements

	realm
	Subelements

	required
	Subelements

	sas-context
	Subelements

	transport-config
	Subelements

	Persistence Elements
	checkpointed-methods
	Subelements

	cmp
	Subelements

	cmp-resource
	Subelements

	concrete-impl
	Subelements

	finder
	Subelements

	is-one-one-cmp
	Subelements

	mapping-properties
	Subelements

	method-name
	Subelements

	one-one-finders
	Subelements

	pc-class
	Subelements

	pm-class-generator
	Subelements

	pm-config
	Subelements

	pm-descriptor
	Subelements

	pm-descriptors
	Subelements

	pm-identifier
	Subelements

	pm-inuse
	Subelements

	pm-mapping-factory
	Subelements

	pm-version
	Subelements

	query-filter
	Subelements

	query-params
	Subelements

	query-variables
	Subelements

	Pooling and Caching Elements
	bean-cache
	Subelements

	bean-pool
	Subelements

	cache-idle-timeout-in-seconds
	Subelements

	commit-option
	Subelements

	is-cache-overflow-allowed
	max-cache-size
	Subelements

	max-pool-size
	Subelements

	max-wait-time-in-millis
	pool-idle-timeout-in-seconds
	Subelements

	removal-timeout-in-seconds
	Subelements

	resize-quantity
	Subelements

	steady-pool-size
	Subelements

	victim-selection-policy
	Subelements

	Class Elements
	gen-classes
	Subelements

	local-home-impl
	Subelements

	local-impl
	Subelements

	remote-home-impl
	Subelements

	remote-impl
	Subelements

	Sample EJB XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	CMP Mapping with the Sun ONE Studio 5 Interface
	Mapping CMP Beans
	Capturing a Schema
	Mapping Existing Enterprise Beans to a Schema
	Mapping Relationship Fields

	EJB Persistence Properties

	Elements Listings
	sun-ejb-jar.xml File Elements
	sun-cmp-mappings.xml File Elements

	Index

