
Sun Java™ System

Application Server 7
Developer’s Guide to Enterprise

JavaBeans Technology
2004Q2

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-5049

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the FAR and its supplements.
Use is subject to license terms. This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, JDK, JVM, Java Naming and Directory Interface, JavaMail, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject
to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l’adresse
http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC. SON
UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’AUTORISATION EXPRESSE, ECRITE ET PREALABLE
DE SUN MICROSYSTEMS, INC.
L’utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer Pages, JSP,
JDBC, JDK, JVM, Java Naming and Directory Interface, JavaMail, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans d’autres pays
dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers les pays sous embargo
américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation
américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

About This Guide . 11

Who Should Use This Guide . 11
Using the Documentation . 12
How This Guide Is Organized . 14
Related Information . 15
Documentation Conventions . 15

General Conventions . 16
Conventions Referring to Directories . 17

Contacting Sun . 17
Give Us Feedback . 17
Obtain Training . 18
Contact Product Support . 18

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology . . 19
Summary of EJB 2.0 Changes . 20
EJB Architecture . 21
Value Added Features . 22

Read-Only Beans . 23
pass-by-reference . 23
Pooling and Caching Features . 23
Monitoring . 24
Integration with Sun ONE Studio 5 . 24
Dynamic Deployment and Reloading . 24
High Availability and Load Balancing . 25

About Enterprise JavaBeans . 25
What Is an Enterprise JavaBean? . 25
Types of Beans . 26
EJB Flow . 27
The EJB Container . 28
Interfaces . 29

4 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Home Interface . 29
Remote Interface . 29
Local Interface . 30

Pooling and Caching . 30
Pooling Parameters . 31
Caching Parameters . 31

How Enterprise Beans Access Resources . 32
JNDI Connection . 32
Database Connection . 32
URL Connections . 33

Transaction Management . 33
How Application Security Works . 33

About Developing an Effective Application . 34
General Process for Creating Enterprise Beans . 34
Bean Usage Guidelines . 35
Client View Guidelines . 36
Remote or Local Interface Guidelines . 37
Accessing Sun Java System Application Server Functionality . 37

About EJB Assembly and Deployment . 38

Chapter 2 Using Session Beans . 39
About Session Beans . 40

Session Bean Characteristics . 40
The Container . 41

Stateless Container . 41
Stateful Container . 42

Developing Session Beans . 42
Development Requirements . 43
Determining Session Bean Usage . 43

Stateless Session Bean Considerations . 43
Stateful Session Bean Considerations . 44

Providing Interfaces . 45
Creating a Remote Interface . 45
Creating a Local Interface . 46
Creating the Local Home Interface . 47
Creating the Remote Home Interface . 48

Creating the Bean Class Definition . 49
Session Synchronization . 50
Abstract Methods . 50

Stateful Session Bean Failover (Enterprise Edition) . 51
Choosing a Persistence Store . 53

Using the Administration Interface . 54
Editing the server.xml File . 55

Contents 5

Enabling SFSB Checkpointing . 55
Server Instance and EJB Container Levels . 56
Application and EJB Module Levels . 57
SFSB Level . 58

Specifying SFSB Methods to Be Checkpointed . 59
Restrictions and Optimizations . 60

Optimizing Session Bean Performance . 60
Restricting Transactions . 60

Chapter 3 Using Entity Beans . 61
About Entity Beans . 62

Entity Bean Characteristics . 62
The Container . 63
Persistence . 63

Bean-Managed Persistence . 64
Container-Managed Persistence . 65

Read-Only Beans . 65
Developing Entity Beans . 65

Determining Entity Bean Usage . 66
Responsibilities of the Bean Developer . 66
Defining the Primary Key Class . 67
Defining Remote Interfaces . 67

Creating the Remote Home Interface . 67
findByPrimaryKey Method . 68
Example of a Remote Home interface . 69

Defining Local Interfaces . 70
Creating the Local Home Interface . 70
Creating a Local Interface . 70
Creating a Remote Interface . 72

Creating the Bean Class Definition (for Bean-Managed Persistence) . 74
Using ejbCreate . 75
Using ejbActivate and ejbPassivate . 76
Using ejbLoad and ejbStore . 76
Using setEntityContext and unsetEntityContext . 78
Using ejbRemove . 79
Using Finder Methods . 79

Using Read-Only Beans . 79
Read-Only Bean Characteristics and Life Cycle . 80
Read-Only Bean Good Practices . 81
Refreshing Read-Only Beans . 81

Invoking a Transactional Method . 81
Refreshing Periodically . 81
Refreshing Programmatically . 82

6 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Deploying Read Only Beans . 82
Handling Synchronization of Concurrent Access . 83

Chapter 4 Using Container-Managed Persistence for Entity Beans 85
Sun Java System Application Server Support . 86
About Container-Managed Persistence . 87

CMP Components . 87
Relationships . 88

One-to-One Relationships . 90
One-to-Many Relationships . 90
Many-to-Many Relationships . 90

Abstract Schema . 90
Deployment Descriptors . 91
Persistence Manager . 92

Using Container-Managed Persistence . 92
Process Overview . 93

Phase 1. Creating the mapping deployment descriptor file . 93
Phase 2. Generating and compiling concrete beans and delegates . 94
Phase 3. Running in the Sun Java System Application Server runtime . 95

Mapping Capabilities . 95
Mapping Features . 95
Mapping Tool . 95
Mapping Techniques . 96

Supported Data Types for Mapping . 96
BLOB Support . 98
Using the capture-schema Utility . 99
Mapping Fields and Relationships . 100

Specifying the Beans to Be Mapped . 101
Specifying the Mapping Components . 102
Specifying Field Mappings . 105
Specifying Relationships . 108

Configuring the Resource Manager . 110
Using EJB QL . 111
Configuring Queries for 1.1 Finders . 111

Query Filter Expression . 112
Query Parameter . 113
Query Variables . 114

Third-Party Pluggable Persistence Manager API . 115
Restrictions and Optimizations . 116

Unique Database Schema Names in EAR File . 116
Data Aliasing . 116
Eager Loading of Field State . 117
Restrictions on Remote Interfaces . 117

Contents 7

Sybase Finder Limitation . 117
Date and Time Fields as CMP Field Types . 118

Elements in the sun-cmp-mappings.xml File . 118
Examples . 127

Sample Schema Definition . 127
Sample CMP Mapping XML File . 128
Sample EJB QL Queries . 130

Chapter 5 Using Message-Driven Beans . 135
About Message-Driven Beans . 136

Message-Driven Beans Differences . 136
Message-Driven Bean Characteristics . 137
Transaction Management . 137
Concurrent Message Processing . 138

Developing Message-Driven Beans . 138
Creating the Bean Class Definition . 138

Using ejbCreate . 139
Using setMessageDrivenContext . 139
Using onMessage . 139
Using ejbRemove . 140

Configuration . 141
Connection Factory and Destination . 141
Message-Driven Bean Pool . 141
Server instance-wide Attributes . 142
Automatic Reconnection to JMS Provider . 142

Restrictions and Optimizations . 143
JMS Limitation . 143
Pool Tuning and Monitoring . 144
onMessage Runtime Exception . 144

Sample Message-Driven Bean XML Files . 145
Sample ejb-jar.xml File . 145
Sample sun-ejb-jar.xml File . 146

Chapter 6 Handling Transactions with Enterprise Beans . 149
JTA and JTS Transaction Support . 150
About Transaction Handling . 150

Flat Transactions . 151
Global and Local Transactions . 151
Demarcation Models . 152

Container-Managed Transactions . 152
Bean-Managed Transactions . 152

Commit Options . 153

8 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Administration and Monitoring . 154
Using Container-Managed Transactions . 155

Specifying Transaction Attributes . 156
Differing Attribute Requirements . 157
Attribute Values . 157

Rolling Back a Container-Managed Transaction . 159
Synchronizing a Session Bean's Instance Variables . 160
Methods Not Allowed in Container-Managed Transactions . 161

Using Bean-Managed Transactions . 161
Choosing the Type of Transactions . 161

JDBC Transactions . 162
JTA Transactions . 162

Returning Without Committing . 162
Methods Not Allowed in Bean-Managed Transactions . 163

Setting Transaction Timeouts . 163
Handling Isolation Levels . 163

Chapter 7 Developing Secure Enterprise Beans . 165
About Secure Enterprise Beans . 166

Authorization and Authentication . 166
Security Roles . 166
Deployment . 167

Defining Security Roles . 167
Declaring Method Permissions . 168
Declaring Security Role References . 169
Specifying Security Identities . 170

The run-as Identity . 170
Using Programmatic Security . 171
Handling Unprotected EJB-Tier Resources . 172

Chapter 8 Assembling and Deploying Enterprise Beans . 173
EJB Structure . 174
Creating Deployment Descriptors . 174
Deploying Enterprise Beans . 175

Using the Administration Interface . 176
Using the Command-Line Interface . 176
Using the Sun ONE Studio 5 IDE . 177
Reloading Enterprise Beans . 178
Deploying to a Cluster (Enterprise Edition) . 178

The sun-ejb-jar_2_0-0.dtd File Structure . 179
Subelements . 179
Data . 180

Contents 9

Attributes . 180
Elements in the sun-ejb-jar.xml File . 181

General Elements . 181
Role Mapping Elements . 187
Reference Elements . 189
Messaging Elements . 195
Security Elements . 196
Persistence Elements . 201
Pooling and Caching Elements . 208
Class Elements . 215

Sample EJB XML Files . 217
Sample ejb-jar.xml File . 217
Sample sun-ejb-jar.xml File . 218

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface . 221
Mapping CMP Beans . 221

Capturing a Schema . 221
Mapping Existing Enterprise Beans to a Schema . 223
Mapping Relationship Fields . 226

EJB Persistence Properties . 229

Appendix B Elements Listings . 231
sun-ejb-jar.xml File Elements . 231
sun-cmp-mappings.xml File Elements . 234

Index . 237

10 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

11

About This Guide

This Developer’s Guide to Enterprise JavaBeans Technology describes how to create and
implement Java™ 2 Platform, Enterprise Edition (J2EE™ platform) applications that
follow the Enterprise JavaBeans™ (EJB™) specification in the Sun Java™ System
Application Server Standard and Enterprise Editions 7 environment. In addition to briefly
describing EJB programming concepts and tasks, this guide offers sample code,
implementation tips, and reference material. Topics include container-managed persistence,
read-only beans, and the XML and DTD files associated with enterprise beans.

This preface addresses the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Contacting Sun

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and deploys
beans in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• Java programming

• Java APIs as defined in the Java™ Servlet, JavaServer Pages™ (JSP™), Enterprise
JavaBeans™ (EJB™), and Java™ Database Connectivity (JDBC™) specifications

Using the Documentation

12 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• The SQL structured database query languages

• Relational database concepts

• Software development processes, including debugging and source code control

Using the Documentation
The Sun Java System Application Server Standard and Enterprise Edition manuals are
available as online files in Portable Document Format (PDF) and Hypertext Markup
Language (HTML).

The following table lists tasks and concepts described in the Sun Java System Application
Server manuals. The manuals marked (updated for 7 2004Q2) have been updated for the
Sun Java System Application Server Standard and Enterprise Edition 7 2004Q2 release.
The manuals not marked in this way have not been updated since the version 7 Enterprise
Edition release.

Table 1 Sun Java System Application Server Documentation Roadmap
For information about See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

Release Notes

Sun Java System Application Server 7 overview, including the features available
with each product edition.

Product Overview

Diagrams and descriptions of server architecture and the benefits of the Sun Java
System Application Server architectural approach.

Server Architecture

(Updated for 7 2004Q2) How to get started with the Sun Java System Application
Server product. Includes a sample application tutorial. There are two guides, one for
Standard Edition and one for Enterprise Edition.

Getting Started Guide

(Updated for 7 2004Q2) Installing the Sun Java System Application Server Standard
Edition and Enterprise Edition software and its components, such as sample
applications and the Administration interface. For the Enterprise Edition software,
instructions are provided for implementing the high-availability configuration.

Installation Guide

(Updated for 7 2004Q2) Evaluating your system needs and enterprise to ensure that
you deploy Sun Java System Application Server in a manner that best suits your
site. General issues and concerns that you must be aware of when deploying an
application server are also discussed.

System Deployment Guide

Using the Documentation

About This Guide 13

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components such as servlets, Enterprise
JavaBeans™ (EJBs™), and JavaServer Pages™ (JSPs™). Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

Developer’s Guide

(Updated for 7 2004Q2) Creating and implementing J2EE web applications that
follow the Java™ Servlet and JavaServer Pages (JSP) specifications on the Sun
Java System Application Server. Discusses web application programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include results caching, JSP precompilation, session management, security,
deployment, SHTML, and CGI.

Developer’s Guide to Web
Applications

(Updated for 7 2004Q2) Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the Sun Java System
Application Server. Discusses Enterprise JavaBeans (EJB) programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include container-managed persistence, read-only beans, and the XML and
DTD files associated with enterprise beans.

Developer’s Guide to Enterprise
JavaBeans Technology

(Updated for 7 2004Q2) Creating Application Client Container (ACC) clients that
access J2EE applications on the Sun Java System Application Server.

Developer’s Guide to Clients

Creating web services in the Sun Java System Application Server environment. Developer’s Guide to Web
Services

(Updated for 7 2004Q2) Java™ Database Connectivity (JDBC™), transaction, Java
Naming and Directory Interface™ (JNDI), Java™ Message Service (JMS), and
JavaMail™ APIs.

Developer’s Guide to J2EE
Services and APIs

Creating custom NSAPI plug-ins. Developer’s Guide to NSAPI

(Updated for 7 2004Q2) Information and instructions on the configuration,
management, and deployment of the Sun Java System Application Server
subsystems and components, from both the Administration interface and the
command-line interface. Topics include cluster management, the high-availability
database, load balancing, and session persistence. A comprehensive Sun Java
System Application Server glossary is included.

Administration Guide

(Updated for 7 2004Q2) Editing Sun Java System Application Server configuration
files, such as the server.xml file.

Administrator’s Configuration
File Reference

Configuring and administering security for the Sun Java System Application Server
operational environment. Includes information on general security, certificates, and
SSL/TLS encryption. HTTP server-based security is also addressed.

Administrator’s Guide to
Security

Table 1 Sun Java System Application Server Documentation Roadmap (Continued)
For information about See the following

How This Guide Is Organized

14 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

How This Guide Is Organized
This guide contains the following documentation components:

• “Sun Java System Application Server and Enterprise JavaBeans Technology”

• “Using Session Beans”

• “Using Entity Beans”

• “Using Container-Managed Persistence for Entity Beans”

• “Using Message-Driven Beans”

• “Handling Transactions with Enterprise Beans”

• “Developing Secure Enterprise Beans”

• “Assembling and Deploying Enterprise Beans”

• “CMP Mapping with the Sun ONE Studio 5 Interface”

Configuring and administering service provider implementation for J2EE™
Connector Architecture (CA) connectors for the Sun Java System Application
Server. Topics include the Administration Tool, Pooling Monitor, deploying a JCA
connector, and sample connectors and sample applications.

J2EE CA Service Provider
Implementation Administrator’s
Guide

(Updated for 7 2004Q2) Migrating your applications to the new Sun Java System
Application Server programming model, specifically from iPlanet Application Server
6.x and Sun ONE Application Server 7.0. Includes a sample migration.

Migrating and Redeploying
Server Applications Guide

(Updated for 7 2004Q2) How and why to tune your Sun Java System Application
Server to improve performance.

Performance Tuning Guide

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
problems.

Troubleshooting Guide

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
error messages.

Error Message Reference

(Updated for 7 2004Q2) Utility commands available with the Sun Java System
Application Server; written in manpage style.

Utility Reference Manual

Using the Sun™ Java System Message Queue 3.5 software. The Sun Java System
Message Queue
documentation at:

http://docs.sun.com/db?p=
prod/s1.s1msgqu

Table 1 Sun Java System Application Server Documentation Roadmap (Continued)
For information about See the following

http://docs.sun.com/db?p=prod/s1.s1msgqu

Related Information

About This Guide 15

• “Elements Listings”

Related Information
In addition to the information in the Sun Java System Application Server documentation
collection listed in “Using the Documentation” on page 12, the following resources may be
helpful:

• J2EE Specifications

http://java.sun.com/products/

• Enterprise JavaBeans Specification, Version 2.0

http://java.sun.com/products/ejb/docs.html#specs

• General EJB product information:

http://java.sun.com/products/ejb

• Java Software tutorials:

http://java.sun.com/docs/books/tutorial/

• Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing,
ISBN 0-596-00226-2

http://www.oreilly.com/catalog/entjbeans3/

• Enterprise Beans Technology book index

http://developer.java.sun.com/developer/Books/ejbtechnology.html

• Enterprise JavaBeans Design Patterns, ISBN 0-471-20831-0

• Core J2EE Patterns, ISBN 0-13-064884-1

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

http://java.sun.com/products/
http://java.sun.com/products/ejb/docs.html#specs
http://java.sun.com/products/ejb
http://java.sun.com/docs/books/tutorial/
http://www.oreilly.com/catalog/entjbeans3/
http://developer.java.sun.com/developer/Books/ejbtechnology.html

Documentation Conventions

16 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes separating
directory names). For Windows versions, the directory paths are the same, except that
backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is your
Internet domain name; path is the server’s directory structure; and file is an individual
filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), file names, pathnames,
directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in the
literal sense.

• Installation root directories for most platforms are indicated by install_dir in this
document. Exceptions are noted in “Conventions Referring to Directories” on page 17.

By default, the location of install_dir on most platforms is:

❍ Solaris and Linux file-based installations:

user’s home directory/sun/appserver7

❍ Windows, all installations:

system drive:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are identical
to install_dir. See “Conventions Referring to Directories” on page 17 for exceptions
and additional information.

• Instance root directories are indicated by instance_dir in this document, which is an
abbreviation for the following:

default_config_dir/domains/domain/instance

Contacting Sun

About This Guide 17

• UNIX-specific descriptions throughout this manual apply to the Linux operating
system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris package-based or Linux RPM-based installation, the
application server files are spread across several root directories. This guide uses the
following document conventions to correspond to the various default installation directories
provided:

• install_dir refers to /opt/SUNWappserver7, which contains the static portion of the
installation image. All utilities, executables, and libraries that make up the application
server reside in this location.

• default_config_dir refers to /var/opt/SUNWappserver7/domains, which is the default
location for any domains that are created.

• install_config_dir refers to /etc/opt/SUNWappserver7/config, which contains
installation-wide configuration information such as licenses and the master list of
administrative domains configured for this installation.

Contacting Sun
You might want to contact Sun Microsystems in order to:

• Give Us Feedback

• Obtain Training

• Contact Product Support

Give Us Feedback
If you have general feedback on the product or documentation, please send this to:

http://www.sun.com/hwdocs/feedback/

http://www.sun.com/hwdocs/feedback/

Contacting Sun

18 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Obtain Training
Application Server training courses are available at:

http://training.sun.com/US/catalog/enterprise/web_application.html/

Visit this site often for new course availability on the Sun Java System Application Server.

Contact Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs and its
impact on your operation

• Machine type, operating system version, and product version, including any patches
and other software that might be affecting the problem. Here are some of the
commonly used commands:

❍ Solaris: pkginfo, showrev

❍ Linux: rpm

❍ All: asadmin version --verbose

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

• Configuration files such as:

❍ instance_dir/config/server.xml

❍ a web application’s web.xml file,
when a web application is involved in the problem

• For an application, whether the problem appears when it is running in a cluster or
standalone

http://training.sun.com/US/catalog/enterprise/web_application.html/
http://www.sun.com/supportraining/

19

Chapter 1

Sun Java System Application Server
and Enterprise JavaBeans

Technology

This section provides an overview of how the Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) Enterprise JavaBeans™ (EJB™) technology works in the application
programming model of the Sun Java™ System Application Server Standard and Enterprise
Editions 7.1 environment.

This section addresses the following topics:

• Summary of EJB 2.0 Changes

• EJB Architecture

• Value Added Features

• About Enterprise JavaBeans

• About Developing an Effective Application

• About EJB Assembly and Deployment

NOTE If you are unfamiliar with the EJB technology, refer to the Java Software
tutorials:

http://java.sun.com/docs/books/tutorial/

and the J2EE specifications:

http://java.sun.com/products/

Overview material on the Sun Java System Application Server is contained
in the Sun Java System Application Server Product Introduction.

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/products/

Summary of EJB 2.0 Changes

20 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Relevant files supplied with the Sun Java System Application Server are contained in the
following locations:

• Sun Java System Application Server DTD files:

install_dir/lib/dtds

• Sun Java System Application Server sample applications:

install_dir/samples

Summary of EJB 2.0 Changes
Sun Java System Application Server supports the Sun Microsystems Enterprise JavaBeans
(EJB) architecture as defined by the Enterprise JavaBeans Specification, v2.0 and is
compliant with the Enterprise JavaBeans Specification, v1.1.

This section summarizes the changes in the Enterprise JavaBeans Specification, v2.0 that
impact enterprise beans in the Sun Java System Application Server environment:

• Container-managed persistence—Provides a new way of handling container-managed
persistence. See “Using Container-Managed Persistence for Entity Beans” on page 85.

• Container-managed relationships—Allows you to define relationships between entity
beans. See “Assembling and Deploying Enterprise Beans” on page 173.

• Message-driven beans—This new type of enterprise bean is a Java Message Service
consumer. “Using Message-Driven Beans” on page 135.

• Local interfaces—Session and entity beans can implement a local interface.
Container-managed EJB relationships are now based on the local interface. See
“Creating a Local Interface” on page 70.

• Additional methods on the home interface—Allow you to implement business logic
that is independent of a specific entity bean instance. See “Creating the Remote Home
Interface” on page 67.

• New query language (EJB QL)—The new EJB Query Language (EJB QL) provides for
navigation across a network of entity beans defined by container-managed
relationships. See “Using EJB QL” on page 111.

NOTE You can deploy existing 1.1 beans in the Sun Java System Application
Server, but new beans should be developed as 2.0 enterprise beans.

EJB Architecture

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 21

EJB Architecture
The Sun Java System Application Server reduces the complexity of developing middleware
by providing automatic support for middleware services such as transactions, security,
database connectivity, and more.

The following figure illustrates where enterprise beans fit in the J2EE environment. In this
figure the client machine is running a web browser or application client, the J2EE server
machine is running (or hosting) the Sun Java System Application Server, and the database
server machine hosts the databases, such as Oracle and LDAP. Enterprise beans reside in
the business tier, with JavaServer Pages™ (JSP™ pages) and servlets providing the
interface to the client tier, and the Sun Java System Application Server managing the
relationships between the client and database machines.

The Sun Java System Application Server is responsible for providing the base of the EJB
execution systems, which include:

• A standard set of EJB services

• Distributed transaction management services

• A means of data store access or backend system connection

• An EJB container to implement the management and control services for the EJB
classes

Value Added Features

22 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The following figure illustrates further details of the J2EE environment. The business logic
layer shows the EJB flow.

Value Added Features
The Sun Java System Application Server provides a number of value additions that relate to
EJB development. These capabilities are discussed in the following sections (references to
more in-depth material are included):

• Read-Only Beans

RDBMS

Client
layer

Client Server EIS

Presentation
layer

Web container

JMS provider

EJB container

Business
Logic layer

Data
Access layer

Data
layer

Web
Service
client

JMS
client

Browser

Browser

Legacy
application

JSP

JSP

Servlet

Servlet

HTML

EJB

EJB

EJB Connector

Connector

MDB Connector

Application
Client container

RMI/IIOP
client

Servlet

JDBC

Value Added Features

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 23

• pass-by-reference

• Pooling and Caching Features

• Monitoring

• Integration with Sun ONE Studio 5

• Dynamic Deployment and Reloading

• High Availability and Load Balancing

Read-Only Beans
Another feature that the Sun Java System Application Server provides is the read-only
bean, an entity bean that is never modified by an EJB client. Read-0nly beans avoid
database updates completely.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Sun Java System Application Server provides a number of ways by which a read-only
bean’s state can be refreshed. By setting the refresh-period-in-seconds element and the
transaction attribute of the bean, it is easy to configure a read-only bean that is (a) always
refreshed, (b) periodically refreshed, (c) never refreshed, or (d) programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Read-Only Beans”
on page 65.

pass-by-reference
The pass-by-reference element in the sun-ejb-jar.xml file allows you to specify the
passing method/argument type used by enterprise beans. This is an opportunity to improve
performance. See “pass-by-reference” on page 191.

Pooling and Caching Features
The Sun Java System Application Server provides a highly configurable bean pooling
mechanism that allows the deployer to configure bean pools according to the needs of the
enterprise.

Value Added Features

24 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

In addition, the Sun Java System Application Server supports a number of tunable
parameters that can be used to control the number of beans cached as well as the duration
they are cached. Multiple bean instances that refer to the same database row in a table can
be cached.

Refer to “Pooling and Caching” on page 30 for information on this functionality.

Monitoring
The Sun Java System Application Server supports monitoring of many aspects of the
runtime environment, including various elements of the EJB container which can be useful
for debugging your application's correctness as well as tuning its performance.

See the Sun Java System Application Server Administration Guide (Monitoring and
Managing Sun Java System Application Server section) and the Performance Tuning Guide
for more information on monitoring.

Integration with Sun ONE Studio 5
Sun ONE Studio 5, Enterprise Edition for Java is an integrated development environment
(IDE) that allows you to create, assemble, deploy, and debug code in the Sun Java System
Application Server from a single, easy-to-use interface. Behind the scenes, a plug-in
integrates the Sun ONE Studio 5 IDE with the Sun Java System Application Server.

For more information about using the Sun ONE Studio 5, see the Sun ONE Studio 5,
Enterprise Edition tutorial and “CMP Mapping with the Sun ONE Studio 5 Interface” on
page 221.

Dynamic Deployment and Reloading
You can deploy, redeploy, and undeploy an application or standalone module. If this is done
while the server is running, it is considered dynamic. The following dynamic processes are
available in Sun Java System Application Server:

• Dynamic reloading—Enables reloading the classes that constitute an application when
they change on disk.

• Dynamic redeployment (for the developer community)—Enables redeploying an
existing application without restarting the server. You can ALSO disable and enable an
application or module without undeploying it.

About Enterprise JavaBeans

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 25

For more information on dynamic deployment, refer to the Sun Java System Application
Server Developer’s Guide and Administration Guide.

High Availability and Load Balancing
Stateful session bean sessions and HTTP sessions can be saved in a persistent store in case a
server instance fails. For more information, see “Stateful Session Bean Failover (Enterprise
Edition)” on page 51, the Sun Java System Application Server Administration Guide, and
the Sun Java System Application Server Developer’s Guide to Web Applications.

Sticky round-robin load balancing is supported in the Sun Java System Application Server
through the load balancer plug-in for web servers. For information about the load balancer
plug-in, see the Sun Java System Application Server Administration Guide.

About Enterprise JavaBeans
If you are already familiar with enterprise beans and how they work, you may prefer to
proceed to “About Developing an Effective Application” on page 34.

The following topics are discussed in this section:

• What Is an Enterprise JavaBean?

• Types of Beans

• EJB Flow

• The EJB Container

• Interfaces

• Pooling and Caching

• How Enterprise Beans Access Resources

• Transaction Management

• How Application Security Works

What Is an Enterprise JavaBean?
An enterprise bean, or Enterprise JavaBean (EJB), is a self-contained, reusable component
that has data members, properties, and methods. Each enterprise bean encapsulates one or
more application tasks or objects, including data structures and operation methods.

About Enterprise JavaBeans

26 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• Enterprise bean methods can take parameters and send back return values.

• Enterprise bean creation and management is handled at runtime by the container.

• Client access mediation is handled by the container and the server where the bean is
deployed.

• Enterprise beans are restricted to using standard container services defined by the
Enterprise JavaBeans Specification, v2.0. This guarantees that the bean is portable and
deployable in any EJB-compliant container.

• Enterprise beans are components that can be assembled, without recompiling, into a
composite application.

• A client’s bean definition view is controlled entirely by the bean developer. The view is
not affected by the container in which the bean runs or the server where the bean is
deployed.

For several reasons, enterprise beans simplify the development of large, distributed
applications.

• Container-provided services—Because the EJB container provides system-level
services to enterprise beans, the bean developer can concentrate on solving business
problems. The EJB container—not the bean developer—is responsible for system-level
services such as transaction management and security authorization.

• Remote clients—Because the enterprise beans, not the clients, contain the application's
business logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules or
access databases. As a result, the clients are thinner, a benefit that is particularly
important for clients that run on small devices.

• Bean reusability—Because enterprise beans are portable components, the application
assembler can build new applications from existing beans. These applications can run
on any compliant J2EE server.

Types of Beans
There are three distinct types of enterprise beans:

• Session bean, stateful or stateless

❍ A stateful session bean is intended to represent objects and processes that maintain
state across invocations, such as a document copy for editing, or specialized
business objects for individual clients.

About Enterprise JavaBeans

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 27

❍ A stateless session bean encapsulates a transient or temporary piece of business
logic needed by a specific client that does not maintain state across invocations.

❍ Refer to “Using Session Beans” on page 39 for information on developing session
beans.

• Entity bean—An entity bean commonly represents persistent data which is maintained
directly in a database or accessed through an Enterprise Information System (EIS)
application as an object.

❍ Bean-managed persistence—The bean is responsible for its own persistence. The
entity bean code that you write contains the calls that access the database. For
information on developing entity beans in general and bean-managed persistence
in particular, refer to “Using Entity Beans” on page 61.

❍ Container-managed persistence—The enterprise bean container handles all
database access required by the entity bean by interacting through the persistence
manager. For information on container-managed persistence, refer to “Using
Container-Managed Persistence for Entity Beans” on page 85.

• Message-driven bean—A message-driven bean represents a stateless service; it is
essentially an asynchronous message consumer, invoked by the Java™ Message Service
(JMS), that is completely anonymous and has no client-visible identity.

Refer to “Using Message-Driven Beans” on page 135, for information on developing
message-driven beans.

EJB Flow
When a user invokes a Sun Java System Application Server servlet from a browser, the
servlet may invoke one or more enterprise beans. For example, the servlet may load a
JavaServer Page (JSP) to the user’s browser to request a user name and password, then pass
the user input to a session bean to validate the input.

After a valid user name and password combination is accepted, the servlet might instantiate
one or more entity and session beans to run the application’s business logic, then terminate.
The beans themselves might instantiate other entity or session beans to do further business
logic and data processing.

Servlet/JSP
User Interface

EJB
Business Logic DB

App Client

About Enterprise JavaBeans

28 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Sample Scenario
A servlet invokes a session bean that gives a customer service representative access to an
order database. This access might include the ability to:

• Browse the database

• Queue items for purchase

• Place customer orders

• Permanently reduce number of parts in the database

• Bill the customer

• Reorder parts when the stock is low or depleted.

As part of the customer order process, a servlet creates a session bean that manages a
shopping cart to keep temporary track of items as a customer selects them. When the order
completes, the shopping cart data transfers to the order database and the shopping cart
session bean is freed.

The EJB Container
Enterprise beans always work within the context of a container. The container serves as a
link between the enterprise beans and the hosting server. The EJB container enables
distributed application building using your own components and components from other
suppliers.

Through the container, the Sun Java System Application Server provides high-level
transaction management, security management, state management (persistence),
multithreading, and resource pooling wrappers, thereby shielding you from having to know
the low-level API details. By handling concurrency, the container shields you from worry
about entities (hence, threads) simultaneously accessing an enterprise bean. This container
provides all standard container services denoted by the Enterprise JavaBeans Specification,
v2.0, and also provides additional services specific to the Sun Java System Application
Server.

The Sun Java System Application Server services include remote access, naming service,
security service, concurrency, transaction control, and database access. The following
figure illustrates the EJB container provided by the Sun Java System Application Server.

About Enterprise JavaBeans

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 29

Interfaces
A client never accesses session or entity EJB instances directly. Instead, a client uses the
bean’s remote interface to access a bean instance. The EJB object class that implements a
bean’s remote interface is provided by the container.

Home Interface
The home interface provides a mechanism for clients to create and destroy and find EJBs.
The EJB supplies a home interface for the container that extends the javax.ejb.EJBHome
interface defined in the EJB specification. At its most basic, the home interface defines zero
or more create methods for each way to create a bean.

Entity beans must define finder methods for each way that can be used to look up a bean or
a collection of beans.

Remote Interface
A remote interface (and remote home interface) provides a mechanism for remote clients to
access session or entity beans. A remote client can be another EJB deployed in the same or
a different container, or a Java program, such as an application, applet, or servlet. The
remote client view of an EJB is location independent and can be mapped to non-Java client
environments.

The remote home interface is defined by the EJB developer and implemented by the EJB
container.

TransactionsTransactions Naming

EJB EJBEJB EJB

EJB Container

EJB

Sun Java System Application Server

ConcurrencySecurityRemote Access

DB Persistence

About Enterprise JavaBeans

30 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Local Interface
A local interface (and local home interface) provides a mechanism for a client that is
located in the same Java™ Virtual Machine (JVM™) with the session or entity bean to
access that bean.This provides the local client view. A local client may be tightly coupled to
the associated bean; session and entity beans can have many local clients.

The container provides the class that implements the local home interface and local
interface. The objects that implement these interfaces are local Java objects. The local client
view of an EJB is not location independent.

The following diagram shows a local client connecting through the local interfaces within
the two enterprise beans in the container.

The local interface may be defined for a bean during development, to allow streamlined
calls to the bean if a caller is in the same container.

Pooling and Caching
The EJB container of the Sun Java System Application Server pools anonymous instances
(message-driven beans, stateless session beans, and entity beans) to reduce the overhead of
creating and destroying objects. The EJB container maintains the free pool for each bean
that is deployed. Bean instances in the free pool have no identity (that is, no primary key
associated) and are used to serve the method calls of the home interface. The free beans are
also used to serve all methods for stateless session beans.

EJB object

EJB home

EJB local object

EJB local home

Container

EJB local object
Client

Java Virtual Machine

About Enterprise JavaBeans

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 31

Bean instances in the free pool transition from a Pooled state to a Cached state after
ejbCreate and the business methods run. The size and behavior of each pool can be
controlled using the pool-related properties in the server.xml and sun-ejb-jar.xml files.

The EJB container caches "stateful" instances (stateful session beans and entity beans) in
memory to improve performance. The EJB container maintains a cache for each bean that is
deployed.

To achieve scalability, the container will selectively evicts some bean instances from the
cache, usually when cache overflows. These evicted bean instances return to the free bean
pool. The size and behavior of each cache can be controlled using the cache-related
properties in the server.xml and sun-ejb-jar.xml files.

Pooling and caching parameters for the sun-ejb-jar.xml file are discussed in “Pooling and
Caching Elements” on page 208.

Pooling Parameters
One of the most important parameters of Sun Java System Application Server pooling is
steady-pool-size. When steady-pool-size is set to greater than 0, the container not only
pre-populates the bean pool with the specified number of beans, but also attempts to ensure
that there is always this many beans in the free pool. This ensures that there are enough
beans in the ready to serve state to process user requests.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify,
through the amount of time a bean instance can be idle in the pool. When
pool-idle-timeout-in-seconds is set to greater than 0, the container removes/destroys any
bean instance that is idle for this specified duration.

Caching Parameters
Sun Java System Application Server provides a way that completely avoids caching of
entity beans, using commit-c option. Commit-c option is particularly useful if beans are
accessed in large number but very rarely reused. For additional information, refer to
“Commit Options” on page 153.

The Sun Java System Application Server caches can be either bounded or unbounded.
Bounded caches have limits on the number of beans that they can hold beyond which beans
are passivated. For stateful session beans, there are three ways (LRU, NRU and FIFO) of
picking victim beans when cache overflow occurs. Caches can also be configured to
passivate beans that were idle (not accessed for a specified duration) to be passivated.

About Enterprise JavaBeans

32 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

How Enterprise Beans Access Resources
Enterprise beans can access a wide variety of resources, including databases, JavaMail™
sessions, JMS objects, and URLs. The J2EE platform provides mechanisms that allow you
to access all of these resources in a similar manner.

This section discusses the following:

• JNDI Connection

• Database Connection

• URL Connections

JNDI Connection
J2EE components locate the objects they need to access by invoking the lookup method of
the Java Naming and Directory Interface™ (JNDI) API. The value returned by this call
represents the object that the caller wants to access. In the case of an enterprise beans, the
lookup call returns an object reference to the home interface of the bean. This reference may
be used for all future invocations on the EJB home interface.

Context initial = new InitialContext();
Object objref =

initial.lookup("java:comp/env/ejb/CompString");

A J2EE component on the server (a JSP, servlet, or enterprise bean) that wants to access a
deployed enterprise bean, uses an EJB reference element in its deployment descriptor to
specify this access. The EJB reference is mapped at deployment time to the JNDI name
corresponding to the enterprise bean that the component wishes to access. This mapping
serves to decouple components accessing enterprise beans from the JNDI names of the
beans being accessed. Thus, the JNDI name to which an EJB's home is bound may be
changed at deployment time without requiring the caller's code to change.

Database Connection
The persistence type of an enterprise bean determines whether or not you will code the
connection routine for accessing a database.

• For beans that access a database and do not use container-managed persistence—You
are responsible for writing persistence code. Such beans include entity beans that use
bean-managed persistence and session beans.

• For beans that use container-managed persistence—Connection routines are generated
for you at deployment. Applies only to entity beans.

About Enterprise JavaBeans

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 33

URL Connections
A Uniform Resource Locator (URL) specifies the location of a resource on the web, such as
web pages. These URLs then can be mapped to JNDI names so that developers can lookup
the URLs.

Transaction Management
By dividing the application’s work into units called transactions, you are freed from dealing
with the complex issues of database failure recovery and maintaining database integrity.

As a developer, you can choose between using programmatic transaction demarcation in the
EJB code (bean-managed) or declarative demarcation (container-managed). Regardless of
whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the EJB container
and the Sun Java System Application Server. The container and the server implement the
necessary low-level transaction protocols, such as the two-phase commit protocol, between
a transaction manager and a database system or Sun Java™ System Message Queue.

For information on transaction handling, refer to “Handling Transactions with Enterprise
Beans” on page 149.

How Application Security Works
The J2EE application programming model insulates developers from mechanism-specific
implementation details of application security. For the most part, the container provides the
implementation of the security infrastructure. J2EE provides this insulation in a way that
enhances the portability of applications, allowing them to be deployed in diverse security
environments with no additional coding.

The declarative security mechanisms used in an application are expressed in the
deployment descriptor. The deployer then uses specific Sun Java System Application
Server tools to map the application requirements that are in a deployment descriptor to the
security mechanisms that are implemented by the container.

Refer to “Developing Secure Enterprise Beans” on page 165 for further information. For
information on security realms, refer to the Sun Java System Application Server
Developer’s Guide.

About Developing an Effective Application

34 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

About Developing an Effective Application
Partitioning a Sun Java System Application Server application’s business logic and data
processing into the most effective set of servlets, JSPs, session beans, entity beans, and
message-driven beans is the crux of your job as a developer. There are no specific rules for
object-oriented design with enterprise beans, other than that entity bean instances tend to be
long lived, persistent, and shared among clients, while session bean instances tend to be
short lived and used only by a single client. Message-driven beans are in their own category
as the only asynchronous receivers of JMS messages.

In general, your goal is to create a Sun Java System Application Server application that
effectively balances the need for execution speed with the need for sharing enterprise beans
(among applications and clients) and easily deploying applications across servers.

High-level information and guidelines which can help you develop enterprise beans in the
Sun Java System Application Server environment are addressed in the following sections:

• General Process for Creating Enterprise Beans

• Bean Usage Guidelines

• Client View Guidelines

• Remote or Local Interface Guidelines

• Accessing Sun Java System Application Server Functionality

General Process for Creating Enterprise Beans
The procedure in this section outlines the general process of creating an enterprise bean.
Specific instructions on creating the various types of enterprise beans are contained in the
sections referenced in the following steps.

To create an enterprise bean:

1. Create a directory for all the enterprise bean’s files.

2. Decide on the type of enterprise bean you are creating:

❍ Session bean (Refer to “Developing Session Beans” on page 42.)

• Stateful

• Stateless

❍ Entity bean (Refer to “Developing Entity Beans” on page 65.)

• With bean-managed persistence

About Developing an Effective Application

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 35

• With container-managed persistence (Refer to “Using Container-Managed
Persistence” on page 92.)

❍ Message-driven bean (Refer to “Developing Message-Driven Beans” on
page 138.)

3. Write the code for the enterprise bean according to the EJB specification, including:

❍ A local and/or remote home interface

❍ A local and/or remote interface

❍ An implementation class (for a message-driven bean, this is all you need; refer to
“Developing Message-Driven Beans” on page 138)

4. Compile the interfaces and classes.

5. Create the META-INF directory and the other structural requirements of an enterprise
bean.

6. Create the deployment descriptor files, ejb-jar.xml and sun-ejb-jar.xml. (Refer to
“Assembling and Deploying Enterprise Beans” on page 173.)

If the bean is an entity bean with container-managed persistence, you must also create a
sun-cmp-mappings.xml file and a .dbschema file. (Refer to “Using Container-Managed
Persistence” on page 92.)

7. Package the class and the XML files to a JAR file, if desired. If you are using directory
deployment, this is optional.

8. Deploy the bean by itself or include it in a J2EE application. (Refer to the Sun Java
System Application Server Developer’s Guide.)

It’s a good idea to verify the structure of these files using the verifier tool as described in the
Sun Java System Application Server Developer’s Guide.

Bean Usage Guidelines
Deciding which parts of an application are candidates for entity beans and which are
candidates for session beans (stateful or stateless) or message-driven beans will have a
significant impact on the effectiveness of your application. In general:

• Use a stateful bean to store non-shared data that corresponds to the user conversational
state, that is, a state specific to a single user.

• Use a stateless session bean to access data or perform transactional operations.

About Developing an Effective Application

36 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• Create session beans that are small, generic, and narrowly task focused. Ideally, these
enterprise beans encapsulate behavior that is used in many applications.

• Ask the application assembler to co-locate enterprise beans with your presentation
logic (servlets and JSPs) on the same server. This reduces the number of Remote
Procedure Calls (RPCs) when the application runs.

• The applications should explicitly remove the beans using the ejbRemove method when
they are no longer required, thereby reducing the overhead on the container (by
eliminating the passivation process).

• Unique naming is optional across enterprise beans in different applications, although
applications do need to be named uniquely within the context of a single application
server instance. That is, enterprise beans within an application cannot have the same
name.

For further information on EJB developer guidelines, refer to “Using Session Beans” on
page 39, “Using Entity Beans” on page 61, and “Using Message-Driven Beans” on
page 135.

Client View Guidelines
The choice between the use of local and remote interfaces is a design decision that you, the
developer, make when developing an enterprise bean. The following facts should be taken
into account in determining whether the local or remote programming model should be
used:

• The remote programming model provides location independence and flexibility with
regard to deployment. The client and enterprise bean are loosely coupled.

• Remote calls involve pass-by-value, providing a layer of isolation between caller and
callee. This protects against inadvertent modification of data.

• For local objects, pass-by-reference is optional and is not mandated by the J2EE
specification

• Remote calls are potentially expensive.

• Remote calls require that objects that are passed as parameters be serializable.

• Narrowing remote types requires the use of
javax.rmi.PortableRemote.Object.narrow rather than Java language casts.

• Remote calls involve error cases that are not expected in local calls. The client has to
explicitly program handlers for these remote exceptions.

About Developing an Effective Application

Chapter 1 Sun Java System Application Server and Enterprise JavaBeans Technology 37

• Because of the overhead of remote programming, it is typically used for relatively
coarse-grained component access.

• Local calls can optionally involve pass-by-reference. The client and the bean may be
programmed to rely on pass-by-reference semantics. Locals calls imply that the local
client and the enterprise bean must be co-located.

• Because local programming provides lighter-weight access to a component, it better
supports more fine-grained component access.

• Be aware of the potential sharing of objects passed through the local interface.

For additional information, refer to the Enterprise JavaBeans Specification, v2.0.

Remote or Local Interface Guidelines
With all object-oriented development, you must determine the granularity level needed for
your business logic and data processing. Granularity level refers to how many pieces to
divide an application into.

• A low level of granularity (a low number of beans and bean method invocations)—A
more monolithic application is developed, creating an application that is not as likely to
promote sharing and reuse, but usually executes more quickly.

• A high level of granularity (a high number of beans and bean method invocations)—An
application is divided into many, smaller, more narrowly defined enterprise beans. This
creates an application that may promote greater sharing and reuse of enterprise beans
among different applications at your site.

• Dividing a distributed application into a moderate to large number of separate beans
degrade performance degradation and more overhead. Enterprise beans are not simply
Java objects; they are higher-level entities with remote call interface semantics,
security semantics, transaction semantics, and properties. This complexity creates
overhead.

Accessing Sun Java System Application Server
Functionality
You can develop entity beans that adhere strictly to the Enterprise JavaBeans Specification,
v2.0, or you can develop entity beans that take advantage of both the specification and
additional, value-added Sun Java System Application Server features.

About EJB Assembly and Deployment

38 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The Sun Java System Application Server offers several features available only in the Sun
Java System Application Server container. The Sun Java System Application Server APIs
enable applications to take programmatic advantage of specific Sun Java System
Application Server environment features.

About EJB Assembly and Deployment
The process of assembling modules and applications in Sun Java System Application
Server conforms to all customary J2EE specifications. However, you can include Sun Java
System Application Server-specific deployment descriptors that enhance the functionality
of the Sun Java System Application Server beyond the J2EE specifications.

A J2EE module is a collection of one or more J2EE components with two deployment
descriptors of that type. One descriptor is J2EE standard, the other is specific to Sun Java
System Application Server. For enterprise beans, the following deployment descriptor files
apply:

• ejb-jar.xml—J2EE standard file

• sun-ejb-jar.xml—Sun Java System Application Server-specific file

• sun-cmp-mappings.xml—Sun Java System Application Server-specific file used for
container-managed persistence mapping

Information on the EJB DTDs and XML files is contained in “Assembling and Deploying
Enterprise Beans” on page 173. An alphabetical list of all EJB-related elements is contained
in “Elements Listings” on page 231.

General information on assembly and deployment is contained in the Sun Java System
Application Server Developer’s Guide.

Deployment procedures are contained in the Sun Java System Application Server
Administration Guide and the Administration interface online help.

NOTE Use these APIs only if you plan on using those beans exclusively in a Sun
Java System Application Server environment.

39

Chapter 2

Using Session Beans

This section provides guidelines for creating session beans in the Sun Java System
Application Server environment.

This section addresses the following topics:

• About Session Beans

• Developing Session Beans

• Stateful Session Bean Failover (Enterprise Edition)

• Restrictions and Optimizations

Extensive information on session beans is contained in the chapters 6, 7, and 8 of the
Enterprise JavaBeans Specification, v2.0.

NOTE If you are unfamiliar with session beans or the EJB technology, refer to the
Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on session beans is contained in chapters 6, 7, and 8
of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

http://java.sun.com/j2ee/docs.html

About Session Beans

40 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

About Session Beans
This section provides an overview of what you need to be aware of about session beans in
order to develop effective models for your business processes.

This section addresses the following topics:

• Session Bean Characteristics

• The Container

Session Bean Characteristics
The defining characteristics of a session bean have to do with its non-persistent,
independent status within an application. One way to think of a session bean is as a
temporary, logical extension of a client application that runs on the Sun Java System
Application Server. Generally, a session bean does not represent shared data in a database,
but obtains a data snapshot. However, a session bean can update data.

Session beans have the following characteristics:

• Execute for a single client.

• Can be transaction aware.

• Do not represent directly shared data in an underlying database, although they may
access and update this data.

• Are short lived.

• Are not persisted in a database.

• Are removed if the container crashes; the client has to establish a new session.

Much of a standard, distributed application consists of logical code units that perform
repetitive, time-bound, and user-dependent tasks. These tasks can be simple or complex,
and are often needed in different applications. For example, banking applications must
verify a user’s account ID and balances before performing any transaction. Such discrete
tasks, transient by nature, are candidates for session beans.

About Session Beans

Chapter 2 Using Session Beans 41

Sample Scenario
The shopping cart employed by many web-based, online shopping applications is a typical
use for a session bean. It is created by the online shopping application only when an item is
selected by the user. When selection is completed, the item prices in the cart are calculated,
the order is placed, and the shopping cart object is released, or freed. A user can continue
browsing merchandise in the online catalog, and if the user decides to place another order, a
new shopping cart is created.

Often, a session bean has no dependencies on or connections to other application objects.
For example, a shopping cart bean might have a data list member for storing item
information, a data member for storing the total cost of items currently in the cart, and
methods for adding, subtracting, reporting, and totaling items. On the other hand, the
shopping cart might not have a live connection to the database at all.

The Container
Like an entity bean, a session bean can access a database through Java™ Database
Connectivity (JDBC™) calls. A session bean can also provide transaction settings. These
transaction settings and JDBC calls are referenced by the session bean’s container, allowing
it to participate in transaction managed by the container.

A container managing stateless session beans has a different charter from a container
managing stateful session beans.

Stateless Container
The stateless container manages the stateless session beans, which, by definition, do not
carry client-specific states. Therefore, all session beans (of a particular type) are considered
equal.

A stateless session bean container uses a bean pool to service requests. The Sun Java
System Application Server-specific XML file contains the properties that define the pool:

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

These properties are defined for the deployment descriptor in “Elements in the
sun-ejb-jar.xml File” on page 181.

Developing Session Beans

42 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Stateful Container
The stateful container manages the stateful session beans (SFSBs), which, by definition,
carry the client-specific state. There is a one-to-one relationship between the client and the
SFSBs. At creation, each SFSB is given a unique session ID that is used to access the
session bean so that an instance of an SFSB is accessed by a single client only.

SFSBs are managed using cache. The size and behavior of SFSBs cache can be controlled
by specifying the following parameters:

• max-cache-size

• resize-quantity

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are
held in cache. If the cache overflows (when the number of beans exceeds
max-cache-size), the container then passivates some beans or writes out the serialized
state of the bean into a file. The directory in which the file is created is obtained from the
server.xml file using the configuration APIs.

These properties are defined in the deployment descriptor. See “Elements in the
sun-ejb-jar.xml File” on page 181 for more information.

The passivated beans are stored on the file system.The session-store attribute in the
server element in the server.xml file allows the administrator to specify the directory
where passivated beans are stored. By default, passivated SFSBs are stored in
application-specific subdirectories created under instance_dir/session-store.

Developing Session Beans
When a client is done with the session bean, it is released, or freed. When designing an
application, you should designate each temporary, single client object as a potential session
bean.

The following sections discuss how to develop effective session beans:

• Development Requirements

• Determining Session Bean Usage

• Providing Interfaces

Developing Session Beans

Chapter 2 Using Session Beans 43

• Creating the Bean Class Definition

Development Requirements
When developing a session bean, you must provide the following:

• Session bean’s remote interface and remote home interface, if the session bean
provides a remote client view

• Session bean’s local interface and local home interface, if the session bean provides a
local client view

• Bean class implementation

• Assembly and deployment data

Requirements of a session bean implementation class:

• Implements the javax.ejb SessionBean interface.

• The class is defined as public, and cannot be defined as abstract or final.

• Implements one ejbCreate method that takes no arguments.

• Implements the business methods.

• Contains a public constructor with no parameters.

• Must not define the finalize method.

Determining Session Bean Usage
This section provides some guidelines for determining whether to implement stateful or
stateless session beans.

• Stateless Session Bean Considerations

• Stateful Session Bean Considerations

Stateless Session Bean Considerations
You might choose a stateless session bean if any of these conditions exist:

• The bean’s state has no data for a specific client, that is, user conversational state does
not have to be retained across method invocations on the bean.

Developing Session Beans

44 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• In a single method invocation, the bean performs an atomic task that is generic across
all clients. For example, a stateless bean could be used to return the weather forecast
based on a ZIP code.

• The bean fetches a set of read-only data (from a database) that is often used by clients.
Such a bean, for example, could retrieve the table rows that represent the products that
are on sale this month.

Use a stateless session bean to access data or perform transactional operations. Stateless
session beans provide high scalability because a small number of such beans managed by
the container in a stateless bean pool) can help serve a large number of clients. This is
possible because stateless beans have no association with the clients. When a request for a
service provided by a stateless session bean is received, the container is free to dispatch the
request to any bean instance in the pool.

• The create method of the remote home interface must return the session bean’s
remote interface.

• The create method of the local interface must return the session bean’s local
interface.

• There can be no other create methods in the home interface.

• A stateless session bean must not implement the
javax.ejb.SessionSynchronization interface.

Stateful Session Bean Considerations
SFSBs are appropriate if any of the following conditions are true:

• The bean’s state represents the interaction between the bean and a specific client.

• The bean needs to hold session state information about, or on behalf of, the client user
across method invocations.

• The bean mediates between the client and the other components of the application,
presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several enterprise beans.

• The application must accept requests from non-web-based clients as well as web-based
clients, at the same time preserving session state information.

Because SFSBs are private to a client, their demand on server resources increases as the
number of users accessing an application increases. The beans remain in the container until
they are explicitly removed by the client, or are removed by the container when they are
timed out.

Developing Session Beans

Chapter 2 Using Session Beans 45

The container needs to passivate SFSBs to secondary storage as its cache fills up and the
beans in the cache timeout. If the client subsequently accesses the bean, the container is
responsible for activating the bean. This passivation/activation process imposes a
performance overhead on the server.

For information about how a stateful session bean’s state can be saved in a persistent store
in case a server instance fails, see “Stateful Session Bean Failover (Enterprise Edition)” on
page 51.

Providing Interfaces
As the developer, you are responsible for providing interfaces for the bean. If you
implement a remote view for your bean, provide a remote component interface and a remote
home interface. If you implement a local view, provide a local component interface and a
local home interface.

To use interfaces safely, you need to carefully consider potential deployment scenarios,
then decide which interfaces can be local and which remote, and finally, develop the
application code with these choices in mind.

The following sections discuss creating interfaces:

• Creating a Remote Interface

• Creating a Local Interface

• Creating the Local Home Interface

• Creating the Remote Home Interface

Creating a Remote Interface
A session bean’s remote interface defines a client’s access to a bean’s methods. All remote
interfaces extend javax.ejb.EJBObject. For example:

import javax.ejb.*;
import java.rmi.*;
public interface MySession extends EJBObject {

// define business methods here...
public String getAccountname() throws RemoteException;

}

For each method you define in the bean class, you must supply a corresponding method in
the remote interface. The remote interface method must have the same name, signature,
return type, and exceptions thrown as the corresponding method in the bean class. In
addition, the remote interface method must throw a RemoteException.

Developing Session Beans

46 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

For example, the implementation class for MySession might look like this:

public class MySessionBean implements SessionBean {
private String accountname;

public MySessionBean() { }

public void ejbCreate() { }

public String getAccountname() {
return accountname;

}
}

Creating a Local Interface
The local interface may be defined for a bean during development to allow streamlined calls
to the bean if a caller is in the same container, that is, running in the same address space or
Java Virtual Machine (JVM). This improves the performance of applications in which
co-location is planned.

However, the calling semantics of local interfaces are different from those of remote
interfaces. For example, remote interfaces pass parameters using pass-by-value semantics,
while local interfaces use pass-by-reference. As a developer, you must be aware of the
potential sharing of objects passed through the local interface. In particular, be careful that
the state of one enterprise bean is not assigned to the state of another. You must also
exercise caution in determining which objects to pass across the local interface, particularly
in the case where there is a change in transaction or security content.

The local interface extends the javax.ejb.EJBLocalObject interface, and is allowed to
have super interfaces. The throws clause of a method defined in the local interface must
not include java.rmi.RemoteException. For example:

import javax.ejb.*;
public interface MyLocalSession extends EJBLocalObject {

// define business method methods here....
}

For each method defined in the local interface, there must be a matching method in the
session bean’s class. The matching method must have the same name, the same number and
types of arguments, and the same return type. All exceptions defined in the throws clause
of the matching method of the session bean class must be defined in the throws clause of
the method of the local interface. The methods should not throw a
java.rmi.RemoteException.

Developing Session Beans

Chapter 2 Using Session Beans 47

Creating the Local Home Interface
The home interface defines the methods that enable a client using the application to create
and remove session beans. An enterprise bean’s local home interface defines the methods
that allow local clients to create, find, and remove EJB objects, as well as home business
methods that are not specific to a bean instance (session beans do not have finders and home
business methods). The local home interface is defined by you and implemented by the
container. A client locates a session bean’s home interface using JNDI.

The local home interface allows a local client to:

• Create a new session object

• Remove a session object

A local home interface always extends javax.ejb.EJBLocalHome. For example:

import javax.ejb.*;
import java.rmi.*;

public interface MySessionLocalBeanHome extends EJBLocalHome {
MySessionLocalBean create() throws CreateException;

}

Create Methods
As this example illustrates, a session bean's home interface defines one or more create
methods. Each method must be named create, and must correspond in number and
argument types to an ejbCreate method defined in the session bean class. The return type
for each create method, however, does not match its corresponding ejbCreate method's
return type. Instead, it must return the session bean's local interface type.

All exceptions defined in the throws clause of an ejbCreate method must be defined in
the throws clause of the matching create method in the remote interface. In addition, the
throws clause in the home interface must always include javax.ejb.CreateException.

Remove Methods
A remote client may remove a session object using the remove method on the
javax.ejb.EJBObject interface, or the remove(Handle handle) method of the
javax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EBJHome.remove(Object primaryKey) method on a session results in
javax.ejbRemoveException.

Developing Session Beans

48 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Creating the Remote Home Interface
The container provides the implementation of the remote home interface for each session
bean that defines a remote home interface that is deployed in the container. The object that
implements this is called a session EJBHome object. The remote home interface allows a
client to do the following:

• Create a new session object

• Remove a session object

• Get the javax.ejb.EJBMetaData interface for the session bean

• Obtain a handle for the remote home interface

The remote home interface must extend the javax.ejb.EJBHome interface, and is allowed
to have super interfaces. The methods defined in the interface must follow the rules for
RMI/IIOP.

The remote home interface must define one or more create<METHOD>(...) methods.

A remote home interface always extends javax.ejb.EJBHome. For example:

import javax.ejb.*;
import java.rmi.*;

public interface MySessionHome extends EJBHome {
MySession create() throws CreateException, RemoteException;

}

As this example illustrates, a session bean’s home interface defines one or more create
methods. The return type for each create method, however, does not match its
corresponding ejbCreate method's return type. Instead, it must return the session bean's
remote interface type.

All exceptions defined in the throws clause of an ejbCreate method must be defined in
the throws clause of the matching create method in the remote interface. In addition, the
throws clause in the home interface must always include javax.ejb.CreateException
and java.rmi.RemoteException.

NOTE For stateless session beans, the home interface must have exactly one
create method and the bean must have exactly one ejbCreate method.
Both methods take no arguments.

Developing Session Beans

Chapter 2 Using Session Beans 49

Creating the Bean Class Definition
For a session bean, the bean class must be defined as public, must not be final, and
cannot be abstract. The bean class must implement the javax.ejb.SessionBean
interface.

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MySessionBean implements SessionBean {

// Session Bean implementation. These methods must always included.
public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void setSessionContext(SessionContext ctx) {
}

// other code omitted here....
}

The session bean must implement one or more ejbCreate(...) methods. There must be
one method for each way a client invokes the bean. For example:

public void ejbCreate() {
string[] userinfo = {"User Name", "Encrypted Password"} ;

}

Each ejbCreate(...) method must be declared as public, return void, and be named
ejbCreate. Arguments must be legal Java RMI types. The throws clause may define
application specific exceptions and java.ejb.CreateException.

Session beans also implement one or more business methods. These methods are usually
unique to each bean and represent its particular functionality. For example, if a session bean
manages user logins, it might include a unique function called validateLogin.

Business method names can be anything, but must not conflict with the method names
defined in the EJB interfaces. Business methods must be declared as public. Method
arguments and return value types must be legal for Java RMI. The throws clause may
define application specific exceptions.

Developing Session Beans

50 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Session Synchronization
There is one interface implementation permitted in an SFSB class definition, particularly
javax.ejb.SessionSynchronization, that enables a session bean instance to be
notified of transaction boundaries and synchronize its state with those transactions.

The javax.ejb.SessionSynchronization interface allows an SFSB instance to be
notified by its container of transaction boundaries. A session bean class is optional to
implement this interface. A session bean class should implement this interface only if you
want to synchronize its state with the transactions. For example, an SFSB that implements
this interface will get callbacks after a new transaction begins, but before a transaction
commits, and after commitment.

For more information about this interface, see the Enterprise JavaBeans Specification, v2.0.

Abstract Methods
Besides the business methods you define in the remote interface, the EJBObject interface
defines several abstract methods that enable you to:

• Retrieve the bean’s home interface

• Retrieve the bean’s handle (a unique identifier)

• Compare the bean to another bean to see if it is identical

• Free or remove the bean when it is no longer needed.

For more information about these built-in methods and how they can be used, see the
Enterprise JavaBeans Specification, v2.0.

The deployment tools provided by the container are responsible for the generation of
additional classes when the session bean is deployed.

NOTE The container will only invoke the session synchronization interface
methods for SFSBs that use container-managed transactions.

Stateful Session Bean Failover (Enterprise Edition)

Chapter 2 Using Session Beans 51

Stateful Session Bean Failover (Enterprise
Edition)

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state
of an SFSB is saved to the persistent store at predefined points in its life cycle. This is called
checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be
undergoing transition as a result of the method invocation, this is not an appropriate instant
to checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at
the end of the corresponding method, provided the bean is not in the scope of another
transaction when that method ends. If a bean-managed transaction spans across multiple
methods, checkpointing is delayed until there is no active transaction at the end of a
subsequent method.

The state of an SFSB is not necessarily transactional and could be significantly modified as
a result of non-transactional business methods. If this is the case for an SFSB, you can
specify a list of checkpointed methods. If SFSB checkpointing is enabled, checkpointing
occurs after any checkpointed methods are completed.

The following table lists the types of references that SFSB failover supports. All objects
bound into an SFSB must be one of the supported types. In the table, No indicates that
failover for the object type may not work in all cases and that no failover support is
provided. However, failover may work in some cases for that object type. For example,
failover may work because the class implementing that type is serializable.

Table 2-1 Object Types Supported for J2EE Stateful Session Bean State Failover
Java Object Type Failover Support

EntityBean local home reference, local object
reference

Yes

Stateful SessionBean local home reference Yes

Stateful SessionBean local object reference Yes

Stateless SessionBean local home reference,
local object reference

Yes

Co-located EntityBean remote home reference,
remote reference

Yes

Co-located Stateful SessionBean remote home
reference

Yes

Stateful Session Bean Failover (Enterprise Edition)

52 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

For more information about the InitialContext, transaction recovery, and Administered
Objects, see the Sun Java System Application Server Developer's Guide to J2EE Services
and APIs.

Co-located Stateful SessionBean remote
reference

Yes

Co-located Stateless SessionBean remote
home reference, remote reference

Yes

Distributed EntityBean remote home reference,
remote reference

Yes

Distributed Stateful SessionBean remote home
reference, remote reference

Yes

Distributed Stateless SessionBean remote
home reference, remote reference

Yes

JNDI Context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never
restarted, any prepared global transactions are
lost and may not be correctly rolled back or
committed

JDBC DataSource No

Java™ Message Service (JMS)
ConnectionFactory, Destination

No

JavaMail™ Session No

Connection Factory No

Administered Object No

Web service reference No

Serializable Java types Yes

Table 2-1 Object Types Supported for J2EE Stateful Session Bean State Failover (Continued)
Java Object Type Failover Support

Stateful Session Bean Failover (Enterprise Edition)

Chapter 2 Using Session Beans 53

You configure SFSB failover by:

• Choosing a Persistence Store

• Enabling SFSB Checkpointing

• Specifying SFSB Methods to Be Checkpointed (optional)

Choosing a Persistence Store
Two types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

• The local file system - Allows a single server instance to recover the SFSB state after a
failure and restart. This store also provides passivation and activation of the state to
help control the amount of memory used. This option is not supported in a production
environment that requires SFSB state persistence. This is the default storage
mechanism.

NOTE Idempotent URLs are supported along the HTTP path, but not the
RMI/IIOP path. For more information, see the Sun Java System Application
Server Administration Guide.

If a server instance to which an RMI/IIOP client request is sent crashes
during the request processing (before the response could be prepared and
sent back to the client), an error is propagated to the client. The client must
retry the request explicitly. When the client retries the request, the request
is sent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP sessions can also be saved in a persistent store in case a server
instance fails. In addition, if a distributable web application references an
SFSB, and the web application’s session fails over, the EJB reference is
also failed over. For more information, see the Sun Java System Application
Server Release Notes.

If you undeploy an SFSB that uses session persistence while the Sun Java
System Application Server instance is stopped, the session data in the
persistence store may not be cleared. To prevent this, undeploy the SFSB
while the Sun Java System Application Server instance is running.

Stateful Session Bean Failover (Enterprise Edition)

54 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• The high-availability database (HADB) - Allows a cluster of server instances to
recover the SFSB state if any server instance fails. The HADB is also used as the
passivation and activation store. Use this option in a production environment that
requires SFSB state persistence. For information about how to set up and configure this
database, see the Administration Guide.

You can choose the persistence store in the following ways:

• Using the Administration Interface

• Editing the server.xml File

Using the Administration Interface
You can use the Administration interface to choose the HADB persistence store. To use this
tool, follow these steps:

1. Open the Availability Service component under your server instance.

2. Go to the Availability Service page.

3. Check the Instance Level Availability box.

4. Click on the Save button.

5. Click Properties under Persistence Store Properties.

6. In the Name field, type store-pool-jndi-name.

7. In the Value field, type the JNDI name of the HADB JDBC Resource. The assumed
default is jdbc/hastore. For more information, see the Administration Guide.

8. Click on the Save button.

9. Go to the server instance page.

10. Apply Changes and restart the server.

For information about how to configure the HADB persistence store, see the
Administration Guide.

If availability is disabled, the local file system is used for SFSB state passivation, but not
persistence. To change the location where the SFSB state is stored, follow these steps:

1. Go to the server instance page.

2. Click on the Advanced tab.

3. Edit the Session Store Location value.

4. Click on the Save button.

Stateful Session Bean Failover (Enterprise Edition)

Chapter 2 Using Session Beans 55

5. Click on the General tab.

6. Apply Changes and restart the server.

Editing the server.xml File
The presence of the store-pool-jndi-name property in the server.xml file specifies
that the HADB is used for SFSB state persistence. Note that
availability-enabled="true" must also be set. The absence of this property and
attribute specifies that the local file system is used. The element hierarchy in the
server.xml file looks like this when the HADB is configured:

<server name="server1" ... >
...
<availability-service availability-enabled="true">

<persistence-store>
<property name="store-pool-jndi-name" value="jdbc/hastore"/>

</persistence-store>
</availability-service>
...

</server>

For information about how to configure the persistence store, see the Administration Guide.

The session-store attribute in the server.xml file determines where the SFSB state is
stored if the local file system is used for SFSB state persistence. For example:

<server name="server1" ... session-store="/export/sfsbstore">

These changes to the server.xml file take effect when you restart the server.

Enabling SFSB Checkpointing
SFSB checkpointing can be enabled at five different levels:

1. The server instance

2. The EJB container

3. The application

4. The EJB module

5. The SFSB itself

For SFSB checkpointing to be enabled at a given level, it must be enabled at all higher
levels as well. For example, to enable SFSB checkpointing at the application level, you
must also enable it at the server instance and EJB container levels.

Stateful Session Bean Failover (Enterprise Edition)

56 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The default for a given level is the setting at the next level up. For example, if SFSB
checkpointing is enabled at the EJB container level, it is enabled by default at the
application level.

When SFSB checkpointing is disabled at the server instance level (the default setting),
enabling it at any other level has no effect. When SFSB checkpointing is enabled at the
server instance level, it is enabled at all levels unless explicitly disabled.

The following sections describe how to enable SFSB checkpointing:

• Server Instance and EJB Container Levels

• Application and EJB Module Levels

• SFSB Level

Server Instance and EJB Container Levels
To enable SFSB checkpointing at the server instance level, see “Choosing a Persistence
Store” on page 53.

You can enable SFSB checkpointing at the EJB container level in the following ways:

• Using the Administration Interface

• Using the asadmin Command

• Editing the server.xml File

Using the Administration Interface
To enable SFSB checkpointing at the EJB container level using the Administration
interface, follow these steps:

1. Open the Availability Service component under your server instance.

2. Go to the Availability Service page.

3. Make sure that Instance Level Availability is checked.

4. Make sure that Ejb Container Availability is set to either Enabled or Specified by
Instance.

5. Click on the Save button.

6. Go to the server instance page.

7. Apply Changes and restart the server.

Stateful Session Bean Failover (Enterprise Edition)

Chapter 2 Using Session Beans 57

Using the asadmin Command
To enable SFSB checkpointing at the EJB container level, use the asadmin set command
as follows, then restart the server:

asadmin set --user admin_user [--password admin_password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure | -s]
instance_name.ejb-container.availabilityEnabled=true

Editing the server.xml File
To enable SFSB checkpointing at the EJB container level, set
availability-enabled="true" in the ejb-container element of the server.xml file
as follows, then restart the server:

<server name="server1">
...
<ejb-container ... availability-enabled="true"/>
...

</server>

Application and EJB Module Levels
You can enable SFSB checkpointing at the application or EJB module level during
deployment. For details, see “Deploying Enterprise Beans” on page 175.

As an alternative, you can edit the server.xml file. To enable SFSB checkpointing at the
application level, set availability-enabled="true" in the j2ee-application
element of the server.xml file as follows, then restart the server:

<server name="server1">
...
<applications>

...
<j2ee-application

name="MyApp"
location="instance_dir/applications/j2ee-apps/MyApp"
availability-enabled="true">

</j2ee-application>
...

</applications>
...

</server>

Stateful Session Bean Failover (Enterprise Edition)

58 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

To enable SFSB checkpointing at the EJB module level, set
availability-enabled="true" in the ejb-module element of the server.xml file as
follows, then restart the server:

<server name="server1">
...
<applications>

...
<ejb-module

name="MyBean"
location="instance_dir/applications/j2ee-modules/MyBean"
availability-enabled="true">

</ejb-module>
...

</applications>
...

</server>

SFSB Level
To enable SFSB checkpointing at the SFSB level, set availability-enabled="true" in
the ejb element of the SFSB’s sun-ejb-jar.xml file as follows:

<sun-ejb-jar>
...
<enterprise-beans>

...
<ejb availability-enabled="true">

<ejb-name>MySFSB</ejb-name>
</ejb>
...

</enterprise-beans>
</sun-ejb-jar>

Stateful Session Bean Failover (Enterprise Edition)

Chapter 2 Using Session Beans 59

Specifying SFSB Methods to Be Checkpointed
If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction
involving the SFSB is completed, even if the transaction rolls back.

You can specify additional optional checkpointing of SFSBs at the end of non-transactional
business methods that cause important modifications to the bean’s state. To do so, you
specify a semicolon-separated list of method signatures in the checkpointed-methods
element within the ejb element in sun-ejb-jar.xml. The listed methods must have the
same signatures as those in the corresponding home or client interface of the SFSB, and the
parameter class names must be fully qualified (for example, java.lang.String rather
than just String).

For example:

<sun-ejb-jar>
...
<enterprise-beans>

...
<ejb availability-enabled="true">

<ejb-name>ShoppingCartEJB</ejb-name>
<checkpointed-methods>

create(int);addToCart(int, java.lang.String, CartDAO)
</checkpointed-methods>

</ejb>
...

</enterprise-beans>
</sun-ejb-jar>

The non-transactional methods in the checkpointed-methods list can be:

• create() methods defined in the home interface of the SFSB, if you want to
checkpoint the initial state of the SFSB immediately after creation

• For SFSBs using container managed transactions only, methods in the remote interface
of the bean marked with the transaction attribute TX_NOT_SUPPORTED or
TX_NEVER

• For SFSBs using bean managed transactions only, methods in which a bean managed
transaction is neither started nor committed

Any other methods mentioned in this list are ignored. At the end of invocation of each of
these methods, the EJB container saves the state of the SFSB to persistent store.

Restrictions and Optimizations

60 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some
optimization guidelines:

• Optimizing Session Bean Performance

• Restricting Transactions

Optimizing Session Bean Performance
For SFSBs, co-locating the stateful beans with their clients so that the client and bean are
executing in the same process address space will improve performance.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be
observed as you develop session beans:

• A session bean can participate in, at most, a single transaction at a time.

• If a session bean is participating in a transaction, a client cannot invoke a method on the
bean such that the transaction attribute in the deployment descriptor would cause the
container to execute the method in a different or unspecified transaction context or an
exception is thrown.

• If a session bean instance is participating in a transaction, a client cannot invoke the
remove method on the session object’s home or component interface object or an
exception is thrown.

NOTE If an SFSB does not participate in any transaction, and if none of its
methods are explicitly specified in the checkpointed-methods element,
the bean’s state is not checkpointed at all even if
availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods
chosen should accomplish a significant amount of work in the context of
the J2EE application or should result in some important modification to the
bean’s state.

61

Chapter 3

Using Entity Beans

This section describes entity beans and explains the requirements for creating them in the
Sun Java System Application Server environment.

This section addresses the following topics:

• About Entity Beans

• Developing Entity Beans

• Using Read-Only Beans

• Handling Synchronization of Concurrent Access

NOTE If you are unfamiliar with entity beans or the EJB technology, refer to the
Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on entity beans is contained in chapters 9, 10, 12, 13,
and 14 of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

NOTE If you are already familiar with entity beans and are only concerned with
container-managed persistence, go to “Using Container-Managed
Persistence for Entity Beans” on page 85.

http://java.sun.com/j2ee/docs.html

About Entity Beans

62 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

About Entity Beans
An entity bean implements an object view of an entity stored in an underlying database, or
an entity implemented by an existing enterprise application (for example, by a mainframe
program or by an ERP application). Some examples of business objects are customers,
orders, and products. The data access protocol for transferring the state of the entity
between the entity bean instances and the underlying database is referred to as object
persistence.

The following topics are discussed in this section:

• Entity Bean Characteristics

• The Container

• Persistence

• Read-Only Beans

Entity Bean Characteristics
Entity beans differ from session beans in several ways. Entity beans are persistent, can be
accessed simultaneously by multiple clients, have primary keys, and may participate in
relationships with other entity beans.

Entity beans have the following characteristics:

• Provide an object view of data in a database.

• Allow shared access by multiple users.

• Persist for as long as needed by all clients, using either bean-managed persistence or
container-managed persistence.

• Transparently survive server crashes.

• Represent shared data in a database.

A good situation for using entity beans includes a well encapsulated, transactional, and
persistent interaction with databases, documents, and other business objects.

About Entity Beans

Chapter 3 Using Entity Beans 63

The Container
Entity beans rely on the enterprise bean container to manage security, concurrency,
transactions, and other container-specific services for the entity objects it manages.
Multiple clients can access an entity object at the same time, while the container
transparently handles simultaneous accesses through transactions.

Each entity has a unique object identifier. A customer entity bean, for example, might be
identified by a customer number. This unique identifier, or primary key, enables the client
to locate a particular entity bean.

Like a session bean, an entity bean can access a database through JDBC calls inside
methods whose transaction attributes can be set using deployment descriptors.The container
supports both bean-managed and container-managed persistence as described in the
following section.

Persistence
Because the state of an entity bean is saved in a some durable storage, it is persistent.
Persistence means that the entity bean's state exists beyond the lifetime of the application or
the server process.

Persistence of entity beans may done explicitly by the bean and programmed by the bean
developer. This is known as bean-managed persistence (BMP).

Persistence management can also be delegated to the container, leveraging the Sun Java
System Application Server and the persistence management APIs of the enterprise beans.
This approach is called container-managed persistence (CMP). In the CMP mechanism, a
persistence manager, integrated with the Sun Java System Application Server, is required to
ensure reliable persistence. Refer to “Using Container-Managed Persistence for Entity
Beans” on page 85 for additional information on container-managed persistence.

The following figure illustrates how persistence works in the Sun Java System Application
Server environment.

About Entity Beans

64 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Guidelines for selecting the most appropriate persistence method for your applications are
contained in “Determining Entity Bean Usage” on page 66.

The following topics are addressed in this section:

• Bean-Managed Persistence

• Container-Managed Persistence

Bean-Managed Persistence
In bean-managed persistence, the bean is responsible for its own persistence. The entity
bean code that you write contains the calls that access the database.

You code a bean-managed entity bean by providing database access calls—through JDBC
and SQL—directly in the bean class methods. Database access calls must be in the
ejbCreate, ejbRemove, ejbFindXXX, ejbLoad, and ejbStore methods. The advantage
of this approach is that these beans can be deployed to the application server without
requiring much effort. The disadvantage is that database access is expensive and, in some
cases, the application server can do a better job of optimizing database access than the
application programmer can. Also, bean-managed persistence requires the developer to
write JDBC code.

For details about using JDBC to work with data, see the Sun Java System Application
Server Developer’s Guide to J2EE Services and APIs.

Persistence

Transaction Manager

Entity Bean Flow

Manager

Sun Java System Application Server

Database

EJB with BMP

EJB with CMP

Developing Entity Beans

Chapter 3 Using Entity Beans 65

Container-Managed Persistence
In container-managed persistence, the enterprise bean container handles all database access
required by the entity bean by interacting through the persistence manager. The bean's code
contains no database access (JCBC) calls. As a result, the bean's code is not tied to a
specific persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on a different database, you won't need to modify the bean's
code. In short, your entity beans are more portable.

The bean developer provides abstract bean classes. Typically, the container-managed
persistence runtime generates concrete implementation classes that know how to load and
save the bean state (in the ejbLoad and ejbStore methods).

To generate the data access calls, the container needs information that you provide in the
entity bean's abstract schema. Additional information on the abstract schema is contained in
“Abstract Schema” on page 90.

Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents may be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. Instructions for creating read-only beans are contained in “Using
Read-Only Beans” on page 79.

Developing Entity Beans
When creating an entity bean, you must provide a number of class files. The tasks required
are discussed in the following topics:

• Determining Entity Bean Usage

• Responsibilities of the Bean Developer

• Defining the Primary Key Class

• Defining Remote Interfaces

NOTE For this release of the Sun Java System Application Server, only entity
beans that use bean-managed persistence can be designated as read-only.

Developing Entity Beans

66 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• Defining Local Interfaces

• Creating the Bean Class Definition (for Bean-Managed Persistence)

Determining Entity Bean Usage
You should probably use an entity bean when the bean represents a business entity, not a
procedure, and/or the bean’s state must be persistent (the bean’s state still exists in the
database if the server is shut down).

Unlike session beans, entity bean instances can be accessed simultaneously by multiple
clients. The container is responsible for synchronizing the instance state using transactions.
Because this responsibility is delegated to the container, you do not need to consider
concurrent access methods from multiple transactions.

Your choice of persistence method also has an impact:

• Bean-managed persistence—When you implement an entity bean to manage its own
persistence, you implement persistence code (such as JDBC calls) directly in the EJB
class methods. The downside is portability loss (that is, the risk of associating the bean
with a specific database).

• Container-managed persistence—When entity bean persistence is managed by the
container, the container transparently manages the persistence state. You do not need to
implement any data access code in the bean methods. Not only is this method simpler
to implement, but it makes the bean portable to different databases. Refer to “Using
Container-Managed Persistence for Entity Beans” on page 85 for on implementation
guidelines.

Responsibilities of the Bean Developer
This section describes what you need to do to ensure that an entity bean with bean-managed
persistence can be deployed on the Sun Java System Application Server.

The entity bean developer is responsible for providing the following class files:

• Primary key class

• Entity bean remote interface and remote home interface, if the entity bean provides a
remote client view

• Entity bean local interface and local home interface, if the entity bean provides a local
client view

• Entity bean class

Developing Entity Beans

Chapter 3 Using Entity Beans 67

Defining the Primary Key Class
The EJB architecture allows a primary key class to be any class that is a legal Value Type in
RMI/IIOP. The class must provide suitable implementation of the hashCode and equals
(Object other) methods. The primary key class may be specific to an entity bean class, that
is, each entity bean class may define a different class for its primary key, but it is possible
for multiple entity beans to use the same primary key class.

You must specify a primary key class in the deployment descriptor.

Defining Remote Interfaces
This section discusses the following topics:

• Creating the Remote Home Interface

• Creating a Remote Interface

Creating the Remote Home Interface
As a bean developer, you must provide the bean's remote home interface (if it is applicable).
The home interface defines the methods that enable a client accessing an application to
create, find, and remove entity objects. You must create a remote home interface that meets
the following requirements:

• The interface must extend the javax.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means
that their argument and return types are of valid types for RMI/IIOP, and that their
throws clauses include java.rmi.RemoteException.

• Each method defined in the remote home interface must be one of the following:

❍ A create method.

❍ The remote home interface must always include the findByPrimaryKey method,
which is always a single-object finder. The method must declare the primary key
class as the method argument.

❍ A finder method.

❍ A home method. Home methods can have arbitrary names, provided they do not
clash with the create, find, and remove method names. The matching ejbHome
method specified in the entity bean class must have the same number and types of
arguments, and must return the same type as the home method specified in the
remote home interface of the bean.

Developing Entity Beans

68 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Remote Create Methods
• Each create method must be named createXXX, where XXX is a unique method name

continuation that matches one of the ejbCreateXXX methods defined in the enterprise
bean class. For example, createEmployee(...), createLargeOrder(....).

• The matching ejbCreateXXX in the bean must have the same number and types of its
arguments. However, the return type is different.

• The return type for a createXXX method must be the entity bean remote interface type.

• All the exceptions defined in the throws clause of the matching ejbCreateXXX and
ejbPostCreateXXX methods of the enterprise bean class must be included in the
throws clause of the matching create method of the remote home interface (that is, the
set of exceptions defined for the create method must be a superset of the union of
exceptions defined for the ejbCreateXXX and ejbPostCreateXXX methods).

• The throws clause of a create method must include javax.ejb.CreateException.

Remote Find Methods
• A home interface can define one or more find methods. Each method must be named

findXXX, where XXX is a unique method name continuation. For example,
findApplesAndOranges.

• Each finder method must correspond to one of the finder methods defined in the entity
bean class definition.

• The number and argument types must also correspond to the finder method definitions
in the bean class.

• The return type for a find <METHOD> method must be the entity bean’s remote interface
type (for a single-object finder), or a collection thereof (for a multi-object finder).

• All the exceptions defined in the throws clause of an ejbFind method of the entity
bean class must be included in the throws clause of the matching find method of the
remote home interface.

• The throws clause of a finder method must include javax.ejb.FinderException.

findByPrimaryKey Method
• Every remote home interface must always include the findByPrimaryKey method,

which is always a single-object finder.

• The method must declare the primary key class as the method argument.

• All the exceptions defined in the throws clause of an ejbFindByPrimaryKey method
of the entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

Developing Entity Beans

Chapter 3 Using Entity Beans 69

• The throws clause of a findByPrimaryKey method must include
javax.ejb.FinderException.

Remote Remove Methods
All home interfaces automatically (by extending javax.ejb.EJBHome) define two remove
methods for destroying an enterprise bean when it is no longer needed:

public void remove(java.lang.Object primaryKey)
throws java.rmi.RemoteException, RemoveException

public void remove(Handle handle)
throws java.rmi.RemoteException, RemoveException

Example of a Remote Home interface

import javax.ejb.*;
import java.rmi.*;

public interface MyEntityBeanLocalHome
extends EJBHome

{
/**

* Create an Employee
* @param empName Employee name
* @exception CreateException If the employee cannot be

created
* @return The remote interface of the bean

*/
public MyEntity create(String empName)

throws CreateException;
/**

* Find an Employee
* @param empName Employee name
* @exception FinderException if the empName is not found
* @return The remote interface of the bean
*/

public MyEntity findByPrimaryKey(String empName)
throws FinderException;

}

NOTE Do not override these remove methods.

Developing Entity Beans

70 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Defining Local Interfaces
To build an enterprise bean that allows local access, you must code the local interface and
the local home interface. The local interface defines the bean’s business methods; the local
home interface defines its life cycle (create/remove) and finder methods.

This section addresses the following topics:

• Creating the Local Home Interface

• Creating a Local Interface

Creating the Local Home Interface
The home interface defines the methods that enable a client using the application to create
and remove entity beans. A bean’s local home interface defines the methods that allow local
clients to create, find, and remove EJB objects, as well as home business methods that are
not specific to a bean instance (session beans do not have finders and home business
methods). The local home interface is defined by you and implemented by the container. A
client locates a bean’s home using JNDI.

The local home interface allows a local client to:

• Create new entity objects within the home

• find existing entity objects within the home

• Remove an entity object from the home

• Execute a home business method

A local home interface always extends javax.ejb.EJBLocalHome. For example:

import javax.ejb.*;
public interface MyEntityLocalBeanHome extends EJBLocalHome {

MyEntityLocalBean create() throws CreateException;
}

Creating a Local Interface
If an entity bean is the target of a container-managed relationship, it must have local
interfaces. The direction of the relationship determines whether or not a bean is a target.
Because they require local access, entity beans that participate in a container-managed
relationship must reside in the same EJB JAR file. The primary benefit of this locality is
improved performance—local calls are faster than remote calls.

Developing Entity Beans

Chapter 3 Using Entity Beans 71

Since local interfaces follow pass by reference semantics, you must be aware of the
potential sharing of objects passed through the local interface. In particular, be careful that
the state of one enterprise bean is not assigned as the state of another. You must also
exercise caution in determining which objects to pass across the local interface, particularly
in the case where there is a change in transaction or security content.

• The interface must extend the javax.ejb.EJBLocalHome interface.

• The throws clause of a method on the local home interface must not include the
java.rmi.RemoteException.

• Each method defined in the local home interface must be one of the following:

❍ A create method

❍ A finder method

❍ A home method

(Local) Create Methods
• Each create method must be named createXXX, where XXX is a unique method name

continuation, and it must match one of the ejbCreateXXX methods defined in the
enterprise bean class. For example, createEmployee(...),
createLargeOrder(....).

• The matching ejbCreateXXX in the bean must have the same number and types of its
arguments. (Note that the return type is different.)

• The return type for a createXXX method must be the entity bean's local interface type.

• All the exceptions defined in the throws clause of the matching ejbCreateXXX and
ejbPostCreateXXX methods of the enterprise bean class must be included in the
throws clause of the matching create method of the remote home interface (that is, the
set of exceptions defined for the create method must be a superset of the union of
exceptions defined for the ejbCreateXXX and ejbPostCreateXXX methods).

• The throws clause of a create method must include javax.ejb.CreateException.

(Local) Find Methods
• A home interface can define one or more find methods. Each method must be named

findXXX, where XXX is a unique method name continuation. For example,
findApplesAndOranges.

• Each finder method must correspond to one of the finder methods defined in the entity
bean class definition.

• The number and argument types must also correspond to the finder method definitions
in the bean class.

Developing Entity Beans

72 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• The return type for a find <METHOD> method must be the entity bean's local interface
type (for a single-object finder), or a collection thereof (for a multi-object finder).

• All the exceptions defined in the throws clause of an ejbFind method of the entity
bean class must be included in the throws clause of the matching find method of the
remote home interface.

• The throws clause of a finder method must include the javax.ejb.FinderException.

findByPrimaryKey Method
• Every local home interface must always include the findByPrimaryKey method,

which is always a single-object finder.

• The method must declare the primary key class as the method argument.

• All the exceptions defined in the throws clause of an ejbFindByPrimaryKey method
of the entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

• The throws clause of a findByPrimaryKey method must include
javax.ejb.FinderException.

(Local) home Methods
• Home methods can have arbitrary names, provided that they do not clash with create,

find, and remove method names.

• The matching ejbHome method specified in the entity bean class must have the same
number and types of arguments and must return the same type as the home method as
specified in the local home interface of the bean.

Creating a Remote Interface
Besides the business methods you define in the remote interface, the EJBObject interface
defines several abstract methods that enable you to:

• Retrieve the bean's home interface

• Retrieve the bean's handle-to retrieve the bean's primary key which uniquely identifies
the bean's instance

• Compare the bean to another bean to see if it is identical

• Remove the bean when it is no longer needed

For more information about these built-in methods and how they are used, see the
Enterprise JavaBeans Specification, v2.0.

Developing Entity Beans

Chapter 3 Using Entity Beans 73

• An entity bean's remote interface defines a user's access to a bean's methods.

• The interface must extend the javax.ejb.EJBObject interface.

• The methods defined in the remote interface must follow the rules for RMI/IIOP.

• This means that their argument and return value types must be valid types for
RMI/IIOP, and their throws clauses must include the java.rmi.RemoteException.

• For each method defined in the remote interface, there must be a matching method in
the entity bean s class. The matching method must have The same name. The same
number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the
enterprise bean class must be defined in the throws clause of the method of the remote
interface.

• The remote interface methods must not expose local interface types, local home
interface types, or the managed collection classes that are used for entity beans with
container-managed persistence as arguments or results.

Example of a Remote Interface
The following fragment is an example of a remote interface

import javax.ejb.*;
import java.rmi.*;

public interface MyEntity
extends EJBObject
{
public String getAddress() throws RemoteException;
public void setAddress(String addr) throws RemoteException;

}

NOTE The Enterprise JavaBeans Specification, v2.0 permits the bean class to
implement the remote interface's methods, but you should be careful not to
inadvertently pass a direct reference (through this) to a client in violation
of the client-container-EJB protocol intended by the Enterprise JavaBeans
Specification, v2.0.

Developing Entity Beans

74 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Creating the Bean Class Definition (for
Bean-Managed Persistence)
For an entity bean that uses bean-managed persistence, the bean class must be defined as
public and cannot be abstract. The bean class must implement the
javax.ejb.EntityBean interface. For example:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MyEntityBean implements EntityBean {

// Entity Bean implementation. These methods must always be
included.
public void ejbActivate() {
}
public void ejbLoad() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void ejbStore() t{
}
public void setEntityContext(EntityContext ctx) {
}
public void unsetEntityContext() {
}
// other code omitted here....
}

In addition to these methods, the entity bean class must also define one or more ejbCreate
methods and the ejbFindByPrimaryKey finder method. Optionally, it may define one
ejbPostCreate method for each ejbCreate method. It may provide additional,
developer-defined finder methods that take the form ejbFindXXX, where XXX represents a
unique method name continuation (for example, ejbFindApplesAndOranges) that does
not duplicate any other method names.

Entity beans typically implement one or more business methods. These methods are usually
unique to each bean and represent its particular functionality. Business method names can
be anything, but must not conflict with the method names used in the EJB architecture.
Business methods must be declared as public. Method arguments and return value types
must be Java RMI legal. The throws clause may define application-specific exceptions and
may include java.rmi.RemoteException.

Developing Entity Beans

Chapter 3 Using Entity Beans 75

There are two business method types to implement in an entity bean:

• Internal methods—Used by other business methods in the bean, but never accessed
outside the bean itself.

• External methods—referenced by the entity bean’s remote interface.

The following sections address the various methods in an entity bean’s class definition:

• Using ejbCreate

• Using ejbActivate and ejbPassivate

• Using ejbLoad and ejbStore

• Using setEntityContext and unsetEntityContext

• Using ejbRemove

• Using Finder Methods

Using ejbCreate
The entity bean must implement one or more ejbCreate methods. There must be one
method for each way a client is allowed to invoke the bean. For example:

public String ejbCreate(String orderId, String customerId,
String status, double totalPrice)
throws CreateException {

try {
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();
String insertStatement =

"insert into orders values (? , ? , ? , ?)";
PreparedStatement prepStmt =

con.prepareStatement(insertStatement);
prepStmt.setString(1, orderId);
prepStmt.setString(2, customerId);
prepStmt.setDouble(3, totalPrice);
prepStmt.setString(4, status);
prepStmt.executeUpdate();
prepStmt.close();

} catch (Exception ex) {
throw new CreateException("ejbCreate: "

+ex.getMessage());
}

}

Developing Entity Beans

76 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

public String ejbPostCreate(String orderId, String customerId,String
status, double totalPrice)

throws CreateException

{
......
......
}

Each ejbCreate method must be declared as public, return the primary key type, and be
named ejbCreate. The return type can be any legal Java RMI type that converts to a
number for key purposes. All arguments must be legal Java RMI types. The throws clause
may define application-specific exceptions, and may include
java.ejb.CreateException.

This is the method in which relationships are established. For each ejbCreate method, the
entity bean class may define a corresponding ejbPostCreate method to handle entity
services immediately following creation. Each ejbPostCreate method must be declared
as public, must return void, and be named ejbPostCreate. The method arguments, if
any, must match in number and argument type its corresponding ejbCreate method. The
throws clause may define application-specific exceptions, and may include
java.ejb.CreateException.

Using ejbActivate and ejbPassivate
When an entity bean instance is needed by a server application, the bean’s container
invokes ejbActivate to ready a bean instance for use. Similarly, when an instance is no
longer needed, the bean’s container invokes ejbPassivate to disassociate the bean from
the application.

If specific application tasks need to be performed when a bean is first made ready for an
application, or when a bean is no longer needed, you should program those operations
within the ejbActivate and ejbPassivate methods. For example, you may release
references to database and backend resources during ejbPassivate and regain them
during ejbActivate.

Using ejbLoad and ejbStore
An entity bean can collaborate with the container to store the bean state information in a
database, for synchronization purposes. In the case of bean-managed persistence, you are
responsible for coding ejbLoad and ejbStore. The container ensures that the state of the
bean is synchronized with the database by calling ejbLoad at the beginning of a transaction
and calling ejbStore when the transaction completes successfully.

Use your implementation of ejbStore to store state information in the database, and use
your implementation of ejbLoad to retrieve state information from the database.

Developing Entity Beans

Chapter 3 Using Entity Beans 77

The following example shows ejbLoad and ejbStore method definitions that store and
retrieve active data.

public void ejbLoad()
throws java.rmi.RemoteException

{
String itemId;
javax.sql.Connection dc = null;
java.sql.Statement stmt = null;
java.sql.ResultSet rs = null;

itemId = (String) m_ctx.getPrimaryKey();

System.out.println("myBean: Loading state for item " + itemId);

String query =
"SELECT s.totalSold, s.quantity " +
" FROM Item s " +
" WHERE s.item_id = " + itemId;

dc = new DatabaseConnection();
dc.createConnection(DatabaseConnection.GLOBALTX);
stmt = dc.createStatement();
rs = stmt.executeQuery(query);

if (rs != null) {
rs.next();
m_totalSold = rs.getInt(1);
m_quantity = rs.getInt(2);

}
}

public void ejbStore()
throws java.rmi.RemoteException

{
String itemId;
itemId = (String) m_ctx.getPrimaryKey();
DatabaseConnection dc = null;
java.sql.Statement stmt1 = null;
java.sql.Statement stmt2 = null;

System.out.println("myBean: Saving state for item = " + itemId);

String upd1 =
"UPDATE Item " +
" SET quantity = " + m_quantity +

Developing Entity Beans

78 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

" WHERE item_id = " + itemId;

String upd2 =
"UPDATE Item " +
" SET totalSold = " + m_totalSold +
" WHERE item_id = " + itemId;

dc = new DatabaseConnection();
dc.createConnection(DatabaseConnection.GLOBALTX);
stmt1 = dc.createStatement();
stmt1.executeUpdate(upd1);
stmt1.close();
stmt2 = dc.createStatement();

stmt2.executeUpdate(upd2);
stmt2.close();

}

For more information about bean isolation levels that access transactions concurrently with
other beans, see “Handling Synchronization of Concurrent Access” on page 83.

Using setEntityContext and unsetEntityContext
A container calls setEntityContext after it creates an entity bean instance to provide the
bean with an interface to the container. Implement this method to store the entity context
passed by the container. You can later use this reference to get the primary key of the
instance, and so on.

public void setEntityContext(javax.ejb.EntityContext ctx)
{
m_ctx = ctx;
}

Similarly, a container calls unsetEntityContext to remove the container reference from
the instance. This is the last bean class method a container calls before the bean instance
becomes a candidate for removal. After this call, the Java garbage collection mechanism
eventually calls finalize on the instance to clean it up and dispose of it.

public void unsetEntityContext()
{
m_ctx = null;
}

Using Read-Only Beans

Chapter 3 Using Entity Beans 79

Using ejbRemove
The client can invoke the remove methods on the entity bean's home or component interface
to remove the associated record from the database. The container invokes the ejbRemove
method on an entity bean instance in response to a client invocation on the entity bean's
home or component interface, or as the result of a cascade-delete operation.

Using Finder Methods
Because entity beans are persistent, shared among clients, and may have more than one
instance instantiated at the same time, an entity bean must implement at least one
ejbFindByPrimaryKey method. This enables the client and the container to locate a
specific bean instance. All entity beans must provide a unique primary key as an identifying
signature. Implement the ejbFindByPrimaryKey method in the bean’s class to enable a
bean to return its primary key to the container.

The following example shows a definition for FindByPrimaryKey:

public String ejbFindByPrimaryKey(String key)
throws java.rmi.RemoteException,

javax.ejb.FinderException

In some cases, you find a specific entity bean instance based on what the enterprise bean
does, on certain values the instance is working with, or on other criteria. These
implementation-specific finder method names take the form ejbFindXXX, where XXX
represents a unique continuation of a method name (for example,
ejbFindApplesAndOranges) that does not duplicate any other method names.

Finder methods must be declared as public, and their arguments, and return values must be
legal Java RMI types. Each finder method return type must be the entity bean’s primary key
type or a collection of objects of the same primary key type. If the return type is a
collection, the return type must be one of the following:

• JDK 1.1 java.util.Enumeration interface

• Java 2 java.util.Collection interface

The throws clause of a finder method is an application-specific exception, and may include
java.rmi.RemoteException and/or java.ejb.FinderException.

Using Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents may be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Using Read-Only Beans

80 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The following topics are addressed in this section:

• Read-Only Bean Characteristics and Life Cycle

• Read-Only Bean Good Practices

• Refreshing Read-Only Beans

• Deploying Read Only Beans

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote
for a particular company, which is updated externally. In such a case, using a regular entity
bean may incur the burden of calling ejbStore, which can be avoided by using a read-only
bean.

Read-only beans have the following characteristics:

• Only entity beans can be read-only beans.

• Only bean-managed persistence is allowed.

• Only container-managed transactions are allowed; read-only beans cannot start their
own transactions.

• Read-only beans don’t update any bean state.

• ejbStore is never called by the container.

• ejbLoad will be called only when a transactional method is called or when the bean is
initially created (in the cache), or at regular intervals controlled by the bean's
refresh-period-in-seconds.

• The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary
keys).

NOTE For this release of Sun Java System Application Server, only entity beans
that use bean-managed persistence can be designated as read-only.

Read-only beans are specific to Sun Java System application server and are
not part of the Enterprise JavaBeans Specification, v2.0.

Using Read-Only Beans

Chapter 3 Using Entity Beans 81

• If the data that the bean represents can change, then refresh-period-in-seconds
must be set to refresh the beans at regular intervals. ejbLoad is called at this regular
interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called
and the bean is returned to the free pool. When in the free pool, the bean has no identity and
will be used only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices
• Avoid having any create or remove methods in the home interface

• Use any of the valid EJB 2.0 transaction attributes for the transaction attribute for
methods

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the
same transaction. Also, the TX attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans as addressed in the following sections:

• Invoking a Transactional Method

• Refreshing Periodically

• Refreshing Programmatically

Invoking a Transactional Method
Invoking any transactional method will invoke ejbLoad.

Refreshing Periodically
Read-only beans can be refreshed periodically by specifying the
refresh-period-in-seconds element in the Sun Java System Application
Server-specific XML file.

Using Read-Only Beans

82 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• If the value specified in refresh-period-in-seconds is zero, the bean is never
refreshed (unless a transactional method is accessed).

• If the value is greater than zero, the bean is refreshed at the rate specified.

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. You can use ReadOnlyBeanNotifier to force the
refresh of read-only beans. To do this, invoke the following methods on the
ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier
extends java.rmi.Remote

{
refresh(Object PrimaryKey)

throws RemoteException;
}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container.
The user can look up ReadOnlyBeanNotifier using the following fragment of code:

com.sun.ejb.ReadOnlyBeanNotifier notifier =
com.sun.ejb.containers.ReadOnlyBeanHelper.getReadOnlyBeanNotifier

(<ejb-name-of -the-target>);
notifier.refresh(<PrimaryKey>);

Beans that update any data that is cached by read-only beans need to call the refresh
methods. The next (non-transactional) call to the read-only bean will invoke ejbLoad.

Deploying Read Only Beans
Read-only beans are deployed in the same manner as other entity beans. However, in the
entry for the bean in the Sun Java System Application Server-specific XML file, the
is-read-only-bean element must be set to true. That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element may be set to some value that specifies
the rate at which the bean is refreshed. If this element is missing, a default of 600 (seconds)
is assumed.

NOTE This is the only way to refresh the bean state if the data can be modified
external to the Sun Java System Application Server.

Handling Synchronization of Concurrent Access

Chapter 3 Using Entity Beans 83

All requests with the same transaction context are routed to the same read-only bean
instance. The deployer can specify if such multiple requests have to be serialized by setting
the allow-concurrent-access element to either true (to allow concurrent accesses) or
false (to serialize concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to the Sun Java System Application Server
Administrator’s Configuration File Reference.

Handling Synchronization of Concurrent Access
As an entity bean developer, you generally do not have to be concerned about concurrent
access to an entity bean from multiple transactions. The bean’s container automatically
provides synchronization in these cases. In the Sun Java System Application Server, the
container activates one entity bean instance for each simultaneously occurring transaction
that uses the bean.

Transaction synchronization is performed automatically by the underlying database during
database access calls. You typically perform this synchronization in conjunction with the
underlying database or resource. One approach would be to acquire the corresponding
database locks in the ejbLoad method, for example by choosing an appropriate isolation
level or by using a select for update clause. The specifics vary depending on the
database being used.

For more information, see the Enterprise JavaBeans Specification, v2.0 as it relates to
concurrent access.

Handling Synchronization of Concurrent Access

84 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

85

Chapter 4

Using Container-Managed
Persistence for Entity Beans

This section contains information on how container-managed persistence works in the Sun
Java System Application Server environment. Implementation procedures are included.

This section addresses the following topics:

• Sun Java System Application Server Support

• About Container-Managed Persistence

• Using Container-Managed Persistence

• Third-Party Pluggable Persistence Manager API

• Restrictions and Optimizations

• Elements in the sun-cmp-mappings.xml File

• Examples

Extensive information on container-managed persistence is contained in chapters 10, 11,
and 14 of the Enterprise JavaBeans Specification, v2.0.

NOTE To implement container-managed persistence, you should already be
familiar with entity beans, which are discussed in “Using Entity Beans” on
page 61.

Sun Java System Application Server Support

86 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Sun Java System Application Server Support
Sun Java System Application Server support for container-managed persistence includes:

• Full support for the J2EE v 1.3 specification’s container-managed persistence model.

❍ Support for commit options B and C for transactions as defined in the Enterprise
JavaBeans Specification, v2.0. Refer to “Commit Options” on page 153 for further
information.

❍ The primary key class must be a subclass of java.lang.Object. This ensures
portability, and is noted because some vendors allow primitive types (such as int)
to be listed as the primary key class.

• The Sun Java System Application Server container-managed persistence
implementation which provides:

❍ An Object/Relational (O/R) mapping tool (part of the Sun Java System
Application Server Assembly Tool) that creates XML deployment descriptors for
EJB JAR files that contain beans that use container-managed persistence

❍ Support for compound (multi-column) primary keys

❍ Support for sophisticated custom finder methods

❍ Standards-based query language (EJB QL)

❍ Container-managed persistence runtime support. The following JDBC driver and
database combinations are supported for Sun Java System Application Server
Standard and Enterprise Editions 7.1. The combinations listed here have been
tested with the Sun Java System Application Server and are found to be J2EE
compatible.

• Data Direct Connect JDBC3.0/ Type4 Driver for Oracle 8.1.7 Databases

For an up to date list of the JDBC drivers currently supported by the Sun Java
System Application Server, see the Sun Java System Application Server 7.1
Platform Summary.

Other JDBC drivers have been used with Sun Java System Application Server 7.1,
but J2EE compliance tests have not been completed with these drivers.

• Oracle 8i, Oracle 9

• Sybase 12

• Microsoft SQLServer 2000

• Pointbase 4.2

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 87

• Support for third-party object-to-relational (O/R) mapping tools. An explanation of the
third-party API is contained in “Third-Party Pluggable Persistence Manager API” on
page 115.

About Container-Managed Persistence
An entity bean using container-managed persistence delegates the management of its state
(or persistence) to the Sun Java System Application Server container. Rather than write the
JDBC code that is needed to implement bean-managed persistence, a developer
implementing container-managed persistence uses tools to create the bean’s deployment
descriptors. The deployment descriptors then provide the information that the container
uses to map bean fields to columns in a relational database.

An EJB container needs two things to support container-managed persistence:

• Mapping—Information on how to map an entity bean to a resource, such as a table in a
relational database

• Runtime environment—A container-managed persistence runtime environment that
uses the mapping information to perform persistence operations on each bean

This section addresses the following container-managed persistence topics:

• CMP Components

• Relationships

• Abstract Schema

• Deployment Descriptors

• Persistence Manager

CMP Components
Unlike bean-managed persistence, container-managed persistence does not require you to
write database access calls in the methods of the entity bean class. Because persistence is
handled by the container at runtime, you must specify in the deployment descriptor those
persistence fields and relationships for which the container must handle data access. You
access persistent data using the accessor methods that are defined for the abstract
persistence schema.

About Container-Managed Persistence

88 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

An entity bean that uses container-managed persistence consists of several components that
interoperate:

• The abstract bean class, written by you.

• The remote interface, written by you.

• The local interface, written by you.

• The deployment descriptor, written by you.

• An optional primary key class, written by you.

• The concrete bean class, generated by the container-managed persistence
implementation.

This class inherits from the abstract bean class and uses information from the
deployment descriptor. Accessor (read) and mutator (write) methods in the bean class
are implemented here to the concrete state class.

• The concrete remote bean implementation class, generated by the container-managed
persistence implementation.

• The EJBObject (skeleton), generated by the container-managed persistence
implementation.

• The remote stub, generated by the container-managed persistence implementation.

The following classes are used for container-managed persistence:

• Generation class—Called from the ejbc compile utility; generates the concrete classes.

• Generated classes—Use container-managed persistence to effect persistence behavior
at server runtime.

• Management classes—Collect and report statistics at server runtime.

Relationships

NOTE This section applies only if you are using container-managed persistence
2.0 beans.

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 89

A relationship allows you to navigate from an object to its related objects. Relationships
can be either bidirectional or unidirectional.

• Bidirectional—Each entity bean has a relationship field that refers to the other bean.
Through the relationship field, an entity bean's code can access its related object. If an
entity bean has a relationship field, we often say it "knows" about its related object.

• Unidirectional—Only one entity bean has a relationship field that refers to the other.

A container-managed relationship (CMR) between fields in a pair of classes allows
operations on one side of the relationship to affect the other side. At runtime, if a field in
one instance is modified to refer to another instance, the referred instance will have its
relationship field modified to reflect the change in relationship.

In the Java code, relationships are represented by object reference (either collections or
fields that are typed to an EJB local interface), depending on the relationship cardinality. A
relationship can be one-to-one, one-to-many, or many-to-many, depending on the number
of instances of each class in the relationship. In the database, this might be represented by
foreign key columns and, in the case of many-to-many relationships, join tables.

The following sections describe the various types of relationships:

• One-to-One Relationships

• One-to-Many Relationships

• Many-to-Many Relationships

NOTE Even if a relationship is unidirectional, if you make a change to that
relationship, other enterprise beans will be affected if they are associated
with that relationship.

NOTE No warning is given if you delete one object in a managed relationship.
Container-managed persistence automatically nullifies the relationship on
the foreign key side and deletes the object without asking for confirmation.

About Container-Managed Persistence

90 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

One-to-One Relationships
With one-to-one relationships, there is a single-valued field in each class whose type is the
local interface of the other bean type. Any change to the field on either side of the
relationship is handled as a relationship change. If the field on one side is changed from null
to non-null, then the field on the other side is changed to refer to this instance. If the field on
the other side had been non-null, that other relationship is made null before the change is
made.

One-to-Many Relationships
With one-to-many relationships, there is a single-valued field on the many side and a
multi-valued field (collection) on the one side.

If an instance is added to the collection field, the field in the new instance is updated to
reference the instance containing the collection field. If an instance is deleted from the
collection, the field on the instance is nullified.

Any change, addition or removal of a field on the many side is handled as a relationship
change. If the field on the many side is changed from null to non-null, this instance is added
to the collection-valued field on the one side. If the field on the many side is changed from
non-null to null, then this instance is removed from the collection-valued field on the one
side.

Many-to-Many Relationships
With many-to-many relationships, there are multi-valued, or collection, fields on both sides
of the relationship. Any change to the contents of the collection on either side of the
relationship is handled as a relationship change. If an instance is added to the collection on
this side, then this instance is added to the collection on the other side. If an instance is
removed from a collection on this side, then this instance is removed from the collection on
the other side.

Abstract Schema
Part of an entity bean's deployment descriptor, the abstract schema defines the bean's
persistent fields and relationships. The term abstract distinguishes this schema from the
physical schema of the underlying data store.

You specify the name of an abstract schema in the deployment descriptor. This name is
referenced by queries written in the EJB Query Language (EJB QL). For an entity bean
using container-managed persistence, you must define an EJB-QL query for every finder
method (except findByPrimaryKey). The EJB-QL query determines the query that is
executed by the EJB container when the finder method is invoked.

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 91

Example
<ejb-relation>

<ejb-relation-name>OrderLineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
OrderHasLineItems

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>Order</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>

LineItemInOrder
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>

</ejb-relationship-role>
</ejb-relation>

Deployment Descriptors
If your container-managed fields are to be mapped to database fields, you must provide
mapping information to the deployer. Each module with container-managed persistence
beans must have the following files for the deployment process

• ejb-jar.xml—Contains information such as the transactional attributes of the beans
and the fields of a bean that are going to be container-managed.

• sun-ejb-jar.xml—The standard file for assembling enterprise beans. Refer to
“Elements in the sun-ejb-jar.xml File” on page 181 and “Sample EJB XML Files” on
page 217 for information.

• sun-cmp-mappings.xml—The file for mapping container-managed persistence.
Refer to “Elements in the sun-cmp-mappings.xml File” on page 118 and “Sample
Schema Definition” on page 127 for information.

Using Container-Managed Persistence

92 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Persistence Manager
In the Sun Java System Application Server, the container-managed persistence model is
based on the Pluggable Persistence Manager API which provides the role of the persistence
manager in defining and supporting the mapping between an entity bean and the persistence
store.

The persistence manager is the component responsible for the persistence of the entity
beans installed in the container. The classes provided by the persistence manager vendor are
responsible for managing the relationships between the entity beans, and for managing
access to their persistent state. The persistence manager vendor is also responsible for
providing the implementation of the Java classes that are used in maintaining the
container-managed relationships. The persistence manager uses the data source registry
provided by the container to access data sources.

The following figure illustrates how persistence works in the Sun Java System Application
Server environment.

It is also possible to write custom persistence managers to support legacy systems, or to
implement caching strategies that improve performance for your container-managed
persistence solution.

Using Container-Managed Persistence
Implementation for entity beans that use container-managed persistence is mostly a matter
of mapping and assembly/deployment.

NOTE Java types assigned to the container-managed fields must be restricted to
the following: Java primitive types, Java serializable types, and references
to EJB remote or remote home interfaces.

Persistence

Transaction Manager

Entity Bean Flow

Manager

Sun Java System Application Server

Database

EJB with BMP

EJB with CMP

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 93

This section addresses the following topics:

• Process Overview

• Mapping Capabilities

• Supported Data Types for Mapping

• BLOB Support

• Using the capture-schema Utility

• Mapping Fields and Relationships

• Configuring the Resource Manager

• Using EJB QL

• Configuring Queries for 1.1 Finders

Process Overview
The container-managed persistence process consists of three operations: mapping,
deploying, and running. These operations are accomplished as described in the following
phases:

• Phase 1. Creating the mapping deployment descriptor file

• Phase 2. Generating and compiling concrete beans and delegates

• Phase 3. Running in the Sun Java System Application Server runtime

Phase 1. Creating the mapping deployment descriptor file

This phase can be done concurrent with development of the container-managed persistence
beans in the Sun ONE Studio 5 IDE, or after development while preparing for deployment.

During this phase, you map CMP fields and CMR fields (relationships) to the database. A
primary table is selected for each container-managed persistence bean, and optionally,
multiple secondary tables. CMP fields are mapped to columns in either the primary or
secondary table(s). CMR fields are mapped to pairs of column lists (normally, column lists
are the list of columns associated with pairs of primary and foreign keys).

NOTE The Sun ONE Studio IDE will create this descriptor automatically for
deployment.

Using Container-Managed Persistence

94 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• The mapping is saved in a file which conforms to the sun-cmp-mapping_1_0.dtd.
The resulting XML file is packaged with the user-defined bean classes in an EJB JAR
file and must be named META-INF/sun-cmp-mappings.xml.

• Errors are reported during the deployment process. Errors may be triggered from
within the Sun ONE Studio 5 environment or at the command line.

• The mapping information is developed in conjunction with the database schema file.
This file must be captured using the Sun ONE Studio 5 IDE (“Capturing a Schema” on
page 221) or the capture-schema utility (“Using the capture-schema Utility” on
page 99).

• If the database table structure is changed, you first capture the schema of the updated
tables after the database administrator updates the tables. You then remap the CMP
fields and relationships.

Phase 2. Generating and compiling concrete beans and delegates
This phase is done during deployment of an EJB application to the Sun Java System
Application Server. During this phase, deployment information is combined with the
mapping information created during Phase 1.

The following files are generated:

• The concrete bean file, which extends the abstract bean written by you

The concrete bean implements the EJB life cycle methods ejbSetEntityContext,
ejbUnsetEntityContext, ejbCreate, ejbRemove, ejbLoad, ejbStore. It also
contains implementation of getXXX and setXXX for each CMP field and the CMR
field, ejbFindByPrimaryKey, other finder methods, and any selector methods defined
by the user.

• The compiled EJB-QL for finder and selector methods, stored as a properties file

This file contains the container-managed persistence query parameter list, the query
filter, the query ordering expression, the query candidate class name, and the query
result type.

• A generation log file that reports errors to you, including EJB-QL syntax and usage
errors

• State and helper classes

NOTE There is no automatic procedure for performing this remapping; you must
do it manually.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 95

Phase 3. Running in the Sun Java System Application Server runtime
At runtime, the information provided at deployment is used to service requests on entities
implemented as enterprise beans.

Mapping Capabilities
Mapping refers to the ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The container-managed persistence
implementation provides the ability to tie a set of interrelated classes containing data and
associated behaviors to the interrelated meta-data of the schema. You can then use this
object representation of the database to form the basis of a Java application. You can also
customize this mapping to optimize these underlying classes for the particular needs of an
application.

The result is a single data model through which you can access both persistent database
information and regular transient program data. You only need to understand the Java
programming language objects; you do not need to know or understand the underlying
database schema.

Information on the container-managed persistence DTD and XML file elements is
contained in “Elements in the sun-cmp-mappings.xml File” on page 118.

Mapping Features
The mapping capabilities provided by the Sun Java System Application Server include:

• Mapping a container-managed persistence bean to a single table

• Mapping a container-managed persistence bean to multiple tables

• Mapping container-managed persistence fields to columns

• Mapping container-managed persistence fields to different column types

• Mapping tables with compound primary keys

• Mapping container-managed persistence relationships to foreign key columns

• Mapping tables with overlapping primary and foreign keys

Mapping Tool
The mapping tool generates information that maps the entity bean’s container-managed
fields to a data source, such as a column in a relational database table. This mapping
information is stored in an XML file.

Using Container-Managed Persistence

96 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The meet-in-the-middle mapping of the container-managed persistence implementation
creates a custom mapping between an existing schema and existing Java classes, using the
Mapping Tool.

Mapping Techniques
A container-managed persistence class should represent a data entity, such as an employee
or a department. To model a specific data entity, you add persistent fields to the class that
correspond to the columns in the data store.

The simplest kind of modeling is to have a persistence-capable class represent a single table
in the data store, with a persistent field for each of the table’s columns. An Employee
class, for example, would have persistent fields for all the columns found in the EMPLOYEE
table of the data store, such as lastname, firstname, department, and salary.

Information on how to use Sun ONE Studio 5 to map container-managed persistence for
enterprise beans is contained in the Sun Java System Application Server Integration Module
for the Sun ONE Studio 5 online help.

Supported Data Types for Mapping
Container-managed persistence supports a set of JDBC 1.0 SQL data types that are used in
mapping Java data fields to SQL types. Supported JDBC 1.0 SQL data types are as follows:

BIGINT DOUBLE SMALLINT BIT FLOAT

TIME BLOB INTEGER TIMESTAMP CHAR

LONGVARCHAR TINYINT DATE NUMERIC VARCHAR

DECIMAL REAL

NOTE You can choose to have only a subset of the data store columns used as
persistent fields, but if a field is persistent, it must be mapped.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 97

The following table contains suggested mappings.

Table 4-1 Suggested Data Type Mappings
Java Type JDBC Type Nullability

boolean BIT NON NULL

java.lang.Boolean BIT NULL

byte TINYINT NON NULL

java.lang.Byte TINYINT NULL

double FLOAT NON NULL

java.lang.Double FLOAT NULL

double DOUBLE NON NULL

java.lang.Double DOUBLE NULL

float REAL NON NULL

java.lang.Float REAL NULL

int INTEGER NON NULL

java.lang.Integer INTEGER NULL

long BIGINT NON NULL

java.lang.Long BIGINT NULL

long DECIMAL (scale==0) NON NULL

java.lang.Long DECIMAL (scale==0) NULL

long NUMERIC (scale==0) NON NULL

java.lang.Long NUMERIC (scale==0) NULL

short SMALLINT NON NULL

java.lang.Short SMALLINT NULL

java.math.BigDecimal DECIMAL (scale!=0) NON NULL

java.math.BigDecimal DECIMAL (scale!=0) NULL

java.math.BigDecimal NUMERIC NULL

java.math.BigDecimal NUMERIC NON NULL

java.lang.String CHAR NON NULL

java.lang.String CHAR NULL

java.lang.String VARCHAR NON NULL

serializable BLOB NULL

Using Container-Managed Persistence

98 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

BLOB Support
Binary Large Object (BLOB) is a data type used to store and retrieve complex object fields.
BLOBs are binary or serializable objects, such as pictures, that translate into large byte
arrays which are then serialized into CMP fields.

To enable BLOB support in the Sun Java System Application Server environment:

1. Declare the variable in the bean class with a serializable type.

2. Edit the XML file by declaring the CMP mapping deployment descriptor in the
sun-cmp-mappings.xml file.

3. Create the BLOB in the database.

Example
<cmp-field-mapping>

<field-name>syllabus</field-name>
<column-name>COURSE.SYLLABUS</column-name>

</cmp-field-mapping>

Example
/**
Serializable class Syllabus : BLOB Testing
**/

package collegeinfo
public class Syllabus implements java.io.Serializable
{

public String author;
public String syllabi;

}

NOTE On Oracle, using the Oracle thin driver (JDBC type 4), it is not possible to
insert more than 2000 bytes of data into a column. To circumvent this
problem, use the OCI driver (JDBC type 2).

NOTE Performance may be negatively impacted due to the size of the BLOB
object.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 99

Schema for Course:

table course

courseId Number
deptId Number
courseName Varchar
syllabus BLOB

Using the capture-schema Utility
Mapping information is developed by first capturing the database schema. Use the
capture-schema command to store the database metadata (schema) in a file for use in
mapping and execution. You can also use the Sun ONE Studio IDE to capture the database
schema; refer to “Capturing a Schema” on page 221.

Syntax
capture-schema -dburl url -username name -password password -driver ajdbcdriver
[-schemaname name] [-table TableName]* [-out filename]

Where:

-dburl url: Specifies the JDBC URL expected by the driver for accessing a database.

-username name: Specifies the user name for authenticating access to a database.

-password password: Specifies the password for accessing the selected database.

-driver ajdbcdriver: Specifies the JDBC driver class name. This class must be in your
CLASSPATH.

-schemaname name: Specifies the name of the user schema being captured. If not specified,
the default will capture metadata for all tables from all the schemas accessible to this user.

NOTE The database user running capture-schema needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges
are granted to the user by the database administrator.

The capture-schema utility does not modify the schema in any way. Its only
purpose is to provide the persistence engine with information about the
structure of the database (the schema).

Using Container-Managed Persistence

100 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

-table TableName: Specifies a table name. Multiple table names can be specified. If not
specified, all the tables in the database schema will be captured.

-out: Specifies the output target. Defaults to stdout. To be able to use the output for the
CMP mapping, the output file name must have the .dbschema suffix.

For container-managed persistence mapping, the -out parameter correlates to the
schema subelement of the sun-cmp-mapping element in the
sun-cmp-mapping_1_0.dtd file:

<!ELEMENT sun-cmp-mapping (schema, entity-mapping+) >

In the sun-cmp-mappings.xml file, this element must be represented without the
.dbschema suffix. For example:

<schema>RosterSchema</schema>

Example
capture-schema -dburl jdbc:pointbase:server://localhost:9092/sample
-username public -password public -driver
com.pointbase.jdbc.jdbcUniversalDriver -out RosterSchema.dbschema

Mapping Fields and Relationships
This section discusses how to map the fields and relationships of your entity beans by
editing the sun-cmp-mappings.xml deployment descriptor. This can be done either
manually (provided you are proficient in editing XML) or using the Sun Java System
Application Server deploytool.

A container-managed persistence bean has a name, a primary table, one or more fields, zero
or more relationships, and zero or more secondary tables, plus flags for consistency
checking. You will need to map the CMP fields and CMR fields to the database using the
elements in the sun-cmp-mappings.xml file. CMP fields are mapped to columns in either
the primary or secondary database table(s); CMR fields are mapped to pairs of column lists.

NOTE If more than one schema is accessible for this user, more than one table
with the same name might be captured, which will cause problems if this
parameter is not set.

NOTE If no table flags are given, all the tables in the database are captured in the
schema.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 101

An alphabetic listing of the mapping elements in the container-managed persistence
deployment descriptors is contained in “Elements in the sun-cmp-mappings.xml File” on
page 118. A sample XML file is contained in “Sample Schema Definition” on page 127.

This section contains instructions for accomplishing the following mapping tasks:

• Specifying the Beans to Be Mapped

• Specifying the Mapping Components

• Specifying Field Mappings

• Specifying Relationships

Specifying the Beans to Be Mapped
You must start by using the following elements to specify the database schema and the
container-managed persistence beans being mapped:

• sun-cmp-mappings

• sun-cmp-mapping

• schema

• entity-mapping

sun-cmp-mappings
Specifies the collection of subelements for all the beans that will be mapped in an EJB JAR
collection.

Subelement is sun-cmp-mapping.

Example
Refer to “Sample Schema Definition” on page 127.

sun-cmp-mapping
Specifies beans mapped to a particular schema.

Subelements are schema, entity-mapping.

NOTE Relationships should always be mapped to the primary key field(s) of the
related table.

Using Container-Managed Persistence

102 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

schema
Specifies the path to the schema file. Only one is required. For further information, refer to
“Sample EJB QL Queries” on page 130 and “Capturing a Schema” on page 221.

Example
<schema>RosterSchema</schema>

entity-mapping
Specifies the mapping of beans to database columns.

Subelements are ejb-name, table-name, cmp-field-mapping, cmr-field-mapping,
secondary-table, consistency.

Example
For an example, see “entity-mapping” on page 102.

Specifying the Mapping Components
The next step is to use the following elements to specify components that are part of the
mapping, and to indicate how consistency checking will occur.

• entity-mapping

• ejb-name

• table-name

• secondary-table

• consistency

entity-mapping
Specifies the mapping of beans to database columns.

Subelements are ejb-name, table-name, cmp-field-mapping, cmr-field-mapping,
secondary-table, consistency.

Example
<entity-mapping>

<ejb-name>Player</ejb-name>
<table-name>PLAYER</table-name>
<cmp-field-mapping>

<field-name>salary</field-name>
<column-name>PLAYER.SALARY</column-name>

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 103

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>playerId</field-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>position</field-name>
<column-name>PLAYER.POSITION</column-name>

</cmp-field-mapping>
<field-name>name</field-name>
<column-name>PLAYER.NAME</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.TEAM_ID</column-name>
<column-name>TEAM.TEAM_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>

ejb-name
Specifies the name of the entity bean in the ejb-jar.xml file to which the
container-managed persistence beans relates. One is required.

Example
<ejb-name>Player</ejb-name>

table-name
Specifies the name of a database table. The table must be present in the database schema
file. One is required.

Example
<table-name>PLAYER</table-name>

Using Container-Managed Persistence

104 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

secondary-table
Specifies a bean’s secondary table(s). Optional.

Subelements are table-name, column-pair.

Example
This secondary table example adds an email field in the StudentEjb class.

public abstract class StudentEJB implements EntityBean {

/***
Write ur set,get methods for Entity bean variables and
business methods here
***/
//Access methods for CMP fields
public abstract Integer getStudentId();
public abstract void setStudentId(Integer studentId);
public abstract String getStudentName();
public abstract void setStudentName(String studentName);

public abstract void setEmail(String Email); <-----Column from
Secondary Table

The Student and the Email table should be related by a foreign key. The schema for the
Email table may look like this:

Table Email:

Student_id Number
email varchar

Table Student:

StudentId Number
StudentName varchar
deptId Number
AddressId Number
AccountId Varchar

When adding the secondary table, the tables will both apply to the same enterprise bean.

consistency
Specifies container behavior in guaranteeing transactional consistency of the data in the
bean. Optional. If the consistency checking flag element is not present, none is assumed.

The following table describes the elements used for consistency checking.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 105

Specifying Field Mappings
Field mapping is done using the following elements:

• cmp-field-mapping

• field-name

• column-name

• read-only

• fetched-with

• level

• named-group

• none

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns that it maps
to. The column can be from a bean’s primary table or any defined secondary table. If a field
is mapped to multiple columns, the column listed first is used as a SOURCE for getting the
value from the database. The columns are updated in the order they appear. There is one
cmp-field-mapping element for each cmp-field element defined in the EJB JAR file.

A field can be marked as read-only.

Subelements are field-name, column-name, read-only, and fetched-with.

Table 4-2 Consistency Flags
Flag Element Description

check-all-at-commit This flag is not implemented for Sun Java System
Application Server 7.1.

check-modified-at-commit Checks modified instances at commit time.

lock-when-loaded A lock is implemented when the data is loaded.

lock-when-modified This flag is not implemented for Sun Java System
Application Server 7.1.

none No consistency checking occurs.

Using Container-Managed Persistence

106 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Example
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>LEAGUE.NAME</column-name>

</cmp-field-mapping>

field-name
Specifies the Java identifier of a field. This identifier must match the value of the
field-name subelement of the cmp-field that is being mapped. One is required.

Example
<field-name>name</field-name>

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One or more is
required.

Example
<column-name>PLAYER.NAME</column-name>

Example
Use this with non-normalized tables where the same information appears in multiple places,
and the information needs to be kept synchronized if it is updated.

public abstract class StudentEJB implements EntityBean {
.
.
.

public abstract String getInstallments();

The three columns from the student table can be mapped to a single installments column in
the Student enterprise bean.

NOTE When mapping multiple columns, any JAVA type can be used.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 107

Table student:
.
.
.
installment1 Number
installment2 Number
installment3 Number

The same value will be written to all the columns in the database.

read-only
The read-only flag indicates that a field is read-only.

Example
<read-only>name</read-only>

fetched-with
Specifies the fetch group configuration for fields and relationships. A field may participate
in a hierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

• If there is no fetched-with sub-element of a cmp-field-mapping, the default value
is assumed to be:

<fetched-with><level>0</level></fetched-with>

• If there is no fetched-with sub-element of a cmr-field-mapping, the default value
is assumed to be:

<fetched-with><none/></fetched-with>

Subelements are level, named-group, or none.

level
Specifies the name of a hierarchical fetch group. The value must be an integer. Fields and
relationships that belong to a hierarchical fetch group of equal (or lesser) value are fetched
at the same time. The value of level must be greater than zero. Only one is allowed.

named-group
Specifies the name of an independent fetch group. All the fields and relationships that are
part of a named group are fetched at the same time. Only one is allowed.

Using Container-Managed Persistence

108 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

none
A consistency level flag that indicates that this field or relationship is fetched by itself.

Specifying Relationships
The following elements are used to specify the mapping for container-managed
relationships:

• cmr-field-mapping

• cmr-field-name

• column-pair

• fetched-with

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs that
define the relationship. There is one cmr-field-mapping element for each cmr-field. A
relationship can also participate in a fetch group.

Subelements are cmr-field-name, column-pair, fetched-with.

Example
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAM.TEAM_ID</column-name>
<column-name>TEAMPLAYER.TEAM_ID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>

cmr-field-name
Specifies the Java identifier of a field. This must match the value of the cmr-field-name
subelement of the cmr-field that is being mapped. One is required.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 109

Example
<cmr-field-name>team</cmr-field-name>

column-pair
Specifies the pair of related columns in two database tables. One or more is required.

The columns names are specified in the column-name element.

Example
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. Two are required as
subelements of a column-pair.

Example
<column-name>PLAYER.NAME</column-name>

fetched-with
Specifies the fetch group configuration for fields and relationships. A field may participate
in a hierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

• If there is no fetched-with sub-element of a cmp-field-mapping, the default value
is assumed to be:

<fetched-with><level>0</level></fetched-with>

• If there is no fetched-with sub-element of a cmr-field-mapping, the default value
is assumed to be:

<fetched-with><none/></fetched-with>

Subelements are level, named-group, or none.

Using Container-Managed Persistence

110 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Configuring the Resource Manager
The resource manager used by the container-managed persistence implementation is
PersistenceManagerFactory, which is configured using the server.xml file.

Refer to the Sun Java System Application Server Administration Guide for information on
creating a new persistence manager.

To deploy an EJB module that contains container-managed persistence beans, you need to
add the following information to the sun-ejb-jar.xml deployment descriptor.

1. Specify the Persistence Manager used for deployment in the sun-ejb-jar.xml file:

<pm-descriptors>
<pm-descriptor>

<pm-identifier>Sun</pm-identifier>
<pm-version>1.0</pm-version>

<pm-class-generator>com.sun.enterprise.persistence.internal.ejb.ejbc.JDOCodeGenerator
</pm-class-generator>

<pm-mapping-factory>com.sun.enterprise.cmp.NullFactory</pm-mapping-factory>
</pm-descriptor
<pm-inuse>

<pm-identifier>Sun</pm-identifier>
<pm-version>1.0</pm-version>

</pm-inuse>
</pm-descriptors>

2. Specify the JNDI name of the Persistence Manager’s resource (listed under
persistence-manager-factory-resource entry in the server.xml file) and the
JNDI name for cmp-resource. This name is used at run time to manage persistent
resources.

For example, if you have the following entry in the server.xml file:

<persistence-manager-factory-resource
factory-class="com.sun.jdo.spi.persistence.support.sqlstore.impl.PersistenceManagerFactoryImpl"
enabled="true"
jndi-name="jdo/pmf"
jdbc-resource-jndi-name="jdo/pmfPM" />

Set the CMP resource in the sun-ejb-jar.xml file as:

<cmp-resource>
<jndi-name>jdo/pmf</jndi-name

</cmp-resource>

NOTE The Sun ONE Studio IDE creates pm-descriptors automatically for
deployment. Information on how to set up the container-managed
persistence resources is contained in the Sun Java System Application
Server Integration Module for the Sun ONE Studio 5 online help.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 111

Using EJB QL
The Enterprise JavaBeans Specification, v2.0 specifies a new query language (EJB QL) that
can be used to define portable queries for the finder and select methods of CMP beans.
These queries use a SQL-like syntax to select entity objects or field values based on the
abstract schema types and relationships of CMP beans.

Finder methods are defined in the home and/or local home interfaces of the bean, and return
instances of the same bean. Select methods are defined only in the abstract bean class, and
can be used for selecting entity objects of any local or remote type as well as field values for
beans from the same schema.

For more information, refer to the Chapter 11, “EJB QL: EJB Query Language for
Container-Managed Persistence Query Methods” in the Enterprise JavaBeans Specification,
v2.0.

Some EJB QL sample queries are contained in “Sample EJB QL Queries” on page 130.

Configuring Queries for 1.1 Finders
The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the finder
method description. The Sun Java System Application Server uses Java Data Objects Query
Language (JDOQL) queries to implement finder and selector methods. For EJB 2.0, the
container automatically maps an EJB QL query to JDOQL. For EJB 1.1, this mapping is
partially done by the developer. You can specify the following elements of the underlying
JDOQL query:

• Filter expression—A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

• Query parameter declaration—Specifies the name and the type of one or more query
input parameters. Follows the syntax for formal parameters in the Java language.

• Query variable declaration—Specifies the name and type of one or more query
variables. Follows the syntax for local variables in the Java language. Query variables
might be used in the filter to implement joins.

The Sun Java System Application Server-specific deployment descriptor
(sun-ejb-jar.xml) provides the following elements to store the EJB 1.1 finder method
settings:

query-filter
query-params
query-variables

Using Container-Managed Persistence

112 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The Sun Java System Application Server constructs a JDOQL query using the persistence
capable class of the EJB 1.1 entity bean as the candidate class. It adds the filter, parameter
declarations, and variable declarations as specified by the developer to the JDOQL query. It
executes the query and passes the parameters of the finder method to the execute call. The
objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification (see JSR 12) provides a comprehensive description of JDOQL. The
following information summarizes the elements used to define EJB 1.1 finders.

Query Filter Expression
The filter expression is a String containing a boolean expression evaluated for each instance
of the candidate class. If the filter is not specified, it defaults to true. Rules for constructing
valid expressions follow the Java language, with the following differences:

• Equality and ordering comparisons between primitives and instances of wrapper
classes are valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are valid.

• White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

• The following assignment operators are not supported:

❍ =, +=, etc.

❍ pre- and post-increment

❍ pre- and post-decrement

• Methods, including object construction, are not supported, except for:

Collection.contains(Object o)
Collection.isEmpty()
String.startsWith(String s)
String.endsWith(String e)

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 113

In addition, the Sun Java System Application Server supports the following
non-standard JDOQL methods:

String.like(String pattern)
String.like(String pattern, char escape)
String.substring(int start, int length)
String.indexOf(String str), String.indexOf(String str, int
start)
String.length()
Math.abs(numeric n), and Math.sqrt(double d)

• Navigation through a null-valued field, which would throw NullPointerException,
is treated as if the subexpression returned false.

The following expressions are supported:

• Operators applied to all types where they are defined in the Java language:

❍ relational operators (==, !=, >, <, >=, <=)

❍ boolean operators (&, &&, |, ||, ~, !)

❍ arithmetic operators (+, -, *, /)

String concatenation is supported only for String + String.

• Parentheses to explicitly mark operator precedence

• Cast operator

• Promotion of numeric operands for comparisons and arithmetic operations. The rules
for promotion follow the Java rules (see the numeric promotions of the Java language
specification) extended by BigDecimal, BigInteger, and numeric wrapper classes.

Query Parameter
The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

NOTE Comparisons between floating point values are by nature inexact.
Therefore, equality comparisons (== and !=) with floating point values
should be used with caution. Identifiers in the expression are considered to
be in the name space of the candidate class, with the addition of declared
parameters and variables. As in the Java language, this is a reserved word,
and refers to the current instance being evaluated.

Using Container-Managed Persistence

114 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Query Variables
The type declarations follow the Java syntax for local variable declarations.

Example1
The following query returns all players called Michael. It defines a filter that compares the
name field with a string literal:

"name == \"Michael\""

The finder element of the sun-ejb-jar.xml file would look like this:

<finder>
<method-name>findPlayerByName</method-name>
<query-filter>name == "Michael"</query-filter>

</finder>

Example 2
This query returns all products in a specified price range. It defines two query parameters
which are the lower and upper bound for the price: double low, double high. The filter
compares the query parameters with the price field:

"low < price && price < high"

The finder element of the sun-ejb-jar.xml file would look like this:

<finder>
<method-name>findInRange</method-name>
<query-params>double low, double high</query-params>
<query-filter>low < price && price <
high</query-filter

</finder>

Example 3
This query returns all players having a higher salary than the player with the specified
name. It defines a query parameter for the name java.lang.String name. Furthermore, it
defines a variable for the player to compare with. It has the type of the persistence capable
class that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState p

The filter compares the salary of the current player denoted by this keyword with the salary
of the player with the specified name:

(this.salary > p.salary) && (p.name == name)

Third-Party Pluggable Persistence Manager API

Chapter 4 Using Container-Managed Persistence for Entity Beans 115

The finder element of the sun-ejb-jar.xml file would look like this:

<finder>
<method-name>findByHigherSalary</method-name>
<query-params>java.lang.String name</query-params>
<query-filter>

(this.salary > p.salary) &&
(p.name ==name)

</query-filter>
<query-variables></query-variables

</finder>

Third-Party Pluggable Persistence Manager API
Container-managed persistence in the EJB container can support persistence vendors
integrating their runtimes into the Sun Java System Application Server using the Sun Java
System Application Server Pluggable Persistence Manager API. The API describes
integration requirements at deployment, at code-generation, and at runtime. It supports
callouts to implement the concrete bean implementations when EJBs are compiled.

The Sun Java System Application Server enables the container-managed persistence
implementation to use its startup framework to load classes and to register the persistence
manager. The Pluggable Persistence Manager API also supports integration requirements
with regard to transactions and dynamic deployment.

In general, the objective is that any third-party container-managed persistence solution that
fully supports the Enterprise JavaBeans Specification, v2.0 can be made to work with the
Sun Java System Application Server.

To use a third-party tool:

1. Build your enterprise beans using the third-party O/R mapping tool.

2. Deploy the beans using the Assembly Tool or the command-line interface.

Third-party persistence tools must use Java Database Connectivity (JDBC) resources or
Java Connector API (JCA) resources at runtime to access relational data sources. This
allows the pluggable persistence managers to automatically use the connection pooling,
transaction handling, and security management features of the container. Third-party
vendors will be able to plug in their concrete class generators and their mapping factory to
generate a valid vendor-specific mapping object model.

Restrictions and Optimizations

116 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The configuration requirements specify a number of properties which must be defined for a
bean, including:

• The persistence mechanism

• The persistence vendor/version

• Additional information required by the persistence mechanism

Restrictions and Optimizations
This section discusses any restrictions and performance optimizations you should be aware
of in implementing container-managed persistence for entity beans.

• Unique Database Schema Names in EAR File

• Data Aliasing

• Eager Loading of Field State

• Restrictions on Remote Interfaces

• Sybase Finder Limitation

• Date and Time Fields as CMP Field Types

Unique Database Schema Names in EAR File
In a situation where there are multiple JAR files within an EAR file, for example jar1 and
jar2, any corresponding .dbschema files for jar1 and jar2 must have unique fully
qualified names.

Data Aliasing
If container-managed fields of multiple entity beans map to the same data item in the
underlying database, the entity beans may see an inconsistent view of the data item if the
multiple entity beans are invoked in the same transaction.

Restrictions and Optimizations

Chapter 4 Using Container-Managed Persistence for Entity Beans 117

Eager Loading of Field State
By default, the EJB container loads the state for all CMP fields (except BLOB and CLOB
fields) before invoking the ejbLoad method of the abstract bean. This approach may not be
optimal for entity objects with large state if most business methods require access to only
parts of the state. If this is an issue, use the <fetched-with> element for fields that are
used infrequently.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an entity bean that uses
container-managed persistence:

• Do not expose the get and set methods for CMR fields or the persistence Collection
classes that are used in container-managed relationships through the remote interface of
the bean.

However, you are free to expose the get and set methods that correspond to the CMP
fields of the entity bean through the bean’s remote interface.

• Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

• Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface,
and can be included in the client EJB JAR file.

Sybase Finder Limitation
If you execute any finder method with an input greater than 255 characters and map the
primary key column to a VARCHAR column, Sybase attempts to convert type VARCHAR
to type TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this
query.

To avoid this error, make sure your finder method input is less than 255 characters.

Elements in the sun-cmp-mappings.xml File

118 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Date and Time Fields as CMP Field Types
If a CMP field type is a Java date or time type (java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp), make sure that the field value exactly matches
the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())
beanHome.create(myDate, ...);

This code results in only the year, month, and date portion of the field value being stored in
the database. Later on if the client tries to find this bean by primary key as follows:

myBean = beanHome.findByPrimaryKey(myDate);

the bean is not found in the database because the value does not match the one that is stored
in the database.

Similar problems can happen if the database truncates the timestamp value while storing it,
or if a custom query has a date or time value comparison in its WHERE clause.

Elements in the sun-cmp-mappings.xml File
“Assembling and Deploying Enterprise Beans” on page 173, provides general information
and guidelines on assembling your enterprise beans for deployment. Additional deployment
information and instructions are contained in the Sun Java System Application Server
Developer’s Guide.

“Persistence Elements” on page 201 provides information on the information on
persistence-related elements in the sun-ejb-jar.xml file.

A sample XML file is contained in “Sample Schema Definition” on page 127.

This section describes the elements in the sun-cmp-mappings.xml file:

• check-all-at-commit

• check-modified-at-commit

• cmr-field-mapping

• cmr-field-name

• column-name

• column-pair

• consistency

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 119

• ejb-name

• entity-mapping

• fetched-with

• field-name

• level

• lock-when-loaded

• lock-when-modified

• named-group

• none

• read-only

• schema

• sun-cmp-mapping

• sun-cmp-mappings

• table-name

check-all-at-commit
This flag is not implemented for Sun Java System Application Server 7.1.

Subelements
none

check-modified-at-commit
A consistency level flag that indicates to check modified bean instances at commit time.

Subelements
none

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns that it maps
to. The column can be from a bean’s primary table or any defined secondary table. If a field
is mapped to multiple columns, the column listed first is used as a SOURCE for getting the
value from the database. The columns are updated in the order they appear. There is one
cmp-field-mapping element for each cmp-field element defined in the EJB JAR file.

Elements in the sun-cmp-mappings.xml File

120 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

A field can be marked as read-only.

A field may participate in a fetch group if the fetched-with element is not specified. The
following is assumed:

<fetched-with><level>0</level></fetched-with>

Subelements
The following table describes subelements for the cmp-field-mapping element.

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs that
define the relationship. There is one cmr-field-mapping element for each cmr-field. A
relationship can also participate in a fetch group.

If the fetched-with element is not present, the following value is assumed:
<fetched-with><none/></fetched-with>.

Subelements
The following table describes subelements for the cmr-field-mapping element.

Table 4-3 cmp-field-mapping Subelements
Subelement Required Description

field-name only one Specifies the Java identifier of a field. This
identifier must match the value of the
field-name subelement of the cmp-field
that is being mapped. One is required.

column-name one or more Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table. One is required.

read-only zero or one Flag that indicates a field is read-only.
Optional.

fetched-with zero or one Specifies the fetch group configuration for
fields and relationships. Optional.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 121

cmr-field-name
Specifies the Java identifier of a field. Must match the value of the cmr-field-name
subelement of the cmr-field that is being mapped.

Subelements
none

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One is required.

Subelements
none

column-pair
The name of the pair of related columns in two database tables. One is required.

Subelements
The following table describes subelements for the column-pair element.

Table 4-4 cmr-field-mapping Subelements
Subelement Required Description

cmr-field-name only one Specifies the Java identifier of a field. Must
match the value of the cmr-field-name
subelement of the cmr-field that is being
mapped.

column-pair one or more The name of the pair of columns in a database
table.

fetched-with zero or one Specifies the fetch group configuration for
fields and relationships. Optional.

Table 4-5 column-pair Subelements
Subelement Required Description

column-name two Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table.

Elements in the sun-cmp-mappings.xml File

122 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

consistency
Specifies container behavior in guaranteeing transactional consistency of the data in the
bean. Optional. If the consistency checking flag element is not present, none is assumed.

Subelements

The following table describes the elements used for consistency checking.

ejb-name
Specifies the name of the entity bean in the ejb-jar.xml file to which the
container-managed persistence beans relates. One is required.

Subelements
none

entity-mapping
Specifies the mapping a bean to database columns.

Subelements
The following table describes subelements for the entity-mapping element.

Table 4-6 Consistency Flags
Flag Element Description

check-all-at-commit Checks modified instances at commit time.

check-modified-at-commit This flag is not implemented for Sun Java System
Application Server 7.1.

lock-when-loaded An exclusive lock is obtained when the data is loaded.

lock-when-modified This flag is not implemented for Sun Java System
Application Server 7.1.

none No consistency checking occurs.

Table 4-7 entity-mapping Subelements
Subelement Required Description

ejb-name only one Specifies the name of the entity bean in the
ejb-jar.xml file to which the
container-managed persistence beans relates.
One is required.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 123

fetched-with
Specifies the fetch group configuration for fields and relationships. Optional.

A field may participate in a hierarchical or independent fetch group. If the fetched-with
element is not present, the following value is assumed:
<fetched-with><none/></fetched-with>.

Subelements
The following table describes subelements for the fetched-with element.

table-name only one Specifies the name of a database table. The
table must be present in the database schema
file.

cmp-field-mapping one or more Associates a field with one or more columns
that it maps to. The column can be from a
bean’s primary table or any defined secondary
table. If a field is mapped to multiple columns,
the column listed first is used as a SOURCE
for getting the value from the database. The
columns are updated in the order they appear.
There is one cmp-field-mapping element
for each cmp-field element defined in the
EJB JAR file.

A field can be marked as read-only.

cmr-field-mapping zero or more A container-managed relationship field has a
name and one or more column pairs that
define the relationship. There is one
cmr-field-mapping element for each
cmr-field. A relationship can also participate
in a fetch group.

secondary-table zero or more Describes the relationship between a bean’s
primary and secondary table. Column pairs are
used to describe this relationship.

consistency zero or one Specifies container behavior in guaranteeing
transactional consistency of the data in the
bean. If the consistency checking flag element
is not present, none is assumed.

Table 4-7 entity-mapping Subelements (Continued)
Subelement Required Description

Elements in the sun-cmp-mappings.xml File

124 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

field-name
Specifies the Java identifier of a field. This identifier must match the value of the
field-name subelement of the cmp-field that is being mapped. One is required.

Subelements
none

level
Specifies a hierarchical fetch group. The value of this element must be an integer. Fields
and relationships that belong to a hierarchical fetch group of equal (or lesser) value are
fetched at the same time. The value of level must be greater than zero. Only one is allowed.

Subelements
none

lock-when-loaded
A consistency level flag that indicates a lock will be implemented when the data is loaded.

Subelements
none

Table 4-8 fetched-with Subelements
Subelement Required Description

level exactly one of
these
elements is
required

Specifies the name of a hierarchical fetch
group. The value must be an integer. Fields
and relationships that belong to a hierarchical
fetch group of equal (or lesser) value are
fetched at the same time. The value of level
must be greater than zero.

named-group Specifies the name of an independent fetch
group. All the fields and relationships that are
part of a named group are fetched at the same
time.

none A consistency level flag that indicates that this
field or relationship is fetched by itself.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 125

lock-when-modified
This flag is not implemented for Sun Java System Application Server 7.1.

Subelements
none

named-group
Specifies the name of an independent fetch group. All the fields and relationships that are
part of a named group are fetched at the same time. One is allowed.

Subelements
none

none
A consistency level flag that indicates that this field or relationship is fetched with no other
fields or relationships, or it specifies the fetched-with semantics.

Subelements
none

read-only
Flag that indicates a field is read-only.

Subelements
none

schema
Specifies the path to the schema file. Only one is required. For further information, refer to
“Capturing a Schema” on page 221.

Subelements

none

secondary-table
Specifies a bean’s secondary table(s).

Subelements
The following table describes subelements for the secondary-table element.

Elements in the sun-cmp-mappings.xml File

126 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

sun-cmp-mapping
Specifies beans mapped to a particular schema.

Subelements
The following table describes subelements for the sun-cmp-mapping element.

sun-cmp-mappings
Specifies the collection of subelements for all the beans that will be mapped in an EJB JAR
collection.

Subelements
The following table describes subelements for the sun-cmp-mappings element.

Table 4-9 secondary table Subelements
Subelement Required Description

table-name only one Specifies the name of a database table. The
table must be present in the database schema
file.

column-pair one or more The name of the pair of related columns in two
database tables.

NOTE A bean cannot be related to a bean that maps to a different schema, even if
the beans are deployed in the same EJB JAR file.

Table 4-10 sun-cmp-mapping Subelements
Subelement Required Description

schema only one Specifies the path to the schema file.

entity-mapping one or more Specifies the mapping of beans to database
columns.

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 127

table-name
Specifies the name of a database table. The table must be present in the database schema
file. One is required.

Subelements
none

Examples
The following examples are contained in this section:

• Sample Schema Definition

• Sample CMP Mapping XML File

• Sample EJB QL Queries

Sample Schema Definition
CREATE TABLE Player
(

player_Id VARCHAR(255) PRIMARY KEY,
name VARCHAR(255) ,
position VARCHAR(255) ,
salary DOUBLE PRECISION NOT NULL ,
picture BLOB,

);

CREATE TABLE League
(

league_Id VARCHAR(255) PRIMARY KEY,
name VARCHAR(255) ,
sport VARCHAR(255) ,

);

Table 4-11 sun-cmp-mappings Subelements
Subelement Required Description

sun-cmp-mapping one or more Specifies beans mapped to a particular
schema.

Examples

128 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

CREATE TABLE Team
(

team_Id VARCHAR(255) PRIMARY KEY,
city VARCHAR(255) ,
name VARCHAR(255) ,
league_Id VARCHAR(255) ,
FOREIGN KEY (league_Id) REFERENCES League (league_Id) ,

);

CREATE TABLE TeamPlayer
(

player_Id VARCHAR(255) ,
team_Id VARCHAR(255),
CONSTRAINT pk_TeamPlayer PRIMARY KEY (player_Id , team_Id) ,
FOREIGN KEY (team_Id) REFERENCES Team (team_Id),
FOREIGN KEY (player_Id) REFERENCES Player (player_Id) ,

);

Sample CMP Mapping XML File
For information on these elements, refer to “Elements in the sun-cmp-mappings.xml File”
on page 118.

The following sample mapping file would have the name
META-INF/sun-cmp-mappings.xml in a deployable EJB JAR file:

<?xml version="1.0" encoding="UTF-8"?>
<sun-cmp-mappings>

<sun-cmp-mapping>
<schema>RosterSchema</schema>
<entity-mapping>

<ejb-name>League</ejb-name>
<table-name>LEAGUE</table-name>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>LEAGUE.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>leagueId</field-name>
<column-name>LEAGUE.LEAGUE_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>sport</field-name>
<column-name>LEAGUE.SPORT</column-name>

</cmp-field-mapping>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 129

<cmr-field-mapping>
<cmr-field-name>team</cmr-field-name>
<column-pair>

<column-name>LEAGUE.LEAGUE_ID</column-name>
<column-name>TEAM.LEAGUE_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>
<entity-mapping>

<ejb-name>Team</ejb-name>
<table-name>TEAM</table-name>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>TEAM.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>city</field-name>
<column-name>TEAM.CITY</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>teamId</field-name>
<column-name>TEAM.TEAM_ID</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>playerId</cmr-field-name>
<column-pair>
<column-name>TEAM.TEAM_ID</column-name>
<column-name>TEAMPLAYER.TEAM_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.PLAYER_ID</column-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
<cmr-field-mapping>

<cmr-field-name>leagueId</cmr-field-name>
<column-pair>

<column-name>TEAM.LEAGUE_ID</column-name>
<column-name>LEAGUE.LEAGUE_ID</column-name>

</column-pair>
<fetched-with>

<none/>

Examples

130 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

</fetched-with>
</cmr-field-mapping>

</entity-mapping>
<entity-mapping>

<ejb-name>Player</ejb-name>
<table-name>PLAYER</table-name>
<cmp-field-mapping>

<field-name>salary</field-name>
<column-name>PLAYER.SALARY</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>playerId</field-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>position</field-name>
<column-name>PLAYER.POSITION</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>PLAYER.NAME</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.TEAM_ID</column-name>
<column-name>TEAM.TEAM_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>
</sun-cmp-mapping>

</sun-cmp-mappings>

Sample EJB QL Queries
<query>

<description></description>
<query-method>

<method-name>findAll</method-name>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 131

<method-params />
</query-method>
<ejb-ql>select object(l) from League l</ejb-ql>

</query>

<query>
<description></description>
<query-method>

<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select object(l) from League l where l.name = ?1</ejb-ql>

</query>

<query>
<description></description>
<query-method>

<method-name>findByPosition</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct object(p) from Player p where p.position = ?1</ejb-ql>

</query>

<query>
<description>Selector returning SET</description>
<query-method>

<method-name>ejbSelectTeamsCity</method-name>
<method-params>

<method-param>team.LocalLeague</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct t.city from Team t where t.league = ?1</ejb-ql>

</query>

<query>
<description>Selector returning single object LocalInterface</description>
<query-method>

<method-name>ejbSelectTeamByCity</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>

Examples

132 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

<result-type-mapping>Local</result-type-mapping>
<ejb-ql>select distinct Object(t) from League l, in(l.teams) as t where t.city =

?1</ejb-ql>
</query>

<query>
<description>Selector returning single object String</description>
<query-method>

<method-name>ejbSelectTeamsNameByCity</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct t.name from League l, in(l.teams) as t where t.city =

?1</ejb-ql>
</query>

<query>
<description>Selector returning Set using multiple collection

declarations</description>
<query-method>

<method-name>ejbSelectPlayersByLeague</method-name>
<method-params>

<method-param>team.LocalLeague</method-param>
</method-params>

</query-method>
<result-type-mapping>Local</result-type-mapping>
<ejb-ql>select Object(p) from League l, in(l.teams) as t, in(t.players) p where l =

?1</ejb-ql>
</query>

<query>
<description>Selector single object int</description>
<query-method>

<method-name>ejbSelectSalaryOfPlayerInTeam</method-name>
<method-params>

<method-param>team.LocalTeam</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql>select p.salary from Team t, in(t.players) as p where t = ?1 and p.name =

?2</ejb-ql>
</query>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 133

<query>
<description>Finder using the IN Expression</description>
<query-method>

<method-name>findByPositionsGoalkeeperOrDefender</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.position IN ('goalkeeper',

'defender')</ejb-ql>
</query>

<query>
<description>Finder using the LIKE Expression</description>
<query-method>

<method-name>findByNameEndingWithON</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.name LIKE '%on'</ejb-ql>

</query>

<query>
<description>Finder using the IS NULL Expression</description>
<query-method>

<method-name>findByNullName</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.name IS NULL</ejb-ql>

</query>

<query>
<description>Finder using the MEMBER OF Expression</description>
<query-method>

<method-name>findByTeam</method-name>
<method-params>

<method-param>team.LocalTeam</method-param>
</method-params>

</query-method>
<ejb-ql>select object(p) from Player p where ?1 MEMBER p.teams</ejb-ql>

</query>

<query>
<description>Finder using the ABS function</description>
<query-method>

<method-name>findBySalarayWithArithmeticFunctionABS</method-name>
<method-params>

<method-param>double</method-param>

Examples

134 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

</method-params>
</query-method>
<ejb-ql>select object(p) from Player p where p.salary = ABS(?1)</ejb-ql>

</query>

<query>
<description>Finder using the SQRT function</description>
<query-method>

<method-name>findBySalarayWithArithmeticFunctionSQRT</method-name>
<method-params>

<method-param>double</method-param>
</method-params>

</query-method>
<ejb-ql>select object(p) from Player p where p.salary = SQRT(?1)</ejb-ql>

</query>

135

Chapter 5

Using Message-Driven Beans

This section describes message-driven beans and explains the requirements for creating
them in the Sun Java System Application Server environment.

This section contains the following topics:

• About Message-Driven Beans

• Developing Message-Driven Beans

• Restrictions and Optimizations

• Sample Message-Driven Bean XML Files

NOTE If you are unfamiliar with message-driven beans or the EJB technology,
refer to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on message-driven beans is contained in chapters 15
and 16 of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

http://java.sun.com/j2ee/docs.html

About Message-Driven Beans

136 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

About Message-Driven Beans
A message-driven bean is an enterprise bean that allows J2EE applications to process
messages asynchronously. It acts as message listener, which is similar to an event listener
except that it receives messages instead of events. The messages may be sent by any J2EE
component—an application client, another enterprise bean, or a web component—or by an
application or system that does not use J2EE technology.

The following topics are addressed in this section:

• Message-Driven Beans Differences

• Message-Driven Bean Characteristics

• Transaction Management

• Concurrent Message Processing

Message-Driven Beans Differences
Session beans and entity beans allow you to send JMS messages and to receive them
synchronously, but not asynchronously. To avoid tying up server resources, you may prefer
to use asynchronous receives in a server-side component. To receive messages
asynchronously, use a message-driven bean.

The most visible difference between message-driven beans and session and entity beans is
that clients do not access message-driven beans through interfaces. Unlike a session or
entity bean, a message-driven bean has only a bean class.

In several respects, a message-driven bean resembles a stateless session bean:

• A message-driven bean's instances retain no data or conversational state for a specific
client.

• All instances of a message-driven bean are equal, allowing the container to pool these
message-driven bean instances. This allows streams of messages to be processed
concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across
the handling of client messages—for example, a JMS connection, an open database
connection, or an object reference to an EJB object.

About Message-Driven Beans

Chapter 5 Using Message-Driven Beans 137

Message-Driven Bean Characteristics
A message-driven bean instance is an instance of a message-driven bean class. It has neither
a home nor a remote interface; message-driven beans are anonymous. They have no
client-visible identity.

A client accesses a message-driven bean through JMS by sending messages to the message
destination for which the message-driven bean class is the MessageListener. A
message-driven bean's Queue and Topic are assigned during deployment using the Sun Java
System Application Server resources.

Message-driven beans have the following characteristics:

• Execute upon receipt of a single client message.

• Are asynchronously invoked.

• Are relatively short lived.

• Do not represent directly shared data in the database, but may access and update this
data.

• Can be transaction-aware.

• Are stateless.

Transaction Management
Both container-managed and bean-managed transactions as defined in the Enterprise
JavaBeans Specification, v2.0 are supported.

With container-managed transactions, a message may be delivered to a message-driven
bean within a transaction context, so that all operations within the onMessage method are
part of a single transaction. If message processing is rolled back, the message will be
redelivered.

Refer to “Handling Transactions with Enterprise Beans” on page 149 for additional
information on transactions.

Developing Message-Driven Beans

138 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Concurrent Message Processing
A container allows many instances of a message-driven bean class to be running
concurrently, thus allowing for the concurrent processing of a stream of messages. No
guarantees are made as to the exact order in which messages are delivered to the instances
of the message-driven bean class, although the container attempts to deliver messages in
chronological order when this does not impair the concurrency of message processing.

Message-driven beans should, therefore, be prepared to handle messages that are out of
sequence. For example, a message to cancel a reservation may be delivered before the
message to make the reservation.

Developing Message-Driven Beans
The goal of the message-driven bean model is to make developing an enterprise bean that is
asynchronously invoked to handle incoming messages as simple as developing the same
functionality in any other JMS listener. A further goal is to allow for concurrent processing
of a stream of messages by means of container-provided pooling of message-driven bean
instances.

The following sections provide guidelines on creating message-driven beans:

• Creating the Bean Class Definition

• Configuration

Creating the Bean Class Definition
Unlike session and entity beans, message-driven beans do not have the remote or local
interfaces that define client access. Client components do not locate message-driven beans
and invoke methods directly on them.

Although message-driven beans do not have business methods, they may contain helper
methods that are invoked internally by the onMessage method.

For message-driven beans, the class requirements are:

• The class must implement, directly or indirectly, the
javax.ejb.MessageDrivenBean interface.

• The class must implement, directly or indirectly, the javax.ejb.MessageListener
interface.

• The class must be defined as public and must not be defined as abstract or final.

Developing Message-Driven Beans

Chapter 5 Using Message-Driven Beans 139

• The class must have a public constructor that takes no arguments (used by the container
to create instances of the message-driven bean class).

• The class must not define the finalize method.

• The class must implement the onMessage method.

• The class must implement one ejbCreate method, with no arguments.

• The class must implement one ejbRemove method with no arguments.

The following sections address the various methods in a message-driven bean’s class
definition.

• Using ejbCreate

• Using setMessageDrivenContext

• Using onMessage

• Using ejbRemove

Using ejbCreate
The message-driven bean class defines one ejbCreate method whose signature must
follow these rules:

• The method name must be ejbCreate.

• The method must be declared as public and must not be declared as final or static.

• The return type must be void.

• The method must have no arguments.

• The throws clause must not define any application exceptions.

Using setMessageDrivenContext
The container provides the message-driven bean instance with a
MesssageDrivenContext. This gives the message-driven bean instance access to the
instance's context maintained by the container.

Using onMessage
The onMessage method has a single argument: the incoming message. The onMessage
method is called by the bean’s container when a message has arrived for the bean to service.
This method contains the business logic that handles the processing of the message. It is the
message-driven bean's responsibility to parse the message and perform the necessary
business logic.

Developing Message-Driven Beans

140 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The message-driven bean class defines one onMessage method whose signature must
follow these rules:

• The method must be declared as public and must not be declared as final or static.

• The return type must be void.

• The method must have a single argument of type javax.jms.Message.

• The throws clause must not define any application exceptions. Refer to “onMessage
Runtime Exception” on page 144 for semantics on throwing an exception from
onMessage.

The onMessage method is invoked in the scope of a transaction that is determined by the
transaction attribute specified in the deployment descriptor.

Using ejbRemove
The message-driven bean class defines one ejbRemove method to free a bean when it is no
longer needed. The signature must follow these rules:

• The method name must be ejbRemove.

• The method must be declared as public and must not be declared as final or static.

• The return type must be void.

• The method must have no arguments.

• The throws clause must not define any application exceptions.

The ejbRemove method is not called if the EJB container crashes, or if an exception is
thrown from the instance’s onMessage method to the container. If the message-driven bean
instance allocates resources in the ejbCreate method, and/or the onMessage method, and
releases the resources in the ejbRemove method, these resources will not be automatically
released. Your application should provide a mechanism to periodically clean up the
unreleased resources.

NOTE If the bean is specified as using container-managed transaction
demarcation, either the Required or NotSupport transaction attribute
must be specified in its deployment descriptor.

NOTE You cannot assume that the container will always invoke the ejbRemove
method on a message-driven bean instance.

Developing Message-Driven Beans

Chapter 5 Using Message-Driven Beans 141

Configuration
This section addresses the following configuration topics:

• Connection Factory and Destination

• Message-Driven Bean Pool

• Server instance-wide Attributes

• Automatic Reconnection to JMS Provider

Connection Factory and Destination
A message-driven bean is a JMS client. Therefore, the message-driven bean container uses
the JMS service integrated into the Sun Java System Application Server. JMS clients use
JMS Connection Factory- and Destination-administered objects. A JMS Connection
Factory administered object is a resource manager Connection Factory object that is used to
create connections to the JMS provider.

The mdb-connection-factory element in the sun-ejb-jar.xmlfile for a
message-driven bean can be used to specify the connection factory used by the container to
create the container connection to the JMS provider. This element can be used to work with
a third-party JMS provider.

If the mdb-connection-factory element is not specified, a default one created at server
startup is used. This provides connection to the built-in Sun Java System Message Queue
broker on the port that is specified in the jms-service element (if enabled) in the
server.xml file, using the default user name/password (resource principal) of the Sun Java
System Message Queue. Refer to the Sun Java System Message Queue Developer’s Guide
for more information.

The jndi-name element of the ejb element in sun-ejb-jar.xml file specifies the JNDI
name of the administered object for the JMS Queue or Topic destination that is associated
with the message-driven bean.

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The Sun Java System Application Server-specific bean deployment
descriptor contains the elements that define the pool (that is, the bean-pool element):

• steady-pool-size

• resize-quantity

• max-pool-size

Developing Message-Driven Beans

142 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• pool-idle-timeout-in-seconds

For information on these elements, refer to “Pooling and Caching Elements” on page 208.

Server instance-wide Attributes
An administrator can control the following server instance-wide message-driven bean
attributes for the mdb-container element in the server.xml file:

• steady-pool-size

• pool-resize-quantity

• max-pool-size

• idle-timeout-in-seconds

• log-level

• monitoring-enabled

For further explanation on these attributes, refer to “Pooling and Caching Elements” on
page 208 and the Sun Java System Application Server Administrator’s Configuration File
Reference.

For information on monitoring message-driven beans, see the Sun Java System Application
Server Administration interface online help and Administration Guide.

Automatic Reconnection to JMS Provider
When the Sun Java System Application Server is started, for each deployed message-driven
bean, its container keeps a connection to the JMS provider. When the connection is broken,
the container is not able to receive messages from the JMS provider and, therefore, is
unable to deliver messages to its message-driven bean instances. When the auto
reconnection feature is enabled, the container automatically tries to reconnect to the JMS
provider if the connection is broken.

The mdb-container element in the server.xml file contains auto reconnection
properties. By default, reconnect-enabled is set to true and
reconnect-delay-in-seconds is set to 60 seconds. That is, there is a delay of 60 seconds
before each attempt to reconnect, and reconnect-max-retries is set to 60.

The container logs messages for each reconnect attempt.

NOTE Running monitoring when it is not need may impact performance, so you
may choose to turn monitoring off using the asadmin command or the
Administration interface when it is not in use.

Restrictions and Optimizations

Chapter 5 Using Message-Driven Beans 143

Refer to the Sun Java System Application Server Administrator’s Configuration File
Reference for information on auto reconnect properties of the mdb-container element in
the server.xml file.

Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations that you
should be aware of in developing message-driven beans:

• JMS Limitation

• Pool Tuning and Monitoring

• onMessage Runtime Exception

JMS Limitation
The Sun Java System Application Server supports JMS messaging through a built-in JMS
service provided by Sun Java System Message Queue 3.5, Platform Edition. As a
standalone product, Sun Java System Message Queue 3.5 supports the JMS 1.1
specification. However, Sun Java System Application Server 7.1 supports the J2EE 1.3
specification, which encompasses only the more limited JMS 1.02b specification. For this
reason, the additional features embodied in JMS 1.1 are not available to applications
running on the Sun Java System Application Server 7.1.

Developers of JMS messaging applications should, therefore, limit JMS client components
that run in a Sun Java System Application Server environment to JMS 1.02b. For more
information, see the Sun Java System Message Queue Developer’s Guide or Release
Notes.

NOTE Depending on where the message processing stage is, if the connection is
broken, the onMessage method may not be able to complete successfully,
or the transaction may be rolled back due to a JMS exception. When the
container reestablishes connection to the JMS provider, JMS message
redelivery semantics apply.

Restrictions and Optimizations

144 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven bean
instance in the pool associating with a server session, and each server session associating
with a thread. Therefore, a large pool size also means a high number of threads, which will
impact performance and server resources.

When configuring message-driven bean pool properties, you must consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server
resources (threads, memory, and so on), and any concurrency requirements and limitations
from other resources that the message-driven bean may access.

Performance and resource usage tuning should also consider potential JMS provider
properties for the connection factory that is used by the container
(mdb-connection-factory element in deployment descriptor). For example, the Sun Java
System Message Queue flow control related properties for connection factory should be
tuned in situations where the message incoming rate is much higher than max-pool-size
can handle.

Refer to the Sun Java System Application Server Administration Guide for information on
how to get message-driven bean pool statistics.

onMessage Runtime Exception
Message-driven beans, like other well-behaved JMS MessageListeners, should not, in
general, throw runtime exceptions. If a message-driven bean's onMessage method
encounters a system-level exception or error that does not allow the method to successfully
complete, the Enterprise JavaBeans Specification, v2.0 provides the following guidelines:

• If the bean method encounters a runtime exception or error, it should simply propagate
the error from the bean method to the container.

• If the bean method performs an operation that results in a checked exception that the
bean method cannot recover, the bean method should throw the
javax.ejb.EJBException that wraps the original exception.

• Any other unexpected error conditions should be reported using
javax.ejb.EJBException (javax.ejb.EJBException is a subclass of
java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception
from a message-driven bean's onMessage method, the container will roll back the
container-started transaction and JMS message will be redelivered. This is because the
message delivery itself is part of the container-started transaction. By default, the Sun Java
System Application Server container closes the container's connection to the JMS provider

Sample Message-Driven Bean XML Files

Chapter 5 Using Message-Driven Beans 145

when the first runtime exception is received from a message-driven bean instance's
onMessage method. This avoids potential message redelivery looping and protects server
resources if the message-driven bean's onMessage method continues misbehaving. This
default container behavior can be changed using the cmt-max-runtime-exceptions
property of the mdb-container element in the server.xml file.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean's onMessage method before the container
starts to close the container's connection to the JMS provider. By default this value is 1; -1
disables this container protection.

A message-driven bean's onMessage method can use the javax.jms.Message
getJMSRedelivered method to check whether a received message is a redelivered
message.

Sample Message-Driven Bean XML Files
This section includes the following sample files:

• Sample ejb-jar.xml File

• Sample sun-ejb-jar.xml File

For information on the elements associated with message-driven beans, refer to “Elements
in the sun-ejb-jar.xml File” on page 181 and the Sun Java System Application Server
Developer’s Guide.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<message-driven>

<ejb-name>MessageBean</ejb-name>
<ejb-class>samples.mdb.ejb.MessageBean</ejb-class>
<transaction-type>Container</transaction-type>

NOTE The cmt-max-runtime-exceptions property may be deprecated in the
future.

Sample Message-Driven Bean XML Files

146 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
</resource-ref>

</message-driven>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>MessageBean</ejb-name>
<method-intf>Bean</method-intf>
<method-name>onMessage</method-name>
<method-params>
<method-param>javax.jms.Message</method-param>
</method-params>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor

</ejb-jar>

Sample sun-ejb-jar.xml File
For information on these elements, refer to “Elements in the sun-ejb-jar.xml File” on
page 181.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun ONE Application Server
7.1 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd'>

<sun-ejb-jar>
<enterprise-beans>
<ejb>

<ejb-name>MessageBean</ejb-name>
<jndi-name>jms/sample/Queue</jndi-name>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

Sample Message-Driven Bean XML Files

Chapter 5 Using Message-Driven Beans 147

<name>guest</name>
<password>guest</password>

</default-resource-principal>
</resource-ref>
<mdb-connection-factory>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

<name>guest</name>
<password>guest</password>

</default-resource-principal>
</mdb-connection-factory>

</ejb>
</enterprise-beans>

</sun-ejb-jar>

Sample Message-Driven Bean XML Files

148 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

149

Chapter 6

Handling Transactions with
Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans (EJBs)
programming model for Sun Java System Application Server.

This section addresses the following topics:

• JTA and JTS Transaction Support

• Using Container-Managed Transactions

• Using Bean-Managed Transactions

• Setting Transaction Timeouts

• Handling Isolation Levels

NOTE If you are unfamiliar with transaction handling in the EJB technology, refer
to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on EJB transaction support is contained in Chapter
17, “Support for Transactions,” of the Enterprise JavaBeans Specification,
v2.0.

Overview material on the Sun Java System Application Server is contained
in “Sun Java System Application Server and Enterprise JavaBeans
Technology” on page 19 and the Sun Java System Application Server
Product Introduction.

http://java.sun.com/j2ee/docs.html

JTA and JTS Transaction Support

150 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

JTA and JTS Transaction Support
J2EE includes support for distributed transactions through two specifications:

• Java™ Transaction API (JTA)

• Java™ Transaction Service (JTS)

The JTA is a high-level, implementation-independent protocol API that allows applications
and application servers to access transactions.

JTS specifies the implementation of a transaction manager which supports the JTA and
implements the Java mapping of the OMG Object Transaction Service (OTS) 1.1
specification at the level below the API. JTS propagates transactions using the Internet
Inter-ORB Protocol (IIOP).

The current transaction manager implementation supports JTS and the JTA. The EJB
container itself uses the Java Transaction API interface to interact with JTS.

The J2EE transaction manager controls all EJB transactions, except for bean-managed Java
Database Connectivity (JBDC) transactions, and allows an enterprise bean to update
multiple databases within a transaction.

About Transaction Handling
As a developer, you can write an application that updates data in multiple databases which
may be distributed across multiple sites. The site may use EJB servers from different
vendors.

This section provides overview information on the following topics:

• Flat Transactions

• Global and Local Transactions

• Demarcation Models

• Commit Options

• Administration and Monitoring

About Transaction Handling

Chapter 6 Handling Transactions with Enterprise Beans 151

Flat Transactions
The Enterprise JavaBeans Specification, v2.0 requires support for flat (as opposed to
nested) transactions. In a flat transaction, each transaction is decoupled from and
independent of other transactions in the system. You cannot start another transaction in the
same thread until the current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial
database systems. Although nested transactions offer a finer granularity of control over
transactions, they are supported by far fewer commercial database systems.

Global and Local Transactions
Understanding the distinction between global and local transactions is crucial in
understanding the Sun Java System Application Server support for transactions.

• Global transactions—Transactions that are managed and coordinated by a resource
manager, and can span multiple databases and processes. The resource manager uses
the XA two-phase commit protocol to interact with the Enterprise Information System
(EIS) or database.

• Local transactions—Transactions that are native to a single EIS or database, use
non-XA data sources, and are restricted within a single process. Local transactions do
not involve multiple data sources.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local
transactions bypass the transaction manager and are faster.

Initially, all transactions are local. If a non-XA data source connection is the first resource
connection enlisted in a transaction scope, it will become a global transaction when a
(second) XA data source connection joins it. If a second non-XA data source connection
attempts to join, an exception is thrown.

The Sun Java System Application Server operates in either global or local transaction
mode, but the two modes cannot be mixed in the same transaction.

NOTE If your application uses global transactions, you must configure and enable
the corresponding Sun Java System Application Server resource
managers. For more information, see the Sun Java System Application
Server Administration interface online help and the and Administration
Guide.

About Transaction Handling

152 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Demarcation Models
As a developer, you can choose between using programmatic transaction demarcation in the
EJB code (bean-managed) or declarative demarcation (container-managed). Regardless of
whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the EJB container
and the Sun Java System Application Server. The container and the server implement the
necessary low-level transaction protocols, such as the two-phase commit protocol between
a transaction manager and a dustbowls system or Sun Java System Message Queue,
transaction context propagation, and distributed two-phase commit.

These demarcation models are addressed in the following sections:

• Container-Managed Transactions

• Bean-Managed Transactions

Container-Managed Transactions
One primary advantage of enterprise beans is the support they provide for
container-managed transactions, also known as declarative transactions. In an enterprise
bean with container-managed transactions, the EJB container sets the boundaries of the
transactions.

Container-managed transactions simplify development because the EJB code does not
explicitly mark the transaction's boundaries. That is, the code does not include statements
that begin and end the transaction. The container is responsible for:

• Demarcating and transparently propagating the transactional context

• In conjunction with a transaction manager, ensuring that all participants in the
transaction see a consistent outcome

Bean-Managed Transactions
The EJB specification supports bean-managed transaction demarcation, also known as
programmer-demarcated transactions, using javax.transaction.UserTransaction.
With bean-managed transactions, you must perform a Java Naming and Directory Interface
(JNDI) lookup to obtain a UserTransaction object.

NOTE You can use container-managed transactions with any type of enterprise
bean (session, entity, or message-driven), but an entity bean can only use
container-managed transactions.

About Transaction Handling

Chapter 6 Handling Transactions with Enterprise Beans 153

There are two types of bean-managed transactions:

• JDBC type—You delimit JDBC transactions with the commit and rollback methods of
the connection interface.

• JTA type—You invoke the begin, commit, and rollback methods of the
UserTransaction interface to demarcate JTA transactions.

Commit Options
The EBJ protocol is designed to give the container the flexibility to select the disposition of
the instance state at the time a transaction is committed. This allows the container to best
manage caching an entity object’s state and associating an entity object identity with the
EJB instances.

There are three commit-time options:

• Option A—The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent
storage.

In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

• Option B—The container caches a ready instance between transactions, but the
container does not ensure that the instance has exclusive access to the state of the object
in persistent storage. This is the default.

In this case, the container must synchronize the instance’s state by invoking ejbLoad
from persistent storage at the beginning of the next transaction.

• Option C—The container does not cache a ready instance between transactions, but
instead returns the instance to the pool of available instances after a transaction has
completed.

NOTE You can use bean-managed transactions with session or message-driven
beans, but an entity bean must use container-managed transactions.

NOTE Commit option A is not supported for Sun Java System Application Server
7.1.

About Transaction Handling

154 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The life cycle for every business method invocation under commit option C looks like
this:

ejbActivate->
ejbLoad ->

business method ->
ejbStore ->

ejbPassivate

If there is more than one transactional client concurrently accessing the same entity
EJBObject, the first client gets the ready instance and subsequent concurrent clients
get new instances from the pool.

The Sun Java System Application Server deployment descriptor has an element,
commit-option, that specifies the commit option to be used. Based on the specified
commit option, the appropriate handler is instantiated.

Administration and Monitoring
An administrator can control the following instance-wide transaction service attributes for
the transaction-service element in the server.xml file:

• automatic-recovery

• timeout-in-seconds

• tx-log-directory

• heuristic-decision

• keypoint-interval

• log-level

• monitoring-enabled

For further explanation on these attributes, refer to the Sun Java System Application Server
Administrator’s Configuration File Reference.

NOTE It is assumed that if commit option A is used, the developer is responsible
for ensuring that only this application is updating the database. In other
words, this is not the container's responsibility.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 155

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions
completed/rolled back/recovered since server startup, and transactions presently being
processed.

For information on administering and monitoring transactions, see the Sun Java System
Application Server Administration interface online help and the Sun Java System
Application Server Administration Guide.

Using Container-Managed Transactions
Typically, the container begins a transaction immediately before an EJB method starts, and
commits the transaction just before the method exits. Each method can be associated with a
single transaction.

Container-managed transactions do not require all methods to be associated with
transactions. When deploying an enterprise bean, you specify which of the bean's methods
are associated with transactions by setting the transaction attributes.

Although beans with container-managed transactions require less coding, they have one
limitation:

When a method is executing, it can only be associated with either a single transaction
or no transaction at all.

If this limitation will make coding your bean difficult, bean-managed transactions may be
your best choice.

When a commit occurs, the transaction signals the container that the bean has completed its
useful work and tells the container to synchronize its state with the underlying data source.
The container permits the transaction to complete and then frees the bean. Result sets
associated with a committed transaction are no longer valid. Subsequent requests for the
same bean cause the container to issue a load to synchronize state with the underlying data
source.

Any participant can roll back a transaction.

NOTE Nested or multiple transactions are not allowed within a method.

NOTE Transactions initiated by the container are implicitly committed.

Using Container-Managed Transactions

156 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The following sections are related to developing enterprise beans with container-managed
transactions:

• Specifying Transaction Attributes

• Rolling Back a Container-Managed Transaction

• Synchronizing a Session Bean's Instance Variables

• Methods Not Allowed in Container-Managed Transactions

Specifying Transaction Attributes
A transaction attribute is a parameter that controls the scope of a transaction.

Because transaction attributes are stored in the deployment descriptor, they can be changed
during several phases of J2EE application development: at EJB creation, at assembly
(packaging), or at deployment. However, as an EJB developer, it is your responsibility to
specify the attributes when creating the EJB. The attributes should be modified only when
you (or whoever is assembling) are assembling components into larger applications.

You can specify the transaction attributes for the entire enterprise bean or for individual
methods. If you've specified one attribute for a method and another for the bean, the
attribute for the method takes precedence.

For more information, on the EJB deployment descriptor file, refer to “Creating
Deployment Descriptors” on page 174.

This section addresses the following topics:

• Differing Attribute Requirements

• Attribute Values

NOTE Do not expect the person who is deploying the J2EE application to specify
the transaction attributes.

TIP If you're unsure about how to set up transactions in the EJB’s deployment
descriptor, specify container-managed transactions. Then, set the Required
transaction attribute for the entire enterprise bean. This approach will work
most of the time.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 157

Differing Attribute Requirements
When specifying attributes for individual methods, the requirements differ with the type of
bean.

• Session beans—Need the attributes defined for business methods, but do not allow
them for the create methods.

• Entity beans—Require transaction attributes for the business, create, remove, and
finder methods.

• Message-driven beans—Require transaction attributes (either Required or
NotSupported) for the onMessage method.

Attribute Values
A transaction attribute may have one of the following values:

• Required

• RequiresNew

• Mandatory

• NotSupported

• Supports

• Never

Required
If the client is running within a transaction and invokes the enterprise bean's method, the
method executes within the client's transaction. If the client is not associated with a
transaction, the container starts a new transaction before running the method.

RequiresNew
If the client is running within a transaction and invokes the EJB's method, the container
takes the following steps:

1. Suspends the client's transaction.

2. Starts a new transaction.

TIP The Required attribute will work for most transactions. Therefore, you
may want to use it as a default, at least in the early phases of development.
Because transaction attributes are declarative, you can easily change them
at a later time.

Using Container-Managed Transactions

158 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

3. Delegates the call to the method.

4. Resumes the client's transaction after the method completes.

If the client is not associated with a transaction, the container starts a new transaction before
running the method.

You should use the RequiresNew attribute when you want to ensure that the method always
runs within a new transaction.

Mandatory
If the client is running within a transaction and invokes the EJB's method, the method
executes within the client's transaction. If the client is not associated with a transaction, the
container throws a TransactionRequiredException.

Use the Mandatory attribute if the EJB's method must use the transaction of the client.

NotSupported
If the client is running within a transaction and invokes the EJB's method, the container
suspends the client's transaction before invoking the method. After the method has
completed, the container resumes the client's transaction.

If the client is not associated with a transaction, the container does not start a new
transaction before running the method.

Supports
If the client is running within a transaction and invokes the EJB's method, the method
executes within the client's transaction. If the client is not associated with a transaction, the
container does not start a new transaction before running the method.

Never
If the client is running within a transaction and invokes the enterprise bean's method, the
container throws a RemoteException. If the client is not associated with a transaction, the
container does not start a new transaction before running the method.

Use the NotSupported attribute for methods that don't need transactions. Because
transactions involve overhead, this attribute may improve performance.

The following table summarizes the effects of the transaction attributes. Transactions can be
T1, T2, or None. (Both T1 and T2 transactions are controlled by the container.)

NOTE Because the transactional behavior of the method may vary, you should use
the Supports attribute with caution.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 159

• T1 transaction—Is associated with the client that calls a method in the enterprise bean.
In most cases, the client is another enterprise bean.

• T2 transaction—Is started by the container, just before the method executes.

• None—In the third column, the word None means that the business method does not
execute within a transaction controlled by the container. However, the database calls in
such a business method might be controlled by the transaction manager of the database.

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction:

• First, if a system exception is thrown, the container automatically rolls back the
transaction.

• Second, by invoking the setRollbackOnly method of the EJBContext interface, the
bean method instructs the container to roll back the transaction. If the bean throws an
application exception, the rollback is not automatic, but may be initiated by a call to
setRollbackOnly.

Table 6-1 Transaction Attributes and Scope
Transaction Attribute Client's Transaction Business Method's Transaction

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Mandatory None Error

T1 T1

NotSupported None None

T1 None

Supports None None

T1 T1

Never None None

Ti Error

Using Container-Managed Transactions

160 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

When the container rolls back a transaction, it always undoes the changes to data made by
SQL calls within the transaction. However, only in entity beans will the container undo
changes made to instance variables. (It does so by automatically invoking the entity bean's
ejbLoad method, which loads the instance variables from the database.)

A session bean must explicitly reset any instance variables changed within the transaction
when a rollback occurs. The easiest way to reset a session bean's instance variables is by
implementing the SessionSynchronization interface.

Synchronizing a Session Bean's Instance
Variables
The SessionSynchronization interface, which is optional in session beans, allows you
to synchronize the instance variables with their corresponding values in the database. The
container invokes the SessionSynchronization methods—afterBegin,
beforeCompletion, and afterCompletion—at each of the main stages of a transaction.

• afterBegin method—Informs the instance that a new transaction has begun. The
container invokes afterBegin immediately before it invokes the business method.
The afterBegin method is a good place to load the instance variables from the
database.

• beforeCompletion method—The container invokes beforeCompletion method
after the business method has finished, but just before the transaction commits. The
beforeCompletion method is the last opportunity for the session bean to roll back the
transaction (by calling setRollbackOnly).

If it hasn't already updated the database with the values of the instance variables, the
session bean may do so in the beforeCompletion method.

• afterCompletion method—Indicates that the transaction has completed. It has a
single boolean parameter, whose value is true if the transaction was committed, and
false if it was rolled back.

If a rollback occurred, the session bean can refresh its instance variables from the
database in the afterCompletion method.

Using Bean-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 161

Methods Not Allowed in Container-Managed
Transactions
For container-managed transactions, you should not invoke any method that might interfere
with the transaction boundaries set by the container. Prohibited methods are:

• The commit, setAutoCommit, and rollback methods of java.sql.Connection

• The getUserTransaction method of javax.ejb.EJBContext

• Any method of javax.transaction.UserTransaction

You may, however, use these methods to set boundaries in bean-managed transactions.

Using Bean-Managed Transactions
In a bean-managed transaction, the code in the session or message-driven bean explicitly
marks the boundaries of the transaction. By moving transaction management to the bean
level, you gain the ability to place all the bean’s activities—even those not directly tied to
database access—under the same transaction control as your database calls. This guarantees
that all application parts controlled by a bean run as part of the same transaction.

In a failure situation, either everything the bean undertakes is committed, or everything is
rolled back.

The following sections are related to developing enterprise beans with bean-managed
transactions:

• Choosing the Type of Transactions

• Returning Without Committing

• Methods Not Allowed in Bean-Managed Transactions

Choosing the Type of Transactions
When coding a bean-managed transaction for session or message-driven beans, you must
decide whether to use JDBC or JTA transactions.

NOTE In a session bean with bean-managed transactions, it is possible to mix
JDBC and JTA transactions. However, this could make your code difficult
to debug and maintain.

Using Bean-Managed Transactions

162 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

The following sections discuss both types of transactions:

• JDBC Transactions

• JTA Transactions

JDBC Transactions
JDBC transaction is controlled by the transaction manager of the database. You may want
to use JDBC transactions when wrapping legacy code inside a session bean.

To code a JDBC transaction, you invoke the commit and rollback methods of the
java.sql.Connection interface. The beginning of a transaction is implicit. A transaction
begins with the first SQL statement that follows the most recent commit, rollback, or
connect statement. (This rule is generally true, but may vary with database vendor.)

For additional information on JDBC, refer to the Sun Java System Application Server
Developer’s Guide to J2EE Services and APIs.

JTA Transactions
JTA allows you to demarcate transactions in a manner that is independent of the transaction
manager implementation. The J2EE SDK implements the transaction manager with the
JTS. But your code doesn't call the JTS methods directly. Instead, it invokes the JTA
methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the J2EE transaction manager. You may want to use a
JTA transaction because it can span updates to multiple databases from different vendors. A
particular database’s transaction manager may not work with heterogeneous databases.

The J2EE transaction manager does have one limitation—it does not support nested
transactions. In other words, it cannot start a transaction for an instance until the previous
transaction has ended.

For additional information on the JTA, refer to the Sun Java System Application Server
Developer’s Guide to J2EE Services and APIs.

Returning Without Committing
A stateless session bean with bean-managed transactions that has begun a transaction in a
business method must commit or roll back a transaction before returning. However, a
stateful session bean does not have this restriction. In a stateful session bean with a JTA
transaction—The association between the bean instance and the transaction is retained
across multiple client calls.

Setting Transaction Timeouts

Chapter 6 Handling Transactions with Enterprise Beans 163

Methods Not Allowed in Bean-Managed
Transactions
For bean-managed transactions, do not invoke the getRollbackOnly and
setRollbackOnly methods of the EJBContext interface. These methods should be used
only in container-managed transactions.

Setting Transaction Timeouts
For container-managed transactions, you control the transaction timeout interval by setting
the value of the timeout-in-seconds property in the server.xml file. For example, you
would set the timeout value to 5 seconds as follows:

timeout-in-seconds=5

With this setting, if the transaction has not completed within 5 seconds, the EJB container
rolls the transaction back.

Handling Isolation Levels
Transactions not only ensure the full completion (or rollback) of the statements that they
enclose, but also isolate the data modified by the statements. The isolation level describes
the degree to which data being updated is visible to other transactions.

If the transaction allows other programs to read uncommitted data, performance may
improve because the other programs don't have to wait until the transaction ends. But this
may also cause a problem—if the transaction subsequently rolls back, another program
might read the wrong data.

NOTE For bean-managed transactions, invoke the getStatus and rollback
methods of the UserTransaction interface.

NOTE Only enterprise beans using container-managed transactions are affected by
the timeout-in-seconds property. For enterprise beans using
bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction interface.

Handling Isolation Levels

164 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

For entity beans with bean-managed persistence and for all session beans, you can set the
isolation level programmatically with the API provided by the underlying database. A
database, for example, might allow you to permit uncommitted reads by invoking the
setTransactionIsolation method.

For entity beans that use container-managed persistence, you can use the consistency
element in the sun-cmp-mapping.xml file to set the isolation level.

CAUTION Do not change the isolation level in the middle of a transaction. Usually,
such a change causes the database software to issue an implicit commit.
Because the isolation levels offered by database vendors may vary, you
should check the database documentation for more information. Isolation
levels are not standardized for the J2EE platform.

165

Chapter 7

Developing Secure Enterprise Beans

This section describes how security management works in the EJB architecture and
provides guidelines for developing secure enterprise beans for the Sun Java System
Application Server environment.

This section addresses the following topics:

• About Secure Enterprise Beans

• Defining Security Roles

• Declaring Method Permissions

• Declaring Security Role References

• Specifying Security Identities

• Using Programmatic Security

• Handling Unprotected EJB-Tier Resources

General information on application security is contained in the Sun Java System Application
Server Developer’s Guide.

NOTE If you are unfamiliar with the EJB technology, refer to the Java Software
tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on EJB security is contained in Chapter 21,
“Security Management,” of the Enterprise JavaBeans Specification, v2.0.

General information on application security is contained in the Sun Java
System Application Server Developer’s Guide.

http://java.sun.com/j2ee/docs.html

About Secure Enterprise Beans

166 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

About Secure Enterprise Beans
Your main role as an EJB developer is to declare the security requirements of your
applications in such a way that these requirements can be satisfied during application
deployment. In most cases, the EJB’s business methods should not contain any
security-related logic.

The following topics are addressed in this section:

• Authorization and Authentication

• Security Roles

• Deployment

Authorization and Authentication
Authorization provides controlled access to protected resources; it is based on identification
and authentication. Identification is the process that enables recognition of an entity by a
system. Authentication is the process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a
system.

Enterprise beans can be configured to permit access only to users with the appropriate
authorization level. This is done by using the Sun Java System Application Server
Administration interface to generate the deployment descriptor for the application EAR and
EJB JAR files.

Security Roles
A security role is an application-specific logical grouping of users, classified by common
trait, such as a customer profile or job title. When an application is deployed, roles are
mapped to security identities, such as principals (identities assigned to users as a result of
authentication) or groups, in the operational environment. Based on this, a user with a
certain security role has associated access rights to an enterprise bean. The link is the actual
name of the security role that is being referenced.

A group also represents a category of users, but its scope is different from the scope of a
role.

• A role is a J2EE application-specific abstraction.

• A group is a set of environment-specific users from the current realm. Group
membership is determined by the underlying realm implementation.

Defining Security Roles

Chapter 7 Developing Secure Enterprise Beans 167

Deployment
The security role reference defines a mapping between the name of a role that is called from
an ENTERPRISE BEAN using isCallerInRole (String name) and the name of a security role
that has been defined for the application. This security role reference allows an enterprise
bean to reference an existing security role.

When an application is deployed, the deployer maps the roles to the security identities that
exist in the operational environment. When you are developing enterprise beans, you should
know the roles of your users, but you probably won't know exactly who the users will be.
That's taken care of in the J2EE security architecture. After your component has been
deployed, the system administrator maps the roles to the J2EE users (or groups) of the
default realm (usually the file realm).

Defining Security Roles
To create a role for a J2EE application, you declare it for the EJB JAR file or for the WAR
file that is contained in the application. The security roles defined by the security-role
elements are scoped to the EJB JAR file level and apply to all enterprise beans in the EJB
JAR files.

Example
The following example of a security role definition in a deployment descriptor specifies two
role-name elements, employee and admin.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the enterprise who
are allowed to access the employee self service
application. This role is allowed to access only
her/his information

</desciption>

NOTE When defining method restrictions and role mappings, it is a common error
to confuse realm groups and J2EE application roles. Such confusion can
lead to unintended access consequences or inoperable application
configurations. For information on realms, refer to the Sun Java System
Application Server Developer’s Guide.

Declaring Method Permissions

168 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

<role-name>employee<role-name>
</security-role>
<security-role>

<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self service application. This
role does not have direct access to
sensitive employee and payroll information

</desciption>
<role-name>admin<role-name>
</security-role>

...
</assembly-descriptor>

Declaring Method Permissions
Method permissions indicate which roles are allowed to invoke which methods. The
application assembler declares the method permission relationships in the deployment
descriptor using the method permission elements as follows:

• Each method-permission element includes a list of one or more security roles and a
list of one or more methods.

All listed security roles are allowed to invoke all listed methods. Each security role in
the list is identified by the role-name element, and each method (or set of methods, as
described below) is identified by the method element. An optional description can be
associated with a method-permission element using the description element.

• The method permissions relationship is defined as the union of all method permissions
defined in the individual method permission elements.

• A security role or a method may appear in multiple method-permission elements.

Example
The following deployment descriptor example illustrates how security roles are assigned
method permissions in the deployment descriptor. These are converted into security
elements at deployment.

...
<method-permission>

<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>

Declaring Security Role References

Chapter 7 Developing Secure Enterprise Beans 169

<method-name>*</method-name>
</method>

</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method
</method-permission>
...

Declaring Security Role References
As the EJB developer, you are responsible for declaring all security role names used in the
enterprise bean in the security-role-ref elements of the deployment descriptor for roles
which are used programmatically from within the respective enterprise beans.

• The application assembler is responsible for linking all security role references
declared in the security-role-ref elements to the security roles defined in the
security-role elements.

• The application assembler links each security role reference to a security role using the
role-link element.

Example
The following deployment descriptor example shows how to link the security role reference
named payroll to the security role named payroll-department.

NOTE The role-link element value must be one of the security role names
defined in a security-role element.

Specifying Security Identities

170 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

<enterprise-beans>
...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...
<security-role-ref>
<description> This role should be assigned to the payroll
department's employees. Members of this role have access to
anyone's payroll record. The role has been linked to the
payroll-department role.
</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>

....
</entity>
...

</enterprise-beans>

This role should be assigned to the payroll department’s employees. Members of this role
have access to anyone's payroll record. The role has been linked to the
payroll-department role.

Further information on security roles can be found in the Sun Java System Application
Server Developer’s Guide. More information on EJB access control configuration can be
found in the Enterprise JavaBeans Specification, v2.0.

Specifying Security Identities
Optionally, the EJB assembler can specify whether the caller’s identity should be used for
executing the EJB methods or whether a specific run-as identity should be used. The
security-identity element in the deployment descriptor is used for this purpose. The
value of the security-identity element is use-caller-identity or run-as.

Unless specified, the caller identity is used by default.

The run-as Identity
The run-as identity establishes the identity the enterprise bean will use when it makes calls.
It does not affect the identities of its callers, which are the identities tested for permission to
access the methods of the enterprise bean.

Using Programmatic Security

Chapter 7 Developing Secure Enterprise Beans 171

The EJB assembler can use the run-as element to define a run-as identity for an enterprise
bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a
whole, that is, to all methods of the EJB’s home and component interface, or to the
onMessage method of a message-driven bean, and all internal methods of the enterprise
bean that might, in turn, be called.

Because the assembler does not generally know the security environment of the operational
environment, the run-as identity is designated by a logical role-name which corresponds to
one of the security roles defined in the deployment descriptor. The deployer must then
assign a security principal (defined in the operational environment) to be used as the
principal for the run-as identity. The security principal should be a principal that has been
assigned to the security role as specified by the role-name element.

Using Programmatic Security
In general, security management should be enforced by the container in a manner that is
transparent to the EJB’s business methods.

Programmatic security in the EJB tier consists of the getCallerPrincipal and the
isCallerInRole methods. You can use the getCallerPrincipal method to determine
the caller of the enterprise bean, and the isCallerInRole method to determine the caller's
role.

The getCallerPrincipal method of the EJBContext interface returns the
java.security.Principal object that identifies the caller of the enterprise bean. (In this
case, a principal is the same as a user.) In the following example, the getUser method of an
enterprise bean returns the name of the J2EE user that invoked it:

public String getUser()
{

return context.getCallerPrincipal().getName();
}

You can determine whether an EJB's caller belongs to a particular role by invoking the
isCallerInRole method:

boolean result = context.isCallerInRole("Customer");

NOTE Enterprise beans can use programmatic login just as servlets do. For more
information, see the Sun Java System Application Server Developer’s
Guide.

Handling Unprotected EJB-Tier Resources

172 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

For details on how to implement programmatic security, refer to Chapter 21, Security
Management,” of the Enterprise JavaBeans Specification, v2.0.

Handling Unprotected EJB-Tier Resources
All users have the anonymous role. By default, the value of the anonymous role is
ANYONE, which is configurable in the server.xml file. So, if a method permission
specifies that the role required is ANYONE (or whatever the anonymous role is set to), then
any user can access this method.

If a method permission exists, it is always enforced. For example, if a method permission is
set so that the updateEmployeeInfo method can only be accessed by the employee role,
then it is never possible to access this method without role employee. If the employee role
is not mapped to any user or group, no one will be able to invoke the
updateEmployeeInfo method.

NOTE If a method permission covering a method does not exist, the method is
accessible to all.

173

Chapter 8

Assembling and Deploying Enterprise
Beans

This section describes how enterprise beans are assembled and deployed in the Sun Java
System Application Server environment and provides information on the elements and
subelements used to create the EJB XML files.

This section contains the following topics:

• EJB Structure

• Creating Deployment Descriptors

• Deploying Enterprise Beans

• The sun-ejb-jar_2_0-0.dtd File Structure

• Elements in the sun-ejb-jar.xml File

• Sample EJB XML Files

An alphabetical list of all EJB-related elements is contained in “Elements Listings” on
page 231.

NOTE For general assembly and deployment information, see the Sun Java
System Application Server Developer’s Guide.You should already be
familiar with that deployment material before proceeding with EJB
assembly.

EJB Structure

174 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

EJB Structure
The EJB Java ARchive (JAR) file is the standard format for assembling enterprise beans.
This file contains the bean classes (home, remote, local, and implementation), all the utility
classes, and the deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml).

An EJB JAR file produced by a developer contains one or more enterprise beans and
typically does not contain assembly instructions. An EJB JAR file produced by an
assembler contains one or more enterprise beans plus application assembly instructions
describing how the enterprise beans are combined into a single application deployment unit.

An EJB JAR file can stand alone without being part of an Enterprise ARchive (EAR) file,
or be part of an EAR file.

Sample application files are located in install_root/samples/.

Creating Deployment Descriptors
A J2EE module is a collection of one or more J2EE components of the same container type
with two deployment descriptors of that type. One descriptor is J2EE standard, the other is
specific to Sun Java System Application Server. For enterprise beans, two deployment
descriptor files apply:

• ejb-jar.xml

A J2EE standard file, described in the Enterprise JavaBeans Specification, v2.0.

• sun-ejb-jar.xml

A Sun Java System Application Server-specific file described in this chapter.

• sun-cmp-mappings.xml

A Sun Java System Application Server-specific file used if the deployed bean uses
container-managed persistence.

NOTE For information on the XML file associated with container-managed
persistence, refer to “Elements in the sun-cmp-mappings.xml File” on
page 118.

Deploying Enterprise Beans

Chapter 8 Assembling and Deploying Enterprise Beans 175

The easiest way to create the deployment descriptor files is to deploy an EJB module using
the Administration interface or Sun ONE Studio 5 IDE. For more information, see the Sun
Java System Application Server Developer’s Guide. For example EJB XML files, see
“Sample EJB XML Files” on page 217.

After you have created these files, you can edit them using the Sun ONE Studio 5 IDE or a
combination of an editor and command line utilities such as Ant to reassemble and redeploy
the updated deployment descriptor information.

The J2EE standard deployment descriptors are described in the 1.3 J2EE Specification. For
more information on EJB deployment descriptors, see Chapter 22 in the Enterprise
JavaBeans Specification, v2.0. Our sample applications develop some ANT targets that
help in assembly and deployment. Refer to the ANT information in the Sun Java System
Application Server Developer’s Guide.

Deploying Enterprise Beans
When you deploy or undeploy an enterprise bean, you do not need to restart the server.
When you redeploy an enterprise bean, you do not need to restart the server unless you are
changing the bean’s deployment settings.

This section addresses the following topics:

• Using the Administration Interface

• Using the Command-Line Interface

• Using the Sun ONE Studio 5 IDE

• Reloading Enterprise Beans

• Deploying to a Cluster (Enterprise Edition)

For more detailed information about deployment, see the Sun Java System Application
Server Developer’s Guide.

NOTE You can create the deployment descriptor manually if you prefer.

NOTE Stubs and skeletons are generated during deployment. You can retrieve the
client JAR file with the stubs and skeletons for use with a rich client.

Deploying Enterprise Beans

176 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Using the Administration Interface
You can use the Administration interface to deploy modules and applications to both local
and remote Application Server sites. To use this tool, follow these steps:

1. Open the Applications component under your server instance.

2. Go to the Enterprise Apps or EJB Modules page.

3. Click on the Deploy button. (You can also undeploy, enable, or disable an application
or module from this page.)

4. Enter the full path to the module or application directory or archive file (or click on
Browse to find it), then click on the OK button.

5. Enter the module or application name.

6. Assign the application or web module to one or more virtual servers by checking the
boxes next to the virtual server names.

7. You can also redeploy the module or application if it already exists (called forced
deployment) by checking the appropriate box. This is optional.

8. You can run the verifier to check your deployment descriptor files. This is optional. For
details about the verifier, see the Developer’s Guide.

9. To enable SFSB checkpointing, make sure Availability Enabled is set to either true or
Specified by Container (if availability is enabled for the EJB container).

10. Other fields are displayed depending on the type of module. Check appropriate boxes
and enter appropriate values. Required fields are marked with asterisks (*).

11. Click on the OK button.

12. Restart the server if you are redeploying and have changed settings in Step 9 or
Step 10.

Using the Command-Line Interface
To deploy an enterprise bean using the command line:

1. Edit the deployment descriptor files (ejb-jar.xml and sun-ejb-jar.xml) by hand.

2. Execute an Ant build command (such as build jar) to reassemble the JAR module.

NOTE The Availability Enabled setting is in the Sun Java System Application
Server Enterprise Edition only.

Deploying Enterprise Beans

Chapter 8 Assembling and Deploying Enterprise Beans 177

3. Use the asadmin deploy command to deploy a JAR module, or the asadmin
deploydir command to deploy a module in an open directory structure. The syntax is
as follows, with defaults shown for optional parameters that have them:

asadmin deploy --user admin_user [--password admin_password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure | -s]
[--virtualservers virtual_servers] [--type application|ejb|web|connector]
[--contextroot contextroot] [--force=true] [--precompilejsp=false]
[--verify=false] [--name component_name] [--upload=true]
[--availabilityenabled] [--retrieve local_dirpath] [--instance instance_name]
filepath

asadmin deploydir --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848] [--secure |
-s] [--virtualservers virtual_servers] [--type
application|ejb|web|connector] [--contextroot contextroot] [--force=true]
[--precompilejsp=false] [--verify=false] [--name component_name]
[--availabilityenabled] [--instance instance_name] dirpath

To enable SFSB checkpointing, make sure -- availabilityenabled is either set to
true or not specified (if availability is enabled for the EJB container).

After using either of these commands for redeployment, you must restart the server for
any deployment setting changes to take effect.

For example, the following command deploys an EJB JAR module:

asadmin deploy --type ejb --instance inst1 myEJB.jar

Using the Sun ONE Studio 5 IDE
You can use Sun ONE Studio 5 IDE to assemble and deploy enterprise beans. For
information about using Sun ONE Studio 5, see the Sun ONE Studio 5, Enterprise Edition
tutorial.

NOTE The --availabilityenabled setting is in the Sun Java System
Application Server Enterprise Edition only.

NOTE In Sun ONE Studio 5, deploying a web application is referred to as
executing it.

Deploying Enterprise Beans

178 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Reloading Enterprise Beans
If you make code changes to an enterprise bean and dynamic reloading is enabled, you do
not need to redeploy the enterprise bean or restart the server. You can simply drop the
changed files into the application’s deployed directory (such as,
instance-dir/applications) and the changes will be picked up.

To enable dynamic reloading with the Administration interface:

1. In the Administration interface, select your server instance

2. Select Applications.

The Application Properties page is displayed.

3. Check the Reload Enabled box to enable dynamic reloading.

4. Enter a number of seconds in the Reload Poll Interval field to set the interval at which
applications and modules are checked for code changes and dynamically reloaded.

5. Click Save.

For details, see the Sun Java System Application Server Administration Guide.

In addition, to load new servlet files, reload EJB related changes, or reload deployment
descriptor changes, you must do the following:

1. Create an empty file named .reload at the root of the deployed application:

instance_dir/applications/j2ee-apps/app_name/.reload

or individually deployed module:

instance_dir/applications/j2ee-modules/module_name/.reload

2. Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each time
you make changes to the bean or deployment descriptor.

The reload monitor thread periodically looks at the timestamp of the .reload files to
detect any changes. This interval is, by default, two seconds and can be modified by
changing the value of dynamic-reload-poll-interval-in-seconds in the
server.xml file.

Deploying to a Cluster (Enterprise Edition)
If a server instance is part of a cluster, you should deploy the same modules and
applications to each instance in the cluster using the cladmin command. For details, see the
Sun Java System Application Server Administration Guide.

The sun-ejb-jar_2_0-0.dtd File Structure

Chapter 8 Assembling and Deploying Enterprise Beans 179

The sun-ejb-jar_2_0-0.dtd File Structure
The sun-ejb-jar_2_0-0.dtd file defines the structure of the sun-ejb-jar.xml file,
including the elements it can contain and the subelements and attributes these elements can
have. The sub-ejb-jar_2_0-0.dtd file is located in the install-dir/lib/dtds directory.

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Each element defined in a DTD file (which may be present in the corresponding XML file)
can contain the following:

• Subelements

• Data

• Attributes

An alphabetical list of all EJB-related elements is contained in “Elements Listings” on
page 231.

Subelements
Elements can contain subelements. For example, the following file fragment defines the
cmp-resource element:

<!ELEMENT cmp-resource (jndi-name, default-resource-principal?)>

This ELEMENT tag specifies that a resource element called cmp-resource can contain
subelements called jndi-name and default-resource-principal, with the question
mark (?) indicating that there can be zero or one of the default-resource-principal
subelement.

Each subelement can be suffixed with an optional character to determine the number of
times it can occur.

The following table shows how optional suffix characters of subelements determine the
requirement rules, or number of allowed occurrences, for the subelements.

NOTE Do not edit the sun-ejb-jar_2_0-0.dtd file; its contents change only
with new versions of the Sun Java System Application Server.

http://www.w3.org/TR/REC-xml

The sun-ejb-jar_2_0-0.dtd File Structure

180 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of a list
of element names in parentheses.

Data
Some elements contain character data instead of subelements. These elements have
definitions of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT description (#PCDATA)>

In the Sun Java System Application Server XML files, white space is treated as part of the
data in a data element. Therefore, there should be no extra white space before or after the
data delimited by a data element. For example:

<description>class name of session manager</description>

<password>secret</password>

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in attributes lists
using the ATTLIST tag. For example:

<!ATTLIST ejb availability-enabled %boolean; "false">

Attribute declarations specify the type of the attribute. For example, %boolean is a
predefined enumeration. Wherever possible, explicit defaults for optional attributes (such as
"false") are listed.

Table 8-1 Requirement Rules for Subelement Suffixes
Suffix Number of Occurrences

element* Can contain zero or more of this subelement.

?element Can contain zero or one of this subelement.

element+ Must contain one or more of this subelement.

element (no suffix) Must contain only one of this subelement.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 181

Elements in the sun-ejb-jar.xml File
An alphabetical list of all EJB-related elements is contained in “Elements Listings” on
page 231.

This section describes the XML elements in the sun-ejb-jar_2_0-0.dtd file. For your
convenience, the elements are grouped as follows:

• General Elements

• Role Mapping Elements

• Reference Elements

• Security Elements

• Persistence Elements

• Pooling and Caching Elements

• Class Elements

General Elements
General elements are as follows:

• ejb

• ejb-name

• enterprise-beans

NOTE For information on the DTD and XML file associated with
container-managed persistence mapping, refer to “Elements in the
sun-cmp-mappings.xml File” on page 118.

NOTE If any configuration for an enterprise bean is not specified in the
sun-ejb-jar.xml file, it can default to a corresponding value in the
ejb-container element of the server.xml file if an equivalency exists.
You can change the default values in the server.xml file; these changes
will be reflected in any enterprise bean that does not have that value
defined.

Elements in the sun-ejb-jar.xml File

182 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• is-read-only-bean

• refresh-period-in-seconds

• sun-ejb-jar

• unique-id

ejb
Defines runtime properties for a single enterprise bean within the application. The
subelements listed below apply to particular enterprise beans as follows:

• All types of beans—ejb-name, ejb-ref, resource-ref, resource-env-ref, cmp,
ior-security-config, gen-classes, jndi-name

• Stateless session beans and message-driven beans—bean-pool

• Stateful session beans and entity beans—bean-cache

• Entity beans (BMP)—is-read-only-bean, refresh-period-in-seconds,
commit-option, bean-cache

• Message-driven bean—mdb-connection-factory,
jms-durable-subscription-name, jms-max-messages-load, bean-pool

Subelements
The following table describes subelements for the ejb element.

Table 8-2 ejb Subelements
Subelement Required Description

ejb-name only one Matches the display name of the bean to which it refers.

jndi-name zero or more Specifies the absolute jndi-name. In the case of
message-driven beans, this is the JNDI name of the Java
Message Service Queue or Topic destination resource object
associated with the message-driven bean class. Whether it is
Queue or Topic type depends on the destination type in the
message-driven deployment descriptor
message-driven-destination. If no
message-driven-destination deployment descriptor is
specified, this defaults to Queue type.

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref element in the
corresponding J2EE XML file.

resource-ref zero or more Maps the absolute JNDI name to the resource-ref in the
corresponding J2EE XML file.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 183

resource-env-ref zero or more Maps the absolute JNDI name to the resource-env-ref in
the corresponding J2EE XML file.

pass-by-reference zero or one When a servlet or EJB calls another bean that is co-located
within the same process, the Sun Java System Application
Server does not automatically perform marshalling of all call
parameters.

cmp zero or one Specifies runtime information for a container-managed
persistence (CMP) EntityBean object for EJB1.1 and EJB2.0
beans. This is a pointer to a file that describes the mapping
information of a bean.

principal zero or one Specifies the principal (user) name in an enterprise bean that
has the run-as role specified.

mdb-connection-factory zero or one Specifies the connection factory associated with a
message-driven bean.

jms-durable-subscription-name zero or one Contains data that specifies the durable subscription
associated with a message-driven bean.

jms-max-messages-load zero or one Specifies the maximum number of messages to load into a
Java Message Service session at one time for a
message-driven bean to serve. The default is 1.

ior-security-config zero or one Specifies the security information for the IOR.

is-read-only-bean zero or one Flag specifying this bean is a read-only bean.

refresh-period-in-seconds zero or one Specifies the rate at which a read-only-bean must be
refreshed from the data source. If this is less than or equal to
zero, the bean is never refreshed; if greater than zero, the
bean instances are refreshed at the specified interval. This
rate is just a hint to the container. Default is 600.

commit-option zero or one Contains data that has valid values of A, B, or C. Default
value is B.

gen-classes zero or one Specifies all the generated class names for a bean.

bean-pool zero or one
bean-pool

Specifies the bean pool properties. Used for stateless session
beans, entity beans, and message-driven bean pools.

bean-cache zero or one
bean-pool

Specifies the bean cache properties. Used only for stateful
session beans and entity beans

checkpointed-methods zero or one Specifies a user-defined semicolon-separated list of method
signatures. Used only for stateful session beans

These methods can be an SFSB’s non-transactional business
methods or create() methods. At the end of invocation of
each of these methods, the bean’s state is checkpointed. For
details about checkpointing, see .

Table 8-2 ejb Subelements (Continued)
Subelement Required Description

Elements in the sun-ejb-jar.xml File

184 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Attributes
The following table describes attributes for the ejb element.

Example
<ejb>

ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>
600
</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>

ejb-name
Matches the display name of the enterprise bean to which it refers. This name is assigned by
the EJB JAR file producer to name the enterprise bean in the EJB JAR file's deployment
descriptor. The name must be unique among the names of the enterprise beans in the same
EJB JAR file.

Table 8-3 ejb Attributes
Attribute Default Description

availability-enabled Enabled or
disabled setting
of EJB container

(optional) If set to true, SFSB state
persistence is enabled for this SFSB. For
details, see “Enabling SFSB Checkpointing”
on page 55.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 185

There is no architected relationship between the ejb-name in the deployment descriptor
and the JNDI name that the deployer will assign to the EJB's home.

Subelements
none

Example
<ejb-name>EmployeeService</ejb-name>

enterprise-beans
Specifies all the runtime properties for an EJB JAR file in the application.

Subelements
The following table describes subelements for the enterprise-bean element.

Example
<enterprise-beans>

<ejb>
ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
‘ <jndi-name>jdbc/PointBase</jndi-name>

Table 8-4 enterprise-beans Subelements
Subelement Required Description

name zero or one Specifies the name string.

unique-id zero or one Specifies a unique system identifier. This data is
automatically generated and updated at
deployment/redeployment.

ejb zero or more Defines runtime properties for a single enterprise bean within
the application.

pm-descriptors zero or one Describes the persistence manager descriptors. One of them
must be in use at a given time. This basically applies to Sun
Java System Application Server pluggable persistence
manager APIs.

cmp-resource zero or one Specifies the database to be used for storing
container-managed persistence (CMP) beans in an EJB JAR
file.

Elements in the sun-ejb-jar.xml File

186 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>
600
</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>

</enterprise-beans

is-read-only-bean
A flag specifying that this bean is a read-only bean.

Subelements
none

Example
<is-read-only-bean>false</is-read-only-bean>

refresh-period-in-seconds
Specifies the rate at which a read-only-bean must be refreshed from the data source. If the
value is less than or equal to zero, the bean is never refreshed; if the value is greater than
zero, the bean instances are refreshed at specified intervals. This rate is just a hint to the
container. Default is 600.

Subelements
none

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 187

sun-ejb-jar
Defines the Sun Java System Application Server-specific configuration for an EJB JAR file
in the application. This is the root element; there can only be one sun-ejb-jar element in
an sun-ejb-jar.xml file.

Refer to “Sample sun-ejb-jar.xml File” on page 218 for example of this file.

Subelements
The following table describes subelements for the sun-ejb-jar element.

unique-id
Specifies a unique system identifier. This data is automatically generated and updated at
deployment/redeployment. Developers should not change these values after deployment.

Subelements
none

Role Mapping Elements
The role mapping element maps a role, as specified in the EJB JAR role-name entries, to a
environment-specific user or group. If it maps to a user, it must be a concrete user which
exists in the current realm who can log into the server using the current authentication
method. If it maps to a group, the realm must support groups and it must be a concrete
group which exists in the current realm. To be useful, there must be at least one user in that
realm who belongs to that group.

Role mapping elements are as follows:

• group-name

• principal

• principal-name

Table 8-5 sun-ejb-jar Subelements
Subelement Required Description

security-role-mapping zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

enterprise-beans only one Describes all the runtime properties for an EJB
JAR file in the application.

Elements in the sun-ejb-jar.xml File

188 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• role-name

• security-role-mapping

• server-name

group-name
Specifies the group name.

Subelements
none

principal
Defines a node that specifies a user name on the platform.

Subelements
The following table describes subelements for the principal element.

principal-name
Specifies the principal (user) name in an enterprise bean that has the run-as role specified.

Subelements
none

role-name
Specifies the role-name in the security-role element of the ejb-jar.xml file.

Subelements
none

Table 8-6 principal Subelements
Subelement Required Description

name only one Specifies the name of the user.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 189

Example
<role-name>employee</role-name>

security-role-mapping
Maps roles to users and groups.

Subelements
The following table describes subelements for the security-role-mapping element.

server-name
Specifies the name of the server where the application is being deployed.

Subelements
none

Reference Elements
Reference elements are as follows:

• ejb-ref

• ejb-ref-name

• jndi-name

• pass-by-reference

• res-ref-name

Table 8-7 security-role-mapping Subelements
Subelement Required Description

role-name only one Specifies the role-name from the ejb-jar.xml
file being mapped.

principal-name requires at least one
principal-name or
group-name

Specifies the principal (user) name in a bean that
has the run-as role specified.

group-name requires at least one
principal-name or
group-name

Specifies the group name.

Elements in the sun-ejb-jar.xml File

190 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

• resource-env-ref

• resource-env-ref-name

• resource-ref

ejb-ref
Maps the absolute jndi-name name to the ejb-ref element in the corresponding J2EE
XML file. The ejb-ref element is used for the declaration of a reference to an EJB’s
home.

Applies to session beans or entity beans.

Subelements
The following table describes subelements for the ejb-ref element.

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE XML file ejb-ref entry. The
name must be unique within the enterprise bean, and should be prefixed with ejb/.

Subelements
none

Example
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

NOTE If a distributable web application references a stateful session bean, and the
web application’s session fails over, the EJB reference is lost. For
information about how to work around this limitation, see the Sun Java
System Application Server Application Design Guidelines for Storing
Session State.

Table 8-8 ejb-ref Subelements
Subelement Required Description

ejb-ref-name only one Specifies the ejb-ref-name in the corresponding J2EE EJB
JAR file ejb-ref entry.

jndi-name only one Specifies the absolute jndi-name.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 191

jndi-name
Specifies the absolute jndi-name.

Applies to all enterprise beans.

Subelements
none

Example
<jndi-name>jdbc/PointBase</jndi-name>

pass-by-reference
Specifies the passing method used by a servlet or enterprise bean calling a remote interface
method in another bean that is co-located within the same process.

• If false (the default if this element is not present), this application uses pass-by-value
semantics.

• If true, this application uses pass-by-reference semantics.

When a servlet or enterprise bean calls a remote interface method in another bean that is
co-located within the same process, by default the Sun Java System Application Server
makes copies of all the call parameters in order to preserve the pass-by-value semantics.
This increases the call overhead and decreases performance.

NOTE The pass-by-reference flag only applies to remote calls. As defined in
the EJB 2.0 specification, section 5.4, calls to local interfaces use
pass-by-reference semantics.

If the pass-by-reference flag is set to its default value of false, the
passing semantics for calls to remote interfaces comply with the EJB 2.0
specification, section 5.4. If set to true, remote calls involve
pass-by-reference semantics instead of pass-by-value semantics, contrary
to this specification.

Portable programs should not assume that a copy of the object is made
during such a call, and thus that it’s safe to modify the original. Nor should
they assume that a copy is not made, and thus that changes to the object are
visible to both caller and callee. When this flag is set to true, parameters
and return values should be considered read-only. The behavior of a
program that modifies such parameters or return values is undefined.

Elements in the sun-ejb-jar.xml File

192 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

However, if the calling method does not mutate the object being passed as a parameter, it is
safe to pass the object itself without making a copy of it. To do this, set the
pass-by-reference value to true.

To apply pass-by-reference semantics to an entire J2EE application containing multiple
EJB modules, you can set the same element in the sun-application.xml file. If you want
to use pass-by-reference at both the bean and application level, the bean level takes
precedence. For information about the sun-application.xml file, see the Sun Java
System Application Server Developer’s Guide.

Subelements
none

res-ref-name
Specifies the res-ref-name in the corresponding J2EE ejb-jar.xml file resource-ref
entry. The res-ref-name element specifies the name of a resource manager connection
factory reference. The name is a JNDI name relative to the java:comp/env context. The
name must be unique within an enterprise bean.

Subelements
none

Example
<res-ref-name>jdbc/SimpleBank</res-ref-name>

resource-env-ref
Maps the resource-env-ref-name in the corresponding J2EE ejb-jar.xml file
resource-env-ref entry to an absolute jndi-name in the resources element in the
server.xml file. The resource-env-ref element contains a declaration of an enterprise
bean's reference to an administered object associated with a resource in the bean's
environment.

Used in entity, message-driven, and session beans.

Subelements
The following table describes subelements for the resource-env-ref element.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 193

Example
<resource-env-ref>

<resource-env-ref-name>
jms/StockQueueName
</resource-env-ref-name>
<jndi-name>jms/StockQueue</jndi-name>

</resource-env-ref>

resource-env-ref-name
Specifies the resource-ref-name in the corresponding J2EE ejb-jar.xml file
resource-env-ref entry. The resource-env-ref-name element specifies the name of a
resource environment reference; its value is the environment entry name used in the EJB
code. The name is a JNDI name relative to the java:comp/env context and must be unique
within an enterprise bean.

Subelements
none

Example
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

Table 8-9 resource-env-ref Subelements
Subelement Required Description

resource-env-ref-name only one Specifies the resource-env-ref-name in
the corresponding J2EE ejb-jar.xml file
resource-env-ref entry.

jndi-name only one Specifies the absolute jndi-name.

Elements in the sun-ejb-jar.xml File

194 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

resource-ref
Maps the res-ref-name in the corresponding J2EE ejb-jar.xml file resource-ref
entry to the absolute jndi-name in the resources element in the server.XML file. The
resource-ref element contains a declaration of an EJB’s reference to an external
resource. Used in entity, message-driven, and session beans.

Subelements
The following table describes subelements for the resource-ref element.

Example
<resource-ref>

<res-ref-name>jdbc/EmployeeDBName</res-ref-name>
<jndi-name>jdbc/EmployeeDB</jndi-name>

</resource-ref>

NOTE Connections acquired from JMS connection factories are not shareable in
the current release of the Sun Java System Application Server. The
res-sharing-scope element in the ejb-jar.xml file resource-ref
element is ignored for JMS connection factories.

When resource-ref specifies a JMS connection factory for the Sun Java
System Message Queue, the default-resource-principal
(name/password) must exist in the Sun Java System Message Queue user
repository. Refer to the Security Management chapter in the Sun Java
System Message Queue Administrator's Guide for information on how to
manage the Sun Java System Message Queue user repository.

Table 8-10 resource-ref Subelements
Subelement Required Description

res-ref-name only one Specifies the res-ref-name in the corresponding
J2EE ejb-jar.xml file resource-ref entry.

jndi-name only one Specifies the absolute jndi-name.

default-resource-
principal

zero or one Specifies the default sign-on (name/password) to the
resource manager.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 195

Messaging Elements
This section contains the following elements associated with messaging:

• jms-durable-subscription-name

• jms-max-messages-load

• mdb-connection-factory

jms-durable-subscription-name
Specifies the durable subscription associated with a message-driven bean class. Only
applies to the Java Message Service Topic Destination type, and only when the
message-driven bean deployment descriptor subscription durability is Durable.

Subelements
none

jms-max-messages-load
Specifies the maximum number of messages to load into a Java Message Service session at
one time for a message-driven bean to serve. The default is 1.

Subelements
none

mdb-connection-factory
Specifies the connection factory associated with a message-driven bean. Queue or Topic
type must be consistent with the Java Message Service Destination type associated with the
message-driven bean class.

Subelements
The following table describes subelements for the mdb-connection-factory element.

Table 8-11 mdb-connection-factory Subelements
Subelement Required Description

jndi-name only one Specifies the absolute jndi-name.

default-resource-
principal

zero or one Specifies the default sign-on (name/password) to the
resource manager.

Elements in the sun-ejb-jar.xml File

196 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Security Elements
This section describes the elements that are associated with authentication, authorization,
and general security. The following elements are included:

• as-context

• auth-method

• caller-propagation

• confidentiality

• default-resource-principal

• establish-trust-in-client

• establish-trust-in-target

• integrity

• ior-security-config

• name

• password

• realm

• required

• sas-context

• transport-config

as-context
Specifies the authentication mechanism that will be used to authenticate the client. If
specified, it will be USERNAME_PASSWORD.

Subelements
The following table describes subelements for the as-context element.

Table 8-12 as-context Subelements
Subelement Required Description

auth-method only one Specifies the authentication method. The only supported value is
USERNAME_PASSWORD.

realm only one Specifies the realm in which the user is authenticated.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 197

auth-method
Specifies the authentication method. The only supported value is USERNAME_PASSWORD.

Subelements
none

caller-propagation
Specifies if the target will accept propagated caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

confidentiality
Specifies if the target supports privacy-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

default-resource-principal
Specifies the default sign-on (name/password) to the resource manager.

Subelements
The following table describes subelements for the default-resource-principal
element.

required only one Specifies if the authentication method specified is required to be
used for client authentication. If so, the EstablishTrustInClient bit will
be set in the target_requires field of as-context. The value is either
true or false.

Table 8-12 as-context Subelements (Continued)
Subelement Required Description

Elements in the sun-ejb-jar.xml File

198 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

establish-trust-in-client
Specifies if the target is capable of authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

establish-trust-in-target
Specifies if the target is capable of authenticating to a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

integrity
Specifies if the target supports integrity-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

ior-security-config
Specifies the security information for the input-output redirection (IOR).

Subelements
The following table describes subelements for the ior-security-config element.

Table 8-13 default-resource-principal Subelements
Subelement Required Description

name only one Specifies the default resource principal name used to sign on to a
resource manager.

password only on Specifies password of the default resource principal.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 199

name
Specifies an identity.

Subelements
none

password
Specifies the password that security needs to complete authentication.

Subelements
none

realm
Specifies the realm in which the user is authenticated.

Subelements
none

required
Specifies if the authentication method specified is required to be used for client
authentication. If so, the EstablishTrustInClient bit will be set in the
target_requires field of as-context. The value is either true or false.

Subelements
none

Table 8-14 ior-security-config Subelements
Subelement Required Description

transport-config zero or one Specifies the security information for transport.

as-context zero or one Describes the authentication mechanism that will
be used to authenticate the client. If specified, it
will be USERNAME_PASSWORD.

sas-context zero or one Describes the sas-context fields.

Elements in the sun-ejb-jar.xml File

200 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

sas-context
Describes the sas-context fields.

Subelements
The following table describes subelements for the sas-context element.

transport-config
Specifies the security transport information.

Subelements
The following table describes subelements for the transport-config element.

Table 8-15 sas-context Subelements
Subelement Required Description

caller-propagation only one Specifies if the target will accept propagated
caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Table 8-16 transport-config Subelements
Subelement Required Description

integrity only one Specifies if the target supports integrity-protected
messages. The values are NONE, SUPPORTED,
or REQUIRED.

confidentiality only one Specifies if the target supports privacy-protected
messages. The values are NONE, SUPPORTED,
or REQUIRED.

establish-trust-in-
target

only one Specifies if the target is capable of authenticating to
a client. The values are NONE, SUPPORTED, or
REQUIRED.

establish-trust-in-
client

only one Specifies if the target is capable of authenticating a
client. The values are NONE, SUPPORTED, or
REQUIRED.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 201

Persistence Elements
This section describes the elements associated with container-managed persistence (CMP),
the persistence manager, and the persistence vendor. For information on using these
elements, refer to “Using Container-Managed Persistence” on page 92.

The following elements are included:

• checkpointed-methods

• cmp

• cmp-resource

• concrete-impl

• finder

• is-one-one-cmp

• mapping-properties

• method-name

• one-one-finders

• pc-class

• pm-class-generator

• pm-config

• pm-descriptor

• pm-descriptors

• pm-identifier

• pm-inuse

• pm-mapping-factory

• pm-version

• query-filter

• query-params

• query-variables

Elements in the sun-ejb-jar.xml File

202 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

checkpointed-methods
Specifies a user-defined semicolon-separated list of method signatures. Used only for
stateful session beans. These methods can be an SFSB’s non-transactional business
methods or create() methods. At the end of invocation of each of these methods, the
bean’s state is checkpointed. For details, see “Specifying SFSB Methods to Be
Checkpointed” on page 59.

Subelements
none

cmp
Describes runtime information for a container-managed persistence (CMP) entity bean
object for EJB1.1 and EJB2.0 beans. This is a pointer to a file that describes the mapping
information of a bean.

Subelements
The following table describes subelements for the cmp element.

Table 8-17 cmp Subelements
Subelement Required Description

mapping-properties only one Contains data that specifies the location of the
persistence vendor’s specific object-to-relational
(O/R) database mapping file.

concrete-impl only one Contains data that specifies the location of the
persistence vendor’s specific concrete class
name.

pc-class zero or one Contains data that specifies the persistence
vendor’s specific class.

is-one-one-cmp zero or one Contains the boolean specifics for
container-managed persistence (CMP) 1.1.
Used to identify CMP 1.1 with old descriptors.

one-one-finders zero or one Describes the finders for container-managed
persistence (CMP) 1.1.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 203

cmp-resource
Specifies the database to be used for storing container-managed persistence (CMP) beans in
an EJB JAR file.

Subelements
The following table describes subelements for the cmp-resource element.

concrete-impl
Specifies the location of the persistence vendor’s specific concrete class name.

Subelements
none

finder
Describes the finders for container-managed persistence 1.1 with a method name and query.

Subelements
The following table describes subelements for the finder element.

Table 8-18 cmp-resource Subelements
Subelement Required Description

jndi-name only one Specifies the absolute jndi-name.

default-resource-
principall

zero or one Specifies the default runtime bindings of a resource
reference.

Table 8-19 finder Subelements
Subelement Required Description

method-name only one Specifies the method name for the query field.

query-params only one Optional data that specifies the query parameters for the
container-managed persistence (CMP) 1.1 finder.

query-filter only one Specifies the query filter for the container-managed
persistence (CMP) 1.1 finder.

query-variables only one Optional data that specifies variables in query expression for
the container-managed persistence 1.1 finder.

Elements in the sun-ejb-jar.xml File

204 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

is-one-one-cmp
Specifies the boolean specifics for container-managed persistence 1.1. Used to identify
CMP 1.1 with old descriptors.

Subelements
none

mapping-properties
Specifies the location of the persistence vendor’s specific object-to-relational (O/R)
database mapping file. Most persistence vendors use the concept of a project, which
represents all the related beans and their dependent classes, and can be deployed as a single
unit. There can be a vendor-specific XML file associated with the project.

Subelements
none

method-name
Specifies the method name for the query field. The method-name element contains a name
of an EJB method or the asterisk (*) character. The asterisk is used when the element
denotes all the methods of an EJB's component and home interfaces.

Examples
<method-name>create</method-name>

<method-name>*</method-name>

Subelements
none

one-one-finders
Describes the finders for container-managed persistence (CMP) 1.1.

Subelements
The following table describes subelements for the one-one-finders element.

Table 8-20 one-one-finders Subelements
Subelement Required Description

finder one or more Describes the finders for container-managed persistence (CMP)
1.1 with a method name and query.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 205

pc-class
Specifies the persistence vendor’s specific class.

Subelements
none

pm-class-generator
Specifies which vendor-specific concrete class generator is to be used. This is the name of
the class specific to the vendor.

Subelements
none

pm-config
Specifies the vendor-specific configuration file to be used.

Subelements
none

pm-descriptor
Describes the properties of the persistence manager associated with an entity bean.

Subelements
The following table describes subelements for the pm-descriptor element.

Table 8-21 pm-descriptor Subelements
Subelement Required Description

pm-identifier only one Specifies the vendor who provided the persistence
manager implementation. For example, this could be
Sun Java System Application Server
container-managed persistence or a third-party vendor.

pm-version only one Specifies which version of the persistence manager
vendor product is to be used.

pm-config zero or one Specifies the vendor-specific configuration file to be
used.

pm-config zero or one Specifies which vendor-specific concrete class
generator is to be used. This is the name of the class
specific to the vendor.

Elements in the sun-ejb-jar.xml File

206 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

pm-descriptors
Describes the persistence manager descriptors. One of them must be in use at a given time.
This basically applies to Sun Java System Application Server pluggable persistence
manager APIs.

Subelements
The following table describes subelements for the pm-descriptors element.

pm-identifier
Specifies the vendor who provided the persistence manager implementation. For example,
this could be Sun Java System Application Server container-managed persistence or a
third-party vendor.

Subelements
none

pm-inuse
Specifies whether this particular persistence manager must be used or not.

Subelements
The following table describes subelements for the pm-inuse element.

pm-mapping-factory zero or one Specifies which vendor-specific mapping factory is to be
used. This is the name of the class specific to the
vendor.

Table 8-22 pm-descriptors Subelements
Subelement Required Description

pm-descriptor one or more Describes the properties of the persistence
manager associated with an entity bean.

pm-inuse only one Specifies whether this particular persistence
manager must be used or not.

Table 8-21 pm-descriptor Subelements (Continued)
Subelement Required Description

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 207

pm-mapping-factory
Specifies which vendor-specific mapping factory is to be used. This is the name of the class
specific to the vendor.

Subelements
none

pm-version
Specifies which version of the persistence manager vendor product is to be used.

Subelements
none

query-filter
Specifies the query filter for the container-managed persistence 1.1 finder. Optional.

Subelements
none

query-params
Specifies the query parameters for the container-managed persistence 1.1 finder.

Subelements
none

Table 8-23 pm-insue Subelements
Subelement Required Description

pm-identifier only one Contains data that specifies the vendor who provided the
persistence manager implementation. For example, this could be
Sun Java System Application Server container-managed
persistence or a third-party vendor.

pm-version only one Contains data that specifies which version of the persistence
manager vendor product is to be used.

Elements in the sun-ejb-jar.xml File

208 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

query-variables
Specifies variables in query expression for the container-managed persistence 1.1 finder.
Optional.

Subelements
none

Pooling and Caching Elements
This section describes the elements associated with cache, timeout, and the EJB pool. These
elements are used to control memory usage and performance tuning. For more information,
refer to the Sun Java System Application Server Performance Tuning Guide.

The following elements are discussed:

• bean-cache

• bean-pool

• cache-idle-timeout-in-seconds

• commit-option

• is-cache-overflow-allowed

• max-cache-size

• max-pool-size

• max-wait-time-in-millis

• pool-idle-timeout-in-seconds

• removal-timeout-in-seconds

• resize-quantity

• steady-pool-size

• victim-selection-policy

bean-cache
Specifies the entity bean cache properties. Used for entity beans and stateful session beans.

Subelements
The following table describes subelements for the bean-cache element.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 209

Example
<bean-cache>

<max-cache-size>100</max-cache-size>
<cache-resize-quantity>10</cache-resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

<cache-idle-timeout-in-seconds>
600
</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>
</bean-cache>

bean-pool
Specifies the pool properties of stateless session beans, entity beans, and message-driven
bean.

Subelements
The following table describes subelements for the bean-pool element.

Table 8-24 bean-cache Subelements
Subelement Required Description

max-cache-size zero or one Specifies the maximum number of beans allowable in cache.

is-cache-overflow-allowed zero or one Deprecated.

cache-idle-timeout-in-seconds zero or one Specifies the maximum time that a stateful session bean or
entity bean is allowed to be idle in cache before being
passivated. Default value is 10 minutes (600 seconds).

removal-timeout-in-seconds zero or one Specifies the amount of time a bean remains before being
removed. If removal-timeout-in-seconds is less than
idle-timeout, the bean is removed without being
passivated.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max-pool-size limit). Values are from
0 to MAX_INTEGER.

victim-selection-policy zero or one Specifies the algorithm that must be used by the container to
pick victims. Applies only to stateful session beans.

Elements in the sun-ejb-jar.xml File

210 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Example
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

cache-idle-timeout-in-seconds
Optionally specifies the maximum time that a bean can remain idle in the cache. After this
amount of time, the container can passivate this bean. A value of 0 specifies that beans may
never become candidates for passivation. Default is 600.

Applies to stateful session beans and entity beans.

Subelements
none

commit-option
Optionally specifies the commit option that will be used on transaction completion. Valid
values for the Sun Java System Application Server are B or C. Default value is B.

Table 8-25 bean-pool Subelements
Subelement Required Description

steady-pool-size zero or one Specifies the initial and minimum number of beans maintained
in the pool. Default is 32.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max-pool-size limit). Values are from
0 to MAX_INTEGER.

max-pool-size zero or one Specifies the maximum number of beans in the pool. Values
are from 0 to MAX_INTEGER. Default is to server.xml or 60.

max-wait-time-in-millis zero or one Deprecated.

pool-idle-timeout-in-seconds zero or one Specifies the maximum time that a bean is allowed to be idle in
the pool. After this time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10 minutes).

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 211

Applies to entity beans.

Subelements
none

Example
<commit-option>B</commit-option>

is-cache-overflow-allowed
This element is deprecated and should not be used.

max-cache-size
Optionally specifies the maximum number of beans allowable in cache. A value of zero
indicates an unbounded cache. In reality, there is no hard limit. The max-cache-size limit is
just a hint to the cache implementation. Default is 512.

Applies to stateful session beans and entity beans.

Subelements
none

Example
max-cache-size>100</max-cache-size>

max-pool-size
Optionally specifies the maximum number of bean instances in the pool. Values are from 0
(1 for message-driven bean) to MAX_INTEGER. A value of 0 means the pool is
unbounded. Default is 64.

Applies to all beans.

Subelements
none

Example
<max-pool-size>100</max-pool-size>

NOTE Commit option A is not supported for the Sun Java System Application
Server 7.1 release.

Elements in the sun-ejb-jar.xml File

212 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

max-wait-time-in-millis
This element is deprecated and should not be used.

pool-idle-timeout-in-seconds
Optionally specifies the maximum time, in seconds, that a bean instance is allowed to
remain idle in the pool. When this timeout expires, the bean instance in a pool becomes a
candidate for passivation or deletion. This is a hint to the server. A value of 0 specifies that
idle beans can remain in the pool indefinitely. Default value is 600.

Applies to stateless session beans, entity beans, and message-driven beans.

Subelements
none

Example
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

removal-timeout-in-seconds
Optionally specifies the amount of time a bean instance can remain idle in the container
before it is removed (timeout). A value of 0 specifies that the container does not remove
inactive beans automatically. The default value is 5400.

If removal-timeout-in-seconds is less than or equal to
cache-idle-timeout-in-seconds, beans are removed immediately without being
passivated.

Applies to stateful session beans.

For related information, see cache-idle-timeout-in-seconds.

Subelements
none

Example
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

NOTE For a stateless session bean or a message-driven bean, the bean can be
removed (garbage collected) when the timeout expires.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 213

resize-quantity
Optionally specifies the number of bean instances to be:

• Created, if a request arrives when the pool has less than steady-pool-size quantity
of beans (applies to pools only for creation). If the pool has more than
steady-pool-size minus resize-quantity of beans, then resize-quantity is
still created.

• Removed, when the pool-idle-timeout-in-seconds timer expires and a cleaner
thread removes any unused instances.

❍ For caches, when max-cache-size is reached, resize-quantity beans will be
selected for passivation using victim-selection-policy. In addition, the
cache-idle-timeout-in-seconds or cache-remove-timeout-in-seconds
timers will passivate beans from the cache.

❍ For pools, when the max-pool-size is reached, resize-quantity beans will be
selected for removal. In addition the pool-idle-timeout-in-seconds timer
will remove beans until steady-pool-size is reached.

Values are from 0 to MAX_INTEGER. The pool is not resized below the
steady-pool-size. Default is 16.

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the default value can be the value of the ejb-container element
pool-resize-quantity in the server.xml file. Default is 16.

For EJB caches, the default value can be the value of the ejb-container element
cache-resize-quantity in the server.xml file. Default is 32.

For message-driven beans, the default can be the value of the mdb-container
pool-resize-quantity element in the server.xml file. Default is 2.

Subelements
none

Example
<resize-quantity>10</resize-quantity>

steady-pool-size
Optionally specifies the initial and minimum number of bean instances that should be
maintained in the pool. Default is 32.

Elements in the sun-ejb-jar.xml File

214 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Applies to stateless session beans and message-driven beans.

Subelements
none

Example
<steady-pool-size>10</steady-pool-size>

victim-selection-policy
Optionally specifies how stateful session beans are selected for passivation. Possible values
are First In, First Out (FIFO), Least Recently Used (LRU), Not Recently Used (NRU). The
default value is NRU, which is actually pseudo-LRU.

The victims are generally passivated into a backup store (typically a file system or
database). This store is cleaned during startup, and also by a periodic background process
that removes idle entries as specified by removal-timeout-in-seconds. The backup
store is monitored by a background thread (or sweeper thread) to remove unwanted entries.

Applies to stateful session beans.

Subelements
none

Example
<victim-selection-policy>LRU</victim-selection-policy>

NOTE If steady-pool-size is set to a value greater than 0, the beans are created
when the server starts. If a bean relies on caching information during the
setInitialContext method that is not available at server startup (such as
a user's security role), then the bean should throw EJBException during
the setInitialContext. The container handles this exception and does
not instantiate the beans. If the bean swollows this exception, then
steady-pool-size should be set to 0 in the sun-ejb-jar.xml file.

NOTE The user cannot plug in his own victim selection algorithm.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 215

Class Elements
This section describes the elements associated with classes. The following elements are
included:

• gen-classes

• local-home-impl

• local-impl

• remote-home-impl

• remote-impl

gen-classes
Specifies all the generated class names for a bean.

Subelements
The following table describes subelements for the gen-class element.

local-home-impl
Specifies the fully-qualified class name of the generated EJBLocalHome impl class.

NOTE This is automatically generated by the server at deployment/redeployment
time. It should not be specified by the developer or changed after
deployment.

Table 8-26 gen-classes Subelements
Subelement Required Description

remote-impl zero or one Specifies the fully-qualified class name of the
generated EJBObject impl class.

local-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalObject impl class.

remote-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBHome impl class.

local-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalHome impl class.

Elements in the sun-ejb-jar.xml File

216 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Subelements
none

local-impl
Specifies the fully-qualified class name of the generated EJBLocalObject impl class.

Subelements
none

remote-home-impl
Specifies the fully-qualified class name of the generated EJBHome impl class.

Subelements
none

remote-impl
Specifies the fully-qualified class name of the generated EJBObject impl class.

NOTE This is automatically generated by the server at deployment/redeployment
time. It should not be specified by the developer or changed after
deployment.

NOTE This is automatically generated by the server at deployment/redeployment
time. It should not be specified by the developer or changed after
deployment.

NOTE This is automatically generated by the server at deployment/redeployment
time. It should not be specified by the developer or changed after
deployment.

NOTE This is automatically generated by the server at deployment/redeployment
time. It should not be specified by the developer or changed after
deployment.

Sample EJB XML Files

Chapter 8 Assembling and Deploying Enterprise Beans 217

Subelements
none

Sample EJB XML Files
This section includes the following sample files:

• Sample ejb-jar.xml File

• Sample sun-ejb-jar.xml File

For information on the elements associated with enterprise beans, refer to “Elements in the
sun-ejb-jar.xml File” on page 181 and the Sun Java System Application Server Developer’s
Guide.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<description>no description</description>
<display-name>CustomerJAR</display-name>
<enterprise-beans>

<entity>
<description>no description</description>
<display-name>CustomerEJB</display-name>
<ejb-name>CustomerEJB</ejb-name>
<home>samples.SimpleBankBMP.ejb.CustomerHome</home>
<remote>samples.SimpleBankBMP.ejb.Customer</remote>
<ejb-class>samples.SimpleBankBMP.ejb.CustomerEJB</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<security-identity>

<description></description>
<use-caller-identity></use-caller-identity>

</security-identity>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<res-type>javax.sql.DataSource</res-type>

Sample EJB XML Files

218 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
</entity>

</enterprise-beans
<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>CustomerEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Sample sun-ejb-jar.xml File
For information on these elements, refer to “Elements in the sun-ejb-jar.xml File” on
page 181.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun ONE Application Server
7.1 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd'>

<sun-ejb-jar>
<display-name>First Module</display-name>
<enterprise-beans>
<ejb>

<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>
<res-ref-name>jdbc/SimpleBank</res-ref-name>

‘ <jndi-name>jdbc/PointBase</jndi-name>
</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>
<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>
</bean-pool>

Sample EJB XML Files

Chapter 8 Assembling and Deploying Enterprise Beans 219

<bean-cache>
<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>
</bean-cache>

</ejb>
</enterprise-beans>

</sun-ejb-jar>

Sample EJB XML Files

220 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

221

Appendix A

CMP Mapping with the Sun ONE
Studio 5 Interface

This section provides guidelines on mapping between a set of Java programming language
classes and a relational database using the Sun ONE Studio 5 interface.

This section addresses the following topics:

• Mapping CMP Beans

• EJB Persistence Properties

You should already be familiar with “Using Container-Managed Persistence for Entity
Beans” on page 85and chapter 10 of the Enterprise JavaBeans Specification, v2.0 before
using these procedures.

Mapping CMP Beans
To map container-managed persistence beans, you must first capture the schema, then map
the beans to the schema.

This section contains the following sections:

• Capturing a Schema

• Mapping Existing Enterprise Beans to a Schema

Capturing a Schema
Before mapping any enterprise beans to a database schema, you need to capture the schema
to create a working copy in your file system. This allows you to do your work without
affecting the database itself.

Mapping CMP Beans

222 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

1. You have three ways to display the Mapping Tool:

❍ Right-click on the file system and select New > Databases > Database Schema.

❍ Choose New from the File menu and then, in the Template Chooser, double-click
Databases and select Database Schema.

❍ Select Capture Database Schema from the Tools menu.

2. In the Target Location pane, type a file name for the working copy of your schema,
then select a package for the captured schema.

3. In the Database Connection pane, if you have a connection established, you can select
it from the Existing Connection menu. Otherwise, under New Connection, enter the
following information:

❍ The name of the database you are connecting to. (If your database is not listed in
the dropdown menu, you might need to quit the Mapping Tool and install the
driver in the IDE before continuing.)

❍ Your system’s JDBC driver.

❍ The JDBC URL for the database, including the driver identifier, server, port, and
database name. For example,
jdbc:pointbase://localhost:9092/sample.

The format of a JDBC URL varies depending on which kind of database
management system (DBMS) you use and the version of that DBMS. Ask your
system administrator for the correct URL format for your DBMS.

❍ A user name for your database.

❍ The password for that user.

4. In the Tables and Views pane, choose the tables and views you want to capture, then
click Finish.

NOTE It is best to store the captured schema in a package. If you do not have a
package to contain the schema, create one by right-clicking on the file
system and selecting New Package.

NOTE If you choose one table and exclude another that is referenced to the
included table by a foreign key, both tables will be captured even though
you specified only one.

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 223

The database and its schema will be represented as shown in following figure.

Mapping Existing Enterprise Beans to a Schema
This section discusses how to use container-managed persistence to customize mappings or
to create a mapping for an existing object model.

Before you can map an enterprise bean to a database schema, you must make sure that the
database schema is captured and mounted in your Explorer file system. See “Capturing a
Schema” on page 221 for instructions on how to do this.

You can set up or edit a mapping piecemeal by editing the individual properties in the
Properties window. All the mapping and persistence information can be accessed through
the Properties window. The mapping fields property editor provides a way to view and edit
groups of classes and fields at one time, providing a useful overview of your mapping
model.

1. Under Filesystem, open the EJB Module.

The enterprise beans in that module are listed.

2. Select the enterprise bean from its containing EJB module.

The properties table for the enterprise bean is displayed.

3. If you have completed the preliminary tasks, click Next to bring up the Select Tables
pane of the Mapping Tool.

Otherwise, click Cancel, complete the tasks, and restart the Mapping Tool.

4. Select a primary table from the Primary Table combo box, or click Browse to open the
Select Primary Table dialog.

Mapping CMP Beans

224 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

5. If you open the Select Primary Table dialog, find a schema and expand it to find its
tables.

6. Select a table and click OK.

The table you select as the primary table should be the one that most closely matches
your class.

7. Once the primary table is set up, you can map one or more secondary tables by clicking
Add.

This opens the Secondary Table Settings dialog box.

A secondary table enables you to map fields in your enterprise bean to columns that are
not part of your primary table. For example, you might add a DEPARTMENT table as
a secondary table in order to include a department name in your Employee class. A
secondary table differs from a relationship, in which one class is related to another by
way of a relationship field. In a secondary table mapping, fields in the same class are
mapped to two different tables. A secondary table enables you to map your field
directly to columns that are not part of your primary table. You can use this pane to
select secondary tables, and to show how they are linked to the primary table.

A secondary table must be related to the primary table by one or more columns whose
associated rows have the same values in both tables. Normally, this is defined as a
foreign key between the tables. When you select a secondary table from the drop-down
menu, the Mapping Tool checks for a foreign key between the two tables. If a foreign
key exists, it is displayed as the reference key by default.

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 225

a. Select a secondary table from the combo box.

Once you select a secondary table, the container-managed persistence
implementation checks to see if there is a foreign key between the primary and
secondary tables. If so, the foreign key is displayed as the default reference key. If
there is no foreign key, the editor displays Choose Column, and you must set up a
reference key.

b. To set up a reference key, click Choose Column and select a column from the
dropdown menu.

Once you pick a primary column, the choices in the secondary column are limited
to columns of compatible types. If no column is compatible, the field displays No
Compatible Columns. If you select a primary column that is incompatible with
your secondary column, the value of the secondary column reverts to Choose
Column.

You can select the Add Pair key to set up a complex key using more than one pair
of columns.

8. Click OK to save your selections.

9. Click Next in the Mapping Tool to bring up the Field Mappings panel of the Mapping
Tool.

The Field Mappings panel displays all the persistent fields of the enterprise bean and
their mapping status. You can map a field to a column by selecting the column in the
drop-down menu for that field, or try to map all unmapped fields by selecting
Automap. Automap will make the most logical selections, ignoring any relationship
fields and any fields that have already been mapped. It will not change any existing
mappings.

If you want to map a field to a column from another table that is not available, click
Previous to return to the previous Mapping Tool page and add a secondary table that
contains the column you want.

Unmap works on whatever field or fields are selected. You can unmap a group of fields
at once by holding down the Shift key or Control key while selecting the fields you
want. If you want to unmap one item, choose Unmapped in the drop-down menu for
that field.

NOTE If no pair of columns seems to relate in a logical manner, preventing a
logical reference key, you may want to reconsider your choice of a
secondary table.

Mapping CMP Beans

226 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

a. To map a field to multiple columns, click the ellipsis button (...) for the appropriate
field in the Field Mappings pane to display the Map Field to Multiple Columns
dialog box.

In this dialog box, you add columns to the list of mapped columns. Columns are
from the tables you have mapped to this class.You can change the order of the
columns by using Move Up/Move Down.

If you do not see the column you want to map, you might need to add a secondary
table to your mapping, or change the primary table you have selected. If no
columns are listed, you have not yet mapped a primary table, or you have mapped
a table that has no columns.

If you map a field to more than one column, all columns will be updated with the
value of the first column listed. Therefore, if the value of one of the columns is
changed outside of a container-managed persistence application, the value will
only be read if the change was made to that first column. Writing a value to the
database overwrites any conflicting changes made to any other columns.

You must also make sure that if you map more than one field to any of these
columns, the mappings cannot partially overlap. Consider the following three
scenarios:

• Field A mapped to Columns A and B, Field B mapped to Column B. Since the
mappings only partially overlap, this example will get a validation error at
compilation.

• Field A mapped to Column A, and Field B mapped to Column B. Since there
is no overlap, this mapping is allowed.

• Field A mapped to Columns A and B, Field B mapped to Columns A and B.
Since the mappings completely overlap, this mapping is allowed.

b. Click OK to save the mapping.

Mapping Relationship Fields
When you have foreign keys between database tables, you usually want to preserve those
relationships in Java class references. Mapping CMR fields lets you specify the
relationships that correspond to the class reference fields.

1. To Map a Relationship Field, click the ellipsis button (...) in the Field Mappings panel
next to the drop-down menu of a relationship field to bring up the Relationship
Mapping editor.

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 227

To use the Relationship Mapping editor outside of the Mapping Tool, click the relationship
field in Explorer and edit its Mapping property.

a. In this pane, verify that the Related Class is set. If the related class is not set, then
set it. If the class you want to select is not persistence-capable, you might need to
cancel out of the editor, convert the class to persistence-capable, then return.

b. Verify that the Related Field (if any) is also correct, and that the Primary Table is
set for the related class.

c. Select between linking the tables directly, or through a join table.

2. If your relationships are one-to-one or one-to-many, choose to link the tables directly.
Clicking Next opens the Map to Key pane of the Relationship Mapping editor.

This pane shows:

❍ An existing mapping if there is one and there were no changes on the initial setup
page.

❍ The default mapping if there is no existing mapping or the mapping is no longer
valid.

The editor attempts to determine the most logical key column pairs between the
two related classes, based on existing foreign keys. If there are no foreign keys,
you need to create the key column pairs by selecting local and foreign columns.
The columns in each pair are expected to have the same value.

To create a complex key, use the Add Pair button to add additional Key Column
Pairs.

If the Finish button is disabled, you need to choose a key column pair.

3. If your relationship is many-to-many, link tables through a join table. Click Next to
open the Map to Key: Local to Join pane.

This pane shows:

❍ The first class and field in the relationship

❍ The join table to be used to create the relationship between the fields

NOTE If you have a logical related field, you should choose a Primary Table. That
will create a managed relationship.

Mapping CMP Beans

228 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

❍ Key column pairs between the field join table and the table to which the related
class is mapped

In this pane, you choose a join table, then map the relationship field to a key. This
is only the relationship between the table This Class is mapped to and the join
table. If you don't have a join table, go back to the previous panel and select Link
the Mapped Tables Directly.

Choose a join table that sits between the two tables that your classes are mapped
to. The Editor will attempt to determine the most logical key column pairs between
the join table and the table that This Class is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key as
the default key column pair. If there is no foreign key, then you must create a key
by choosing a pair of columns that will allow navigation from the join table to the
table to which This Class is mapped. The columns in each pair are expected to
have the same value.

To create a compound key, use Add pair to add additional Key Column Pairs.

If the Next button is disabled, you need to pick a join table or make sure that at
least one key column pair exists that has columns on both sides.

4. Click Next to open the Map to Key: Join to Foreign pane.

In this pane, you relate a second table to the join table you chose in the previous pane.

The editor will attempt to determine the most logical key column pairs between the join
table and the table that the Related Class is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key as the
default key column pair. If there is no foreign key, then you must create a key by
choosing a pair of columns that will allow navigation from the join table to the table to
which the Related Class is mapped. The columns in each pair are expected to have the
same value.

To create a compound key, use Add Pair to add additional key column pairs.

If the Finish button is disabled, you need to choose a valid key column pair.

5. Click Finish to return to the Field Mappings pane of the Mapping Tool.

6. Click Finish to close the Field Mappings pane and map the Java classes to the database
schema.

EJB Persistence Properties

Appendix A CMP Mapping with the Sun ONE Studio 5 Interface 229

EJB Persistence Properties
Enterprise beans that use container-managed persistence have several unique properties that
can be specified outside the Mapping Tool.

The following table describes these unique properties.

You can unmap a class by choosing <unmapped> from the drop-down menu for the
Mapped Primary Table property. When you unmap a currently mapped class, a warning
appears if there are field mappings or secondary tables. Click OK if you are sure that you
want to unmap the class. Otherwise, click Cancel to cancel the mapping status change and
leave the class mapped.

Table A-1 Properties for CMP Enterprise Beans

Property Description

Mapped primary table The primary table you select for a persistence-capable class should be
the table in the schema that most closely matches the class. You must
specify a primary table in order to map a persistence-capable class. See
“Mapping Existing Enterprise Beans to a Schema” on page 223 for
information on how to do this.

Mapped schema The schema containing the tables to which you are mapping the
persistence-capable class. The primary table, secondary tables, and
related classes must be from this schema. This setting cannot be made
until you capture the schema as described in “Capturing a Schema” on
page 221.

Mapped secondary
table(s)

Secondary tables let you map columns that are not part of your primary
table to your class fields. For example, you might add a DEPARTMENT
table as a secondary table in order to include a department name in your
Employee class. You can add multiple secondary tables, but no
secondary table is required. This property is only enabled when Mapped
Primary Table is set. See page 104 and page 225 for more information
on adding a secondary table.

Consistency levels Specifies container behavior in guaranteeing transactional consistency of
the data in the bean. If the consistency checking flag element is not
present, none is assumed. For further information on consistency levels,
see “consistency” on page 122.

Fetch groups The fetched-with property specifies the fetch group configuration for
fields and relationships. A field may participate in a hierarchical or
independent fetch group. If the fetched-with element is not present,
the following value is assumed:
<fetched-with><none/></fetched-with>. Refer to “fetched-with”
on page 123 for further information.

EJB Persistence Properties

230 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

Click the Field Mapping tab at the bottom of the Properties window to see the field mapping
properties for a persistence-capable class.

231

Appendix B

Elements Listings

This section provides alphabetic listings of the elements for the DTD files associated with
Enterprise JavaBeans (EJBs) in the Sun Java System Application Server environment.

This section addresses the following topics:

• sun-ejb-jar.xml File Elements

• sun-cmp-mappings.xml File Elements

sun-ejb-jar.xml File Elements
Explanations on these elements are contained in “Elements in the sun-ejb-jar.xml File” on
page 181.

as-context

auth-method

bean-cache

bean-pool

cache-idle-timeout-in-seconds

caller-propagation

cmp

cmp-resource

commit-option

concrete-impl

confidentiality

default-resource-principal

sun-ejb-jar.xml File Elements

232 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

ejb

ejb-name

ejb-ref

ejb-ref-name

enterprise-beans

establish-trust-in-client

establish-trust-in-target

finder

gen-classes

group-name

integrity

ior-security-config

is-cache-overflow-allowed

is-one-one-cmp

is-read-only-bean

jms-durable-subscription-name

jms-max-messages-load

jndi-name

local-home-impl

local-impl

mapping-properties

max-cache-size

max-pool-size

max-wait-time-in-millis

mdb-connection-factory

method-name

name

one-one-finders

pass-by-reference

password

sun-ejb-jar.xml File Elements

Appendix B Elements Listings 233

pc-class

pm-class-generator

pm-config

pm-descriptor

pm-descriptors

pm-identifier

pm-inuse

pm-mapping-factory

pm-version

pool-idle-timeout-in-seconds

principal

principal-name

query-filter

query-params

query-variables

realm

refresh-period-in-seconds

remote-home-impl

remote-impl

removal-timeout-in-seconds

required

res-ref-name

resize-quantity

resource-env-ref

resource-env-ref-name

resource-ref

role-name

sas-context

security-role-mappingserver-name

steady-pool-size

sun-cmp-mappings.xml File Elements

234 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

sun-ejb-jar

transport-config

unique-id

victim-selection-policy

sun-cmp-mappings.xml File Elements
Explanations on these elements are contained in “Mapping Fields and Relationships” on
page 100 and “Elements in the sun-cmp-mappings.xml File” on page 118.

check-all-at-commit

check-modified-at-commit

cmp-field-mapping

cmr-field-mapping

cmr-field-name

column-name

column-pair

consistency

ejb-name

entity-mapping

fetched-with

field-name

level

lock-when-loaded

lock-when-modified

named-group

none

read-only

schema

secondary-table

sun-cmp-mapping

sun-cmp-mappings.xml File Elements

Appendix B Elements Listings 235

sun-cmp-mappings

table-name

sun-cmp-mappings.xml File Elements

236 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

237

Index

A
abstract schema 90, 221
access

overview 29
to resources 32

administering message-driven beans 142
administering transactions 154
afterBegin 160
afterCompletion 160
allow-concurrent-access element 83
anonymous role 172
ANYONE role 172
architecture 21, 27

entity beans 63
as-context element 196
assembling EJBs 173–217
attributes

for transactions 156
in deployment descriptor 180

authentication 166
auth-method element 197
authorization 166
auto reconnection feature 142
availability

enabling 55
setting during deployment 176, 177

availability-enabled attribute 184

B
bean class definition

creating for BMP entity beans 74
creating for sessions beans 49

bean-cache element 208
bean-managed persistence 64

bean class definition 74
overview 32

bean-managed security 171
bean-managed transactions 152, 162

prohibited methods 163
return without commit 162

bean-pool element 209
beforeCompletion 160
BLOB support 98
business methods for session beans 49

C
cache management 24
caching elements for the sun-ejb-jar.xml file 208
caller-propagation element 197
capture-schema utility 94
capturing a schema 221
check-all-at-commit element 119
check-modified-at-commit element 119
checkpointed-methods element 59, 202
checkpointing 51

enabling 55

Section D

238 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

selecting methods for 59
cladmin command 178
class elements for the sun-ejb-jar.xml file 215
client view guidelines 36
clients accessing EJBs 29
cluster, deployment to 178
cmp element 202
cmp-field-mapping element 105, 119
cmp-impl element 203
cmp-resource 110
cmp-resource element 203
CMR fields 226
cmr-field-mapping element 120
cmr-field-name element 108, 121
Collection fields 90
column-name element 106, 109, 121
column-pair element 109, 121
commit options 153, 161
commit-option element 210
concurrent access 83, 138
confidentiality element 197
configuring

for 1.1 finders (CMP) 111
resource manager (CMP) 110

connection factory 141, 144
connection pooling 115
connections to resources 32
consistency element 104, 122, 229
container

entity beans 63
overview 28
session beans 41

container-managed persistence 65, 85–128
assembly and deployment 91
configuring 1.1 finders 111
data type for mapping 96
deployment 110
elements 118
implementing 92–128
mapping 96, 221–230
operations 93
overview 32, 87–91
properties 229

relationships 89
resource manager 110
schema mapping 223
setting isolation level 164
support 86
third-party support 115

container-managed transactions 50, 152, 155–161
attributes 156
for message-driven beans 142
prohibited methods 161
rollback 159

D
data types for mapping 96
database connections, overview 32
database schema, capturing 94, 95, 221
databases, supported 86
default-resource-principal element 197
demarcation models for transactions 152
deployment

container-managed persistence 110
dynamic 175
overview 38
read-only beans 83
setting availability 176, 177
to a cluster 178

deployment descriptors 38, 174
design factors 34
dynamic deployment 175

E
EJB 2.0 summary of changes 20
ejb element 182
EJB QL 20, 90, 111
ejbActivate 76
EJBContext 163, 171
ejbCreate 47, 49, 74, 76
ejbFindByPrimaryKey 74, 79

Section F

Index 239

ejbFindXXX 79
ejb-jar.xml file 145, 174
ejbLoad 77
ejb-name element 122, 184
EJBObject 50
ejbPassivate 81
ejbPostCreate 74
EJB-QL 86, 90
ejb-ref element 190
ejb-ref-name element 190
ejbRemove 79, 140
EJBs

container 28
design factors 34
elements 185
general usage guidelines 35
interfaces 29
overview 25–33
transaction attributes 157
user authorization 166

ejbStore 77
elements in XML files 118, 185, 231
enterprise-beans element 185
entity beans 61

abstract schema 90
container-managed persistence mapping 221
developing 65–83
overview 27, 62–65
persistence 63
read-only beans 79
transaction attributes 157

entity-mapping 102, 122
establish-trust-in-client element 198
establish-trust-in-target element 198

F
failover

for web module sessions 53
of stateful session bean state 51
references supported for 51

fetched-with element 107, 109, 123, 229

field mapping 226
field-name element 124
finder element 203
finder methods 79, 111
flat transactions 151

G
general elements in sun-ejb-jar.xml file 181
getCallerPrincipal 171
getRollbackOnly 163
getStatus 163
getUser 171
getUserTransaction 161
global transactions 151
granularity 37
group-name element 188

H
HADB 54
high-availability database (HADB) 54
home interface 29

I
IDE 24
idempotent URLs 53
identification 166
integrity element 198
interfaces

entity beans 67, 70
local or remote 36
overview 29
providing 45

ior-security-config element 198
isCallerInRole 171

Section J

240 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

isolation levels for transactions 163
is-one-one-cmp element 204
is-read-only-bean element 82, 186

J
J2EE transaction manager 150
JAR file, overview 174
Java language casts 36
Java Message Service. See JMS.
Java Transaction API 150

transactions 153
transactions (bean-managed) 162

Java Transaction Service 150
java.ejb.CreateException 49, 76
java.ejb.FinderException 79
java.rmi.RemoteException 48, 74, 79
java.sql.Connection 162
javax.ejb.CreateException 48
javax.ejb.EJBContext 161
javax.ejb.EJBHome 48
javax.ejb.EJBLocalHome 47, 70
javax.ejb.EJBLocalObject 46
javax.ejb.EJBMetaData 48
javax.ejb.SessionSynchronization 44, 50
javax.rmi.PortableRemote.Object.narrow 36
javax.transactionUserTransaction 161
JDBC

supported drivers 86
transaction type 153
transactions (bean-managed) 162

JDBC or JTA 162
JDOQL 111
JMS 141, 142, 143
jms-durable-subscription-name element 195
jms-max-messages-load 195
JNDI 32, 33

for message-driven beans 141
for transactions 152
name for container-managed persistence 110

jndi-name 110

jndi-name element 191

L
level element 124
load balancing 25
local home interface 47, 70

overview 30
local interface

entity beans 70
overview 30
session beans 46

local programming model 37
local transactions 151
lock-when-loaded element 124
lock-when-modified element 125

M
Mandatory attribute 158
many-to-many relationships 90
mapping 115

data types 96
elements in sun-ejb-jar.xml file 118
features 95
for CMP 221–230
multiple columns (CMP) 226
primary table 229
relationship fields 226
schema 223, 229
secondary table 225, 229
tool 95

mapping property 227
Mapping Tool (CMP) 222, 225
mapping-properties element 204
max-cache-size element 211
max-pool-size element 211
MDB file samples 145
mdb-connection-factory 141, 144
mdb-connection-factory element 195

Section N

Index 241

mdb-container 142
mdb-container element 142
meet-in-the-middle mapping 96
message-driven beans 135–145

administering 142
bean class definition 138
connection factory 141
developing 138
JMS limitation 143
monitoring 142
onMessage runtime exception 144
overview 27, 136–142
pool monitoring 144
pooling 141
sample XML files 145
sun-ejb-jar.xml file elements 195
transaction attributes 157
transactions 137
using run-as 171

messaging elements 195
method permissions, declaring 168
method-name element 204
method-permission element 168
Microsoft SQLServer 2000 86
monitoring 24
monitoring transactions 155
multiple columns 106

mapping 226

N
name element 199
named-group element 125
nested transactions 151
none element 108, 125
NotSupported attribute 158

O
O/R mapping tool 115

object references supported for failover 51
one-one-finders element 204
one-to-many relationships 90
one-to-one relationships 90
onMessage 139, 144, 171
Oracle 86, 98
overview of EJBs 19–33

P
packaging. See assembly.
param-name element 188, 190, 191, 192, 193
pass-by-reference element 23, 191
pass-by-value semantics 191
password element 199
pc-class element 205
persistence elements for the sun-ejb-jar.xml file 201
persistence manager 110
persistence overview 63
persistence properties 229
persistence store

for stateful session bean state 51
selecting 53

persistence-manager-factory-resource 110
pm-class-generator element 205
pm-config element 205
pm-descriptor element 205
pm-descriptors 110
pm-descriptors element 206
pm-identifier element 206
pm-inuse element 206
pm-mapping-factory element 207
pm-version element 207
Pointbase 86
pool monitoring for MDBs 144
pool-idle-timeout-in-seconds 212, 213
pooling

of message-driven beans 138, 141
of read-only beans 81
of resources for EJBs 28
of stateless session beans 41, 44

Section Q

242 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

pooling elements for the sun-ejb-jar.xml file 208
primary key class 86
primary table 223
primary table mapping 229
principal element 188
principal-name element 188
programmatic security 171
properties (persistence) 229

Q
query-filter element 207
query-params element 207
query-variables element 208

R
read-only beans 23, 65, 79–83

deploying 82
pooling 81
refreshing 81

read-only element 107, 125
ReadOnlyBeanNotifier 82
realm element 199
reference elements in the sun-ejb-jar.xml file 189
references supported for failover 51
refresh-period-in-seconds 81, 186
relationships 89

many-to-many 90
mapping fields 226
one-to-many 90
one-to-one 90

remote home interface
overview 29
session beans 48

remote interface
overview 29
session beans 45

remote programming model 36
removal-timeout-in-seconds element 212

remove methods for session beans 47, 69
Required attribute 157
required element 199
RequiresNew attribute 158
resize-quantity element 213
resource-env-ref element 192
resource-env-ref-name element 193
resource-ref element 194
resources, unprotected 172
res-ref-name element 192
restrictions

message-driven beans 143
on container-managed persistence 117
on session bean transactions 60

return without commit (bean-managed) 162
rich client 175
RMI/IIOP 48
role mapping elements for sun-ejb-jar.xml file 187
role-link element 169
role-name element 188
roles, security 166

declaring references 169
defining 167

rollback 159
method 161, 163
transactions 163

rpm 18
run-as identity 170

S
sample XML files 145, 217
sas-context element 200
schema 101
schema capture 94, 127, 221
schema element 125
schema mapping 223, 229
secondary table 93, 100, 105, 106, 119

example 104
mapping 225, 229

secondary-table element 104

Section T

Index 243

security 165–172
assembly and deployment 167
declaring method permissions 168
declaring role reference 169
overview 166–167
programmatic security 171
role reference 167
roles 166
specifying identifies 170
sun-ejb-jar.xml file elements 196
unprotected EJB-tier resources 172

security-identity element 170
security-role element 167, 169
security-role-mapping element 189
security-role-ref element 169
server.xml file

and EJB security 172
message-driven-bean configuration 142
persistence manager configuration 110
session storage 55
setting availability 55, 57
transaction configuration 154

server-name element 189
session beans 39–50

container 41
creating bean class definition 49
developing 42, 60
overview 40
restrictions 60
setting isolation levels 164
transaction attributes 157

session persistence
for stateful session beans 51
for web modules 53
object types supported 51

session-store attribute 55
SessionSynchronization interface 160
setAutoCommit 161
setEntityContext 78
setMessageDrivenContext 139
setRollbackOnly 160, 163
setTransactionIsolation 164
setTransactionTimeout 163
showrev 18
stateful session beans 44

overview 26
session persistence 51
transactions 162

stateless session beans 43
overview 27

steady-pool-size 213
steady-pool-size element 213
store-pool-jndi-name property 54, 55
stubs and skeletons 175
subelements 179
Sun customer support 18
Sun Java System Application Server

value-added features 20
Sun ONE Studio 5

and CMP 93, 94, 221
and deployment 175, 177
integration 24

sun-cmp-mapping element 101, 126
sun-cmp-mappings element 101, 126
sun-cmp-mappings.xml file 91, 100, 174

elements 118
sample 128

sun-ejb-jar element 187
sun-ejb-jar.xml file 58, 59, 110, 174

caching elements 208
class elements 215
general elements 181
messaging elements 195
persistence elements 201
pooling elements 208
reference elements 189
role mapping elements 187
sample 146, 218
security elements 196

sun-ejb-jar_2_0-0.dtd file 179, 181
Supports attribute 158
Sybase 86
synchronization 83

T
table-name element 126, 127

Section U

244 Application Server 7 2004Q2 • Developer’s Guide to Enterprise JavaBeans Technology

third-party support for CMP 115
timeouts, setting for transactions 163
transaction attributes for EJBs 157
transaction.timeout property 163
TransactionRequiredException 158
transactions 149–164

administration and monitoring 154
and session persistence 51, 59
bean-managed 152
commit options 153
container-managed 152
demarcation models 152
flat 151
global 151
isolation levels 163
local 151
message-driven beans 137
nested 151
overview 33, 150–155
rollback 163
setting timeouts 163
specifications 150

transaction-service element 154
transport-config element 200
tutorial for Sun ONE Studio 5 24

U
unique-id element 187
unprotected resources 172
unsetEntityContext 78
URL connections 33
use-caller-identity 170

V
validateLogin 49
value added features 20
value additions for product 22
vendors 115, 204

verifier tool 35
victim-selection-policy element 214

X
XA protocol 151
XML files 174

elements 181
overview 38
sample 145, 217

	Application Server 7 Developer’s Guide to Enterprise JavaBeans Technology
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support

	Sun Java System Application Server and Enterprise JavaBeans Technology
	Summary of EJB 2.0 Changes
	EJB Architecture
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching Features
	Monitoring
	Integration with Sun ONE Studio 5
	Dynamic Deployment and Reloading
	High Availability and Load Balancing

	About Enterprise JavaBeans
	What Is an Enterprise JavaBean?
	Types of Beans
	EJB Flow
	The EJB Container
	Interfaces
	Home Interface
	Remote Interface
	Local Interface

	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	How Enterprise Beans Access Resources
	JNDI Connection
	Database Connection
	URL Connections

	Transaction Management
	How Application Security Works

	About Developing an Effective Application
	General Process for Creating Enterprise Beans
	Bean Usage Guidelines
	Client View Guidelines
	Remote or Local Interface Guidelines
	Accessing Sun Java System Application Server Functionality

	About EJB Assembly and Deployment

	Using Session Beans
	About Session Beans
	Session Bean Characteristics
	The Container
	Stateless Container
	Stateful Container

	Developing Session Beans
	Development Requirements
	Determining Session Bean Usage
	Stateless Session Bean Considerations
	Stateful Session Bean Considerations

	Providing Interfaces
	Creating a Remote Interface
	Creating a Local Interface
	Creating the Local Home Interface
	Creating the Remote Home Interface

	Creating the Bean Class Definition
	Session Synchronization
	Abstract Methods

	Stateful Session Bean Failover (Enterprise Edition)
	Choosing a Persistence Store
	Using the Administration Interface
	Editing the server.xml File

	Enabling SFSB Checkpointing
	Server Instance and EJB Container Levels
	Application and EJB Module Levels
	SFSB Level

	Specifying SFSB Methods to Be Checkpointed

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Entity Beans
	About Entity Beans
	Entity Bean Characteristics
	The Container
	Persistence
	Bean-Managed Persistence
	Container-Managed Persistence

	Read-Only Beans

	Developing Entity Beans
	Determining Entity Bean Usage
	Responsibilities of the Bean Developer
	Defining the Primary Key Class
	Defining Remote Interfaces
	Creating the Remote Home Interface
	findByPrimaryKey Method
	Example of a Remote Home interface

	Defining Local Interfaces
	Creating the Local Home Interface
	Creating a Local Interface
	Creating a Remote Interface

	Creating the Bean Class Definition (for Bean-Managed Persistence)
	Using ejbCreate
	Using ejbActivate and ejbPassivate
	Using ejbLoad and ejbStore
	Using setEntityContext and unsetEntityContext
	Using ejbRemove
	Using Finder Methods

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read Only Beans

	Handling Synchronization of Concurrent Access

	Using Container-Managed Persistence for Entity Beans
	Sun Java System Application Server Support
	About Container-Managed Persistence
	CMP Components
	Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships

	Abstract Schema
	Deployment Descriptors
	Persistence Manager

	Using Container-Managed Persistence
	Process Overview
	Phase 1. Creating the mapping deployment descriptor file
	Phase 2. Generating and compiling concrete beans and delegates
	Phase 3. Running in the Sun Java System Application Server runtime

	Mapping Capabilities
	Mapping Features
	Mapping Tool
	Mapping Techniques

	Supported Data Types for Mapping
	BLOB Support
	Using the capture-schema Utility
	Mapping Fields and Relationships
	Specifying the Beans to Be Mapped

	sun-cmp-mappings
	sun-cmp-mapping
	schema
	entity-mapping
	Specifying the Mapping Components

	entity-mapping
	ejb-name
	table-name
	secondary-table
	consistency
	Specifying Field Mappings

	cmp-field-mapping
	field-name
	column-name
	read-only
	fetched-with
	level
	named-group
	none
	Specifying Relationships

	cmr-field-mapping
	cmr-field-name
	column-pair
	column-name
	fetched-with
	Configuring the Resource Manager
	Using EJB QL
	Configuring Queries for 1.1 Finders
	Query Filter Expression
	Query Parameter
	Query Variables

	Third-Party Pluggable Persistence Manager API
	Restrictions and Optimizations
	Unique Database Schema Names in EAR File
	Data Aliasing
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	Sybase Finder Limitation
	Date and Time Fields as CMP Field Types

	Elements in the sun-cmp-mappings.xml File
	check-all-at-commit
	Subelements

	check-modified-at-commit
	Subelements

	cmp-field-mapping
	Subelements

	cmr-field-mapping
	Subelements

	cmr-field-name
	Subelements

	column-name
	Subelements

	column-pair
	Subelements

	consistency
	ejb-name
	Subelements

	entity-mapping
	Subelements

	fetched-with
	Subelements

	field-name
	Subelements

	level
	Subelements

	lock-when-loaded
	Subelements

	lock-when-modified
	Subelements

	named-group
	Subelements

	none
	Subelements

	read-only
	Subelements

	schema
	secondary-table
	Subelements

	sun-cmp-mapping
	Subelements

	sun-cmp-mappings
	Subelements

	table-name
	Subelements

	Examples
	Sample Schema Definition
	Sample CMP Mapping XML File
	Sample EJB QL Queries

	Using Message-Driven Beans
	About Message-Driven Beans
	Message-Driven Beans Differences
	Message-Driven Bean Characteristics
	Transaction Management
	Concurrent Message Processing

	Developing Message-Driven Beans
	Creating the Bean Class Definition
	Using ejbCreate
	Using setMessageDrivenContext
	Using onMessage
	Using ejbRemove

	Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Server instance-wide Attributes
	Automatic Reconnection to JMS Provider

	Restrictions and Optimizations
	JMS Limitation
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	JTA and JTS Transaction Support
	About Transaction Handling
	Flat Transactions
	Global and Local Transactions
	Demarcation Models
	Container-Managed Transactions
	Bean-Managed Transactions

	Commit Options
	Administration and Monitoring

	Using Container-Managed Transactions
	Specifying Transaction Attributes
	Differing Attribute Requirements
	Attribute Values

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean's Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Using Bean-Managed Transactions
	Choosing the Type of Transactions
	JDBC Transactions
	JTA Transactions

	Returning Without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Setting Transaction Timeouts
	Handling Isolation Levels

	Developing Secure Enterprise Beans
	About Secure Enterprise Beans
	Authorization and Authentication
	Security Roles
	Deployment

	Defining Security Roles
	Declaring Method Permissions
	Declaring Security Role References
	Specifying Security Identities
	The run-as Identity

	Using Programmatic Security
	Handling Unprotected EJB-Tier Resources

	Assembling and Deploying Enterprise Beans
	EJB Structure
	Creating Deployment Descriptors
	Deploying Enterprise Beans
	Using the Administration Interface
	Using the Command-Line Interface
	Using the Sun ONE Studio 5 IDE
	Reloading Enterprise Beans
	Deploying to a Cluster (Enterprise Edition)

	The sun-ejb-jar_2_0-0.dtd File Structure
	Subelements
	Data
	Attributes

	Elements in the sun-ejb-jar.xml File
	General Elements
	ejb
	Subelements
	Attributes

	ejb-name
	Subelements

	enterprise-beans
	Subelements

	is-read-only-bean
	Subelements

	refresh-period-in-seconds
	Subelements

	sun-ejb-jar
	Subelements

	unique-id
	Subelements

	Role Mapping Elements
	group-name
	Subelements

	principal
	Subelements

	principal-name
	Subelements

	role-name
	Subelements

	security-role-mapping
	Subelements

	server-name
	Subelements

	Reference Elements
	ejb-ref
	Subelements

	ejb-ref-name
	Subelements

	jndi-name
	Subelements

	pass-by-reference
	Subelements

	res-ref-name
	Subelements

	resource-env-ref
	Subelements

	resource-env-ref-name
	Subelements

	resource-ref
	Subelements

	Messaging Elements
	jms-durable-subscription-name
	Subelements

	jms-max-messages-load
	Subelements

	mdb-connection-factory
	Subelements

	Security Elements
	as-context
	Subelements

	auth-method
	Subelements

	caller-propagation
	Subelements

	confidentiality
	Subelements

	default-resource-principal
	Subelements

	establish-trust-in-client
	Subelements

	establish-trust-in-target
	Subelements

	integrity
	Subelements

	ior-security-config
	Subelements

	name
	Subelements

	password
	Subelements

	realm
	Subelements

	required
	Subelements

	sas-context
	Subelements

	transport-config
	Subelements

	Persistence Elements
	checkpointed-methods
	Subelements

	cmp
	Subelements

	cmp-resource
	Subelements

	concrete-impl
	Subelements

	finder
	Subelements

	is-one-one-cmp
	Subelements

	mapping-properties
	Subelements

	method-name
	Subelements

	one-one-finders
	Subelements

	pc-class
	Subelements

	pm-class-generator
	Subelements

	pm-config
	Subelements

	pm-descriptor
	Subelements

	pm-descriptors
	Subelements

	pm-identifier
	Subelements

	pm-inuse
	Subelements

	pm-mapping-factory
	Subelements

	pm-version
	Subelements

	query-filter
	Subelements

	query-params
	Subelements

	query-variables
	Subelements

	Pooling and Caching Elements
	bean-cache
	Subelements

	bean-pool
	Subelements

	cache-idle-timeout-in-seconds
	Subelements

	commit-option
	Subelements

	is-cache-overflow-allowed
	max-cache-size
	Subelements

	max-pool-size
	Subelements

	max-wait-time-in-millis
	pool-idle-timeout-in-seconds
	Subelements

	removal-timeout-in-seconds
	Subelements

	resize-quantity
	Subelements

	steady-pool-size
	Subelements

	victim-selection-policy
	Subelements

	Class Elements
	gen-classes
	Subelements

	local-home-impl
	Subelements

	local-impl
	Subelements

	remote-home-impl
	Subelements

	remote-impl
	Subelements

	Sample EJB XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	CMP Mapping with the Sun ONE Studio 5 Interface
	Mapping CMP Beans
	Capturing a Schema
	Mapping Existing Enterprise Beans to a Schema
	Mapping Relationship Fields

	EJB Persistence Properties

	Elements Listings
	sun-ejb-jar.xml File Elements
	sun-cmp-mappings.xml File Elements

	Index

