
Sun OpenSSO Enterprise 8.0
Technical Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3740–11
March 2009

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java, Java et Solaris sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

100126@23031

Contents

Preface ...9

Part I An Overview of Sun OpenSSO Enterprise 8.0 ..15

1 Introducing OpenSSO Enterprise ..17
What is OpenSSO Enterprise? ... 17
What Does OpenSSO Enterprise Do? ... 18
What Are the Functions of OpenSSO Enterprise? .. 19

Access Control .. 19
Federation Management ... 20
Web Services Security .. 20
Identity Web Services .. 21

What Else Does OpenSSO Enterprise Offer? ... 21

2 Examining OpenSSO Enterprise ..25
The Client/Server Architecture ... 25
How OpenSSO Enterprise Works ... 27
Core Services .. 29

Authentication Service .. 30
Policy Service .. 33
Session Service .. 35
Logging Service .. 38
Identity Repository Service ... 40
Federation Services .. 42
Web Services Stack ... 44
Web Services Security and the Security Token Service ... 45
Identity Web Services .. 46

3

Global Services ... 48
Realms ... 49
Additional Components ... 52

Data and Data Stores ... 52
The bootstrap File .. 58
Policy Agents .. 59
Security Agents ... 60
OpenSSO Enterprise Tools ... 60
Client SDK .. 61
Service Provider Interfaces for Plug-ins .. 61

3 Simplifying OpenSSO Enterprise ..63
Installation and Configuration .. 63
Configuration Data Store ... 65
Centralized Agent Configuration .. 66
Common Tasks Wizard .. 68
Third Party Integration ... 69

Sun Java System Identity Manager ... 70
Computer Associates SiteMinder .. 70
Oracle Access Manager ... 70

4 Deploying OpenSSO Enterprise ..71
Deployment Architecture 1 .. 71
Deployment Architecture 2 .. 73

Part II Access Control Using OpenSSO Enterprise ... 75

5 User Sessions and the Session Service ... 77
About the Session Service ... 77
User Sessions and Single Sign-on .. 78
Session Data Structures and Session Token Identifiers .. 79

6 Models of the User Session and Single Sign-On Processes ...81
Basic User Session ... 81

Contents

Sun OpenSSO Enterprise 8.0 Technical Overview • March 20094

Initial HTTP Request ... 81
User Authentication .. 83
Session Validation .. 85
Policy Evaluation and Enforcement .. 88
Logging the Results .. 90

Single Sign-On Session ... 91
Cross-Domain Single Sign-On Session .. 94
Session Termination ... 96

User Ends Session .. 96
Administrator Ends Session ... 97
OpenSSO Enterprise Enforces Timeout Rules ... 97
Session Quota Constraints .. 97

7 Authentication and the Authentication Service .. 99
Authentication Service Overview .. 99
Authentication Service Features .. 102

Account Locking .. 102
Authentication Chaining .. 103
Fully Qualified Domain Name Mapping ... 104
Persistent Cookies .. 104
Session Upgrade ... 104
JAAS Shared State .. 105
Security .. 105

Authentication Modules ... 105
Authentication Types .. 108
Configuring for Authentication ... 110

Core Authentication Module and Realm Configuration .. 110
Authentication Configuration Service .. 110
Login URLs and Redirection URLs ... 111

Authentication Graphical User Interfaces .. 111
Authentication Service User Interface ... 111
Distributed Authentication User Interface ... 113

Authentication Service Programming Interfaces .. 115

Contents

5

8 Authorization and the Policy Service ... 117
Authorization and Policy Service Overview ... 117
The Policy and the Referral .. 119

Policy ... 119
Referral .. 122

Realms and Access Control .. 122
Policy Service Programming Interfaces .. 123
XACML Service ... 123

XACML in OpenSSO Enterprise ... 124
XACML Programming Interfaces .. 126

Part III Federation Management Using OpenSSO Enterprise ... 129

9 What is Federation? ...131
The Concept of Federation ... 131

Identity Federation .. 131
Provider Federation ... 132

The Concept of Trust .. 133
How Federation Works .. 133

10 Federation Management with OpenSSO Enterprise ... 137
Key Federation Management Features ... 137

The Fedlet .. 138
Secure Attribute Exchange/Virtual Federation Proxy ... 138
Multi-Federation Protocol Hub ... 140

The Federation Framework Architecture ... 142

11 Choosing a Federation Option ..145
Federation Options ... 145
Using SAML ... 146

About SAML v2 .. 148
About SAML v1.x ... 152
Which Flavor of SAML to Use? .. 154

Using the Liberty ID-FF ... 155

Contents

Sun OpenSSO Enterprise 8.0 Technical Overview • March 20096

Liberty ID-FF Features .. 156
About the Liberty ID-FF Process ... 162

Using WS-Federation ... 165

Part IV The Web Services Stack, Identity Services, and Web Services Security169

12 Accessing the Web Services Stack ... 171
About the Web Services Stack .. 171
Web Services Stack Architecture ... 172
Web Services Stack Process .. 175
Using the Web Services Stack .. 176

With SAML v2 or Liberty ID-FF .. 177
With the Authentication Web Service ... 179

Implemented Services ... 181
Authentication Web Service ... 181
Discovery Service ... 184
SOAP Binding Service ... 188
Liberty Personal Profile Service .. 189

13 Delivering Identity Web Services ..195
About Identity Web Services .. 195
Identity Web Service Styles .. 196

SOAP and WSDL ... 196
REST .. 197

Identity Web Services Architecture ... 198

14 Securing Web Services and the Security Token Service .. 199
About Web Services Security ... 199

Web Services Interoperability Technology ... 201
WS-Security Specification .. 201
WS-Trust Specification ... 202
Liberty Alliance Project Specifications .. 202
JSR-196 Specification ... 202

Web Services Security in OpenSSO Enterprise .. 204

Contents

7

Web Services Security Internal Architecture .. 204
Web Services Security Deployment Architecture .. 206

Security Token Service .. 208
Security Agents .. 212

HTTP Security Agent .. 212
SOAP Security Agent ... 214

Web Services Security and Security Token Service Interfaces ... 216
com.sun.identity.wss.provider ... 217
com.sun.identity.wss.security ... 218
com.sun.identity.wss.sts ... 218

Part V Additional Features ..219

15 Recording Events with the Logging Service ... 221
Logging Service Overview .. 221

About the Logging Service .. 221
Configuring the Logging Service .. 222
Recording Events ... 222

Log File Formats and Log File Types ... 223
Log File Formats ... 223
Log File Types: Error and Access ... 225

Secure Logging ... 226
Remote Logging ... 226
OpenSSO Enterprise Component Logs .. 227
Logging Service Interfaces .. 228

16 Getting Starting with the OpenSSO Enterprise Samples ... 229
Server Samples ... 229
Client SDK Samples .. 229
Command Line Interface Samples .. 229

Index ... 231

Contents

Sun OpenSSO Enterprise 8.0 Technical Overview • March 20098

Preface

Sun OpenSSO Enterprise 8.0 is an access management product that includes a set of software
components to provide the authentication and authorization services needed to support
enterprise applications distributed across a network or Internet environment. This book, Sun
OpenSSO Enterprise 8.0 Technical Overview, describes the features of OpenSSO Enterprise,
explains what it does, and illustrates how it works.

Before You Read This Book
This book is intended for use by IT administrators and software developers who implement a
web access platform using Sun servers and software. Readers of this guide should be familiar
with the following technologies:

■ SOAP
■ Liberty Alliance Project specifications
■ WS-* Specifications
■ Security Assertion Markup Language (SAML) Specifications
■ eXtensible Markup Language (XML)
■ Lightweight Directory Access Protocol (LDAP)
■ JavaTM

■ JavaServer PagesTM (JSP)
■ HyperText Transfer Protocol (HTTP)
■ HyperText Markup Language (HTML)

Related Books
Related documentation is available as follows:

■ “OpenSSO Enterprise 8.0 Core Documentation” on page 9
■ “Related Product Documentation” on page 11

OpenSSO Enterprise 8.0 Core Documentation
The OpenSSO Enterprise 8.0 core documentation set contains the following titles:

9

■ The Sun OpenSSO Enterprise 8.0 Release Notes will be available online after the product is
released. It gathers an assortment of last-minute information, including a description of
what is new in this current release, known problems and limitations, installation notes, and
how to report issues with the software or the documentation.

■ The Sun OpenSSO Enterprise 8.0 Technical Overview (this guide) provides high level
explanations of how OpenSSO Enterprise components work together to protect enterprise
assets and web-based applications. It also explains basic concepts and terminology.

■ The Sun OpenSSO Enterprise 8.0 Deployment Planning Guide provides planning and
deployment solutions for OpenSSO Enterprise based on the solution life cycle

■ The Deployment Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO
Enterprise 8.0 provides instructions for building an OpenSSO solution incorporating
authentication, authorization and access control. Procedures for load balancing and session
failover are also included.

■ The Deployment Example: SAML v2 Using Sun OpenSSO Enterprise 8.0 provides
instructions for building an OpenSSO solution incorporating SAML v2 federation.
Installation and configuration procedures are included.

■ The Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide provides information
for installing and configuring OpenSSO Enterprise.

■ The Sun OpenSSO Enterprise 8.0 Performance Tuning Guide provides information on how
to tune OpenSSO Enterprise and its related components for optimal performance.

■ The Sun OpenSSO Enterprise 8.0 Administration Guide describes administrative tasks such
as how to create a realm and how to configure a policy. Most of the tasks described can be
performed using the administration console as well as the ssoadm command line utilities.

■ The Sun OpenSSO Enterprise 8.0 Administration Reference is a guide containing
information about the command line interfaces, configuration attributes, internal files, and
error codes. This information is specifically formatted for easy searching.

■ The Sun OpenSSO Enterprise 8.0 Developer’s Guide offers information on how to customize
OpenSSO Enterprise and integrate its functionality into an organization’s current technical
infrastructure. It also contains details about the programmatic aspects of the product and its
API.

■ The Sun OpenSSO Enterprise 8.0 C API Reference for Application and Web Policy Agent
Developers provides summaries of data types, structures, and functions that make up the
public OpenSSO Enterprise C SDK for application and web agent development.

■ The Sun OpenSSO Enterprise 8.0 Java API Reference provides information about the
implementation of Java packages in OpenSSO Enterprise.

■ The Sun OpenSSO Enterprise Policy Agent 3.0 User’s Guide for Web Agents and Sun OpenSSO
Enterprise Policy Agent 3.0 User’s Guide for J2EE Agents provide an overview of the policy
functionality and policy agents available for OpenSSO Enterprise.

Preface

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200910

http://docs.sun.com/doc/820-3745
http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3746
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5986
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3747
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-5816
http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803

Updates to the Release Notes and links to modifications of the core documentation can be found
on the OpenSSO Enterprise page at docs.sun.com. Updated documents will be marked with a
revision date.

Related Product Documentation
The following table provides links to documentation for related products.

Product Link

Sun Java System Directory Server 6.3 http://docs.sun.com/coll/1224.4

Sun Java System Web Server 7.0 Update 3 http://docs.sun.com/coll/1653.3

Sun Java System Application Server 9.1 http://docs.sun.com/coll/1343.4

Sun Java System Message Queue 4.1 http://docs.sun.com/coll/1307.3

Sun Java System Web Proxy Server 4.0.6 http://docs.sun.com/coll/1311.6

Sun Java System Identity Manager 8.0 http://docs.sun.com/coll/1514.5

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Preface

11

http://docs.sun.com/
http://docs.sun.com/coll/1224.4
http://docs.sun.com/coll/1653.3
http://docs.sun.com/coll/1343.4
http://docs.sun.com/coll/1307.3
http://docs.sun.com/coll/1311.6
http://docs.sun.com/coll/1514.5
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the title of this book is Sun OpenSSO Enterprise 8.0 Technical Overview, and the
part number is 820–3740.

Default Paths and Directory Names
The OpenSSO Enterprise documentation uses the following terms to represent default paths
and directory names:

TABLE P–1 Default Paths and Directory Names

Term Description

zip-root Represents the directory where the opensso.zip file is decompressed.

Preface

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200912

http://docs.sun.com

TABLE P–1 Default Paths and Directory Names (Continued)
Term Description

OpenSSO-Deploy-base Represents the directory where the web container deploys opensso.war. The
location varies depending on the web container used. To determine the value of
OpenSSO-Deploy-base, view the file in the .openssocfg directory (located in the
home directory of the user who deployed opensso.war). For example, consider
this scenario with Application Server 9.1 as the web container:
■ Application Server 9.1 is installed in the default directory:

/opt/SUNWappserver.

■ The opensso.war file is deployed by super user (root) on Application Server
9.1.

The .openssocfg directory is in the root home directory (/), and the file name in
.openssocfg is
AMConfig_opt_SUNWappserver_domains_domain1_applications_j2ee-modules_opensso_.
Thus, the value for OpenSSO-Deploy-base is:

/opt/SUNWappserver/domains/domain1/applications/j2ee-modules/opensso

ConfigurationDirectory Represents the name of the directory specified during the initial configuration of
OpenSSO Enterprise. The default is opensso in the home directory of the user
running the Configurator. Thus, if the Configurator is run by root,
ConfigurationDirectory is /opensso.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Preface

13

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–3 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200914

An Overview of Sun OpenSSO Enterprise 8.0
This part of the Sun OpenSSO Enterprise 8.0 Technical Overview contains introductory
material concerning Sun OpenSSO Enterprise 8.0 (OpenSSO Enterprise). It includes the
following chapters:

■ Chapter 1, “Introducing OpenSSO Enterprise”
■ Chapter 2, “Examining OpenSSO Enterprise”
■ Chapter 3, “Simplifying OpenSSO Enterprise”
■ Chapter 4, “Deploying OpenSSO Enterprise”

P A R T I

15

16

Introducing OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 (OpenSSO Enterprise) integrates authentication and
authorization services, single sign-on (SSO), and open, standards-based federation protocols
(including the Liberty Alliance Project specifications, WS-Federation and Security Assertion
Markup Language [SAML]) to provide a comprehensive solution for protecting network
resources by preventing unauthorized access to web services, applications and web content, and
securing identity data. This introductory chapter contains a high-level description of OpenSSO
Enterprise and what it does. It contains the following sections:

■ “What is OpenSSO Enterprise?” on page 17
■ “What Does OpenSSO Enterprise Do?” on page 18
■ “What Are the Functions of OpenSSO Enterprise?” on page 19
■ “What Else Does OpenSSO Enterprise Offer?” on page 21

What is OpenSSO Enterprise?
OpenSSO Enterprise is a single product that combines the features of Sun JavaTM System Access
Manager, Sun Java System Federation Manager, and the Sun Java System SAML v2 Plug-in for
Federation Services. Additionally, it is enhanced with new functionality developed specifically
for this release. OpenSSO Enterprise provides access management by allowing the
implementation of authentication, policy-based authorization, federation, SSO, and web
services security from a single, unified framework. The core application is delivered as a simple
web archive (WAR) that can be easily deployed in a supported web container.

Note – OpenSSO Enterprise is Sun Microsystems' commercial distribution of the open source
code available at OpenSSO.

To assist the core application, policy agents, the Client SDK, and (possibly) other disparate
pieces must be installed remotely and be able to communicate with the OpenSSO Enterprise

1C H A P T E R 1

17

http://opensso.org

server. See “What Does OpenSSO Enterprise Do?” on page 18 for a high-level picture of the
deployment architecture and Chapter 2, “Examining OpenSSO Enterprise,” for more specific
information.

What Does OpenSSO Enterprise Do?
The following types of interactions occur daily in a corporate environment.

■ An employee looks up a colleague’s phone number in the corporate phone directory.
■ A manager retrieves employee salary histories to determine an individual’s merit raise.
■ An administrative assistant adds a new hire to the corporate database, triggering the

company’s health insurance provider to add the new hire to its enrollment.
■ An engineer sends an internal URL for a specification document to another engineer who

works for a partner company.
■ A customer logs into a company’s web site and looks for a product in their online catalog.
■ A vendor submits an invoice to the company’s accounting department.
■ A corporate human resources administrator accesses an outsourced benefits application.

For each of these transactions, the company must determine who is allowed to view the
information or use the application. Some information such as product descriptions and
advertising can be made available to everyone in a public online catalog. Other information
such as accounting and human resources data must be restricted to employees only. And other
sensitive information such as pricing models and employee insurance plans is appropriate to
share only with partners, suppliers, and employees. This need for access determination is met
by Sun OpenSSO Enterprise, an access management product with authentication,
authorization, and single sign-on (SSO) services provided out of the box.

When a user or an external application requests access to content stored on a company’s server,
a policy agent (available in a separate download and installed on the same machine as the
resource you want to protect) intercepts the request and directs it to OpenSSO Enterprise
which, in turn, requests credentials (such as a username and password in the case of a user) for
authentication. If the credentials returned match those stored in the appropriate identity data
store, OpenSSO Enterprise determines that the user is authentic. Following authentication,
access to the requested content is determined by the policy agent which evaluates the policies
associated with the authenticated identity. Policies are created using OpenSSO Enterprise and
identify which identities are allowed to access a particular resource, specifying the conditions
under which this authorization is valid. Based upon the results of the policy evaluation, the
policy agent either grants or denies the user access. Figure 1–1 illustrates a high-level
deployment architecture of OpenSSO Enterprise.

What Does OpenSSO Enterprise Do?

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200918

What Are the Functions of OpenSSO Enterprise?
The following sections contain an overview of the functions of OpenSSO Enterprise.

■ “Access Control” on page 19
■ “Federation Management” on page 20
■ “Web Services Security” on page 20
■ “Identity Web Services” on page 21

Access Control
OpenSSO Enterprise manages authorized access to network services and resources. By
implementing authentication and authorization, OpenSSO Enterprise (along with an installed
policy agent) ensures that access to protected resources is restricted to authorized users. In a
nutshell, a policy agent intercepts a request for access to a resource and communicates with
OpenSSO Enterprise to authenticate the requestor. If the user is successfully authenticated, the

Internet

Customers

Business
Partners

Administrator
Employees

Web and Application Servers
Hosting Resources Protected

by Policy Agents

OpenSSO

Administration
Console

Core
Components

Non-administrator
Employees

Centralized
Configuration
Data

Identity
Repository

FIGURE 1–1 High-level Deployment Architecture of OpenSSO Enterprise

What Are the Functions of OpenSSO Enterprise?

Chapter 1 • Introducing OpenSSO Enterprise 19

policy agent then evaluates the policies associated with the requested resource and the user to
determine if the authenticated user is authorized to access the resource. If the user is authorized,
the policy agent allows access to the resource, also providing identity data to the resource to
personalize the interaction. For more information on access control, see “Core Services” on
page 29 and Part II, “Access Control Using OpenSSO Enterprise.”

Federation Management
With the introduction of federation protocols into the process of access management, identity
information and entitlements can be communicated across security domains, spanning
multiple trusted partners. By configuring a circle of trust and defining applications and services
as providers in the circle (either identity providers or service providers), users can opt to
associate, connect or bind the various identities they have configured locally for these providers.
The linked local identities are federated and allow the user to log in to one identity provider site
and click through to an affiliated service provider site without having to reauthenticate; in
effect, single sign-on (SSO). OpenSSO Enterprise supports several open federation technologies
including the Security Access Markup Language (SAML) versions 1 and 2, WS-Federation, and
the Liberty Alliance Project Identity Federation Framework (Liberty ID-FF), therefore
encouraging an interoperable infrastructure among providers. For more information on
federation management, see “Core Services” on page 29 and Part III, “Federation Management
Using OpenSSO Enterprise.”

Web Services Security
A web service is a component service or application that exposes some type of business or
infrastructure functionality through a language-neutral and platform-independent, network
interface; enterprises might use this web service to build larger service-oriented architectures.
In particular, the service defines its interface (for example, the format of the message being
exchanged) using the Web Services Description Language (WSDL), and communicates using
SOAP and eXtensible Markup Language (XML) messages. The web service client (WSC)
communicates with the web service provider (WSP) through an intermediary — usually a
firewall or load balancer.

Although web services enable open, flexible, and adaptive interfaces, their openness creates
security risks. Without proper security protections, a web service can expose vulnerabilities that
might have dire consequences. Hence, ensuring the integrity, confidentiality and security of
web services through the application of a comprehensive security model is critical for both
enterprises and consumers. A successful security model associates identity data with the web
services and creates secure service-to-service interactions. The security model adopted by
OpenSSO Enterprise identifies the user and preserves that identity through multiple
interactions, maintains privacy and data integrity, uses existing technologies, and logs the
interactions. In OpenSSO Enterprise, the following web service security standards are
implemented:

What Are the Functions of OpenSSO Enterprise?

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200920

■ Liberty Alliance Project Identity Web Services Framework (Liberty ID-WSF)
■ WS-I Basic Security Profile
■ WS-Trust (from which the Security Token Service was developed)

The web services security framework uses the Security Token Service and separately installed
security agents. For more information on OpenSSO Enterprise web services and web services
security, see “Core Services” on page 29 and Part IV, “The Web Services Stack, Identity
Services, and Web Services Security.”

Identity Web Services
For some time, OpenSSO Enterprise has provided client interfaces for access to core features
and functionality. These interfaces are used by policy agents and custom applications developed
by customers. With this release, OpenSSO Enterprise now exposes certain functions as simple
identity web services allowing developers to easily invoke them when developing their
applications using one of the supported integrated development environment (IDE) products.
(The IDE generates the stub code that wraps a call to the web service.) Identity Web Services are
available using:
■ SOAP and Web Services Description Language (WSDL)
■ Representational State Transfer (REST)

They do not require the deployment of an agent or a proxy and include the following
capabilities:
■ Authentication to validate user credentials.
■ Authorization to permit access to protected resources.
■ Provisioning for user attribute management and self registration.
■ Logging to keep track of it all.

For more information on identity services, see “Identity Web Services” on page 46 and Part IV,
“The Web Services Stack, Identity Services, and Web Services Security.”

What Else Does OpenSSO Enterprise Offer?
OpenSSO Enterprise allows for:
■ Ease of Deployment: OpenSSO Enterprise is delivered as a web archive (WAR) that can be

easily deployed as a Java EE application in different web containers. Most configuration files
and required libraries are inside the WAR to avoid the manipulation of the classpath in the
web container's configuration file. The OpenSSO Enterprise WAR is supported on:
1. Sun Java System Web Server 7.0 — Update 3 and above
2. Sun Java System Application Server 9.1 EE Update 2 and above (and Glassfish v2 update

2 and above)

What Else Does OpenSSO Enterprise Offer?

Chapter 1 • Introducing OpenSSO Enterprise 21

3. BEA WebLogic Application Server 9.2 mp2
4. IBM WebSphere Application Server 6.1
5. Oracle Application Server 10g
6. JBoss 4.2.x
7. Tomcat 5.5.x & 6.x

Note – Tomcat 5.5.26 and 6.15 are not supported.

8. Geronimo (supported on the Sun SolarisTM 10 Operating Environment for SPARC, x86 &
x64 and the Sun Solaris 9 Operating Environment for SPARC & x86 systems only)

Note – Geronimo can install Tomcat and Jetty web containers; OpenSSO Enterprise
supports only Tomcat.

See the Sun OpenSSO Enterprise 8.0 Release Notes for updates to this list.
■ Portability: OpenSSO Enterprise is supported on the following operating systems:

1. Sun Solaris 10 Operating Environment for SPARC, x86 & x64 systems
2. Sun Solaris 9 Operating Environment for SPARC & x86 systems
3. Windows Server 2003 and Windows XP (development only) operating systems
4. Red Hat Enterprise Linux 4 Server (Base)
5. Red Hat Enterprise Linux 4 Advanced Platform
6. Red Hat Enterprise Linux 5 Server (Base)
7. Red Hat Enterprise Linux 5 Advanced Platform
8. Windows 2003 Standard Server
9. Windows 2003 Enterprise Server
10. Windows 2003 Datacenter Server
11. Windows Vista
12. IBM AIX 5.3 (supported with the IBM WebSphere Application Server 6.1 container

only)

See the Sun OpenSSO Enterprise 8.0 Release Notes for updates to this list.
■ Open Standards: OpenSSO Enterprise is built using open standards and specifications as

far as possible. For example, features designed for federation management and web services
security are based on the Security Assertion Markup Language (SAML), the Liberty Alliance
Project specifications, and the WS-Security standards.

What Else Does OpenSSO Enterprise Offer?

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200922

http://docs.sun.com/doc/820-3745
http://docs.sun.com/doc/820-3745

■ Ease of Administration: OpenSSO Enterprise contains a web-based, graphical
administration console as well as command line interfaces for configuration tasks and
administrative operations. Additionally, an embedded, centralized data store allows for one
place to store server and agent configuration data.

■ Security:
1. Runtime security enables an enterprise's resources to be protected as configured and

OpenSSO Enterprise services to be accessed by authorized entities only.
2. Administration security ensures only authorized updates are made to the OpenSSO

Enterprise configuration data.
3. Deployment security implements best practices for installing OpenSSO Enterprise on

different operating systems, web containers, and so forth.

Additionally, all security actions are logged.
■ Configuration Data Store: OpenSSO Enterprise can write server configuration data to a

centralized configuration data store. You can also point to instances of Sun Java System
Directory Server 5.2 or Directory Server Enterprise Edition 6.x during configuration of
OpenSSO Enterprise for use as a configuration data store. See “Data and Data Stores” on
page 52 for more information.

■ User Data Store Independence: OpenSSO Enterprise allows you to view and retrieve user
information without making changes to an existing user database. Supported directory
servers include Directory Server 5.1, 5.2 & 6.2, IBM Tivoli Directory 6.1, and Microsoft
Active Directory 2003. See “Data and Data Stores” on page 52 for more information.

Caution – The configuration data store embedded with OpenSSO Enterprise should only be
used as a user data store for proof of concepts and deployments in development.

■ Web and Non-Web-Based Resources: The core design of OpenSSO Enterprise caters to
SSO for both web and non-web applications.

■ Performance, Scalability and Availability: OpenSSO Enterprise can be scaled horizontally
and vertically to handle increased workloads, and as security needs change over time. There
is no single point of failure.

■ Distributed Architecture Server and client components can be deployed across the
enterprise or across domain boundaries as all application programming interfaces (API)
provide remote access to OpenSSO Enterprise based on a service-oriented architecture.

■ Flexibility and Extensibility: Many OpenSSO Enterprise services expose a service provider
interface (SPI) allowing expansion of the framework to provide for specific deployment
needs.

■ Internationalization OpenSSO Enterprise contains a framework for multiple language
support. Customer facing messages, API, command line interfaces, and user interfaces are
localized in the supported languages.

What Else Does OpenSSO Enterprise Offer?

Chapter 1 • Introducing OpenSSO Enterprise 23

24

Examining OpenSSO Enterprise

OpenSSO Enterprise provides a pluggable architecture to deliver access management, secure
web services, and federation capabilities. This chapter contains information on the internal
architecture and features of OpenSSO Enterprise.

■ “The Client/Server Architecture” on page 25
■ “How OpenSSO Enterprise Works” on page 27
■ “Core Services” on page 29
■ “Global Services” on page 48
■ “Additional Components” on page 52

The Client/Server Architecture
OpenSSO Enterprise is written in Java, and leverages many industry standards, including the
HyperText Transfer Protocol (HTTP), the eXtensible Markup Language (XML), the Security
Assertion Markup Language (SAML), and SOAP, to deliver access management, secure web
services, and federation capabilities in a single deployment. It consists of client application
programming interfaces (a Client Software Development Kit [SDK]), a framework of services
that implement the business logic, and service provider interfaces (SPI) that are implemented
by concrete classes and can be used to extend the functionality of OpenSSO Enterprise as well as
retrieve information from data stores. Figure 2–1 illustrates the client/server architecture of
OpenSSO Enterprise.

2C H A P T E R 2

25

Each component of OpenSSO Enterprise uses its own framework to retrieve customer data
from the plug-in layer and to provide data to other components. The OpenSSO Enterprise
framework integrates all of the application logic into one layer that is accessible to all
components and plug-ins. The Client SDK and Identity Web Services are installed on a
machine remote to the OpenSSO Enterprise server that holds a resource to be protected; they
provide remote access to the OpenSSO Enterprise for client applications. (The policy agent, also
installed on the remote machine, is basically a client written using the Client SDK and Identity
Web Services.) Applications on the remote machine access OpenSSO Enterprise using the

Authentication
XML/http(s)

Policy
XML/http(s)

Liberty
ID-WSF

XML/http(s)

Federation
XML/http(s)

Security
Token

Service

Administration
Console

HTML/http(s)

Administration
CLI

Java
Applications

Authentication Federation Session Logging

Authenti-
cation

Policy
(Authorization)

Policy
Authorization

Plug-ins

Policy (Authorization)

Service
Configuration Delegation

Identity
Repository

Management

Service
Configuration

Plug-ins

Delegation
Plug-ins

Federation

Federation
Plug-ins

Identity
Repository

Plug-ins

Security
Token

Service

Security
Token

Service
Plug-ins

OpenSSO SPI

OpenSSO Framework

OpenSSO Components

OpenSSO Web Services

Web Container

Protected
Resource

OpenSSO Client SDK
 Identity Web Services

.NET
Applications

C
Applications

SAML
Applications

Liberty
Applications

Web
Browser

Authenti-
cation

Plug-ins

FIGURE 2–1 Client/Server Architecture of OpenSSO Enterprise

The Client/Server Architecture

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200926

Client SDK. Custom plug-in modules are installed on the machine local to OpenSSO Enterprise
and interact with the OpenSSO Enterprise SPI to retrieve required information from the
appropriate data store and deliver it to the plug-ins and, in turn, the OpenSSO Enterprise
framework for processing.

How OpenSSO Enterprise Works
To gain access to a protected resource, the requestor needs to be authenticated and have the
authorization to access the resource. When someone (using a browser) sends an HTTP request
for access to a protected resource, a policy agent (separately downloaded and installed on the
same machine as the resource you want to protect) intercepts the request and examines it. If no
valid OpenSSO Enterprise session token (to provide proof of authentication) is found, the policy
agent contacts the server which then invokes the authentication and authorization processes.
Figure 2–2 illustrates one way in which the policy agents can be situated to protect an
enterprise's servers by directing HTTP requests to a centralized OpenSSO Enterprise for
processing.

How OpenSSO Enterprise Works

Chapter 2 • Examining OpenSSO Enterprise 27

OpenSSO Enterprise integrates core features such as access control through authentication and
authorization processes, and federation. These functions can be configured using the
administration console or the ssoadm command line utility. Figure 2–3 is a high-level
illustration of the interactions that occur between parties (including the policy agent, browser,
and protected application) during authentication and authorization in a OpenSSO Enterprise
deployment.

Configuration
Data Store

Web Browser

Firewall

OpenSSO

Firewall

Web Container Web Container Web Container

Policy AgentPolicy Agent Policy Agent

FIGURE 2–2 Basic OpenSSO Enterprise Deployment

How OpenSSO Enterprise Works

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200928

For more information, see Part II, “Access Control Using OpenSSO Enterprise.”

Core Services
Services developed for OpenSSO Enterprise generally contain both a server component and a
client component. The server component is a simple Java servlet developed to receive XML
requests and return XML responses. (The deployment descriptor web.xml defines the servlet
name and description, the servlet class, initialization parameters, mappings, and other startup
information.) The client component is provided as Java application programming interfaces
(API), and in some cases C API, that allow remote applications and other OpenSSO Enterprise
services to communicate with and consume the particular functionality.

Each core service uses its own framework to retrieve customer and service data and to provide it
to other OpenSSO Enterprise services. The OpenSSO Enterprise framework integrates all of
these service frameworks to form a layer that is accessible to all product components and
plug-ins. The following sections contain information on the OpenSSO Enterprise core services.

■ “Authentication Service” on page 30
■ “Policy Service” on page 33
■ “Session Service” on page 35
■ “Logging Service” on page 38
■ “Identity Repository Service” on page 40

Redirect to OpenSSO

ApplicationAgentBrowserOpenSSO

GET/login?goto=/app

Response from /app

Is the user authorized to access /app?

Yes!

Authenticate

SSO Cookie

Get /app

Populate Container
Security Content

Allow access to /app

GET /app
(includes SSO Cookie)

Policy evaluation

FIGURE 2–3 OpenSSO Enterprise Authentication and Authorization Interactions

Core Services

Chapter 2 • Examining OpenSSO Enterprise 29

■ “Federation Services” on page 42
■ “Web Services Stack” on page 44
■ “Web Services Security and the Security Token Service” on page 45
■ “Identity Web Services” on page 46

Note – Many services also provide a public SPI that allows the service to be extended. See the Sun
OpenSSO Enterprise 8.0 Developer’s Guide, the Sun OpenSSO Enterprise 8.0 C API Reference for
Application and Web Policy Agent Developers, and the Sun OpenSSO Enterprise 8.0 Java API
Reference for information.

Authentication Service
The Authentication Service provides the functionality to request user credentials and validate
them against a specified authentication data store. Upon successful authentication, it creates a
session data structure for the user that can be validated across all web applications participating
in an SSO environment. Several authentication modules are supplied with OpenSSO
Enterprise, and new modules can be plugged-in using the Java Authentication and
Authorization Service (JAAS) SPI.

Note – The Authentication Service is based on the JAAS specification, a set of API that enables
services to authenticate and enforce access controls upon users. See the Java Authentication and
Authorization Service Reference Guide for more information.

Components of the Authentication Service include:
■ The Distributed Authentication User Interface allows the Authentication Service user

interface to be deployed separately from OpenSSO Enterprise, if desired. By deploying this
authentication proxy in the DMZ and using the authentication interfaces provided in the
Client SDK to pass user credentials back and forth, you can protect OpenSSO Enterprise
data (for example, the login URL information and hence the host information). JavaServer
Pages (JSP) represent the interface displayed to users for authentication and are completely
customizable.

■ The Core Authentication Service executes common processes across all authentication
modules. Key responsibilities of this service include identification of the appropriate plan to
authenticate the user (identify the authentication module, load the appropriate JSP) and
creation of the appropriate session for the authenticated user.

■ The Authentication API are remoteable interfaces that don't need to reside on the same
machine as the OpenSSO Enterprise server. This allows remote clients to access the
Authentication Service. remote-auth.dtd defines the structure for the XML communications
that will be used by the Authentication Service, providing definitions to initiate the process,
collect credentials and perform authentication.

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200930

http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://opensso.dev.java.net/source/browse/opensso/products/amserver/xml/dtd/

■ A number of authentication modules are installed and configured (including, but not
limited to, LDAP, RADIUS, Windows Desktop, Certificate, and Active Directory). A
configured authentication level for each module is globally defined. Mechanisms are also
provided to upgrade a user's session after authenticating the user to an additional
authentication module that satisfies the authentication level of the resource. New modules
can be plugged-in using the JAAS SPI.

The Authentication Service interacts with both the database that stores user credentials
(authentication data store) to validate the user, and with the Identity Repository Service
plug-ins to retrieve user profile attributes. When the Authentication Service determines that a
user’s credentials are genuine, a valid user session token is issued, and the user is said to be
authenticated. Figure 2–4 illustrates how the local and remote authentication components
interact within a OpenSSO Enterprise deployment.

Core Services

Chapter 2 • Examining OpenSSO Enterprise 31

More information on the architecture of the Authentication Service can be found in the
Authentication Service Architecture document on the OpenSSO web site.

Remote Server

Authentication Client API
(AuthContext Class)

Authentication
Client InterfacesClient Applications

SSO
Agents

AuthUtils LoginState
AMLogin
Context

Auth
Initializations

LDAP

OpenSSO

AuthConfiguration

Authentication XML
Request Handler

Authentication XML
Processing

AuthUtils

JSP
pages

Authentication User Interface

Authentication Middle Tier

Authentication SPI

Controller Servlet
(Login Servlet)

View (Login/Logout
view Beans)

Model as
Authentication

 API

JSP
pages Controller Servlet

(Login Servlet)

View (Login/Logout
view Beans)

Model as
Authentication

 Client API

Distributed Authentication User Interface

Authentication Post
Processing SPI

User Status change
Event Orientation SPI

Auth ContextLocal (Authentication API)

User IDGeneratorAMLogin
Module SPI

Certificate Custom Authentication Module

FIGURE 2–4 Authentication Service Components Within a OpenSSO Enterprise Deployment

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200932

https://opensso.dev.java.net/files/documents/3676/26172/auth_arch.pdf

Policy Service
Authorization is the process with which OpenSSO Enterprise evaluates the policies associated
with an authenticated user’s identity, and determines whether the user has permission to access
a protected resource. (A policy defines the rules that specify a user's access privileges to a
protected resource.) The Policy Service provides the authorization functionality using a
rules-based engine. It interacts with the OpenSSO Enterprise configuration data store, a
delegation plug-in (which helps to determine the administrator’s scope of privileges), and
Identity Repository Service plug-ins to verify that the user has access privileges from a
recognized authority. Policy can be configured using the administration console, and comprises
the following:

■ A Schema for the policy type (normal or referral) that describes the syntax of policy.
■ A Rule which defines the policy itself and is made up of a Resource, an Action and a Value.
■ Condition(s) to define constraints on the policy.
■ Subject(s) to define the user or collection of users which the policy affects.
■ A ResponseProvider(s) to send requested attribute values, typically based on the user profile,

with the policy decision.

Figure 2–5 illustrates how the local and remote components of the Policy Service interact within
a OpenSSO Enterprise deployment. Note that the PolicyServiceRequestHandler maps to the
PolicyRequest XML element.

Core Services

Chapter 2 • Examining OpenSSO Enterprise 33

Policy agents are an integral part of authorization. They are programs, available for installation
separate from OpenSSO Enterprise, that police the web container which hosts the protected
resources. When a user requests access to the protected resource (such as a server or an
application), the policy agent intercepts the request and redirects it to the OpenSSO Enterprise
Authentication Service. Following authentication, the policy agent will enforce the
authenticated user’s assigned policies. OpenSSO Enterprise supports two types of policy agents:

■ The web agent is written in C and can protect any URL-based resource.
■ The Java Platform, Enterprise Edition (Java EE) agent enforces URL-based policy and Java

EE-based policy for Java applications on Java EE containers.

Note – When policy agents are implemented, all HTTP requests are implicitly denied unless
explicitly allowed by the presence of two things:

1. A valid session

2. A policy allowing access

OpenSSO

Client Application

Policy Service Request Handler

Policy Service Local API

Policy Service Framework

Policy Service SPI

Policy Management User Interface

Policy Service Client API
S

ub
je

ct

C
on

di
tio

n

R
ef

er
ra

l

R
es

po
ns

e
P

ro
vi

de
r

R
es

ou
rc

e
C

pm
pa

ra
to

r

FIGURE 2–5 Policy Service Components within a OpenSSO Enterprise Deployment

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200934

Note – If the resource is in the Not Enforced list defined for the policy agent, access is allowed
even if there is no valid session.

More information on the architecture of the Policy Service can be found in the Policy Service
Architecture document on the OpenSSO web site. For an overview of the available policy agents
and links to specific information on installation, see the Sun OpenSSO Enterprise Policy
Agent 3.0 User’s Guide for J2EE Agents.

Session Service
The mission of the OpenSSO Enterprise Session Service is to maintain information about an
authenticated user's session across all web applications participating in a user session.
Additionally, OpenSSO Enterprise provides continuous proof of the user’s identity, enabling
the user to access multiple enterprise resources without having to provide credentials each time.
This enables the following types of user sessions.

■ Basic user session. The user provides credentials to log in to one application, and then logs
out of the same application.

■ SSO session. The user provides credentials once, and then accesses multiple applications
within the same DNS domain.

■ Cross domain SSO (CDSSO) session. The user provides credentials once, and then
accesses applications among multiple DNS domains.

A user session is the interval between the time a user attempts authentication through OpenSSO
Enterprise and is issued a session token, and the moment the session expires, is terminated by
an administrator, or the user logs out. In what might be considered a typical user session, an
employee accesses the corporate benefits administration service. The service, monitored by
OpenSSO Enterprise, prompts the user for a username and password. With the credentials
OpenSSO Enterprise can authenticate, or verify that the user is who he says he is. Following
authentication, OpenSSO Enterprise allows the user access to the service providing
authorization is affirmed. Successful authentication through OpenSSO Enterprise results in the
creation of a session data structure for the user or entity by the Session Service. Generally
speaking, the Session Service performs some or all of the following:

■ Generates unique session identifiers, one for each user's session data structure

Note – A session data structure is initially created in the INVALID state with default values for
certain attributes and an empty property list. Once the session is authenticated, the session
state is changed to VALID and session data is updated with the user's identity attributes and
properties.

Core Services

Chapter 2 • Examining OpenSSO Enterprise 35

https://opensso.dev.java.net/files/documents/3676/33708/policy-arch.pdf
https://opensso.dev.java.net/files/documents/3676/33708/policy-arch.pdf
http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803

■ Maintains a master copy of session state information

Note – The session state maintained on the client side is a cached view of the actual session
data structure. This cache can be updated by either the active polling mechanism or the
session notification triggered by the Session Service.

■ Implements time-dependent behavior of sessions — for example, enforces timeout limits
■ Implements session life cycle events such as logout and session destruction
■ Notifies all participants in the same SSO environment of session state changes
■ Enables SSO and cross-domain single sign-on (CDSSO) among applications external to

OpenSSO Enterprise by providing continued proof of identity.
■ Allows participating clients to share information across deployments
■ Implements high availability facilities

Figure 2–6 illustrates the interactions between the local and remote components of the Session
Service within a OpenSSO Enterprise deployment.

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200936

Additionally, Figure 2–7 illustrates how the messaging capabilities of Message Queue can be
used to push session information to a persistent store based on the Berkeley DataBase (DB).
Using OpenSSO Enterprise in this manner enables the following key feature:

■ Session Failover allows an alternative OpenSSO Enterprise server to pick up a given user
session when the server owning the original session fails.

■ Session Constraints allow deployments to specify constraints on a sessions, such as one
session per user.

Client Machine Session Client API OpenSSO

Legend

Px/Nx Asynchronous Communication

OpenSSO
XML/HTTP Communication
HTTP Communication
In-process Communication

Session
Monitor

2 Session
Requests

(Validate/
Destroy/
Retrieve/
Update)

4. Validate/Destroy/
Retrieve/Update session

Web Apps
or

SSOAgent

SSO
Interfaces

Session
Poller

N1: Nightly Session State Change
1. Access
requested

P1: State
change
polling

p2: Update cache

n2: Update cache

Session
Notification

Listener

Session
Request
Handler

Session
Request
Handler

Master Session
Table

Session
Client

(Session
SDK)

3: Session
requests

5. Cache
Result

Session
Cache

FIGURE 2–6 Session Service Components within a OpenSSO Enterprise Deployment

Core Services

Chapter 2 • Examining OpenSSO Enterprise 37

More information on the architecture of the Session Service can be found in the Session Service
Architecture document on the OpenSSO web site. For more information on session failover, see
Chapter 8, “Implementing OpenSSO Enterprise Session Failover,” in Sun OpenSSO
Enterprise 8.0 Installation and Configuration Guide.

Logging Service
When a user logs in to a resource protected by OpenSSO Enterprise, the Logging Service
records information about the user's activity. The common Logging Service can be invoked by
components residing on the same server as OpenSSO Enterprise as well as those on the client
machine, allowing the actual mechanism of logging (such as destination and formatting) to be
separated from the contents which are specific to each component. You can write custom log
operations and customize log plug-ins to generate log reports for specific auditing purposes.

Load Balancer

Firewall

Client Requests

Host 1

HTTP(S)

Berkeley DB Client
(amsessiondb)

Berkeley
DB

Message Queue Broker Cluster

Message Queue
Broker

Message Queue
Broker

Message Queue
Broker

OpenSSO 1 OpenSSO 2

Host 2 Host 3

OpenSSO 3

Berkeley DB Client
(amsessiondb)

Berkeley
DB

Berkeley DB Client
(amsessiondb)

Berkeley
DB

FIGURE 2–7 Session Persistence Deployment Architecture

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200938

https://opensso.dev.java.net/files/documents/3676/23331/session_arch.pdf
https://opensso.dev.java.net/files/documents/3676/23331/session_arch.pdf
http://docs.sun.com/doc/820-3320/gcdup?a=view
http://docs.sun.com/doc/820-3320/gcdup?a=view

Administrators can control log levels, authorize the entities that are allowed to create log entries
and configure secure logging (the latter for flat files only). Logged information includes the
name of the host, an IP address, the identity of the creator of the log entry, the activity itself, and
the like. Currently, the fields logged as a log record are controlled by the Configurable Log Fields
selected in the Logging Configuration page located under the System tab of the OpenSSO
Enterprise console. The Logging Service is dependent on the client application (using the
Logging APIs) creating a programmatic LogRecord to provide the values for the log record
fields. The logging interface sends the logging record to the Logging Service which determines
the location for the log record from the configuration. A list of active logs can also be retrieved
using the Logging API. Figure 2–8 illustrates the interactions between the local and remote
components of the Logging Service in a OpenSSO Enterprise deployment.

JDK 1.4 Logging Framework

(Secure)
File Handler

JDBC
Handler

(Secure)
ELF Formatter

Java App/Agent Browser

JDK 1.4 Logging

JDBC
Formatter

Custom
Handler

Custom
Formatter

Key
Store

Secure
LogsLogs

Log
Config

Log Service Servlet Java App/Service

(Flat files or Database)

C App/Agent

X
M

L/http(s)

X
M

L/http(s)

H
T

M
L/http(s)

Admin
GUI

FIGURE 2–8 Logging Service Components within a OpenSSO Enterprise Deployment

Core Services

Chapter 2 • Examining OpenSSO Enterprise 39

Caution – Generally speaking, writing log records can be done remotely, using the Client SDK,
but anything involving the reading API can only be done on the machine on which OpenSSO
Enterprise is installed. Using the reading API uses a great deal of system resources, especially
when database logging is involved.

Logs can be written to flat files or to one of the supported databases (Oracle and MySQL). See
Chapter 15, “Recording Events with the Logging Service,” for more information.

Identity Repository Service
The Identity Repository Service allows OpenSSO Enterprise to integrate an existing user data
store (such as a corporate LDAP server) into the environment. The Identity Repository Service
is able to access user profiles (as well as group and role assignments if supported) and is capable
of spanning multiple repositories — even of different types. The Identity Repository Service is
configured per realm under the Data Stores tab and its main functions are:

■ To specify an identity repository that will store service configurations and attributes for
users, groups and roles.

■ To provide a list of identity repositories that can provide user attributes to the Policy Service
and Federation Services frameworks.

■ To combine the attributes obtained from different repositories.
■ To provide interfaces to create, read, edit, and delete identity objects such as a realm, role,

group, user, and agent.
■ To map identity attributes using the Principal Name from the SSOToken object.

Access to the Identity Repository Service is provided by the com.sun.identity.idm Java
package. The AMIdentityRepository class represents a realm that has one or more identity
repositories configured and provides interfaces for searching, creating and deleting identities.
The AMIdentity class represents an individual identity such as a user, group or role and
provides interfaces to set, modify and delete identity attributes and assign and unassign
services. IdRepo is an abstract class that contains the methods that need to be implemented by
plug-ins when building new adapters for repositories not currently supported. The current
implementation supports Sun Java System Directory Server, IBM Tivoli Directory and
Microsoft Active Directory. The following diagram illustrates the design of the Identity
Repository Service.

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200940

FIGURE 2–9 Identity Repository Service Design

Core Services

Chapter 2 • Examining OpenSSO Enterprise 41

Note – Administrator roles are also defined by the Identity Repository Service. (This is currently
available only when the Sun Directory Server With FAM Core Services schema is loaded.) For
example, the Realm Administrator can access all data in all configured realms while the
Subrealm Administrator can access data only within the specified realm. For more information,
see Sun OpenSSO Enterprise 8.0 Deployment Planning Guide. For information on realm
privileges, see Chapter 2, “Organizing Data within Realms,” in Sun OpenSSO Enterprise 8.0
Administration Guide.

Federation Services
OpenSSO Enterprise provides an open and extensible framework for identity federation and
associated web services that resolve the problems of identity-enabling web services, web service
discovery and invocation, security, and privacy. Federation Services are built on the following
standards:

■ Liberty Alliance Project Identity Federation Framework (Liberty ID-FF) 1.1 and 1.2
■ OASIS Security Assertion Markup Language (SAML) 1.0 and 1.1
■ OASIS Security Assertion Markup Language (SAML) 2.0
■ WS-Federation (Passive Requestor Profile)

Federation Services allows organizations to share identity information (for example, which
organizations and users are trusted, and what types of credentials are accepted) securely. Once
this is enabled securely, federating identities is possible — allowing a user to consolidate the
many local identities configured among multiple service providers. With one federated identity,
the user can log in at one identity provider’s site and move to an affiliated site without having to
re-establish identity. Figure 2–10 illustrates the interactions between local and remote
components of the Federation Services in a OpenSSO Enterprise deployment.

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200942

http://docs.sun.com/doc/820-3746
http://docs.sun.com/doc/820-3885/realms?a=view
http://docs.sun.com/doc/820-3885/realms?a=view

WSC/WSP

User Agent

IDP/SP

Service/
Metadata

Configuration

Session/
Authentication
Infrastructure

Audit Log

Single
Sign-on

Single
Logout

Name ID
Management

Affiliation

NameID
Mapping

IDP Proxy

ECP

IDF Discovery
Introduction

Interaction

Authentication
Web Service

Trusted
Authority
Security

Web
Application

Client
Libraries

Logging
Interface

D
atastore

Interface
C

onfiguration
Interface

S
ession

Interface

Users

Discovery
Service

FIGURE 2–10 Federation Services Components within a OpenSSO Enterprise Deployment

Core Services

Chapter 2 • Examining OpenSSO Enterprise 43

More information on the Federation Services can be found in the Open Federation Architecture
and the Federation Use Case documentation on the OpenSSO web site. Also, see Part III,
“Federation Management Using OpenSSO Enterprise,” in this book.

Web Services Stack
The OpenSSO Enterprise Web Services Stack follows a standardized way of integrating
web-based applications using XML, SOAP, and other open standards over an Internet Protocol
(IP) backbone. They enable applications from various sources to communicate with each other
because they are not tied to any one operating system or programming language. Businesses use
web services to communicate with each other and their respective clients without having to
know detailed aspects of each other's IT systems. OpenSSO Enterprise provides web services
that primarily use XML and SOAP over HTTP. These web services are designed to be centrally
provided in an enterprise's network for convenient access by client applications. OpenSSO
Enterprise implements the follow web service specifications.

■ Liberty Alliance Project Identity Web Services Framework (Liberty ID-WSF) 1.x
■ Web Services-Interoperability (WS-I) Basic Security Profile

The following table lists the OpenSSO Enterprise web services.

TABLE 2–1 OpenSSO Enterprise Web Services Stack

Web Service Name Description

Authentication Web Service Provides authentication to a web service client (WSC), allowing the WSC to
obtain security tokens for further interactions with other services at the
same provider. Upon successful authentication, the final Simple
Authentication and Security Layer (SASL) response contains the resource
offering for the Discovery Service.

Discovery Service A web service that allows a requesting entity, such as a service provider, to
dynamically determine a principal's registered attribute provider. Typically,
a service provider queries the Discovery Service, which responds by
providing a resource offering that describes the requested attribute
provider. The implementation of the Discovery Service includes Java and
web-based interfaces.

Liberty Personal Profile Service A data service that supports storing and modifying a principal's identity
attributes. Identity attributes might include information such as first name,
last name, home address, and emergency contact information. The Liberty
Personal Profile Service is queried or updated by a WSC acting on behalf of
the principal.

Security Token Service The centralized Security Token Service that issues, renews, cancels, and
validates security tokens is also used in tandem with the Web Services
Security framework.

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200944

https://opensso.dev.java.net/files/documents/3676/43872/openfed-arch.pdf
https://opensso.dev.java.net/servlets/ProjectDocumentList?folderID=6337&expandFolder%3B=6337&folderID%3B=7017

TABLE 2–1 OpenSSO Enterprise Web Services Stack (Continued)
Web Service Name Description

SOAP Binding Service A set of Java APIs implemented by the developer of a Liberty-enabled
identity service. The APIs are used to send and receive identity-based
messages using SOAP, an XML-based messaging protocol.

OpenSSO Enterprise uses both XML files and Java interfaces to manage web services and web
services configuration data. A OpenSSO Enterprise XML file is based on the structure defined in
the OpenSSO Enterprise Document Type Definition (DTD) files located in
path-to-context-root/opensso/WEB-INF. The main sms.dtd file defines the structure for all
OpenSSO Enterprise service files (located in path-to-context-root/opensso/WEB-INF/classes).

Caution – Do not modify any of the DTD files. The OpenSSO Enterprise API and their internal
parsing functions are based on the default definitions and alterations to them may hinder the
operation of the application.

For more information, see Part IV, “The Web Services Stack, Identity Services, and Web
Services Security.”

Web Services Security and the Security Token Service
In message security, security information is applied at the message layer and travels along with
the web services message. Message layer security differs from transport layer security in that it
can be used to decouple message protection from message transport so that messages remain
protected after transmission, regardless of how many hops they travel on. This message security
is available as Web Services Security in OpenSSO Enterprise and through the installation of an
authentication agent. Web Services Security is the implementation of the WS-Security
specifications and the Liberty Alliance Project Identity Web Services Framework (Liberty
ID-WSF). Web Services Security allows communication with the Security Token Service to
insert security tokens in outgoing messages and evaluate incoming messages for the same.
Towards this end, authentication agents based on the Java Specification Request (JSR) 196 must
be downloaded and installed on the web services client (WSC) machine and the web services
provider (WSP) machine.

Note – JSR 196 agents can be used only on Sun Java System Application Server or Glassfish web
containers.

To secure web services communications, the requesting party must first be authenticated with a
security token which is added to the SOAP header of the request. Additionally, the WSC needs
to be configured to supply message level security in their SOAP requests and the WSP needs to

Core Services

Chapter 2 • Examining OpenSSO Enterprise 45

be configured to enable message level security in their SOAP responses. Figure 2–11 illustrates
the components used during a secure web services interaction.

Note – The stand alone applications can directly invoke the interfaces (secure request by WSC,
and validate response by WSP) from the WS-Security Library and establish message-level
end-to-end web service security. Standalone Java applications do not need the WS-Security
Provider Plugin.

For more information, see Part IV, “The Web Services Stack, Identity Services, and Web
Services Security.”

Identity Web Services
OpenSSO Enterprise contains client interfaces for authentication, authorization, session
management, and logging in Java, C, and C++ (using a proprietary XML and SOAP over HTTP
or HTTPs communication). These interfaces are used by policy agents and custom applications.
Development using these interfaces, though, is labor-intensive. Additionally, the interfaces
cause dependencies on OpenSSO Enterprise. Therefore, OpenSSO Enterprise has now
implemented simple interfaces that can be used for:

■ Authentication (verification of user credentials, password management)
■ Authorization (policy evaluation for access to secured resources)

WSC Client
Security Pipe

Client
Transport Pipe

WSIT
WSS Provider

FM WSS Provider
(:SecureRequest)

(ValidateResponse)

JSR 196 SP
(AuthConfigProvider

and ClientAuthModule)

Web Service
Request

Web Service
Request

Secured
Request

Secured
Request

Request Response

Request Response

FIGURE 2–11 Web Services Security Components within a OpenSSO Enterprise Deployment

Core Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200946

■ Provisioning (self-registration, creating or deleting identity profiles, retrieve or update
identity profile attributes)

■ Token validation
■ Search (return a list of identity profile attributes that match a search filter)

Note – Identity Web Services also interact with the Logging Service to audit and record Identity
Web Services interactions.

These Identity Services are offered using either SOAP and the Web Services Description
Language (WSDL) or Representational State Transfer (REST). With SOAP Identity Web
Services, you point an integrated development environment (IDE) application project to the
appropriate URL and generate the stub code that wraps the function calls to the services. (You
can also use wscompile.) With REST Identity Web Services, no coding is necessary. It works
right out of box.

Note – OpenSSO Enterprise supports Eclipse, NetBeans, and Visual Studio®.

When Identity Web Services have been implemented, a user interacts with the application
which calls the identity repository to retrieve user profile data for authentication and
personalization, the configuration data store to retrieve policy data for authorization, and the
audit repository for log requests. The application authenticates, authorizes, audits, and finally
creates personalized services for the user by calling either the SOAP/WSDL or REST Identity
Web Service as provided by OpenSSO Enterprise.

Core Services

Chapter 2 • Examining OpenSSO Enterprise 47

For more information, see Part IV, “The Web Services Stack, Identity Services, and Web
Services Security.”

Global Services
Global services take configuration values and perform functions for OpenSSO Enterprise on a
global basis. The following table lists the global services with brief descriptions.

TABLE 2–2 Global OpenSSO Enterprise Services

Service What it Does

Common Federation Configuration Contains configuration attributes for Federation Services.

Liberty ID-FF Service
Configuration

Contains configuration attributes for the Liberty Alliance Project
Identity Federation Framework.

Liberty ID-WSF Security Service Contains configuration attributes for the Liberty Alliance Project
Identity Web Services Framework.

FIGURE 2–12 Basic Identity Web Services Process

Global Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200948

TABLE 2–2 Global OpenSSO Enterprise Services (Continued)
Service What it Does

Liberty Interaction Service Contains configuration attributes for the Liberty Alliance Project
Interaction Service — used to get consent from an owner to expose data,
or to get additional data.

Multi-Federation Protocol Contains configuration attributes for multi-federation protocol circles
of trust.

Password Reset Contains configuration attributes for the Password Reset Service.

Policy Configuration Contains configuration attributes for the Policy Service.

SAML v2 Service Configuration Contains configuration attributes for the SAML v2 interactions.

SAML v2 SOAP Binding Contains configuration attributes for SAML v2 SOAP Binding Service.

Security Token Service Contains configuration attributes for the Security Token Service.

Session Contains configuration attributes for the Session Service.

User Contains configuration attributes for user profiles.

Realms
A realm is the unit that OpenSSO Enterprise uses to organize configuration information.
Authentication properties, authorization policies, data stores, subjects (including a user, a
group of users, or a collection of protected resources) and other data can be defined within the
realm. The data stored in a realm can include, but is not limited to:
■ One or more subjects (a user, a group of users, or a collection of protected resources)
■ A definition of one or more data stores to store subject (user) data
■ Authentication details identifying, for example, the location of the authentication

repository, and the type of authentication required.
■ Policy information that will be used to determine which resources protected by OpenSSO

Enterprise the subjects can access.
■ Responder configurations that allows applications to personalize the user experience, once

the user has successfully authenticated and been given access.
■ Administration data for realm management

You create a top-level realm when you deploy OpenSSO Enterprise. The top-level realm (by
default opensso) is the root of the OpenSSO Enterprise instance and contains OpenSSO
Enterprise configuration data; it cannot be changed after it is created. In general, you should use
the default root realm to configure identity data stores, and manage policies and authentication
chains. During deployment, OpenSSO Enterprise creates a Realm Administrator who can
perform all operations in the configured root realm, and a Policy Administrator who can only
create and manage policies.

Realms

Chapter 2 • Examining OpenSSO Enterprise 49

All other realms are configured under the opensso realm. These sub-realms may contain other
sub-realms and so on. Sub-realms identify sets of users and groups that have different
authentication or authorization requirements. The use of sub-realms should be restricted to the
following two scenarios.

1. Application Policy Delegation The use case for this is when you need to have different
Policy Administrators to create policies for a sub-set of resources. For example, let's assume
a sub-realm is created and named Paycheck. This sub-realm is configured with a policy
referral from the root realm for configuring protection of resources starting with
https://paycheck.sun.com/paycheck. Within the Paycheck sub-realm, a Paycheck
Administrator role or group is created and assigned Policy Administration privileges. These
administrators are now able to login to the sub-realm and create policies for their
applications. By default, the sub-realm inherits the same configuration data store and
authentication chains configured for its parent; if these configurations change in the parent,
a corresponding change would be needed in the sub-realm. Additionally, all users will still
log in to the root realm for access to all the applications. The sub-realm is primarily for the
Policy Administrator to manage policies for the application. An educated guess on the
number of sub-realms that can be supported would be about 100.

2. ISP/ASP/Silo The use case for this scenario is when each sub-realm is to have its own set of
identity data stores, authentication chains, and policies. Ideally the only common thread
between the root and the sub-realm would be the referral policy created in the root realm to
delegate a set of resources to the sub-realm. Users would not be able to log in to the root
realm (unless they are a member) but would have to authenticate to their sub-realm. Also,
agents would have to be configured to redirect user authentication to the particular
sub-realm. With regards to performance, the most resource consuming component would
be when persistent searches created by the data stores connect to the same directory. An
educated guess on the number of sub-realms that can be supported would be about 50.

The OpenSSO Enterprise framework aggregates realm properties as part of the configuration
data. Figure 2–13 illustrates how configuration data can use a hierarchy of realms to distribute
administration responsibilities. Region 1, Region 2, and Region 3 are realms; Development,
Operations, and Sales are realms sub to Region 3.

Realms

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200950

Service Configuration
 • Policies
 • Authorization Attributes
 • Identity Repository Plug-ins

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Region 1 Sub-realm

Top-level Realm

Region 2 Sub-realm

Region 3 Sub-realm

Development Sub-realm

Operations Sub-realm

Sales Sub-realm

FIGURE 2–13 Realm Hierarchy for Configuration Data

Realms

Chapter 2 • Examining OpenSSO Enterprise 51

Note – OpenSSO Enterprise 8.0 supports the Sun Java System Access Manager Legacy mode
(which contains no realms) with a provided interface.

Additional Components
The following sections provide information on additional components used in a OpenSSO
Enterprise deployment.
■ “Data and Data Stores” on page 52
■ “The bootstrap File” on page 58
■ “Policy Agents” on page 59
■ “Security Agents” on page 60
■ “OpenSSO Enterprise Tools” on page 60
■ “Client SDK” on page 61
■ “Service Provider Interfaces for Plug-ins” on page 61

Data and Data Stores
OpenSSO Enterprise services need to interact with a number of different data stores. The
following distinct repositories can be configured.
■ A configuration repository provides server and service specific data.
■ One or more identity repositories provide user profile information.
■ Authentication repositories provide authentication credentials to a particular module of the

Authentication Service.

A common LDAP connection pooling facility allows efficient use of network resources. In the
simplest demonstration environment, a single LDAP repository is sufficient for all data
however, the typical production environment tends to separate configuration data from other
data. The following sections contain more specific information.
■ “Configuration Data” on page 52
■ “Identity Data” on page 55
■ “Authentication Data” on page 58

Configuration Data
The default configuration of OpenSSO Enterprise creates a branch in a fresh installation of a
configuration data store for storing service configuration data and other information pertinent
to the server's operation. OpenSSO Enterprise components and plug-ins access the
configuration data and use it for various purposes including:
■ Accessing policy data for policy evaluation.

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200952

■ Finding location information for identity data stores and OpenSSO Enterprise services.
■ Retrieving authentication configuration information that define how users and groups

authenticate.
■ Finding which partner servers can send trusted SAML assertions.

OpenSSO Enterprise supports Sun Java System Directory Server and the open source OpenDS
as configuration data stores. Flat files (supported in previous versions of the product) are no
longer supported but configuration data store failover is — using replication. Figure 2–14
illustrates how configuration data in the configuration data store is accessed.

Previous releases of Access Manager and Federation Manager stored product configuration
data in a property file named AMConfig.properties that was installed local to the product
instance directory. This file is deprecated for OpenSSO Enterprise on the server side although
still supported for agents on the client side. See the Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide for more information.

Configuration data comprises the attributes and values in the OpenSSO Enterprise
configuration services, as well as default OpenSSO Enterprise users like amadmin and

Configuration
Data
Store

Machine

Web Container

OpenSSO

Request for
Server Configuration

SMS

CLI SMS

Administer

Read
Console

Bootstrap File

Bootstrap and
Administer

FIGURE 2–14 Accessing Configuration Data

Additional Components

Chapter 2 • Examining OpenSSO Enterprise 53

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320

anonymous. Following is a partial listing of the XML service files that contribute to the data.
They can be found in the path-to-context-root/opensso/WEB-INF/classes directory.

Note – The data in this node branch is private and is mentioned here for information purposes
only.

■ AgentService.xml

■ amAdminConsole.xml

■ amAgent70.xml

■ amAuth.xml

■ amAuth-NT.xml

■ amAuthAD.xml

■ amAuthAnonymous.xml

■ amAuthCert.xml

■ amAuthConfig.xml

■ amAuthDataStore.xml

■ amAuthHTTPBasic.xml

■ amAuthJDBC.xml

■ amAuthLDAP.xml

■ amAuthMSISDN.xml

■ amAuthMembership.xml

■ amAuthNT.xml

■ amAuthRADIUS.xml

■ amAuthSafeWord-NT.xml

■ amAuthSafeWord.xml

■ amAuthSecurID.xml

■ amAuthWindowsDesktopSSO.xml

■ amClientData.xml

■ amClientDetection.xml

■ amConsoleConfig.xml

■ amDelegation.xml

■ amEntrySpecific.xml

■ amFilteredRole.xml

■ amG11NSettings.xml

■ amLogging.xml

■ amNaming.xml

■ amPasswordReset.xml

■ amPlatform.xml

■ amPolicy.xml

■ amPolicyConfig.xml

■ amRealmService.xml

■ amSession.xml

■ amUser.xml

■ amWebAgent.xml

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200954

■ idRepoEmbeddedOpenDS.xml

■ idRepoService.xml

■ identityLocaleService.xml

■ ums.xml

Caution – By default, the OpenSSO Enterprise configuration data is created and maintained in
the configuration data store apart from any identity data. Although users can be created in the
configuration data store this is only recommended for demonstrations and development
environments.

For more information, see “Configuration Data Store” on page 65.

Identity Data
An identity repository is a data store where information about users and groups in an
organization is stored. User profiles can contain data such as a first name, a last name, a phone
number, group membership, and an e-mail address; an identity profile template is provided
out-of-the-box but it can be modified to suit specific deployments.

Identity data stores are defined per realm. Because more than one identity data store can be
configured per realm OpenSSO Enterprise can access the many profiles of one identity across
multiple data repositories. Sun Java System Directory Server with OpenSSO Enterprise Schema,
Microsoft Active Directory, IBM Tivoli Directory and the AMSDK data store are the currently
supported identity repositories. Plug-ins can be developed to integrate other types of
repositories (for example, a relational database). Figure 2–15 illustrates a OpenSSO Enterprise
deployment where the identity data and the configuration data are kept in separate data stores.

Additional Components

Chapter 2 • Examining OpenSSO Enterprise 55

Note – The information in an identity repository is maintained by provisioning products
separate from OpenSSO Enterprise. The supported provisioning product is Sun Java System
Identity Manager.

OpenSSO Enterprise provides out-of-the-box plug-in support for some identity repositories.
Each default plug-in configuration includes details about what operations are supported on the
underlying data store. Once a realm is configured to use a plug-in, the framework can
instantiate it and execute the operations on the appropriate identity repository. Each new
plug-in developed must have a corresponding service management schema defining its
configuration attributes. This schema would be integrated as a sub schema into
idRepoService.xml, the service management file for the Identity Repository Service that
controls the identity data stores available under a realm's Data Stores tab. The following
sections contain information on the out-of-the-box plug-ins.
■ “Generic Lightweight Directory Access Protocol (LDAP) version 3” on page 56
■ “LDAPv3 Plug-in for Active Directory” on page 57
■ “LDAPv3 Plug-in for Tivoli Directory” on page 57
■ “Sun Directory Server With FAM Core Services” on page 57
■ “Sun Directory Server With Full Schema (including Legacy)” on page 57
■ “Access Manager Repository Plug-in” on page 57

Generic Lightweight Directory Access Protocol (LDAP) version 3

The Generic LDAPv3 identity repository plug-in can reside on an instance of any directory that
complies with the LDAPv3 specifications. The underlying directory cannot make use of features

Configuration
Data
Store

User Data
Store

OpenSSO

Content and
Application Server

Client SDK

FIGURE 2–15 OpenSSO Enterprise Deployment with Two Data Stores

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200956

http://www.sun.com/software/products/identity_mgr/index.jsp
http://www.sun.com/software/products/identity_mgr/index.jsp

that are not part of the LDAP version 3 specification, and no specific DIT structure can be
assumed as LDAPv3 identity repositories are simply DIT branches that contain user and group
entries. Each data store has a name that is unique among a realm's data store names, but not
necessarily unique across all realms. The
com.sun.identity.idm.plugins.ldapv3.LDAPv3Repo class provides the default LDAPv3
identity repository implementation. There are also implementations for Active Directory and
IBM Tivoli Directory

LDAPv3 Plug-in for Active Directory
The Generic LDAPv3 identity repository plug-in was used to develop a default plug-in to write
identity data to an instance of Microsoft® Active Directory®. The administration console
provides a way to configure the directory but the schema needs to be loaded manually.

LDAPv3 Plug-in for Tivoli Directory
The Generic LDAPv3 identity repository plug-in was used to develop a default plug-in to write
identity data to an instance of IBM Tivoli Directory®. The administration console provides a
way to configure the directory but the schema needs to be loaded manually.

Sun Directory Server With FAM Core Services
This repository resides in an instance of Sun Java System Directory Server and holds the
identity data. This option is available during the initial configuration of OpenSSO Enterprise.

Sun Directory Server With Full Schema (including Legacy)
This repository resides in an instance of Sun Java System Directory Server and holds the
configuration data when installing OpenSSO Enterprise in Legacy and Realm mode. This
option must be manually configured.

Access Manager Repository Plug-in
The Access Manager Repository can reside only in Sun Java System Directory Server and is used
with the Sun Directory Server With Access Manager Schema. During installation, the
repository is created in the same instance of Sun Java System Directory Server that holds the
configuration data. The Access Manager Repository Plug-in is designed to work with Sun Java
System Directory Server as it makes use of features specific to the server including roles and class
of service. It uses a DIT structure similar to that of previous versions of Access Manager.

Note – This is no longer provided out of the box and many pieces are marked for deprecation.
The Access Manager Repository is compatible with previous versions of Access Manager.

When you configure an instance of Access Manager in realm mode for the first time, the
following occurs:

Additional Components

Chapter 2 • Examining OpenSSO Enterprise 57

■ An Access Manager Repository is created under the top-level realm.
■ The Access Manager Repository is populated with internal Access Manager users.

Note – The Java Enterprise System installer does not set up an Access Manager Repository when
you configure an Access Manager instance in legacy mode. Legacy mode requires an identity
repository that is mixed with the Access Manager information tree under a single directory
suffix.

Authentication Data
Authentication data contains authentication credentials for OpenSSO Enterprise users. An
authentication data store is aligned with a particular authentication module, and might include:

■ RADIUS servers
■ SafeWord authentication servers
■ RSA ACE/Server systems (supports SecurID authentication)
■ LDAP directory servers

Identity data may include authentication credentials although authentication data is generally
stored in a separate authentication repository. For more information, see Chapter 3,
“Configuring Authentication,” in Sun OpenSSO Enterprise 8.0 Administration Guide.

The bootstrap File
OpenSSO Enterprise uses a file to bootstrap itself. Previously, AMConfig.properties held
configuration information to bootstrap the server but now a file named bootstrap points to the
configuration data store allowing the setup servlet to retrieve the bootstrapping data. After
deploying the OpenSSO Enterprise WAR and running the configuration wizard, configuration
data is written to the configuration data store by the service management API contained in the
Java package, com.sun.identity.sm. The setup servlet creates bootstrap in the top-level
configuration directory. The content in bootstrap can be either of the following:

■ A directory local to OpenSSO Enterprise (for example, /export/SUNWam) indicating the
server was configured with a previous release. The directory is where AMConfig.properties
resides.

■ An encoded URL that points to a directory service using the following format:

ldap://ds-host:ds-port/server-instance-name?pwd=encrypted-amadmin-password&
embeddedds=path-to-directory-service-installation&basedn=base-dn&
dsmgr=directory-admin&dspwd=encrypted-directory-admin-password

For example:

ldap://ds.samples.com:389/http://owen2.red.sun.com:8080/

opensso?pwd=AQIC5wM2LY4Sfcxi1dVZEdtfwar2vhWNkmS8&embeddedds=

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200958

http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view

/opensso/opends&basedn=dc=opensso,dc=java,dc=net&dsmgr=

cn=Directory Manager&dspwd=AQIC5wM2LY4Sfcxi1

dVZEdtfwar2vhWNkmS8

where
■ ds.samples.com:389 is the host name and port of the machine on which the directory is

installed.
■ http://owen2.red.sun.com:8080/opensso is the instance name.
■ AQIC5wM2LY4Sfcxi1dVZEdtfwar2vhWNkmS8 is the encrypted password of the OpenSSO

administrator.
■ /opensso/opends is the path to the directory installation.
■ dc=opensso,dc=java,dc=net is the base DN.
■ cn=Directory Manager is the directory administrator.
■ AQIC5xM2LY4SfcximdVZEdtfwar4vhWNkmG7 is the encrypted password for the directory

administrator.

If more than one URL is present in the file and OpenSSO Enterprise is unable to connect or
authenticate to the data store at the first URL, the bootstrapping servlet will try the second (and
so on). Additionally, the number sign [#] can be used to exclude a URL as in:

ldap://ds.samples.com:389/http://owen2.red.sun.com:8080/

opensso?pwd=AQIC5wM2LY4Sfcxi1dVZEdtfwar2vhWNkmS8&embeddedds=

/opensso/opends&basedn=dc=opensso,dc=java,dc=net&dsmgr=

cn=Directory+Manager&dspwd=AQIC5wM2LY4Sfcxi1dVZEdtf

war2vhWNkmS8

Policy Agents
Policy agents are an integral part of SSO and CDSSO sessions. They are programs that police the
web container on which resources are hosted. All policy agents interact with the Authentication
Service in two ways:

■ To authenticate itself in order to establish trust. This authentication happens using the
Client SDK.

■ To authenticate users having no valid session for access to a protected resource. This
authentication happens as a browser redirect from the Distributed Authentication User
Interface.

When a user requests access to a protected resource such as a server or an application, the policy
agent intercepts the request and redirects it to the OpenSSO Enterprise Authentication Service
for authentication. Following this, the policy agent requests the authenticated user's assigned

Additional Components

Chapter 2 • Examining OpenSSO Enterprise 59

policy and evaluates it to allow or deny access. (A policy defines the rules that specify a user's
access privileges to a protected resource.) OpenSSO Enterprise supports two types of policy
agents:

■ The web agent enforces URL-based policy for C applications.
■ The Java EE agent enforces URL-based policy and Java-based policy for Java applications on

Java EE containers.

Both types of agents are available for you to install as programs separate from OpenSSO
Enterprise. Policy agents are basically clients written using the Client SDK and Identity Services.

Note – All HTTP requests are implicitly denied unless explicitly allowed by the presence of a
valid session and a policy allowing access. If the resource is defined in the Not Enforced list for
the policy agent, access is allowed even if there is no valid session.

For more information, see J2EE Agent Architecture and Web Agent and C-API Architecture on
the OpenSSO web site. For an overview of the available policy agents and links to specific
information on installation, see the Sun OpenSSO Enterprise Policy Agent 3.0 User’s Guide for
J2EE Agents.

Security Agents
Authentication agents plug into web containers to provide message level security for web
services, and supports both Liberty Alliance Project token profiles as well as Web
Services-Interoperability Basic Security Profiles (WS-I BSP). (A profile defines the HTTP
exchanges required to transfer XML requests and responses between web service clients and
providers.) Authentication agents use an instance of OpenSSO Enterprise for all authentication
decisions. Web services requests and responses are passed to the appropriate authentication
modules using standard Java representations based on the transmission protocol. An HTTP
Authentication Agent or a SOAP Authentication Agent can be used. For more information, see
“Web Services Security and the Security Token Service” on page 45.

OpenSSO Enterprise Tools
Contained within the OpenSSO Enterprise ZIP are ssoAdminTools.zip and
ssoSessionTools.zip. The following sections have some information about these tools.

■ “ssoadm Command Line Interface” on page 61
■ “Session Failover Tools” on page 61

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200960

https://opensso.dev.java.net/files/documents/3676/43131/j2eeagent_arch.pdf
https://opensso.dev.java.net/files/documents/3676/34096/webagent_arch.pdf
http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803

ssoadmCommand Line Interface
ssoadm, the command line interface (CLI), provides a second option to administer OpenSSO
Enterprise using the command line. For example, ssoadm can be used to create a policy or
import and export Liberty ID-FF metadata. ssoadm is the recommended way for batch
processing. It is in ssoAdminTools.zip. For more information, see Chapter 6, “Installing the
OpenSSO Enterprise Utilities and Scripts,” in Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide and Part I, “Command Line Interface Reference,” in Sun OpenSSO
Enterprise 8.0 Administration Reference.

Session Failover Tools
ssoSessionTools.zip contains scripts and binaries for setting up session failover and
databases. For more information, see Chapter 8, “Implementing OpenSSO Enterprise Session
Failover,” in Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide.

Client SDK
Enterprise resources cannot be protected by OpenSSO Enterprise until the OpenSSO
Enterprise Client SDK is installed on the machine that contains the resource that you want to
protect. (The Client SDK is automatically installed with a policy agent.) The Client SDK allows
you to customize an application by enabling communication with OpenSSO Enterprise for
retrieving user, session, and policy data. For more information, see Chapter 14, “Using the
Client SDK,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide and the Sun OpenSSO
Enterprise 8.0 Java API Reference.

Service Provider Interfaces for Plug-ins
The OpenSSO Enterprise service provider interfaces (SPI) can be implemented as plug-ins to
provide customer data to the OpenSSO Enterprise framework for back-end processing. Some
customer data comes from external data base applications such as identity repositories while
other customer data comes from the OpenSSO Enterprise plug-ins themselves. You can
develop additional custom plug-ins to work with the SPI. For a complete list of the SPI, see the
Sun OpenSSO Enterprise 8.0 Java API Reference. Additional information can be found in the
Sun OpenSSO Enterprise 8.0 Developer’s Guide. The following sections contain brief
descriptions.

■ “Authentication Service SPI” on page 62
■ “Federation Service SPI” on page 62
■ “Identity Repository Service SPI” on page 62
■ “Policy Service SPI” on page 62
■ “Service Configuration Plug-in” on page 62

Additional Components

Chapter 2 • Examining OpenSSO Enterprise 61

http://docs.sun.com/doc/820-3320/gfxtl?a=view
http://docs.sun.com/doc/820-3320/gfxtl?a=view
http://docs.sun.com/doc/820-3320/gfxtl?a=view
http://docs.sun.com/doc/820-3886/ghhuz?a=view
http://docs.sun.com/doc/820-3886/ghhuz?a=view
http://docs.sun.com/doc/820-3320/gcdup?a=view
http://docs.sun.com/doc/820-3320/gcdup?a=view
http://docs.sun.com/doc/820-3748/adubn?a=view
http://docs.sun.com/doc/820-3748/adubn?a=view
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748

Authentication Service SPI
The com.sun.identity.authentication.spi package provides interfaces and classes for
writing a supplemental authentication module to plug into OpenSSO Enterprise. The
com.sun.identity.authentication package provides interfaces and classes for writing a
remote client application that can access user data in a specified identity repository to
determine if a user’s credentials are valid.

Federation Service SPI
The com.sun.identity.federation.services package provides plug-ins for customizing the
Liberty ID-FF profiles implemented by OpenSSO Enterprise. The
com.sun.identity.federation.plugins package provides an interface that can be
implemented to perform user specific processing on the service provider side during the
federation process. The com.sun.identity.saml2.plugins package provides the SAML v2
service provider interfaces (SPI). The com.sun.identity.wsfederation.plugins package
provides the WS-Federation based SPI.

Identity Repository Service SPI
The com.sun.identity.idm package contains the IdRepo interface that defines the abstract
methods which need to be implemented or modified by Identity Repository Service plug-ins.
The com.sun.identity.plugin.datastore package contains interfaces that search for and
return identity information such as user attributes and membership status for purposes of
authentication.

Policy Service SPI
The com.sun.identity.policy.interfaces package provides interfaces for writing custom
policy plug-ins for Conditions, Subjects, Referrals, Response Providers and Resources.

Service Configuration Plug-in
The com.sun.identity.plugin.configuration package provides interfaces to store and
manage configuration data required by the core OpenSSO Enterprise components and other
plug-ins.

Note – In previous releases, the functionality provided by the Service Configuration plug-in was
known as the Service Management Service (SMS).

Additional Components

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200962

Simplifying OpenSSO Enterprise

This chapter contains information on the usability and manageability features of OpenSSO
Enterprise. It includes the following sections:

■ “Installation and Configuration” on page 63
■ “Configuration Data Store” on page 65
■ “Centralized Agent Configuration” on page 66
■ “Common Tasks Wizard” on page 68
■ “Third Party Integration” on page 69

Installation and Configuration
Previous versions of Sun Microsystems' access management server product were built for
multiple hardware platforms, and different web containers. The complexity of this
development process led to the release of separate platform and container patches. To alleviate
this extraneous development, OpenSSO Enterprise is now available as a single ZIP file which
can be downloaded, unzipped, and quickly deployed; there will be no separate installations for
each hardware platform. The ZIP file will contain the full OpenSSO Enterprise web archive
(WAR), layouts for the generation of other specific WARs, libraries, the Java API reference
documentation, and samples. (Tools for use with OpenSSO Enterprise, including the command
line interfaces and policy and authentication agents, can be downloaded separately.) Figure 3–1
illustrates the process for deployment, installation and configuration of a new OpenSSO
Enterprise WAR and a patched WAR.

3C H A P T E R 3

63

Note – When patched, a full patched version of the OpenSSO Enterprise WAR will be included
in the download, assuring that there is always a single download to get the latest bits.

The intent of this new process is to allow the administrator to download OpenSSO Enterprise
and deploy it on the container or platform of choice, using the web container's administration
console or command line interfaces. After the initial launch of the deployed WAR, the user is
directed to a JavaServer Page (JSP) called the Configurator that prompts for configuration
parameters (including, but not limited to, the host name, port number, URI, and repositories),
provides data validation for the parameter values to prevent errors, and eliminates
post-installation configuration tasks. Once successfully configured, any further changes to the
configuration data store must be made using the OpenSSO Enterprise console or command line
interfaces.

Note – When deploying OpenSSO Enterprise against an existing legacy installation, the
Directory Management tab will be enabled in the new console.

For more information including a directory layout of the ZIP, see the Sun OpenSSO
Enterprise 8.0 Installation and Configuration Guide.

Deployer Developer Config’tor Deployer Admin’tor User

Customized
 (DEV)

Downloaded

New

Patch

Configured Deployed

Patch
Downloaded

Re-Custom
 (DEV)

Customized
 (DEV)

Customized
 (Admin)

Ready-to-
 Serve

FIGURE 3–1 Customizing, Patching and Deploying the OpenSSO Enterprise WAR

Installation and Configuration

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200964

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320

Configuration Data Store
OpenSSO Enterprise has implemented an embedded configuration data store to replace the
AMConfig.properties and serverconfig.xml files which had been the storage files for server
configuration data. Previously, each instance of the server installed had separate configuration
files but now when deploying more than one instance of OpenSSO Enterprise, all server
configuration data is stored centrally, in one configuration data store per instance. After the
OpenSSO Enterprise WAR is configured, a sub configuration is added under the Platform
Service to store the data and a bootstrap file that contains the location of the configuration data
store is created in the installation directory. Figure 3–2 illustrates how OpenSSO Enterprise is
bootstrapped.

Post installation, the configuration data can be reviewed and edited using the administration
console or the ssoadm command line interface. For more information see the Sun OpenSSO
Enterprise 8.0 Installation and Configuration Guide and the Sun OpenSSO Enterprise 8.0
Administration Guide.

Note – OpenSSO Enterprise also supports an LDAPv3–based solution that uses an existing
directory server for configuration data storage. This is configured during installation.
Supported directories include Sun Java System Directory Server, Microsoft Active Directory,
and IBM Tivoli Directory.

Bootstrap File

Server Machine

DS
WAR

FIGURE 3–2 Bootstrapping OpenSSO Enterprise

Configuration Data Store

Chapter 3 • Simplifying OpenSSO Enterprise 65

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885

Centralized Agent Configuration
Policy agents function based on a set of configuration properties. Previously, these properties
were stored in the AMAgent.properties file, residing on the same machine as the agent. With
Centralized Agent Configuration, OpenSSO Enterprise moves most of the agent configuration
properties to the configuration data store. Now agent profiles can be configured to store
properties locally (on the machine to which the agent was deployed) or centrally (in the
configuration data store), making this new function compatible with both older 2.x agents and
newer 3.0 agents. Following is an explanation of the local and central agent configuration
repositories.

■ Local agent configuration is supported for backward compatibility. Agent configuration
data is stored in a property file named AgentConfiguration.properties that is stored on
the agent machine. It is only used by agent profiles configured locally.

■ Centralized Agent Configuration stores agent configuration data in a centralized data store
managed by OpenSSO Enterprise. When an agent starts up, it reads its bootstrapping file to
initialize itself. AgentBootstrap.properties is stored on the agent machine and indicates
the location from where the configuration properties need to be retrieved. It is used by agent
profiles configured locally or centrally. Based on the repository setting in
AgentBootstrap.properties, it retrieves the rest of its configuration properties. If the
repository is local, it reads the agent configuration from a local file; if the repository is
remote, it fetches its configuration from OpenSSO Enterprise.

Thus, Centralized Agent Configuration separates the agent configuration properties into two
places: a bootstrapping file stored local to the agent and either a local (to the agent) or central
(local to OpenSSO Enterprise) agent configuration data store. AgentBootstrap.properties is
the bootstrapping file used by agent profiles configured locally or centrally. It is stored on the
agent machine and indicates the local or central location from where the agent's configuration
properties are retrieved. If the repository is local to the agent, it reads the configuration data
from a local file; if the repository is remote, it fetches its configuration from OpenSSO
Enterprise. Choosing Centralized Agent Configuration provides an agent administrator with
the means to manage multiple agent configurations from a central place using either the
OpenSSO Enterprise console or command line interface. Figure 3–3 illustrates how an agent
retrieves bootstrapping and local configuration data, and configuration data from the
configuration data store.

Centralized Agent Configuration

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200966

An agent fetches its configuration properties periodically to determine if there have been any
configuration changes. Any agent configuration changes made centrally are conveyed to the
affected agents which will react accordingly based on the nature of the updated properties. If the
properties affected are hot swappable, the agent can start using the new values without a restart
of the underlying agent web container. Notification of the agent when configuration data
changes and polling by the agent for configuration changes can be enabled. Agents can also
receive notifications of session and policy changes.

Note – A agent configuration data change notification does not contain the actual data; it is just a
ping that, when received, tells the agent to make a call to OpenSSO Enterprise and reload the
latest. Session and policy notifications, on the other hand, contain the actual data changes. Also,
when using a load balancer, the notification is sent directly to the agent whose configuration has
been changed. It does not go through the load balancer.

For more information see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Policy Agent

Administration
Console

Administration
CLI

SMS

Centralized
Agent Config

Identity
Repository

Service

Local Agent
Config

Attribute
Service

Authentication
Service

OpenSSO

Agent Bootstrap
Properties

1

2 3

8

7

6

11

4,9

5,10

FIGURE 3–3 Retrieving Agent Configuration Data

Centralized Agent Configuration

Chapter 3 • Simplifying OpenSSO Enterprise 67

http://docs.sun.com/doc/820-3885

Common Tasks Wizard
OpenSSO Enterprise has implemented a Common Tasks tab that allows an administrators to
create federation-based objects using console wizards. The wizards offer simplified provider
configuration with metadata input using the URL
http://host-machine.domain:8080/opensso/saml2/jsp/exportmetadata.jsp or a metadata
file. The following things can be done using a Common Task wizard:

■ Create SAML v2 Providers They can be hosted or remote provider; and identity or service
provider. To create them, you just need to provide some basic information about the
providers.

■ Create Fedlet A Fedlet is a small ZIP file that can be given to a service provider to allow for
immediate federation with an identity provider configured with OpenSSO Enterprise. It is
ideal for an identity provider that needs to enable a service provider with no federation
solution in place. The service provider simply adds the Fedlet to their application, deploys
their application, and they are federation enabled. For more information, see “The Fedlet”
on page 138.

■ Test Federation Connectivity This task validates your federation configuration. It will
show if federation connections are being made successfully by identifying where the
troubles, if any, are located.

■ Access Documentation This link opens the OpenSSO documentation page. View
frequently asked questions, tips, product documentation, engineering documentation as
well as links to the community blogs.

■ Register Your Product This link allows you to register your product with Sun Connection.
You must have a Sun Online Account in order to complete the registration. If you do not
already have one, you may request one as part of this process.

Figure 3–4 is a screen capture of the Common Tasks wizard.

Common Tasks Wizard

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200968

For more information see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Third Party Integration
OpenSSO Enterprise makes it easy to integrate with third-party software. Plug-ins and other
tools have been developed to ease the integration of OpenSSO Enterprise and the following
products.

■ “Sun Java System Identity Manager” on page 70
■ “Computer Associates SiteMinder” on page 70
■ “Oracle Access Manager” on page 70

For more information, see Sun OpenSSO Enterprise 8.0 Integration Guide.

FIGURE 3–4 The Common Tasks Wizard

Third Party Integration

Chapter 3 • Simplifying OpenSSO Enterprise 69

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-4729

Sun Java System Identity Manager
Sun Java System Identity Manager enables an enterprise to manage and audit access to accounts
and resources as well as distribute the access management overhead. A OpenSSO Enterprise
policy agent is deployed on the Identity Manager machine to regulate access to the Identity
Manager server. By mapping Identity Manager objects to OpenSSO Enterprise users and
resources, you may significantly increase operational efficiency. For use cases, a technical
overview, installation and configuration procedures, architecture diagrams and process flows,
see Chapter 1, “Integrating Sun Identity Manager ,” in Sun OpenSSO Enterprise 8.0 Integration
Guide.

Computer Associates SiteMinder
Computer Associates SiteMinder (originally developed by Netegrity) is one of the industry's
first SSO products — used in a majority of legacy web SSO deployments to protect their intranet
and external applications. OpenSSO Enterprise provides the tools for SSO integration with
SiteMinder in both intranet and federated environments. They include a SiteMinder Agent and
a OpenSSO Enterprise Authentication Module for SiteMinder. They can be found in the
integrations/siteminder directory of the exploded opensso.war. For use cases, a technical
overview, installation and configuration procedures, architecture diagrams and process flows,
see Chapter 2, “Integrating CA SiteMinder,” in Sun OpenSSO Enterprise 8.0 Integration Guide.

Oracle Access Manager
Oracle Access Manager (originally developed by Oblix) is an SSO product with many of the
same features as Sun OpenSSO Enterprise and Computer Associates SiteMinder. Oracle Access
Manager can be deployed to protect both internal and external applications. OpenSSO
Enterprise provides an Oracle Agent and a custom OpenSSO Enterprise Authentication
Module for Oracle Access Manager. They can be found in the integrations/oracle directory
of the exploded opensso.war. For use cases, a technical overview, installation and configuration
procedures, architecture diagrams and process flows, see Chapter 3, “Integrating Oracle Access
Manager,” in Sun OpenSSO Enterprise 8.0 Integration Guide.

Third Party Integration

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200970

http://docs.sun.com/doc/820-4729/ggsmu?a=view
http://docs.sun.com/doc/820-4729/ggsmu?a=view
http://docs.sun.com/doc/820-4729/ggnzf?a=view
http://docs.sun.com/doc/820-4729/ggvuj?a=view
http://docs.sun.com/doc/820-4729/ggvuj?a=view

Deploying OpenSSO Enterprise

Sun OpenSSO Enterprise can be deployed in a number of ways. This chapter contains two
sample deployment architectures.

■ “Deployment Architecture 1” on page 71
■ “Deployment Architecture 2” on page 73

For more information, see Sun OpenSSO Enterprise 8.0 Deployment Planning Guide.

Deployment Architecture 1
Figure 4–1 illustrates one deployment architecture for Sun OpenSSO Enterprise.

4C H A P T E R 4

71

http://docs.sun.com/doc/820-3746

LB LB

LB

Q1

11

11

11

LB

Web or Application
Server

Web or Application
Server

Users

Standard user communication
(HTTP or HTTPS)

User communication to Authentication Service
or to Distributed Authentication Service (not depicted)

(HTTP or HTTPS)

Agent communication to Policy Servers and
Policy Server notification events to Agents
(HTTP or HTTPS)

OpenSSO “Session Forwarding” service
between instances (HTTP or HTTPS)

Session state propagation for
session recovery (fail-over) (JQM)

OpenSSO communication to Directory
Server (LDAP or LDAPS)

J2EE Container

Distributed
Auth

J2EE Container

Distributed
Auth

OpenSSO

JMQ

BDB BDB

OpenSSO

JMQ

Agent Agent

Directory
Master

Directory
Master

Directory Replication
(LDAP or LDAPS)

Q2 11

FIGURE 4–1 Sample Deployment Architecture 1

Deployment Architecture 1

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200972

Deployment Architecture 2
Figure 4–2 illustrates another deployment architecture for Sun OpenSSO Enterprise.

Web or Application
Server

Web or Application
Server

OpenSSO

JMQ

BDB

Agent

Heartbeat

Heartbeat

Session
Forwarding

Java Msg Que

Multi Master Replication

Simple Highly-Available Architecture
(no single point of failure)

Agent

Directory
Master

Load
Balancer

Java Container

OpenSSO

JMQ

BDB

Directory
Master

Load
Balancer

Load
Balancer

Load
Balancer

Java Container

FIGURE 4–2 Sample Deployment Architecture 2

Deployment Architecture 2

Chapter 4 • Deploying OpenSSO Enterprise 73

74

Access Control Using OpenSSO Enterprise
User authentication, authorization for access to protected resources, and programmatically
defining user sessions are all aspects of access management, one of the core functions of
Sun OpenSSO Enterprise. OpenSSO Enterprise offers access management features
programmatically using the Client SDK, over the wire using HTTP and the OpenSSO
Enterprise console, and using an integrated development environment (IDE) application
to incorporate Representational State Transfer (REST) calls and Web Services Definition
Language (WSDL) files. The chapters in this part contain information on these aspects of
access management.

■ Chapter 5, “User Sessions and the Session Service”
■ Chapter 6, “Models of the User Session and Single Sign-On Processes”
■ Chapter 7, “Authentication and the Authentication Service”
■ Chapter 8, “Authorization and the Policy Service”

P A R T I I

75

76

User Sessions and the Session Service

The Session Service in Sun OpenSSO Enterprise tracks a user’s interaction with web
applications through the use of session data structures, session tokens, cookies, and other
objects. This chapter explains these concepts and other components of a user's session and
contains the following sections:
■ “About the Session Service” on page 77
■ “User Sessions and Single Sign-on” on page 78
■ “Session Data Structures and Session Token Identifiers” on page 79

About the Session Service
The Session Service in Sun OpenSSO Enterprise tracks a user’s interaction with protected web
applications. For example, the Session Service maintains information about how long a user has
been logged in to a protected application, and enforces timeout limits when necessary.
Additionally, the Session Service:
■ Generates session identifiers.
■ Maintains a master copy of session state information.
■ Implements time-dependent behavior of sessions.
■ Implements session life cycle events such as logout and session destruction.
■ Generates session life cycle event notifications.
■ Generates session property change notifications.
■ Implements session quota constraints.
■ Implements session failover.
■ Enables single sign-on and cross-domain single sign-on among applications external to

OpenSSO Enterprise.
■ Offers remote access to the Session Service through the Client SDK with which user sessions

can be validated, updated, and destroyed.

5C H A P T E R 5

77

The state of a particular session can be changed by user action or timeout. Figure 5–1 illustrates
how a session is created as invalid before authentication, how it is activated following a
successful authentication, and how it can be invalidated (and destroyed) based on timeout
values.

User Sessions and Single Sign-on
A user session is the interval between the moment a user attempts to log in to a resource
protected by OpenSSO Enterprise, and the moment the session expires, is terminated by an
administrator, or the user logs out. As an example of a user session, an employee attempts to
access the corporate benefits administration application protected by OpenSSO Enterprise. A
new invalid session is created, and the Authentication Service prompts the user for a username
and password to verify the user's identity. Following a successful authentication, the Policy
Service and policy agent work together to check that the user has the appropriate permissions to
access the protected application and allows or denies access based on the outcome.

Oftentimes, in the same user session (without logging out of the corporate benefits application),
the same employee might attempt to access a corporate expense reporting application. Because
the expense reporting application is also protected by OpenSSO Enterprise, the Session Service
provides proof of the user’s authentication, and the employee is allowed to access the expense
reporting application (based on the outcome of a second authorization check with the Policy

logout/destroy

create

New Session
(invalid)

authenitication time-out

authenticated

max session time-out

Expired Session
(invalid)

purge
delay time
elapse

destroy

Active Session
(valid)

max idle time-out
(no user activity)

FIGURE 5–1 Life Cycle of a Session

User Sessions and Single Sign-on

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200978

Service). If access is granted, the employee has accessed more than one application in a single
user session without having to reauthenticate. This is called single sign-on (SSO). When SSO
occurs among applications in more than one DNS domain, it is called cross-domain single
sign-on (CDSSO). For a more detailed overview of a basic user session, an SSO session, and a
CDSSO session, see Chapter 6, “Models of the User Session and Single Sign-On Processes.”

Session Data Structures and Session Token Identifiers
The Session Service programmatically creates a session data structure to store information
about a user session. The result of a successful authentication results in the validation of a
session data structure for the user or entity and the creation of a session token identifier. The
session data structure minimally stores the following information.

Identifier A unique, universal identifier for the session data structure.

Host Name or IP Address The location from which the client (browser) is making the
request.

Principal Set to the user's distinguished name (DN) or the application's
principal name.

Type USER or APPLICATION

Session State Defines whether the session is valid or invalid.

Maximum Idle Time Maximum number of minutes without activity before the session
will expire and the user must reauthenticate.

Maximum Session Time Maximum number of minutes (activity or no activity) before the
session expires and the user must reauthenticate.

Maximum Caching Time Maximum number of minutes before the client contacts
OpenSSO Enterprise to refresh cached session information.

Note – The value for Maximum Caching Time should be smaller
than the value for Maximum Idle Time. If not, the user session
idle time won't be updated if the resource is accessed again within
the maximum caching time period.

A session can also contain additional properties which can be used by other applications. For
example, a session data structure can store information about a user’s identity, or about a user’s
browser preferences. You can configure OpenSSO Enterprise to include the following types of
data in a session:

■ Protected properties are only modifiable by the server-side modules (primarily the
Authentication Service).

Session Data Structures and Session Token Identifiers

Chapter 5 • User Sessions and the Session Service 79

■ Custom properties are modifiable remotely by any application which possesses the session
identifier.

For a detailed summary of information that can be included in a session, see Chapter 14,
“Configuring OpenSSO Enterprise Sessions,” in Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide.

The session token, also referred to as a sessionID and programmatically as an SSOToken, is an
encrypted, unique string that identifies the session data structure. As the user visits different
protected resources using the browser, the session token is propagated to these resources and is
used to retrieve the user's credentials. These credentials are then validated by sending a
back-end request (using the Client SDK or a policy agent) to OpenSSO Enterprise which then
returns an error or the session's prior authentication data. Sessions (and hence the SSOToken)
are invalidated when a user logs out, the session expires, or a user in an administrative role
invalidates it. With OpenSSO Enterprise, a session token is carried in a cookie, an information
packet generated by a web server and passed to a web browser. (The generation of a cookie for a
user by a web server does not guarantee that the user is allowed access to protected resources.
The cookie simply points to information in a data store from which an access decision can be
made.)

Note – Access to some OpenSSO Enterprise services, such as the Policy Service and the Logging
Service, require presentation of both the SSOToken of the application as well as the SSOToken of
the user, allowing only designated applications to access these services.

Session Data Structures and Session Token Identifiers

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200980

http://docs.sun.com/doc/820-3320/ggqsr?a=view
http://docs.sun.com/doc/820-3320/ggqsr?a=view
http://docs.sun.com/doc/820-3320/ggqsr?a=view

Models of the User Session and Single Sign-On
Processes

This chapter traces events in a basic user session, a single sign-on session (SSO), a cross-domain
single sign-on session (CDSSO), and session termination to give you an overview of the features
and processes being invoked by OpenSSO Enterprise. It contains the following sections:

■ “Basic User Session” on page 81
■ “Single Sign-On Session” on page 91
■ “Cross-Domain Single Sign-On Session” on page 94
■ “Session Termination” on page 96

Basic User Session
The following sections describe the process behind a basic user session by tracing what happens
when a user logs in to a resource protected by OpenSSO Enterprise. In these examples, the
server which hosts an application is protected by a policy agent. The Basic User Session includes
the following phases:

■ “Initial HTTP Request” on page 81
■ “User Authentication” on page 83
■ “Session Validation” on page 85
■ “Policy Evaluation and Enforcement” on page 88
■ “Logging the Results” on page 90

Initial HTTP Request
When a user initiates a user session by using a browser to access and log in to a protected
web-based application, the events illustrated in Figure 6–1 occur. The accompanying text
describes the model.

6C H A P T E R 6

81

1. The user’s browser sends an HTTP request to the protected resource.

2. The policy agent that protects the resource intercepts and inspects the user's request and
finds no session token.

3. The policy agent issues a redirect to its configured authentication URL to begin the
authentication process.

In this example, the authentication URL it is set to the URL of the Distributed
Authentication User Interface.

4. The browser, following the redirect, sends an HTTP request for authentication credentials
to the Distributed Authentication User Interface.

Distributed
Authentication
User Interface

J2EE Container

Protected Resource

Configuration
Data Store

OpenSSO

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

OpenSSO
Configuration

Data

User’s Browser

Firewall

Firewall

Policy Agent

OpenSSO
Client SDK

Application

1

2

5
6

3

4

FIGURE 6–1 Initial HTTP Request

Basic User Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200982

5. The Session Service creates a new session (session data structure) and generates a session
token (a randomly-generated string that identifies the session).

6. The Authentication Service sets the session token in a cookie.

The next part of the user session is “User Authentication” on page 83.

User Authentication
When the browser sends the HTTP request to the Distributed Authentication User Interface,
the events illustrated in Figure 6–2 occur.

Basic User Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 83

1. Using the parameters in the HTTP request from the browser (which includes the URL of the
requested application), the Distributed Authentication User Interface contacts the
OpenSSO Enterprise Authentication Service (which, in turn, communicates with the
Session Service).

2. The Authentication Service determines what should be presented to the user based upon
configuration data and retrieves the appropriate authentication module(s) and callback(s)
information.

Protected Resource

OpenSSO

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

User’s Browser

Firewall

Firewall

Policy Agent

Application

Distributed
Authentication
User Interface

J2EE
Container

7

13

1

5

4

1
1210

9

6

14

OpenSSO
Client SDK

3

2

8

Configuration
Data Store

OpenSSO
Configuration

Data

11

FIGURE 6–2 User Authentication

Basic User Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200984

For example, if configured to use LDAP Authentication, the Authentication Service
determines that the LDAP Authentication login page should be displayed.

3. The collected information is passed to the Distributed Authentication User Interface using
the Client SDK.

4. The Client Detection Service determines which protocol, such as HTML or WML, to use to
display the login page.

5. The Distributed Authentication User Interface generates a dynamic presentation extraction
page that contains the appropriate credentials request and callbacks information obtained
from OpenSSO Enterprise.
The session cookie will be included in this communication.

6. The user’s browser displays the login page.
7. The user enters information in the fields of the login page.
8. The browser sends the credentials in an HTTP POST to the Distributed Authentication

User Interface.
9. The Distributed Authentication User Interface uses the Client SDK to pass the credentials to

the Authentication Service.
10. The Authentication Service uses the appropriate authentication module to validate the

user’s credentials.
For example, if LDAP authentication is used, the LDAP authentication module verifies that
the username and password provided exist in the LDAP directory.

11. Assuming authentication is successful, the Authentication Service activates the session by
calling the appropriate methods in the Session Service.
The Authentication Service stores information such as login time, Authentication Scheme,
and Authentication Level in the session data structure.

12. Once the session is activated, the Session Service changes the state of the session token to
valid.

13. The Distributed Authentication User Interface sends an HTTP response back to the browser
with a validated SSOToken and location change.

14. The browser follows the redirect by sending another HTTP request to the original resource
protected by a policy agent. This time, the request includes the valid session token created
during the authentication process.

The next part of the user session is “Session Validation” on page 85.

Session Validation
After successful authentication, the user’s browser redirects the initial HTTP request to the
server a second time for validation. The request now contains a session token in the same DNS
domain as OpenSSO Enterprise. The events in Figure 6–3 illustrate this process.

Basic User Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 85

1. The policy agent intercepts the second access request.

2. To determine the validity of the session token, the policy agent contacts the Naming Service
to learn where the session token originated.

The Naming Service allows clients to find the URL for internal OpenSSO Enterprise
services. When contacted, the Naming Service decrypts the session token and returns the
corresponding URL which can be used by other services to obtain information about the
user session.

3. The policy agent, using the information provided by the Naming Service, makes a POST
request to the Session Service to validate the included session token.

Protected Resource

OpenSSO

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

User’s Browser

Firewall

Firewall

Policy Agent

Application

1

4

6

5

3
2

Configuration
Data Store

OpenSSO
Configuration

Data

OpenSSO
Client SDK

FIGURE 6–3 Session Validation

Basic User Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200986

4. The Session Service receives the request and determines whether the session token is valid
based on the following criteria:
a. Has the user been authenticated?
b. Does a session data structure associated with the session token exist?

5. If all criteria are met, the Session Service responds that the session token is valid.
This assertion is coupled with supporting information about the user session itself.

6. The policy agent creates a Session Listener and registers it with the Session Service, enabling
notification to be sent to the policy agent when a change in the session token state or validity
occurs.

The next part of the user session is “Policy Evaluation and Enforcement” on page 88.

Basic User Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 87

Policy Evaluation and Enforcement
After a session token has been validated, the policy agent determines if the user can be granted
access to the server by evaluating its defined policies. Figure 6–4 illustrates this process.

Configuration
Data Store

OpenSSO
Configuration

Data

Protected Resource

OpenSSO

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

OpenSSO
Client SDK

User’s Browser

Firewall

Firewall

Policy Agent

Application

2

3
4

1

FIGURE 6–4 Policy Evaluation

Basic User Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200988

1. The policy agent sends a request to the Policy Service, asking for decisions regarding
resources in its portion of the HTTP namespace.
The request also includes additional environmental information. For example, IP address or
DNS name could be included in the request because they might impact conditions set on a
configuration policy.

2. The Policy Service checks for policies that apply to the request.
Policies are cached in OpenSSO Enterprise. If the policies have not been cached already,
they are loaded from OpenSSO Enterprise.

3. If policies that apply to the request are found, the Policy Service checks if the user identified
by the session token is a member of any of the Policy Subjects.
a. If no policies that match the resource are found, the user will be denied access.
b. If policies are found that match the resource, and the user is a valid subject, the Policy

Service evaluates the conditions of each policy. For example, Is it the right time of day? or
Are requests coming from the correct network?
■ If the conditions are met, the policy applies.
■ If the conditions are not met, the policy is skipped.

4. The Policy Service aggregates all policies that apply, encodes a final decision to grant or deny
access, and responds to the policy agent.

The next part of the basic user session is “Logging the Results” on page 90.

Basic User Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 89

Logging the Results
When the policy agent receives a decision from the Policy Service, the events illustrated in
Figure 6–5 occur.

Protected Resource

OpenSSO

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Configuration
Data Store

OpenSSO
Configuration

Data

OpenSSO
Client SDK

User’s Browser

Firewall

Firewall

Policy Agent

Application

3 4

1 2

5

FIGURE 6–5 Logging the Policy Evaluation Results

Basic User Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200990

1. The decision and session token are cached by the policy agent so subsequent requests can be
checked using the cache (without contacting OpenSSO Enterprise).

The cache will expire after a (configurable) interval has passed or upon explicit notification
of a change in policy or session status.

2. The policy agent issues a logging request to the Logging Service.

3. The Logging Service logs the policy evaluation results to a flat file (which can be signed) or to
a JDBC store, depending upon the log configuration.

4. The Logging Service notifies the policy agent of the new log.

5. The policy agent allows or denies the user access to the application.

a. If the user is denied access, the policy agent displays an “access denied” page.

b. If the user is granted access, the resource displays its access page.

Assuming the browser displays the application interface, this basic user session is valid until it is
terminated. See “Session Termination” on page 96 for more information. While logged in, if
the user attempts to log into another protected resource, the “Single Sign-On Session” on
page 91 begins.

Single Sign-On Session
SSO is always preceded by a basic user session in which a session is created, its session token is
validated, the user is authenticated, and access is allowed. SSO begins when the authenticated
user requests a protected resource on a second server in the same DNS domain. The following
process describes an SSO session by tracking what happens when an authenticated user accesses
a second application in the same DNS domain as the first application. Because the Session
Service maintains user session information with input from all applications participating in an
SSO session, in this example, it maintains information from the application the user was
granted access to in “Basic User Session” on page 81.

Single Sign-On Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 91

1. The user attempts to access a second application hosted on a server in the same domain as
the first application to which authentication was successful.

2. The user’s browser sends an HTTP request to the second application that includes the user’s
session token.

3. The policy agent intercepts the request and inspects it to determine whether a session token
exists.

A session token indicates the user is already authenticated. Since the user was authenticated,
the Authentication Service is not required at this time. The Session Service API retrieve the
session data using the session token identifier imbedded in the cookie.

4. The policy agent sends the session token identifier to the OpenSSO Enterprise Session
Service to determine whether the session is valid or not.

User’s Browser

Policy Agent

Application

Policy Agent

Application

Web Server

Policy Agent

OpenSSO

CDSSO Controller

Domain2.example.comDomain1.example.com

Policy Agent

Application

Policy Agent

Application

1

Data
Store

4

5

6 7 9 10 11

12

13

8
3

2

FIGURE 6–6 Single Sign-On Session

Single Sign-On Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200992

For detailed steps, see “Session Validation” on page 85.
5. The Session Service sends a reply to the policy agent indicating whether the session is valid.

■ If the session is not valid, the user is redirected to the Authentication page.
■ If the session is valid, the Session Service creates a Session Listener.

6. As the session is valid, the Session Service creates a Session Listener.
A Session Listener sends notification to the policy agent when a change in the session state
occurs.

7. The policy agent sends a request for a decision regarding resources in it’s portion of the
HTTP namespace to the Policy Service.

8. The Policy Service checks for policies that apply to the request.
9. The Policy Service sends the policy evaluation response (either Access Denied or Access

Granted.) to the policy agent.
■ If Policy Service does not find policy allowing access to the protected resource, the user is

denied access and the Logging Service logs a denial of access. The user may be redirected
to a specified page indicating that access was denied if configured as such by the
administrator.

■ If the Policy Service finds policy allowing access to the protected resource, the user is
granted access and the session is valid until terminated.

10. The policy agent sends a reply to the user indicating whether the user is granted the access.
■ If the user is denied access, the policy agent displays an Access Denied page.
■ If the user is granted access, the protected resource displays its access page.

Assuming the Policy Service finds policy allowing access to the protected resource, the user is
granted access and the SSO session is valid until terminated. See “Session Termination” on
page 96. While still logged in, if the user attempts to log in to another protected resource
located in a different DNS domain, the “Cross-Domain Single Sign-On Session” on page 94
begins.

Single Sign-On Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 93

Cross-Domain Single Sign-On Session
CDSSO occurs when an authenticated user requests a protected resource on a server in a
different DNS domain. The user in the previous sections, “Basic User Session” on page 81 and
“Single Sign-On Session” on page 91, for example, accessed applications in one DNS domain. In
this scenario, the CDSSO Controller within OpenSSO Enterprise transfers the user’s session
information from the initial domain, making it available to applications in a second domain.

Note – The basic difference between the proprietary CDSSO and SAML v2 (as described in
“Federation Options” on page 145) is that CDSSO uses a single authentication authority, a
mechanism to move a cookie between multiple DNS domains. SAML v2, on the other hand,
gives you the option of using multiple authentication authorities, with one authority asserting
the identity of the user to the other.

Cross-Domain Single Sign-On Session

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200994

1. The authenticated user’s browser sends an HTTP request to the application in a different
DNS domain.

2. The policy agent intercepts the request and inspects it to determine if a session token exists
for the domain in which the requested application exists. One of the following occurs:
■ If a session token is present, the policy agent validates the session.
■ If no session token is present, the policy agent (which is configured for CDSSO) will

redirect the HTTP request to the CDSSO Controller.

The CDSSO Controller uses Liberty Alliance Project protocols to transfer sessions so the
relevant parameters are included in the redirect.

In this example, no session token for the second domain is found.

3. The policy agent redirects the HTTP request to the CDSSO Controller.

4. The user’s browser allows the redirect to the CDSSO Controller.

Policy Agent

Application
Policy Agent

Application

Policy Agent

Application

OpenSSO

CDSSO Controller

Domain2.example.com Domain1.example.com

Policy Agent

Application

Data
Store

5

4

6

2 37

1

User’s Browser

Cross-Domain Single Sign-On Session

Chapter 6 • Models of the User Session and Single Sign-On Processes 95

Recall that earlier in the user session the session token was set in a cookie in the first domain
which is now part of the redirect.

5. The CDC Servlet (in the CDSSO Controller) receives the session token from the first
domain, extracts the user's session information, formulates a Liberty POST profile response
containing the information, and returns a response to the browser.

6. The user’s browser automatically submits the response to the policy agent in the second
domain.
The POST is based upon the Action and the Javascript included in the Body tags onLoad.

7. The policy agent in the second domain receives the response, extracts the session
information, validates the session, and sets a session token in the cookie for the new DNS
domain.

The process continues with “Policy Evaluation and Enforcement” on page 88 and “Logging the
Results” on page 90. Based on the policy outcome, the user is granted or denied access to the
application.

1. If the user is denied access, the policy agent displays an “access denied” page.
2. If the user is granted access, the protected resource displays its access page. The new cookie

can now be used by all agents in the new domain, and the session is valid until it is
terminated.

Session Termination
A user session can be terminated in any of following ways:
■ “User Ends Session” on page 96
■ “Administrator Ends Session” on page 97
■ “OpenSSO Enterprise Enforces Timeout Rules” on page 97
■ “Session Quota Constraints” on page 97

User Ends Session
When a user explicitly logs out of OpenSSO Enterprise by clicking on a link to the Logout
Service the following events occur:

1. The Logout Service receives the Logout request, and:
a. Marks the user’s session as destroyed.
b. Destroys the session.
c. Returns a successful logout page to the user.

2. The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
sent a document instructing the agent that the session is now invalid.

Session Termination

Sun OpenSSO Enterprise 8.0 Technical Overview • March 200996

3. The policy agents flush the session from the cache and the user session ends.

Administrator Ends Session
OpenSSO Enterprise administrators with appropriate permissions can terminate a user session
at any time. When an administrator uses the Sessions tab in the OpenSSO Enterprise console to
end a user’s session, the following events occur:

1. The Logout Service receives the Logout request, and:
a. Marks the user’s session as destroyed.
b. Destroys the session.

2. The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
sent a document instructing the agent that the session is now invalid.

3. The policy agents flush the session from cache and the user session ends.

OpenSSO Enterprise Enforces Timeout Rules
When a session timeout limit is reached, the Session Service:

1. Changes the session status to invalid.
2. Displays a time out message to the user.
3. Starts the timer for purge operation delay. (The default is 60 minutes.)
4. Purges or destroys the session when the purge operation delay time is reached.
5. Displays login page to the user if a session validation request comes in after the purge delay

time is reached.

Session Quota Constraints
OpenSSO Enterprise allows administrators to constrain the amount of sessions one user can
have. If the user has more sessions than the administrator will allow, one (or more) of the
existing sessions can be destroyed.

Session Termination

Chapter 6 • Models of the User Session and Single Sign-On Processes 97

98

Authentication and the Authentication Service

The Sun OpenSSO Enterprise Authentication Service determines whether a user is the person
he claims to be. User authentication is the first step in controlling access to web resources within
an enterprise. This chapter explains how the Authentication Service works with other
components to prove that the user’s identity is genuine. Topics covered in this chapter include:

■ “Authentication Service Overview” on page 99
■ “Authentication Service Features” on page 102
■ “Authentication Modules” on page 105
■ “Authentication Types” on page 108
■ “Configuring for Authentication” on page 110
■ “Authentication Graphical User Interfaces” on page 111
■ “Authentication Service Programming Interfaces” on page 115

Authentication Service Overview
The function of the Authentication Service is to request information from an authenticating
party, and validate it against the configured identity repository using the specified
authentication module. After successful authentication, the user session is activated and can be
validated across all web applications participating in an SSO environment. For example, when a
user or application attempts to access a protected resource, credentials are requested by one (or
more) authentication modules. Gaining access to the resource requires that the user or
application be allowed based on the submitted credentials. From the user perspective, a
company employee wants to look up a colleague’s phone number. The employee uses a browser
to access the company’s online phone book. To log in to the phone book service, the employee
provides a user name and password. OpenSSO Enterprise compares the user’s input with data
stored in the appropriate identity repository. If OpenSSO Enterprise finds a match for the user
name, and if the given password matches the stored password, the user’s identity is
authenticated.

7C H A P T E R 7

99

Note – The “Basic User Session” on page 81 section in the previous chapter contains a detailed
description of the authentication process itself.

The Authentication Service can be accessed by a user with a web browser, by an application
using the Client SDK, or by any other client that correctly implements the Authentication
Service messaging interfaces. The Authentication Service framework has a pluggable
architecture for authentication modules that have different user credential requirements.
Together with the Session Service, the Authentication Service establishes the fundamental
infrastructure for SSO. Generally speaking, the Authentication Service:

■ Identifies a requester's credential requirements.
■ Generates a dynamic user interface based on the requirements of the authentication module

being called.
■ Supports custom, pluggable authentication modules.
■ Provides pre- and post-processing SPI.
■ Populates and manages system domain cookies.
■ Generates time dependent alerts and session termination notifications.
■ Provides a remote user interface application for distributed deployments.
■ Implements a clean logout interface which destroys the session.

Every time a request is used to access the Authentication Service, the session token identifier is
retrieved and used to get the associated session data structure from the Session Service.
Additionally, the Authentication Service interfaces with the Session Service to:

■ Initiate or create user sessions.
■ Maintain session state information.
■ Activate sessions after successful authentication.
■ Populate the valid session data structure with all user-authenticated identity data and

properties.
■ Destroy sessions after logout.

The following diagram illustrates how the two services work together.

Authentication Service Overview

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009100

The Authentication Service also interfaces with other OpenSSO Enterprise services including
the Naming Service, the Identity Repository Service, the Logging Service, and the Monitoring
Service. It also interfaces with the configuration data store and policy agents protecting system
resources. (A policy agent must authenticate itself using the Client SDK authentication
interfaces, and users with no valid session must be authenticated.)

Authentication Client

Client Applications

Authentication Interfaces

Authentication XML
Handler Interface

Authentication User Interfaces

Core Authentication Service

OpenSSO

Session
Service

Session
Service

Create
Session

Activate
Session

Session
Entry

Session
Monitor

XML/HTTP HTTP

Authentication Client
Libraries

WorkStation

<<HTML or Wireless Browser>>

Master Session
Table

FIGURE 7–1 Authentication Service and Session Service Interfaces

Authentication Service Overview

Chapter 7 • Authentication and the Authentication Service 101

Authentication Service Features
The following sections explain some of the features of the Authentication Service.

■ “Account Locking” on page 102
■ “Authentication Chaining” on page 103
■ “Fully Qualified Domain Name Mapping” on page 104
■ “Persistent Cookies” on page 104
■ “Session Upgrade” on page 104
■ “JAAS Shared State” on page 105
■ “Security” on page 105

Account Locking
The Authentication Service provides account locking to prevent a user from completing the
authentication process after a specified number of failures. OpenSSO Enterprise sends email
notifications to administrators when account lockouts occur. OpenSSO Enterprise supports:

Physical Locking. By default, user accounts are physically unlocked. You can initiate
physical locking by typing inactive as the value of the Lockout Attribute
Name attribute in the Core Authentication Service. Additionally, the
value of the Login Failure Lockout Duration attribute should be set to 0.

physical lock attr name is: inetuserstatus value active/inactive

Memory Locking. You can configure Memory Locking so that a user account is locked in
memory after a specified number of authentication attempts. By
changing the Login Failure Lockout Duration attribute to a value greater
then 0, the user’s account is then locked in memory for the number of
minutes specified and the account is unlocked after the time period
elapses.

To figure out the amount of time the lockout will be in effect, the value of
the Lockout Duration Multiplier attribute is multiplied by the value of the
Login Failure Lockout Duration attribute for subsequent lockout. For
example, if the value of Login Failure Lockout Duration is 5 minutes and
the value of the Lockout Duration Multiplier is 2, the first time a user is
locked out in memory will be 5 minutes. The second time this same user
gets locked out in memory the lockout duration will be 10 minutes (5
minutes x 2). The third time this same user gets locked out in memory the
lockout duration will be 20 minutes (5 minutes x 2 x 2).

The account locking feature is disabled by default. Account locking activities are also logged.
For information on how to enable it, see “Enabling Account Lockout” in Sun OpenSSO
Enterprise 8.0 Administration Guide.

Authentication Service Features

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009102

http://docs.sun.com/doc/820-3885/gbarn?a=view
http://docs.sun.com/doc/820-3885/gbarn?a=view

Note – Only authentication modules that throw an Invalid Password Exception can leverage
the Account Locking feature. Out of the box, these include Active Directory, Data Store, HTTP
Basic, LDAP, and Membership.

Authentication Chaining
OpenSSO Enterprise allows the configuration of an authentication process in which a user must
pass credentials to one or more authentication modules before session validation is
accomplished. This is called authentication chaining. OpenSSO Enterprise uses the Java
Authentication and Authorization Service (JAAS) framework (integrated with the
Authentication Service) to implement authentication chaining. The JAAS framework validates
all user identifiers used during the authentication process, and maps them to one principal.
(The mapping is based on the configuration of the User Alias List attribute in the user's profile.)
If all the maps are correct, the session token is validated. If all the maps are not correct, the user
is denied a valid session token. Once authentication to all modules in the chain succeeds or fails,
control is returned to the Authentication Service from the JAAS framework.

You configure an authentication chain by realm, user, role, or service. Determining validation is
based upon the control flag configured for each authentication module instance defined in the
chain. The flags are:

Requisite Authentication to this module instance is required to succeed. If it succeeds,
authentication continues down the module instance list. If it fails, control
immediately returns to the application.

Required Authentication to this module instance is required to succeed. If any of the
required module instances defined in the chain fails, the whole authentication
chain will fail.

Sufficient The module instance is not required to succeed. If it does succeed, control
immediately returns to the application (authentication does not proceed down
the module instance list). If it fails, authentication continues down the list.

Optional The module instance is not required to succeed. Whether it succeeds or fails,
authentication still continues to proceed down the module instance list.

Note – Role based authentication is only supported for use with the AM SDK data store. This
data store would come from an existing Sun Java System Access Manager 7.x installation or
would have been manually created.

Authentication Service Features

Chapter 7 • Authentication and the Authentication Service 103

For more information, see Chapter 3, “Configuring Authentication,” in Sun OpenSSO
Enterprise 8.0 Administration Guide. For an overview of the authentication module instances,
see “Authentication Modules” on page 105.

Fully Qualified Domain Name Mapping
Fully Qualified Domain Name (FQDN) mapping enables the Authentication Service to take
corrective action in the case where a user may have typed in an incorrect URL. This is necessary,
for example, when a user specifies a partial host name or IP address to access protected
resources. This feature can also be used to allow access to one instance of OpenSSO Enterprise
using many different aliases. For example, you might configure one instance of OpenSSO
Enterprise as intranet.example.com for employees and extranet.example.com for partners.
For more information, see “Mapping Fully Qualified Domain Names” in Sun OpenSSO
Enterprise 8.0 Administration Guide.

Persistent Cookies
A persistent cookie is an information packet that is written to the user's hard drive and,
therefore, continues to exist after the web browser is closed. The persistent cookie enables a user
to log into a new browser session without having to reauthenticate. The Authentication Service
can be enabled to write persistent cookies rather than cookies that are written to a web browser's
memory. For more information, see “Using Persistent Cookies” in Sun OpenSSO Enterprise 8.0
Administration Guide.

Session Upgrade
The Authentication Service allows for the upgrade of a valid session based on a second,
successful authentication performed by the same user. If a user with a valid session attempts to
authenticate to a second resource secured under the realm to which he is currently
authenticated, and this second authentication request is successful, the Authentication Service
updates the session with the new properties based on the new authentication. If the
authentication fails, the current user session is returned without an upgrade. If the user with a
valid session attempts to authenticate to a resource secured in a different realm, the user will
receive a message asking whether the user would like to authenticate to the new realm. The user
can choose to maintain the current session, or can attempt to authenticate to the new realm.
Successful authentication will result in the old session being destroyed and a new one being
created. For more information, see “Upgrading Sessions” in Sun OpenSSO Enterprise 8.0
Administration Guide.

Authentication Service Features

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009104

http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gbasj?a=view
http://docs.sun.com/doc/820-3885/gbasj?a=view
http://docs.sun.com/doc/820-3885/gbarj?a=view
http://docs.sun.com/doc/820-3885/gbarj?a=view
http://docs.sun.com/doc/820-3885/gbaqz?a=view
http://docs.sun.com/doc/820-3885/gbaqz?a=view

Note – Successful authentication for session upgrade does not necessarily destroy the previous
session. If the subsequent AuthContext object is created with the constructor
AuthContext(SSOToken ssoToken, boolean forceAuth) when forceAuth is set to true, the
existing session will be used and a new session will not be created.

JAAS Shared State
The JAAS shared state enables sharing of both a user identifier and a password between
authentication module instances. Options are defined for each authentication module type by
realm, user, service and role. If an authentication fails with the credentials from the shared state,
the authentication module restarts the authentication process by prompting for its required
credentials. If it fails again, the module is marked failed. After a commit, an abort, or a logout,
the shared state will be cleared. For more information, see “Sharing User Credentials Among
Authentication Modules (Shared State)” in Sun OpenSSO Enterprise 8.0 Administration Guide.

Security
From a security point of view, here are some general practices implemented in the
Authentication Service.

■ SSL is strongly recommended to prevent the user credentials from being stolen through
passive network snooping.

■ The signing and encryption of some user data is to prevent other software applications,
sharing the same system resources, from subverting it.

■ The main user entry points of the Authentication Service (Distributed Authentication User
Interface, Authentication XML Handler Interface for remote clients, the Authentication
Service User Interface) are protected by entry level validation of the size of the requested
data.

■ Creation and modification of authentication configuration information is only allowed by
privileged OpenSSO Enterprise administrators.

Authentication Modules
An authentication module is a plug-in that collects user information such as a user ID and
password, and compares the information against entries in a database. If a user provides
information that meets the authentication criteria, the user is validated and, assuming the
appropriate policy configuration, granted access to the requested resource. If the user provides
information that does not meet the authentication criteria, the user is not validated and denied

Authentication Modules

Chapter 7 • Authentication and the Authentication Service 105

http://docs.sun.com/doc/820-3885/gbarg?a=view
http://docs.sun.com/doc/820-3885/gbarg?a=view

access to the requested resource. OpenSSO Enterprise is deployed with a number of
authentication modules. Table 7–1 provides a brief description of each.

TABLE 7–1 Authentication Service Modules

Authentication Module Name Description

Active Directory Uses an Active Directory operation to associate a user identifier and
password with a particular Active Directory entry. You can define
multiple Active Directory authentication configurations for a realm.
Allows both LDAP and Active Directory to coexist under the same
realm.

Anonymous Enables a user to log in without specifying credentials. You can create
an Anonymous user so that anyone can log in as Anonymous without
having to provide a password. Anonymous connections are usually
customized by the OpenSSO Enterprise administrator so that
Anonymous users have limited access to the server.

Certificate Enables a user to log in through a personal digital certificate (PDC).
The user is granted or denied access to a resource based on whether or
not the certificate is valid. The module can optionally require the use
of the Online Certificate Status Protocol (OCSP) to determine the
state of a certificate.

Data Store Enables authentication against one or more configuration data stores
within a realm.

Federation Used by the service provider during federation (using SAML v1.x,
SAML v2, WS-Federation, Liberty ID-FF) to create a session after
validating the assertion. This authentication module can not be
invoked like the other modules as it is invoked directly by the
SAMLAwareServlet.

HTTP Basic Enables authentication to occur with no data encryption. Credentials
are validated internally using either the LDAP or Data Store
authentication module.

Java Database Connectivity (JDBC) Enables authentication through any Structured Query Language
(SQL) databases that provide JDBC-enabled drivers. The SQL
database connects either directly through a JDBC driver or through a
JNDI connection pool.

LDAP Enables authentication using LDAP bind, a directory server operation
which associates a user identifier and password with a particular
LDAP entry. You can define multiple LDAP authentication
configurations for a realm.

Authentication Modules

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009106

TABLE 7–1 Authentication Service Modules (Continued)
Authentication Module Name Description

Membership Enables user to self-register a user entry. The user creates an account,
personalizes it, and accesses it as a registered user without the help of
an administrator. Implemented similarly to personalized sites such as
my.site.comor mysun.sun.com.

MSISDN The Mobile Station Integrated Services Digital Network (MSISDN)
authentication module enables authentication using a mobile
subscriber ISDN associated with a device such as a cellular telephone.
It is a non-interactive module. The module retrieves the subscriber
ISDN and validates it against the user repository to find a user that
matches the number.

RADIUS Uses an external Remote Authentication Dial-In User Service
(RADIUS) server to verify identities.

Security Assertion Markup Language
(SAML)

Receives and validates SAML assertions on a target server by using
either a web artifact or a POST response.

SafeWord® Uses Secure Computing’s SafeWord PremierAccessTM server software
and SafeWord tokens to verify identities.

SecurIDTM Uses RSA ACE/Server software and RSA SecurID authenticators to
verify identities.

UNIX® Solaris and Linux modules use a user’s UNIX identification and
password to verify identities.

Windows Desktop Single Sign-On
(SSO)

Allows a user who has already authenticated with a key distribution
center to be authenticated by OpenSSO Enterprise without having to
provide the login information again. Leverages Kerberos
authentication and is supported wherever Kerberos is supported
(including Windows, Solaris, Linux, and Macintosh).

Windows NT Uses a Microsoft Windows NTTM server to verify identities.

You can use the OpenSSO Enterprise console to enable and configure the authentication
modules. You can also create and configure multiple instances of a particular authentication
module. (An authentication module instance is a child entity that extends the schema of a parent
authentication module and adds its own subschema.) Finally, you can write your own custom
authentication module (or plug-in) to connect to the OpenSSO Enterprise authentication
framework. See Chapter 3, “Configuring Authentication,” in Sun OpenSSO Enterprise 8.0
Administration Guide for detailed information about enabling and configuring default

Authentication Modules

Chapter 7 • Authentication and the Authentication Service 107

http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view

authentication modules and authentication module instances. See Chapter 1, “Using the
Authentication Service API and SPI,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide for more
information about writing custom authentication modules.

Authentication Types
After granting or denying access to a resource, OpenSSO Enterprise checks for information
about where to redirect the user. A specific order of precedence is used when checking for this
information. The order is based on whether the user was granted or denied access to the
protected resource, and on the type of authentication specified. When you install OpenSSO
Enterprise, a number of authentication types are automatically configured.

Realm-based Authentication. User authenticates to a configured realm or
sub-realm.

Note – This authentication type is equivalent to
organization—based authentication. The query
parameters org and realm would both lead to
realm-based authentication in realm mode,
and organization-based authentication in
legacy mode.

Role-based Authentication. User authenticates to a configured role within a
realm or sub-realm. The user must possess the
role. A static role is possessed when an attribute
is assigned to a specific user or container. A
filtered role is dynamically generated based on
an attribute contained in the user’s or
container’s entry. For example, all users that
contain a value for the employee attribute can
be included in a role named employees when
the filtered role is created.

Authentication Types

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009108

http://docs.sun.com/doc/820-3748/adufr?a=view
http://docs.sun.com/doc/820-3748/adufr?a=view

Note – Role based authentication is only
supported for use with the AM SDK data store
schema plug-in. This data store would come
from an existing Sun Java System Access
Manager 7.x installation or would have been
manually created. If a user installs OpenSSO
Enterprise with any other user datastore,
role-based authentication will not be
supported.

Service-based Authentication. User authenticates to a specific service or
application registered to a realm or sub-realm.

User-based Authentication. User authenticates using an authentication
process configured specifically for him or her.

Authentication Level-based Authentication An administrator specifies the security level of
the authentication modules by defining each
with an authentication level. Successful
authentication to a higher authentication level
defines a higher level of trust for the user. If a
user attempts to access a service, the service can
determine if the user is allowed access by
checking the authentication level in the user's
session data. If the authentication level is not
high enough, the service redirects the user to go
through an authentication process with a set
authentication level.

Module-based Authentication. Allows a user to specify the module to which
they will authenticate.

Organization-based Authentication. User authenticates to an organization or
sub-organization.

Note – This authentication type is equivalent to
realm-based authentication. The query
parameters org and realm would both lead to
realm-based authentication in realm mode,
and organization-based authentication in
legacy mode.

Authentication Types

Chapter 7 • Authentication and the Authentication Service 109

For more information, see Chapter 3, “Configuring Authentication,” in Sun OpenSSO
Enterprise 8.0 Administration Guide.

Configuring for Authentication
The authentication framework includes the following places where you can configure for
authentication:

■ “Core Authentication Module and Realm Configuration” on page 110
■ “Authentication Configuration Service” on page 110
■ “Login URLs and Redirection URLs” on page 111

Explanations of the authentication attributes can be found in the Online Help and the Sun
OpenSSO Enterprise 8.0 Administration Reference.

Core Authentication Module and Realm Configuration
The Core Authentication Module contains general authentication properties that can be
defined globally using the OpenSSO Enterprise console (under the Configuration tab) or more
specifically for each configured realm (under the Access Control tab). Core authentication
properties are added and enabled for the top-level realm during installation. As new realms are
configured under the top-level realm, these properties (and the values defined globally for
them) are dynamically added to each new realm when it is created. Once added, new values can
be defined and configured values can be modified by the realm's administrator. The values are
then used if no overriding value is defined in the specified authentication module instance or
authentication chain. The default values for the Core Authentication Module are defined in the
amAuth.xml file and stored in the configuration data store. For more information, see Chapter
3, “Configuring Authentication,” in Sun OpenSSO Enterprise 8.0 Administration Guide and the
Sun OpenSSO Enterprise 8.0 Administration Reference.

Authentication Configuration Service
The Authentication Configuration Service describes all the dynamic attributes for service-based
authentication. This service is used for configuring roles. When you assign a service to a role,
you can also assign other attributes such as a success URL or an authentication post-processing
class to the role.

Configuring for Authentication

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009110

http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3886

Login URLs and Redirection URLs
In the last phase of the authentication process, OpenSSO Enterprise either grants or denies
access to the user. If access is granted, OpenSSO Enterprise uses a login URL to display a page in
the browser. If access is denied, OpenSSO Enterprise uses a redirection URL to display an
alternate page in the browser. A typical alternate page contains a brief message indicating the
user has been denied access.

Each authentication type (as discussed in “Authentication Types” on page 108) uses a login
URL or redirection URL based on a specific order of precedence, and on whether the
authentication succeeded or failed. For a detailed description of how OpenSSO Enterprise
proceeds through the order of precedence, see Chapter 3, “Configuring Authentication,” in Sun
OpenSSO Enterprise 8.0 Administration Guide.

Authentication Graphical User Interfaces
The OpenSSO Enterprise Authentication Service has two separate graphical user interfaces that
can be used. The following sections contain information on them.

■ “Authentication Service User Interface” on page 111
■ “Distributed Authentication User Interface” on page 113

Authentication Service User Interface
The Authentication Service implements a user interface that is separate from the OpenSSO
Enterprise administration console. The Authentication Service user interface provides a
dynamic and customizable means for gathering authentication credentials. When a user
requests access to a protected resource, the Authentication Service presents a web-based login
page and prompts the user for the appropriate credentials based on the configured
authentication module or chain. Once the credentials have been passed back to OpenSSO
Enterprise and authentication is deemed successful, the user may gain access to the protected
resource if authorized to do so. The Authentication Service user interface can be used for the
following:

■ Administrators can access the administration portion of the OpenSSO Enterprise console to
manage their realm’s identity data.

■ Users can access their own profiles to modify personal data.
■ A user can access a resource defined as a redirection URL parameter appended to the login

URL.
■ A user can access the resource protected by a policy agent.

Authentication Graphical User Interfaces

Chapter 7 • Authentication and the Authentication Service 111

http://docs.sun.com/doc/820-3885/gimog?a=view
http://docs.sun.com/doc/820-3885/gimog?a=view

Below is a screen capture of the default Authentication Service user interface.

FIGURE 7–2 Authentication Service User Interface

Authentication Graphical User Interfaces

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009112

OpenSSO Enterprise provides customization support for the Authentication Service user
interface. You can customize JavaServer PagesTM (JSPTM) and the file directory level by
organization, service, locale, or client type. See Chapter 13, “Customizing the Authentication
User Interface,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide for more information.

Distributed Authentication User Interface
OpenSSO Enterprise also provides a remote authentication user interface component to enable
secure, distributed authentication across two firewalls. A web browser communicates an HTTP
request to the remote authentication user interface which, in turn, presents the appropriate
module login page to the user. The web browser then sends the user login information through
a firewall to the remote authentication user interface which, in turn, communicates through the
second firewall with OpenSSO Enterprise. The Distributed Authentication User Interface
enables a policy agent or an application that is deployed in a non-secured area to communicate
with the OpenSSO Enterprise Authentication Service installed in a secured area of the
deployment. Figure 7–3 illustrates this scenario.

Authentication Graphical User Interfaces

Chapter 7 • Authentication and the Authentication Service 113

http://docs.sun.com/doc/820-3748/adueu?a=view
http://docs.sun.com/doc/820-3748/adueu?a=view

The Distributed Authentication User Interface uses a JATO presentation framework and is
customizable. (See screen capture in “Authentication Service User Interface” on page 111.) You
can install the Distributed Authentication User Interface on any servlet-compliant web
container within the non-secure layer of a OpenSSO Enterprise deployment. The remote
component then works with the Authentication client APIs and authentication utility classes to
authenticate web users. For a more detailed process, see “User Authentication” on page 83. For
detailed installation and configuration instructions, see Chapter 9, “Deploying a Distributed
Authentication UI Server,” in Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide.

Protected Resource

OpenSSO Server

Authentication Service

Web Service Interface
Component Logic
Framework
SPIs
Plug-in Modules

Configuration
Data Store

User’s Browser

Firewall

Firewall

OpenSSO
Policy Agent

OpenSSO
Client SDK

Application

Distributed
Authentication

Service Interface

J2EE Container

Web Browser

FIGURE 7–3 Distributed Authentication Process

Authentication Graphical User Interfaces

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009114

http://docs.sun.com/doc/820-3320/gcdsz?a=view
http://docs.sun.com/doc/820-3320/gcdsz?a=view

Authentication Service Programming Interfaces
OpenSSO Enterprise provides both Java APIs and C APIs for writing authentication clients that
remote applications can use to gain access to the Authenticate Service. Communication
between the APIs and the Authentication Service occurs by sending XML messages over
HTTP(S). The Java and C APIs support all authentication types supported by the
browser-based user interface. Clients other than Java and C clients can use the XML/HTTP
interface directly to initiate an authentication request. Additionally, you can add custom
authentication modules to OpenSSO Enterprise by using the service provider interface (SPI)
package, com.iplanet.authentication.spi. This SPI implements the JAAS LoginModule,
and provides additional methods to access the Authentication Service and module
configuration properties files. Because of this architecture, any custom JAAS authentication
module will work within the Authentication Service. For more information, see Chapter 1,
“Using the Authentication Service API and SPI,” in Sun OpenSSO Enterprise 8.0 Developer’s
Guide and Sun OpenSSO Enterprise 8.0 Java API Reference.

OpenSSO Enterprise also provides a Client SDK that can implement authentication logic on a
remote web server or application server. For information, see Chapter 14, “Using the Client
SDK,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide.

Authentication Service Programming Interfaces

Chapter 7 • Authentication and the Authentication Service 115

http://docs.sun.com/doc/820-3748/adufr?a=view
http://docs.sun.com/doc/820-3748/adufr?a=view
http://docs.sun.com/doc/820-3748/adufr?a=view
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748/adubn?a=view
http://docs.sun.com/doc/820-3748/adubn?a=view

116

Authorization and the Policy Service

The Sun OpenSSO Enterprise Policy Service determines if a user has been given permission by a
recognized authority to access a protected resource. The process is referred to as authorization.
This chapter describes how the various parts of the Policy Service work together to perform
authorization. Topics covered include:

■ “Authorization and Policy Service Overview” on page 117
■ “The Policy and the Referral” on page 119
■ “Realms and Access Control” on page 122
■ “Policy Service Programming Interfaces” on page 123
■ “XACML Service” on page 123

Authorization and Policy Service Overview
A policy is a rule that defines who is authorized to access a resource. A single policy can define
authorization with either binary or non-binary decisions. (A binary decision is yes/no,
true/false or allow/deny. A non-binary decision represents the value of an attribute; for
example, a mail service might include a mailboxQuota attribute with a maximum storage value
set for each user.) In general, the Policy Service allows administrators to configure, modify, and
delete policies. The configured policies are then added to a realm and applied against the
subjects in the realm. The Policy Service can be accessed using the Policy Service API: a
privileged user can define access control policies using the administration API while a protected
application or policy agent can obtain policy decisions using the evaluation API. The Policy
Service relies on:

■ A Policy Administration Point (PAP) implements the functionality to define policies. The
Policy Service is the PAP.

■ A Policy Enforcement Point (PEP) to protect an enterprise's resources by enforcing access
control. The PEP uses the policy component of the Client SDK to retrieve policy decisions.
The policy agent is the PEP.

8C H A P T E R 8

117

■ A Policy Decision Point (PDP) to evaluate policy and make an access determination. The
Policy Service is the PDP.

■ A data store in which configured policies are stored and from which they are retrieved. The
Configuration Data Store is the data store.

Access to a resource is always preceded by a basic user session in which the requestor is
authenticated, a session is created by the Authentication Service, and the session token
identifier is validated. (See Chapter 6, “Models of the User Session and Single Sign-On
Processes.”) The policy agent protecting the resource then provides the session token identifier,
resource name, desired action, and additional context parameters to the Policy Service which
uses configured policies to determine if the user has been given permission to access the
protected resource by a recognized authority. When the policy agent gets the decision from the
Policy Service, it allows or denies access to the user, enforcing the policy decision provided by
Policy Service. This whole process is referred to as authorization. The Policy Service is defined
by the amPolicy.xml and, generally speaking:

■ Provides a means for defining and managing access policies.
■ Provides a means for defining custom policy plug-ins by providing names and class

locations.
■ Evaluates access policies.
■ Acts as a PDP to deliver the result of a policy evaluation.
■ Supports the delegation of policy management.
■ Provides an SPI for extensibility.
■ Provides access from remote clients using the Client SDK.
■ Caches and reuses policy decisions, where applicable, to improve performance.
■ Allows periodic polling of the Policy Service by a client to update locally cached policy

decisions.
■ Dynamically recognizes changes to policies and provides policy decisions that reflect them.

Note – The Policy Configuration Service provides a means to specify how policies are defined
and evaluated. It enables you to specify, for example, which directory to use for subject lookup,
the directory password, which search filters to use, and which subjects, conditions, and
response providers to use. This configuration can be done within a realm or a subrealm and is
accessible using the OpenSSO Enterprise console.

See Chapter 4, “Managing Policies,” in Sun OpenSSO Enterprise 8.0 Administration Guide and
Chapter 2, “Using the Policy Service API,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide for
more information.

Authorization and Policy Service Overview

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009118

http://docs.sun.com/doc/820-3885/gipxb?a=view
http://docs.sun.com/doc/820-3748/aduom?a=view

The Policy and the Referral
The Policy Service authorizes access to a user based on policies created and stored in the
OpenSSO Enterprise configuration data store. The following sections contain information on
the two configurations that can be created using the Policy Service.
■ “Policy” on page 119
■ “Referral” on page 122

For more information, see Chapter 4, “Managing Policies,” in Sun OpenSSO Enterprise 8.0
Administration Guide.

Policy
A policy (referred to as a normal policy in previous releases) specifies a protected resource and
who is allowed to access it. The protected resource can be anything hosted on a protected server.
Examples of protected resources are applications, document files, images, or the server itself. A
normal policy consists of rules, subjects, conditions, and response providers. The following
sections contain information on these elements.
■ “Rules” on page 119
■ “Subjects” on page 119
■ “Conditions” on page 120
■ “Response Providers” on page 121

Rules
A rule defines the policy itself by specifying a resource, one or more sets of an action, and values
for each action.
■ A resource defines the specific object that is being protected. Examples of protected objects

are an HTML page on a web site, or a user’s salary information accessed using a human
resources service.

■ An action is the name of an operation that can be performed on the resource. Examples of
web page actions are POST and GET. An allowable action for a human resources service
might be canChangeHomeTelephone.

■ A value defines the permission for the action. Examples are allow anddeny.

Subjects
A subject specifies the user or collection of users that the policy affects. The following list of
subjects can be assigned to policies.

Access Manager Identity Subjects The identities you create and manage under the Subjects
tab in a configured realm can be added as a value of the
subject.

The Policy and the Referral

Chapter 8 • Authorization and the Policy Service 119

http://docs.sun.com/doc/820-3885/gipxb?a=view
http://docs.sun.com/doc/820-3885/gipxb?a=view

Authenticated Users Any user with a valid session (even if they have
authenticated to a realm that is different from the realm
in which the policy is defined) is a member of this subject.
This is useful if the resource owner would like to allow
access to users from other organizations. To restrict a
resource's access to members of a specific organization,
use the Organization subject.

Web Services Clients This implies that a web service client (WSC) identified by
a session token identifier is a member of this subject — as
long as the distinguished name (DN) of any principal
contained in the session token identifier matches any
selected value of this subject.

The following list of subjects can only be specified after they are selected using the Policy
Configuration Service of the appropriate realm.

OpenSSO Enterprise Roles Any member of a OpenSSO Enterprise role is a member of this
subject. A OpenSSO Enterprise role is created using OpenSSO
Enterprise running in legacy mode. These roles have object
classes mandated by OpenSSO Enterprise and can only be
accessed through the hosting OpenSSO Enterprise Policy
Service.

Note – This subject can be used when connected to an AMSDK
data store.

LDAP Groups Any member of an LDAP group can be added as a value of this
subject.

LDAP Roles Any LDAP role can be added as a value of this subject. An LDAP
Role is any role definition that uses the Sun Java System
Directory Server role capability. These roles have object classes
mandated by Directory Server role definition. The LDAP Role
Search filter can be modified in the Policy Configuration Service
to narrow the scope and improve performance.

LDAP Users Any LDAP user can be added as a value of this subject.

Organization Any member of a realm is a member of this subject.

Conditions
A condition specifies additional constraints that must be satisfied for a policy be applicable. For
example, you can define a condition to limit a user’s network access to a specific time period.

The Policy and the Referral

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009120

The condition might state that the subject can access the network only between 7:00 in the
morning and 10:00 at night. OpenSSO Enterprise allows for the following list of conditions.

Active Session Time Sets a condition based on constraints configured for user
session time such as maximum session time.

Authentication Chain The policy is applicable if the user has successfully
authenticated to the authentication chain in the specified
realm. If the realm is not specified, authentication to any
realm at the authentication chain will satisfy the
condition.

Authentication Level The Authentication Level attribute indicates the level of
trust for authentication. The policy is applicable if the
user's authentication level is greater than or equal to the
Authentication Level set in the condition, or if the user's
authentication level is less than or equal to the
Authentication Level set in the condition, depending on
the configuration.

Authentication Module Instance The policy applies if the user has successfully
authenticated to the authentication module in the
specified realm. If the realm is not specified,
authentication to any realm at the authentication module
will satisfy the condition.

IP Address/DNS Names Sets a condition based on a range of IP Addresses, or a
DNS name.

Current Session Properties Decides whether a policy is applicable to the request based
on values set in the user's OpenSSO Enterprise session.

LDAP Filter Condition The policy is applicable when the defined LDAP filter
locates the user entry in the LDAP directory that was
specified in the Policy Configuration service.

Realm Authentication The policy applies if the user has authenticated to the
specified realm.

Time Sets the condition based on time constraints (time, day,
date, time zone).

Response Providers
Response providers are plug-ins that provide policy response attributes. Policy response
attributes typically provide values for attributes in the user profile. The attributes are sent with
policy decisions to the PEP which, in turn, passes them in headers to an application. The
application typically uses these attributes for customizing pages such as a portal page. OpenSSO

The Policy and the Referral

Chapter 8 • Authorization and the Policy Service 121

Enterprise includes one implementation of the
com.sun.identity.policy.interfaces.ResponseProvider class, the IDResponseProvider.
See Chapter 2, “Using the Policy Service API,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide
for more information.

Referral
A user with the Top—level Realm Administrator or Policy Administrator roles can create
policy. (A Realm Administrator or Policy Administrator configured for a specific realm have
permission to create policies only for resources delegated to that realm.) A referral (referred to
as a referral policy in previous releases) enables either administrator to delegate policy
configuration tasks. A referral delegates both policy creation and policy evaluation, and consists
of one or more rules and one or more referrals.

■ A rule defines the resource of which policy creation or evaluation is being referred.
■ A referral defines the identity to which the policy creation or evaluation is being referred.

Referrals delegate policy management privileges to another entity such as a peer realm, a sub
realm, or even a third-party product. (You can implement custom referrals by using the Policy
API.) For example, assume a top-level realm exists named ISP. It contains two sub realms:
company1 and company2. The Top-Level Realm Administrator for ISP can delegate policy
management privileges so that a Realm Administrator in company1 can create and manage
policies only within thecompany1 realm, and a Realm Administrator in company2 can create and
manage policies only within the company2 realm. To do this, the Top-Level Realm
Administrator creates two referrales, defining the appropriate realm in the rule and the
appropriate administrator in the referral. See Chapter 4, “Managing Policies,” in Sun OpenSSO
Enterprise 8.0 Administration Guide for more information.

Realms and Access Control
When a user logs into an application, OpenSSO Enterprise plug-ins retrieve all user
information, authentication properties, and authorization policies that the OpenSSO
Enterprise framework needs to form a temporary, virtual user identity. The Authentication
Service and the Policy Service use this virtual user identity to authenticate the user and enforce
the authorization policies, respectively. All user information, authentication properties, and
authorization policies is contained within a realm. You create a realm when you want to apply
policies to a group of related subjects, services or servers. The Policy Configuration Service
within the realm provides a means to specify how policies are defined and evaluated. It enables
you to specify, for example, which directory to use for subject lookup, the directory password,
which search filters to use, and which subjects, conditions, and response providers to use. For
example, you can create a realm that groups all servers and services that are accessed regularly

Realms and Access Control

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009122

http://docs.sun.com/doc/820-3748/aduom?a=view
http://docs.sun.com/doc/820-3885/gipxb?a=view
http://docs.sun.com/doc/820-3885/gipxb?a=view

by employees in one region. And, within that regional grouping realm, you can group all servers
and services accessed regularly by employees in a specific division such as Human Resources. A
configured policy might state that all Human Resources administrators can access the URL
http://HR.example.com/HRadmins/index.html. You might also add constraints to this
policy: it is applicable only Monday through Friday from 9:00 a.m. through 5:00 p.m. Realms
facilitate the delegation of policy management privileges. These configurations can be done
within a realm or a sub realm and is accessible using the OpenSSO Enterprise console.

Note – Access control realms can be configured to use any supported user database.

Policy Service Programming Interfaces
OpenSSO Enterprise provides both Java API and C API for writing clients that remote
applications can use to administer policies and evaluate policy decisions. They are used to add,
lookup, modify or replace policies, and to evaluate policy decisions when a principal attempts
an action on a protected resource. Communication between the API and the Policy Service
occurs by sending XML messages over HTTP(S). Additionally, you can extend and customize
the Policy Service using the SPI. The classes are used by service developers and policy
administrators who need to provide additional policy features as well as support for legacy
policies. For example, you can develop customized plug-ins for creating custom policy subjects,
referrals, conditions, and response providers. Lastly, the Client SDK is provided to implement
policy evaluation logic on a remote web server or application server. For information, see
Chapter 14, “Using the Client SDK,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide, Chapter
2, “Using the Policy Service API,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide, the Sun
OpenSSO Enterprise 8.0 C API Reference for Application and Web Policy Agent Developers, and
the Sun OpenSSO Enterprise 8.0 Java API Reference.

XACML Service
eXtensible Access Control Markup Language (XACML) is a markup language that provides an
XML syntax for defining policies (who can do what, where can it be done, and when), for
querying whether access to a protected resource can be allowed (requests), and for receiving
responses to those queries (decisions). XACML is built around the standard access control
separation of the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP) as
discussed in “Authorization and Policy Service Overview” on page 117 except you use XACML
formatted queries and responses. The XACML PEP is responsible for intercepting all access
requests, collecting the appropriate information (such as who is making the request, which
resource is being accessed, and what action is to be taken), and sending a request for a decision
to the XACML PDP. The XACML PDP (OpenSSO Enterprise) evaluates configured policies

XACML Service

Chapter 8 • Authorization and the Policy Service 123

http://docs.sun.com/doc/820-3748/adubn?a=view
http://docs.sun.com/doc/820-3748/aduom?a=view
http://docs.sun.com/doc/820-3748/aduom?a=view
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739

against the information in the decision request. It uses a Context Handler to request the
appropriate policies and attributes in order to render one of the following decisions.

■ Permit
■ Deny
■ Not Applicable (no policy created by this PDP applies to the access request)
■ Indeterminate (an error occurred that prevents the PDP from knowing the correct

response)

The following sections contain more information.

■ “XACML in OpenSSO Enterprise” on page 124
■ “XACML Programming Interfaces” on page 126

XACML in OpenSSO Enterprise
OpenSSO Enterprise implements the SAML v2 Profile of XACML version 2.0 thus supporting
XACMLAuthzDecisionQuery and XACMLAuthzDecisionStatement. In a OpenSSO Enterprise
XACML interaction, after receiving a request for access, the XACML PEP makes a
XACMLAuthzDecisionQuery request and receives a XACMLAuthzDecisionStatement response
that contains the decision. (The policies themselves are not returned.) The XACML
components on the client side include Client SDK interfaces for passing XACML requests and
receiving XACML responses as well as an interface to construct the communications.

Note – The framework relies internally on the Client SDK SAML v2 interfaces for
communication between the PEP and PDP, and includes an implementation of the SAML v2
request handler called the XACML2AuthzDecisionQueryHandler that plugs into the SAML v2
Service framework.

The XACML components on the OpenSSO Enterprise side include out-of-the-box
implementations of XACML mappers for subjects, resources, actions and environment. These
implementations use the Policy Service to compute authorization decisions.
Figure 8–1illustrates how XACML and OpenSSO Enterprise interact with each other. The
communications are explained in the procedure following the image.

XACML Service

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009124

1. The policy agent protecting a resource constructs a XACML access request using the Client
SDK.

2. The Client SDK wraps the request in a XACMLAuthzDecisionQuery element and sends it to
the SAML v2 query processor on the local machine (also part of the Client SDK).

3. The SAML v2 query processor consults the metadata for the PEP and the PDP, sets
additional elements or attributes in the query, signs it (if necessary) and sends a SOAP
request containing the query to the PDP.

A
pplication/A

gent

X
A

X
M

L C
lient S

D
K

S
A

M
L2Q

ueryP
rocessor

S
A

M
L2R

equestH
andler

X
A

M
LQ

ueryH
andler

S
ubjectM

apper

R
esourceM

apper

A
ctionM

apper

R
esultM

apper

E
nvironm

entM
apper

PEP PDP

1

2
3

4

5

6

7

8

9

10

11
12

13
14

N
ativeP

olicyE
valuator

FIGURE 8–1 XACML Process Flow

XACML Service

Chapter 8 • Authorization and the Policy Service 125

4. The SAML v2 request handler on the PDP side receives the request, consults the metadata
for the PEP and the PDP, verifies the trust relationships, enforces any signing or encryption
requirements, verifies the signature and forwards the query to the
XACMLAuthzDecisionQueryHandler.

5. The XACMLAuthzDecisionQueryHandler consults the appropriate metadata using the
entityID values of the PEP and PDP (included in the request) to find the correct mapper
implementations to use.

6. XACMLAuthzDecisionQueryHandler uses the Resource mapper to map the given Resource
to a resource and service configured with OpenSSO Enterprise.

7. XACMLAuthzDecisionQueryHandler uses the Action mapper to map the given Action to an
action name configured with OpenSSO Enterprise.

8. XACMLAuthzDecisionQueryHandler uses the Environment mapper to map the given
Environment to conditions configured with OpenSSO Enterprise.

9. XACMLAuthzDecisionQueryHandler uses the OpenSSO Enterprise policy evaluator to get
the policy decision.

10. XACMLAuthzDecisionQueryHandler uses the Result mapper to map the decision to an
XACML Result element.

Note – OpenSSO Enterprise is not an XACML policy engine. It has no support for XACML
policies themselves and thus no support for retrieving the policies, only the decision.

11. XACMLAuthzDecisionQueryHandler wraps the XACML Result in an XACML Response, the
XACML Response in an XACMLAuthzDecisionStatement, the
XACMLAuthzDecisionStatement in a SAML Assertion, the Assertion in a SAML Response,
and hands over the SAML Response to the SAML v2 request handler.

12. The SAML v2 request handler sets additional attributes and elements (based on the SAML
v2 protocol), signs it as required and returns it in a SOAP message to the PEP side.

13. The SAML v2 query processor verifies the trust relationships, the signing requirements, and
the signature as necessary. It then extracts the SAML Response from the SOAP message and
returns it to the XACML portion of the Client SDK.

14. The Client SDK extracts the XACML Response from the SAML v2 Response and returns it
(and the decision) to the client application.

XACML Programming Interfaces
OpenSSO Enterprise provides Java API for using, and interacting with, the XACML Service. For
information, see Chapter 14, “Using the Client SDK,” in Sun OpenSSO Enterprise 8.0 Developer’s

XACML Service

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009126

http://docs.sun.com/doc/820-3748/adubn?a=view

Guide, Chapter 2, “Using the Policy Service API,” in Sun OpenSSO Enterprise 8.0 Developer’s
Guide, and the Sun OpenSSO Enterprise 8.0 Java API Reference.

XACML Service

Chapter 8 • Authorization and the Policy Service 127

http://docs.sun.com/doc/820-3748/adubn?a=view
http://docs.sun.com/doc/820-3748/aduom?a=view
http://docs.sun.com/doc/820-3748/aduom?a=view
http://docs.sun.com/doc/820-3739

128

Federation Management Using OpenSSO
Enterprise
Sun OpenSSO Enterprise provides a framework for implementing a federated identity
infrastructure, enabling single sign-on, provisioning users dynamically, and sharing
identity attributes across security domains. The chapters in this third part of the Sun
OpenSSO Enterprise Technical Overview contains information on federation
management.

■ Chapter 9, “What is Federation?”
■ Chapter 10, “Federation Management with OpenSSO Enterprise”
■ Chapter 11, “Choosing a Federation Option”

P A R T I I I

129

130

What is Federation?

Federation establishes a standards-based method for sharing and managing identity data and
establishing single sign-on across security domains and organizations. It allows an organization
to offer a variety of external services to trusted business partners as well as corporate services to
internal departments and divisions. Forming trust relationships across security domains allows
an organization to integrate applications offered by different departments or divisions within
the enterprise as well as engage in relationships with cooperating business partners that offer
complementary services. Towards this end, multiple industry standards, such as those
developed by the Organization for the Advancement of Structured Information Standards
(OASIS) and the Liberty Alliance Project, are supported. This chapter contains an overview of
federation.

■ “The Concept of Federation” on page 131
■ “The Concept of Trust” on page 133
■ “How Federation Works” on page 133

The Concept of Federation
As a concept, federation encompasses both identity federation and provider federation.

■ “Identity Federation” on page 131
■ “Provider Federation” on page 132

Identity Federation
In one dictionary, identity is defined as ”a set of information by which one person is definitively
distinguished.” This information undoubtedly begins with the document that corroborates a
person's name: a birth certificate. Over time, additional information further defines different
aspects of an individual's identity. The composite of this data constitutes an identity with each

9C H A P T E R 9

131

specific piece providing a distinguishing characteristic. Each of the following represents data
that designates a piece of a person's identity as it relates to the enterprise for which the data was
defined.
■ An address
■ A telephone number
■ One or more diplomas
■ A driver’s license
■ A passport
■ Financial institution accounts
■ Medical records
■ Insurance statements
■ Employment records
■ Magazine subscriptions
■ Utility bills

Because the Internet is now one of the primary vehicles for the types of interactions represented
by identity-defining information, people are creating online identities specific to the businesses
with which they are interacting. By creating a user account with an identifier and password, an
email address, personal preferences (such as style of music, or opt-in/opt-out marketing
decisions) and other information specific to the particular business (a bank account number or
ship-to address), a user is able to distinguish their account from others who also use the
enterprise’s services. This distinguishing information is referred to as a local identity because it
is specific to the service provider (a networked entity that provides one or more services to other
entities) for which it has been defined. Sending and receiving email, checking bank balances,
finalizing travel arrangements, accessing utility accounts, and shopping are just a few online
services for which a user might define a local identity. If a user accesses all of these services,
many different local identities have been configured. Considering the number of service
providers for which a user can define a local identity, accessing each one can be a
time-consuming and frustrating experiencing. In addition, although most local identities are
configured independently (and fragmented across the Internet), it might be useful to connect
the information. For example, a user's local identity with a bank could be securely connected to
the same user's local identity with a utility company for easy, online payments. This virtual
phenomenon offers an opportunity for a system in which users can federate these local
identities. Identity federation allows the user to link, connect, or bind the local identities that
have been created for each service provider. The linked local identities, referred to as a federated
identity, allow the user to log in to one service provider site and click through to an affiliated
service provider without having to reauthenticate or reestablish identity; in effect, single
sign-on (SSO).

Provider Federation
Provider federation begins with a circle of trust. A circle of trust is a group of service providers
who contractually agree to exchange authentication information. Each circle of trust must
include at least one identity provider, a service provider that maintains and manages identity

The Concept of Federation

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009132

data, and provides authentication services. After the business contracts and policies defining a
circle of trust are in place, the specific protocols, profiles, endpoints, and security mechanisms
being used by each member is collected into a metadata document that is exchanged among all
other members of the circle. OpenSSO Enterprise provides the tools necessary to integrate the
metadata and enable a circle of trust technologically. Authentication within this federation is
honored by all membered providers.

Note – The establishment of contractual trust agreements between providers is beyond the scope
of this guide. See “The Concept of Trust” on page 133 for an overview.

The Concept of Trust
Federating identities assumes existing trust relationships between participants. This trust is
usually defined through business arrangements or contracts that describe the technical,
operational, and legal responsibilities of each party and the consequences for not completing
them. When defined, a trust relationship allows one organization to trust the user
authentication and authorization decisions of another organization. This trust then enables a
user to log in to one site and, if desired, access a trusted site without reauthentication.

Ensure that trust agreements are in force before configuring circles of trust with OpenSSO
Enterprise and going live. The Liberty Alliance Project has created a support document for
helping to establish these trust arrangements. The Liberty Trust Model Guidelines document is
located on the Support Documents and Utility Schema Files page of the Liberty Alliance Project
web site.

How Federation Works
The goal of federation is to enable individuals and service providers to protect identity data
while conducting network transactions across secure domains. When organizations form a
trust agreement, they agree to exchange user authentication information using specific web
technologies. The trust agreement would be among multiple service providers that offer
web-based services to users and, at least, one identity provider (a service provider that maintains
and manages identity information). Once metadata (a particular provider's federation
configuration information) is exchanged and the trust is established technologically, single
sign-on can be enabled between all the included providers, and users may opt to federate their
multiple identities (depending on the protocol being used). In OpenSSO Enterprise, the trust
agreement is virtually configured as a circle of trust using the console or command line
interface. A circle of trust contains providers (service providers or identity providers) that are
grouped together for the purpose of offering identity federation. Identity federation occurs
when a user chooses to unite distinct service provider and identity provider accounts while
retaining the individual account information with each provider. The user establishes a link

How Federation Works

Chapter 9 • What is Federation? 133

http://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

that allows the exchange of authentication information between provider accounts. Users can
choose to federate any or all identities they might have. After identity federation, when a user
successfully authenticates to one of the service providers, access to any of the federated accounts
within the circle of trust is allowed without having to reauthenticate. The following figure shows
the subjects involved in federation.

■ A principal can have a defined local identity with more than one provider, and it has the
option to federate the local identities. The principal might be an individual user, a group of
individuals, a corporation, or a component of the Liberty architecture.

■ A service provider is a commercial or not-for-profit organization that offers a web-based
service such as a news portal, a financial repository, or retail outlet.

■ An identity provider is a service provider that stores identity profiles and offers incentives to
other service providers for the prerogative of federating their user identities. Identity
providers might also offer services above and beyond those related to identity profile
storage.

■ To support identity federation, all service providers and identity providers must join
together into a circle of trust. A circle of trust must contain at least one identity provider and
at least one service provider. (One organization may be both an identity provider and a
service provider.) Providers in a circle of trust must first write trust agreements to define

Principal
• Customer
• Employee
• Company
• ...

Service Providers
• Web content
• Portal
• Merchant
• ...

Identity Provider
• Authentication
• Federation
• Profile
• ...

The identity provider is the center
of the authentication infrastructure.
It is a trusted entity that maintains
core attributes regarding the principal.

Service providers in
the circle of trust offer
complimentary services.

A circle of trust is a group of providers that
have joined together to exchange
authentication information.

The principal has a defined
local identity with more than

one provider, and has the
option to federate them.

FIGURE 9–1 Subjects Involved in an Identity Federation

How Federation Works

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009134

their relationships. A trust agreement is a contract between organizations that defines how
the circle will work. For more information, see “The Concept of Trust” on page 133.

A travel portal is a good example of a circle of trust. Typically, a travel portal is a web site
designed to help you access various travel-related services from one location. The travel portal
forms a partnership with each service provider displayed on its web site. (This might include
hotels, airlines, and car rental agencies.) The user registers with the travel portal which, in effect,
is the identity provider for the circle of trust. After logging in, the user might click through to an
airline service provider to look for a flight. After booking a flight, the user might click through
to an accommodations service provider to look for a hotel. Because of the trust agreements
previously established, the travel portal shares authentication information with the airline
service provider, and the airline service provider with the accommodations service provider.
The user moves from the hotel reservations web site to the airline reservations web site without
having to reauthenticate. All of this is transparent to the user who must, depending on the
underlying federation protocol, choose to federate any or all local identities. The following
figure illustrates the travel portal example.

How Federation Works

Chapter 9 • What is Federation? 135

Identity
Provider

Airline 1 Airline 2

Cruise 1

Car
Rental 1

Car Rental 2Hotel 3

Hotel 2

Hotel 1

FIGURE 9–2 Federation Within a Travel Portal

How Federation Works

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009136

Federation Management with OpenSSO
Enterprise

Sun OpenSSO Enterprise provides a pluggable framework for implementing federated identity
infrastructures. The Federation framework places no restrictions on the use of network
technologies, computer hardware, operating systems, programming languages or other
hardware or software entities. It is based on, and conforms to, open industry standards to
achieve interoperability among different vendors on heterogeneous systems, and provides the
facility to log identity interactions and erroneous conditions. The following sections contain
information about the federation framework.

■ “Key Federation Management Features” on page 137
■ “The Federation Framework Architecture” on page 142

Key Federation Management Features
OpenSSO Enterprise creates a comprehensive security and identity management framework
optimized to work with, and extend, an identity provider's existing security infrastructure. The
following list describes some key features:

■ Exchange of credentials and security tokens across circle of trust partners for purposes of
authentication and single sign-on.

■ Automatic federation of user accounts across multiple security domains.
■ Session management across authentication domains to determine when user interactions

must be terminated (single logout).
■ Import or export the data required to establish basic federated communication between

providers.
■ Manages and links providers that are available to participate in a circle of trust.
■ Exchanges SAML security assertions among providers in a circle of trust.
■ Data management choices include an LDAPv3 directory (OpenDS, Sun Java System

Directory Server or Microsoft Active Directory).

10C H A P T E R 1 0

137

■ Included service provider interfaces (SPIs) to allow customized logic during the federation
process.

■ Support for bulk federation and auto federation.
■ Support for The Fedlet, a web archive (WAR) of data that can be embedded into a service

provider application.
■ Support for Virtual Federation.
■ Support for multiple federation protocols in one circle of trust.

The following sections contain additional information on the final three features listed.

■ “The Fedlet” on page 138
■ “Secure Attribute Exchange/Virtual Federation Proxy” on page 138
■ “Multi-Federation Protocol Hub” on page 140

The Fedlet
Fedlet is the name given to fedlet.war. The WAR is a very small archive of a few JARs,
properties, and metadata (all stored in flat files) that can be embedded into a service provider's
Java EE web application to allow for SSO between an identity provider instance of OpenSSO
Enterprise and the service provider application - WITHOUT installing OpenSSO Enterprise on
the service provider side. The service provider simply downloads the Fedlet, modifies their
application to include the Fedlet JARs and, re-archives and redeploys the modified application.
The service provider is now able to accept an HTTP POST (that contains a SAML v2 assertion)
from the identity provider and retrieve included user attributes to accomplish SSO. (Currently,
the Fedlet only supports the HTTP POST Profile.). The Fedlet can communicate with multiple
identity providers, using a Discovery Service to find the preferred identity provider. For more
information, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Secure Attribute Exchange/Virtual Federation Proxy
Secure Attribute Exchange (also referred to as Virtual Federation Proxy) provides a mechanism
for one application to communicate identity information to a second application in a different
domain. In essence, it provides a secure gateway that enables legacy applications to
communicate authentication attributes without having to deal specifically with federation
protocols and processing. Virtual Federation Proxy allows:

■ Identity provider applications to push user authentication, profile and transaction
information to a local instance of OpenSSO Enterprise which then passes the data to a
remote instance of OpenSSO Enterprise at the service provider using federation protocols.

■ Service provider applications to consume the received information.

Key Federation Management Features

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009138

http://docs.sun.com/doc/820-3885

Virtual Federation Proxy uses SAML v2 to transfer identity data between the communicating
entities. The Client SDK (which contains Java and .NET interfaces) runs independent of
OpenSSO Enterprise and enables existing applications to handle the SAML v2 interactions. The
following diagram illustrates this scenario.

The following use cases are applicable to Virtual Federation:

■ “Authentication at Identity Provider” on page 139
■ “Virtual Federation at Identity Provider” on page 140
■ “Virtual Federation at Service Provider” on page 140
■ “Global Single Logout” on page 140

Authentication at Identity Provider
When a user is already authenticated within an enterprise, the legacy identity provider
application sends a secure HTTP GET/POST message to OpenSSO Enterprise asserting the
identity of the user. OpenSSO Enterprise verifies the authenticity of the message and establishes
a session for the authenticated user. You can use Virtual Federation to transfer the user's
authentication information to the local instance of OpenSSO Enterprise in order to create the
session.

IDP Application 2

User Agent

IDP Application 1
OpenSSO

(IDP)

SAMLv2 SSO

OpenSSO
(SP)

SP Application 2

SP Application 1

User

FIGURE 10–1 Virtual Federation Architecture

Key Federation Management Features

Chapter 10 • Federation Management with OpenSSO Enterprise 139

Virtual Federation at Identity Provider
When a user is already authenticated by, and attempts access to, a legacy identity provider
application, the legacy application sends a secure HTTP POST message to the local instance of
OpenSSO Enterprise asserting the user's identity, and containing a set of attribute/value pairs
related to the user (for example, data from the persistent store representing certain
transactional states in the application). OpenSSO Enterprise verifies the authenticity of the
message, establishes a session for the authenticated user, and populates the session with the user
attributes.

Virtual Federation at Service Provider
When a user is already authenticated by the instance of OpenSSO Enterprise at the identity
provider and invokes an identity provider application that calls for redirection to a service
provider, the identity provider invokes one of the previous use cases and encodes a SAML v2
SSO URL as a part of the request. The identity provider instance of OpenSSO Enterprise then
initiates SAML v2 SSO with the instance of OpenSSO Enterprise at the service provider. The
service provider's instance of OpenSSO Enterprise then verifies the SAML v2 assertion and
included attributes, and redirects to the service provider application, securely transferring the
user attributes via a secure HTTP POST message. The service provider application consumes
the attributes, establishes a session, and offers the service to the user.

Global Single Logout
When a user is already authenticated and has established, for example, SSO with the instance of
OpenSSO Enterprise at the service provider, the user might click on a Global Logout link. The
identity provider will then invalidate its local session (if created) and trigger SAML v2 single log
out by invoking a provided OpenSSO Enterprise URL. The OpenSSO Enterprise identity
provider executes the SAML v2 single log out, terminating the session on both provider
instances of OpenSSO Enterprise.

Note – An identity provider side application can initiate single logout by sending
sun.cmd=logout attributes via a Virtual Federation interaction to a local instance of OpenSSO
Enterprise acting as the identity provider. In turn, this instance will execute SAML v2 single
logout based on the current session.

For more information, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Multi-Federation Protocol Hub
OpenSSO Enterprise allows a configured circle of trust to contain entities speaking different
federation protocols thus supporting cross protocol single sign-on and logout among hosted
identity providers in the same circle of trust. For example, you can create a circle of trust

Key Federation Management Features

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009140

http://docs.sun.com/doc/820-3885

containing one identity provider instance that communicates with multiple federation protocol
and three service provider instances that speak, respectively, Liberty ID-FF, SAML v2 and
WS-Federation. Figure 10–2 illustrates the process of multi-federation protocol single sign-on
and single logout.

For more information, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

SAMLv2
SP

WS-Fed
SP

User
Agent

SAMLv2
IDP

ID-FF
SP

ID-FF
IDP

WS-Fed
IDP

1. Setup COT among all service and idenity providers

2. SAML v2 Single Sign-on

3. ID-FF Single Sign-on

4. WS-Federation Single Sign-on

Single Logout 6. SAML v2 Single Logout

8. Invoke

9. ID-FF Single Logout

7. Call multi-federation protocol
SLO SPI for ID-FF

5. Initiate

ID-FF Logout

14. Single Logout Status
13. Destroy user session(s)

12. WS-Fed Single Logout

11. Invoke
 WS-Fed Logout

10. Call multi-federation
protocol SLO SPI for WS-Fed

FIGURE 10–2 Multi-Federation Protocol Single Sign-on and Single Logout

Key Federation Management Features

Chapter 10 • Federation Management with OpenSSO Enterprise 141

http://docs.sun.com/doc/820-3885

The Federation Framework Architecture
OpenSSO Enterprise consists of web-based services [using SOAP, XML over HTTP(S) or
HTML over HTTP(S)], and Java—based application provider interfaces (APIs) and service
provider interfaces (SPIs). The figure below illustrates this architecture. Additionally, the figure
shows an agent embedded into a web container. This agent enables the service provider
applications to participate in the SAML or Liberty-based protocols. The darker boxes are
components provided by OpenSSO Enterprise.

The components include:

Active
Directory

Directory
Server

OpenDS

OpenSSO SDK

J2EE WAR file

Admin
Console

Authentication
Service

SAML
Service

Liberty
ID-FF

WS
Federation

Logging
Service

Logging
Service

Identity
Web

Services

Data Store Provider SPI

Service Provider
Application

WSC/WSPIDP SAML Partner

J2EE Container
(Service Provider)

FIGURE 10–3 Federation Framework Architecture

The Federation Framework Architecture

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009142

SAML Service
Provides SAML related services (versions 1.x and 2.0) including artifact and POST profile
support, and assertion query support.

Liberty Identity Federation Framework (Liberty ID-FF)
Provides services based on the Liberty ID-FF specifications. Features include federation and
single sign-on, single logout, federation termination, name registration, and support for the
Common Domain. Implemented web services include a SOAP binding service, a discovery
service, a personal profile service, and an authentication service.

WS-Federation
Provides services based on the WS-Federation specifications.

Authentication
OpenSSO Enterprise provides a JAAS-based authentication framework.

Session
OpenSSO Enterprise provides session management for service provider applications.

Logging
OpenSSO Enterprise provides a logging service. It also provides activity logs for auditing.
Audit logs can be stored in flat files or JDBC-compliant databases.

APIs
Includes a set of APIs for interaction between the SSO, logging, SAML, federation, and
authentication components. Also included are APIs to build web services for clients and
providers.

SPIs
Includes a set of Service Provider Interfaces (SPIs) into which applications can insert their
custom logic. For instance, there is an SPI to do post federation processing, and an SPI for
post processing after a successful single logout.

The Federation Framework Architecture

Chapter 10 • Federation Management with OpenSSO Enterprise 143

144

Choosing a Federation Option

Sun OpenSSO Enterprise supports multiple federation standards, such as those developed by
the Organization for the Advancement of Structured Information Standards (OASIS) and the
Liberty Alliance Project. This chapter contains information on these federation options.

■ “Federation Options” on page 145
■ “Using SAML” on page 146
■ “Using the Liberty ID-FF” on page 155
■ “Using WS-Federation” on page 165

Federation Options
Federation is used to solve the problem of cooperation across heterogeneous, autonomous
environments. In the beginning, federation meant using the Liberty Alliance Project Identity
Federation Framework (Liberty ID-FF). Since then, other federation specifications have been
developed including the Security Assertion Markup Language (SAML) and WS-Federation.
OpenSSO Enterprise supports all of these specifications.

To get started, SAML v2 is strongly preferred for federation. WS-Federation is an alternative for
integrating with Active Directory Federation Services (ADFS). Liberty ID-FF and SAML v1.x
are still supported but should only be used when SAML v2 is not an option as the SAML v2
specification supersedes both the Liberty ID-FF and SAML v1.x specifications. More
information on these options can be found in the following sections:

■ “Using SAML” on page 146
■ “Using the Liberty ID-FF” on page 155
■ “Using WS-Federation” on page 165

Note – OpenSSO Enterprise has appropriated the terms from the Liberty ID-FF for all federation
protocol implementations in the OpenSSO Enterprise console.

11C H A P T E R 1 1

145

Using SAML
SAML defines an XML-based framework for exchanging identity information across security
domains for purposes of authentication, authorization and single sign-on. It was designed to be
used within other specifications (the Liberty Alliance Project, the Shibboleth project, and the
Organization for the Advancement of Structured Information Standards have all adopted
aspects of SAML) although the latest release (SAML v2) has incorporated back into the
framework elements from the specifications developed by those very same organizations. The
SAML specifications consist of a number of components, illustrated by Figure 11–1.

The SAML specification defines the assertion security token format as well as profiles that
standardize the HTTP exchanges required to transfer XML requests and responses between an
asserting authority and a trusted partner. An assertion is a package of verified security
information that supplies one or more statements concerning a principal’s authentication
status, access authorization decisions, or identity attributes. (A person identified by an email

PROFILES
How SAML protocols, bindings and/or assertions combine to support a defined use

BINDINGS
How SAML protocols map onto standard messaging/communication protocols.

PROTOCOL
Request/Response pairs for obtaining assertions.

ASSERTIONS
Authentication, attribute and authorization data.

FIGURE 11–1 Components of the SAML Specifications

Using SAML

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009146

address is a principal as might be a printer.) Assertions are issued by an asserting authority (a
platform or application that declares whether a subject has been authenticated into its system),
and received by relying parties (partner sites defined by the authority as trusted). Asserting
authorities use different sources to configure assertion information, including external data
stores or assertions that have already been received and verified.

The most recent SAML v2 specifications are defined more broadly than those developed for
SAML v1.x — with particular attention paid to functionality dealing with federation. Before
SAML v2 was introduced, SAML v1.x was simply a way to exchange identity data. In fact, up to
version 1.1, the Liberty Alliance Project Identity Federation Framework (Liberty ID-FF) was
developed using the SAML 1.0 specification. Liberty ID-FF version 1.2 was also developed using
the SAML v1.1 specification. But, following the release of version 1.2, the Liberty ID-FF was
incorporated into the SAML v2 specification. Additionally, SAML v2 adds components of the
Shibboleth initiative. Thus, SAML v2 is a major revision, providing significant additional
functionality and making the previous versions of SAML incompatible with it. Going forward,
SAML v2 will be the basis on which OpenSSO Enterprise implements federation. Figure 11–2
illustrates the convergence.

Note – For more information on this convergence (including how the Shibboleth Project was
also integrated), see the Federation section of Strategic Initiatives on the Liberty Alliance
Project web site.

More information on the SAML implementations can be found in the following sections).
■ “About SAML v2” on page 148
■ “About SAML v1.x” on page 152
■ “Which Flavor of SAML to Use?” on page 154

Caution – SAML v1.x and SAML v2 assertions and protocol messages are incompatible.

SAML v1.0

Liberty v1.0 Liberty ID-FF v1.1 Liberty ID-FF v1.2

SAML v1.1 SAML v2.0

FIGURE 11–2 Liberty ID-FF and SAML Convergence

Using SAML

Chapter 11 • Choosing a Federation Option 147

http://www.projectliberty.org/liberty/strategic_initiatives/federation

About SAML v2
OpenSSO Enterprise delivers a solution that allows businesses to establish a framework for
sharing trusted information across a distributed network of partners using the standards-based
SAML v2. Towards this end, HTTP(S)-based service endpoints and SOAP service endpoints are
supplied as well as assertion and protocol object manipulating classes. A web browser can
access all HTTP(S)-based service endpoints and an application can make use of the SOAP
endpoints and API as long as metadata for each participating business on BOTH sides of the
SAML v2 interaction is exchanged beforehand.

Figure 11–3 illustrates the SAML v2 framework which consists of web-based services [using
SOAP, XML over HTTP(S) or HTML over HTTP(S)], and JavaTM-based application provider
interfaces (API) and service provider interfaces (SPI). Additionally, the figure shows an agent
embedded into a web container in which a service provider application is deployed. This agent
enables the service provider to participate in the SAML v1.x or Liberty ID-FF protocols.

Using SAML

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009148

The following sections contain more information about the SAML v2 framework.

■ “Key Features” on page 149
■ “Administration” on page 150
■ “Application Programming Interfaces” on page 151
■ “Service Provider Interfaces” on page 151
■ “JavaServer Pages” on page 152

Key Features
The key features of SAML v2 in OpenSSO Enterprise include:

■ Single sign-on using the POST profile, the Artifact binding (also referred to as HTTP
redirect), and unsolicited responses (initiated by the identity provider)

■ Single logout using HTTP redirect and SOAP binding
■ Federation termination using HTTP redirect and SOAP binding

Configuration
Data
Store

Internet

SAML v2 HTTP(S) SAML v2 SOAP

Assertion Consumer
Service (HTTP)

Datastore
SPI

Service
Management AuthenticationXML

Signing
XML

Encryption Policy

Single Sign-on
Service (HTTP)

Single Logout
Service (HTTP or SOAP)

Manage Name ID
Service (HTTP or SOAP)

SAML v2
CLI

Agents
Application

Audit
Log

Persistent
Name ID

SAML v2 SDK

SAML v2 Metadata/COT SAML v2 Auth Module

SAML v2 Service Provider Interfaces

Account Mapper Attribute Mapper Authentication
Context Mapper

Users

FIGURE 11–3 SAML v2 Architecture

Using SAML

Chapter 11 • Choosing a Federation Option 149

■ Auto-federation (automatic linking of service provider and identity provider user accounts
based on a common attribute)

■ Bulk federation
■ Dynamic creation of user accounts
■ One time federation (transient NameID format for SSO)
■ Basic Authentication, SSL and SSL with client authentication for SOAP binding security
■ SAML v2 authentication
■ Identity provider discovery
■ XML verification, signing, encryption and decryption
■ Profile initiation and processing using included JavaServer PagesTM (JSPTM)
■ Load balancing support
■ IDP Proxy
■ Assertion failover
■ Enhanced Client or Proxy (ECP) support in SP and IDP
■ Assertion queries and requests
■ Attribute queries
■ New Name Identifier
■ Affiliation
■ Name Identifier Mapping
■ XACML profile for authorization

Note – See “XACML Service” on page 123 for more information.

■ Protocol coexistence with the SAML v1.x and the Liberty ID-FF

Additionally, OpenSSO Enterprise has received high scores and passed the Liberty Alliance
Project interoperability tests for SAML v2. For more information, see the SAMLv2 support
matrix on the Liberty Alliance Project web site.

Administration
In order to communicate using the SAML v2 profiles you need, at least, two instances of
OpenSSO Enterprise. One instance will act for the identity provider and the other will act for
the service provider. Name identifiers are used to communicate regarding a user.

Using SAML

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009150

http://projectliberty.org
http://projectliberty.org

Note – SAML v2 single sign-on interactions support both persistent and transient identifiers. A
persistent identifier is saved to a particular user entry as the value of two attributes. A transient
identifier is temporary and no data will be written to the user's data store entry.

To prepare your instances for SAML v2 interactions, you need to exchange a particular
provider's configuration information or metadata between all participating identity and service
providers, and assemble the providers into a circle of trust. Utility APIs can then be used to
communicate with the data store, reading, writing, and managing the relevant properties and
property values. For more information see the Sun OpenSSO Enterprise 8.0 Administration
Guide.

Application Programming Interfaces
The SAML v2 framework contains API that can be used to construct and process assertions,
requests, and responses. The SAML v2 Java API packages include:
■ The com.sun.identity.saml2.assertion package provides interfaces to construct and

process SAML v2 assertions. It also contains the AssertionFactory, a factory class used to
obtain instances of the objects defined in the assertion schema.

■ The com.sun.identity.saml2.common package provides interfaces and classes used to
define common SAML v2 utilities and constants.

■ The com.sun.identity.saml2.protocol package provides interfaces used to construct
and process the SAML v2 requests and responses. It also contains the ProtocolFactory, a
factory class used to obtain object instances for concrete elements in the protocol schema.

More information can be found in “Using the SAML v2 SDK” in Sun OpenSSO Enterprise 8.0
Developer’s Guide and the Sun OpenSSO Enterprise 8.0 Java API Reference.

Service Provider Interfaces
The com.sun.identity.saml2.plugins package provides pluggable interfaces to implement
SAML v2 functionality into your application. Default implementations are provided, but a
customized implementation can be plugged in by modifying the corresponding attribute in the
provider's extended metadata configuration file. The interfaces include mappers for:
■ Account mapping (map between the account referred to in the incoming request and the

local user account)
■ Attribute mapping (specifies which set of user attributes in an identity provider user account

needs to be included in an assertion, and maps the included attributes to attributes in the
user account defined by the service provider)

■ Authentication context mapping (map between Authentication Contexts defined in the
SAML v2 specifications and authentication framework schemes defined in OpenSSO
Enterprise (user/module/service/role/level based authentication)

Using SAML

Chapter 11 • Choosing a Federation Option 151

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3748/gghxj?a=view
http://docs.sun.com/doc/820-3748/gghxj?a=view
http://docs.sun.com/doc/820-3739

■ Service provider adapter (allows user to plug-in application specific logic before and/or after
single sign-on, single logout, termination and new name identifier process.

More information can be found in “Service Provider Interfaces” in Sun OpenSSO Enterprise 8.0
Developer’s Guide and the Sun OpenSSO Enterprise 8.0 Java API Reference.

JavaServer Pages
The SAML v2 framework provides JSP that can be used to initiate single sign-on, single logout
and termination requests from either the identity provider or the service provider using a web
browser. The JSP accept query parameters to allow flexibility in constructing SAML v2 requests;
they can be modified for your deployment. More information can be found in “JavaServer
Pages” in Sun OpenSSO Enterprise 8.0 Developer’s Guide.

About SAML v1.x
OpenSSO Enterprise can be configured to use SAML v1.x to achieve interoperability between
vendor platforms that provide SAML v1.x assertions. Assertions are issued by a SAML v1.x
asserting authority (a platform or application that declares whether a subject has been
authenticated into its system), and received by relying parties (partner sites defined by the
authority as trusted). SAML v1.x authorities use different sources to configure the assertion
information, including external data stores or assertions that have already been received and
verified. SAML v1.x can be used to allow OpenSSO Enterprise to:

■ Authenticate users and access trusted partner sites without having to reauthenticate; in
effect, single sign-on.

■ Act as a policy decision point (PDP), allowing external applications to access user
authorization information for the purpose of granting or denying access to their resources.
For example, employees of an organization can be allowed to order office supplies from
suppliers if they are authorized to do so.

■ Act as both an attribute authority that allows trusted partner sites to query a subject’s
attributes, and an authentication authority that allows trusted partner sites to query a
subject’s authentication information.

■ Validate parties in different security domains for the purpose of performing business
transactions.

■ Build Authentication, Authorization Decision, and Attribute Assertions using the SAML
v1.x API.

■ Permit an XML-based digital signature signing and verifying functionality to be plugged in.

Using SAML

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009152

http://docs.sun.com/doc/820-3748/gghwx?a=view
http://docs.sun.com/doc/820-3748/gghwx?a=view
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748/gghzf?a=view
http://docs.sun.com/doc/820-3748/gghzf?a=view

Note – Although Liberty ID-FF (as described in “Using the Liberty ID-FF” on page 155)
integrates aspects of the SAML v1.x specifications, its usage of SAML v1.x is independent of the
SAML v1.x framework as described in this section.

Figure 11–4 illustrates how SAML v1.x interacts with the other components in OpenSSO
Enterprise.

SAML
Aware Servlet

SAML
SOAP Receiver

SAML API

Policy
API

SSO API AuthN API Service API
Identity

Repo API

SAML
Post Profile

Servlet
JAXM SOAP Provider

Browser

Authority
TA

R
G

E
T

TA
R

G
E

T

A
ss

er
tio

n

A
ss

er
tio

n

A
ss

er
tio

n

A
rt

ifa
ct

A
rt

ifa
ct

A
rt

ifa
ct

 A
ss

er
tio

n
ID

A
ut

he
nt

ic
at

io
nQ

ue
ry

A

ut
ho

riz
at

io
nQ

ue
ry

 •
 A

ttr
ib

ut
eQ

ue
ry

S
S

O

Applications

The lighter-shaded boxes are components of the SAML module.

FIGURE 11–4 SAML v1.x Interaction in OpenSSO Enterprise

Using SAML

Chapter 11 • Choosing a Federation Option 153

Which Flavor of SAML to Use?
When choosing the flavor of SAML to use there are a number of things that should be taken into
account. For example, SAML v1.x and SAML v2 assertions and protocol messages are
incompatible. The following section have more information to help make the decision.

■ “Using SAML v2 or OpenSSO Enterprise CDSSO” on page 154
■ “Using SAML v1.x or Liberty ID-FF” on page 154

Using SAML v2 or OpenSSO Enterprise CDSSO
Cross Domain Single Sign On (CDSSO) is a proprietary mechanism from Sun OpenSSO
Enterprise, designed before any federation specifications existed. The basic difference between
the proprietary CDSSO (as described in Part II, “Access Control Using OpenSSO Enterprise”)
and SAML v2 is that CDSSO uses a single authentication authority, a mechanism to move a
cookie between multiple DNS domains. SAML v2, on the other hand, gives you the option of
using multiple authentication authorities, with one authority asserting the identity of the user
to the other.

CDSSO, in certain cases, is easier to set up and manage than federation but, federation solves a
broader set of single sign-on issues than CDSSO. CDSSO requires all policy agents to be
configured to use a single OpenSSO Enterprise server. This means only one user identity can
exist in the entire system whereas, when using SAML v2, user identities can exist on multiple
systems (service providers or identity providers). Because of the single identity in CDSSO
interactions, issues such as account mapping, attribute flow and session synchronization are
not relevant thus, if you need to implement these features, use SAML v2. If the following points
are valid to your planned deployment, CDSSO may be a simpler and more suitable solution
than federation.

■ Only Sun OpenSSO Enterprise and Sun policy agents are involved.
■ Sun policy agents are configured to use the same OpenSSO Enterprise infrastructure where

multiple instances can exist.
■ OpenSSO Enterprise uses a single user identity store.
■ Multiple instances of OpenSSO Enterprise (configured for high-availability) must reside in

a single DNS domain. Only policy agents can reside in different DNS domains.

For more information on CDSSO, see Chapter 6, “Models of the User Session and Single
Sign-On Processes.”

Using SAML v1.x or Liberty ID-FF
The Liberty ID-FF (as described in “Using the Liberty ID-FF” on page 155) and SAML v1.x
should only be used when integrating with a partner that is not able to use SAML v2. SAML v1.x
was designed to address the issue of cross-domain single sign-on. It does not solve issues such as
privacy, single logout, and federation termination. The Liberty Alliance Project was formed to

Using SAML

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009154

develop technical specifications that would solve business process issues including single
sign-on, account linking and consent, among others.

The SAML v1.x specifications and the Liberty Alliance Project specifications do not compete
with one another. They are complementary. In fact, the Liberty Alliance Project specifications
leverage profiles from the SAML specifications. The decision of whether to use SAML v1.x or
the Liberty specifications depends on your goal. In general, SAML v1.x should suffice for single
sign-on basics. The Liberty Alliance Project specifications can be used for more sophisticated
functions and capabilities, such as global sign-out, attribute sharing, web services. The
following table compares the benefits of the two.

TABLE 11–1 Comparison of the SAML v1.x and Liberty Alliance Project Specifications

SAML v1.x Uses Liberty Alliance Project Uses

Cross-domain single sign-on Single sign-on only after user federation

No user federation User federation

No privacy control, best for use within one company Built on top of SAML

User identifier is sent in plain text User identifier is sent as a unique handle

Single log out Single log out

Using the Liberty ID-FF
The Liberty Alliance Project was formed to develop technical specifications that would solve
business process issues including single sign-on, federation and consent. The Liberty Alliance
Project Identity Federation Framework (Liberty ID-FF) uses a name identifier to pass identity
data between identity providers and service providers. The name identifier is a randomly
generated character string that is assigned to a principal and used to federate the principal's
accounts at the identity provider and service provider sites. This pseudonym allows all
providers to identify a principal without knowing the user's actual identity. The name identifier
has meaning only in the context of the relationship between providers. SAML v1.x is used for
provider interaction.

Note – Liberty ID-FF was initially defined as an extension of SAML 1.0 (and later SAML 1.1).
The extensions have now been contributed back into SAML v2 which, going forward, will be
the basis on which the Liberty Alliance Project builds additional federated identity applications.
See “Using SAML” on page 146 for more information on this convergence.

The following sections contain information about the Liberty ID-FF and the features
implemented in OpenSSO Enterprise.

■ “Liberty ID-FF Features” on page 156

Using the Liberty ID-FF

Chapter 11 • Choosing a Federation Option 155

■ “About the Liberty ID-FF Process” on page 162

Liberty ID-FF Features
The following sections contain information about the Liberty ID-FF features implemented in
OpenSSO Enterprise.

■ “Federated Single Sign-On” on page 156
■ “Authentication and Authentication Context” on page 158
■ “The Common Domain for Identity Provider Discovery” on page 160
■ “Identifiers and Name Registration” on page 161
■ “Global Logout” on page 162
■ “Dynamic Identity Provider Proxying” on page 162

Federated Single Sign-On
Let's assume that a principal has separate user accounts with a service provider and an identity
provider in the same circle of trust. In order to gain access to these individual accounts, the
principal would authenticate with each provider separately. If federating with the Liberty ID-FF
though, after authenticating with the service provider, the principal may be given the option to
federate the service provider account with the identity provider account. Consenting to the
federation of these accounts links them for SSO, the means of passing a user's credentials
between applications without the user having to reauthenticate. SSO and federated SSO have
different processes. With OpenSSO Enterprise, you can achieve SSO in the following ways:

■ Install a policy agent in a web container to protect the application and pass the HTTP_HEADER
and REMOTE_USER variables to the application to capture the user credentials. You may or
may not need a custom authentication module.

■ Customize the application's authentication module to create an SSOToken from the request
object or from the SSO cookie. Afterwards, retrieve the user credentials using the SSO API
and create a session data structure using the application's API.

To set up federated SSO, you must first establish SSO. Following that, enable federation in the
metadata for the service provider entity and the identity provider entity using OpenSSO
Enterprise. Liberty ID-FF providers differentiate between federated users by defining a unique
identifier for each account. (They are not required to use the principal's actual provider account
identifier.) Providers can also choose to create multiple identifiers for a particular principal.
However, identity providers must create one handle per user for service providers that have
multiple web sites so that the handle can be resolved across all of them.

Using the Liberty ID-FF

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009156

Note – Because both the identity provider entity and the service provider entity in a federation
need to remember the principal's identifier, they create entries that note the value in their
respective user repositories. In most scenarios, the identity provider's identifier is conveyed to a
service provider and not visa versa. For example, if a service provider does not maintain its own
user repository, the identity provider's identifier is used.

OpenSSO Enterprise can accommodate the following SSO and federation-related functions:

■ Providers of either type notify the principal upon identity federation or defederation.
■ Providers of either type notify each other regarding a principal's defederation.
■ Identity providers notify the appropriate service providers regarding a principal's account

termination.
■ Providers of either type display a list of federated identities to the principal.
■ Users can terminate federations or defederate identities.

Additionally, OpenSSO Enterprise can accommodate the federation features explained in the
following sections.

■ “Auto-Federation” on page 157
■ “Bulk Federation” on page 157

Auto-Federation

Auto federation will automatically federate a user's disparate provider accounts based on a
common attribute. During SSO, if it is deemed a user at provider A and a user at provider B
have the same value for the defined common attribute (for example, an email address), the two
accounts will be federated without consent or interaction from the principal. For more
information, see Part II, “Federation, Web Services, and SAML Administration,” in Sun
OpenSSO Enterprise 8.0 Administration Guide.

Bulk Federation

Federating one user's service provider account with their identity provider account generally
requires the principal to visit both providers and link them. An organization though needs the
ability to federate user accounts behind the scenes. OpenSSO Enterprise provides a script for
federating user accounts in bulk. The script allows the administrator to federate many (or all) of
a principal's provider accounts based on metadata passed to the script. Bulk federation is useful
when adding a new service provider to an enterprise so you can federate a group of existing
employees to the new service. For more information, see Part II, “Federation, Web Services, and
SAML Administration,” in Sun OpenSSO Enterprise 8.0 Administration Guide.

Using the Liberty ID-FF

Chapter 11 • Choosing a Federation Option 157

http://docs.sun.com/doc/820-3885/gglxk?a=view
http://docs.sun.com/doc/820-3885/gglxk?a=view
http://docs.sun.com/doc/820-3885/gglxk?a=view
http://docs.sun.com/doc/820-3885/gglxk?a=view

Authentication and Authentication Context
SSO is the means by which a provider of either type can convey to another provider that a
principal has been authenticated. Authentication is the process of validating user credentials;
for example, a user identifier accompanied by an associated password. You can authenticate
users with OpenSSO Enterprise in the following ways:
■ Use a policy agent to insert HTTP header variables into the request object. This functions

for web applications only.
■ Use the authentication API to validate and retrieve user identity data. This will work with

either web or non-web applications.

Identity providers use local (to the identity provider) session information mapped to a user
agent as the basis for issuing SAML authentication assertions to service providers. Thus, when
the principal uses a user agent to interact with a service provider, the service provider requests
authentication information from the identity provider based on the user agent's session
information. If this information indicates that the user agent's session is presently active, the
identity provider will return a positive authentication response to the service provider.
OpenSSO Enterprise allows providers to exchange the following minimum set of
authentication information with regard to a principal.
■ Authentication status (active or not)
■ Instant (time authenticated)
■ Authentication method
■ Pseudonym (temporary or persistent)

SAML v1.x is used for provider interaction during authentication but not all SAML assertions
are equal. Different authorities issue SAML assertions of different quality. Therefore, the
Liberty ID-FF defines how the consumer of a SAML assertion can determine the amount of
assurance to place in the assertion. This is referred to as the authentication context, information
added to the SAML assertion that gives the assertion consumer the details they need to make an
informed entitlement decision. For example, a principal uses a simple identifier and a
self-chosen password to authenticate to a service provider. The identity provider sends an
assertion to a second service provider that states how the principal was authenticated to the first
service provider. By including the authentication context, the second service provider can place
an appropriate level of assurance on the associated assertion. If the service provider were a
bank, they might require stronger authentication than that which has been used and respond to
the identity provider with a request to authenticate the user again using a more stringent
context. The authentication context information sent in the assertion might include:
■ The initial user identification mechanism (for example, face-to-face, online, or shared

secret).
■ The mechanisms for minimizing compromise of credentials (for example, private key in

hardware, credential renewal frequency, or client-side key generation).
■ The mechanisms for storing and protecting credentials (for example, smart card, or

password rules).

Using the Liberty ID-FF

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009158

■ The authentication mechanisms (for example, password or smart card with PIN).

The Liberty ID-FF specifications define authentication context classes against which an identity
provider can claim conformance. The Liberty ID-FF authentication contexts are listed and
described in the following table.

TABLE 11–2 Authentication Context Classes

Class Description

MobileContract Identified when a mobile principal has an identity for which
the identity provider has vouched.

MobileDigitalID Identified by detailed and verified registration procedures, a
user's consent to sign and authorize transactions, and
DigitalID-based authentication.

MobileUnregistered Identified when the real identity of a mobile principal has
not been strongly verified.

Password Identified when a principal authenticates to an identity
provider by using a password over an unprotected HTTP
session.

Password-ProtectedTransport Identified when a principal authenticates to an identity
provider by using a password over an SSL-protected session.

Previous-Session Identified when an identity provider must authenticate a
principal for a current authentication event and the
principal has previously authenticated to the identity
provider. This affirms to the service provider a time lapse
from the principal's current resource access request.

Note – The context for the previously authenticated session is
not included in this class because the user has not
authenticated during this session. Thus, the mechanism that
the user employed to authenticate in a previous session
should not be used as part of a decision on whether to now
allow access to a resource.

Smartcard Identified when a principal uses a smart card to authenticate
to an identity provider.

Smartcard-PKI Identified when a principal uses a smart card with an
enclosed private key and a PIN to authenticate to an identity
provider.

Software-PKI Identified when a principal uses an X.509 certificate stored
in software to authenticate to the identity provider over an
SSL-protected session.

Using the Liberty ID-FF

Chapter 11 • Choosing a Federation Option 159

TABLE 11–2 Authentication Context Classes (Continued)
Class Description

Time-Sync-Token Identified when a principal authenticates through a time
synchronization token.

For more information, see the Liberty ID-FF Authentication Context Specification and .
Additionally, there is an XML schema defined which the identity provider authority can use to
incorporate the context of the authentication in the SAML assertions it issues.

The Common Domain for Identity Provider Discovery
Service providers need a way to determine which identity provider in a circle of trust is used by
a principal requesting authentication. Because circles of trust are configured without regard to
their location, this function must work across DNS-defined domains. A common domain is
configured, and a common domain cookie written, for this purpose.

Let's suppose a circle of trust contains more than one identity provider. In this case, a service
provider trusts more than one identity provider so, when a principal needs authentication, the
service provider with which the principal is communicating must have the means to determine
the correct identity provider. To ascertain a principal’s identity provider, the service provider
invokes a protocol exchange to retrieve the common domain cookie, a cookie written for the
purpose of introducing the identity provider to the service provider. If no common domain
cookie is found, the service provider will present a list of trusted identity providers from which
the principal can choose. After successful authentication, the identity provider writes (using the
configured Writer Service URL) a common domain cookie and, the next time the principal
attempts to access a service, the service provider finds and reads the common domain cookie
(using the configured Reader Service URL), to determine the identity provider. More
information on the Common Domain for Identity Provider Discovery is available in the
following sections, and in “Finding an Identity Provider for Authentication” in Sun OpenSSO
Enterprise 8.0 Administration Guide.

■ “The Common Domain” on page 160
■ “The Common Domain Cookie” on page 161
■ “The Writer Service and the Reader Service” on page 161

The Common Domain

The common domain is established for use only within the scope of identity provider discovery
in a defined circle of trust. In OpenSSO Enterprise deployments, the identity provider discovery
WAR is deployed in a web container installed in a predetermined and preconfigured common
domain so that the common domain cookie is accessible to all providers in the circle of trust.
For example, if an identity provider is available at http://www.Bank.com, a service provider is
available at http://www.Store.com, and the defined common domain is RetailGroup.com, the
addresses will be Bank.RetailGroup.com and Store.RetailGroup.com, respectively. If the

Using the Liberty ID-FF

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009160

https://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files
http://docs.sun.com/doc/820-3885/ggmac?a=view
http://docs.sun.com/doc/820-3885/ggmac?a=view

HTTP server in the common domain is operated by the service provider, the service provider
will redirect the user agent to the appropriate identity provider.

The Common Domain Cookie

After an identity provider authenticates a principal, the identity provider sets a URL-encoded
cookie defined in a predetermined domain common to all identity providers and service
providers in the circle of trust. The common domain cookie is named _liberty_idp for Liberty
ID-FF and _saml_idp for SAML v2. After successful authentication, a principal’s identity
provider appends their particular encoded identifier to a list in the cookie. If their identifier is
already present in the list, the identity provider may remove the initial appearance and append
it again. The intent is that the service provider reads the last identifier on the cookie’s list to find
the principal’s most recently established identity provider.

Note – The identifiers in the common domain cookie are a list of SuccinctID elements encoded
in the Base64 format. One element maps to each identity provider in the circle of trust. Service
providers then use this SuccinctID element to find the user's preferred identity provider.

The Writer Service and the Reader Service

After a principal authenticates with a particular identity provider, the identity provider
redirects the principal's browser to the configured Writer Service URL using a parameter that
indicates they are the identity provider for this principal. The Writer Service then writes a
cookie using the parameter. Thereafter, all providers configured in this common domain will be
able to tell which identity provider is used by this principal. Thus, the next time the principal
attempts to access a service hosted by a service provider in the same common domain, the
service provider retrieves and reads the common domain cookie, using the configured Reader
Service URL, to determine the identity provider.

The Writer Service URL and the Reader Service URL can be defined for use with the Liberty
ID-FF or the SAML v2 federation protocol. The URLs are defined when you create a circle of
trust for federation. The Common Domain for Identity Provider Discovery for Liberty ID-FF is
based on the Identity Provider Introduction Profile detailed in the Liberty ID-FF Bindings and
Profiles Specifications. The Common Domain for Identity Provider Discovery for SAML v2 is an
implementation of the Identity Provider Discovery Profile as described in the Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0 specification.

Identifiers and Name Registration
OpenSSO Enterprise supports name identifiers that are unique across all providers in a circle of
trust. This identifier can be used to obtain information for or about the principal without
requiring the user to consent to a long-term relationship with the service provider. When
beginning federation, the identity provider generates an opaque value that serves as the initial
name identifier that both the service provider and the identity provider use to refer to the

Using the Liberty ID-FF

Chapter 11 • Choosing a Federation Option 161

http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

principal when communicating with each other. After federation, the identity provider or the
service provider may register a different opaque value. If a service provider registers a different
opaque value for the principal, the identity provider must use the new identifier when
communicating with the service provider about the principal. The reasons for changing an
identifier would be implementation-specific. The initial name identifier defined by the identity
provider is always used to refer to the principal unless a new name identifier is registered.

Global Logout
A principal may establish authenticated sessions with both an identity provider and individual
service providers, based on authentication assertions supplied by the identity provider. When
the principal logs out of a service provider session, the service provider sends a logout message
to the identity provider that provided the authentication for that session. When this happen, or
the principal manually logs out of a session at an identity provider, the identity provider sends a
logout message to each service provider to which it provided authentication assertions under
the relevant session. The one exception is the service provider that sent the logout request to the
identity provider.

Dynamic Identity Provider Proxying
An identity provider can choose to proxy an authentication request to an identity provider in
another authentication domain if it knows that the principal has been authenticated with this
identity provider. The proxy behavior is defined by the local policy of the proxying identity
provider. However, a service provider can override this behavior and choose not to proxy. This
function can be implemented as a form of authentication when, for instance, a roaming mobile
user accesses a service provider that is not part of the mobile home network. For more
information see “ID-FF Federation Operations” in Sun OpenSSO Enterprise 8.0 Administration
Guide.

About the Liberty ID-FF Process
The Liberty ID-FF is designed to work with heterogeneous platforms, various networking
devices (including personal computers, mobile phones, and personal digital assistants), and
emerging technologies. The process of Liberty ID-FF federation begins with authentication. A
user attempting to access a resource protected by OpenSSO Enterprise are redirected to the
proprietary Authentication Service via an OpenSSO Enterprise login page. After the user
provides credentials, the Authentication Service allows or denies access to the resource based on
the outcome.

Note – For more information about the proprietary Authentication Service, see the Chapter 7,
“Authentication and the Authentication Service.”

Using the Liberty ID-FF

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009162

http://docs.sun.com/doc/820-3885/ghmum?a=view
http://docs.sun.com/doc/820-3885/ghmum?a=view

When the user attempts access to a resource that belongs to a trusted member provider of a
configured circle of trust, the process of user authentication begins with the search for a valid
OpenSSO Enterprise session token from the proprietary Authentication Service. The process
can go in one of two directions based on whether a session token is found.

■ If no session token is found, the principal is redirected to a location defined by the pre-login
URL to establish a valid session.

■ If a session token is found, the principal is granted (or denied) access to the requested page.
Assuming access is granted, the requested page contains a link so the principal may federate
the OpenSSO Enterprise identity with the identity local to the requested site. If the principal
clicks this link, federation begins.

Figure 11–5 illustrates these divergent paths. The process shown is the default process when no
application has been deployed. When an application is deployed and using OpenSSO
Enterprise, the process will change based on the query parameters and preferences passed to
OpenSSO Enterprise from the participating application. For more information, see Sun
OpenSSO Enterprise 8.0 Administration Guide.

Using the Liberty ID-FF

Chapter 11 • Choosing a Federation Option 163

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885

User Interaction

Liberty-based Components

OpenSSO Components

User attempts to
access protected

web resource

Is
SSO token

valid?

Is
Federation

cookie
present?

Federation
cookie

value=yes?

Send
authentication
request to IDP

Show local
login page

Approve
credentials?

User presents
credentials

Did IDP
send valid
response?

Show requested
page with

Federated link

User clicks link,
enables

Federation

Show
IDP
List

User
selects

IDP

Send
Federation

request

Generate SSO
token and create

a session

No Yes

Yes

Yes

Yes

No

No

Pre-Login Processes

No

No

Yes

Federation Processes

FIGURE 11–5 Default Process of Federation

Using the Liberty ID-FF

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009164

As illustrated, the pre-login process establishes a valid OpenSSO Enterprise session. When a
principal attempts to access a service provider site and no OpenSSO Enterprise session token is
found, OpenSSO Enterprise searches for a federation cookie. A federation cookie is
implemented by OpenSSO Enterprise and is called fedCookie. It can have a value of either yes
or no, based on the principal’s federation status.

Note – A federation cookie is not defined in the Liberty Alliance Project specifications.

At this point, the pre-login process may take one of the following paths:
■ If a federation cookie is found and its value is no, a OpenSSO Enterprise login page is

displayed and the principal submits credentials to the proprietary Authentication Service.
When authenticated by OpenSSO Enterprise, the principal is redirected to the requested
page, which might contain a link to allow for identity federation. If the principal clicks this
link, federation begins.

■ If a federation cookie is found and its value is yes, the principal has already federated an
identity but has not been authenticated by an identity provider within the circle of trust for
this OpenSSO Enterprise session. Authentication to OpenSSO Enterprise is achieved on the
back end by sending a request to the principal’s identity provider. After authentication, the
principal is directed back to the requested page.

■ If no federation cookie is found, a passive authentication request (one that does not allow
identity provider interaction with the principal) is sent to the principal’s identity provider. If
an affirmative authentication is received back from the identity provider, the principal is
directed to the OpenSSO Enterprise Authentication Service, where a session token is
granted. The principal is then redirected to the requested page. If the response from the
identity provider is negative (for example, if the session has timed out), the principal is sent
to a common login page to complete either a local login or Liberty ID-FF federation.

Using WS-Federation
WS-Federation is part of the larger Web Services Security (WS-Security) framework which
provides a means for applying security to web services through the use of security tokens.
WS-Security describes how to attach signature and encryption headers as well as security
tokens (including binary security tokens such as X.509 certificates and Kerberos tickets) to
SOAP messages. WS-Trust, another specification in the WS-Security framework, provides for
federation by defining a Security Token Service (STS) and a protocol for requesting and issuing
the security tokens. WS-Federation, as implemented in OpenSSO Enterprise, uses the
OpenSSO Enterprise Security Token Service (modelled on the WS-Trust specification) to allow
providers in different security realms to broker trust using information on identities, identity
attributes and authentication, and provider federation. A principal requests a token from the
Security Token Services. This token, which may represent the principal's primary identity, a
pseudonym, or the appropriate attributes, is presented to the service provider for

Using WS-Federation

Chapter 11 • Choosing a Federation Option 165

authentication and authorization. WS-Federation uses several security tokens as well as the
mechanism for associating them with messages. This release of OpenSSO Enterprise has
implemented the following features of the WS-Federation specification.

■ The Web (Passive) Profile defines single sign-on, single logout, attribute and pseudonym
token exchanges for passive requestors; for example, a web browser that supports HTTP. For
the passive mechanisms to provide a single or reduced sign-on, there needs to be a service
that will verify that the claimed requestor is really the requestor. Initial verification MUST
occur in a secure environment; for example, using SSL/TLS or HTTP/S. The token is
abstract and the token exchange is based on the Security Token Service model of WS-Trust.

■ Tokens based on the Web Services-Interoperability Basic Security Profile (WS-I BSP) define
security that is implemented inside a SOAP message; and security implemented at the
transport layer, using HTTPS. The protocol covers how you generate or handle security
tokens.

The WS-Federation implementation in OpenSSO Enterprise is based on the application's
SAML v2 code and uses WS-Federation 1.1 metadata. Authentication request parameters are
represented directly as GET parameters, and the authentication response is a WS-Trust
RequestSecurityTokenResponse element.

Note – There is no authentication context mapping, persistent or transient NameID identifiers
or auto-federation in the OpenSSO Enterprise implementation of WS-Federation.

The entry points for all WS-Federation functionality will be implemented as servlets. JavaServer
Pages (JSP) are used only for HTML content (for example, the HTML form used to send the
WS-Federation single response from the identity provider to the service provider). The
following figure illustrates the flow of messages between OpenSSO Enterprise (acting as the
service provider) and the Active Directory (acting as the identity provider).

Using WS-Federation

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009166

In a WS-Federation interaction, the request by an unauthenticated user attempting to access a
protected web site is redirected to the Active Directory for Federation Services (ADFS) identity
provider. After the user is authenticated (either by a back-end single sign-on or by entering
credentials), ADFS posts a form containing a signed SAML assertion to the service provider.
The service provider validates the assertion, copies the attributes into the user's session, and
gives the appropriate access.

IP/STS
(ADFS)

Requestor
Browser

RP
(OpenSSO)

Resource
(Policy Agent)

GET resource

302 Redirect to openSSD

GET (OpenSSO authN request)

(optional - determine realm)

302 Redirect to IP/STS

GET (WS-Fed RST)

401 Negotiate

GET (with krb token)

200 HTML Form
with WS-FED RSTR

POSTRSTR

GET resource w AM session token (cookie)

200 result (subject to AM policy)

302 Redirect to resource
w AM session token (cookie)

a.

b.

c.

Alternatively:
-5,1 return login form
-5.2 POST login form with username

FIGURE 11–6 WS-Federation Process Flow

Using WS-Federation

Chapter 11 • Choosing a Federation Option 167

Note – Microsoft Active Directory Federation Services supports single sign-on via
WS-Federation.

Using WS-Federation

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009168

The Web Services Stack, Identity Services,
and Web Services Security
This fourth part of the Sun OpenSSO Enterprise Technical Overview contains information
on implementing the Web Services Stack, identity services, and web services security. It
contains the following chapters:

■ Chapter 12, “Accessing the Web Services Stack”
■ Chapter 13, “Delivering Identity Web Services”
■ Chapter 14, “Securing Web Services and the Security Token Service”

P A R T I V

169

170

Accessing the Web Services Stack

In OpenSSO Enterprise, the Federation Services framework enables the secure exchange of
authentication and authorization information by providing an interface for creating,
modifying, and deleting circles of trust and configuring service providers and identity providers
(both remote and hosted types) as entity providers. The implemented Web Services Stack
defines a supporting framework for these Federation Services. This chapter contains
information on the Web Services Stack.

■ “About the Web Services Stack” on page 171
■ “Web Services Stack Architecture” on page 172
■ “Web Services Stack Process” on page 175
■ “Using the Web Services Stack” on page 176
■ “Implemented Services” on page 181

About the Web Services Stack
Web services are distributed applications developed using open technologies such as eXtensible
Markup Language (XML), SOAP, and HyperText Transfer Protocol (HTTP). Enterprises use
these technologies as a mechanism for allowing their applications to cross network boundaries
and communicate with those of their partners, customers and suppliers. Towards this end,
OpenSSO Enterprise implements the Liberty Alliance Project Identity-Web Service Framework
(Liberty ID-WSF) 1.1 specifications, designed to operate in concert with the Liberty Alliance
Project Identity-Federation Framework (Liberty ID-FF). The implementation of the Liberty
ID-WSF 1.1 specifications uses a servlet framework into which identity-based web services can
be plugged and leveraged for security. Tools and API are also provided for identity providers to
develop new web services and for service providers to consume both default and custom web
services. Furthermore, OpenSSO Enterprise provides the necessary hooks to integrate an
existing enterprise infrastructure with the Liberty Alliance Project—based infrastructure.
Figure 12–1 illustrates the design of the Liberty ID-WSF framework.

12C H A P T E R 1 2

171

Any custom web service developed with the Liberty ID-WSF must register with the SOAP
Binding Service which provides validation of SOAP messages and generates the OpenSSO
Enterprise session token for client authorization. Bootstrapping of the Web Services Stack is
accomplished by using the Discovery Service to find a resource offering for an authenticated
user. (A resource offering defines an association between a type of identity data and a URI to a
WSDL file that provides information about obtaining access to the data. The web service
provider must also register the web service's resource offering with the Discovery Service before
offering services.) OpenSSO Enterprise supports bootstrapping using SAML v2, Liberty ID-FF,
or the Authentication Web Service.

Web Services Stack Architecture
The Web Services Stack defines an architecture in which SOAP over HTTP(S) is used as the
transport layer protocol. As well, custom web services can be plugged into it. All web services in
OpenSSO Enterprise (whether proprietary or custom) are front-ended by a servlet endpoint
called the SOAPReceiver. The SOAPReceiver validates digital signatures or encryptions from
incoming SOAP request messages and authenticates the remote web services client. From a
high-level, a user requests a specific service which passes the request to the SOAPReceiver
which, in turn, passes it to the Liberty Personal Profile Service (or a custom web service).
Figure 12–2 illustrates the architecture of the Web Services Stack and how a web service client
(WSC) communicates with the web service provider (WSP).

FIGURE 12–1 Web Services Stack Design

Web Services Stack Architecture

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009172

Web Services Stack Architecture

Chapter 12 • Accessing the Web Services Stack 173

User
Agent

Custom
Identity
Service

Custom
Data

Service

Employee
Profile
Service

Personal
Profile
ServiceDiscovery

Service

Authentication
Web

Service

Data Service Templates

Interaction Service APIs

SOAP APIs

SOAP/HTTP(S)

Trusted
Authority

Discovery
Service

Authentication
Web

Service Personal
Profile
Service

Employee
Profile
Service

Custom
Data

Service

Custom
Identity
Service

Data Service Templates

Interaction Service APIs

SOAP Receiver APIs

Interaction
Redirect
Handler

PAOS

PolicyAuthenticationSAMLSDKSSO
Services

Management

Web Service Provider
Contains Service and Service APIs

Web Service Consumer
Contains Client Components and Client APIs

Directory
Server

Metadata

FIGURE 12–2 Web Services Stack Architecture

Web Services Stack Architecture

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009174

Web Services Stack Process
Figure 12–3 provides a high-level view of the process between the various components in the
Web Services Stack. In this example:

■ The web browser represents a user.
■ The service provider also acts as a WSC, invoking a web service on behalf of the user. The

service provider relies on the identity provider for authentication.
■ The identity provider acts as an authentication provider by authenticating the user. It also

acts as a trusted authority, issuing security tokens through the Discovery Service.
■ The WSP serves requests from web services clients such as the Liberty Personal Profile

Service.
■ The process assumes that the user, the identity provider, and the service provider have

already been federated.

1. The user attempts to access a resource hosted on the service provider server.
2. The service provider redirects the user to the identity provider for authentication.
3. The identity provider authenticates the user successfully and sends the single sign-on

assertion to the requesting service provider.
4. The service provider verifies the assertion and the user is issued a session token.
5. The service provider redirects the user to the requested resource.

Web Services
Consumer

Service Provider

OpenSSOOpenSSO

Web Services Provider/
Discovery Service

Web Services Provider/
Liberty Personal
Profile Service

1

4

7

109

3

8

6

11 5

Web Browser

OpenSSO

Identity Provider

2

FIGURE 12–3 Web Services Stack Process

Web Services Stack Process

Chapter 12 • Accessing the Web Services Stack 175

6. The user requests access to another service hosted on the WSC server.
For example, it might need that value of an attribute from the user’s Liberty Personal Profile
Service.

7. The WSC sends a query to the Discovery Service to determine where the user’s Liberty
Personal Profile Service instance is hosted.
The WSC bootstraps the Discovery Service with the resource offering from the assertion
obtained earlier.

8. The Discovery Service returns a response to the WSC containing the endpoint for the user’s
Liberty Personal Profile Service instance and a security token that the WSC can use to access
it.

9. The WSC sends a query to the Liberty Personal Profile Service instance.
The query asks for the user’s personal profile attributes, such as home phone number. The
required authentication mechanism specified in the Liberty Personal Profile Service
resource offering must be followed.

10. The Liberty Personal Profile Service instance authenticates and validates authorization for
the requested user or the WSC, or both.
If user interaction is required for some attributes, the Interaction Service will be invoked to
query the user for consents or for attribute values. The Liberty Personal Profile Service
instance returns a response to the WSC after collecting all required data.

11. The WSC processes the Liberty Personal Profile Service response, and renders the service
pages containing the information.

For detailed information about all these components, see the Sun OpenSSO Enterprise 8.0
Administration Guide.

Using the Web Services Stack
The Web Services Stack authenticates the user and obtains bootstrapping information for the
requested application. For client applications accessed from a desktop, the user can be
authenticated using the Authentication Web Service. (For example, a Java® Swing client
application can authenticate the user, obtain profile data, and pass it on for online transactions.)
For browser-based applications, the user can be authenticated using the SAML v2 single
sign-on profiles or Liberty ID-FF. The following sections describe how the Web Services Stack
can be implemented.

■ “With SAML v2 or Liberty ID-FF” on page 177
■ “With the Authentication Web Service” on page 179

For more information on configuring the Web Services Stack, see Chapter 9, “Implementing
Web Services,” in Sun OpenSSO Enterprise 8.0 Developer’s Guide and Chapter 9, “Identity Web
Services,” in Sun OpenSSO Enterprise 8.0 Administration Guide.

Using the Web Services Stack

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009176

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3748/ggiag?a=view
http://docs.sun.com/doc/820-3748/ggiag?a=view
http://docs.sun.com/doc/820-3885/ggmav?a=view
http://docs.sun.com/doc/820-3885/ggmav?a=view

With SAML v2 or Liberty ID-FF
OpenSSO Enterprise can be a deployed as a service provider or an identity provider and provide
identity authentication using the SAML v2 or Liberty ID-FF protocols, implemented by the
Federation Services, to bootstrap into the Web Services Stack framework. The SAML v2 process
is illustrated in Figure 12–4.

Using the Web Services Stack

Chapter 12 • Accessing the Web Services Stack 177

Browser WSC

1. User access web
 service client

2. WSC redirects to Service Provider

3. Service Provider redirects to Identity Provider

4. IDP presents a login page

5.User enters his credentials

5. After successful SAML2 SSO, SP
 will have use’s directory resource
 offering and credentials to access
 discovery service

6. WSC makes a request
 to discovery service to get
 web service resource offerings

7. Discovery Service returns
 web service offering and may
 be security token

8. WSC makes a request to web
 service using security token

9. Web service returns response
 upon credential validation

10. Finally wsc returns the
 response to the user

WSP
Service
Provider

Discovery
Service/IDP

FIGURE 12–4 Web Services Stack Using SAML v2

Using the Web Services Stack

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009178

With the Authentication Web Service
OpenSSO Enterprise can also provide identity authentication using the Authentication Web
Service to bootstrap into the Web Services Stack framework. This process is illustrated in
Figure 12–5.

Using the Web Services Stack

Chapter 12 • Accessing the Web Services Stack 179

Browser WSC

1. User access web
 service client

2. WSC presents a login page

3. Use enters credentials

4. WSC Authenticates against
 Liberty Authn Service

5. After successful authentication, it
 returns user’s discovery resource
 offering and credential to access
 discovery service

6. WSC makes a request to
 discovery service to get
 web service resource
 offering

7. Discovery Service returns
 web service offering and
 may be security token

8. WSC makes a request to
 web service using
 security token

9. Web service returns
 responce upon credential
 validation

10. Finally wsc returns the
 response to the user

WSP
Authn

Service
Discovery
Service

FIGURE 12–5 Web Services Stack Using Authentication Web Service

Using the Web Services Stack

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009180

Implemented Services
Information on the services implemented in the Web Services Stack is in the following sections:

■ “Authentication Web Service” on page 181
■ “Discovery Service” on page 184
■ “SOAP Binding Service” on page 188
■ “Liberty Personal Profile Service” on page 189

Additional information can be found in the Sun OpenSSO Enterprise 8.0 Administration Guide
and the Sun OpenSSO Enterprise 8.0 Developer’s Guide.

Authentication Web Service
The Authentication Web Service is for provider-to-provider authentication. SOAP defines an
XML-based messaging paradigm, but not security mechanisms for message protection;
particularly, they do not describe user authentication. To secure SOAP messages, the
Authentication Web Service was implemented based on the Liberty ID-WSF Authentication
Service and Single Sign-On Service Specification. The specification defines a protocol that adds
the Simple Authentication and Security Layer (SASL) authentication functionality. Upon
successful authentication, the final Simple Authentication and Security Layer (SASL) response
contains the resource offering for the Discovery Service.

Note – The Authentication Web Service is configured using the XML service file
amAuthnSvc.xml and can be managed using the OpenSSO Enterprise console or this XML file.
Additional administration information can be found in the Sun OpenSSO Enterprise 8.0
Administration Guide.

The following sections contain more general information.

■ “Authentication Web Service Process” on page 181
■ “Authentication Web Service API” on page 182
■ “Which Authentication Service to Use?” on page 182

Authentication Web Service Process
The exchange of authentication information between a web service consumer (WSC) and web
service provider (WSP) is accomplished using SOAP-bound messages. The messages are a
series of client requests and server responses specific to the defined SASL mechanism (or mode
of authentication). The authentication exchange can involve an arbitrary number of round
trips, dictated by the particular SASL mechanism employed. The WSC might have knowledge
of the supported SASL mechanisms, or it might send the server its own list of mechanisms and
allow the server to choose one. (The list of supported mechanisms can be found at SASL

Implemented Services

Chapter 12 • Accessing the Web Services Stack 181

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885
http://www.iana.org/assignments/sasl-mechanisms

Mechanisms.) After receiving a request for authentication (or any response from the WSC), the
WSP may issue additional challenges or indicate authentication failure or success. The
sequence between the WSC and the Authentication Web Service (a WSP) is as follows.

1. The authentication exchange begins when a WSC sends a SASL authentication request to
the Authentication Web Service on behalf of a principal. The request message contains an
identifier for the principal and indicates one or more SASL mechanisms from which the
service can choose.

2. The Authentication Web Service responds by asserting the method to use and, if applicable,
initiating a challenge.

Note – If the Authentication Web Service does not support any of the cited methods, it
responds by aborting the exchange.

3. The WSC responds with the necessary credentials for the chosen method of authentication.
4. The Authentication Web Service replies by approving or denying the authentication. If

approved, the response includes the credentials the WSC needs to invoke other web
services, such as the Discovery Service.

Authentication Web Service API
The Authentication Web Service includes the following Java programming packages:
■ com.sun.identity.liberty.ws.authnsvc is a client API for external Java applications to

send SASL requests and receive SASL responses.
■ com.sun.identity.liberty.ws.authnsvc.mechanism defines an interface to handle

different SASL mechanisms.
■ com.sun.identity.liberty.ws.authnsvc.protocol contains classes that represent the

SASL request and response.

Together, the packages are used to initiate the authentication process and communicate
authentication credentials to the Authentication Web Service. For more information, see the
Sun OpenSSO Enterprise 8.0 Java API Reference and the Sun OpenSSO Enterprise 8.0 Developer’s
Guide.

Which Authentication Service to Use?
The Authentication Web Service is not to be confused with the proprietary OpenSSO
Enterprise Authentication Service. Architecturally, the Authentication Web Service sits on top
of the OpenSSO Enterprise Authentication Service and the Web Services Stack framework. You
might use the Authentication Web Service if you are a service provider and want to use a
standards-based mechanism to authenticate users. Following are two use cases where the
Authentication Web Service is preferable to the proprietary OpenSSO Enterprise
Authentication Service:

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009182

http://www.iana.org/assignments/sasl-mechanisms
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748

■ A service provider relies on a remote identity provider (not necessarily using OpenSSO
Enterprise) for authentication.

■ An enterprise in a service-oriented architecture (SOA) environment wants to use
non-proprietary mechanisms to authenticate users and web services clients before accessing
a protected web service.

In addition to providing an authentication service to verify credentials (for example, user ID
and password), the Authentication Web Service provides the WSC with bootstrap information
that contains the endpoint and credentials needed to access the Discovery Service. The WSC
can ignore the bootstrap or use it to access other web services, such as the authenticated user's
personal profile or calendar.

Note – An authenticated enterprise might also use the bootstrap information to access a partner
in a business-to-business environment.

Following is a scenario that shows how the Authentication Web Service interacts with the
OpenSSO Enterprise Authentication Service. The WSC delegates all authentication to the
identity provider and prefers PLAIN authentication which accepts a user identifier and
password.

1. The user attempts access to a service provider (not necessarily hosted by OpenSSO
Enterprise).

2. When the service provider (acting as a WSC) finds that the user is not authenticated, it
invokes the identity provider Authentication Web Service by sending a SOAP request.

Note – It is assumed that the identity provider is hosted by OpenSSO Enterprise where the
OpenSSO Enterprise Authentication Service is configured for Certificate and LDAP
authentication and the Authentication Web Service has mapped LDAP to its own PLAIN
authentication mechanism)

3. After inspecting its configuration, the Authentication Web Service sends back a response
indicating that it supports Certificate and PLAIN authentication.

4. The service provider decides on PLAIN authentication and prompts the user for an
identifier and password.

5. The service provider receives the user identifier and password and sends it to the identity
provider.

6. The identity provider passes the credentials to the locally hosted LDAP Authentication
module using the proprietary OpenSSO Enterprise Authentication Service Java API.

7. The LDAP Authentication module verifies the credentials by accessing the user's personal
profile (hosted by a third-party product).

Implemented Services

Chapter 12 • Accessing the Web Services Stack 183

8. The Authentication Web Service is notified of the verification and sends a response to the
service provider indicating successful authentication. If configured to do so, it also includes
bootstrap information formatted using XML and containing the Discovery Service
endpoint and a token to invoke it.

9. The service provider parses the response, verifies that it is a successful authentication, and
provides the service to the user.

At some point the service provider might need to access the user's personal profile. To do this, it
will use the bootstrap information received during this process to contact the Discovery Service
and find where the profile is stored. The Discovery Service returns a resource offering
(containing a token and the location of an endpoint), and the service provider uses that to
invoke the Liberty Personal Profile Service.

Discovery Service
All web services are defined by a Web Services Description Language (WSDL) file that describes
the type of data the service contains, the available ways said data can be exchanged, the
operations that can be performed using the data, a protocol that can be used to perform the
operations, and a URL (or endpoint) for access to the service. Additionally, the WSDL file itself
is assigned a unique resource identifier (URI) that is used to locate it in a Universal Description,
Discovery and Integration (UDDI) repository. Thus, the web service can now be discovered.

According to the Web Services Glossary, discovery of a web service is the act of locating a WSDL
file for it. Typically, there are one or more web services on a network so, a discovery service is
required to keep track of them. OpenSSO Enterprise implements the Liberty ID-WSF Discovery
Service Specification for its Discovery Service. When a WSC queries the Discovery Service for a
WSP that allows access to a particular user's credit card information, the Discovery Service
matches the properties in the request against the properties of its registered services and returns
the appropriate resource offering (which defines an association between a type of identity data
and a URI to the WSDL definition for obtaining access to the data.)

Note – The Discovery Service is configured using the XML service file amDisco.xml and can be
managed using the OpenSSO Enterprise console or this XML file. Additional administration
information can be found in the Sun OpenSSO Enterprise 8.0 Administration Guide.

The following sections contain additional information on the Discovery Service.

■ “Discovery Service Process” on page 185
■ “Discovery Service Architecture” on page 186
■ “Discovery Service API” on page 187

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009184

http://www.w3.org/TR/ws-gloss/
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1
http://docs.sun.com/doc/820-3885

Discovery Service Process
Figure 12–6 provides an overview of the interactions between the parties in a web services
environment using the Discovery Service. In this scenario, the identity provider hosts the
Discovery Service and the process assumes that the Discovery Service is not generating security
tokens.

1. The user logs in to an identity provider, is authenticated, and completes the federation
process, enabling single sign-on with other members of the circle of trust. More specifically:
a. Within a browser, the user types the URL for a service provider.
b. The service provider collects the user’s credentials and redirects the information to the

identity provider for authentication.
c. If the credentials are verified, the user is authenticated.
d. Assuming the identity provider is the center of a circle of trust, it will notify the

authenticated user of the option to federate any local identities created with circle of
trust member organizations. The user would then accept or decline this invitation to

User Agent Service
Provider
(also acts as
Web Service
Consumer)

AuthN Web
Service/

Discovery
Service

Personal
Profile
Service

1. Single sign-on and introduction

3. Send discovery lookup query

2. Request access to service

4. Return discovery response

7. Render service pages

5. Send data query to personal profile (identity) service

6. Return response with identity data for access

FIGURE 12–6 Discovery Service Process

Implemented Services

Chapter 12 • Accessing the Web Services Stack 185

federate. If the user accepts this option to federate, single sign-on is enabled. By
accepting the invitation, the user will be given the option to federate to a member
organization’s web site at each login.

2. After authentication, the user now requests access to services hosted by another service
provider in the circle of trust.

3. The service provider, acting as a WSC, sends a DiscoveryLookup query to the Discovery
Service looking for a pointer to the user's identity provider.
The service provider is able to bootstrap the Discovery Service using the end point reference
culled from the authentication statement.

4. The Discovery Service returns a DiscoveryLookup response to the service provider that
points to the instance of the requested identity provider.
The response contains the resource offering for the user’s Liberty Personal Profile Service.

5. The service provider then sends a query (using the Data Services Template Specification) to
the Liberty Personal Profile Service.
The required authentication mechanism specified in the Liberty Personal Profile Service
resource offering must be followed.

6. The Liberty Personal Profile Service authenticates and validates authorization, or policy, or
both for the requested user and service provider, and returns a Data Services Template
response.
If user interaction is required for some attributes, the Interaction Service will be invoked to
query the user for consents or attribute values. The Data Services Template would then be
returned after all required data is collected.

7. The service provider processes the Liberty Personal Profile Service response and renders
HTML pages based on the original request and user authorization.
A user's actual account information is not exchanged during federation. Thus, the identifier
displayed on each provider site will be based on the respective local identity profile.

Discovery Service Architecture
Remote Java applications use the Client SDK to form requests sent to the Discovery Service and
to parse the responses received back from it. Requests are initially received by the
SOAPReceiver, a servlet which constructs the SOAP message that incorporates the client
request.

Note – The SOAP Binding Service defines how to send and receive messages using SOAP, an
XML-based messaging protocol. For more information, see “SOAP Binding Service” in Sun
OpenSSO Enterprise 8.0 Administration Guide.

The SOAP message is then routed to the Discovery Service which parses the resource identifier
from it. This identifier is used to find a matching user distinguished name (DN). The necessary

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009186

http://docs.sun.com/doc/820-3885/ggmai?a=view
http://docs.sun.com/doc/820-3885/ggmai?a=view

information is then culled from the corresponding profile, a response is generated, and
returned to the SOAPReceiver which sends the response back to the client. Figure 12–7
illustrates this architecture.

Discovery Service API
The Discovery Service includes the following Java programming packages:

■ com.sun.identity.liberty.ws.disco is a client API that provides interfaces to
communicate with the Discovery Service.

■ com.sun.identity.liberty.ws.disco.plugins defines an interface that can be used to
develop plug-ins. The package also contains some default plug-ins.

■ com.sun.identity.liberty.ws.interfaces contains interfaces that can be used to
implement functionality common to all Liberty-enabled identity services. Several
implementations of these interfaces have been developed for the Discovery Service.

For more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference and the Sun
OpenSSO Enterprise 8.0 Developer’s Guide.

XML

Discovery
Resource
Data Store

Java Applications/
Client APIs

SOAP messages and responses

Query and modify through SDK

SOAP Receiver/
Discovery Service

Form messages
and parse responses

FIGURE 12–7 Discovery Service Architecture

Implemented Services

Chapter 12 • Accessing the Web Services Stack 187

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748

SOAP Binding Service
The Web Services Stack uses SOAP messages to convey identity data between providers.
OpenSSO Enterprise has implemented the Liberty ID-WSF SOAP Binding Specification
(Liberty ID-WSF-SBS) as the method of transport for this purpose. The specification defines
SOAP as the binding to HTTP, which is itself layered onto the TCP/IP stack. The SOAP Binding
Service is a set of Java API used by the developer to send and receive SOAP messages.

Note – The SOAP Binding Service is configured using the XML service file amSOAPBinding.xml
and can be managed using the OpenSSO Enterprise console or this XML file. Additional
administration information can be found in the Sun OpenSSO Enterprise 8.0 Administration
Guide.

The following sections contain additional information on the SOAP Binding Service.

■ “SOAP Binding Service Components” on page 188
■ “SOAP Binding Service Process” on page 189
■ “Discovery Service API” on page 187

SOAP Binding Service Components
The following sections contain information on some programming components of the SOAP
Binding Service.

■ “SOAPReceiver Servlet” on page 188
■ “RequestHandler Interface” on page 188

SOAPReceiver Servlet

The SOAPReceiver servlet receives a Message object from a WSC, verifies the signature, and
constructs its own Message object for processing by OpenSSO Enterprise. The SOAPReceiver
then invokes the correct request handler class to pass this second Message object on to the
appropriate OpenSSO Enterprise service for a response. When the response is generated, the
SOAPReceiver returns this Message object back to the WSC.

RequestHandler Interface

com.sun.identity.liberty.ws.soapbinding.RequestHandler is an interface that must be
implemented on the server side by any Liberty-based web service using the SOAP Binding
Service. For more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference and the
Sun OpenSSO Enterprise 8.0 Developer’s Guide.

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009188

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748

SOAP Binding Service Process
In the SOAP Binding Service process, an identity service invokes the Message class (contained
in the Client SDK) to construct a request. (As clients of the SOAP Binding Service, the
Discovery Service, the Liberty Personal Profile Service (and the sample Employee Profile
Service), and the Authentication Web Service all use the SOAP Binding Service client-side API.)
The Message object will contain any default or non-default SOAP headers as well as the SOAP
body containing the request(s). Once generated, the WSC invokes the sendRequest method
and sends the Message object to the SOAPReceiver which receives the Message, verifies the
signature, and constructs its own Message object. The SOAPReceiver then invokes the
appropriate Request Handler class to send this second message to the corresponding service for
a response.

The web service processes the second message, generates a response, and sends that response
back to the SOAPReceiver which, in turn, returns the response back to the WSC for processing.

Note – Before invoking a corresponding service, the SOAP framework might also do the
following:

■ Authenticate the sender identity to verify the credentials of a WSC peer, probably by
verifying its client certificate.

■ Authenticate the invoking identity to verify the credentials of a WSC on behalf of a user to
verify whether the user has been authenticated. This depends on the security authentication
profile.

■ Granular authorization to authorize the WSC before processing a service request.

SOAP Binding Service API
The SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. This package provides classes to construct
SOAP requests and responses and to change the contact point for the SOAP binding. For more
information, see the Sun OpenSSO Enterprise 8.0 Java API Reference and the Sun OpenSSO
Enterprise 8.0 Developer’s Guide.

Liberty Personal Profile Service
A data service is a web service that supports the query and modification of data regarding a
principal. An example of a data service is a web service that hosts and exposes a principal's
profile information, such as name, address and phone number. A query is when a WSC requests
and receives the data (in XML format). A modify is when a WSC sends new information to
update the data. The Liberty Alliance Project has defined the Liberty ID-WSF Data Services
Template Specification (Liberty ID-WSF-DST) as the standard protocol for the query and
modification of identity profiles exposed by a data service. The Liberty ID-Service Interface

Implemented Services

Chapter 12 • Accessing the Web Services Stack 189

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

Specification Personal Profile Service Specification (Liberty ID-SIS-PP) describes a data service
that provides an identity’s basic profile information, such as full name, contact details, and
financial information. This data service is intended to be the least common denominator for
holding consumer-based information about a principal. OpenSSO Enterprise has implemented
these specifications and developed the Liberty Personal Profile Service which can be queried for
identity data and its attributes can be updated.

Note – The Liberty Personal Profile Service is configured using the XML service file
amLibertyPersonalProfile.xml and can be managed using the OpenSSO Enterprise console
or this XML file. Additional administration information can be found in the Sun OpenSSO
Enterprise 8.0 Administration Guide.

The following sections contain additional information on the Liberty Personal Profile Service.

■ “Liberty Personal Profile Service Design” on page 190
■ “Liberty Personal Profile Service Process” on page 191
■ “Data Services API” on page 193

Liberty Personal Profile Service Design
The Liberty ID-WSF-DST specifies a base layer that can be extended by any instance of a data
service. An example of a data service is an identity service, such as an online corporate
directory. When you want to contact a colleague, you conduct a search based on the individual’s
name, and the data service returns information associated with that person's identity. The
information might include the individual’s office location and phone number, as well as job title
or department name. For proper implementation, all data services must be built on top of the
Liberty ID-WSF-DST because it provides the data model and message interfaces. Figure 12–8
illustrates how OpenSSO Enterprise uses the Liberty ID-WSF-DST as the framework for the
Liberty Personal Profile Service and other custom data services.

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009190

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885

Note – For more information on the data services specification, see the Liberty ID-WSF Data
Services Template Specification. For more information on the personal profile specifications, see
the Liberty ID-SIS Personal Profile Service Specification.

Liberty Personal Profile Service Process
The invocation of a personal profile begins when a WSC posts a query or a modify request to the
Liberty Personal Profile Service on behalf of a user. Figure 12–9 illustrates the invocation
process of the Liberty Personal Profile Service.

SOAP
Binding

Liberty
Personal Profile

Service

Liberty
Employee Profile

Service

Additional Custom
Data Services

(Calendar, Wallet)

Liberty ID-WSF Data Services Template Specification

Liberty ID-SIS Data Services

Liberty Web Services Framework

Discovery
Service

FIGURE 12–8 Data Service Template as Building Block of Data Services

Implemented Services

Chapter 12 • Accessing the Web Services Stack 191

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

1. A WSC uses the Data Services Template API uses SOAP to post a query or a modify request
to the Liberty Personal Profile Service.

2. The SOAP request is received by the SOAPReceiver servlet provided by the SOAP Binding
Service.
The SOAPReceiver invokes either the Discovery Service, the Authentication Web Service, or
the Liberty Personal Profile Service, depending on the service key transmitted as part of the
URL. The SOAP Binding Service might also authenticate the client identity. For more
information, see “SOAPReceiver Servlet” on page 188.

3. The Liberty Personal Profile Service implements the DSTRequestHandler to process the
request.

Data
Store

Web Services
Consumer

SOAP request sent via HTTP

Liberty Personal Profile Service

Data Services Template Request Handler

SOAP Request Handler

Authorizer

Attribute Mapper

FIGURE 12–9 Liberty Personal Profile Service Process

Implemented Services

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009192

The request is processed based on the type (query or modify) and the query expression.
Processing might entail the authorization of a WSC using the OpenSSO Enterprise Policy
Service, or it might entail using the Interaction Service for interacting with the user before
sending data to the WSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials (if they are
required), and sends the response back to the WSC.
■ For a response to a query request, the Liberty Personal Profile Service builds a personal

profile container (as defined by the specification). It is formatted in XML and based on
the Query Select expression. The Liberty Personal Profile Service attribute values are
extracted from the data store by making use of the attribute mapper. The attribute
mapper is defined by the XML service file, and the attribute values will be used while
building the XML container. The Liberty Personal Profile Service then applies xpath
queries on the XML and provides us with the resultant XML data node.

■ For a response to a modify request, the Liberty Personal Profile Service parses the
Modifiable Select expression and updates the new data from the new data node in the
request.

Note – For initial access, the hosting provider of the Liberty Personal Profile Service needs to be
registered with the Discovery Service on behalf of each identity principal. To register a service
with the Discovery Service, update the resource offering for that service. For more information,
see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Data Services API
OpenSSO Enterprise data services are built using a Java package called
com.sun.identity.liberty.ws.dst. OpenSSO Enterprise provides this package for
developing custom services based on the Liberty ID-WSF-DST. Additional information about
these interfaces can be found in the Sun OpenSSO Enterprise 8.0 Java API Reference.

OpenSSO Enterprise contains two packages based on the Liberty ID-WSF-DST. They are:

■ com.sun.identity.liberty.ws.dst provides classes for the Client SDK.
■ com.sun.identity.liberty.ws.dst.service provides a handler class that can be used by

any data service that is built using the Liberty ID-SIS Specifications. The
DSTRequestHandler class is used to process query or modify requests sent to an identity
data service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler.

For more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference and the Sun
OpenSSO Enterprise 8.0 Developer’s Guide.

Implemented Services

Chapter 12 • Accessing the Web Services Stack 193

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748

194

Delivering Identity Web Services

OpenSSO Enterprise provides client interfaces for authentication, authorization, session,
identity management and auditing in Java, in C (C++) and in HTTP(S)/XML. These interfaces
are used by web and Java EE policy agents as well as custom applications developed externally.
Now, OpenSSO Enterprise also delivers web services that expose these identity functions as
simple web services. This chapter contains information on the following topics:

■ “About Identity Web Services” on page 195
■ “Identity Web Service Styles” on page 196
■ “Identity Web Services Architecture” on page 198

About Identity Web Services
A web service is a black-box component that can be accessed using exposed endpoints.
OpenSSO Enterprise uses this concept to expose the following security and identity related
functions as Identity Web Services:

■ authenticate (user credential verification)
■ authorize (an authenticated identity's access permission)
■ attributes (an authenticated identity's profile)
■ log (record and audit actions)

Identity Web Services allow developers to easily invoke these functions without any knowledge
of OpenSSO Enterprise, resolving the problems of enabling web service discovery and
invocation, security, privacy and ease-of-deployment. Keeping Identity Web Services simple
allows an application developer to consume them by pointing an integrated development
environment (IDE) to the service's URL and allowing it to generate the stub code that wraps a
call to the service. Identity Web Services are supported on:

■ NetBeans
■ Eclipse
■ Visual Studio

13C H A P T E R 1 3

195

Note – Identity Web Services does not require the Client SDK or deployment of an agent or
proxy to protect a resource.

Within Identity Web Services the user enters authentication credentials using a JavaServer
Pages (JSP). The user data is then forwarded to the composite application which authenticates
the web service request. The application may then authorize the operation and obtain the user's
profile. See “Identity Web Service Styles” on page 196 for more information.

Identity Web Service Styles
OpenSSO Enterprise Identity Web Services have been developed in two styles. The decision on
which style to use is the initial choice when designing your application. The styles are:

■ The SOAP and Web Services Description Language (WSDL) style is the traditional
approach preferred by the service-oriented architecture (SOA) business intelligence
community. See “SOAP and WSDL” on page 196.

■ The REpresentational State Transfer (REST) style is a newer approach preferred by the Web
2.0 community. (A REST service is referred to as RESTful.) See “REST” on page 197.

Note – developers.sun.com has an excellent three part article called Securing Applications with
Identity Services which contains IDE configuration information and procedures.

SOAP and WSDL
SOAP, WSDL, and XML Schema have become the standard for exchanging XML-based
messages among applications. To implement this style, the IDE must obtain the WSDL,
generate the client stubs, and set up the JavaServer Pages (JSP) for the Identity Web Services.
Once completed, the SOAP Identity Web Services are accessible with the following URLs:

■ http://host_machine.domain:8080/opensso/identityservices/IdentityServices
■ http://host_machine.domain:8080/opensso/identityservices?WSDL

This style may be appropriate when:

■ A formal contract must be established to describe the interface that the web service offers. A
WSDL is needed to describe the web service interfaces including details such as messages,
operations, bindings, and location.

■ The architecture must address complex requirements including security, financial
transactions, provider trust and the like.

Identity Web Service Styles

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009196

http://developers.sun.com/identity/reference/techart/id-svcs.html
http://developers.sun.com/identity/reference/techart/id-svcs.html

■ The architecture needs to handle asynchronous processing and invocation. The
infrastructure provided by standards such as WSRM and APIs such as JAX-WS can be
leveraged out of the box.

REST
The internet is comprised of resources. Clients may access resources with a URL. When
requested, a representation of the resource (an HTML page) is returned. The result of the user
clicking a link on the page is that another resource is accessed (possibly an image, video, or
another HTML page). Each new representation places the client into a state that is different
from the previous state. Thus, the client application changes state with each accessed resource
representation. REST is a design architecture in which a web service is viewed as a resource
identified by a URL. The web service client then accesses it using a globally defined set of remote
methods that describe the action to be performed. REST is not a standard; you can only
understand it, and design web services in the REST style. REST does, though, use standards
including:

■ HTTP
■ URLs
■ Resource representations (XML, HTML, GIF, JPEG, and others)
■ MIME types (text/xml, text/html, image/gif, image/jpeg, and others)

RESTful services are accessed using a generic interface; in OpenSSO Enterprise it is the GET,
POST, PUT, and DELETE HTTP methods. The RESTful Identity Web Service is accessible at
http://host_machine.domain:8080/opensso/identity. Because these web services are
exposed using the HTTP methods, they can be accessed from a browser. This style may be
appropriate when:

■ The web services are completely stateless. A good test is to consider whether the interaction
can survive a restart of the server.

■ Bandwidth needs to be limited. REST is particularly useful for limited-profile devices such
as PDAs and mobile phones, where the XML payload must be restricted.

■ Aggregation into existing web sites is needed. Web services can be exposed with XML and
consumed by HTML without significantly reinventing the existing web site architecture.

Note – OpenSSO Enterprise REST interfaces currently support only username and password
authentication.

Identity Web Service Styles

Chapter 13 • Delivering Identity Web Services 197

Identity Web Services Architecture
In an Identity Web Service interaction, the user interacts with an application which then calls
either of the Identity Web Services to authenticate and authorize the identity, create
personalized services, and log the actions. When contacted at the respective URL, OpenSSO
Enterprise obtains the user profile from the appropriate identity repository for authentication
and the policy configuration from the appropriate configuration data store, and writes the
actions to the configured log file. Figure 13–1 illustrates the components of the Identity Web
Services.

IT Administrators

Employees

Partners

Customers

OpenSSO

Authentication
Service

Policy
Service

Session
Service

SAML
Service

Identity
Repository

Service

Realms
Delegation

Service

Logging
Services

Liberty
ID-WSF

Intermediary

WSDL

WSDL WSDL WSDL WSDL

W
S
P

W
S
C

G
U
I

FIGURE 13–1 Components within the Identity Services Interactions

Identity Web Services Architecture

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009198

Securing Web Services and the Security Token
Service

OpenSSO Enterprise implements security for web services as well as a Security Token Service to
issue and validate security tokens to any third party clients. The Security Token Service can be
used in tandem with Web Services Security or as a stand-alone component. This chapter
contains the following sections.

■ “About Web Services Security” on page 199
■ “Web Services Security in OpenSSO Enterprise” on page 204
■ “Security Token Service” on page 208
■ “Security Agents” on page 212
■ “Web Services Security and Security Token Service Interfaces” on page 216

About Web Services Security
A web service exposes some type of functionality using a platform-independent interface.
Enterprises use platform-independent interfaces as a mechanism for allowing their applications
to cross network boundaries and communicate with those of their partners, customers and
suppliers. Web services are accessed by sending a request to one of the service's defined
endpoints but the built-in openness of the web services technologies creates security risks. The
following security requirements have been identified and must be supported to insure that the
communications between a web service provider (WSP) and a web service client (WSC) are not
compromised.

■ Data integrity and confidentiality during transport
■ Authentication of the sending entity
■ Message uniqueness

Initially, securing web services communications was addressed on the transport level, relying
on securing the HTTP transmissions themselves using Secure Sockets Layer (SSL). This is not
adequate though when access to an application is requested through an intermediary. The
solution to this is to encrypt the entire request using message level security before it leaves the
WSC. In message level security, authentication and authorization information in the form of a

14C H A P T E R 1 4

199

token is contained within the SOAP header, allowing the request or response to securely pass
through multiple intermediaries before reaching its intended receiver. Figure 14–1 depicts
message level security.

Note – Additionally, policy enforcement points are distributed throughout the environment and
access to resources and services is mainly over HTTP.

The OpenSSO Enterprise Web Services Security functionality can be used in a variety of
platforms and containers for different purposes. These can range from providing single sign-on
and federation support for web applications to securing web applications using security agents
deployed on the appropriate web container. Here are the web services security functions that
OpenSSO Enterprise provides.

■ Identify and authenticate the principal.
■ Generate and exchange security tokens in a trusted environment.
■ Preserve the identity through multiple intermediaries and across domain boundaries.
■ Maintain privacy and integrity of identity data.
■ Log the outcome.

Basically, the JCP, W3C, and OASIS are developing specifications related to web services
security. WS-I creates profiles that recommend what to implement from various specifications
and provides direction on how to implement the specifications. The Liberty Alliance Project
provides a framework for building interoperable identity services, using specifications such as
WS-Security (OASIS), SOAP, Security Assertions Markup Language SAML (OASIS) and XML
(W3C). The following sections briefly discuss the specifications and profiles being developed by
each organization.

There are a number of web services security specifications, guidelines, and tools that have been
implemented to develop these Web Services Security features for OpenSSO Enterprise. The
following sections have more general information on these specifications.

■ “Web Services Interoperability Technology” on page 201
■ “WS-Security Specification” on page 201

Web Service
Client

Web Service
Provider

Intermediary

Security
Context

FIGURE 14–1 Message Level Security

About Web Services Security

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009200

■ “WS-Trust Specification” on page 202
■ “Liberty Alliance Project Specifications” on page 202
■ “JSR-196 Specification” on page 202

Web Services Interoperability Technology
Web Services Interoperability Technology (WSIT) is an open source implementation of many
of the web services specifications (commonly referred to as WS-*). The project was started by
Sun Microsystems, and consists of Java API that allow developers to create web service clients
and services that enables operations between the Java platform and clients and servers
developed with the WS-* specifications. WSIT provides implementation of the following
specifications for interoperability with .NET 3.0.
■ WS-Metadata Exchange
■ WS-Transfer
■ WS-Reliable Messaging
■ WS-Reliable Messaging Policy
■ WS-Atomic Transaction
■ WS-Coordination
■ WS-Security 1.0 and 1.1
■ WS-Security Policy
■ WS-Trust
■ WS-Secure Conversation
■ WS-Policy
■ WS-Policy Attachment

Note – Web service specifications are referred to collectively as WS-* although there is neither a
single managed set of specifications that this consistently refers to nor one recognized body that
owns all the specifications. WS-* is a general nod to the fact that many specifications use WS as
their prefix.

Sun is working closely with Microsoft to ensure interoperability of web services enterprise
technologies such as message optimization, reliable messaging, and security. The initial release
of the Web Services Interoperability Technologies (WSIT) is a product of this joint effort. WSIT
is an implementation of a number of open web services specifications to support enterprise
features such as message optimization, reliable messaging, security, bootstrapping and
configuration. More information can be found in this WSIT tutorial on java.sun.com.

WS-Security Specification
The WS-Security specification is now developed by the Organization for Advancement of
Structured Information Standards (OASIS) after being submitted to the standards body by

About Web Services Security

Chapter 14 • Securing Web Services and the Security Token Service 201

http://java.sun.com/webservices/reference/tutorials/wsit/doc/WSITTutorial.pdf
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php

IBM, Microsoft, and VeriSign in 2002. The specification defines how to sign a SOAP message
and describes enhancements that provide message integrity, message confidentiality, and
message authentication. It also defines:
■ An extensible, general-purpose mechanism for associating security tokens with message

content.
■ How to encode binary security tokens.
■ A framework for XML-based tokens.
■ How to include opaque encrypted keys.

The WS-Security specification is designed to be used together with other WS-* specifications to
provide tools for secure and reliable web services transactions. For example, WS-Policy does
not provide a solution for negotiating web services in and of itself; it is used in conjunction with
other specifications to accommodate a wide variety of policy exchange models. WS-Trust, on
the other hand, uses the secure messaging mechanisms of WS-Security to define extensions for
security token exchange within different trust domains. For more information, see the Web
Services Security page on the OASIS web site.

WS-Trust Specification
Web Services Trust Language (WS-Trust) uses the secure messaging mechanisms of
WS-Security to define additional extensions for security token exchange and to enable the
issuance and dissemination of credentials within different trust domains. WS-Trust is used to
develop the Security Token Service. For more information, see “Security Token Service” on
page 208.

Liberty Alliance Project Specifications
The Liberty Alliance Project establishes open technical specifications that support a broad
range of web services, driving the specifications for services such as Personal Profile Service and
the Employee Profile Service. In order to build these identity web services, the Liberty Alliance
Project provides a framework for identity federation and a framework for adjunct web services
such as a registration service and a discovery service. For more general information on the
Liberty Alliance Project, see “Using the Liberty ID-FF” on page 155 and the Liberty Alliance
Project specifications.

JSR-196 Specification
The Java Community Process (JCP) primarily guides the development and approval of Java
technical specifications, one of which is the Java Specification Request (JSR) 196. JSR 196 is a
draft of the Java Authentication Service Provider Interface for Containers that defines a standard

About Web Services Security

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009202

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.projectliberty.org/
http://www.projectliberty.org/
http://www.jcp.org/

service provider interface (SPI) with which a message level security agent can be developed for
Java EE containers on either the client side or the server side.

■ A server side agent can be used to verify security tokens or signatures on incoming requests
and extract principal data or assertions before adding them to the client security context.

■ A client side agent can be used to add security tokens to outgoing requests, sign messages,
and interact with the trusted authority to locate targeted web service providers.

The JSR–196 SPI is structured so that the security processes can be delegated to an agent at any
of four interaction points (that represent the methods of the corresponding ClientAuthModule
and ServerAuthModule SPI). These point are illustrated in Figure 14–2.

When a WSC and WSP are both deployed in a Java EE web container protected by JSR–196
security agents, the initial request from the WSC is intercepted by the agent on the client side
which then queries a trusted authority (for example, the Discovery Service) to retrieve the
necessary authorization credentials to secure to the request. The secured request is then passed
to the WSP. The agent on the provider side receives the request to validate the authorization
credentials. If validation is successful, the request is exposed to the web service and a response is
created using the sender's credentials and the application specific request. The response is then
intercepted by the agent on the provider side to secure and return it to the WSC. Upon receiving
the response, the agent on the client side validates it and dispatches it to the client browser. The
JSR 196 draft specification is available at http://www.jcp.org/en/jsr/detail?id=196.

Web Service Client
(WSC)

Web Service Provider
(WSP)

Secure request
from principal

Validate request
from WSC

Secure response
from WSP

Validate response
from WSP

Dispatch to
web service

HTTP Client
(Browser)

FIGURE 14–2 Four Security Process Points

About Web Services Security

Chapter 14 • Securing Web Services and the Security Token Service 203

http://www.jcp.org/en/jsr/detail?id=196

Web Services Security in OpenSSO Enterprise
OpenSSO Enterprise can provide web services security for client applications that built using
the SOAP with Attachments API for Java (SAAJ) and Java API for XML Web Services
(JAX-WS). For SAAJ applications, the OpenSSO Enterprise Client SDK can be used to explicitly
secure and validate the outbound and inbound messages between the WSC and WSP. For
JAX-WS applications, web services security can be enforced at the web container level with
container-provided security plug-ins or handlers.

Note – The JSR–196 specification is a security plug-in SPI supported by the Sun Java System
Application Server. Handlers are interceptors that can plugged into the JAX-WS 2.0 runtime
environment for additional processing of inbound and outbound messages.

The following sections have more information.

■ “Web Services Security Internal Architecture” on page 204
■ “Web Services Security Deployment Architecture” on page 206

Web Services Security Internal Architecture
The architectural strategy behind the Web Services Security framework is to model security
agents on authentication and authorization SPI provided by the web container and to use a
WSIT infrastructure for WS-Trust, WS-Policy and WS-I BSP security token implementations.
Security agents secure web service requests and validate web service responses by inserting (or
extracting) security tokens into (or out of) SOAP messages at the WSC and the WSP. This
abstracts security from the application and allows customers to standardize security across
multiple containers. Figure 14–3 illustrates this.

Web Services Security in OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009204

The Web Services Security framework supports the following tokens.

■ Tokens that can be authenticated:

1. UserName
2. X509
3. SAML 1.1
4. SAML 2.0
5. Kerberos

■ Tokens that can be issued:

FIGURE 14–3 Architecture of Web Services Security Components

Web Services Security in OpenSSO Enterprise

Chapter 14 • Securing Web Services and the Security Token Service 205

■ UserName (generated with the Security Token Service or locally at the WSC)
■ X509 (generated with the Security Token Service or locally at the WSC)
■ SAML 1.1 (generated with the Security Token Service or locally at the WSC)
■ SAML 2.0 (generated with the Security Token Service or locally at the WSC)
■ Kerberos (generated locally at the WSC)

In general, securing web services involves establishing trust between a WSC and a WSP.
Towards this end, OpenSSO Enterprise provides security agents to verify (and extract data
from) security tokens on incoming requests and to add security information (tokens and
signatures) to outgoing responses. It also provides a Security Token Service to handle security
tokens, and a number of Java interfaces. The following sections contain more information on
these components.

■ “Security Token Service” on page 208
■ “Security Agents” on page 212
■ “Web Services Security and Security Token Service Interfaces” on page 216

Web Services Security Deployment Architecture
OpenSSO Enterprise can be configured for use as a Security Token Service, as a web services
security provider, and as both. Messages used to transfer security tokens between
communicating web services clients and providers are exchanged with SOAP. The following use
case and deployment architecture is not intended to cover all potential scenarios.

A company employee has a user account in the A identity system and wants to access an
internal calendar application which invokes a remote calendar web service to provide it's
features. Sufficient identity and attribute information on behalf of the user must be supplied by
the internal calendar application to the remote calendar web service in a secure manner. This
figure illustrates how this use case could be configured. A detailed process flow follows.

Note – The application and web service are in the same domain and both are deployed using Sun
Java System Application Server and a security agent.

Web Services Security in OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009206

FIGURE 14–4 Web Service Security Deployment Architecture

Web Services Security in OpenSSO Enterprise

Chapter 14 • Securing Web Services and the Security Token Service 207

1. The authenticated employee uses the A Portal to invoke the internal calendar application
and, at some point, accesses a link requiring it to make a web service call to the remote
calendar web service on behalf of the authenticated user.

Note – The internal calendar application is acting as a WSC.

2. The security agent protecting the internal calendar application intercepts the outbound
SOAP message, connects to a token authority (in this case, the Security Token Service),
determines the security mechanisms of the WSP, obtains the appropriate security token(s),
and secures the request by inserting the tokens (in the form of a SAML assertion) into the
SOAP request headers.

3. The security agent forwards the secured SOAP message to the remote calendar web service
acting as the WSP.

4. The security agent protecting the remote calendar web service intercepts the inbound SOAP
message.

5. The security agent protecting the remote calendar web service retrieves and validates the
security information and, upon successful validation, forwards the request to the remote
calendar web service.

6. The calendar web service sends back a response.
7. The security agent protecting the remote calendar web service intercepts the outbound

SOAP message and digitally signs the request with its private key.
8. The security agent protecting the internal calendar application intercepts the inbound

signed SOAP message, validates the signature, and, upon successful validation, forwards the
request to the application.

9. The calendar application consumes the results and presents the employee with the
appropriate response.

For identity-based web services specifically (a calendar service for example), the WSP would
have to trust the WSC to authenticate the user, or the WSC would have to include the user's
credentials as part of the web service request. The distinguishing factor is that identity-based
web services authenticate both the WSC and the user's identity. The user must be authenticated
so that the WSC can send the user's token to the WSP in a SOAP security header.

Security Token Service
Because of the use of tokens in Web Services Security, there is a need for a centralized token
service; the Security Token Service serves this purpose for OpenSSO Enterprise. The Security
Token Service was developed from the WS-Trust protocol which defines extensions to the
WS-Security specification for issuing and exchanging security tokens and establishing and
accessing the presence of trust relationships. The Security Token Service is hosted as a servlet

Security Token Service

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009208

endpoint and coordinates security based interactions between a WSC and a WSP. The Security
Token Service is a standalone service that any third party client can use without implementing
Web Services Security. The Security Token Service:

■ Issues, renews, cancels, and validates security tokens.
■ Allows customers to write their own plug-ins for different token implementations and for

different token validations.
■ Provides a WS—Trust based API for client and application access. For more information,

see “Web Services Security and Security Token Service Interfaces” on page 216.
■ Provides security tokens including Kerberos, Web Services-Interoperability Basic Service

Profile (WS-I BSP), and Resource Access Control Facility (RACF).

When a WSC makes a call to the WSP, it first connects with the Security Token Service to
determine the security mechanism and optionally obtain the security tokens expected by the
WSP. (Alternately, the WSP could register its acceptable security mechanisms with the Security
Token Service and, before validating the incoming SOAP request, could check with the Security
Token Service to determine its security mechanisms.) Figure 14–5 illustrates the internal
architecture of the Security Token Service.

Security Token Service

Chapter 14 • Securing Web Services and the Security Token Service 209

When an authenticated WSC (carrying credentials that confirm either the identity of the end
user or the application) requests a token for access to a WSP, the Security Token Service verifies
the credentials and, in response, issues a security token that provides proof that the WSC has
been authenticated. The WSC presents the security token to the WSP which verifies that the
token was issued by a trusted Security Token Service. Figure 14–6 illustrates the design of the
Security Token Service.

FIGURE 14–5 Security Token Service Architecture

Security Token Service

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009210

The Security Token Service supports the following tokens.

■ Tokens that can be authenticated with the Security Token Service:
1. UserName
2. X509
3. SAML 1.1
4. SAML 2.0
5. Kerberos

■ Tokens that can be issued with the Security Token Service:
1. UserName
2. X509

FIGURE 14–6 Security Token Service Design

Security Token Service

Chapter 14 • Securing Web Services and the Security Token Service 211

3. SAML 1.1
4. SAML 2.0

■ End user tokens that can be converted or validated out of the box:
1. OpenSSO Enterprise SSOToken to SAML 1.1 or SAML 2.0 token
2. SAML 1.1 or SAML 2.0 token to OpenSSO Enterprise SSOToken

Additionally, end user tokens can be converted or validated after customization. In this case, the
new token is an On Behalf Of token (WS-Trust protocol element) carried in the WS-Trust
request as part of the SOAP body and not as an authentication token carried as part of the SOAP
header. Custom tokens can also be created and sent On Behalf Of an end user token for
conversion or validation by Security Token Service. To do this, implement the
com.sun.identity.wss.sts.ClientUserToken interface and put the implemented class name
in AMConfig.properties on the client side and the global Security Token Service configuration
using the OpenSSO console.

Note – You can configure a WSC's agent profile to retrieve tokens from the Security Token
Service (using the WS-Trust protocol) or from the Discovery Service (using the Liberty Alliance
Project protocol). Based on this configuration, either the Security Token Service client API or
the Discovery Service client API (both available through the Client SDK) will take over. For
more information, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Security Agents
Security agents (or web service security providers based on the JSR-196 specification) provide
message level security, and support Liberty Alliance Project security tokens, Web
Services-Interoperability Basic Security Profiles (WS-I BSP) tokens, and proprietary OpenSSO
Enterprise session tokens. The agents use an instance of OpenSSO Enterprise for agent
configuration data storage as well as authentication decisions. Web services requests and
responses are passed to the appropriate authentication module using standard Java
representations based on the transmission protocol. The following security agents are currently
supported.

■ “HTTP Security Agent” on page 212
■ “SOAP Security Agent” on page 214

Note – In previous Sun documentation, this agent was referred to as an authentication agent.

HTTP Security Agent
The HTTP security agent protects the endpoints of a web service that uses HTTP for
communication. After the HTTP agent is deployed in a web container on the WSP side, all

Security Agents

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009212

http://docs.sun.com/doc/820-3885

HTTP requests for access to web services protected by it are redirected to the login and
authentication URLs defined in the OpenSSO Enterprise configuration data on the WSC side.
The configurable properties are:

■ com.sun.identity.loginurl=ossoserver_protocol://ossoserver_host:ossoserver_port/ossoserver/UI/Login
■ com.sun.identity.liberty.authnsvc.url=ossoserver_protocol://ossoserver_host:ossoserver_port/ossoserver/Lib

Note – For this release, the HTTP security agents are used primarily for bootstrapping. Future
releases will protect web applications.

Figure 14–7 illustrates the interactions described in the procedure below it.

1. A WSC (user with a browser) makes a request to access a web service protected by an HTTP
security agent.

2. The security agent intercepts the request and redirects it (via the browser) to OpenSSO
Enterprise for authentication.

3. Upon successful authentication, a response is returned to the web service, carrying a token
as part of the Java EE Subject.

This token is used to bootstrap the appropriate Liberty ID-WSF security profile. If the
response is successfully authenticated, the request is granted.

HTTP Client
(Browser)

HTTP Provider
Agent

Sun Application
Server
PE 9.0

OpenSSO

FIGURE 14–7 HTTP Security Agent Process

Security Agents

Chapter 14 • Securing Web Services and the Security Token Service 213

Note – The functionality of the HTTP security agent is similar to that of the Java EE policy agent
when used in SSO ONLY mode. This is a non restrictive mode that uses only the OpenSSO
Enterprise Authentication Service to authenticate users attempting access. For more
information on Java EE policy agents, see the Sun OpenSSO Enterprise Policy Agent 3.0 User’s
Guide for J2EE Agents.

SOAP Security Agent
The SOAP security agent secures SOAP messages between a WSC and a WSP. It can be
configured for use as a security provider on either the WSC server or the WSP server. This
initial release encapsulates the Liberty Identity Web Services Framework (Liberty ID-WSF)
SOAP Binding Specification (as implemented by OpenSSO Enterprise) and supports the
following tokens.

■ “Supported Liberty Alliance Project Security Tokens” on page 214
■ “Supported Web Services-Interoperability Basic Security Profile Security Tokens” on

page 215

Supported Liberty Alliance Project Security Tokens
In a scenario where security is enabled using Liberty Alliance Project tokens, the HTTP client
requests (via the WSC) access to a service. The HTTP security agent redirects the request to the
OpenSSO Enterprise Authentication Service for authentication and to determine the security
mechanism registered by the WSP and obtain the security tokens expected. After a successful
authentication, the WSC provides a SOAP body while the SOAP security agent on the WSC side
inserts the security header and a token. The message is then signed before the request is sent to
the WSP.

When received by the SOAP security agent on the WSP side, the signature and security token in
the SOAP request are verified before forwarding the request on to the WSP itself. The WSP then
processes it and returns a response, signed by the SOAP security agent on the WSP side, back to
the WSC. The SOAP security agent on the WSC side then verifies the signature before
forwarding the response on to the WSC. Figure 14–8 illustrates these interactions.

Security Agents

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009214

http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803
http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf
http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf

The following Liberty Alliance Project security tokens are supported in this release:

X.509 A secure web service uses a PKI (public key infrastructure) in which the WSC supplies a public key as the
means for identifying the requester and accomplishing authentication with the web service provider.
Authentication with the web service provider using processing rules defined by the Liberty Alliance
Project.

BearerToken A secure web service uses the Security Assertion Markup Language (SAML) SAML Bearer token
confirmation method. The WSC supplies a SAML assertion with public key information as the means for
authenticating the requester to the web service provider. A second signature binds the assertion to the
SOAP message This is accomplished using processing rules defined by the Liberty Alliance Project

SAMLToken A secure web service uses the SAML holder-of-key confirmation method. The WSC adds a SAML assertion
and a digital signature to a SOAP header. A sender certificate or public key is also provided with the
signature. This is accomplished using processing rules defined by the Liberty Alliance Project.

Supported Web Services-Interoperability Basic Security Profile
Security Tokens
In a scenario where security is enabled using Web Services-Interoperability Basic Security
Profile (WS-I BSP) tokens, the HTTP client (browser) requests (via the WSC) access to a
service. The SOAP security agent redirects the request to the OpenSSO Enterprise
Authentication Service for authentication and to determine the security mechanism registered
by the WSP and obtain the expected security tokens. After a successful authentication, the WSC

HTTP Client
(Browser)

Web
Service
Provider

SOAP
Provider
Agent

Web
Service
Client

HTTP
Provider
Agent

SOAP
Provider
Agent

Authentication
Service

Trusted
Authority

(Discovery
Service)

OpenSSO

FIGURE 14–8 SOAP Security Agent Process for Liberty Alliance Project Security Tokens

SAMLToken

Chapter 14 • Securing Web Services and the Security Token Service 215

provides a SOAP body while the SOAP security agent on the WSC side inserts the security
header and a token. The message is then signed before the request is sent to the WSP.

When received by the SOAP security agent on the WSP side, the signature and security token in
the SOAP request are verified before forwarding the request on to the WSP itself. The WSP then
processes it and returns a response, signed by the SOAP security agent on the WSP side, back to
the WSC. The SOAP security agent on the WSC side then verifies the signature before
forwarding the response on to the WSC. Figure 14–9 illustrates the interactions as described.

The following WS-I BSP security tokens are supported in this release.

User Name A secure web service requires a user name, password and, optionally, a signed the request. The web service
consumer supplies a username token as the means for identifying the requester and a password, shared
secret, or password equivalent to authenticate the identity to the web service provider.

X.509 A secure web service uses a PKI (public key infrastructure) in which the web service consumer supplies a
public key as the means for identifying the requester and accomplishing authentication with to the web
service provider.

SAML-Holder-Of-KeyA secure web service uses the SAML holder-of-key confirmation method. The web service consumer
supplies a SAML assertion with public key information as the means for authenticating the requester to
the web service provider. A second signature binds the assertion to the SOAP payload.

SAML-SenderVouchesA secure web service uses the SAML sender-vouches confirmation method. The web service consumer
adds a SAML assertion and a digital signature to a SOAP header. A sender certificate or public key is also
provided with the signature.

Web Services Security and Security Token Service Interfaces
The main dependencies and interactions of the Security Token Service and security agents in a
web services security scenario are with the interfaces of the OpenSSO Enterprise Client SDK.
This includes the following:

■ Security agents bootstrap the Security Token Service or the Liberty Alliance Project
Discovery Service using the Client SDK.

HTTP Client
(Browser)

Web
Service
Provider
(WSP)

SOAP
Provider
Agent

Web
Service
Client
(WSC)

SOAP
Provider
Agent

FIGURE 14–9 SOAP Provider Agent Process for WS-I BSP Security Tokens

User Name

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009216

Note – The OpenSSO Enterprise Discovery Service can be leveraged with the Client SDK so
consumers can continue to use it's end point for web services security token utilities,
resource offerings and WSP end points. A configuration on the client side would choose
either the WS-Trust orLiberty Alliance Project protocol for web services security token
management.

■ The Client SDK implements XML signing and XML encryption for SOAP requests and
responses.

■ The Client SDK generates the proprietary SSOToken based on security token credentials
provided to the WSP. It also sets the SSOToken into the container Subject for further
authorization processing.

■ The Client SDK implements caching for the security tokens generated by the Security Token
Service or the Liberty Alliance Project Discovery Service. This improves performance when
requesting security tokens.

■ The Client SDK implements complete processing (including token insertion, extraction and
validation) of SOAP requests and responses.

The Web Services Security framework and the Security Token Service include the following
Java packages as part of the Client SDK

■ “com.sun.identity.wss.provider” on page 217
■ “com.sun.identity.wss.security” on page 218
■ “com.sun.identity.wss.sts” on page 218

For more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference and the Sun
OpenSSO Enterprise 8.0 Developer’s Guide.

com.sun.identity.wss.provider

com.sun.identity.wss.provider provides administrative interfaces for configuration of the
WSC and WSP with their respective security mechanisms and Security Token Service
configuration. They are called by the security agent during run time, and also by applications
that would like to secure messages. On the WSC side, they are called to secure the web service
request and to validate any response from the WSP. Similarly, there are interfaces for this
functionality on the WSP side. When a WSC is configured to communicate with the Security
Token Service, security mechanisms and security tokens would be obtained from it. When a
WSP is configured to communicate with the Security Token Service, its resource offering would
be published at the Security Token Service.

Web Services Security and Security Token Service Interfaces

Chapter 14 • Securing Web Services and the Security Token Service 217

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748

Tip – A WSC and a WSP can be associated with more than one Security Token Service.

com.sun.identity.wss.security

com.sun.identity.wss.security provides classes that create, manage and represent security
tokens and their processing. This SPI can plug in new security token implementations to the
Security Token Service.

com.sun.identity.wss.sts

com.sun.identity.wss.sts contains classes for getting security tokens from the Security
Token Service end point and converting an end user token from one format to another (for
instance, converting to the OpenSSO Enterprise proprietary SSOToken in order to validate it
against the Authentication Service and Policy Service). It also contains an SPI to issue different
security tokens, attribute provider and authorization provider.

Web Services Security and Security Token Service Interfaces

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009218

Additional Features
This fifth part of the Sun OpenSSO Enterprise Technical Overview contains information
on logging events and data and getting started with the samples. It contains the following
chapters:

■ Chapter 15, “Recording Events with the Logging Service”
■ Chapter 16, “Getting Starting with the OpenSSO Enterprise Samples”

P A R T V

219

220

Recording Events with the Logging Service

Sun OpenSSO Enterprise provides its own logging feature that records information such as user
login, user logout, session creation, and policy evaluation. This chapter describes how
OpenSSO Enterprise logging works. It contains the following sections:

■ “Logging Service Overview” on page 221
■ “Log File Formats and Log File Types” on page 223
■ “Secure Logging” on page 226
■ “Remote Logging” on page 226
■ “OpenSSO Enterprise Component Logs” on page 227
■ “Logging Service Interfaces” on page 228

Logging Service Overview
The Logging Service enables OpenSSO Enterprise components to record information such as
access denials and approvals, authentication events, and authorization violations.
Administrators can use the logs to track user actions, analyze traffic patterns, audit system
usage, review authorization violations, and troubleshoot. The logged information is recorded in
one centralized directory. The Client SDK enables external applications to access the Logging
Service. This section contains the following:

■ “About the Logging Service” on page 221
■ “Configuring the Logging Service” on page 222
■ “Recording Events” on page 222

About the Logging Service
The purpose of the Logging Service is to provide the facilities to record events that can then be
used to assign responsibility for actions occurring through OpenSSO Enterprise. For example,
an individual's attempts to compromise the security of OpenSSO Enterprise, and to what extent
those attempts penetrate, can be monitored. A global service configuration file named

15C H A P T E R 1 5

221

amLogging.xml defines the Logging Service attributes. These attributes include configuration
information such as maximum log size, log location, and log format (flat file or relational
database). The attribute values are applied across the OpenSSO Enterprise deployment and
inherited by every configured realm. The structure of amLogging.xml is defined by file sms.dtd.

Note – The Logging Service is fundamentally an extension of the
java.util.logging.LogManager, java.util.logging.Logger,
java.util.logging.LogRecord, java.util.logging.Formatter and
java.util.logging.Handler classes.

Configuring the Logging Service
When OpenSSO Enterprise starts or when any logging configuration data is changed using the
administration console, the Logging Service configuration data is loaded (or reloaded) into the
Logging Service. This data includes the log message format, maximum log size, and the number
of history files. Authenticated and authorized entities (for example, an application) can then use
the Client SDK to access the Logging Service features from a local or remote server. The Client
SDK uses an XML over HTTP layer to send logging requests to the Logging Service on the
server where OpenSSO Enterprise is installed.

Recording Events
Log records are created using the com.sun.identity.log.LogRecord class, and then logged by
authenticated and authorized entities using the com.sun.identity.log.Logger class. Log
records can be logged by:

■ Other components of the OpenSSO Enterprise server.
■ Utilities installed on the OpenSSO Enterprise server system.
■ Other OpenSSO Enterprise servers using a second instance of OpenSSO Enterprise acting as

the log server.
■ Remote client applications (for example, policy agents) using the OpenSSO Enterprise

Logging Service.

The following table summarizes the default items logged in the LogRecord.

TABLE 15–1 Events Recorded in LogRecord

Event Description

Time The date (YYYY-MM-DD) and time (HH:MM:SS) at which the log message was
recorded. This field is not configurable.

Logging Service Overview

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009222

TABLE 15–1 Events Recorded in LogRecord (Continued)
Event Description

Data Variable data pertaining to the log records's MESSAGE ID. This field is not
configurable.

ModuleName Name of the OpenSSO Enterprise service or application being logged. Additional
information on the value of this field can be found in “Adding Log Data” on page
88.

Domain OpenSSO Enterprise domain to which the user (whom the log record is regarding)
belongs. This information is taken from the session token passed in the
LogRecord(level,msg,token) call.

LogLevel The Java 2 Platform, Standard Edition (J2SE) version 1.4 log level of the log record.

LoginID The identifier of the user (taken from the session token) as the subject of the log
record.

IPAddress IP address from which the operation was performed.

LoggedBy User who writes the log record. The information is taken from the session token
passed during logger.log(logRecord, ssoToken).

HostName Host name associated with the IP address above. This is present if the Log Record
Resolve Host Name attribute is enabled. If not, the IP address is printed.

MESSAGEID Non-internationalized message identifier for this log record's message.

ContextID Session identifier associated with a particular login session. The session identifier
is for the entity about whom the log record is regarding.

Log File Formats and Log File Types
The following sections contain information about OpenSSO Enterprise log files:

■ “Log File Formats” on page 223
■ “Log File Types: Error and Access” on page 225

Log File Formats
Log records generated for one event are entered as two separate records. The first log record
records the attempt to perform an action; the second log record records the result of the
attempt. The following example illustrates this two record approach.

EXAMPLE 15–1 Log Record Example

Data: agroupSubscription1|group|/
MessageID: CONSOLE-1

Log File Formats and Log File Types

Chapter 15 • Recording Events with the Logging Service 223

EXAMPLE 15–1 Log Record Example (Continued)

and

Data: agroupSubscription1|group|/
MessageID: CONSOLE-2

In this example, CONSOLE-1 indicates an attempt to create an identity object, and CONSOLE-2

indicates that the attempt to create the identity object was successful. The root organization is
noted by a forward slash (/). The variable parts of the messages (agroupSubscription1, group,
and /) are separated by a pipe character (|) and continue to go into the Data field of each log
record. The MessageID string is not internationalized in order to facilitate machine-readable
analysis of the log records in any locale. OpenSSO Enterprise can record events in either of the
following formats:
■ “Flat File Format” on page 224
■ “Relational Database Format” on page 224

Flat File Format
The default flat file format is the W3C Extended Log Format (ELF). OpenSSO Enterprise uses
this format to record the default fields in each log record. See “Recording Events” on page 222
for a list of default fields and their descriptions. Example 15–2 illustrates an authentication log
record formatted for a flat file. The fields are in this order: Time, Data, ModuleName, MessageID,
Domain, ContextID, LogLevel, LoginID, IPAddr, LoggedBy, and HostName.

EXAMPLE 15–2 Flat File Record From amAuthentication.access

"2005-08-01 16:20:28" "Login Success" LDAP AUTHENTICATION-100

dc=example,dc=com e7aac4e717dda1bd01 INFO

uid=amAdmin,ou=People,dc=example,dc=com 192.18.187.152

"cn=exampleuser,ou=Example Users,dc=example,dc=com" exampleHost

Relational Database Format
When OpenSSO Enterprise uses a relational database to log messages, the messages are stored
in a database table. OpenSSO Enterprise uses Java Database Connectivity (JDBC), which
provides connectivity to a wide range of databases. (Oracle® and MySQL databases are currently
supported.) Table 15–2 summarizes the schema for a relational database.

TABLE 15–2 Relational Database Log Format

Column Name Data Type Description

TIME Date (Oracle)

DateTime (MySQL)

The format is YYYY-MM-DD HH24:MI:SS (Oracle) or
%Y-%m-%d %H:%i:%s (MySQL). The formats are specified in
the Logging Service attributes.

Log File Formats and Log File Types

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009224

TABLE 15–2 Relational Database Log Format (Continued)
Column Name Data Type Description

DATA CLOB (Oracle)

LONGTEXT
(MySQL)

The data type is specified in the Logging Service attributes.

MODULENAME VARCHAR(255) Name of the OpenSSO Enterprise component invoking the log
record.

DOMAIN VARCHAR(255) OpenSSO Enterprise domain of the user.

LOGLEVEL VARCHAR(255) JDK 1.4 log level of the log record.

LOGINID VARCHAR(255) Login ID of the user who performed the logged operation.

IPADDR VARCHAR(255) IP Address of the machine from which the logged operation
was performed.

LOGGEDBY VARCHAR(255) Login ID of the user who writes the log record.

HOSTNAME VARCHAR(255) Host name of machine from which the logged operation was
performed.

MESSAGEID VARCHAR(255) Non-internationalized message identifier for this log record's
message.

CONTEXTID VARCHAR(255) Identifier associated with a particular login session.

Log File Types: Error and Access
Access log files and error log files are the two types of log files used in OpenSSO Enterprise.
Access log files record general auditing information concerning the OpenSSO Enterprise
deployment. An access log may contain a single record for an event (such as a successful
authentication), or multiple records for the same event. For example, when an administrator
uses the console to change an attribute value, the Logging Service logs the attempt to change in
one record but, it also logs the results of the execution of the change in a second record. Error log
files record errors that occur within the application. While an operation error is recorded in the
error log, the operation attempt is recorded in the access log file.

Flat log files are appended with the .error or .access extension. Database column names end
with _ERROR or _ACCESS. For example, a flat file logging console events is named
amConsole.access while a database column logging the same events is named
AMCONSOLE_ACCESS or amConsole_access.

Log File Formats and Log File Types

Chapter 15 • Recording Events with the Logging Service 225

Note – The period (.) separator in a log filename is converted to an underscore (_) in database
formats. Also in databases, table names may be converted to all upper case. For example,
amConsole.access may be converted to AMCONSOLE_ACCESS, or it may be converted to
amConsole_access.

Secure Logging
Secure logging adds an extra measure of security to the Logging Service. When secure logging is
enabled, the Logging Service can detect unauthorized changes to the security logs. No special
coding is required to leverage this feature. However, secure logging uses a certificate that you
must create and install in the container that runs OpenSSO Enterprise. When secure logging is
enabled, a Manifest Analysis and Certification (MAC) is generated and stored for every log
record, and a special signature record is periodically inserted in the log. The signature record
represents the signature for the contents of the log written up to that point. The combination of
the certificate and the signature record ensures that the logs have not been tampered. For
detailed information about enabling secure logging, see Chapter 14, “Logging Service,” in Sun
OpenSSO Enterprise 8.0 Administration Guide.

Remote Logging
Remote logging allows a client using the Client SDK to create log records on an instance of
OpenSSO Enterprise deployed on a remote machine. Remote logging is useful in the following
situations:

■ When the login URL in the Naming Service of an OpenSSO Enterprise instance points to a
remote OpenSSO Enterprise instance, and a trust relationship between the two instances
has been configured. (An example of a trust relationship would be servers in a site.)

■ When the OpenSSO Enterprise API are installed in a remote OpenSSO Enterprise instance,
and a client application or a simple Java class running on the OpenSSO Enterprise server
uses them. A SSOToken for the subject of the log records and the identity doing the logging is
required. The identity doing the logging must also be authorized to write to the logs.

■ When logging APIs are used by OpenSSO Enterprise agents.

Secure Logging

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009226

http://docs.sun.com/doc/820-3885/gjqdm?a=view
http://docs.sun.com/doc/820-3885/gjqdm?a=view

OpenSSO Enterprise Component Logs
The log files record a number of events for each of the OpenSSO Enterprise components using
the Logging Service. Administrators typically review these log files on a regular basis.
Table 15–3 provides a brief description of the log files produced by each OpenSSO Enterprise
component.

TABLE 15–3 OpenSSO Enterprise Component Logs

Component Log Filename Information Logged

Session Service ■ amSSO.access Session management attributes values such as login time,
logout time, and time out limits. Also session creations and
terminations.

Administration
Console

■ amConsole.access

■ amConsole.error

User actions performed through the administration console
such as creation, deletion and modification of
identity-related objects, realms, and policies.
amConsole.access logs successful console events while
amConsole.error logs error events.

Authentication
Service

■ amAuthentication.access

■ amAuthentication.error

User logins and log outs, both successful and failed.

Federation
Services

■ amFederation.access

■ amFederation.error

■ amLiberty.access

■ amLiberty.error

Federation-related events such as the creation of an
authentication domain or the creation of a hosted provider
entity.

Policy Service
(Authorization)

■ amPolicy.access

■ amPolicy.error

■ amAuthLog

Events related to authorization such as policy creation,
deletion, or modification, and policy evaluation.
amPolicy.access logs policy allows, amPolicy.error logs
policy error events, and amAuthLog logs policy denies.

Policy Agents amAgent Exceptions regarding resources that were either accessed by
a user or denied access to a user. amAgent logs reside on the
server where the policy agent is installed. Agent events are
logged on the OpenSSO Enterprise machine in the
Authentication logs.

SAML v1.x ■ SAML.access

■ SAML.error

SAML v1.x-related events such as assertion and artifact
creation or removal, response and request details, and
SOAP errors.

SAML v2 ■ SAML2.access

■ SAML2.error

SAML v2-related events such as assertion and artifact
creation or removal, response and request details, and
SOAP errors.

OpenSSO Enterprise Component Logs

Chapter 15 • Recording Events with the Logging Service 227

TABLE 15–3 OpenSSO Enterprise Component Logs (Continued)
Component Log Filename Information Logged

Command Line ■ amAdmin.access

■ amAdmin.error

Event successes and errors that occur during operations
using the command line tools. Loading a service schema,
creating policy, and deleting users are some examples of
command line operations.

Password Reset ■ amPasswordReset.accessPassword reset events.

For detailed reference information about events recorded in each type of OpenSSO Enterprise
log, see Chapter 14, “Logging Service,” in Sun OpenSSO Enterprise 8.0 Administration Guide.

Logging Service Interfaces
There are two Java interfaces provided with the Logging Service. The Java application
programming interface (API) com.sun.identity.log provides the means for an application
external to OpenSSO Enterprise to record events to, and retrieve records from, the Logging
Service. LogRecord and Logger are used for writing, while LogReader, LogQuery, and
QueryElement are used for reading. With this API it is possible to write a custom log reading
program by setting up queries to retrieve specific records from the log file or database. The Java
service provider interface (SPI) com.sun.identity.log.spi is used to develop plug-ins to the
Logging Service for authorization and other service implementations of secure logging.

Other pluggable SPI with interface definitions may be used; for example,
ITimestampGenerator and SecureTimestampGenerator. Existing provider modules may be
useful as models for writing additional providers. For more information, see the Sun OpenSSO
Enterprise 8.0 Java API Reference and the Sun OpenSSO Enterprise 8.0 Developer’s Guide.

Note – OpenSSO Enterprise also has a Logging Service API for C applications. For more
information, see the Sun OpenSSO Enterprise 8.0 C API Reference for Application and Web
Policy Agent Developers.

Logging Service Interfaces

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009228

http://docs.sun.com/doc/820-3885/gjqdm?a=view
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738

Getting Starting with the OpenSSO Enterprise
Samples

There are three types of samples included with OpenSSO. The following sections contain more
information.

■ “Server Samples” on page 229
■ “Client SDK Samples” on page 229
■ “Command Line Interface Samples” on page 229

Server Samples
Server samples are included with the OpenSSO WAR. The samples can be accessed by
appending /uri/samples to the OpenSSO Enterprise server URL and entering it in the Location
bar of a browser; by default, this would be http://hostname.domain:8080/opensso/samples.
The server samples include authentication, Liberty ID-FF, SAML v2, and multi-federation
protocol samples.

Client SDK Samples
The Client SDK samples are located in the opensso-client-jdk15.war inside the
opensso-client.zip. The ZIP can be found in the /opensso/samples directory by default.

Command Line Interface Samples
Command line interface samples are also located in the sdk directory inside the unzipped
opensso-client.zip.

16C H A P T E R 1 6

229

230

Index

A
access control, OpenSSO Enterprise, 19-20
access logs, 225-226
Access Manager Repository Plug-in, identity repository

plug-in, 57-58
account locking

and authentication, 102-103
memory locking, 102
physical locking, 102

action, policy, 119
Active Directory authentication, 106
active session time, policy, 120-121
agents

See policy agent
See security agent

amLogging.xml, 221-222
Anonymous authentication, 106
API, SAML v2, 151
application programming interfaces, See API
architecture

client/server, 25-27
Discovery Service, 186-187
federation, 142-143
Identity Web Services, 198
plug-ins, 61-62
SAML v1.x, 152-153
sample deployment 1, 71
sample deployment 2, 73
web services security, 204-206
web services security deployment, 206-208

auditing, See logging
authentication chain, policy, 120-121

authentication chaining, 103-104
authentication configuration service, 110
authentication context, overview, 158-160
authentication data, 52-58, 58
authentication level, policy, 120-121
authentication level-based authentication, 109
authentication module instance, policy, 120-121
authentication modules, 105-108

Active Directory, 106
Anonymous, 106
Certificate, 106
Data Store, 106
Federation, 106
HTTP Basic, 106
JDBC, 106
Membership, 107
MSISDN, 107
RADIUS, 107
SafeWord, 107
SAML, 107
SecurID, 107
UNIX, 107
Windows Desktop SSO, 107
Windows NT, 107

Authentication Service
account locking, 102-103
authentication chaining, 103-104
authentication configuration service, 110
authentication level-based authentication, 109
authentication type configurations, 108-110
configuration, 110-111
core authentication module, 110

231

Authentication Service (Continued)
description, 30-32
distributed authentication user interface, 113-114
features, 102-105
FQDN name mapping, 104
JAAS shared state, 105
login URLs, 111
module-based authentication, 109
modules, 105-108
or Authentication Web Service (Liberty), 182-184
organization-based authentication, 109
overview, 99-101
persistent cookie, 104
process, 83-85
programming interfaces, 115
realm-based authentication, 108
realm configuration, 110
redirection URLs, 111
role-based authentication, 108
security, 105
service-based authentication, 109
session upgrade, 104-105
SPI, 62
user-based authentication, 109
user interface, 111-113

authentication services
Authentication Service (non-Liberty), 182-184
Authentication Web Service (Liberty), 182-184

authentication type configurations, 108-110
Authentication Web Service, 181-184

description, 44
intefaces, 182
or Authentication Service (non-Liberty), 182-184

authorization
See Policy Service
and XACML, 123-127
overview, 117-118

auto-federation, 157

B
basic user session, 81-91

initial HTTP request, 81-83
bootstrap file, 58-59

bulk federation, 157

C
CDSSO, See cross-domain single sign-on
centralized agent configuration, 66-67
centralized configuration data, bootstrap file, 58-59
Certificate authentication, 106
circle of trust

definition, 132-133, 133-135
Client Detection Service, in authentication, 83-85
Client SDK, 61
Client SDK samples, 229
command line interface, 229
common domain, 160-161

reader service, 161
writer service, 161

common domain cookie, 161
Common Federation Configuration, 48
Common Tasks Wizard, 68-69
components, OpenSSO Enterprise, 52-62
conditions, policy, 120-121
configuration, Authentication Service, 110-111
configuration data, 52-58
configuration data store, 65

bootstrap file, 58-59
configuration files, description, 44-45
cookies

and sessions, 79-80
common domain, 161

core authentication module, 110
core services

Authentication Service, 30-32
Federation Services, 42-44
Identity Repository Service, 40-42
identity web services, 46-48
Logging Service, 38-40
OpenSSO Enterprise, 29-48
Policy Service, 33-35
Security Token Service, 45-46
Session Service, 35-38
Web Services Security, 45-46
web services stack, 44-45

Index

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009232

cross-domain single sign-on
definition, 35-38, 78
process, 94-96

cross domain single sign on
proprietary, 154
SAML v2, 154

current session properties, policy, 120-121

D
data

authentication, 58
configuration, 52-55
identity, 55-58
types, 52-58

data services
interfaces, 193
Liberty Personal Profile Service, 189-193

Data Store authentication, 106
data stores, 52-58
definition, OpenSSO Enterprise, 17-18
definitions

circle of trust, 133-135
federation, 131-133
identity, 131-132
identity federation, 131-132
identity provider, 133-135
principal, 133-135
provider, 133-135
provider federation, 132-133
service provider, 133-135
trust, 133

deployment, 27-29
Discovery Service, 217

architecture, 186-187
description, 44
intefaces, 187
overview, 184-187
process, 185-186

distributed authentication
definition, 113-114
in authentication, 83-85

documentation, 9-11
OpenSSO Enterprise, 9-11

documentation (Continued)
related products, 11

DTD
configuration files, 44-45
modification of, 44-45

dynamic identity provider proxying, Liberty
ID-FF, 162

E
error logs, 225-226

F
failover, configuration data store, 58-59
features

Authentication Service, 102-105
OpenSSO Enterprise, 21-23

federated identity, 131-132
federation, 133-135

architecture, 142-143
common domain, 160-161
definition, 131-133
identity federation and single sign-on, 156-157
options, 145-168
overview, 131-135
SPI, 62

Federation authentication, 106
federation management, OpenSSO Enterprise, 20
federation options

Liberty ID-FF, 145-146
SAML v1.x, 145-146, 146-155
SAML v2, 145-146, 146-155

Federation Services, description, 42-44
federationmanagement, key features, 137-141
Fedlet, 68-69

overview, 138
flat files, logging, 224
FQDN name mapping, and authentication, 104
functions, OpenSSO Enterprise, 19-21

Index

233

G
General Policy Service, 117-118
global logout, Liberty ID-FF, 162
global services, 48-49

Common Federation Configuration, 48
Liberty ID-FF Service Configuration, 48
Liberty ID-WSF Security Service, 48, 49
Multi-Federation Protocol, 49
Password Reset, 49
Policy Configuration, 49
SAML v2 Service Configuration, 49
Security Token Service, 49
Session, 49
User, 49

H
HTTP Basic authentication, 106
HTTP request, and authentication, 81-83
HTTP security agent, 212-214

I
identifiers, Liberty ID-FF, 161-162
identity, definition, 131-132
identity-based web service, 184-187
identity data, 52-58
identity federation, 133-135, 156-157

definition, 131-132
Identity Manager, and OpenSSO Enterprise, 70
identity providers, definition, 133-135
Identity Repository Service

See identity data
description, 40-42

identity repository service, plug-in, 62
Identity Web Services, 195

architecture, 198
identity web services

description, 46-48
OpenSSO Enterprise, 21

Identity Web Services
overview, 195-196
REST, 197

Identity Web Services (Continued)
SOAP and WSDL, 196-197
styles, 196-197

information tree, See configuration data
installation and configuration, 63-64
interfaces

Authentication Service, 115
Logging Service, 228
Policy Service, 123
Security Token Service, 216-218
SOAP Binding Service, 189
web services security, 216-218
XACML, 126-127

introduction, OpenSSO Enterprise, 17-23
IP address/DNS names, policy, 120-121

J
JAAS framework, and authentication, 103-104
JAAS shared state, and authentication, 105
Java Community Process, See JCP
JavaServer Pages, See JSP
JCP, specifications, 202-203
JDBC, 224-225
JDBC authentication, 106
JSP, SAML v2, 152
JSR 196 specifications, 202-203

L
LDAP authentication, 106
LDAP filter, policy, 120-121
LDAPv3, identity repository plug-in, 56-57
legacy mode, OpenSSO Enterprise, 52
Liberty Alliance Project

specifications, 199-203
Liberty Alliance Project Identity Federation

Framework, See Liberty ID-FF
Liberty ID-FF, 155-165

and single sign-on, 162-165
auto-federation, 157
bulk federation, 157
convergence with SAML, 148-152

Index

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009234

Liberty ID-FF (Continued)
dynamic identity provider proxying, 162
federation option, 145-146
global logout, 162
identifiers and name registration, 161-162
pre-login process, 162-165
process, 162-165
SAML v1.x comparison, 145-146

Liberty ID-FF Service Configuration, 48
Liberty ID-WSF Security Service, 48
Liberty Personal Profile Service, 189-193

description, 44
local identity, 131-132
log reading, customize, 228
logging

access logs, 225-226
amLogging.xmll, 221-222
component log files, 227-228
error logs, 225-226
flat files, 224
log reading, 228
overview, 221-223
process, 90-91
recorded events, 222-223
relational databases, 224-225
remote logging, 226
secure logging, 226

Logging Service
description, 38-40
programming interfaces, 228

login URLs, and authentication, 111

M
Membership authentication, 107
memory locking, and authentication, 102
message level security, 199-203
module-based authentication, 109
MSISDN authentication, 107
Multi-Federation Protocol, 49
multi-federation protocol hub, overview, 140-141

N
name registration, Liberty ID-FF, 161-162
Naming Service, and session validation, 85-87

O
OpenSSO Enterprise

access control, 19-20
architecture, 25-27
components, 52-62
core services, 29-48
definition, 17-18
features, 21-23
federation management, 20
functions, 19-21
identity web services, 21
introduction, 17-23
legacy mode, 52
overview, 18
process, 27-29
web services security, 20-21

Oracle Access Manager, and OpenSSO Enterprise, 70
organization-based authentication, 109
overview

authentication and authentication context, 158-160
Authentication Service, 99-101
Discovery Service, 184-187
HTTP security agent, 212-214
Liberty Personal Profile Service, 189-193
message level security, 199-203
OpenSSO Enterprise, 18
policy agent, 59-60
Policy Service, 117-118
security agent, 60
session service, 77-78
SOAP security agent, 214-216
transport level security, 199-203
XACML, 123-127

P
Password Reset, 49
PDP, in SAML, 152

Index

235

persistent cookie, and authentication, 104
physical locking, and authentication, 102
plug-ins

Access Manager Repository Plug-in, 57-58
authentication

See authentication modules
identity repository service, 62
LDAPv3, 56-57
policy response providers, 121-122
Policy Service, 62
service configuration, 62

policy, 119-122
and XACML, 123-127
conditions, 120-121
definition, 117-118
General Policy Service, 117-118
Policy Configuration Service, 117-118
rule, 119
subject, 119-120

Policy Administration Point, definition, 117-118
policy agent, overview, 59-60
policy agents, 33-35
Policy Configuration, 49
Policy Configuration Service, 117-118
Policy Decision Point

and XACML, 123-127
definition, 117-118

Policy Enforcement Point
and XACML, 123-127
definition, 117-118

policy evaluation, process, 88-89
Policy Service

definition, 117-127
description, 33-35
overview, 117-118
plug-in, 62
policy, 119-122
policy evaluation, 88-89
policy response provider plug-in, 121-122
programming interfaces, 123
referral, 122
XACML, 123-127

policy types, 119-122
pre-login process, Liberty ID-FF, 162-165

principal, definition, 133-135
process

See OpenSSO Enterprise
Discovery Service, 185-186
Liberty ID-FF, 162-165
SOAP Binding Service, 189

programming interfaces
Authentication Web Service, 182
data services, 193
Discovery Service, 187

provider federation, definition, 132-133
providers, 133-135

R
RADIUS authentication, 107
reader service, 161
realm authentication, policy, 120-121
realm-based authentication, 108
realm configuration, authentication, 110
realms, 49-52

and access control, 122-123
redirection URLs, and authentication, 111
referral, 122
relational databases, logging, 224-225
remote logging, 226
RequestHandler interface, 188
resource, policy, 119
resource offering, 184-187
REST, 46-48

Identity Web Services, 197
role-based authentication, 108
rule, policy, 119

S
SafeWord authentication, 107
SAML, convergence with Liberty ID-FF, 148-152
SAML authentication, 107
SAML v1.x

architecture, 152-153
federation, 146-155
federation option, 145-146

Index

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009236

SAML v1.x (Continued)
Liberty ID-FF comparison, 145-146

SAML v2, 148-152
administration, 150-151
API, 151
basic configuration, 150-151
features, 149-150
federation, 146-155
federation option, 145-146
JSP, 152
SPI, 151-152

SAML v2 Service Configuration, 49
sample deployment 1, 71
sample deployment 2, 73
samples

Client SDK, 229
command line interface, 229
server, 229

secure attribute exchange, overview, 138-140
secure logging, 226
SecurID authentication, 107
security, and authentication, 105
security agent

HTTP security agent, 212-214
overview, 60
SOAP security agent, 214-216

security agents, 212-216
Security Token Service, 199-218

and Web Services Security, 45-46
architecture, 208-212
description, 44
global service, 49
programming interfaces, 216-218
supported tokens, 211

server samples, 229
service-based authentication, 109
service configuration plug-in, 62
service files, configuration data, 52-55
Service Management Service, 62
service provider interface, See SPI
service provider interfaces, See SPI
service providers, definition, 133-135
session

See user session

session (Continued)
basic user session, 81-91
initial HTTP request, 81-83

session failover tools, 61
Session Global Service, 49
session ID, See session token
session object, See session data structure
Session Service, description, 35-38
session service, overview, 77-78
session termination, 96-97
session token, 79-80
session upgrade, and authentication, 104-105
session validation, process, 85-87
single sign-on, 156-157

definition, 35-38, 78
process, 91-93

single sign—on, and Liberty ID-FF, 162-165
SiteMinder, and OpenSSO Enterprise, 70
SOAP and WSDL, Identity Web Services, 196-197
SOAP Binding Service, 188-189

description, 45
process, 189
programming interfaces, 189

SOAP security agent, 214-216
SOAPReceiver, SOAP Binding Service process, 189
SOAPReceiver servlet, 188
specifications

JCP, 202-203
Liberty Alliance Project, 199-203
web services security, 199-203
WS-*, 201

SPI, 61-62
Authentication Service, 62
federation, 62
SAML v2, 151-152

SSO, See single sign-on
ssoadm command line, 61
ssoAdminTools.zip, 61
ssoSessionTools.zip, 61
subject, policy, 119-120

T
time, policy, 120-121

Index

237

tokens, specifications, 199-203
transport level security, 199-203
trust, definition, 133
trust agreements, 133

U
UNIX authentication, 107
user authentication, process, 83-85
user-based authentication, 109
User Global Service, 49
user session

cookies, 79-80
definition, 78
logging results, 90-91
policy evaluation, 88-89
session data structure, 79-80
session termination, 96-97
session token, 79-80
session validation, 85-87
user authentication, 83-85

V
value, policy, 119
virtual federation proxy, overview, 138-140

W
Web Services Description Language, See WSDL
web services security, 199-218

architecture, 204-206
deployment architecture, 206-208

Web Services Security, description, 45-46
web services security

OpenSSO Enterprise, 20-21
programming interfaces, 216-218
specifications, 199-203

web services stack, 171-172
architecture, 172-173
definition, 44-45
included services, 181-193

web services stack (Continued)
process, 175-176
with Authentication Web Service, 176-179
with Liberty ID-FF, 176-179
with SAML v2, 176-179

Windows Desktop SSO authentication, 107
Windows NT authentication, 107
writer service, 161
WS-*, specifications, 201
WS-Federation, 165-168
WS-Security specifications, 201-202
WS-Trust specifications, 202
WSDL, 46-48, 184-187

X
XACML

and authorization, 123-127
programming interfaces, 126-127

XML
configuration files, 44-45
service files, 52-55

Index

Sun OpenSSO Enterprise 8.0 Technical Overview • March 2009238

	Sun OpenSSO Enterprise 8.0 Technical Overview
	Preface
	Before You Read This Book
	Related Books
	OpenSSO Enterprise 8.0 Core Documentation
	Related Product Documentation

	Searching Sun Product Documentation
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments
	Default Paths and Directory Names
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions

	An Overview of Sun OpenSSO Enterprise 8.0
	Introducing OpenSSO Enterprise
	What is OpenSSO Enterprise?
	What Does OpenSSO Enterprise Do?
	What Are the Functions of OpenSSO Enterprise?
	Access Control
	Federation Management
	Web Services Security
	Identity Web Services

	What Else Does OpenSSO Enterprise Offer?

	Examining OpenSSO Enterprise
	The Client/Server Architecture
	How OpenSSO Enterprise Works
	Core Services
	Authentication Service
	Policy Service
	Session Service
	Logging Service
	Identity Repository Service
	Federation Services
	Web Services Stack
	Web Services Security and the Security Token Service
	Identity Web Services

	Global Services
	Realms
	Additional Components
	Data and Data Stores
	Configuration Data
	Identity Data
	Generic Lightweight Directory Access Protocol (LDAP) version 3
	LDAPv3 Plug-in for Active Directory
	LDAPv3 Plug-in for Tivoli Directory
	Sun Directory Server With FAM Core Services
	Sun Directory Server With Full Schema (including Legacy)
	Access Manager Repository Plug-in

	Authentication Data

	The bootstrap File
	Policy Agents
	Security Agents
	OpenSSO Enterprise Tools
	ssoadm Command Line Interface
	Session Failover Tools

	Client SDK
	Service Provider Interfaces for Plug-ins
	Authentication Service SPI
	Federation Service SPI
	Identity Repository Service SPI
	Policy Service SPI
	Service Configuration Plug-in

	Simplifying OpenSSO Enterprise
	Installation and Configuration
	Configuration Data Store
	Centralized Agent Configuration
	Common Tasks Wizard
	Third Party Integration
	Sun Java System Identity Manager
	Computer Associates SiteMinder
	Oracle Access Manager

	Deploying OpenSSO Enterprise
	Deployment Architecture 1
	Deployment Architecture 2

	Access Control Using OpenSSO Enterprise
	User Sessions and the Session Service
	About the Session Service
	User Sessions and Single Sign-on
	Session Data Structures and Session Token Identifiers

	Models of the User Session and Single Sign-On Processes
	Basic User Session
	Initial HTTP Request
	User Authentication
	Session Validation
	Policy Evaluation and Enforcement
	Logging the Results

	Single Sign-On Session
	Cross-Domain Single Sign-On Session
	Session Termination
	User Ends Session
	Administrator Ends Session
	OpenSSO Enterprise Enforces Timeout Rules
	Session Quota Constraints

	Authentication and the Authentication Service
	Authentication Service Overview
	Authentication Service Features
	Account Locking
	Authentication Chaining
	Fully Qualified Domain Name Mapping
	Persistent Cookies
	Session Upgrade
	JAAS Shared State
	Security

	Authentication Modules
	Authentication Types
	Configuring for Authentication
	Core Authentication Module and Realm Configuration
	Authentication Configuration Service
	Login URLs and Redirection URLs

	Authentication Graphical User Interfaces
	Authentication Service User Interface
	Distributed Authentication User Interface

	Authentication Service Programming Interfaces

	Authorization and the Policy Service
	Authorization and Policy Service Overview
	The Policy and the Referral
	Policy
	Rules
	Subjects
	Conditions
	Response Providers

	Referral

	Realms and Access Control
	Policy Service Programming Interfaces
	XACML Service
	XACML in OpenSSO Enterprise
	XACML Programming Interfaces

	Federation Management Using OpenSSO Enterprise
	What is Federation?
	The Concept of Federation
	Identity Federation
	Provider Federation

	The Concept of Trust
	How Federation Works

	Federation Management with OpenSSO Enterprise
	Key Federation Management Features
	The Fedlet
	Secure Attribute Exchange/Virtual Federation Proxy
	Authentication at Identity Provider
	Virtual Federation at Identity Provider
	Virtual Federation at Service Provider
	Global Single Logout

	Multi-Federation Protocol Hub

	The Federation Framework Architecture

	Choosing a Federation Option
	Federation Options
	Using SAML
	About SAML v2
	Key Features
	Administration
	Application Programming Interfaces
	Service Provider Interfaces
	JavaServer Pages

	About SAML v1.x
	Which Flavor of SAML to Use?
	Using SAML v2 or OpenSSO Enterprise CDSSO
	Using SAML v1.x or Liberty ID-FF

	Using the Liberty ID-FF
	Liberty ID-FF Features
	Federated Single Sign-On
	Auto-Federation
	Bulk Federation

	Authentication and Authentication Context
	The Common Domain for Identity Provider Discovery
	The Common Domain
	The Common Domain Cookie
	The Writer Service and the Reader Service

	Identifiers and Name Registration
	Global Logout
	Dynamic Identity Provider Proxying

	About the Liberty ID-FF Process

	Using WS-Federation

	The Web Services Stack, Identity Services, and Web Services Security
	Accessing the Web Services Stack
	About the Web Services Stack
	Web Services Stack Architecture
	Web Services Stack Process
	Using the Web Services Stack
	With SAML v2 or Liberty ID-FF
	With the Authentication Web Service

	Implemented Services
	Authentication Web Service
	Authentication Web Service Process
	Authentication Web Service API
	Which Authentication Service to Use?

	Discovery Service
	Discovery Service Process
	Discovery Service Architecture
	Discovery Service API

	SOAP Binding Service
	SOAP Binding Service Components
	SOAPReceiver Servlet
	RequestHandler Interface

	SOAP Binding Service Process
	SOAP Binding Service API

	Liberty Personal Profile Service
	Liberty Personal Profile Service Design
	Liberty Personal Profile Service Process
	Data Services API

	Delivering Identity Web Services
	About Identity Web Services
	Identity Web Service Styles
	SOAP and WSDL
	REST

	Identity Web Services Architecture

	Securing Web Services and the Security Token Service
	About Web Services Security
	Web Services Interoperability Technology
	WS-Security Specification
	WS-Trust Specification
	Liberty Alliance Project Specifications
	JSR-196 Specification

	Web Services Security in OpenSSO Enterprise
	Web Services Security Internal Architecture
	Web Services Security Deployment Architecture

	Security Token Service
	Security Agents
	HTTP Security Agent
	SOAP Security Agent
	Supported Liberty Alliance Project Security Tokens
	Supported Web Services-Interoperability Basic Security Profile Security Tokens

	Web Services Security and Security Token Service Interfaces
	com.sun.identity.wss.provider
	com.sun.identity.wss.security
	com.sun.identity.wss.sts

	Additional Features
	Recording Events with the Logging Service
	Logging Service Overview
	About the Logging Service
	Configuring the Logging Service
	Recording Events

	Log File Formats and Log File Types
	Log File Formats
	Flat File Format
	Relational Database Format

	Log File Types: Error and Access

	Secure Logging
	Remote Logging
	OpenSSO Enterprise Component Logs
	Logging Service Interfaces

	Getting Starting with the OpenSSO Enterprise Samples
	Server Samples
	Client SDK Samples
	Command Line Interface Samples

	Index

