Indiana Academic Standards Mathematics: Algebra I


 Laurel Franklin
 5 years ago
 Views:
Transcription
1 Indiana Academic Standards Mathematics: Algebra I 1
2 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify, evaluate, synthesize, and create the most highquality, rigorous standards for Indiana students. The definitions that guided this work were created by the Indiana Education Roundtable, Department of Education, Center for Education & Career innovation, Commission for Higher Education and the Department of Workforce Development. The definition for college and career ready by this group and used throughout this process is as follows: Collegeand career ready means an individual has the knowledge, skills and abilities to succeed in postsecondary education and economicallyviable career opportunities. Additionally Public Law [SEA 91] defines college and career readiness educational standards as the standards that a high school graduate must meet to obtain the requisite knowledge and skill to transition without remediation to postsecondary education or training, and ultimately into a sustainable career. Standards Process The Indiana Academic Standards were created through a collaborative process with input from teams of K12 educators and parents representing school corporations located throughout the state of Indiana; professors of higher education, representing a wide range of Indiana s public and private colleges and universities; and representatives from Indiana businesses and industries. The purpose of the standards process was to design college and career ready standards that would ensure students who complete high school in Indiana are ready for college and careers. History Public Law 286 was passed by the Indiana General Assembly in 2013, which created Indiana Code The law requires the Indiana State Board of Education to perform a comprehensive review of Indiana s current standards (which were the 2010 Common Core State Standards 1 ) and to adopt college and career ready educational standards no later than July 1, In the fall of 2013, the Indiana Department of Education established Technical Teams, which were comprised of K12 educators in English/Language Arts and Mathematics. The Technical Teams were responsible for reviewing the existing Indiana Academic Standards (Common Core State Standards) and providing suggestions for edits and word changes to improve the clarity and progression of the standards. The Department also created Advisory Teams, which were made up of educators from k12, parents, community members, and higher education institutions across Indiana. The Advisory Teams were responsible for reviewing the work of the Technical Teams and providing additional input. Evaluation Process In January of 2014, the Indiana Department of Education, in collaboration with the Indiana State Board of Education, established Evaluation Teams. The Evaluation Teams were responsible for additional layers beyond the work of the Technical and Advisory Teams. The Evaluation Teams were tasked with conducting a comprehensive analysis of several sets of standards, with the goal of identifying the standards that most clearly aligned with the content and skills that Hoosier students would need to know and be able to do in order to be college and career ready. Membership for the Evaluation Teams was gleaned from individuals who had previously participated on either a Technical Team or an Advisory Team. The Evaluation Team members were selected for their subject matter expertise (in English/Language Arts or Mathematics) and their classroom teaching experience. 1 Copyright National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved. 2
3 The Evaluation Teams were made up of K12 educators who represented a wide variety of Indiana school corporations with over 445 years of combined classroom teaching experience, and higher education subject matter experts in English/Language Arts and Mathematics, representing Indiana s public and private institutions of higher education. The Evaluation Teams met for the first time in February of The English/Language Arts evaluation teams were given the E/LA Common Core State Standards, as well as Indiana s 2006 E/LA Academic Standards and the standards created by the National Council of Teachers of English. The Mathematics evaluation teams were given the Mathematics Common Core State Standards, as well as Indiana s 2000 Math Academic Standards, Indiana s 2009 Math Academic Standards, and the standards created by the National Council of Teachers of Mathematics. The panel was instructed to independently evaluate each set of standards, identifying whether the standard was wholly aligned with what a Hoosier student would need to know and be able to do in order to be college and career ready; partially aligned with what a Hoosier student would need to know and be able to do in order to be college and career ready; or not aligned with what a Hoosier student would need to know and be able to do in order to be college and career ready. The results of the evaluation were processed according to a consensus requirement a majority requirement was calculated for each group of standards that was reviewed. Any standard that received a fully aligned rating by the majority of reviewers was marked as fully aligned; any standard that received a not aligned rating by the majority of reviewers was marked as not aligned; and any standard that received a partially aligned rating by the majority, or did not have a majority result, was marked as partially aligned. Once the evaluations were complete, the results were compiled, and the Evaluation Teams were brought together to conduct a consensus process. The consensus process was blind (meaning that the Evaluation Team members did not know the origin of the standards that they were discussing). Through the consensus process, the Evaluation Teams were asked to select the standards that best and most thoroughly represented what students should know and be able to do in various areas of English/Language Arts and Mathematics in order to be college and career ready. The Evaluation Teams selected the standards that they found to be most appropriate; combined standards to create a more appropriate, rigorous, or clear standard; or, if they determined that gaps existed, wrote standards, or reviewed standards from other states (for example, the English/Language Arts Evaluation Teams reviewed the 2010 draft standards from Massachusetts). Once the Evaluation Teams had selected the standards (from Common Core State Standards, Indiana Academic, or other states) or had written standards where they found gaps, the list of knowledge and skills identified as necessary for students to be college and career ready was posted for public comment. Public Comment, Public Hearings, and National Expert Review The draft college and career ready Indiana Academic Standards were posted for the public to review on February 19, The public was invited to provide comment through March 12. Over 2000 public comments were received. There were also three public hearings, which were held in southern, central, and northern Indiana, to receive public comment on the draft standards. The comments from both the online public comment and the public hearings were compiled, reviewed and used to contribute to further iterations of the standards. In addition, a variety of national experts were contacted to review the draft standards posted on February 19. The results of the reviews were discussed, and portions of the reviews were incorporated into further iterations of the standards. 3
4 Reconvening of Evaluation Teams The Evaluation Teams were reconvened in March of The teams were tasked with incorporating public comment, and l national expert review to ensure that the draft standards were aligned across grade levels and showed appropriate progression from grade to grade. The Evaluation Teams were also tasked with editing and revising standards for clarity, and addressing any other public comments and national expert review around grade appropriateness, bias, embedded pedagogy, or other factors. Once the Evaluation Teams completed their reviews, the results were sent to the College and Career Ready (CCR) Panels for final review and approval. The results were also shared with additional national experts, who provided reviews. The results of those reviews were analyzed and synthesized and shared with the CCR Panels. College and Career Ready (CCR) Panels The College and Career Ready Panels were created in order to ensure that the standards that Indiana developed were aligned with what colleges, universities, industries, and businesses deem necessary for students to be college and career ready. The CCR Panels were made up of subject matter experts from a variety of Indiana public and private colleges and universities, as well as individuals representing Indiana s businesses and industries. The CCR Panels were brought together in late March of 2014 to review the draft Indiana Academic Standards that had been reviewed and vetted by the Evaluation Teams in midmarch of The CCR Panels were tasked with reviewing the standards from 12 th grade through kindergarten to ensure that the standards were clear and understandable; aligned across grade levels, showing appropriate progression from grade to grade; and designed to prepare students for college and career readiness. The CCR panels met several times throughout the end of March 2014 and early April 2014 to accomplish this task. At their last meeting, the CCR panel members were asked to signoff on the draft standards, indicating whether, in their professional opinion, the standards were poised to prepare Hoosier students to be college and career ready. Indiana Academic Standards The culmination of the efforts of the Technical Teams, Advisory Teams, Evaluation Teams, and CCR Panels is the college and career ready Indiana Academic Standards that are college and career ready. While many of the standards originated from various sources, including the Common Core State Standards; 2000, 2006, and 2009 Indiana Academic Standards; Massachusetts 2010 Draft English/Language Arts Standards; Virginia Standards of Learning; Nebraska English/Language Arts Standards; the National Council of Teachers of Mathematics; and the National Council of Teachers of English, a number of original standards were also written by members of the Evaluation Teams or CCR Panels. The process was designed to identify the clearest, most rigorous, and best aligned standards in Mathematics and English/Language Arts to ensure that Hoosier students will graduate meeting the definitions for college and career as defined in Indiana s processes. 4
5 What are college and career ready Indiana Academic Standards? The college and career ready Indiana Academic Standards are designed to help educators, parents, students, and community members understand what students need to know and be able to do at each grade level, and within each content strand, in order to exit high school college and career ready. The Indiana Academic Standards for English/Language Arts demonstrate what students should know and be able to do in the areas of Reading, Writing, Speaking and Listening, and Media Literacy. The Indiana Academic Standards for Mathematics demonstrate what students should know and be able to do in the areas of K8 Mathematics; Algebra I, II, and Geometry; and higherlevel high school Mathematics courses. The Indiana Academic Standards for Content Area Literacy (History/Social Studies and Science/Technical Subjects) indicate ways in which students should be able to incorporate literacy skills into various content areas at the 612 grade levels. 1). The standards are not curriculum. What are the college and career ready Indiana Academic Standards NOT? While the standards may be used as the basis for curriculum, the college and career ready Indiana Academic Standards are not a curriculum. Therefore, identifying the sequence of instruction at each grade what will be taught and for how long requires concerted effort and attention at the corporation and school levels. While the standards may have examples embedded, and resource materials may include guidelines and suggestions, the standards do not prescribe any particular curriculum. Curriculum is determined locally by a corporation or school and is a prescribed learning plan toward educational goals that includes curricular tools and instructional materials, including textbooks, that are selected by the corporation/school and adopted through the local school board. 2). The standards are not instructional practices. While the standards demonstrate what Hoosier students should know and be able to do in order to be prepared for college and careers, the standards are not instructional practices. The educators and subject matter experts that worked on the standards have taken care to ensure that the standards are free from embedded pedagogy and instructional practices. The standards do not define how teachers should teach. The standards must be complemented by welldeveloped, aligned, and appropriate curricular materials, as well as robust and effective instructional best practices. 3). The standards do not necessarily address students who are far below or far above gradelevel. The standards are designed to show what the average Hoosier student should know and be able to do in order to be prepared for college and career. However, some students may be far below grade level or in need of special education, and other students may be far above grade level. The standards do not provide differentiation or intervention methods necessary to support and meet the needs of these students. It is up to the district, school, and educators to determine the best and most effective mechanisms of standards delivery for these students. 4). The standards do not cover all aspects of what is necessary for college and career readiness While the standards cover what have been identified as essential skills for Hoosier students to be ready for college and careers, the standards are not and cannot be an exhaustive list of what students need in order to be ready for life after high school. Students, especially younger students, require a wide range of 5
6 physical, social, and emotional supports in order to be prepared for the rigors of each educational progression (elementary grades to middle grades; middle grades to high school; and high school to college or career). II. Acknowledgements The college and career ready Indiana Academic Standards could not have been developed without the time, dedication, and expertise of Indiana s K12 teachers, parents higher education professors, and representatives of Indiana business and industry. Additionally, the members of the public, including parents, community members, policymakers, and educators who took time to provide public comments, whether through the online comment tool or in person at the various public hearings, have played a key role in contributing to the Indiana Academic Standards. The Indiana Department of Education and Indiana State Board of Education would like to thank Ms. Sujie Shin of the Center on Standards and Assessment Implementation for providing expert facilitation throughout the process and acting in an advisory capacity. The Department and Board would also like to thank the individuals and organizations who provided national expert reviews of the draft standards. We wish to specially acknowledge the members of the Technical Teams, Advisory Teams, Evaluation Teams, and College and Career Ready Panels who dedicated hundreds of hours to the review, evaluation, synthesis, rewriting, and creation of standards designed to be of the highest quality so that our Hoosier students who are ready for college and careers. 6
7 PROCESS STANDARDS FOR MATHEMATICS The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content, and the ways in which students should synthesize and apply mathematical skills. PS.1: Make sense of problems and persevere in solving them. PS.2: Reason abstractly and quantitatively. PS.3: Construct viable arguments and critique the reasoning of others. PROCESS STANDARDS FOR MATHEMATICS Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. 7
8 PS.4: Model with mathematics. PS.5: Use appropriate tools strategically. PS.6: Attend to precision. PS.7: Look for and make use of structure. PS.8: Look for and express regularity in repeated reasoning. Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving. Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context. Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects. Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results. 8
9 ALGEBRA I The Mathematics standards for Algebra I are supplemented by the Process Standards for Mathematics. The Mathematics standards for Algebra I are made up of 5 strands: Real Numbers and Expressions; Functions; Linear Equations, Inequalities, and Functions; Systems of Equations and Inequalities; Quadratic and Exponential Equations and Functions; and Data Analysis and Statistics. The skills listed in each strand indicate what students should know and be able to do in Algebra I. ALGEBRA I AI.RNE.1: Understand the hierarchy and relationships of numbers and sets of numbers within the real number system. REAL NUMBERS AND EXPRESSIONS AI.RNE.2: Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. AI.RNE.3: Rewrite and evaluate numeric expressions with positive rational exponents using the properties of exponents. AI.RNE.4: Simplify square roots of nonperfect square integers and algebraic monomials. AI.RNE.5: Simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms. AI.RNE.6: Factor common terms from polynomials and factor polynomials completely. Factor the difference of two squares, perfect square trinomials, and other quadratic expressions. AI.RNE.7: Understand polynomials are closed under the operations of addition, subtraction, and multiplication with integers; add, subtract, and multiply polynomials and divide polynomials by monomials. FUNCTIONS AI.F.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. Understand that if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. Understand the graph of f is the graph of the equation y = f(x). AI.F.2: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described. Identify independent and dependent variables and make predictions about the relationship. AI.F.3: Identify the domain and range of relations represented in tables, graphs, verbal descriptions, and equations. 9
10 AI.F.4: Understand and interpret statements that use function notation in terms of a context; relate the domain of the function to its graph and to the quantitative relationship it describes. AI.L.1: Understand that the steps taken when solving linear equations create new equations that have the same solution as the original. Solve fluently linear equations and inequalities in one variable with integers, fractions, and decimals as coefficients. Explain and justify each step in solving an equation, starting from the assumption that the original equation has a solution. Justify the choice of a solution method. LINEAR EQUATIONS, INEQUALITIES, AND FUNCTIONS AI.L.2: Represent realworld problems using linear equations and inequalities in one variable and solve such problems. Interpret the solution and determine whether it is reasonable. AI.L.3: Represent realworld and other mathematical problems using an algebraic proportion that leads to a linear equation and solve such problems. AI.L.4: Represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). AI.L.5: Represent realworld problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts. AI.L.6: Translate among equivalent forms of equations for linear functions, including slopeintercept, pointslope, and standard. Recognize that different forms reveal more or less information about a given situation. AI.L.7: Represent realworld problems using linear inequalities in two variables and solve such problems; interpret the solution set and determine whether it is reasonable. Solve other linear inequalities in two variables by graphing. AI.L.8: Solve compound linear inequalities in one variable, and represent and interpret the solution on a number line. Write a compound linear inequality given its number line representation. AI.L.9: Solve absolute value linear equations in one variable. AI.L.10: Graph absolute value linear equations in two variables. AI.L.11: Solve equations and formulas for a specified variable, including equations with coefficients represented by variables. 10
11 SYSTEMS OF EQUATIONS AND INEQUALITIES AI.SEI.1: Understand the relationship between a solution of a pair of linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are noninteger numbers. AI.SEI.2: Understand that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. Solve pairs of linear equations in two variables using substitution and elimination. AI.SEI.3: Write a system of two linear equations in two variables that represents a realworld problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable. AI.SEI.4: Represent realworld problems using a system of two linear inequalities in two variables and solve such problems; interpret the solution set and determine whether it is reasonable. Solve other pairs of linear inequalities by graphing with and without technology. QUADRATIC AND EXPONENTIAL EQUATIONS AND FUNCTIONS AI.QE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions. Understand that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Compare linear functions and exponential functions that model realworld situations using tables, graphs, and equations. AI.QE.2: Represent realworld and other mathematical problems that can be modeled with exponential functions using tables, graphs, and equations of the form y = ab^x (for integer values of x > 1, rational values of b > 0 and b 1 ); translate fluently among these representations and interpret the values of a and b. A1.QE.3: Graph exponential and quadratic equations in two variables with and without technology. AI.QE.4: Solve quadratic equations in one variable by inspection (e.g., for x^2 = 49), finding square roots, using the quadratic formula, and factoring, as appropriate to the initial form of the equation. AI.QE.5: Represent realworld problems using quadratic equations in one or two variables and solve such problems with and without technology. Interpret the solution and determine whether it is reasonable. AI.QE.6: Use the process of factoring to determine zeros, lines of symmetry, and extreme values in realworld and other mathematical problems involving quadratic functions; interpret the results in the realworld contexts. AI.QE.7: Describe the relationships among the solutions of a quadratic equation, the zeros of the function, the xintercepts of the graph, and the factors of the expression. 11
12 DATA ANALYSIS AND STATISTICS AI.DS.1: Distinguish between random and nonrandom sampling methods, identify possible sources of bias in sampling, describe how such bias can be controlled and reduced, evaluate the characteristics of a good survey and welldesigned experiment, design simple experiments or investigations to collect data to answer questions of interest, and make inferences from sample results. AI.DS.2: Graph bivariate data on a scatter plot and describe the relationship between the variables. AI.DS.3: Use technology to find a linear function that models a relationship for a bivariate data set to make predictions; interpret the slope and y intercept, and compute (using technology) and interpret the correlation coefficient. AI.DS.4: Distinguish between correlation and causation. AI.DS.5: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns (including joint, marginal, and conditional relative frequencies) to describe possible associations and trends in the data. AI.DS.6: Understand that statistics and data are nonneutral and designed to serve a particular interest. Analyze the possibilities for whose interest might be served and how the representations might be misleading. 12
Indiana Academic Standards Mathematics: Algebra II
Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,
More informationIndiana Academic Standards Mathematics: Probability and Statistics
Indiana Academic Standards Mathematics: Probability and Statistics 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Probability and Statistics are the result of
More informationINDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014
INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationStandards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationHow To Be A Mathematically Proficient Person
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationProblem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationProblem of the Month Through the Grapevine
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationPearson Algebra 1 Common Core 2015
A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).
More informationSouth Carolina College and CareerReady (SCCCR) Algebra 1
South Carolina College and CareerReady (SCCCR) Algebra 1 South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR) Mathematical Process
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationThis unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More informationGrades K6. Correlated to the Common Core State Standards
Grades K6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
More informationProblem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationGeorgia Standards of Excellence 20152016 Mathematics
Georgia Standards of Excellence 20152016 Mathematics Standards GSE Coordinate Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationAlgebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
More informationAlgebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
More informationCORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve reallife and mathematical problems
More informationPerformance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.12 Grade 6 Math : SubClaim A The student solves problems involving the Major Content for grade/course with
More informationWentzville School District Algebra 1: Unit 8 Stage 1 Desired Results
Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8  Quadratic Expressions & Equations Brief Summary of Unit: At
More informationProblem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationDRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
More informationGrade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
More informationProblem of the Month: Double Down
Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationNEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationMATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring noncourse based remediation in developmental mathematics. This structure will
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationGeorgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
More informationMathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
More informationThe program also provides supplemental modules on topics in geometry and probability and statistics.
Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students
More informationSouth Carolina College and CareerReady (SCCCR) Probability and Statistics
South Carolina College and CareerReady (SCCCR) Probability and Statistics South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR)
More informationGlencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 33, 58 84, 87 16, 49
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 68 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
More informationOverview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs
Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture
More informationMath 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction
Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards GSE Algebra II/Advanced Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationMath at a Glance for April
Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common
More informationProblem of the Month: Digging Dinosaurs
: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationHistory of Development of CCSS
Implications of the Common Core State Standards for Mathematics Jere Confrey Joseph D. Moore University Distinguished Professor of Mathematics Education Friday Institute for Educational Innovation, College
More informationPrentice Hall Mathematics, Algebra 1 2009
Prentice Hall Mathematics, Algebra 1 2009 Grades 912 C O R R E L A T E D T O Grades 912 Prentice Hall Mathematics, Algebra 1 Program Organization Prentice Hall Mathematics supports student comprehension
More informationMathematics Curriculum
Common Core Mathematics Curriculum Table of Contents 1 Polynomial and Quadratic Expressions, Equations, and Functions MODULE 4 Module Overview... 3 Topic A: Quadratic Expressions, Equations, Functions,
More informationPennsylvania System of School Assessment
Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationPerformance Assessment Task Baseball Players Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures
More informationPrentice Hall Algebra 2 2011 Correlated to: Colorado P12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
More informationGrade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
More informationAcademic Standards for Mathematics
Academic Standards for Grades Pre K High School Pennsylvania Department of Education INTRODUCTION The Pennsylvania Core Standards in in grades PreK 5 lay a solid foundation in whole numbers, addition,
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders
Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for wholenumber quotients with remainders of up to fourdigit dividends
More informationOverview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
More informationMathematics Curriculum Guide Precalculus 201516. Page 1 of 12
Mathematics Curriculum Guide Precalculus 201516 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing
More informationProblem of the Month: Cutting a Cube
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationwith functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
More informationBig Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
More informationLAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1Semester 2 Grade Level: 1012 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
More informationAlgebra II Unit Number 4
Title Polynomial Functions, Expressions, and Equations Big Ideas/Enduring Understandings Applying the processes of solving equations and simplifying expressions to problems with variables of varying degrees.
More informationPreAlgebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio PreAlgebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
More informationAnchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
More informationManhattan Center for Science and Math High School Mathematics Department Curriculum
Content/Discipline Algebra 1 Semester 2: Marking Period 1  Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types
More informationCourse Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)
Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,
More informationparent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does
More informationPrentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationOverview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
More informationPrentice Hall MyMathLab Algebra 1, 2011
Prentice Hall MyMathLab Algebra 1, 2011 C O R R E L A T E D T O Tennessee Mathematics Standards, 20092010 Implementation, Algebra I Tennessee Mathematics Standards 20092010 Implementation Algebra I 3102
More informationMcDougal Littell California:
McDougal Littell California: PreAlgebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California PreAlgebra Components: Pupil Edition (PE), Teacher s Edition (TE),
More informationPerformance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math  Content Standards
Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of
More informationPrentice Hall Connected Mathematics 2, 7th Grade Units 2009
Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems
More informationChapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School
Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education
More informationCAMI Education linked to CAPS: Mathematics
 1  TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationSuccessful completion of Math 7 or Algebra Readiness along with teacher recommendation.
MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 811 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION
More informationCRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide
Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationN Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to
More informationAlgebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
More informationProblem of the Month The Wheel Shop
Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationTennessee Mathematics Standards 20092010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 20092010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationProblem of the Month Pick a Pocket
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationhttp://www.aleks.com Access Code: RVAE4EGKVN Financial Aid Code: 6A9DBDEE3B74F5157304
MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio
More informationAlgebra 2 YearataGlance Leander ISD 200708. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 YearataGlance Leander ISD 200708 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More information2027 Mathematics Grade 8
Instructional Material Bureau Summer 2012 Adoption Review Institute Form F: Publisher Alignment Form & Review Scoring Rubric Publisher information and instructions: Corporation or Publisher: Pearson Education,
More informationMTH124: Honors Algebra I
MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More information1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
More information5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
More informationKeystone Exams: Algebra I Assessment Anchors and Eligible Content. Pennsylvania
Keystone Exams: Algebra I Assessment Anchors and Pennsylvania Algebra 1 2010 STANDARDS MODULE 1 Operations and Linear Equations & Inequalities ASSESSMENT ANCHOR A1.1.1 Operations with Real Numbers and
More information