Contents

Preface 11

1 Overview of Solaris System Tuning 15
 What’s New in Solaris System Tuning? 15
 Tuning a Solaris System 16
 Tuning Format 17
 Tuning the Solaris Kernel 18
 /etc/system File 19
 kadu 20
 mdb 20
 Special Structures 21
 Viewing System Configuration Information 22
 sysdef 22
 kstats 22

2 Solaris Kernel Tunables 25
 Where to Find Tunable Parameter Information 26
 General Parameters 26
 physmem 26
 lwp_default_stksize 27
 logevent_max_q_sz 28
 fsflush and Related Tunables 28
 fsflush 28
 tune_t_fsflushr 29
 autoup 30
dopageflush 31
doiflush 31

Process Sizing Tunables 32
maxusers 32
reserved_procs 33
pidmax 34
max_nprocs 34
maxuprc 35

Paging-Related Tunables 36
lotsfree 37
desfree 38
minfree 39
throttlefree 40
pageout_reserve 41
pages_pp_maximum 42
tune_t_minarmem 43
fastscan 43
slowscan 44
min_percent_cpu 44
handspreadpages 45
pages_before_pager 45
maxpgio 46

Swapping-Related Variables 47
swapfs_reserve 47
swapfs_minfree 48

General Kernel Variables 48
noexec_user_stack 48

Kernel Memory Allocator 49
kmem_flags 50

General Driver 52
moddebug 52

General I/O 53
maxphys 53
rlim_fd_max 54
rlim_fd_cur 55

General File System 56
ncsize 56
rstchown 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>segkpsize</td>
<td>57</td>
</tr>
<tr>
<td>dnlc_dir_enable</td>
<td>58</td>
</tr>
<tr>
<td>dnlc_dir_min_size</td>
<td>59</td>
</tr>
<tr>
<td>dnlc_dir_max_size</td>
<td>59</td>
</tr>
<tr>
<td>UFS</td>
<td>60</td>
</tr>
<tr>
<td>bufhwm</td>
<td>60</td>
</tr>
<tr>
<td>ndquot</td>
<td>61</td>
</tr>
<tr>
<td>ufs_ninode</td>
<td>62</td>
</tr>
<tr>
<td>ufs:ufs_WRITES</td>
<td>63</td>
</tr>
<tr>
<td>ufs:ufs_LW and ufs:ufs_HW</td>
<td>64</td>
</tr>
<tr>
<td>TMPFS</td>
<td>65</td>
</tr>
<tr>
<td>tmpfs:tmpfs_maxkmem</td>
<td>65</td>
</tr>
<tr>
<td>tmpfs:tmpfs_minfree</td>
<td>66</td>
</tr>
<tr>
<td>Pseudo Terminals</td>
<td>66</td>
</tr>
<tr>
<td>pt_cnt</td>
<td>67</td>
</tr>
<tr>
<td>pt_pctofmem</td>
<td>68</td>
</tr>
<tr>
<td>pt_max_pty</td>
<td>69</td>
</tr>
<tr>
<td>Streams</td>
<td>69</td>
</tr>
<tr>
<td>nstrpush</td>
<td>69</td>
</tr>
<tr>
<td>strmsgsz</td>
<td>70</td>
</tr>
<tr>
<td>strctlksz</td>
<td>70</td>
</tr>
<tr>
<td>System V Message Queues</td>
<td>71</td>
</tr>
<tr>
<td>msgsys:msginfo_msgmax</td>
<td>71</td>
</tr>
<tr>
<td>msgsys:msginfo_msgmnb</td>
<td>72</td>
</tr>
<tr>
<td>msgsys:msginfo_msgmni</td>
<td>72</td>
</tr>
<tr>
<td>msgsys:msginfo_msgtql</td>
<td>73</td>
</tr>
<tr>
<td>System V Semaphores</td>
<td>73</td>
</tr>
<tr>
<td>semsys:seminfo_semnni</td>
<td>74</td>
</tr>
<tr>
<td>semsys:seminfo_semms</td>
<td>74</td>
</tr>
<tr>
<td>semsys:seminfo_semvmx</td>
<td>75</td>
</tr>
<tr>
<td>semsys:seminfo_semsl</td>
<td>75</td>
</tr>
<tr>
<td>semsys:seminfo_semopm</td>
<td>76</td>
</tr>
<tr>
<td>semsys:seminfo_semmnu</td>
<td>76</td>
</tr>
<tr>
<td>semsys:seminfo_semume</td>
<td>77</td>
</tr>
<tr>
<td>semsys:seminfo_semaem</td>
<td>77</td>
</tr>
<tr>
<td>System V Shared Memory</td>
<td>78</td>
</tr>
<tr>
<td>shmsys:shminfo_shmmax</td>
<td>78</td>
</tr>
<tr>
<td>shmsys:shminfo_shmmni</td>
<td>79</td>
</tr>
</tbody>
</table>
3 NFS Tunable Parameters 85

Where to Find Tunable Parameter Information 85
Tuning the NFS Environment 85
NFS Module Parameters 86

nfs:nfs3_pathconf_disable_cache 86
nfs:nfs_allow_preepoch_time 86
nfs:nfs_cots_timeo 87
nfs:nfs3_cots_timeo 88
nfs:nfs_do_symlink_cache 89
nfs:nfs3_do_symlink_cache 89
nfs:nfs_dynamic 90
nfs:nfs3_dynamic 90
nfs:nfs_lookup_neg_cache 91
nfs:nfs3_lookup_neg_cache 91
nfs:nfs_max_threads 92
nfs:nfs3_max_threads 93
nfs:nfs_nra 94
nfs:nfs3_nra 94
nfs:nrnode 95
nfs:nfs_shrinkreaddir 96
nfs:nfs_write_error_interval 97
nfs:nfs_write_error_to_cons_only 97
nfs:nfs_disable_rddir_cache 98
nfs:nfs3_bsize 99
nfs:nfs_async_clusters 99
nfs:nfs3_async_clusters 100
4 TCP/IP Tunable Parameters 115

Where to Find Tunable Parameter Information 115

Overview of Tuning TCP/IP Parameters 115

TCP/IP Parameter Validation 116

Internet Request for Comments (RFCs) 116

IP Tunable Parameters 117

ip_icmp_err_interval and ip_icmp_err_burst 117
ip_forwarding and ip6_forwarding 117
xxx:ip_forwarding 118
ip_respond_to_echo_broadcast and ip6_respond_to_echo_multicast 118
ip_send_redirects and ip6_send_redirects 118
ip_forward_src_routed and ip6_forward_src_routed 119
ip_addrs_per_if 119
ip_strict_dst_multihoming and ip6_strict_dst_multihoming 120

TCP Tunable Parameters 121

tcp_deferred_ack_interval 121
tcp_local_dack_interval 122
TCP Parameters Set in the /etc/system File 131
TCP Parameters With Additional Cautions 132

UDP Tunable Parameters 135
udp_xmit_hiwat 136
udp_recv_hiwat 136

UDP Parameters with Additional Cautions 136

Per-Route Metrics 137

5 Network Cache and Accelerator (NCA) Tunable Parameters 139

Network Cache and Accelerator (NCA) Tunable Parameters

Where to Find Tunable Parameter Information 139
Overview of Tuning NCA Parameters 140
nca:nca_conn_hash_size 140
nca:nca_conn_req_max_q 140
nca:nca_conn_req_max_q0 141
nca:nca_ppmax 141
nca:nca_vpmax 142

General System Tuning for the NCA 142
sq_max_size 143
ge:ge_intr_mode 143
6 System Facility Parameters 145
 System Default Parameters 145
 cron 146
 devfsadm 146
 dhcpagent 146
 fs 146
 inetd 146
 inetinit 146
 init 146
 keyserv 147
 kbd 147
 login 147
 nfslogd 147
 passwd 147
 power 147
 rpc.nisd 147
 su 148
 syslog 148
 sys-suspend 148
 tar 148
 utmpd 148

A Tunable Parameter Change History 149
 Kernel Parameters 149
 Process Sizing Tunables 149
 Paging Related Tunables 151
 General Kernel Variables 155
 General I/O 155
 Pseudo Terminals 158
 Sun4u Specific 158
 Parameters With No Functionality 159
 Paging-Related Tunables 159
 System V Message Parameters 159
 System V Semaphore Parameters 161
 System V Shared Memory 161
 NFS Module Parameters 162
B Revision History for this Manual 163
Current Version—Solaris 9 Release 163
New Parameters 163
 logevent_max_q_sz 163
Unsupported or Obsolete Parameters 164
 priority_paging and cachefree are Not Supported 164
Obsolete Parameters 164
Changed Parameters 165
 maxusers 165
 pages_pp_maximum 165
 rlim_fd_max 166
 segspt_minfree 166
 shmsys:shminfo_shmsseg 167
 shmsys:shminfo_shmmax 167
 tmpfs:tmpfs_maxkmem 168
 tmpfs:tmpfs_minfree 168
 tcp_rexmit_interval_max 168
 tcp_slow_start_initial 168
 tcp_conn_req_max_q0 168
Removal of sun4d Support 169
Changes to Existing Parameters From the Previous Release (Solaris 8) 170
 shmsys:shminfo_shmmn 170
 semsys:seminfo_semminu 170

Index 171
Preface

Solaris Tunable Parameter Reference Manual provides reference information about Solaris kernel and network tunable parameters. This manual does not provide tunable parameter information about the CDE or Java environments.

It contains information for both SPARC™ based and IA based systems.

Note – The Solaris™ operating environment is supported on two types of hardware, or platforms—SPARC and IA. The Solaris operating environment supports 64-bit and 32-bit address spaces. The information in this document pertains to both platforms and address spaces unless specified in a special chapter, section, note, bullet, figure, table, example, or code example.

Who Should Use This Book

This book is intended for experienced Solaris system administrators who might need to change kernel tunable parameters in certain situations. For guidelines on changing Solaris tunable parameters, refer to “Tuning a Solaris System” on page 16.
How This Book Is Organized

The following table describes the chapters in this book.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>An overview of tuning a Solaris system and a description of the format used in the book to describe the kernel tunables</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>A description of Solaris kernel tunables such as kernel memory, the file system, process size, and paging parameters</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>A description of NFS tunables such as caching symbolic links, dynamic retransmission, and RPC security parameters</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>A description of TCP/IP tunables such as IP forwarding, source routing, and buffer sizing parameters</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>A description of tunable parameters for the Network Cache and Accelerator</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>A description of parameters for changing default values of certain system facilities by modifying files in the <code>/etc/default</code> directory</td>
</tr>
<tr>
<td>Appendix A</td>
<td>A history of parameters that have changed or are now obsolete</td>
</tr>
<tr>
<td>Appendix B</td>
<td>A history of this manual’s revisions that includes the current Solaris release version</td>
</tr>
</tbody>
</table>

Related Books

The following books provide background material that might be useful when tuning Solaris systems.

Other Resources for Solaris Tuning Information

This table describes other resources for Solaris tuning information.

<table>
<thead>
<tr>
<th>Tuning Resource</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance tuning classes</td>
<td>http://suned.sun.com</td>
</tr>
<tr>
<td>Online performance tuning information</td>
<td>http://www.sun.com/sun-on-net/performance</td>
</tr>
</tbody>
</table>

Typographic Conventions

The following table describes the typographic changes used in this book.

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with on-screen computer output</td>
<td>machine_name@ su Password:</td>
</tr>
</tbody>
</table>
TABLE P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>To delete a file, type <code>rm filename</code>.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words, or terms, or words to be emphasized.</td>
<td>Read Chapter 6 in User's Guide. These are called class options. You must be root to do this.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td><code>machine_name$</code></td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td><code>#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>
Overview of Solaris System Tuning

This section provides overview information about the format of the tuning information in this manual. It also describes the different ways to tune a Solaris system.

- “What’s New in Solaris System Tuning?” on page 15
- “Tuning a Solaris System” on page 16
- “Tuning Format” on page 17
- “Tuning the Solaris Kernel” on page 18

What’s New in Solaris System Tuning?

The following table lists important new tunable parameters or changes in the Solaris 9 release.

<table>
<thead>
<tr>
<th>Feature</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of the priority_paging and cachefree parameters</td>
<td>Appendix B</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) parameters</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>New system facility parameters for inetd, keyserv, syslogd, and rpc.nisd</td>
<td>Chapter 5</td>
</tr>
</tbody>
</table>

The following parameters are new or changed but might not be identified as changed in this book’s appendices. For more information, see the specific parameter information in the main topic chapter:

- pages_pp_maximum
Tuning a Solaris System

Solaris is a multi-threaded, scalable UNIX™ operating environment running on SPARC and Intel processors. It is self-adjusting to system load and demands minimal tuning. In some cases, however, tuning is necessary. This guide provides details about the officially supported kernel tuning options available for the Solaris environment.

The Solaris kernel is composed of a core portion, which is always loaded, and a number of loadable modules that are loaded as references are made to them. Many of the variables referred to in the kernel portion of this guide are in the core portion, but a few are located in loadable modules.

A key consideration in system tuning is that setting various system variables is often the least effective thing that can be done to improve performance. Changing the behavior of the application is generally the most effective tuning aid available. Adding more physical memory and balancing disk I/O patterns are also useful. In a few rare cases, changing one of the variables described in this guide will have a substantial effect on system performance.

Another thing to remember is that one system’s /etc/system settings might not be applicable, either wholly or in part, to another environment. Carefully consider the values in the file with respect to the environment in which they will be applied. Make sure that you understand the behavior of a system before attempting to apply changes to the system variables described here.

Caution – The variables described here and their meanings can and do change from release to release. A release is either a Solaris Update release or a new version such as Solaris 9. Publication of these variables and their description does not preclude changes to the variables and descriptions without notice.
Tuning Format

The format for the description of each variable follows:

- **Variable-Name**
- **Description**
- **Data Type**
- **Default**
- **Units**
- **Range**
- **Dynamic?**
- **Validation**
- **Implicit**
- **When to Change**
- **Commitment Level**
- **Change History**

Variable-Name

Variable-Name is the exact name that would be typed in the `/etc/system` file, or found in the `/etc/default/facility` file.

Most names are of the form `variable` where the variable name does not contain a colon (`:`). These names refer to variables in the core portion of the kernel. If the name does contain a colon, the characters to the left of the colon reference the name of a loadable module. The name of the variable within the module consists of the characters to the right of the colon. For example:

```
module_name:variable
```

Description

This section briefly describes what the variable does or controls.

Data Type

Signed or unsigned short or long integer with the following distinctions:

- On a system running a 32-bit kernel, a long is the same size as an integer.
- On a system running a 64-bit kernel, a long is twice the width in bits as an integer. For example, an unsigned integer = 32 bits, an unsigned long = 64 bits.

Default

What the system uses as the default value.

Units

(Optional) Description of unit type.

Range

Possible range allowed by system validation or the bounds of the data type.

- **MAXINT** — A shorthand description for the maximum value of a signed integer (2,147,483,647).
- **MAXUINT** — A shorthand description for the maximum value of an unsigned integer (4,294,967,295).

Dynamic? Yes, if it can be changed on a running system with the `mdb` or `kadb` debuggers. No, if it is a boot time initialization only.

Validation Identifies checks the system applies to the value of the variable either as entered from the `/etc/system` file or the default value, as well as when the validation is applied.

Implicit (Optional) Unstated constraints that might exist on the variable, especially in relation to other variables.

When to Change Why someone might want to change this value including error messages or return codes.

Commitment Level Identifies the stability of the interface. Many of the parameters in this manual are still evolving and are classified as unstable. For more information, see `attributes(5)`.

Change History (Optional) Contains a link to Change History appendix, if applicable.

Tuning the Solaris Kernel

The table below describes the different ways tuning parameters can be applied.

<table>
<thead>
<tr>
<th>Apply Tuning Parameters in These Ways</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modifying the <code>/etc/system</code> file</td>
<td>“/etc/system File” on page 19</td>
</tr>
<tr>
<td>Using the kernel debugger (<code>kadb</code>)</td>
<td>“kadb” on page 20</td>
</tr>
<tr>
<td>Using the modular debugger (<code>mdb</code>)</td>
<td>“mdb” on page 20</td>
</tr>
<tr>
<td>Using the <code>ndd</code> command to set TCP/IP parameters</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Modifying the <code>/etc/default</code> files</td>
<td>“Overview of Tuning NCA Parameters” on page 140</td>
</tr>
</tbody>
</table>
The `/etc/system` file provides a static mechanism for adjusting the values of kernel variables. Values specified in this file are read at boot time and are applied. Any changes made to the file are not applied to the operating system until the system is rebooted.

Prior to the Solaris 8 release, `/etc/system` entries that set the values of system variables were applied in two phases:

- The first phase obtains various bootstrap variables (for example, `maxusers`) to initialize key system parameters.
- The second phase calculates the base configuration by using the bootstrap variables, and all values entered in the `/etc/system` file are applied. In the case of the bootstrap variables, reapplied values replace the values calculated or reset in the initialization phase.

The second phase sometimes caused confusion to users and administrators by setting variables to values that seem to be impermissible or assigning values to variables (for example, `max_nprocs`) that have a value overridden during the initial configuration.

In the Solaris 8 release, one pass is made to set all the values before the configuration parameters are calculated.

Example—Setting a Parameter in `/etc/system`

The following `/etc/system` entry sets the number of read-ahead blocks that are read for file systems mounted using NFS version 2 software.

```
set nfs:nfs_nra=4
```

Recovering From an Incorrect Value

Make a copy of `/etc/system` before modifying it so you can easily recover from incorrect value:

```
# cp /etc/system /etc/system.good
```

If a value entered in `/etc/system` causes the system to become unbootable, you can recover with the following command:

```
ok boot -a
```

This command causes the system to ask for the name of various files used in the boot process. Press the carriage return to accept the default values until the name of the `/etc/system` file is requested. When the Name of system file `/etc/system`: prompt is displayed, enter the name of the good `/etc/system` file or `/dev/null`:
Name of system file [/etc/system]: /etc/system.good

If /dev/null is entered, this path causes the system to attempt to read from /dev/null for its configuration information and because it is empty, the system uses the default values. After the system is booted, the /etc/system file can be corrected.

For more information on system recovery, see System Administration Guide: Basic Administration.

kadb

kadb is a bootable kernel debugger with the same general syntax as adb. For the exceptions, see kadb(1M). One advantage of kadb is that the user can set breakpoints and when the breakpoint is reached, examine data or step through the execution of kernel code.

If the system is booted with the kadb -d command, values for variables in the core kernel can be set, but values for loadable modules would have to be set when the module was actually loaded.

For a brief tutorial on using the kadb command, see “Debugging” in Writing Device Drivers.

mdb

Starting with the Solaris 8 release is the modular debugger, mdb(1), which is unique among available Solaris debuggers because it is easily extensible. A programming API is available that allows compilation of modules to perform desired tasks within the context of the debugger.

mdb also includes a number of desirable usability features including command-line editing, command history, built-in output pager, syntax checking, and command pipelining. This is the recommended post-mortem debugger for the kernel.

Example—Using mdb to Change a Value

To change the value of the integer variable maxusers from 5 to 6, do the following:

```
# mdb -kw
Loading modules: [ unix krtld genunix ip logindmux ptm nfs ipc lofs ]
> maxusers/D
maxusers: 495
> maxusers/W 200
maxusers: 0x1ef = 0x200
```
$q

Replace maxusers with the actual address of the item to be changed as well as the value the variable is to be set to.

For more information on using the modular debugger, see the Solaris Modular Debugger Guide.

When using kadb or mdb, the module name prefix is not required because after a module is loaded, its symbols form a common name space with the core kernel symbols and any other previously loaded module symbols.

For example, ufs:ufs_WRITES would be accessed as ufs_WRITES in each of the debuggers (assuming the UFS module is loaded), but would require the ufs: prefix when set in the /etc/system file. Including the module name prefix kadb results in an undefined symbol message.

Special Structures

Solaris tuning variables come in a variety of forms. The tune structure defined in /usr/include/sys/tuneable.h is the runtime representation of
tune_t_gpgslo, tune_t_fsflushr, tune_t_minarmem, tune_t_minasmem, and tune_t_f1krec. After the kernel is initialized, all references to values of these variables are found in the appropriate field of the tune structure.

Various documents (for example, previous versions of Solaris System Administration Guide, Volume 2) have stated that the proper way to set variables in the tune structure is to use the syntax, tune:field-name where field name is replaced by the actual variable name listed above. This process silently fails. The proper way to set variables for this structure at boot time is to initialize the special variable corresponding to the desired field name. The system initialization process then loads these values into the tune structure.

A second structure into which various tuning parameters are placed is the var structure named v. You can find the definition of a var struct in the /usr/include/sys/var.h file. The runtime representation of variables such as autoup and bufhwm is stored here.

Do not change either the tune or v structure on a running system. Changing any of the fields of these structures on a running system might cause the system to panic.
Viewing System Configuration Information

Several tools are available to examine system configuration. Some require root privilege, others can be run by a non-privileged user. Every structure and data item can be examined with the kernel debugger by using `mdb` on a running system or by booting under `kadb`.

sysdef

The `sysdef(1M)` command provides the values of System V IPC settings, STREAMS tunables, process resource limits, and portions of the `tune` and `v` structures. For example, the `sysdef "Tunable Parameters"` section from on a 512 Mbyte Ultra™ 80 system is:

```
10387456  maximum memory allowed in buffer cache (bufhwm)
  7930    maximum number of processes (v.v_proc)
    99    maximum global priority in sys class (MAXCLSYSPRI)
  7925    maximum processes per user id (v.v_maxup)
    30    auto update time limit in seconds (NAUTOUP)
    25    page stealing low water mark (GPGSLO)
    5     fsflush run rate (FSFLUSR)
    25    minimum resident memory for avoiding deadlock (MINARMEM)
    25    minimum swapable memory for avoiding deadlock (MINASMEM)
```

kstats

`kstats` are data structures maintained by various kernel subsystems and drivers. They provide a mechanism for exporting data from the kernel to user programs without requiring that the program read kernel memory or have root privilege. For more information, see `kstat(3KSTAT)`.

Starting in the Solaris 8 release, the `kstat(1M)` command is available to enable selection and display of `kstats` with a command-line interface. A Perl module, `kstat(3EXT)`, is also available to process `kstat` information.
Note – kstats with system_pages name in the unix module do not report statistics for cachefree because cachefree is not supported in the Solaris 9 release.
CHAPTER 2

Solaris Kernel Tunables

This section describes most of the Solaris kernel tunables.

- “General Parameters” on page 26
- “fsflush and Related Tunables” on page 28
- “Process Sizing Tunables” on page 32
- “Paging-Related Tunables” on page 36
- “Swapping-Related Variables” on page 47
- “General Kernel Variables” on page 48
- “Kernel Memory Allocator” on page 49
- “General Driver” on page 52
- “General I/O” on page 53
- “General File System” on page 56
- “UFS” on page 60
- “TMPFS” on page 65
- “Pseudo Terminals” on page 66
- “Streams” on page 69
- “System V Message Queues” on page 71
- “System V Semaphores” on page 73
- “System V Shared Memory” on page 78
- “Scheduling” on page 80
- “Timers” on page 81
- “Sun4u Specific” on page 82
- “Solaris Volume Manager Parameters” on page 83
Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS Tunable Parameters</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>TCP/IP Tunable Parameters</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) Tunable</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>

General Parameters

This section describes general kernel parameters relating to physical memory and stack size.

physmem

- **Description**: Modifies the system’s idea of the number of physical pages of memory after the OS and firmware are accounted for.
- **Data Type**: Unsigned long
- **Default**: Number of usable pages of physical memory available on the system—not counting the memory where the core kernel and data are stored.
- **Range**: 1 to amount of physical memory on system
- **Units**: Pages
- **Dynamic?**: No
- **Validation**: None
- **When to Change**: Whenever you want to test the effect of running with less physical memory. Note that because this parameter does not take into account the memory used by the core kernel and data as well as various other data structures allocated early in the...
startup process, the value of `physmem` should be less than the actual number of pages that represent the smaller amount of memory.

Commitment Level Unstable

lwp_default_stksize

Description
Default value of size of stack to be used when a kernel thread is created, and the calling routine does not provide an explicit size to be used.

Data Type
Integer

Default
8192 for all 32-bit SPARC and IA based platforms
16,384 for 64-bit sun4u platforms

Range
0 to 262,144

Units
Bytes in multiples of the value returned by `getpagesize(3C)`.

Dynamic?
Yes. Affects threads created after the variable is changed.

Validation
Must be greater than or equal to 8192 and less than or equal to 262,144 (256 x 1024) and must be a multiple of the system page size. If these conditions are not met, the following message is displayed:

```
Illegal stack size, Using N
```

The value of N is the default described above.

When to Change
When the system panics because it has run out of stack space. The best solution for this problem is to determine why the system is running out of space and make a correction.
Increasing the default stack size means that almost every kernel thread will have a larger stack, resulting in increased kernel memory consumption for no good reason, because that space will generally be unused. The increased consumption means that other resources competing for the same pool of memory will have the amount of space available to them reduced, possibly decreasing the system’s ability to perform work. Among the side effects will be a reduction in the number of threads which the kernel can create. This solution should be treated as no more than an interim workaround until the root cause is remedied.

Commitment Level Unstable
logevent_max_q_sz

Description
Maximum number of system events allowed to be queued waiting for delivery to the syseventd daemon. Once the size of the system event queue reaches this limit, no other system events will be allowed on the queue.

Data Type
Integer

Default
2000

Range
0 to MAXINT

Units
System events

Dynamic?
Yes

Validation
The sysevent framework checks this value every time a system event is generated by ddi_log_sysevent(9F) and sysevent_post_event(3SYSEVENT).

When to Change
When error log messages indicate that a system event failed to be logged, generated, or posted.

Commitment Level
Unstable

fsflush and Related Tunables

This section describes fsflush and related tunables.

fsflush

The system daemon, fsflush, runs periodically to do three main tasks:

- On every invocation, fsflush...
 1. Flushes dirty file system pages over a certain age to disk.
 2. Examines a portion of memory and causes modified pages to be written to their backing store. Pages are written if they are modified and do not meet one of the following conditions:
 - Kernel page
 - Free
 - Locked
 - Associated with a swap device
Currently involved in an I/O operation

The net effect is to flush pages from files which are mmap(ed) with write permission and which have actually been changed.

Pages are flushed to backing store but left attached to the process using them. This will simplify page reclamation when the system runs low on memory by avoiding delay for writing the page to backing store before claiming it, if the page has not been modified since the flush.

3. Writes file system metadata to disk. This write is done every \(n \)th invocation, where \(n \) is computed from various configuration variables. See “tune_t_fsflushr” on page 29 and “Where to Find Tunable Parameter Information” on page 26 for details.

Frequency of invocation, whether the memory scanning is executed, whether the file system data flushing occurs, and the frequency with which it will occur are configurable.

For most systems, memory scanning and file system metadata syncing are the dominant activities for fsflush. Depending on system usage, memory scanning can be of little use or consume too much CPU time.

tune_t_fsflushr

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the number of seconds between fsflush invocations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>5</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>Seconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>If the value is less than or equal to zero, the value is reset to 5 and a warning message is displayed. This check is only done at boot time.</td>
</tr>
<tr>
<td>When to Change</td>
<td>See autoup below.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
autoup

Description
Along with `tune_t_flushr`, `autoup` controls the amount of memory examined for dirty pages in each invocation and frequency of file system sync operations.

The value of `autoup` is also used to control whether a buffer is written out from the free list. Buffers marked with the `B_DELWRI` flag (file content pages that have changed) are written out whenever the buffer has been on the list for longer than `autoup` seconds. Increasing the value of `autoup` keeps the buffers around for a longer time in memory.

Data Type
Signed integer

Default
30

Range
1 to MAXINT

Units
Seconds

Dynamic?
No

Validation
If `autoup` is less than or equal to zero, it is reset to 30 and a warning message is displayed. This check is only done at boot time.

Implicit
`autoup` should be an integer multiple of `tune_t_fsflushr`. At a minimum, `autoup` should be at least 6 times `tune_t_fsflushr`. If not, excessive amounts of memory will be scanned each time `fsflush` is invoked.

**(total system pages x `tune_t_fsflushr`) should be greater than or equal to `autoup` to cause memory to be checked if `dopageflush` is non-zero.

When to Change
There are several potential situations for changing `autoup` and or `tune_t_fsflushr`:

- Systems with large amounts of memory—In this case, increasing `autoup` reduces the amount of memory scanned in each invocation of `fsflush`.
- Systems with minimal memory demand—Increasing both `autoup` and `tune_t_fsflushr` reduces the number of scans made. `autoup` should be increased also to maintain the current ratio of `autoup / tune_t_fsflushr`.
- Systems with large numbers of transient files (for example, mail servers or software build machines)—If large numbers of files are created and then deleted, `fsflush` might unnecessarily write data pages for those files to disk.

Commitment Level
Unstable
dopageflush

Description
Controls whether memory is examined for modified pages during fsflush invocations. In each invocation of fsflush, the number of memory pages in the system is determined (it might have changed because of a dynamic reconfiguration operation). Each invocation scans (total number of pages \(\times \) tune_t_fsflushr) / autoup pages.

Data Type
Signed integer

Default
1 (enabled)

Range
0 (disabled) or 1 (enabled)

Units
Toggle (on/off)

Dynamic?
Yes

Validation
None

When to Change
If the system page scanner rarely runs, indicated by a value of 0 in the sr column of vmstat output.

Commitment Level
Unstable

doiflush

Description
Controls whether file system metadata syncs will be executed during fsflush invocations. Syncs are done every Nth invocation of fsflush where \(N = \frac{\text{autoup}}{\text{tune_t_fsflushr}} \). Because this is an integer division, if tune_t_fsflushr is greater than autoup, a sync will be done on every invocation of fsflush because the code checks to see if its iteration counter is greater than or equal to N. Note that N is computed once on invocation of fsflush. Later changes to tune_t_fsflushr or autoup will have no effect on the frequency of sync operations.

Data Type
Signed integer

Default
1 (enabled)

Range
0 (disabled) or 1 (enabled)

Units
Toggle (on/off)

Dynamic?
Yes

Validation
None
When to Change

When files are frequently modified over a period of time and the load caused by the flushing perturbs system behavior. Files whose existence, and therefore consistency of state does not matter if the system reboots, are better kept in a TMPFS file system (for example, /tmp). Inode traffic can be reduced on systems running the Solaris 7 and 8 releases by using the mount -noatime option. This option eliminates inode updates when the file is accessed.

A system engaged in realtime processing might want to disable this option and use explicit application file syncing to achieve consistency.

Commitment Level Unstable

Process Sizing Tunables

Several variables are used to control the number of processes that are available on the system and the number of processes that an individual user can create. The foundation variable is maxusers, which drives the values assigned to max_nprocs and maxuprc.

maxusers

Description

Originally, maxusers defined the number of logged in users the system could support. Various tables were sized based on this setting when a kernel was generated. Now, the Solaris release does much of its sizing based on the amount of memory on the system, so much of the past use of maxusers has changed. There are still a number of subsystems that are derived from maxusers:

- The maximum number of processes on the system
- The number of quota structures held in the system
- The size of the directory name lookup cache (DNLC)

Data Type Signed integer
Default Lesser of the amount of memory in Mbytes and 2048
Range 1 to 2048, based on physical memory if not set in the /etc/system file.
1 to 4096, if set in the /etc/system file.

Units Users
Dynamic? No. After computation of dependent variables is done, maxusers is never referenced again.
Validation None
When to Change When the default number of user processes derived by the system is too low. This situation is seen by the following message that displays on the system console:

out of processes

When the default number of processes is too high:

- Database servers that have a lot of memory and relatively few running processes, can save system memory by reducing the default value of maxusers.
- File servers that have a lot of memory and few running processes can reduce this value, but should explicitly set the size of the DNLC. (See “ncsize” on page 56.)
- Compute servers that have a lot of memory and few running processes can reduce this value.

Commitment Level Unstable
Change History For information, see “maxusers (Solaris 7 Release)” on page 149.

reserved_procs

Description Specifies number of system process slots to be reserved in the process table for processes with a UID of root (0). For example, fsflush.

Data Type Signed integer
Default 5
Range 5 to MAXINT
Units Processes
Dynamic? No. Not used after the initial parameter computation.
Validation In the Solaris 8 release, any /etc/system setting is honored.
Commitment Level Unstable
When to Change Consider increasing to 10 + normal number of UID 0 (root) processes on system. This setting provides some cushion
should it be necessary to obtain a root shell during a time when the system is otherwise unable to create user-level processes.

pidmax

Description This parameter specifies value of largest possible process ID. Valid for Solaris 8 and later releases.

pidmax sets the value for the maxpid variable. Once maxpid is set, pidmax is ignored. maxpid is used elsewhere in the kernel to determine the maximum process ID and for constraint checking.

Attempts to set maxpid by adding an entry to the /etc/system file have no effect.

Data Type Signed integer

Default 30,000

Range 266 to 999,999

Units Processes

Dynamic? No. Used only at boot time to set the value of pidmax.

Validation Value is compared to that of reserved_procs and 999,999. If less than reserved_procs or greater than 999,999, the value is set to 999,999.

Implicit max_nprocs range checking ensures that max_nprocs is always less than or equal to this value.

When to Change Changing this parameter is one of the steps necessary to enable support for more than 30,000 processes on a system.

Commitment Level Unstable

max_nprocs

Description Maximum number of processes that can be created on a system. Includes system and user processes. Any value entered in /etc/system is used in the computation of maxuprc.

This value is also used in determining the size of several other system data structures. Other data structures where this variable plays a role are:
- Determining the size of the directory name lookup cache (if \texttt{ncsize} is not specified).
- Allocating disk quota structures for UFS (if \texttt{ndquot} is not specified).
- Verifying that the amount of memory used by configured system V semaphores does not exceed system limits.
- Configuring Hardware Address Translation resources for the sun4m and Intel platforms.

Data Type Signed integer

Default \(10 + (16 \times \text{maxusers})\)

Range 266 to value of \texttt{maxpid}

Dynamic? No

Validation Compared to \texttt{maxpid} and set to \texttt{maxpid} if larger. On Intel platforms an additional check is made against a platform-specific value. \texttt{max_nprocs} is set to the smallest value in the triplet (\texttt{max_nprocs}, \texttt{maxpid}, platform value). Both platforms use 65,534 as the platform value.

When to Change Changing this parameter is one of the steps necessary to enable support for more than 30,000 processes on a system.

Commitment Level Unstable

Change History For information, see “\texttt{max_nprocs} (Pre-Solaris 8 Releases)” on page 150.

maxuprc

Description Maximum number of processes that can be created on a system by any one user.

Data Type Signed integer

Default \(\text{max_nprocs} - \text{reserved_procs}\)

Range 1 to \(\text{max_nprocs} - \text{reserved_procs}\)

Units Processes

Dynamic? No

Validation Compared to \(\text{max_nprocs} - \text{reserved_procs}\) and set to the smaller of the two.

When to Change When you want to specify a hard limit for the number of processes a user can create that is less than the default value of however many processes the system can create. Attempting to
exceed this limit generates the following warning messages on
the console or in the messages file:
out of per-user processes for uid N

Commitment Level Unstable

Paging-Related Tunables

The Solaris environment is a demand paged virtual memory system. As the system
runs, pages are brought into memory as needed. When memory becomes occupied
above a certain threshold and demand for memory continues, paging begins. Paging
goes through several levels that are controlled by certain variables.

The general paging algorithm is as follows:

- A memory deficit is noticed. The page scanner thread runs and begins to walk
 through memory. A two-step algorithm is employed:
 1. A page is marked as unused.
 2. If still unused after a time interval, the page is viewed as a subject for reclaim.

If the page has been modified, a request is made to the pageout thread to schedule
the page for I/O and the scanner continues looking at memory. Pageout causes the
page to be written to the page’s backing store and placed on the free list. When
scanning memory, no distinction is made as to the origin of the page. It may have
come from a data file, or it might represent a page from an executable’s text, data,
or stack.

- As memory pressure on the system increases, the algorithm becomes more
 aggressive in the pages it will consider as candidates for reclamation and in how
 frequently the paging algorithm runs. (For more information, see “fastscan”
on page 43 and “slowscan” on page 44.) As available memory falls between the
range lotsfree and minfree, the system will linearly increase the amount of
memory scanned in each invocation of the pageout thread from the value specified
by slowscan to the value specified by fastscan. The system uses the desfree
variable to control a number of decisions about resource usage and behavior.

The system initially constrains itself to use no more than 4% of one CPU for pageout
operations. As memory pressure increases, the amount of CPU time consumed in
support of pageout operations linearly increases until a maximum of 80% of one
CPU is consumed. The algorithm is to look through some amount of memory between
slowscan and fastscan, and stops when one of the following occurs:

- Enough pages have been found to satisfy the memory shortfall.
- The planned number of pages have been looked at.
Too much time has elapsed.

If a memory shortfall is still present when pageout finishes its scan, another scan is scheduled for 1/4 second in the future.

The configuration mechanism of the paging subsystem has changed in the Solaris 9 release. Instead of depending on a set of predefined values for fastscan, slowscan, and handspreadpages, the system determines the appropriate settings for these parameters at boot time. Setting any of these variables in the /etc/system file can cause the system to use less than optimal values.

Caution – We recommend that all tuning of the VM system be removed from /etc/system. Run with the default settings and determine if it is necessary to adjust any of these parameters. Do not set either cachefree or priority_paging. They have been removed from the Solaris 9 release.

Beginning in the Solaris 7 5/99 release, dynamic reconfiguration (DR) for CPU and memory is supported. The behavior of the system in a DR operation involving the addition or deletion of memory is to recalculate values for the relevant parameters unless the parameter has been explicitly set in /etc/system. In that case, the value specified in /etc/system is used unless a constraint on the value of the variable has been violated, in which case the value is reset.

lotsfree

Description Initial trigger for system paging to begin. When this threshold is crossed, the page scanner wakes up to begin looking for memory pages to reclaim.

Data Type Unsigned long

Default The greater of 1/64th of physical memory or 512 Kbytes

Range The minimum value is 512 Kbytes or 1/64th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize(3C).

The maximum is the number of physical memory pages. The maximum value should be no more than 30% of physical memory. The system does no enforcement of this range other than that described in the Validation section.

Units Pages

Dynamic? Yes, but dynamic changes are lost if a memory based DR operation occurs.
Validation
If `lotsfree` is greater than the amount of physical memory, the value is reset to the default.

Implicit
The relationship of `lotsfree` is greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

When to Change
When demand for pages is subject to sudden sharp spikes, the memory algorithm might not be able to keep up with demand. One way to work around this problem is to start reclaiming memory at an earlier time. This solution gives the paging system some additional margin.

A rule of thumb is to set this parameter to 2 times what the system needs to allocate in a few seconds. This parameter is workload dependent: a DBMS server can probably work fine with the default settings, but a system doing heavy file system I/O might need to adjust this parameter.

For systems with relatively static workloads and large amounts of memory, adjust this value downwards. The minimum acceptable value is 512 Kbytes expressed as pages using the page size returned by `getpagesize(3C)`.

Commitment Level
Unstable

desfree

Description
Amount of memory desired to be free at all times on the system.

Data Type
Unsigned integer

Default
`lotsfree / 2`

Range
The minimum value is 256 Kbytes or 1/128th of physical memory, whichever is greater, expressed as pages using the page size returned by `getpagesize(3C)`.

The maximum is the number of physical memory pages. The maximum value should be no more than 15% of physical memory. The system does no enforcement of this range other than that described in the Validation section.

Units
Pages

Dynamic?
Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the `/etc/system` file or was calculated from the new physical memory value.
Validation

If desfree is greater than lotsfree, desfree is set to lotsfree / 2. No message is displayed.

Implicit

The relationship of lotsfree is greater than desfree, which is greater than minfree, should be maintained at all times.

Side Effects

Several side effects can arise from increasing the value of this variable. When the new value nears or exceeds the amount of available memory on the system:

- Asynchronous I/O requests are not processed unless available memory exceeds desfree. Increasing the value of desfree can result in rejection of requests that otherwise would succeed.
- NFS Version 3 asynchronous writes are executed as synchronous writes.
- The swapper is awakened earlier, and the behavior of the swapper is biased towards more aggressive actions.
- The system might not prefault as many executable pages into the system. This side effect results in applications potentially running slower than they otherwise would.

When to Change

For systems with relatively static workloads and large amounts of memory, adjust this value downwards. The minimum acceptable value is 256 Kbytes expressed as pages using the page size returned by getpagesize(3C).

Commitment Level

Unstable

minfree

Description

Minimum acceptable memory level. When memory drops below this number, the system biases allocations toward those necessary to successfully complete pageout operations or to swap processes completely out of memory, and either denies or blocks other allocation requests.

Data Type

Unsigned integer

Default

desfree / 2

Range

The minimum value is 128 kbytes or 1/256th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize(3C).

The maximum is the number of physical memory pages. The maximum value should be no more than 7.5% of physical memory. The system does no enforcement of this range other than that described in the Validation section.
<table>
<thead>
<tr>
<th>Units</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic?</td>
<td>Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the <code>/etc/system</code> file or was calculated from the new physical memory value.</td>
</tr>
<tr>
<td>Validation</td>
<td>If <code>minfree</code> is greater than <code>desfree</code>, <code>minfree</code> is set to <code>desfree</code> / 2. No message is displayed.</td>
</tr>
<tr>
<td>Implicit</td>
<td>The relationship of <code>lotsfree</code> is greater than <code>desfree</code>, which is greater than <code>minfree</code>, should be maintained at all times.</td>
</tr>
<tr>
<td>When to Change</td>
<td>The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, adjust this value downwards. The minimum acceptable value is 128 Kbytes expressed as pages using the page size returned by <code>getpagesize(3C)</code>.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

throttlefree

<table>
<thead>
<tr>
<th>Description</th>
<th>Memory level at which blocking memory allocation requests are put to sleep, even if the memory is sufficient to satisfy the request.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned integer</td>
</tr>
<tr>
<td>Default</td>
<td><code>minfree</code></td>
</tr>
<tr>
<td>Range</td>
<td>The minimum value is 128 Kbytes or 1/256th of physical memory, whichever is greater, expressed as pages using the page size returned by <code>getpagesize(3C)</code>. The maximum is the number of physical memory pages. The maximum value should be no more than 4% of physical memory. The system does no enforcement of this range other than that described in the Validation section.</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the <code>/etc/system</code> file or was calculated from the new physical memory value.</td>
</tr>
<tr>
<td>Validation</td>
<td>If <code>throttlefree</code> is greater than <code>desfree</code>, <code>throttlefree</code> is set to <code>minfree</code>. No message is displayed.</td>
</tr>
<tr>
<td>Implicit</td>
<td>The relationship of \texttt{lotsfree} is greater than \texttt{desfree}, which is greater than \texttt{minfree}, should be maintained at all times.</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>When to Change</td>
<td>The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, adjust this value downwards. The minimum acceptable value is 128 Kbytes expressed as pages using the page size returned by \texttt{getpagesize(3C)}.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

pageout_reserve

Description
Number of pages reserved for the exclusive use of the pageout or scheduler threads. When available memory is less than this value, non-blocking allocations are denied for any processes other than pageout or the scheduler. Pageout needs to have a small pool of memory for its use so it can allocate the data structures necessary to do the I/O for writing a page to its backing store. This variable was introduced in the Solaris 2.6 release to ensure that the system would be able to perform a pageout operation in the face of the most severe memory shortage.

Data Type
Unsigned integer

Default
\texttt{throttlefree} / 2

Range
The minimum value is 64 Kbytes or 1/512th of physical memory, whichever is greater, expressed as pages using the page size returned by \texttt{getpagesize(3C)}.

The maximum is the number of physical memory pages. The maximum value should be no more than 2% of physical memory. The system does no enforcement of this range other than that described in the Validation section.

Units
Pages

Dynamic?
Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the \texttt{/etc/system} file or was calculated from the new physical memory value.

Validation
If \texttt{pageout_reserve} is greater than \texttt{throttlefree} / 2, \texttt{pageout_reserve} is set to \texttt{throttlefree} / 2. No message is displayed.

Implicit
The relationship of \texttt{lotsfree} is greater than \texttt{desfree}, which is greater than \texttt{minfree}, should be maintained at all times.
When to Change The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, adjust this value downwards. The minimum acceptable value is 64 Kbytes expressed as pages using the page size returned by getpagesize(3C).

Commitment Level Unstable

pages_pp_maximum

Description Defines the number of pages that the system requires be unlocked. If a request to lock pages would force available memory below this value, that request is refused.

Data Type Unsigned long

Default The greater of (tune_t_minarmem + 100 and [4% of memory available at boot time + 4 Mbytes])

Range Minimum value enforced by the system is tune_t_minarmem + 100. The system does not enforce a maximum value.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the /etc/system file or was calculated.

Validation If the value specified in the /etc/system file or the calculated default is less than tune_t_minarmem + 100, the value is reset to tune_t_minarmem + 100.

No message is displayed if the value from the /etc/system file is increased. Done only at boot time, and during dynamic reconfiguration operations that involve adding or deleting memory.

When to Change When memory locking requests or attaching to a shared memory segment with the SHARE_MMU flag fails, yet the amount of memory available seems to be sufficient.

Excessively large values can cause memory locking requests (mlock(3C), mlockall(3C), and memcntl(2)) to fail unnecessarily.

Commitment Level Unstable

Change History For information, see "pages_pp_maximum (Pre-Solaris 9 Releases)" on page 154.
tune_t_minarmem

Description
The minimum available resident (not swappable) memory to maintain in order to avoid deadlock. Used to reserve a portion of memory for use by the core of the operating system. Pages restricted in this way are not seen when the OS determines the maximum amount of memory available.

Data Type
Signed integer

Default
25

Range
1 to physical memory

Units
Pages

Dynamic?
No

Validation
None. Large values result in wasted physical memory.

When to Change
The default value is generally adequate. Consider increasing it if the system locks up and debugging information indicates the problem was because no memory was available.

Commitment Level
Unstable

fastscan

Description
Maximum number of pages per second that the system looks at when memory pressure is highest.

Data Type
Signed integer

Default
The lesser of 64 Mbytes and 1/2 of physical memory.

Range
1 to one-half of physical memory

Units
Pages

Dynamic?
Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided by `/etc/system` or was calculated from the new physical memory value.

Validation
Maximum value is the lesser of 64 Mbytes and 1/2 of physical memory.

When to Change
When more aggressive scanning of memory is desired during periods of memory shortfall, especially if the system is subject to periods of intense memory demand or when performing heavy file I/O.

Commitment Level
Unstable
slowscan

Description: Minimum number of pages per second that the system looks at when attempting to reclaim memory.

Data Type: Signed integer

Default: The smaller of 1/20th of physical memory in pages and 100.

Range: 1 to fastscan / 2

Units: Pages

Dynamic?: Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the /etc/system file or was calculated from the new physical memory value.

Validation: If slowscan is larger than fastscan / 2, slowscan is reset to fastscan / 2. No message is displayed.

When to Change: When more aggressive scanning of memory is desired during periods of memory shortfall especially if the system is subject to periods of intense memory demand.

Commitment Level: Unstable

min_percent_cpu

Description: Minimum percentage of CPU that pageout can consume. This variable is used as the starting point for determining the maximum amount of time that can be consumed by the page scanner.

Data Type: Signed integer

Default: 4

Range: 1 to 80

Units: Percentage

Dynamic?: Yes

Validation: None

When to Change: Increasing this value on systems with multiple CPUs and lots of memory, which are subject to intense periods of memory demand, enables the pager to spend more time attempting to find memory.

Commitment Level: Unstable
handspreadpages

Description: The Solaris environment uses a two-handed clock algorithm to look for pages that are candidates for reclaiming when memory is low. The first hand of the clock walks through memory marking pages as unused. The second hand walks through memory some distance after the first hand, checking to see if the page is still marked as unused. If so, the page is subject to reclaim. The distance between the front hand and the back hand is `handspreadpages`.

Data Type: Unsigned long

Default: `fastscan`

Range: 1 to maximum number of physical memory pages on the system

Units: Pages

Dynamic?: Yes. This parameter requires that the kernel variable `reset_hands` also be set to a non-zero value. Once the new value of `handspreadpages` has been recognized, `reset_hands` is set to zero.

Validation: Set to lesser of the amount of physical memory and the `handspreadpages` value

When to Change: When you want the amount of time that pages are potentially resident before reclaim is increased. Increasing this value increases the separation between the hands, and therefore, the amount of time before a page can be reclaimed.

Commitment Level: Unstable

pages_before_pager

Description: Part of a system threshold that immediately frees pages after an I/O completes instead of storing the pages for possible reuse. The threshold is `lotsfree + pages_before_pager`. The NFS environment also uses this threshold to curtail its asynchronous activities as memory pressure mounts.

Data Type: Signed integer

Default: 200

Range: 1 to amount of physical memory

Units: Pages
Dynamic? No
Validation None
When to Change When the majority of I/O is done for pages that are truly read or written once and never referenced again. Setting this variable to a larger amount of memory keeps adding pages to the free list.

When the system is subject to bursts of severe memory pressure. A larger value here helps to keep a bigger cushion against the pressure.

Commitment Level Unstable

maxpgio

Description Maximum number of page I/O requests that can be queued by the paging system. This number is divided by 4 to get the actual maximum used by the paging system. It is used to throttle the number of requests as well as to control process swapping.

Data Type Signed integer
Default 40
Range 1 to 1024
Units I/Os
Dynamic? No
Validation None
Implicit The maximum number of I/O requests from the pager is limited by the size of a list of request buffers, which is currently sized at 256.

When to Change When the system is subject to bursts of severe memory pressure. A larger value here helps to recover faster from the pressure if more than one swap device is configured or the swap device is a striped device.

Commitment Level Unstable
Swapping-Related Variables

Swapping in the Solaris environment is accomplished by the swapfs pseudo file system. The combination of space on swap devices and physical memory is treated as the pool of space available to support the system for maintaining backing store for anonymous memory. The system attempts to allocate space from disk devices first, and then uses physical memory as backing store. When swapfs is forced to use system memory for backing store, limits are enforced to ensure that the system does not deadlock because of excessive consumption by swapfs.

swapfs_reserve

Description: Amount of system memory that is reserved for use by system (UID = 0) processes.

Data Type: Unsigned long

Default: The smaller of 4 Mbytes and 1/16th of physical memory

Range: The minimum value is 4 Mbytes or 1/16th of physical memory, whichever is smaller, expressed as pages using the page size returned by getpagesize(3C).

The maximum is the number of physical memory pages. The maximum value should be no more than 10% of physical memory. The system does no enforcement of this range other than that described in the Validation section.

Units: Pages

Dynamic?: No

Validation: None

When to Change: Generally not necessary. Only change on recommendation of a software provider, or when system processes are terminating because of an inability to obtain swap space. A much better solution is to add physical memory or additional swap devices to the system.

Commitment Level: Unstable
swapfs_minfree

Description
Amount of physical memory that is desired be kept free for the rest of the system. Attempts to reserve memory for use as swap space by any process that causes the system’s perception of available memory to fall below this value are rejected. Pages reserved in this manner can only be used for locked-down allocations by the kernel or by user-level processes.

Data Type
Unsigned long

Default
The larger of 2 Mbytes and 1/8th of physical memory

Range
1 to amount of physical memory

Units
Pages

Dynamic?
No

Validation
None

When to Change
When processes are failing because of an inability to obtain swap space, yet the system has memory available.

Commitment Level
Unstable

General Kernel Variables

noexec_user_stack

Description
Enables the stack to be marked as non-executable. This helps in making buffer-overflow attacks more difficult.

A Solaris system running a 64-bit kernel makes the stacks of all 64-bit applications non-executable by default. Setting this variable is necessary to make 32-bit applications non-executable on systems running 64-bit or 32-bit kernels.

Note – This variable exists on all systems running the Solaris 2.6, 7, 8, or 9 releases, but it is only effective on sun4u and sun4m architectures.
Data Type Signed integer
Default 0 (disabled)
Range 0 (disabled), 1 (enabled)
Units Toggle (on/off)
Dynamic? Yes. Does not affect currently running processes—only those created after the value is set.
Validation None
When to Change Should be enabled at all times unless applications are deliberately placing executable code on the stack without using mprotect(2) to make the stack executable.
Commitment Level Unstable
Change History For information, see “noexec_user_stack (Solaris 2.6, 7, and 8 Releases)” on page 155.

Kernel Memory Allocator

The Solaris kernel memory allocator distributes chunks of memory for use by entities inside the kernel. The allocator creates a number of caches of varying size for use by its clients. Clients can also request the allocator to create a cache for use by that client (for example, to allocate structures of a particular size). Statistics about each of the caches that the allocator manages can be seen with the kstat -c kmem_cache command.

Occasionally, systems might panic because of memory corruption. The kernel memory allocator supports a debugging interface that performs various integrity checks on the buffers as well as collecting information on the allocators. The integrity checks provide the opportunity to detect errors closer to where they actually occurred, and the collected information provides additional data for support people when they try to ascertain the reason for the panic.

Use of the flags incurs additional overhead and memory usage during system operations. The flags should only be used when a memory corruption problem is suspected.
kmem_flags

Description

The Solaris kernel memory allocator has various debugging and test options that were extensively used during the internal development cycle of the Solaris environment. Prior to the Solaris 2.5 release, these options were not usable in released Solaris versions. Starting with the Solaris 2.5 release, a subset of these options are available and they are controlled by the `kmem_flags` variable, which was set by booting `kadba`, and then setting the variable before starting the kernel. Because of issues with the timing of the instantiation of the kernel memory allocator and the parsing of the `/etc/system` file, it was not possible to set these flags in the `/etc/system` file until the Solaris 8 release.

Five supported flag settings are described here.

TABLE 2-1 kmem_flags Settings

<table>
<thead>
<tr>
<th>Flag</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>0x1</td>
<td>The allocator maintains a log that contains recent history of its activity. The number of items logged depends on whether <code>CONTENTS</code> is also set. The log is a fixed size and when space is exhausted, earlier records are reclaimed.</td>
</tr>
<tr>
<td>TEST</td>
<td>0x2</td>
<td>The allocator writes a pattern into freed memory and checks that the pattern is unchanged when the buffer is next allocated. If some portion of the buffer is changed, this indicates that the memory was probably used by an entity that had previously allocated and freed the buffer. If an overwrite is seen, the system panics.</td>
</tr>
<tr>
<td>REDZONE</td>
<td>0x4</td>
<td>The allocator provides extra memory at the end of the requested buffer and inserts a special pattern into that memory. When the buffer is freed, the pattern is checked to see if data was written past the end of the buffer. If an overwrite is seen, the kernel panics.</td>
</tr>
</tbody>
</table>
TABLE 2-1 kmem_flags Settings (Continued)

<table>
<thead>
<tr>
<th>Flag</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>0x8</td>
<td>The allocator logs up to 256 bytes of buffer contents when the buffer is freed. Requires that AUDIT also be set. The numeric value of these flags can be logically added (OR’ed) together and set by the <code>/etc/system</code> file in the Solaris 8 release, or for previous releases, by booting <code>kadb</code> and setting the flags before starting the kernel.</td>
</tr>
<tr>
<td>LITE</td>
<td>0x100</td>
<td>Does minimal sanity checking when a buffer is allocated and freed. When enabled, the allocator checks that the redzone has not been written into, that a freed buffer is not being freed again, and that the buffer being freed is the size that was allocated. This flag is available as of the Solaris 73/99 release. Do not combine this flag with any other flags.</td>
</tr>
</tbody>
</table>

Data Type Signed integer
Default 0 (disabled)
Range 0 (disabled) or 1-15 or 256 (0x100)
Dynamic? Yes. Changes made during runtime only affect new kernel memory caches. After system initialization, the creation of new caches is rare.
Validation None
When to Change When memory corruption is suspected.
Commitment Level Unstable
General Driver

moddebug

Description
Variable that you can set to values that cause messages about various steps in the module loading process to be displayed.

Data Type
Signed integer

Default
0 (messages off)

Range
The most useful values are:

- **0x80000000** - Prints [un] loading... message. For every module loaded, messages such as the following would appear on the console and in the /var/adm/messages file:

 Nov 5 16:12:28 sys genunix: [ID 943528 kern.notice] load 'sched/TS_DPTBL' id 9 loaded @ 0x10126438/0x10438dd8 size 132/2064

- **0x40000000** - Prints detailed error messages. For every module loaded, messages such as the following would appear on the console and in the /var/adm/messages file:

 Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice] kobj_open: can't open /platform/SUNW,Ultra-1/kernel/sched/TS_DPTBL
 Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice] kobj_open: can't open /platform/sun4u/kernel/sched/TS_DPTBL
 Nov 5 16:16:50 sys krtld: [ID 797908 kern.notice] kobj_open: '/kernel/sch...
 Nov 5 16:16:50 sys krtld: [ID 605504 kern.notice] descr = 0x2a
 Nov 5 16:16:50 sys krtld: [ID 642728 kern.notice] kobj_read_file: size=34,
 Nov 5 16:16:50 sys krtld: [ID 217760 kern.notice] offset=0
 Nov 5 16:16:50 sys krtld: [ID 136382 kern.notice] kobj_read: req 8192 bytes,
 Nov 5 16:16:50 sys krtld: [ID 295989 kern.notice] got 4224
 Nov 5 16:16:50 sys krtld: [ID 426732 kern.notice]
Dynamic? Yes
Validation None
When to Change When a module is either not loading as expected or the system seems to hang while loading modules. Note that when print detailed messages is set, system boot is slowed down considerably by the number of messages written to the console.
Commitment Level Unstable

General I/O

maxphys
Description Maximum size of physical I/O requests. If a driver sees a request larger than this size, the driver breaks the request into maxphys size chunks. File systems can and do impose their own limit.
Data Type Signed integer
Default 126,976 (sun4m), 131,072 (sun4u), 57,344 (Intel). The sd driver uses the value of 1,048,576 if the drive supports wide transfers. The ssd driver uses 1,048,576 by default.

Range Machine-specific page size to MAXINT

Units Bytes

Dynamic? Yes, but many file systems load this value into a per-mount point data structure when the file system is mounted. A number of drivers load the value at the time a device is attached into a driver-specific data structure.

Validation None

When to Change When doing I/O to and from raw devices in large chunks. Note that a DBMS doing OLTP operations issues large numbers of small I/Os. Changing maxphys does not result in any performance improvement in that case.

When doing I/O to and from a UFS file system where large amounts of data (greater than 64 Kbytes) are being read or written at any one time. Note that the file system should be optimized to increase contiguity (for example, increase the size of the cylinder groups and decrease the number of inodes per cylinder group). UFS imposes an internal limit of 1 Mbyte on the maximum I/O size it transfers.

Commitment Level Unstable

rtrim_fd_max

Description "Hard" limit on file descriptors that a single process might have open. To override this limit requires superuser privilege.

Data Type Signed integer

Default 65,536

Range 1 to MAXINT

Units File descriptors

Dynamic? No

Validation None

When to Change When the maximum number of open files for a process is not enough. Note that other limitations in system facilities can mean that a larger number of file descriptors is not as useful as it might be:
A 32-bit program using standard I/O is limited to 256 file descriptors. A 64-bit program using standard I/O can use up to 2 billion descriptors.

`select(3C)` is by default limited to 1024 descriptors per `fd_set`. Starting with the Solaris 7 release, 32-bit application code can be recompiled with a larger `fd_set` size (less than or equal to 65,536). A 64-bit application sees an `fd_set` size of 65,536, which cannot be changed.

An alternative to changing this on a system wide basis is to use the `plimit(1)` command. If a parent process has its limits changed by `plimit`, all children inherit the increased limit. This is useful for daemons such as `inetd`.

Commitment Level: Unstable
Change History: For information, see "`rlim_fd_max` (Solaris 8 Release)" on page 156.

rlim_fd_cur

Description

"Soft" limit on file descriptors that a single process can have open. A process might adjust its file descriptor limit to any value up to the "hard" limit defined by `rlim_fd_max` by using the `setrlimit()` call or issuing the `limit` command in whatever shell it is running. You do not require superuser privilege to adjust the limit to any value less than or equal to the hard limit.

Data Type

Signed integer

Default

256

Range

1 to MAXINT

Units

File descriptors

Dynamic?

No

Validation

Compared to `rlim_fd_max` and if `rlim_fd_cur` is greater than `rlim_fd_max`, `rlim_fd_cur` is reset to `rlim_fd_max`.

When to Change

When the default number of open files for a process is not enough. Increasing this value means only that it is possibly not necessary for a program to use `setrlimit(2)` to increase the maximum number of file descriptors available to it.

Commitment Level

Unstable

Change History

For information, see "`rlim_fd_cur` (Pre-Solaris 7 and the Solaris 7 Release)" on page 155.
General File System

ncsize

Description
Number of entries in the directory name look-up cache (DNLC). This parameter is used by UFS and NFS to cache elements of path names that have been resolved.

Starting with the Solaris 8 6/00 release, the DNLC also caches negative lookup information, which means it caches a name not found in the cache.

Data Type
Signed integer

Default
$4 \times (v\cdot v_{proc} + maxusers) + 320$

Range
0 to MAXINT

Units
DNLC entries

Dynamic?
No

Validation
None. Larger values cause the time it takes to unmount a file system to increase as the cache must be flushed of entries for that file system during the unmount process.

When to Change
Prior to the Solaris 8 6/00 release, it is difficult to determine whether the cache is too small. It is possible to infer this by noting the number of enters returned by `kstat -n ncstats`. If the number seems high given the system workload and file access pattern, this may be due to the size of the DNLC.

Starting with the Solaris 8 6/00 release, `kstat -n dnlcstats`, is available for you to determine when entries have been removed from the DNLC because it was too small. The sum of the `pick_heuristic` and the `pick_last` represents otherwise valid entries which were reclaimed because the cache was too small.

Note that excessive values of `ncsize` have an immediate impact on the system since the system allocates a set of data structures for the DNLC based on the value of `ncsize`. A system running a 32-bit kernel allocates 36 byte structures for
ncsize, while a system running a 64-bit kernel allocates 64 byte structures for ncsize. The value also has a further affect on UFS and NFS unless ufs_inode and nfs:nfs_rnode are explicitly set.

Commitment Level Unstable

rstchown

Description Indicates whether the POSIX semantics for the chown(2) system call are in effect. POSIX semantics are:
- A process cannot change the owner of a file unless it is running with UID 0.
- A process cannot change the group ownership of a file to a group in which it is not currently a member unless it is running as UID 0.

Data Type Signed integer

Default 1, indicating that POSIX semantics are used

Range 0 = POSIX semantics not in force, 1 = POSIX semantics used

Units Toggle (on/off)

Dynamic? Yes

Validation None

When to Change When POSIX semantics are not desired. Note that turning off POSIX semantics opens the potential for various security holes. It also opens the possibility of a user changing ownership of a file to another user and being unable to retrieve the file back without intervention from the user or the system administrator.

Commitment Level Obsolete

segkpsize

Description Specify the amount of kernel pageable memory available. This memory is used primarily for kernel thread stacks. Increasing this number allows either larger stacks for the same number of threads or more threads. This parameter can only be set on systems running 64-bit kernels. Systems running 64-bit kernels use a default stack size of 24 Kbytes.
Data Type: Unsigned long
Default: 64-bit kernels, 2 Gbytes
32-bit kernels, 512 Mbytes
Range: 64-bit kernels, 512 Mbytes - 24 Gbytes
32-bit kernels, 512 Mbytes
Units: Mbytes
Dynamic?: No
Validation: Value is compared to minimum and maximum sizes (512 Mbytes and 24 Gbytes for 64-bit systems) and if smaller than the minimum or larger than the maximum, it is reset to 2 Gbytes and a message to that effect is displayed.

The actual size used in creation of the cache is the lesser of the value specified in `segkpsize` after the constraints checking and 50% of physical memory.

When to Change: This is one of the steps necessary to support large numbers of processes on a system. The default size of 2 Gbytes, assuming at least 1 Gbyte of physical memory is present, allows creation of 24-Kbyte stacks for more than 87,000 kernel threads. The size of a stack in a 64-bit kernel is the same whether the process is a 32-bit process or a 64-bit process. If more than this number is needed, `segkpsize` can be increased assuming sufficient physical memory exists.

Commitment Level: Unstable
Change History: For information, see “segkpsize (Pre-Solaris 7 and the Solaris 7 Release)” on page 157.

dnlc_dir_enable
Description: Enables large directory caching.
Data Type: Unsigned integer
Default: 1 (enabled)
Range: 0 (disabled), 1 (enabled)
Dynamic?: Yes, but do not change this tunable dynamically. It is possible to enable it if originally disabled, or to disable it if originally enabled. However, enabling, disabling, and then enabling this parameter might lead to stale directory caches.
Validation No
When to Change Directory caching has no known problems, but if problems occur, then set `dnlc_dir_enable` to 0 to disable caching.
Commitment Level Unstable

`dnlc_dir_min_size`

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum number of entries before caching for one directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned integer</td>
</tr>
<tr>
<td>Default</td>
<td>40</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXUINT (no maximum)</td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, it can be changed at any time.</td>
</tr>
<tr>
<td>Validation</td>
<td>No</td>
</tr>
<tr>
<td>When to Change</td>
<td>If performance problems occur with caching small directories, then increase <code>dnlc_dir_min_size</code>. Note that individual file systems might have their own range limits for caching directories. For instance, UFS limits directories to a minimum of <code>ufs_min_dir_cache</code> bytes (approximately 1024 entries), assuming 16 bytes per entry.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

`dnlc_dir_max_size`

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum number of entries cached for one directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned integer</td>
</tr>
<tr>
<td>Default</td>
<td>MAXUINT (no maximum)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXUINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, it can be changed at any time.</td>
</tr>
<tr>
<td>Validation</td>
<td>No</td>
</tr>
<tr>
<td>When to Change</td>
<td>If performance problems occur with large directories, then decrease <code>dnlc_dir_max_size</code>.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
UFS

bufhwm

Description Maximum amount of memory for caching I/O buffers. The buffers are used for writing file system metadata (superblocks, inodes, indirect blocks, and directories). Buffers are allocated as needed until the amount to be allocated would exceed bufhwm. At this point, enough buffers are reclaimed to satisfy the request.

For historical reasons, this parameter does not require the ufs: prefix.

Data Type Signed integer

Default 2% of physical memory

Range 80 Kbytes to 20% of physical memory

Units Kbytes

Dynamic? No. Value is used to compute hash bucket sizes and is then stored into a data structure that adjusts the value in the field as buffers are allocated and deallocated. Attempting to adjust this value without following the locking protocol on a running system can lead to incorrect operation.

Validation If bufhwm is less than 80 Kbytes or greater than the lesser of 20% of physical memory or twice the current amount of kernel heap, it is reset to the lesser of 20% of physical memory or twice the current amount of kernel heap. The following message appears on the system console and in the /var/adm/messages file.

"binit: bufhwm out of range (value attempted). Using N."

Value attempted refers to the value entered in /etc/system or by using the kadb -d command. N is the value computed by the system based on available system memory.

When to Change Since buffers are only allocated as they are needed, the overhead from the default setting is the allocation of a number of control structures to handle the maximum possible number of buffers. These structures consume 52 bytes per potential buffer on a 32-bit kernel and 104 bytes per potential buffer on a 64-bit kernel. On a 512 Mbyte 64-bit kernel this consumes 104*10144 bytes, or 1
Mbyte. The header allocations assumes buffers are 1 Kbyte in size, although in most cases, the buffer size is larger.

The amount of memory, which has not been allocated in the buffer pool, can be found by looking at the bfreelist structure in the kernel with a kernel debugger. The field of interest in the structure is bufsize, which is the possible remaining memory in bytes. Looking at it with the buf macro by using mdb:

```
# mdb -k
Loading modules: [ unix krtld genunix ip nfs ipc ]
> bfreelist$cbuf
bfreelist:
[ elided ]
bfreelist + 0x78: bufsize [ elided ]
    75734016
```

bufhwm on this system, with 6 Gbytes of memory, is 122277. It is not directly possible to determine the number of header structures used since the actual buffer size requested is usually larger than 1 Kbyte. However, some space might be profitably reclaimed from control structure allocation for this system.

The same structure on the 512 Mbyte system shows that only 4 Kbytes of 10144 Kbytes has not been allocated. When the biostats kstat is examined with kstat -n biostats, it is seen that the system had a reasonable ratio of buffer_cache_hits to buffer_cache_lookups as well. This indicates that the default setting is reasonable for that system.

Commitment Level

Unstable

ndquot

Description Number of quota structures for the UFS file system that should be allocated. Relevant only if quotas are enabled on one or more UFS file systems. Because of historical reasons, the ufs: prefix is not needed.

Data Type Signed integer

Default ((maxusers \times 40) / 4) + max_nprocs

Range 0 to MAXINT

Units Quota structures

Dynamic? No

Validation None. Excessively large values hang the system.
When to Change

When the default number of quota structures is not enough. This situation is indicated by the following message displayed on the console or written in the message log.

dquot table full

Commitment Level

Unstable

ufs_ninode

Description

Number of inodes to be held in memory. Inodes are cached globally (for UFS), not on a per-file system basis.

A key variable in this situation is ufs_ninode. This parameter is used to compute two key limits that affect the handling of inode caching. A high watermark of ufs_ninode / 2 and a low water mark of ufs_ninode / 4 are computed.

When the system is done with an inode, one of two things can happen:

1. The file referred to by the inode is no longer on the system so the inode is deleted. After it is deleted, the space goes back into the inode cache for use by another inode (which is read from disk or created for a new file).
2. The file still exists but is no longer referenced by a running process. The inode is then placed on the idle queue. Any referenced pages are still in memory.

When inodes are idled, the kernel defers the idling process to a later time. If a file system is a logging file system the kernel also defers deletion of inodes. Two kernel threads do this. Each thread is responsible for one of the queues.

When the deferred processing is done, the system drops the inode onto either a delete or idle queue, each of which has a thread that can run to process it. When the inode is placed on the queue, the queue occupancy is checked against the low watermark. If it is in excess of the low watermark, the thread associated with the queue is awakened. After it is awakened, the thread runs through the queue and forces any pages associated with the inode out to disk and frees the inode. The thread stops when it has removed 50% of the inodes on the queue at the time it was awakened.

A second mechanism is in place if the idle thread is unable to keep up with the load. When the system needs to find a vnode, it goes through the ufs_vget routine. The first thing vget
does is check the length of the idle queue. If the length is above the high watermark, then it pops two inodes off the idle queue and "idles" them (flushes pages and frees inodes). It does this before it gets an inode for its own use.

The system does attempt to optimize by placing inodes with no in-core pages at the head of the idle list and inodes with pages at the end of the idle list, but it does no other ordering of the list. Inodes are always removed from the front of the idle queue.

The only time that inodes are removed from the queues as a whole is when a sync, unmount, or remount occur.

For historical reasons, this parameter does not require the ufs: prefix.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>ncszie</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>Inodes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>If ufs_ninode is less than or equal to zero, the value is set to ncszie.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the default number of inodes is not enough. If the maxsize reached field as reported by kstat -n inode_cache is larger than the maxsize field in the kstat, the value of ufs_ninode may be too small. Excessive inode idling (described previously) can also be a problem. This situation can be identified by using kstat -n inode_cache to look at the inode_cache kstat. Thread idles are inodes idled by the background threads while vget idles are idles by the requesting process before using an inode.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

ufs:ufs_WRITES

Description

If ufs_WRITES is non-zero, the number of bytes outstanding for writes on a file is checked. See ufs_HW subsequently to determine whether the write should be issued or should be deferred until only ufs_LW bytes are outstanding. The total
number of bytes outstanding is tracked on a per-file basis so that if the limit is passed for one file, it won’t affect writes to other files.

Data Type Signed integer
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Units Toggle (on/off)
Dynamic? Yes
Validation None
When to Change When you want UFS write throttling turned off entirely. If sufficient I/O capacity does not exist, disabling this parameter can result in long service queues for disks.
Commitment Level Unstable

ufs::ufs_LW and ufs::ufs_HW

Description	ufs_HW is the number of bytes outstanding on a single file barrier value. If the number of bytes outstanding is greater than this value and ufs_WRITES is set, then the write is deferred. The write is deferred by putting the thread issuing the write to sleep on a condition variable. ufs_LW is the barrier for the number of bytes outstanding on a single file below which the condition variable on which other sleeping processes are toggled. When a write completes and the number of bytes is less than ufs_LW, then the condition variable is toggled, which causes all threads waiting on the variable to awaken and try to issue their writes.
Data Type	Signed integer
Default	8 x 1024 x 1024 for ufs_LW and 16 x 1024 x 1024 for ufs_HW
Range	0 to MAXINT
Units	Bytes
Dynamic?	Yes
Validation	None
Implicit	ufs_LW and ufs_HW have meaning only if ufs_WRITES is not equal to zero. ufs_HW and ufs_LW should be changed together to avoid needless churning when processes awake
and find that they either cannot issue a write (when \texttt{ufs_LW} and \texttt{ufs_HW} are too close) or when they might have waited longer than necessary (when \texttt{ufs_LW} and \texttt{ufs_HW} are too far apart).

When to Change

Consider changing these values when file systems consist of striped volumes. The aggregate bandwidth available can easily exceed the current value of \texttt{ufs_HW}. Unfortunately, this is not a per-file system setting.

When \texttt{ufs_throttles} is a non-trivial number. \texttt{ufs_throttles} can currently be accessed only with a kernel debugger.

Commitment Level

Unstable

TMPFS

\texttt{tmpfs:tmpfs_maxkmem}

- **Description**: Maximum amount of kernel memory that TMPFS can use for its data structures (tmpnodes and directory entries).
- **Data Type**: Unsigned long
- **Default**: One page or 4\% of physical memory, whichever is greater.
- **Range**: Number of bytes in one page (8192 for UltraSPARCTM systems, 4096 for all others) to 25\% of the available kernel memory at the time TMPFS was first used.
- **Units**: Bytes
- **Dynamic?**: Yes
- **Validation**: None
- **When to Change**: Increase if the following message is displayed on the console or written in the messages file.

\begin{verbatim}
 tmp_memalloc: tmpfs over memory limit
\end{verbatim}

The current amount of memory used by TMPFS for its data structures is held in the \texttt{tmp_kmemspace} field, which can be examined with a kernel debugger.
Commitment Level Unstable

tmpfs:tmpfs_minfree

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum amount of swap space that TMPFS leaves for the rest of the system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed long</td>
</tr>
<tr>
<td>Default</td>
<td>256</td>
</tr>
<tr>
<td>Range</td>
<td>0 to maximum swap space size</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>To maintain a reasonable amount of swap space on systems with large amounts of TMPFS usage, you can increase this number. The limit has been reached when the console or system messages file displays the following message.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>Changes From Previous Release</td>
<td>For information, see “tmpfs:tmpfs_minfree” on page 168.</td>
</tr>
</tbody>
</table>

Pseudo Terminals

Pseudo terminals, ptys, are used for two purposes in Solaris:

- Supporting remote logins by using the telnet, rlogin, or rsh commands
- Providing the interface through which the X Window system creates command interpreter windows

The default number of pseudo-terminals is sufficient for a desktop workstation so tuning focuses on the number of ptys available for remote logins.
Previous versions of Solaris required that steps be taken to explicitly configure the system for the desired number of ptys. Starting with the Solaris 8 release, a new mechanism removes the necessity for tuning in most cases. The default number of ptys is now based on the amount of memory on the system and should be changed only to increase the number or to decrease the default value.

Three related variables are used in the configuration process:

- **pt_cnt** - Default maximum number of ptys
- **pt_pctofmem** - Percentage of kernel memory that can be dedicated to pty support structures
- **pt_max_pty** - Hard maximum for number of ptys

pt_cnt has a default value of zero, which tells the system to limit logins based on the amount of memory specified in pt_pctofmem, unless pt_max_pty is set. If pt_cnt is non-zero, ptys are allocated until this limit. When that threshold is crossed, the system looks at pt_max_pty. If that has a non-zero value, it is compared to pt_cnt and the pty allocation is allowed if pt_cnt is less than pt_max_pty. If pt_max_pty is zero, pt_cnt is compared to the number of ptys supported based on pt_pctofmem. If pt_cnt is less than this value, the pty allocation is allowed. Note that the limit based on pt_pctofmem only comes into play if both pt_cnt and ptms_ptymax have their default values of zero.

To put a hard limit on ptys that is different than the maximum derived from pt_pctofmem, set pt_cnt and ptms_ptymax in /etc/system to the number of ptys desired. The setting of ptms_pctofmem is not relevant in this case.

To dedicate a different percentage of system memory to pty support and let the operating system manage the explicit limits, do the following:

- Do not set pt_cnt or ptms_ptymax in /etc/system.
- Set pt_pctofmem in /etc/system to the desired percentage. For example, set pt_pctofmem=10 for a 10% setting.

Note that the memory is not actually allocated until it is used in support of a pty. Once memory is allocated, it remains allocated.

pt_cnt

Description

The number of /dev/pts entries available is dynamic up to a limit determined by the amount of physical memory available on the system. pt_cnt is one of three variables that determines the minimum number of logins that the system can accommodate. The default maximum number of /dev/pts devices the system can support is determined at boot time by computing the number of pty structures that can fit in a

Chapter 2 • Solaris Kernel Tunables • 67
percentage of system memory (see \texttt{pt_pctofmem} next). If \texttt{pt_cnt} is zero, the system allocates up to that maximum. If \texttt{pt_cnt} is non-zero, the system allocates to the greater of \texttt{pt_cnt} and the default maximum.

\begin{itemize}
\item \textbf{Data Type}: Unsigned integer
\item \textbf{Default}: 0
\item \textbf{Range}: 0 to \texttt{maxpid}
\item \textbf{Units}: logins/windows
\item \textbf{Dynamic?}: No
\item \textbf{Validation}: None
\item \textbf{When to Change}: When you want to explicitly control the number of users that can remotely log in to the system.
\item \textbf{Commitment Level}: Unstable
\item \textbf{Change History}: For information, see “pt_cnt (Pre-Solaris 7 and the Solaris 7 Release)” on page 158.
\end{itemize}

\textbf{pt_pctofmem}

\begin{itemize}
\item \textbf{Description}: Maximum percentage of physical memory that can be consumed by data structures to support /dev/pts entries. A system running a 64-bit kernel consumes 176 bytes per /dev/pts entry. A system running a 32-bit kernel consumes 112 bytes per /dev/pts entry.
\item \textbf{Data Type}: Unsigned integer
\item \textbf{Default}: 5
\item \textbf{Range}: 0 to 100
\item \textbf{Units}: Percentage
\item \textbf{Dynamic?}: No
\item \textbf{Validation}: None
\item \textbf{When to Change}: When you want to either restrict or increase the number of users that can log in to the system. A value of zero means that no remote users can log in to the system.
\item \textbf{Commitment Level}: Unstable
\end{itemize}
pt_max_pty

Description
Maximum number of PTYS the system offers.

Data Type
Unsigned integer

Default
0 (Uses system defined maximum)

Range
0 to MAXUINT

Units
Logins/windows

Dynamic?
Yes

Validation
None

Implicit
Should be greater than or equal to pt_cnt. Value is not checked until the number of PTYS allocated exceeds the value of pt_cnt.

When to Change
When you want to place an absolute ceiling on the number of logins supported even if the system could handle more based on its current configuration values.

Commitment Level
Unstable

Streams

nstrpush

Description
Number of modules that can be inserted into (pushed onto) into a stream.

Data Type
Signed integer

Default
9

Range
9 to 16

Units
Modules

Dynamic?
Yes

Validation
None
When to Change: At the direction of your software vendor. No messages are displayed when a STREAM exceeds its permitted push count. A value of `EINVAL` is returned to the program that attempted the push.

Commitment Level: Unstable

strmsgsz

Description: Maximum number of bytes that a single system call can pass to a STREAM to be placed in the data part of a message. Any `write(2)` exceeding this size is broken into multiple messages.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>65,536</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 262,144</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When <code>putmsg(2)</code> calls return <code>ERANGE</code>.</td>
</tr>
</tbody>
</table>

Commitment Level: Unstable

strctlsz

Description: Maximum number of bytes that a single system call can pass to a STREAM to be placed in the control part of a message.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1024</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>At the direction of your software vendor. <code>putmsg(2)</code> calls return <code>ERANGE</code> if they attempt to exceed this limit.</td>
</tr>
</tbody>
</table>

Commitment Level: Unstable
System V Message Queues

System V message queues provide a message-passing interface that enables exchange of messages by queues created in the kernel. Interfaces are provided in the Solaris environment to enqueue and dequeue messages. Messages can have a type associated with them. Enqueueing places messages at the end of a queue. Dequeueing removes the first message of a specific type from the queue or the first message if no type is specified.

The module is dynamically loaded on first reference. Parameters provided to the subsystem are validated at that time. Entries in the /etc/system file must contain the msgsys: prefix.

This facility is different from the POSIX 1003.1b message queue facility.

The Solaris 8 release modified the use of some of the parameters for this facility. The msgsys:msginfo_msgsz, msgsys:msginfo_msgmap, and msgsys:msginfo_msgseg parameters are now obsolete. The variables have been left in place to avoid error messages. Any values applied are ignored.

The maximum number of messages the facility can handle at any one point in time is now entirely defined by msgsys:msginfo_msgtql. An array of message headers sized to the value specified in this variable is allocated and initialized as a free list. When an attempt is made to send a message, the free list is examined and if a header is available, a buffer is allocated from kernel memory to handle the message data. The data is copied into the buffer and the message is placed in the destination queue. When the message is read, the buffer is freed and the header placed on the free list.

Previous Solaris versions would limit the number of messages either by setting msgsys:msginfo_msgtql or by limiting the number of memory segments and the size of the segments that were allocated to a message buffer pool. When the module is first loaded, it allocates a number of data structures needed to manage messages. The total space allocated for these structures must not exceed 25% of available kernel memory, or the attempt to load fails and the following message is displayed.

msgsys: can't load module, too much memory requested

Unlike previous Solaris versions, a message buffer pool is not allocated as part of set up and is no longer considered in the 25% of memory check.

msgsys:msginfo_msgmax

Description Maximum size of System V message.

Data Type Unsigned long
msgsys:msginfo_msgmnb

Description

Maximum number of bytes that can be on any one message queue.

Data Type

Unsigned long

Default

4096

Range

0 to amount of physical memory

Units

Bytes

Dynamic?

No. Loaded into msgmnb field of msginfo structure.

Validation

None

When to Change

When msgsnd(2) calls block or return with an error of EINVAL, or at the recommendation of a software vendor.

Commitment Level

Unstable

msgsys:msginfo_msgmni

Description

Maximum number of message queues that can be created.

Data Type

Signed integer

Default

50

Range

0 to MAXINT

Dynamic?

No. Loaded into msgmni field of msginfo structure.

Validation

None

When to Change

When msgget(2) calls return with an error of ENOSPC or at the recommendation of a software vendor.
Commitment Level Unstable

msgsys:msginfo_msgtql

Description Maximum number of messages that can be created. If a msgsnd call attempts to exceed this limit, the request is deferred until a message header is available. Or, if the request has set the IPC_NOWAIT flag, the request fails with the error EAGAIN.

Data Type Signed integer
Default 40
Range 0 to MAXINT
Dynamic? No. Loaded into msgtql field of msginfo structure.
Validation None
When to Change When msgsnd() calls block or return with error of EAGAIN, or at the recommendation of a software vendor.

Commitment Level Unstable

System V Semaphores

System V semaphores provide counting semaphores in the Solaris environment. In addition to the standard set and release operations for semaphores, System V semaphores can have values that are incremented and decremented as needed (for example, to represent the number of resources available). The ability is offered to do operations on a group of semaphores simultaneously as well as to have the system undo the last operation by a process if it dies.

Semaphores are created in sets.

The module is dynamically loaded on first reference. Parameters provided to the subsystem are validated at that time and all data structures (including the semaphores) are created. Values for parameters are, accordingly, not changeable at runtime because increases in values would lead to data corruption. Entries in the /etc/system file must contain the semsys: prefix.

This facility is different from the POSIX 1003.1b semaphore facility.
semsys:seminfo_semmni

Description: Maximum number of semaphore identifiers.

Data Type: Signed integer

Default: 10

Range: 1 to 65,535

Dynamic?: No

Validation: Compared to `SEMA_INDEX_MAX` (currently 65,535) and reset to that value if larger. A warning message is written to the console and/or system messages file.

When to Change: When the default number of sets is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to create more sets than are currently configured. The application sees a return code of `ENOSPC` from a `semget(2)` call.

Commitment Level: Unstable

semsys:seminfo_semmns

Description: Maximum number of System V semaphores on the system.

Data Type: Signed integer

Default: 60

Range: 1 to MAXINT

Dynamic?: No

Validation: The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.

When to Change: When the default number of semaphores is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to create more semaphores than are currently configured. The application sees a return code of `ENOSPC` from a `semget(2)` call.

Commitment Level: Unstable
semsys:seminfo_semvmx

Description: Maximum value a semaphore can be set to.
Data Type: Unsigned short
Default: 32,767
Range: 1 to 65,535
Dynamic?: No
Validation: None
When to Change: When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when the maximum value is exceeded. The application sees a return code of ERANGE from a semop(2) call.
Commitment Level: Unstable

semsys:seminfo_semmsl

Description: Maximum number of System V semaphores per semaphore identifier.
Data Type: Signed integer
Default: 25
Range: 1 to MAXINT
Dynamic?: No
Validation: The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.
When to Change: When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to create more semaphores in a set than are currently configured. The application sees a return code of EINVAL from a semget(2) call.
Commitment Level: Unstable
semsys:seminfo_semopm

Description
Maximum number of System V semaphore operations per `semop(2)` call. This parameter refers to the number of `sembufs` in the `sops` array that is provided to the `semop()` system call.

Data Type
Signed integer

Default
10

Range
1 to MAXINT

Dynamic?
No

Validation
The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.

When to Change
When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to perform more semaphore operations in a single `semop` call than are currently allowed. The application sees a return code of `E2BIG` from a `semop()` call.

Commitment Level
Unstable

semsys:seminfo_semmnu

Description
Total number of undo structures supported by the System V semaphore system.

Data Type
Signed integer

Default
30

Range
1 to MAXINT

Dynamic?
No

Validation
The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.
When to Change When the default value is not enough. Generally changed at the recommendation of software vendors. No error message is displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return value of ENOSPC from a semop(2) call when the system runs out of undo structures.

Commitment Level Unstable
Changes From Previous Release For information, see "semsys:seminfo_SEMMNU" on page 170.

semsys:seminfo_SEMMNU
Description Maximum number of System V semaphore undo structures that can be used by any one process.
Data Type Signed integer
Default 10
Range 1 to MAXINT
Dynamic? No
Validation The amount of space that could possibly be consumed by the semaphores and their supporting data structures is compared to 25% of the kernel memory available at the time the module is first loaded. If the memory threshold is exceeded, the module refuses to load and the semaphore facility is not available.
When to Change When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return code of EINVAL from a semop(2) call.
Commitment Level Unstable

semsys:seminfo_SEMAME
Description Maximum value that a semaphore's value in an undo structure can be set to.
Data Type Unsigned short
Default 16,384
Range 1 to 65,535
Dynamic? No
Validation None
When to Change When the default value is not enough. Generally changed at the recommendation of software vendors. No error messages are displayed when an attempt is made to perform more undo operations than are currently configured. The application sees a return code of EINVAL from a semop(2) call.
Commitment Level Unstable

System V Shared Memory

System V shared memory allows the creation of a segment by a process. Cooperating processes can attach to the memory segment (subject to access permissions on the segment) and gain access to the data contained in the segment. This capability is implemented as a loadable module. Entries in the /etc/system file must contain the shmsys: prefix. Starting with the Solaris 7 release, the keyserv daemon uses System V shared memory.

A special kind of shared memory known as intimate shared memory (ISM) is used by DBMS vendors to maximize performance. When a shared memory segment is made into an ISM segment, the memory for the segment is locked. This enables a faster I/O path to be followed and improves memory usage because a number of kernel resources describing the segment are now shared between all processes attaching to the segment in ISM mode.

The module is dynamically loaded on first reference. Parameters provided to the subsystem are validated at that time.

This facility is different from the POSIX 1003.1b shared memory facility.

shmsys:shminfo_shmmax

Description Maximum size of system V shared memory segment that can be created. This parameter is an upper limit that is checked before the system sees if it actually has the physical resources to create the requested memory segment.
Attempts to create a shared memory section whose size is zero or whose size is larger than the specified value will fail with an EINVAL error.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>100</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>None</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into <code>shmmni</code> field of <code>shminfo</code> structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>The amount of space consumed by the maximum possible number of data structures to support System V shared memory is checked against 25% of the currently available kernel memory at the time the module is loaded. If the memory consumed is too large, the attempt to load the module fails.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the system limits are too low. Generally changed on the recommendation of software vendors.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

shmsys:shminfo_shmmni

<table>
<thead>
<tr>
<th>Description</th>
<th>System wide limit on number of shared memory segments that can be created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>100</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXINT</td>
</tr>
<tr>
<td>Validation</td>
<td>No. Loaded into <code>shmmni</code> field of <code>shminfo</code> structure.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the system limits are too low. Generally changed on the recommendation of software vendors.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
segspt_minfree

Description Pages of system memory that cannot be allocated for ISM shared memory.

Data Type Unsigned long

Default 5% of available system memory when first ISM segment is created.

Range 0 to 50% of physical memory

Units Pages

Dynamic? Yes

Validation None. Values that are too small can cause the system to hang or performance to severely degrade when memory is consumed with ISM segments.

When to Change On database servers with large amounts of physical memory using ISM, this parameter can be tuned downward. If ISM segments are not used, this parameter has no effect. A maximum value of 128 Mbytes (0x4000) is almost certainly sufficient on large memory machines.

Commitment Level Unstable

Scheduling

rechoose_interval

Description Number of clock ticks before a process is deemed to have lost all affinity for the last CPU it ran on. After this interval expires, any CPU is considered a candidate for scheduling a thread. This parameter is relevant only for threads in the timesharing class. Real-time threads are scheduled on the first available CPU.

Data Type Signed integer

Default 3

Range 0 to MAXINT

Dynamic? Yes
When to Change
When caches are large, or the system is running a critical process, or a set of processes that seem to suffer from excessive cache misses not caused by data access patterns. Consider using the processor set (psrset(1M)) capabilities available as of the Solaris 2.6 release or processor binding (pbind(1M)) before changing this parameter.

Commitment Level Unstable

Timers

hires_tick

Description Variable that when set causes the Solaris environment to use a system clock rate of 1000 instead of the default value of 100.

Data Type Signed integer

Default 0

Range 0 (disabled) or 1 (enabled)

Validation None

When to Change When you want timeouts with a resolution of less than 10 milliseconds and greater than or equal to 1 millisecond.

Commitment Level Unstable

timer_max

Description Number of POSIX timers available.

Data Type Signed integer

Default 32

Range 0 to MAXINT
Dynamic? No. Increasing value can cause a system crash.
Validation None
When to Change When default number of timers offered by system is inadequate. Applications see an EAGAIN error when executing timer_create system calls.
Commitment Level Unstable

Sun4u Specific

consistent_coloring

Description Starting with the Solaris 2.6 release, the ability to use different page placement policies on the UltraSPARC (sun4u) platform was introduced. A page placement policy attempts to allocate physical page addresses to maximize the use of the L2 cache. Whatever algorithm is chosen as the default algorithm, that algorithm can potentially provide less optimal results than another algorithm for a particular application set. This variable changes the placement algorithm selected for all processes on the system.

Based on the size of the L2 cache, memory is divided into bins. The page placement code allocates a page from a bin when a page fault first occurs on an unmapped page. The page chosen depends on which of the three possible algorithms are used:

- Page coloring - Various bits of the virtual address are used to determine the bin from which the page is selected. This is the default algorithm in the Solaris 8 release. consistent_coloring is set to zero to use this algorithm. No per-process history exists for this algorithm.
- Virtual addr=physical address - Consecutive pages in the program selects pages from consecutive bins. consistent_coloring is set to 1 to use this algorithm. No per-process history exists for this algorithm.
- Bin-hopping - Consecutive pages in the program generally allocate pages from every other bin, but the algorithm occasionally skips more bins. consistent_coloring is set to 2 to use this algorithm. Each process starts at a
randomly selected bin and a per-process memory of the last
bin allocated is kept.

Dynamic? Yes
Validation None. Values larger than 2 cause a number of WARNING:
AS_2_BIN: bad consistent coloring value messages
to appear on the console and the system hangs immediately
thereafter. A power-cycle is required to recover.

When to Change When the primary workload of the system is a set of
long-running high-performance computing (HPC)
application(s). Changing this value might provide better
performance. File servers, database servers, and systems with
a number of active processes (for example, compile or
time-sharing servers) will not benefit from changes.

Commitment Level Unstable

Solaris Volume Manager Parameters

md_mirror:md_resync_bufsz

Description Sets the size of the buffer used for resynchronizing RAID 1
volumes (mirrors), as the number of 512-byte blocks in the
buffer. Setting larger values can increase resynchronization
speed.

Data Type Integer

Default The default value is 128, which is acceptable for small systems.
Larger systems could use higher values to increase mirror
resynchronization speed.

Range 128 to 2048

Units Blocks (512 bytes)

Dynamic? No

Validation None

When to Change If you use Solaris Volume Manager RAID 1 volumes (mirrors)
and you want to increase the speed of mirror
resynchronizations. Assuming that you have adequate
memory for overall system performance, you can increase this value without causing other performance problems.

If you need to increase the speed of mirror resynchronizations, increase the value of this parameter incrementally (using 128-block increments) until performance is satisfactory. On fairly large or relatively new systems, a value of 2048 seems to be optimal. High values on older systems might hang the system.

Commitment Level Unstable
CHAPTER 3

NFS Tunable Parameters

This section describes the NFS tunable parameters.

- “NFS Module Parameters” on page 86
- “nfssrv Module Parameters” on page 104
- “rpcmod Module Parameters” on page 108

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Kernel Tunables</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>TCP/IP Tunable Parameters</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA)</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Tunable Parameters</td>
<td></td>
</tr>
</tbody>
</table>

Tuning the NFS Environment

You can define these parameters in the `/etc/system` file, which is read during the boot process. Each parameter can be identified by the name of the kernel module that it is in and a parameter name that identifies it. For more information, see “Tuning a Solaris System” on page 16.
Note – The names of the symbols, the modules that they reside in, and the default values can change between releases. Check the documentation for the version of the active SunOS release before making changes or applying values from previous releases.

NFS Module Parameters

This section describes parameters relating to the NFS kernel module.

nfs:nfs3_pathconf_disable_cache

Description Controls the caching of pathconf(2) information for NFS Version 3 mounted file systems.

Data Type Integer (32-bit)

Default 0 (caching enabled)

Range 0 (caching enabled), 1 (caching disabled)

Units Boolean values

Dynamic? Yes

Validation None

When to Change The pathconf information is cached on a per file basis. However, if the server can change the information for a specific file dynamically, then use this parameter to disable caching because there is no mechanism for the client to validate its cache entry.

Stability Level Evolving

nfs:nfs_allow_preepoch_time

Description Controls whether files with incorrect or negative time stamps should be made visible on the client.

Historically, neither the NFS client nor the NFS server would do any range checking on the file times being returned by using these attributes. The over-the-wire time stamp values are unsigned and 32-bits long, so all values have been legal.
However, on a system running a 32-bit Solaris release, the time stamp values are signed and 32-bits long. Thus, it would be possible to have a time stamp representation that appeared to be prior to January 1, 1970, or *pre-epoch*.

The problem on a system running a 64-bit Solaris release is slightly different. The time stamp values on the 64-bit Solaris release are signed and 64-bits long. It is impossible to determine whether a time field represents a full 32-bit time or a negative time, that is, one prior to January 1, 1970.

It is impossible to determine whether to sign extend a time value when converting from 32 bits to 64 bits. The time value should be sign extended if the time value is truly a negative number, but should not be sign extended if it does truly represent a full 32-bit time value. This problem is resolved by simply disallowing full 32-bit time values.

Data Type: Integer (32-bit)
Default: 0 (32-bit time stamps disabled)
Range: 0 (32-bit time stamps disabled), 1 (32-bit time stamps enabled)
Units: Boolean values
Dynamic?: Yes
Validation: None
When to Change: Even during normal operation, it is possible for the time stamp values on some files to be set very far in the future or very far in the past. If access to these files is desired using NFS mounted file systems, then set this parameter to 1 to allow the time stamp values to be passed through unchecked.

Stability Level: Evolving

nfs:nfs_cots_timeo

Description: Controls the default RPC timeout for NFS version 2 mounted file systems using connection oriented transports such as TCP for the transport protocol.

Data Type: Signed integer (32-bit)
Default: 600 (60 seconds)
Range: 0 to \(2^{31} - 1\)
Units: 10th of seconds
Dynamic? Yes, but the RPC timeout for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 2 client might time out prematurely.

Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value to be too large might result in real situations where a retransmission was required to not be detected for long periods of time.

Stability Level Evolving

nfs:nfs3_cots_timeo

Description Controls the default RPC timeout for NFS version 3 mounted file systems using connection oriented transports such as TCP for the transport protocol.

Data Type Signed integer (32-bit)

Default 600 (60 seconds)

Range 0 to $2^{31} - 1$

Units 10th of seconds

Dynamic? Yes, but the RPC timeout for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 3 client might time out prematurely. Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value to be too large might result in real situations where a retransmission was required to not be detected for long periods of time.

Stability Level Evolving
nfs:nfs_do_symlink_cache

Description: Controls whether the contents of symbolic link files are cached for NFS version 2 mounted file systems.

Data Type: Integer (32-bit)

Default: 1 (caching enabled)

Range: 0 (caching disabled), 1 (caching enabled)

Units: Boolean values

Dynamic?: Yes

Validation: None

When to Change: If a server changes the contents of a symbolic link file without updating the modification time stamp on the file or if the granularity of the time stamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents, thus making the changes visible to applications running on the client immediately.

Stability Level: Evolving

nfs:nfs3_do_symlink_cache

Description: Controls whether the contents of symbolic link files are cached for NFS version 3 mounted file systems.

Data Type: Integer (32-bit)

Default: 1 (caching enabled)

Range: 0 (caching disabled), 1 (caching enabled)

Units: Boolean values

Dynamic?: Yes

Validation: None

When to Change: If a server changes the contents of a symbolic link file without updating the modification time stamp on the file or if the granularity of the time stamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents, thus making the changes visible to applications running on the client immediately.

Stability Level: Evolving
nfs:nfs_dynamic

Description Controls whether a feature known as dynamic retransmission is enabled for NFS version 2 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times, and then adjusting RPC timeouts and read and write transfer sizes.

Data Type Integer (32-bit)
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None

When to Change In a situation where server response or network load varies rapidly, the dynamic retransmission support might incorrectly increase RPC timeouts or reduce read and write transfer sizes unnecessarily. Disabling this functionality might result in increased throughput, but possibly, also increasing the visibility of the spikes due to server response or network load.
Stability Level Evolving

nfs:nfs3_dynamic

Description Controls whether a feature known as dynamic retransmission is enabled for NFS version 3 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times and then adjusting RPC timeouts and read and write transfer sizes.

Data Type Integer (32-bit)
Default 0 (disabled)
Range 0 (disabled), 1 (enabled)
Units Boolean values
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None
When to Change

In a situation where server response or network load varies rapidly, the dynamic retransmission support might incorrectly increase RPC timeouts or reduce read and write transfer sizes unnecessarily. Disabling this functionality might result in increased throughput, but possibly, also increasing the visibility of the spikes due to server response or network load.

Stability Level Evolving

\texttt{nfs:nfs_lookup_neg_cache}

Description Controls whether a negative name cache is used for NFS version 2 mounted file systems. This negative name cache records filenames that were looked up, but not found. The cache is used to avoid over the network lookup requests made for filenames that are already known to not exist.

Data Type Integer (32-bit)
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None

When to Change

In order for the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems by assuming that the file system on the server is not changing or is changing very slowly and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, then use this parameter to disable the negative cache.

Stability Level Evolving

\texttt{nfs:nfs3_lookup_neg_cache}

Description Controls whether a negative name cache is used for NFS version 3 mounted file systems. This negative name cache records filenames
that were looked up, but were not found. The cache is used to avoid over-the-network lookup requests made for filenames that are already known to not exist.

Data Type Integer (32-bit)
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change In order for the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems by assuming that the file system on the server is not changing or is changing very slowly and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, then use this parameter to disable the negative cache.

Stability Level Evolving

\textbf{nfs:nfs_max_threads}

Description Controls the number of kernel threads that perform asynchronous I/O for the NFS version 2 client. Since NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations which can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, and write for putpage and pageio requests.

Data Type Integer (16-bit)
Default 8
Range 0 to $2^{15} - 1$
Units Threads
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change Change this parameter to increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth and the client and server have sufficient resources, you might want to increase this value to more effectively utilize the available network bandwidth and client and server resources.

Stability Level Unstable

nfs:nfs3_max_threads

Description Controls the number of kernel threads that perform asynchronous I/O for the NFS version 3 client. Since NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, write for putpage and pageio requests, and commit.

Data Type Integer (16-bit)

Default 8

Range 0 to $2^{15} - 1$

Units Threads

Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change Change this parameter to increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth and the client and server have sufficient resources, you might want to
increase this value to more effectively utilize the available network bandwidth and the client and server resources.

Stability Level Unstable

nfs:nfs_nra

Description Controls the number of read-ahead operations that are queued by the NFS version 2 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for 8192 bytes of file data.

Data Type Integer (32-bit)
Default 4
Range 0 to \(2^{31} - 1\)
Units Read-ahead requests
Dynamic? Yes
Validation None

When to Change Change this parameter to increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth and the client and server have sufficient resources, you might want to increase this value to more effectively utilize the available network bandwidth and the client and server resources.

Stability Level Unstable

nfs:nfs3_nra

Description Controls the number of read-ahead operations that are queued by the NFS version 3 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for 32,768 bytes of file data.

Data Type Integer (32-bit)
Default 4
Range 0 to \(2^{31} - 1\)
Units Read-ahead requests
Dynamic? Yes
Validation None
When to Change Change this parameter to increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth and the client and server have sufficient resources, you might want to increase this value to more effectively utilize the available network bandwidth and the client and server resources.

Stability Level Unstable

nfs:nrnode

Description Controls the size of the rnode cache on the NFS client.

The rnode cache, used by both NFS version 2 and 3 clients, is the central data structure that describes a file on the NFS client. It contains the file handle that identifies the file on the server and also contains pointers to various caches used by the NFS client to avoid network calls to the server. Each rnode has a one-to-one association with a vnode. The vnode caches file data.

The NFS client attempts to keep a minimum number of rnodes around to attempt to avoid destroying cached data and metadata. When an rnode is reused or freed, the cached data and metadata must be destroyed.

Data Type Integer (32-bit)
Default The default setting of this parameter is 0, which means that the value of nrnode should be set to the value of the ncsime parameter. Actually, any non-positive value of nrnode results in nrnode being set to the value of ncsime.
Range 1 to \(2^{31} - 1\)
Units rnodes
Dynamic? No. This value can only be changed by adding or changing the parameter in the /etc/system file, and then rebooting the system.
Validation
The system enforces a maximum value such that the rnode cache can only consume 25% of available memory.

When to Change
Since rnodes are created and destroyed dynamically, the system tends to settle upon a rnode-size cache, automatically adjusting the size of the cache as memory pressure on the system increases or as more files are simultaneously accessed. However, in certain situations, it might be helpful to set the value of rnode if the mix of files being accessed can be predicted in advance. For example, if the NFS client is accessing a few very large files, it might be useful to set the value of rnode to a small number so that system memory can cache file data instead of rnodes. Alternately, if the client is accessing many small files, it might be helpful to set the value of rnode large enough to optimize for storing file metadata to reduce the number of network calls for metadata.

Although it is not recommended, the rnode cache can be effectively disabled by setting the value of rnode to 1. This instructs the client to only cache 1 rnode, which means that it is reused frequently.

Stability Level
Evolving

nfs:nfs_shrinkreaddir

Description
Some older NFS servers might incorrectly handle NFS version 2 readdir requests for more than 1024 bytes of directory information. This is due to a bug in the server implementation. However, this parameter contains a workaround in the NFS version 2 client.

When this parameter is enabled, the client does not generate a readdir request for larger than 1024 bytes of directory information. If this parameter is disabled, then the over-the-wire size is set to the minimum of either the size passed in by using the getdents(2) system call or by using NFS_MAXDATA, which is 8192 bytes.

Data Type
Integer (32-bit)

Default
0 (disabled)

Range
0 (disabled), 1 (enabled)

Units
Boolean values

Dynamic?
Yes

Validation
None
When to Change: Examine the value of this parameter if an older NFS version 2 only server is used and interoperability problems are seen when trying to read directories. Enabling this parameter might cause a slight performance drop for applications that read directories.

Stability Level: Evolving

nfs:nfs_write_error_interval

Description: Controls the time duration in between logging ENOSPC and EDQUOT write errors seen by the NFS client. It affects both NFS version 2 and 3 clients.

Data Type: Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default: 5 seconds

Range: 0 to $2^{31} - 1$ on 32-bit platforms

0 to $2^{63} - 1$ on 64-bit platforms

Units: Seconds

Dynamic?: Yes

Validation: None

When to Change: Increase or decrease the value of this parameter in response to the volume of messages being logged by the client. Typically, you might want to increase the value of this parameter to decrease the number of out of space messages being printed when a full file system on a server is being actively used.

Stability Level: Evolving

nfs:nfs_write_error_to_cons_only

Description: Controls whether NFS write errors are logged to the system console and syslog or to the system console only. It affects messages for both NFS version 2 and 3 clients.

Data Type: Integer (32-bit)

Default: 0 (system console and syslog)

Range: 0 (system console and syslog), 1 (system console)

Units: Boolean values
Dynamic? Yes
Validation None
When to Change Examine the value of this parameter to avoid filling up the file system containing the messages logged by the `syslogd(1M)` daemon. When this parameter is enabled, messages are printed on the system console only and are not copied to the `syslog` messages file.
Stability Level Evolving

nfs:nfs_disable_rddir_cache

Description Controls the use of a cache to hold responses from NFS version 2 `REaddir` and NFS Version 3 `REaddir` and `REaddirplus` requests. This cache avoids over-the-wire calls to the server to retrieve directory information.

Data Type Integer (32-bit)
Default 0 (caching enabled)
Range 0 (caching enabled), 1 (caching disabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change Examine the value of this parameter if interoperability problems develop due to a server that does not update the modification time on a directory when a file or directory is created in it or removed from it. The symptoms are that new names do not appear in directory listings after they have been added to the directory or that old names do not disappear after they have been removed from the directory.

This parameter controls the caching for both NFS version 2 and 3 mounted file systems. This parameter applies to all NFS mounted file systems, so caching cannot be disabled or enabled on a per file system basis.

Stability Level Evolving
nfs:nfs3_bsize

Description Controls the logical block size used by the NFS version 3 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type Unsigned integer (32-bit)
Default 32,768 (32 Kbytes)
Range 0 to 2^{31} - 1
Units Bytes
Dynamic? Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than PAGESIZE for the specific platform. Do not set this parameter too high because it might cause the system to hang waiting for memory allocations to be granted.

When to Change Examine the value of this parameter when attempting to change the maximum data transfer size. Change this parameter in conjunction with the nfs3_max_transfer_size parameter. If larger transfers are desired, increase both parameters. If smaller transfers are desired, then just reducing this parameter should suffice.

Stability Level Unstable

nfs:nfs_async_clusters

Description Controls the mix of asynchronous requests that are generated by the NFS version 2 client. There are four types of asynchronous requests, read-ahead, putpage, pageio, and readdir-ahead. The client attempts to round-robin between these different request types to attempt to be fair and not starve one operation type in favor of another.

However, functionality in some NFS version 2 servers such as write gathering depends upon certain behaviors of existing NFS Version 2 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at approximately the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.
Thus, use this parameter to control the number of requests of each type that are sent out before changing types.

Data Type Unsigned integer (32-bit)
Default 1
Range 0 to $2^{31} - 1$
Units Asynchronous requests
Dynamic? Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.

When to Change Change this parameter to increase the number of each type of asynchronous operation that is generated before switching to the next type. This might help with server functionality that depends upon clusters of operations coming from the client.

Stability Level Unstable

nfs:nfs3_async_clusters

Description Controls the mix of asynchronous requests that are generated by the NFS version 3 client. There are five types of asynchronous requests, read-ahead, putpage, pageio, readdir-ahead, and commit. The client attempts to round-robin between these different request types to attempt to be fair and not starve one operation type in favor of another.

However, functionality in some NFS version 3 servers such as write gathering depends upon certain behaviors of existing NFS version 3 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at approximately the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each type that are sent out before changing types.

Data Type Unsigned integer (32-bit)
Default 1
Range 0 to $2^{31} - 1$
Units Asynchronous requests
Dynamic? Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.
When to Change Change this parameter to increase the number of each type of asynchronous operation that is generated before switching to the next type. This might help with server functionality that depends upon clusters of operations coming from the client.
Stability Level Unstable

nfs:nfs_async_timeout

Description Controls the duration of time that threads, which execute asynchronous I/O requests, sleep with nothing to do before exiting. When there are no more requests to execute, each thread goes to sleep. If no new requests come in before this timer expires, the thread wakes up and exits. If a request does arrive, a thread is woken up to execute requests until there are none again, and then goes back to sleep waiting for another request to arrive, or for the timer to expire.

Data Type Integer (32-bit)
Default 6000 (1 minute expressed as $60 \text{ sec} \times 100\text{Hz}$)
Range 0 to $2^{31} - 1$
Units Hz (Typically, the clock runs at 100Hz)
Dynamic? Yes
Validation None. However, setting this parameter to a non-positive value has the affect of having these threads exit as soon as there are no requests in the queue for them to process.
When to Change If the behavior of applications in the system is known precisely and the rate of asynchronous I/O requests can be predicted, it might be possible to tune this parameter to optimize performance slightly in either of the following ways:
- By making the threads expire more quickly, thus freeing up kernel resources more quickly,
- Or, by making them expire more slowly, thus avoiding thread create and destroy overhead.

Stability Level Evolving

nfs:nacache

Description
Tunes the number of hash queues that access the file access cache on the NFS client. The file access cache stores file access rights that users have with respect to files that they are trying to access. The cache itself is dynamically allocated, but the hash queues used to index into it are statically allocated. The algorithm assumes that there is one access cache entry per active file and four of these access cache entries per hash bucket. Thus, by default, the value of this parameter is set to the value of the `nrnode` parameter.

Data Type
Integer (32-bit)

Default
The default setting of this parameter is 0, which means that the value of `nacache` should be set to the value of the `nrnode` parameter.

Range
1 to $2^{31} - 1$

Units
Access cache entries

Dynamic?
No. This value can only be changed by adding or changing the parameter in the `/etc/system` file, and then rebooting system.

Validation
None. However, setting this parameter to a negative value will probably cause the system to try to allocate a very large set of hash queues, and then hang while trying to do so.

When to Change
Examine the value of this parameter if the basic assumption of one access cache entry per file would be violated. This might be true for systems in a time sharing mode where multiple users are accessing the same file at about the same time. In this case, it might be helpful to increase the expected size of the access cache so that the hashed access to the cache stays efficient.

Stability Level Evolving
nfs:nfs3_jukebox_delay

Description Controls the duration of time that the NFS version 3 client waits to transmit a new request after receiving the error, NFSERR_JUKEBOX, from a previous request. The error, NFSERR_JUKEBOX, is generally returned from the server when the file is temporarily unavailable for some reason. These situations are generally associated with hierarchical storage and CD or tape jukeboxes.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 1000 (10 seconds expressed as 10 sec * 100Hz)

Range 0 to $2^{31} - 1$ on 32-bit platforms

Units Hz (typically the clock runs at 100Hz)

Dynamic? Yes

Validation None

When to Change Examine the value of this parameter and perhaps adjust it to match the behaviors exhibited by the server. The value should be increased if the delays in making the file available are long in order to reduce network overhead due to repeated retransmissions. The value can also be decreased to reduce the delay in discovering that the file has become available.

Stability Level Evolving

nfs:nfs3_max_transfer_size

Description Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request. This parameter controls both the maximum size of request that the server returns as well as the maximum size of a request that the client generates.

Data Type Integer (32-bit)

Default 32,768 (32 kbytes)

Range 0 to $2^{31} - 1$

Units Bytes

Dynamic? Yes
Validation None. Although setting the maximum transfer size on the server to 0 will probably either cause clients to malfunction or just decide not to attempt to talk to the server.

There is also a limit on the maximum transfer size when using NFS over the UDP transport. UDP has a hard limit of 64 kbytes per datagram. This 64 kbytes must include the RPC header as well as other NFS information, in addition to the data portion of the request. Setting the limit too large might result in errors from UDP and communication problems between the client and the server.

When to Change Change this parameter to tune the size of data being passed over the network. In general, the nfs3_bsize parameter should also be updated to reflect changes in this parameter. For example, when attempting to reduce the default over-the-wire transfer size to 8 kbytes, the value of both the nfs3_max_transfer_size and nfs3_bsize parameters should be changed to 8192 to avoid using multiple operations, each reading or writing 8 kbytes. Alternately, when attempting to increase the transfer size beyond 32 kbytes, then nfs3_bsize should also be updated to reflect the increased value, otherwise no change in the over-the-wire request size is seen.

Stability Level Unstable

nfssrv Module Parameters

This section describes NFS parameters for the `nfssrv` module.

nfssrv:nfs_portmon

Description Controls some security checking that the NFS server can do to attempt to enforce integrity on the part of its clients. It can check to see whether the source port from which a request was sent was a reserved port. This is a port whose number is less than 1024. For BSD based systems, these ports are reserved to processes being run by root. This checking can prevent users from writing their own RPC-based applications to defeat the access checking that the NFS client uses.

Data Type Integer (32-bit)

Default 0 (checking disabled)
Range 0 (checking disabled), 1 (checking enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change Use this parameter to prevent malicious users from gaining access to files by using the NFS server that they would not ordinarily have access to. However, the reserved port notion is not universally supported. Thus, the security aspects of the check are very weak. Also, not all NFS client implementations bind their transport endpoints to a port number in the reserved range, so interoperability problems might result if the checking is enabled.
Stability Level Evolving

nfssrv: rfs_write_async

Description Controls the behavior of the NFS version 2 server when it processes WRITE requests. The NFS version 2 protocol mandates that all modified data and metadata associated with the WRITE request reside on stable storage before the server can respond to the client. NFS version 2 WRITE requests are limited to 8192 bytes of data. Thus, each WRITE request might cause multiple small writes to the storage subsystem. This can cause a performance problem.

One trick to accelerate NFS version 2 WRITEs is to take advantage of a client behavior. Clients tend to send out WRITE requests in batches. The server can take advantage of this behavior by clustering together the different WRITE requests into a single request to the underlying file system. Thus, the data to be written to the storage subsystem can be written in fewer, larger requests. This can increase the throughput for WRITE requests tremendously.

Data Type Integer (32-bit)
Default 1 (clustering enabled)
Range 0 (clustering disabled), 1 (clustering enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change Some very small NFS clients, particularly PC clients, might not batch WRITE requests. Thus, the behavior required from the clients
might not exist, and the clustering in the NFS version 2 server might just add overhead and slow down performance instead of increasing it.

Stability Level Evolving

nfssrv:nfsauth_ch_cache_max

Description Controls the size of the cache of client handles that contact the NFS authentication server. This server authenticates NFS clients to determine whether they are allowed access to the file handle that they are trying to use.

Data Type Integer (32-bit)

Default 16

Range 0 to $2^{31} - 1$

Units Client handles

Dynamic? Yes

Validation None

When to Change This cache is not dynamic, so attempts to allocate a client handle when all are busy will fail. This results in requests being dropped by the NFS server because they could not be authenticated. Most of the time, this is not a problem because the NFS client just times out and retransmits the request. However, for soft-mounted file systems on the client, the client might time out, not retry the request, and then return an error to the application. This might have been avoided by ensuring that the size of the cache on the server is large enough to handle the load.

Stability Level Unstable

nfssrv:exi_cache_time

Description Controls the duration of time that entries are held in the NFS authentication cache before being purged due to memory pressure in the system.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 3600 seconds (1 hour)

Range 0 to $2^{31} - 1$ on 32-bit platforms
The size of the NFS authentication cache can be adjusted by varying the minimum age of entries that can get purged from the cache. The size of the cache should be controlled so that it is not allowed to grow too large, thus using system resources that are not allowed to be released due to this aging process.

Stability Level: Evolving

nfsserv:nfs_shrinkreaddir

Description: Due to a bug in the NFS version 2 server implementation, some older NFS servers can not correctly handle NFS Version 2 `REaddir` requests for more than 1024 bytes of directory information in certain situations. This parameter provides a workaround in the NFS Version 2 client.

If this parameter is enabled, the client does not generate a `REaddir` request for larger than 1024 bytes of directory information.

If this parameter is disabled, the over the wire size is set to the minimum of either the size passed in by the `getdents(2)` system call or `NFS_MAXDATA`, which is 8192 bytes.

Data Type: 32-bit integer

Default: 0 (disabled)

Range: 0 (disabled), 1 (enabled)

Units: Boolean values

Dynamic? Yes

Validation: None

When to Change: Examine the value of this parameter when using an older NFS Version 2 only server and interoperability problems occur when trying to read directories. Enabling this parameter might cause a slight performance drop to occur for applications that read directories.

Stability Level: Evolving
nfsserv:nfs3_shrinkreaddir

Description: A recent change to Solaris has changed the default buffer size that the readdir(3C) library support uses from 1048 bytes to 8192 bytes. This changes the number of bytes requested through the getdents(2) system call correspondingly. This in turn, translates almost directly into larger READDIR and READDIRPLUS requests made to NFS Version 3 server. This might result in interoperability problems with server implementations that cannot handle the larger request size.

Data Type: 32–bit integer
Default: 0 (disabled)
Range: 0 (disabled), 1 (enabled)
Units: Boolean values
Dynamic?: Yes
Validation: None
When to Change: Examine the value of this parameter when using an NFS Version 3 server and interoperability problems occur when trying to read directories. Enabling this parameter might cause a slight performance drop to occur for applications that read directories.

Stability Level: Evolving

rpcmod Module Parameters

This section describes NFS parameters for the rpcmod module.

rpcmod:clnt_max_conns

Description: Controls the number of TCP connections that the NFS client uses when communicating with each NFS server. The kernel RPC is constructed so that it can multiplex RPCs over a single connection, but multiple connections can be used if desired.

Data Type: Integer (32–bit)
Default: 1
Range: 1 to $2^{31} - 1$
Units Connections
Dynamic? Yes
Validation None
When to Change In general, 1 connection is sufficient to achieve full network bandwidth. However, if TCP cannot utilize the bandwidth offered by the network in a single stream, then multiple connections might increase the throughput between the client and the server.

Increasing the number of connections doesn’t come for free though. The price for increasing the number of connections is increased kernel resource usage to keep track of each of the connections.

Stability Level Evolving

rpcmod:clnt_idle_timeout

Description Controls the duration of time on the client that a connection between the client and server is allowed to remain idle before being closed.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 300,000 milliseconds (5 minutes)

Range 0 to $2^{31} - 1$ on 32-bit platforms

0 to $2^{63} - 1$ on 64-bit platforms

Units Milliseconds

Dynamic? Yes

Validation None

When to Change Use this parameter to change the time that idle connections are allowed to exist on the client before being closed, if desired. You might might want to close connections at a faster rate to avoid consuming system resources.

Stability Level Evolving
rpcmod:svc_idle_timeout

Description: Controls the duration of time on the server that a connection between the client and server is allowed to remain idle before being closed.

Data Type: Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default: 360,000 milliseconds (6 minutes)

Range: 0 to $2^{31} - 1$ on 32-bit platforms
 0 to $2^{63} - 1$ on 64-bit platforms

Units: Milliseconds

Dynamic?: Yes

Validation: None

When to Change: Use this parameter to change the time that idle connections are allowed to exist on the server before being closed, if desired. Close connections at a faster rate to avoid consuming system resources, if desired.

Stability Level: Evolving

rpcmod:svc_default_stksize

Description: Sets the size of the kernel stack for kernel RPC service threads.

Data Type: Integer (32-bit)

Default: The default is 0, which means set the stack size to the system default.

Range: 0 to $2^{31} - 1$

Units: Bytes

Dynamic?: The stack size is set when the thread is created. Therefore, changes to this parameter do not affect existing threads but are applied to all new threads that are allocated.

Validation: None

When to Change: Possibly, very deep call depths can cause the stack to overflow and cause red zone faults. The combination of a fairly deep call depth for the transport, coupled with a deep call depth for the local file system can cause NFS service threads to overflow their stacks.
Set this parameter to a multiple of the hardware pagesize on the platform.

Stability Level Evolving

rpcmod: svc_default_max_same_xprt

Description Controls the maximum number of requests that are processed for each transport endpoint before switching transport endpoints. The kernel RPC works by having a pool of service threads and a pool of transport endpoints. Any one of the service threads can process requests from any one of the transport endpoints. For performance, multiple requests on each transport endpoint are consumed before switching to a different transport endpoint. This approach offers performance benefits while avoiding starvation.

Data Type Integer (32-bit)

Default 8

Range 0 to $2^{31} - 1$

Units Requests

Dynamic? Yes, but the maximum number of requests to process before switching transport endpoints is set when the transport endpoint is configured into the kernel RPC subsystem. Changes to this parameter only affect new transport endpoints, not existing ones.

Validation None

When to Change Tune this number so that services can take advantage of client behaviors such as the clustering that accelerate NFS version 2 WRITE requests. It is possible that increasing this parameter results in the server being better able to take advantage of client behaviors.

Stability Level Evolving

rpcmod: maxdupreqs

Description Controls the size of the duplicate request cache that detect RPC level retransmissions on connectionless transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and the transaction ID. This cache avoids processing of retransmitted requests that might be non-idempotent.

Data Type Integer (32-bit)
Dynamic? The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache.

Do not set the value of this parameter to 0. It prevents the NFS server from handling non-idempotent requests.

Validation None

When to Change Examine the value of this parameter if false failures are being seen by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, it is possible that a retransmitted MKDIR request was not detected by the server.

The size of the cache should match the load on the server. The cache records non-idempotent requests and so only needs to track a portion of the total requests. It does need to hold the information long enough to be able to detect a retransmission on the part of the client. Typically, the client timeout for connectionless transports is relatively short, starting at about 1 second and increasing to about 20 seconds.

Stability Level Unstable

rpcmod:cotsmaxdupreqs

Description Controls the size of the duplicate request cache that detects RPC level retransmissions on connection oriented transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and the transaction ID. This cache avoids processing of retransmitted requests that might be non-idempotent.

Data Type Integer (32-bit)

Default 1024

Range 1 to $2^{31} - 1$

Units Requests

Dynamic? Yes
Validation The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache.

Do not set the value of this parameter to 0. It prevents the NFS server from handling non-idempotent requests.

When to Change Examine the value of this parameter if false failures are being seen by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, it is possible that a retransmitted Mkdir request was not detected by the server.

The size of the cache should match the load on the server. The cache records non-idempotent requests and so only needs to track a portion of the total requests. It does need to hold the information long enough to be able to detect a retransmission on the part of the client. Typically, the client timeout for connection oriented transports is very long, about 1 minute. Thus, entries need to stay in the cache for fairly long times.

Stability Level Unstable
TCP/IP Tunable Parameters

This section describes the TCP/IP tunable parameters.

- “IP Tunable Parameters” on page 117
- “TCP Tunable Parameters” on page 121
- “UDP Tunable Parameters” on page 135
- “Per-Route Metrics” on page 137

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Kernel Tunables</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>NFS Tunable Parameters</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) Tunable Parameters</td>
<td>Chapter 5</td>
</tr>
</tbody>
</table>

Overview of Tuning TCP/IP Parameters

You can set all of the tuning parameters described in this chapter with the `ndd` command, except for the following two parameters that can only be set in the `/etc/system` file:
Use the following syntax to set TCP/IP parameters with the ndd command.

```
# ndd -set driver parameter
```

For example, the following ndd command disables IP forwarding.

```
# ndd -set /dev/ip ip_forwarding 0
```

For more information, see ndd(1M).

To set a TCP/IP parameter across system reboots, include the appropriate ndd command in a system startup script. Use the following guidelines to create a system startup script to include ndd commands:

- Create a script in the `/etc/init.d` directory and create links to it in the `/etc/rc2.d`, `/etc/rc1.d`, and `/etc/rcS.d` directories.
- The script should run between the existing `S69inet` and `S72inetsvc` scripts.
- Name the script with the `S70` or `S71` prefix. Scripts with the same prefix are run in some sequential way so it doesn’t matter if there is more than one script with the same prefix.
- For more information on naming run control scripts, see the README file in the `/etc/init.d` directory.

For more information on creating a startup script, see “Run Control Scripts” in System Administration Guide: Basic Administration.

TCP/IP Parameter Validation

All of the TCP/IP parameters described in this section are checked to verify they fall in the parameter range, which is provided in each tunable section, except for the two parameters that can be set only in the `/etc/system` file described above. For more information, see the validation section for “tcp_conn_hash_size” on page 131 and “ipc_tcp_conn_hash_size” on page 131.

Internet Request for Comments (RFCs)

Internet protocol and standard specifications are described in RFC documents. You can get copies of RFCs by using anonymous ftp to the sri-nic.arpa machine. Browse RFC topics by viewing the `rfc-index.txt` file at this site.
IP Tunable Parameters
This section describes some of the IP tunable parameters.

ip_icmp_err_interval and ip_icmp_err_burst

Description: Control the rate of IP in generating IPv4 or IPv6 ICMP error messages. IP generates only up to `ip_icmp_err_burst` IPv4 or IPv6 ICMP error messages in any `ip_icmp_err_interval`. This parameter protects IP from denial of service attacks. Set `ip_icmp_err_interval` to 0 to disable IP to generate IPv4 or IPv6 ICMP error messages.

Default: 100 milliseconds for `ip_icmp_err_interval` and 10 for `ip_icmp_err_burst`

Range: 0 - 99,999 milliseconds for `ip_icmp_err_interval` and 1 - 99,999 for `ip_icmp_err_burst`

Dynamic?: Yes

When to Change: Change the parameter values if you need a higher error message generation rate for diagnostic purposes.

Commitment Level: Unstable

ip_forwarding and ip6_forwarding

Description: Control whether IP does IPv4 or IPv6 forwarding between interfaces. See also `xxx:ip_forwarding` below.

Default: 0 (disabled)

Range: 0 (disabled), 1 (enabled)

Dynamic?: Yes

When to Change: If IP forwarding is needed, enable it.

Commitment Level: Unstable
xxx:ip_forwarding

Description Enables IPv4 forwarding for a particular xxx interface. The exact name of the parameter is `interface-name:ip_forwarding`. For example, two interfaces are hme0 and hme1. Their corresponding parameter names are:

- hme0:ip_forwarding
- hme1:ip_forwarding

Default 0 (disabled)

Range 0 (disabled), 1 (enabled)

Dynamic? Yes

When to Change If you need IPv4 forwarding, use this parameter to enable forwarding on a per-interface basis.

Commitment Level Unstable

ip_respond_to_echo_broadcast and **ip6_respond_to_echo_multicast**

Description Control whether IPv4 or IPv6 responds to broadcast ICMPv4 echo request or multicast ICMPv6 echo request.

Default 1 (enabled)

Range 0 (disabled), 1 (enabled)

Dynamic? Yes

When to Change If you do not want this behavior for security reasons, disable it.

Commitment Level Unstable

ip_send_redirects and **ip6_send_redirects**

Description Control whether IPv4 or IPv6 sends out ICMPv4 or ICMPv6 redirect messages. See also “ip_forwarding and ip6_forwarding” on page 117.

Default 1 (enabled)

Range 0 (disabled), 1 (enabled)
Dynamic? Yes
When to Change If you do not want this behavior for security reasons, disable it.
Commitment Level Unstable

ip_forward_src_routed and **ip6_forward_src_routed**

Description Control whether IPv4 or IPv6 forwards packets with source IPv4 routing options or IPv6 routing headers. See also “ip_forwarding and ip6_forwarding” on page 117.

Default 1 (enabled)

Range 0 (disabled), 1 (enabled)

Dynamic? Yes

When to Change If you do not want this behavior for security reasons, disable it.

Commitment Level Unstable

ip_addrs_per_if

Description The maximum number of logical interfaces associated with a real interface.

Default 256

Range 1 to 8192

Dynamic? Yes

When to Change Do not change the value. If more logical interfaces are required, increase the value, but recognize that this change might have a negative impact on IP’s performance.

Commitment Level Unstable
ip_strict_dst_multihoming and ip6_strict_dst_multihoming

Description
Determine whether a packet arriving on a non-forwarding interface can be accepted for an IP address that is not explicitly configured on that interface. If ip_forwarding is enabled, or xxx:ip_forwarding for the appropriate interfaces is enabled, then this parameter is ignored, because the packet is actually forwarded.

Refer to RFC 1122 3.3.2.4.

Default
0 (loose multihoming)

Range
0 = Off (loose multihoming)
1 = On (strict multihoming)

Dynamic?
Yes

When to Change
If a machine has interfaces that cross strict networking domains (for example, a firewall or a VPN node), set this variable to 1.

Commitment Level
Unstable

IP Tunable Parameters With Additional Cautions

Changing the following parameters is not recommended unless there are extenuating circumstances that are described with each parameter.

ip_ire_pathmtu_interval

Description
The interval in milliseconds when IP flushes the path maximum transfer unit (PMTU) discovery information, and tries to rediscover PMTU.

Refer to RFC 1191 on PMTU discovery.

Default
10 minutes

Range
5 seconds to 277 hours

Dynamic?
Yes

When to Change
Do not change this value.

Commitment Level
Unstable
ip_icmp_return_data_bytes and
ip6_icmp_return_data_bytes

Description
When IPv4 or IPv6 sends an ICMPv4 or ICMPv6 error message, it includes the IP header of the packet that causes the error message. This parameter controls how many extra bytes of the packet beyond the IPv4 or IPv6 header to be included in the ICMPv4 or ICMPv6 error message.

- **Default**: 64 bytes
- **Range**: 8 to 65,536 bytes
- **Dynamic?**: Yes
- **When to Change**: Do not change the value. Including more information in an ICMP error message might help in diagnosing network problems. If this feature is needed, increase the value.
- **Commitment Level**: Unstable

TCP Tunable Parameters

tcp_deferred_ack_interval

Description
The time-out value for TCP delayed acknowledgment (ACK) timer in milliseconds for hosts that are not directly connected.

Refer to RFC 1122, 4.2.3.2.

- **Default**: 100 milliseconds
- **Range**: 1 millisecond to 1 minute
- **Dynamic?**: Yes
- **When to Change**: Do not increase this value to more than 500 milliseconds.

If in some circumstances, slow network links (less than 57.6 Kbps) with greater than 512 bytes maximum segment size (MSS) when the interval is short for receiving more than one TCP segment, increase the value.

- **Commitment Level**: Unstable
tcp_local_dack_interval

Description
The time-out value for TCP delayed acknowledgment (ACK) timer in milliseconds for hosts that are directly connected.

Refer to RFC 1122, 4.2.3.2.

Default
50 milliseconds

Range
1 millisecond to 1 minute

Dynamic?
Yes

When to Change
Do not increase this value to more than 500 milliseconds.

If in some circumstances, slow network links (less than 57.6 Kbps) with greater than 512 bytes maximum segment size (MSS) and the interval is short for receiving more than one TCP segment, increase the value.

Commitment Level
Unstable

tcp_deferred_acks_max

Description
The maximum number of TCP segments (in units of maximum segment size MSS for individual connections) received from remote destinations (not directly connected) before an acknowledgment (ACK) is generated. If set to 0 or 1, it means no delayed ACKs, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default
2

Range
0 to 16

Dynamic?
Yes

When to Change
Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.

Commitment Level
Unstable
tcp_local_dacks_max

Description: The maximum number of TCP segments (in units of maximum segment size MSS for individual connections) received from directly connected destinations before an acknowledgment (ACK) is generated. If set to 0 or 1, it means no delayed ACKs, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default: 8
Range: 0 to 16
Dynamic?: Yes
When to Change: Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.
Commitment Level: Unstable

tcp_wscale_always

Description: If set to 1, TCP always sends SYN segment with the window scale option, even if the option value is 0. Note that if TCP receives a SYN segment with the window scale option, even if the parameter is set to 0, TCP responds with a SYN segment with the window scale option, and the option value is set according to the receive window size.

Refer to RFC 1323 for the window scale option.

Default: 0 (disabled)
Range: 0 (disabled), 1 (enabled)
Dynamic?: Yes
When to Change: If you want the window scale option in a high-speed network configuration, enable it.
Commitment Level: Unstable
tcp_tstamp_always

Description
If set to 1, TCP always sends SYN segment with the timestamp option. Note that if TCP receives a SYN segment with the timestamp option, TCP responds with a SYN segment with the timestamp option even if the parameter is set to 0.

Default
0 (disabled)

Range
0 (disabled), 1 (enabled)

Dynamic?
Yes

When to Change
In summary, if an accurate measurement of round trip time (RTT) and TCP sequence number wraparound is a problem, enable it.

Refer to RFC 1323 for more reasons to enable this option.

Commitment Level
Unstable

tcp_xmit_hiwat

Description
The default send window size in bytes. Refer to the following discussion of per-route metrics for setting a different value on a per route basis. See “tcp_max_buf” on page 125 also.

Default
49,152

Range
4096 to 1,073,741,824

Dynamic?
Yes

When to Change
Note that this is the default value. An application can use setsockopt(3XNET) SO_SNDBUF to change the individual connection’s send buffer.

Commitment Level
Unstable

tcp_recv_hiwat

Description
The default receive window size in bytes. Refer to the following discussion of per-route metrics for setting a different value on a per-route basis. See “tcp_recv_hiwat_minmss” on page 135 and “tcp_max_buf” on page 125 also.

Default
49,152

Range
2048 to 1,073,741,824
Dynamic? Yes
When to Change Note that this is the default value. An application can use setsockopt(3XNET) SO_RCVBUF to change the individual connection’s receive buffer.
Commitment Level Unstable

tcp_max_buf
Description The maximum buffer size in bytes. It controls how large the send and receive buffers are set to by an application using setsockopt(3XNET).
Default 1,048,576
Range 8192 to 1,073,741,824
Dynamic? Yes
When to Change If TCP connections are being made in a high-speed network environment, increase the value to match the network link speed.
Commitment Level Unstable

tcp_cwnd_max
Description The maximum value of TCP congestion window (cwnd) in bytes.
For more information on TCP congestion window, refer to RFC 1122 and RFC 2581.
Default 1,048,576
Range 128 to 1,073,741,824
Dynamic? Yes
When to Change This is the maximum value a TCP cwnd can grow to. Note that even if an application uses setsockopt(3XNET) to change the window size to a value higher than tcp_cwnd_max, the actual window used can never grow beyond tcp_cwnd_max. Thus, tcp_max_buf should be greater than tcp_cwnd_max in general.
Commitment Level Unstable
tcp_slow_start_initial
Description The maximum initial congestion window (cwnd) size in MSS of a TCP connection.

Refer to RFC 2414 on how initial congestion window size is calculated.

Default 4
Range 1 to 4
Dynamic? Yes
When to Change Do not change the value.

If the initial cwnd size causes network congestion under special circumstances, decrease the value.

Commitment Level Unstable

tcp_slow_start_after_idle
Description The congestion window size in MSS of a TCP connection after it has been idled (no segment received) for a period of one retransmission timeout (RTO).

Refer to RFC 2414 for the calculation.

Default 4
Range 1 to 16,384
Dynamic? Yes
When to Change For more information, see “tcp_slow_start_initial” on page 126.

Commitment Level Unstable

tcp_sack_permitted
Description If set to 2, TCP always sends SYN segment with the selective acknowledgment (SACK) permitted option. If TCP receives a SYN segment with a SACK-permitted option and this parameter is set to 1, TCP responds with a SACK-permitted option. If the parameter is set to 0, TCP does not send a SACK-permitted option, regardless of whether the incoming segment contains the SACK permitted option or not.
Refer to RFC 2018 for information on the SACK option.

<table>
<thead>
<tr>
<th>Default</th>
<th>2 (active enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (disabled), 1 (passive enabled), 2 (active enabled)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>SACK processing can improve TCP retransmission performance so it should be actively enabled. If, in some circumstances, the other side can be confused with the SACK option actively enabled, set the value to 1 so that SACK processing is enabled only when incoming connections allow SACK processing.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

tcp_rev_src_routes

<table>
<thead>
<tr>
<th>Description</th>
<th>If set to 0, TCP does not reverse the IP source routing option for incoming connections for security reasons. If set to 1, TCP does the normal reverse source routing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled), 1 (enabled)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>If IP source routing is needed for diagnostic purposes, enable it.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

tcp_time_wait_interval

<table>
<thead>
<tr>
<th>Description</th>
<th>The time in milliseconds a TCP connection stays in TIME-WAIT state. For more information, refer to RFC 1122, 4.2.2.13.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>60,000 (60 seconds)</td>
</tr>
<tr>
<td>Range</td>
<td>1 second to 10 minutes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not set the value lower than 60 seconds. For more information, refer to RFC 1122, 4.2.2.13.</td>
</tr>
</tbody>
</table>
tcp_ecn_permitted

Description
Controls Explicit Congestion Notification (ECN) support.

If this parameter is set to 0, TCP does not negotiate with a peer that TCP supports the ECN mechanism.

If this parameter is set to 1 when initiating a connection, TCP does not tell a peer that TCP supports the ECN mechanism.

However, TCP tells a peer that it supports the ECN mechanism when accepting a new incoming connection request, if the peer indicates that the peer supports the ECN mechanism in the SYN segment.

If this parameter is set to 2, in addition to negotiating with a peer on the ECN mechanism when accepting connections, TCP indicates in the outgoing SYN segment that it supports the ECN mechanism when TCP makes active outgoing connections.

Refer to RFC 3168 for information on ECN.

Default
1 (passive enabled)

Range
0 (disabled), 1 (passive enabled), 2 (active enabled)

Dynamic?
Yes

When to Change
ECN can help TCP in handling congestion control better. However, there are existing TCP implementations, firewalls, NATs, and other network devices that are confused by this mechanism. These devices do not comply to the IETF standard.

Because of these devices, the default value of this parameter is set to 1. In rare cases, passive enabling can still cause problems. Set the parameter to 0 only if absolutely necessary.
tcp_conn_req_max_q

Description: The default maximum number of pending TCP connections for a TCP listener waiting to be accepted by `accept(3SOCKET)`.

See also “tcp_conn_req_max_q0” on page 129.

Default: 128

Range: 1 to 4,294,967,296

Dynamic?: Yes

When to Change: For applications such as web servers that might receive several connection requests, the default value might be increased to match the incoming rate.

Do not increase the parameter to a very large value. The pending TCP connections can consume excessive memory. And if an application is not fast enough to handle that many connection requests in a timely fashion because the number of pending TCP connections is too large, new incoming requests might be denied.

Note that increasing `tcp_conn_req_max_q` does not mean that applications can have that many pending TCP connections. Applications can use `listen(3SOCKET)` to change the maximum number of pending TCP connections for each socket. This parameter is the maximum an application can use `listen()` to set the number to. This means that even if this parameter is set to a very large value, the actual maximum number for a socket might be much less than `tcp_conn_req_max_q`, depending on the value used in `listen()`.

Commitment Level: Unstable

tcp_conn_req_max_q0

Description: The default maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for a TCP listener.

For more information on TCP three-way handshake, refer to RFC 793. See also “tcp_conn_req_max_q” on page 129.

Default: 1024

Range: 0 to 4,294,967,296
<table>
<thead>
<tr>
<th>Dynamic?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>When to Change</td>
<td>For applications, such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate. The following explains the relationship between tcp_conn_req_max_q0 and the maximum number of pending connections for each socket. When a connection request is received, TCP first checks if the number of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum (N) for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of N and tcp_conn_req_max_q0. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>Changes From Previous Release</td>
<td>For information, see “tcp_conn_req_max_q0” on page 168.</td>
</tr>
</tbody>
</table>

tcp_conn_req_min

<table>
<thead>
<tr>
<th>Description</th>
<th>The default minimum value of the maximum number of pending TCP connection requests for a listener waiting to be accepted. This is the lowest maximum value of listen(3SOCKET) an application can use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1</td>
</tr>
<tr>
<td>Range</td>
<td>1 to 1024</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>This can be a solution for applications that use listen(3SOCKET) to set the maximum number of pending TCP connections to a value too low. Increase the value to match the incoming connection request rate.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
TCP Parameters Set in the `/etc/system` File

These parameters can be set only in the `/etc/system` file. After the file is modified, reboot the system.

The following entry sets `tcp_conn_hash_size`:

```
set tcp:tcp_conn_hash_size=1024
```

tcp_conn_hash_size

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the hash table size in the TCP module for all TCP connections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>512</td>
</tr>
<tr>
<td>Range</td>
<td>512 to 1,073,741,824</td>
</tr>
<tr>
<td>Implicit</td>
<td>The value should be a power of 2.</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. The parameter can only be changed at boot time.</td>
</tr>
<tr>
<td>Validation</td>
<td>If you set the parameter to a value that is not a power of 2, it is rounded up to the nearest power of 2.</td>
</tr>
<tr>
<td>When to Change</td>
<td>If the system consistently has tens of thousands of TCP connections, increase the value accordingly. With the default value, TCP performs well up to a few thousand active connections. Note that increasing the hash table size means more memory consumption so set an appropriate value to avoid wasting memory unnecessarily.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

ipc_tcp_conn_hash_size

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the hash table size in an IP module for all active (in ESTABLISHED state) TCP connections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned integer</td>
</tr>
<tr>
<td>Default</td>
<td>512</td>
</tr>
<tr>
<td>Range</td>
<td>512 to 2,147,483,648</td>
</tr>
<tr>
<td>Implicit</td>
<td>It should be a power of two.</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. This parameter can only be changed at boot time.</td>
</tr>
</tbody>
</table>
Validation

If you set the parameter to a value that is not a power of 2, it is rounded up to the nearest power of two.

When to Change

If the system consistently has tens of thousands of active TCP connections, increase the value accordingly. With the default value, the system performs well up to a few thousand active connections. Note that increasing the hash table size means more memory consumption so set an appropriate value to avoid wasting memory unnecessarily.

Commitment Level Unstable

TCP Parameters With Additional Cautions

Changing the following parameters is not recommended unless there are extenuating circumstances that are described with each parameter.

tcp_ip_abort_interval

Description The default total retransmission timeout value for a TCP connection in milliseconds. For a given TCP connection, if TCP has been retransmitting for tcp_ip_abort_interval period of time and it has not received any acknowledgment from the other endpoint during this period, TCP closes this connection.

For TCP retransmission timeout (RTO) calculation, refer to RFC 1122, 4.2.3. See also “tcp_rexmit_interval_max” on page 133.

Default 8 minutes

Range 500 millisecond to 1193 hours

Dynamic? Yes

When to Change Do not change this value. See “tcp_rexmit_interval_max” on page 133 for exceptions.

Commitment Level Unstable
tcp_rexmit_interval_initial

Description: The default initial retransmission timeout (RTO) value for a TCP connection in milliseconds. Refer to the following discussion of per route metrics for setting a different value on a per-route basis.

Default: 3 seconds

Range: 1 millisecond to 20 seconds

Dynamic?: Yes

When to Change: Do not change this value. Lowering the value can result in unnecessary retransmissions.

Commitment Level: Unstable

tcp_rexmit_interval_max

Description: The default maximum retransmission timeout value (RTO) in milliseconds. The calculated RTO for all TCP connections cannot exceed this value. See also “tcp_ip_abort_interval” on page 132.

Default: 60 seconds

Range: 1 millisecond to 2 hours

Dynamic?: Yes

When to Change: Do not change the value in a normal network environment. If in some special circumstances, the round trip time (RTT) for a connection is in the order of 10 seconds, you can change the value to a higher value. If you change this value, you should also change the tcp_ip_abort_interval parameter to match it. Change the value of tcp_ip_abort_interval to at least four times the value of tcp_rexmit_interval_max.

Commitment Level: Unstable

tcp_rexmit_interval_min

Description: The default minimum retransmission time-out (RTO) value in milliseconds. The calculated RTO for all TCP connections cannot be lower than this value. See also “tcp_rexmit_interval_max” on page 133.

Default: 400 milliseconds
TCP's RTO calculation should be able to cope with most RTT fluctuations. If in some very special circumstances such that the round trip time (RTT) for a connection is in the order of 10 seconds, change to a higher value. If you change this value, you should change the `tcp_rexmit_interval_max` parameter to match it. You should change the value of `tcp_rexmit_interval_max` to at least eight times the value of `tcp_rexmit_interval_min`.

Commitment Level Unstable

tcp_rexmit_interval_extra
Description A constant added to the calculated retransmission time-out value (RTO) in milliseconds.
Default 0 milliseconds
Range 0 to 2 hours
Dynamic? Yes
When to Change Do not change the value.
When the RTO calculation fails to obtain a good value for a connection in some circumstances, you can change this value to avoid unnecessary retransmissions.
Commitment Level Unstable

tcp_tstamp_if_wscale
Description If this parameter is set to 1, and the window scale option is enabled for a connection, TCP also enables the timestamp option for that connection.
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Dynamic? Yes
When to Change
Do not change this value. In general, when TCP is used in high-speed network, protection against sequence number wraparound is essential, thus you need the timestamp option.

Commitment Level Unstable

tcp_recv_hiwat_minmss
Description Controls the default minimum receive window size. The minimum is tcp_recv_hiwat_minmss times the size of maximum segment size (MSS) of a connection.
Default 4
Range 1 to 65,536
Dynamic? Yes
When to Change Do not change the value. If changing it is necessary, do not change the value lower than 4.
Commitment Level Unstable

tcp_compression_enabled
Description If set to 1, protocol control blocks of TCP connections in TIME-WAIT state are compressed to reduce memory usage. If set to 0, no compression is done. See “tcp_time_wait_interval” on page 127 also.
Default 1 (enabled)
Range 0 (disabled), 1 (enabled)
Dynamic? Yes
When to Change Do not turn off the compression mechanism.
Commitment Level Unstable

UDP Tunable Parameters
This section describes some of the UDP tunable parameters.
udp_xmit_hiwat
Description The default maximum UDP socket datagram size in bytes. For more information, see “udp_max_buf” on page 136.
Default 8192 bytes
Range 4096 to 65,536
Dynamic? Yes
When to Change Note that an application can use setsockopt(3XNET)
SO_SNDBUF to change the size for an individual socket. In general, you do not need to change the default value.
Commitment Level Unstable

udp_recv_hiwat
Description The default maximum UDP socket receive buffer size in bytes. For more information, see “udp_max_buf” on page 136.
Default 8192 bytes
Range 4096 to 65,536
Dynamic? Yes
When to Change Note that an application can use setsockopt(3XNET)
SO_RCVBUF to change the size for an individual socket. In general, you do not need to change the default value.
Commitment Level Unstable

UDP Parameters with Additional Cautions
Changing the following parameters is not recommended unless there are extenuating circumstances that are described with each parameter.

udp_max_buf
Description Controls how large send and receive buffers (in bytes) can be for a UDP socket.
Default 262,144 bytes
Range 65,536 to 1,073,741,824
Dynamic? Yes
When to Change Do not change the value. If this parameter is set to a very large value, UDP socket applications can consume too much memory.
Commitment Level Unstable

Per-Route Metrics

In the Solaris 8 release, you can use the per-route metrics to associate some properties with IPv4 and IPv6 routing table entries.

For example, a system has two different network interfaces, fast ethernet interface and gigabit ethernet interface. The system default `tcp_recv_hiwat` is 24,576 bytes. This default is sufficient for the fast ethernet interface, but may not be sufficient for the gigabit ethernet interface.

Instead of increasing the system’s default `tcp_recv_hiwat`, you can associate a different default TCP receive window size to the gigabit ethernet interface routing entry. By making this association, all TCP connections going through the route will have the increased receive window size.

Assuming IPv4, the following is in the routing table (netstat -rn).

```
192.123.123.0  192.123.123.4  U   1   4  hme0
192.123.124.0  192.123.124.4  U   1   4  ge0
default        192.123.123.1  UG  1   8
```

Do the following:

```
# route change -net 192.123.124.0 -recvpipe x
```

This means all connections going to the 192.123.124.0 network, which is on the ge0 link, use the receive buffer size x, instead of the default 24567 receive window size.

If the destination is in the a.b.c.d network, and there is no specific routing entry for that network, you can add a prefix route to that network and change the metric. For example:

```
# route add -net a.b.c.d 192.123.123.1 -netmask w.x.y.z
# route change -net a.b.c.d -recvpipe y
```
Note that the prefix route’s gateway is the default router. Then all connections going to that network use receive buffer size y. If you have more than one interface, use the -i if argument to specify which interface to use. This way, you can control which interface to use for specific destinations. To verify the metric, use the `route(1M) get` command.
Network Cache and Accelerator (NCA) Tunable Parameters

This chapter describes some of the Network Cache and Accelerator (NCA) tunable parameters.

- “nca:nca_conn_hash_size” on page 140
- “nca:nca_conn_req_max_q” on page 140
- “nca:nca_conn_req_max_q0” on page 141
- “nca:nca_ppmax” on page 141
- “nca:nca_vpmax” on page 142
- “sq_max_size” on page 143
- “ge:ge_intr_mode” on page 143

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris Kernel Tunables</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>NFS Tunable Parameters</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>TCP/IP Tunable Parameters</td>
<td>Chapter 4</td>
</tr>
</tbody>
</table>
Overview of Tuning NCA Parameters

Setting these parameters is appropriate on a system that is a dedicated web server. These parameters allocate more memory for caching pages. You can set all of the tuning parameters described in this chapter in the `/etc/system` file.

For information on adding tunable parameters to the `/etc/system` file, see “Tuning the Solaris Kernel” on page 18.

nca:nca_conn_hash_size

Description: Controls the hash table size in the NCA module for all TCP connections, adjusted to nearest prime number.

Default: 383 hash table entries

Range: 0 to 201,326,557

Dynamic?: No

When to Change: When the NCA’s TCP hash table is too small to keep track of the incoming TCP connections, which causes many TCP connections to be grouped together in the same hash table entry. This situation is indicated when NCA is receiving a lot of TCP connections and system performance decreases.

Commitment Level: Unstable

nca:nca_conn_req_max_q

Description: The maximum number of pending TCP connections for NCA to listen on.

Default: 256 connections

Range: 0 to 4,294,967,295

Dynamic?: No

When to Change: When NCA closes a connection immediately after it is established because it already has too many established TCP connections. If NCA is receiving a lot of TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter to allow NCA to handle more simultaneous TCP connections.

Commitment Level: Unstable
nca:nca_conn_req_max_q0

- **Description**: The maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for NCA to listen on.
- **Default**: 1024 connections
- **Range**: 0 to 4,294,967,295
- **Dynamic?**: No
- **When to Change**: When NCA refuses to accept any more TCP connections because it already has too many pending TCP connections. If NCA is receiving a lot of TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter to allow NCA to handle more simultaneous TCP connections.
- **Commitment Level**: Unstable

nca:nca_ppmax

- **Description**: Maximum amount of physical memory (in pages) used by NCA for caching the pages. Should not be more than 75% of total memory.
- **Default**: 25% of physical memory
- **Range**: 1% to maximum amount of physical memory
- **Dynamic?**: No
- **When to Change**: When using NCA on a system with a lot of memory (greater than 512 Mbytes). If a system has a lot of physical memory that is not being used, increase this parameter so NCA will efficiently use this memory to cache new objects, and therefore, increase system performance.

 This parameter should be increased in conjunction with `nca_vpmax` unless you have a system with more physical memory than virtual memory (a 32-bit kernel that has greater than 4 Gbytes memory). Use `pagesize(1)` to get your system’s page size.
- **Commitment Level**: Unstable
nca:nca_vpmax

Description
Maximum amount of virtual memory (in pages) used by NCA for caching pages. Should not be more than 75% of the total memory.

Default
25% of virtual memory

Range
1% to maximum amount of virtual memory

Dynamic?
No

When to Change
When using NCA on a system with a lot of memory (greater than 512 Mbytes). If a system has a lot of virtual memory that is not being used, increase this parameter so NCA will efficiently use this memory to cache new objects, and therefore, increase system’s performance.

This parameter should be increased in conjunction with nca_ppmax. Set this parameter approximately same as nca_vpmax unless you have a system with more physical memory than virtual memory.

Commitment Level
Unstable

General System Tuning for the NCA

In addition to setting the NCA parameters, you can do some general system tuning to benefit NCA performance. If you are using Sun GigabitEthernet (ge driver), you should set the interface in interrupt mode for better results.

For example, a system with 4 Gbytes of memory and booted under 64–bit kernel should have the following parameters set in the `/etc/system` file. Use `pagesize` to determine your system’s page size.

```bash
set sq_max_size=0
set ge:ge_intr_mode=1
set nca:nca_conn_hash_size=82500
set nca:nca_conn_req_max_q=100000
set nca:nca_conn_req_max_q0=100000
set nca:nca_ppmax=393216
set nca:nca_vpmax=393216
```
sq_max_size

Description: The depth of the syncq (number of messages) before a destination streams queue generates a QFULL message.

Default: 2 messages

Range: 1 to 0 (unlimited)

Dynamic?: No

When to Change: When NCA is running on a system with a lot of memory, increase this parameter to allow drivers to queue more packets of data. If a server is under heavy load, increase this parameter so modules and drivers may process more data without dropping packets or getting backlogged.

Commitment Level: Unstable

ge:ge_intr_mode

Description: Enables the ge driver to send packets directly to the upper communication layers rather than queueing the packets.

Default: 0 (queue packets to upper layers)

Range: 0 (enable) to 1 (disable)

Dynamic?: No

When to Change: When NCA is enabled, set this parameter to 1 so that the packet is delivered to NCA in interrupt mode for faster processing.

Commitment Level: Unstable
CHAPTER 6

System Facility Parameters

This chapter describes most of the parameters for setting default values for various system facilities.

- “cron” on page 146
- “devfsadm” on page 146
- “dhcpcagent” on page 146
- “fs” on page 146
- “inetd” on page 146
- “inetinit” on page 146
- “init” on page 146
- “keyserv” on page 147
- “kbd” on page 147
- “login” on page 147
- “nfslogd” on page 147
- “passwd” on page 147
- “power” on page 147
- “rpc.nisd” on page 147
- “su” on page 148
- “syslog” on page 148
- “sys-suspend” on page 148
- “tar” on page 148
- “utmpd” on page 148

System Default Parameters

The functioning of various system facilities is governed by a set of values that are read by the facility on startup. The values stored in a file for each facility are located in the /etc/default directory. Not every system facility has a file located in this directory.
cron
For details, see the Setting cron Defaults section of cron(1M).

devfsadm
This file is not currently used.

dhcpagent
Client usage of DHCP is provided by the dhcpagent daemon. When ifconfig identifies an interface that has been configured to receive its network configuration from DHCP, it starts the client daemon to manage that interface.
For more information, see the /etc/default/dhcpagent information in the FILES section of dhcpagent(1M).

fs
File system administrative commands have a generic and file system-specific portion. If the file system type is not explicitly specified with the -F option, a default is applied. The value is specified in this file. For more information, see the Description section of default_fs(4).

inetd
For details, see the /etc/default/inetd information in the FILES section of inetd(1M), /etc/default/inetd.

inetinit
Used by the /etc/rc2.d/S69inet script to control the sequence numbers used by TCP.

init
For details, see the /etc/default/init section of init(1M).
The CMASK variable referred to in the file is not documented in the man page. CMASK is the umask that init uses and that every process inherits from the init process. If not set, init uses the default umask it obtains from the kernel. The init process always attempt to apply a umask of 022 before creating any files, regardless of the setting of CMASK. All values in the file are placed in the environment of the shell that init invokes in response to a single user boot request. The init process also passes these values to any commands that it starts or restarts from the /etc/inittab file.

keyser

For details, see the /etc/default/keyser information in the FILES section of keyser(1M).

kbd

For details, see the Extended Description section of kbd(1).

login

For details, see the /etc/default/login information in the FILES section of login(1).

nfslogd

For details, see the Description section of nfslogd(1M).

passwd

For details, see the /etc/default/passwd information in the FILES section of passwd(1), /etc/default/passwd.

power

For details, see the /etc/default/power information in the FILES section of pmconfig(1M).

rpc.nisd

For details, see the /etc/default/rpc.nisd information in the FILES section of rpc.nisd(1M).
su
For details, see the /etc/default/su information in the FILES section of su(1M).

syslog
For details, see the /etc/default/syslogd information in the FILES section of syslogd(1M).

sys-suspend
For details, see the /etc/default/sys-suspend information in the FILES section of sys-suspend(1M).

tar
For a description of the -f function modifier, see tar(1).

If the TAPE environment variable is not present and the value of one of the arguments is a number and -f is not specified, the number matching the archiveN string is looked up in the /etc/default/tar file. The value of the archiveN string is used as the output device with the blocking and size specifications from the file.

For example:
```
% tar -c 2 /tmp/*
```
Writes the output to the device specified as archive2 in the /etc/default/tar file.

utmpd
The utmpd daemon monitors /var/adm/utmpx (and /var/adm/utmp in earlier versions of Solaris) to ensure that utmp entries inserted by non-root processes by pututxline(3C) are cleaned up on process termination.

Two entries in /etc/default/utmpd are supported:
- SCAN_PERIOD - The number of seconds that utmpd sleeps between checks of /proc to see if monitored processes are still alive. The default is 300.
- MAX_FDS - The maximum number of processes that utmpd attempts to monitor. The default value is 4096 and should never need to be changed.
This chapter describes the change history of specific parameters. Parameters whose functionality has been removed are listed also.

- “Process Sizing Tunables” on page 149
- “Paging Related Tunables” on page 151
- “General Kernel Variables” on page 155
- “General I/O” on page 155
- “Pseudo Terminals” on page 158
- “Sun4u Specific” on page 158
- “Parameters With No Functionality” on page 159

Kernel Parameters

Process Sizing Tunables

maxusers (Solaris 7 Release)

<table>
<thead>
<tr>
<th>Description</th>
<th>The maxusers parameter drives max_nprocs and maxuprc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>Lesser of the amount of memory in Mbytes and 1024</td>
</tr>
<tr>
<td>Range</td>
<td>1 to 2048</td>
</tr>
</tbody>
</table>
Note – Values greater than 1024 must be specified in
/etc/system. If a value greater than 2048 is provided,
calculations clamps the value at 2048, but later processing sets
the value to the provided value.

Units Users
Dynamic? No. After computation of dependent variables is done,
maxusers is never referenced again.
Validation None
When to Change If the default number of user processes derived by the system
is insufficient. This insufficiency is seen by the following
messages on the system console or messages file.
out of processes
Commitment Level Unstable

max_nprocs (Pre-Solaris 8 Releases)

Description Maximum number of processes that can be created on a
system. Includes system and user processes. Prior to the
Solaris 8 release, the value was determined by computation
and then used in the setting of maxuprc.

This value is also used in determining the size of several other
system data structures. For releases prior to Solaris 8, if a value
is provided in the/etc/system file it is used rather than the
computed value. Other data structures where this variable
plays a role are:

- Determining the size of the directory name lookup cache (if
 ncsize is not specified)
- Allocating disk quota structures for UFS (if ndquot is not
 specified)
- Verifying that the amount of memory used by configured
 system V semaphores does not exceed system limits
- Configuring Hardware Address Translation resources for
 the sun4d, sun4m, and Intel platforms

Data Type Signed integer
Default 10 + (16 x maxusers)
Range 266 to value of pidmax
Dynamic? No. \(\text{max}_\text{nprocs} \) is assigned to the \(v.\text{proc} \) element of the \(v \) structure after the initial parameter calculation is completed. Changing \(v.v.\text{proc} \) on a running system almost certainly results in a system crash or silent data corruption.

Validation Compared to \(\text{maxpid} \) and set to \(\text{maxpid} \), if larger. On the sun4d and Intel platforms, an additional check is made against a platform-specific value. \(\text{max}_\text{nprocs} \) is set to the smallest value in the triplet \((\text{max}_\text{nprocs}, \text{maxpid}, \text{platform value}) \). Both platforms use 65,534 as the platform value.

When to Change Starting with the Solaris 8 release, this value can be changed to enable more than 30,000 processes on a system. Changing this parameter is one of the steps necessary to enable support for more than 30,000 processes on a system.

Commitment Level Unstable

Paging Related Tunables

In certain revisions of the Solaris 2.6 kernel patch (105181-10 for SPARC platforms and 105182-09 for Intel platforms) and in the Solaris 7 release, a new parameter is introduced: \textit{priority paging}. A new starting point for pageout thread activity (\textit{cachefree}) is also used. When available memory is between \textit{cachefree} and \textit{lotsfree}, priority paging modifies the page-checking algorithm to skip the page, if it came from an executable (text, stack, or data). After memory falls below \textit{lotsfree}, every page is considered equally. The facility is not enabled by default, but can be enabled by either setting \textit{cachefree} to a value greater than \textit{lotsfree} or by setting the \textit{priority_paging} variable to a non-zero value, which sets \textit{cachefree} to 2 times \textit{lotsfree}.

\texttt{cachefree} (Solaris 8 Releases)

Description The Solaris 8 release changes the way file system pages are cached. These changes subsume the priority paging capability.

\textbf{Note} – Remove both \texttt{cachefree} and \texttt{priority_paging} settings in the \texttt{/etc/system} file.

The caching changes remove most of the pressure on the virtual memory system resulting from file system activity. Several statistics exhibit new behavior:
- Page reclaims are higher because pages are now explicitly added to the free list after I/O completes.
- Free memory is now higher because the free memory count now includes a large component of the file cache.
- Scan rates are drastically reduced.

Commitment Level: Obsolete
Change History: See “cachefree (Solaris 2.6 and Solaris 7 Releases)” on page 152 for more information.

cachefree (Solaris 2.6 and Solaris 7 Releases)

Description: Enables priority paging feature, provided cachefree is greater than lotsfree. This variable is available for systems running the Solaris 2.6 release, with at minimum, revision 10 of patch 105181 installed, and for systems running the Solaris 7 release. By default, this feature (cachefree equals lotsfree) is disabled.

Data Type: Unsigned long
Default: Value of lotsfree unless priority Paging is set, which means cachefree is 2 times lotsfree
Range: lotsfree to physical memory on system
Units: Pages
Dynamic?: Yes
Validation: If less than lotsfree, it is reset to the value of lotsfree.
When to Change: Should always be enabled unless the system is tight on memory, and does excessive I/O where the contents of the files are needed in the future.

Commitment Level: Obsolete

priority Paging (Solaris 8 Releases)

Description: This variable sets cachefree to 2 times lotsfree.

The Solaris 8 release changes the way file system pages are cached. These changes subsume the priority paging capability.

Note – Remove both cachefree and priority Paging settings in the /etc/system file.
Commitment Level: Obsolete
Change History: See “priority_paging (Solaris 2.6 and 7 Releases)” on page 153 for more information.

priority_paging (Solaris 2.6 and 7 Releases)

Description: Enables priority paging feature. When set, this variable sets `cachefree` to 2 times `lotsfree`, thereby enabling priority paging.

Data Type: Signed integer

Default: 0

Range: 0 (priority paging disabled unless `cachefree` set separately) or 1 (enabled)

Units: Toggle (on/off)

Dynamic?: No. Sets the value of `cachefree` at boot time only. Runtime enabling can be achieved by setting `cachefree` with `mdb` while the system is running.

Validation: None

When to Change: Should always be enabled unless the system is tight on memory, and does excessive I/O where the contents of the files are needed in the future.

Commitment Level: Obsolete

tmpfs:tmpfs_minfree

Description: Minimum amount of swap space that TMPFS leaves for the rest of the system.

Data Type: Signed long

Default: 256

Range: 0 to maximum swap space size

Units: Bytes

Dynamic?: Yes

Validation: None
When to Change

To maintain a reasonable amount of swap space on systems with large amounts of TMPFS usage, you can increase this number. The limit has been reached when the console or system messages file displays the following message.

fs-name: File system full, swap space limit exceeded

<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

pages_pp_maximum (Pre-Solaris 9 Releases)

Description

Defines the number of pages that the system requires be unlocked. If a request to lock pages would force available memory below this value, that request is refused.

Data Type

Unsigned long

Default

Maximum of the triplet (200, tune_t_minarmem + 100, [10% of memory available at boot time])

Range

Default value to no more than 20% of physical memory. The systems does no enforcement of this range other than that described in the Validation section.

Units

Pages

Dynamic?

Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the /etc/system file or was calculated.

Validation

Maximum of the quadruplet (200, tune_t_minarmem + 100, [10% of memory available], and the value from /etc/system). No message is displayed if the value from /etc/system is increased. Done only at boot time.

When to Change

When memory locking requests or attaching to a shared memory segment with the SHARE_MMU flag fails, yet the amount of memory available seems to be sufficient. Keeping 10% of memory free on a 32-Gbyte system might be excessive.

Excessively large values can cause memory locking requests to fail unnecessarily.

<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

154 Solaris Tunable Parameters Reference Manual • May 2002
General Kernel Variables

noexec_user_stack (Solaris 2.6, 7, and 8 Releases)

Description

Introduced in the Solaris 2.6 release to allow the stack to be marked as non-executable. This helps make buffer-overflow attacks more difficult.

In the Solaris 2.6 release, the value does not affect threaded applications. All 64-bit Solaris applications effectively make all stacks non-executable irrespective of the setting of this variable.

Note – This variable exists on all systems running the Solaris 2.6, 7, or 8 release, but it is only effective on sun4u, sun4m, and sun4d architectures.

Data Type Signed integer

Default 0 (disabled)

Range 0 (disabled), 1 (enabled)

Units Toggle (on/off)

Dynamic? Yes. Does not affect currently running processes—only those created after the value is set.

Validation None

When to Change Should be enabled at all times unless applications are deliberately placing executable code on the stack without using `mprotect(2)` to make the stack executable.

Commitment Level Unstable

General I/O

rlim_fd_cur (Pre-Solaris 7 and the Solaris 7 Release)

Description

"Soft" limit on file descriptors that a single process can have open. A process might adjust its file descriptor limit to any value up to the "hard" limit defined by `rlim_fd_max` by

Appendix A • Tunable Parameter Change History 155
using the `setrlimit()` call or issuing the `limit` command in whatever shell it is running. You do not require superuser privilege to adjust the limit to any value less than or equal to the hard limit.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>64</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>File descriptors</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No. Loaded into <code>rlimits</code> structure.</td>
</tr>
<tr>
<td>Validation</td>
<td>Compared to <code>rlim_fd_max</code> and if <code>rlim_fd_cur</code> is greater than <code>rlim_fd_max</code>, <code>rlim_fd_cur</code> is reset to <code>rlim_fd_max</code>.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When the default number of open files for a process is not enough. Increasing this value means only that it is possibly not necessary for a program to use <code>setrlimit(2)</code> to increase the maximum number of file descriptors available to it.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

`rlim_fd_max` (Solaris 8 Release)

<table>
<thead>
<tr>
<th>Description</th>
<th>"Hard" limit on file descriptors that a single process might have open. To override this limit requires superuser privilege.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Signed integer</td>
</tr>
<tr>
<td>Default</td>
<td>1024</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
<tr>
<td>Units</td>
<td>File descriptors</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
</tbody>
</table>
| When to Change | When the maximum number of open files for a process is not enough. Note that other limitations in system facilities can mean that a larger number of file descriptors is not as useful as it might be:
 - A 32-bit program using standard I/O is limited to 256 file descriptors. A 64-bit program using standard I/O can use up to 2 billion descriptors.
 - `select(3C)` is by default limited to 1024 descriptors per `fd_set`. Starting with the Solaris 7 release, 32-bit application code can be recompiled with a larger `fd_set` |
size (less than or equal to 65,536). A 64-bit application sees an \texttt{fd_set} size of 65,536, which cannot be changed.

An alternative to changing this on a system wide basis is to use the \texttt{plimit(1)} command. If a parent process has its limits changed by \texttt{plimit}, all children inherit the increased limit. This is useful for daemons such as \texttt{inetd}.

Commitment Level Unstable

\textbf{segkpsize (Pre-Solaris 7 and the Solaris 7 Release)}

Description Specify the amount of kernel pageable memory available. This memory is used primarily for kernel thread stacks. Increasing this number allows either larger stacks for the same number of threads or more threads. This parameter can only be set on 64-bit kernels. 64-bit kernels use a default stack size of 24 Kbytes.

Available for the Solaris 7 release with patch 106541-04 or the Solaris 7 5/99 and Solaris 8 releases.

Data Type Unsigned long

Default 64-bit kernels, 2 Gbytes

32-bit kernels, 512 Mbytes

Range 64-bit kernels, 512 Mbytes - 24 Gbytes

32-bit kernels, 512 Mbytes

Units Mbytes

Dynamic? No

Validation None

When to Change Increase when more threads are desired.

Commitment Level Unstable
Pseudo Terminals

pt_cnt (Pre-Solaris 7 and the Solaris 7 Release)

Description: Number of /dev/pts (the pseudo terminal devices used by telnet or rlogin for network logins) entries to create on a reconfiguration boot. This parameter effectively limits the number of users that can simultaneously be logged in across the net to the value of pt_cnt. You must do a reconfiguration boot (boot -r) after making the change to the /etc/system file for the additional device nodes to be created.

Data Type: Signed integer
Default: 48
Range: 0 to maxpid
Units: logins/windows
Dynamic?: No
Validation: None. Excessively large values hang the system.
When to Change: When the desired number of users cannot log in to the system.
Commitment Level: Unstable

Sun4u Specific

enable_grp_ism (Solaris 2.6 Release)

Description: Enables a shared memory Translation Setaside Buffer (TSB) capability for System V Shared Memory that has been attached with the SHARE_MMU flag set. This parameter is available in, at minimum, patch 105181-05 for the Solaris 2.6 release. Starting with the Solaris 7 release, the parameter name has been removed, but the system implements this parameter by default.

Data Type: Signed integer
Default: 0
Range: 0 (disabled) or 1 (enabled)
Dynamic?: No
Parameters With No Functionality

The following section describes parameters whose functionality has been removed, but the parameter might still be available for compatibility reasons. These parameters are ignored if they are set.

Paging-Related Tunables

tune_t_gpgslo
Description Obsolete. Variable left in place for compatibility reasons.

tune_t_minasmem
Description Obsolete. Variable left in place for compatibility reasons.

System V Message Parameters

msgsys:msginfo_msgssz
Description Specifies size of chunks system uses to manage space for message buffers. Obsolete since the Solaris 8 release.
Data Type Signed integer
Default 40
Range 0 to MAXINT
Dynamic? No. Loaded into msgtql field of msginfo structure.
Validation The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.

When to Change When the default value is not enough. Generally changed at the recommendation of software vendors.

Commitment Level Obsolete

msgsys:msginfo_msgmap

Description Number of messages the system supports. Obsolete since the Solaris 8 release.

Data Type Signed integer

Default 100

Range 0 to MAXINT

Dynamic? No

Validation The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.

When to Change When the default value is not enough. Generally changed at the recommendation of software vendors.

Commitment Level Obsolete

msgsys:msginfo_msgseg

Description Number of msginfo_msgssz segments the system uses as a pool for available message memory. Total memory available for messages is msginfo_msgseg * msginfo_msgssz. Obsolete as of the Solaris 8 release.

Data Type Signed short
Default 1024
Range 0 to 32,767
Dynamic? No
Validation The space consumed by the maximum number of data structures that would be created to support the messages and queues is compared to 25% of the available kernel memory at the time the module is loaded. If the number is too big, the message queue module refuses to load and the facility is unavailable. This computation does not include the space that might be consumed by the messages. This situation occurs only when the module is first loaded.

When to Change When the default value is not enough. Generally changed at the recommendation of software vendors.

Commitment Level Obsolete

System V Semaphore Parameters

semsys:seminfo_semmap
Obsolete. Variable is present in kernel for compatibility reasons but is no longer used.

semsys:seminfo_semusz
Obsolete. Any values entered are ignored.

System V Shared Memory

shmsys:shminfo_shmmin
Obsolete. Variable is present in kernel for compatibility reasons but is no longer used.

shmsys:shminfo_shmseg
Obsolete. Variable is present in kernel for compatibility reasons but is no longer used.
NFS Module Parameters

nfs:nfs_32_time_ok
Obsolete as of the Solaris 8 release.

nfs:nfs_acl_cache
Obsolete as of the Solaris 2.6 release.
Revision History for this Manual

This section describes the revision history for this manual.

Current Version—Solaris 9 Release

The current version of this manual applies to the Solaris 9 release.

New Parameters

This parameter is new in the Solaris 8 1/01 release.

logevent_max_q_sz

For information, see “logevent_max_q_sz” on page 28.
Unsupported or Obsolete Parameters

priority_paging and cachefree are Not Supported

The priority_paging and cachefree tunable parameters are not supported in the Solaris 9 release. They have been replaced with an enhanced file system caching architecture that implements paging policies similar to priority paging, but are always enabled. Attempts to set these parameters in the /etc/system file result in boot-time warnings such as:

```plaintext
sorry, variable 'priority_paging' is not defined in the 'kernel'
sorry, variable 'cachefree' is not defined in the 'kernel'
```

The SUNWcsr packages that contain the /etc/system file have been modified so that the inclusion of the priority_paging or cachefree tunable parameters are prohibited. If you upgrade to the Solaris 9 release or pkgadd the SUNWcsr packages and your /etc/system file includes the priority_paging or cachefree parameters, the following occurs:

1. This message is displayed if the priority_paging or cachefree parameters are set in the /etc/system file:

   ```plaintext
   Note – /etc/system has been modified since it contains references to priority paging tunables. Please review the changed file.
   ```

2. Comments are inserted in the /etc/system file before any line that sets priority_paging or cachefree. For example, if priority_paging is set to 1, this line is replaced with the following lines:

   ```plaintext
   * NOTE: As of Solaris 9, priority paging is unnecessary and has been removed.
   * Since references to priority paging-related tunables will now result in boot-time warnings, the assignment below has been commented out. For more details, see the Solaris 9 Release Notes, or the "Solaris Tunable Parameters Reference Manual".
   ```

Obsolete Parameters

The following parameters are now obsolete.

- rlim_fd_max
- shmsys:shminfo_shmmin
Changed Parameters

These parameters changed or were corrected.

maxusers

The following section changed.

Range 1 to 2048

to:

Range 1 to 2048, based on physical memory without any setting in the `/etc/system` file.

1 to 4096, if set in the `/etc/system` file.

pages_pp_maximum

The following sections changed.

Default Maximum of the triplet (200, \(t_t_minarmem + 100\), [10% of memory available at boot time])

to:

Default The greater of \((t_t_minarmem + 100\) and [4% of memory available at boot time + 4 Mbytes])

Range Default value to no more than 20% of physical memory. The systems does no enforcement of this range other than that described in the Validation section.

to:

Range Minimum value enforced by the system is \(t_t_minarmem + 100\). The system does not enforce a maximum value.

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to whatever was provided in the `/etc/system` file or was calculated.
Validation

Maximum of the quadruplet (200, \(tune_t_minarmem + 100\), [10% of memory available], and the value from /etc/system). No message is displayed if the value from /etc/system is increased. Done only at boot time.

to:

Validation

If the value specified in the /etc/system file or the calculated default is less than \(tune_t_minarmem + 100\), the value is reset to \(tune_t_minarmem + 100\).

No message is displayed if the value from the /etc/system file is increased. Done only at boot time, and during dynamic reconfiguration operations that involve adding or deleting memory.

When to Change

When memory locking requests or attaching to a shared memory segment with the SHARE_MMU flag fails, yet the amount of memory available seems to be sufficient. Keeping 10% of memory free on a 32-Gbyte system might be excessive.

Excessively large values can cause memory locking requests to fail unnecessarily.

to:

When to Change

When memory locking requests or attaching to a shared memory segment with the SHARE_MMU flag fails, yet the amount of memory available seems to be sufficient.

Excessively large values can cause memory locking requests to fail unnecessarily.

\textbf{rlim_fd_max}

The following section changed for releases prior to the Solaris 9 release.

Default \quad 1024

to:

Default \quad 65,536

\textbf{segspt_minfree}

The following section changed.
Range 0 to 32,767

to:
Range 0 to 50% of physical memory.

\textbf{shmsys:shminfo_shmseg}

The following section changed.

Description Limit on the number of shared memory segments that any one process can create.

to:

Description Limit on the number of shared memory segments that any one process can attach.

\textbf{shmsys:shminfo_shmmax}

The following sections changed.

Description Maximum size of system V shared memory segment that can be created. This parameter is an upper limit that is checked before the system sees if it actually has the physical resources to create the requested memory segment.

Attempts to create a shared memory section whose size is zero or whose size is larger than the specified value will fail with an \texttt{EINVAL} error.

Default 1,048,576

to:

Default 8,388,608
tmpfs:tmpfs_maxkmem
The following section changed.
Default to:
Default One page or 4% of physical memory, whichever is greater.

tmpfs:tmpfs_minfree
This parameter was corrected. The following section changed:
Units Bytes to:
Units Pages

tcp_rexmit_interval_max
The following section changed.
Range 1 millisecond to 20 seconds to:
Range 1 millisecond to 2 hours

tcp_slow_start_initial
This parameter was corrected.
For information, see “tcp_slow_start_initial” on page 126.

tcp_conn_req_max_q0
The following section changed:
When to Change For applications, such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.
The following explains the relationship between tcp_conn_req_max_q0 and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number \(N\) of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of \(N\) and tcp_conn_req_max_q0. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

When to Change

For applications, such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.

The following explains the relationship between tcp_conn_req_max_q0 and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum \(N\) for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of \(N\) and tcp_conn_req_max_q0. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

Removal of sun4d Support

The sun4d platform is not supported in the Solaris 9 release. The following parameters were modified to reflect the removal of sun4d support:

- max_nprocs
- maxphys
- noexec_user_stack
Changes to Existing Parameters From the Previous Release (Solaris 8)

shmsys:shminfo_shmmin

The following section changed:

When to Change
No known reason.

To:

When to Change
Not recommended. System programs such as **powerd** might fail if this value is too large. Programs attempting to create a section smaller than the value of `shminfo_shmmin` will see an **EINVAL** error when attempting to create the segment and generally, will exit.

semsys:seminfo_semmnu

This parameter was added because it was left out inadvertently.
Index

A
autoup, 30

B
bufhwm, 60

cachefree, 151, 164
consistent_coloring, 82
cron, 146

D
desfree, 38
dhcpagent, 146
dn1c_dir_enable, 58
dn1c_dir_max_size, 59
dn1c_dir_min_size, 59
doiflush, 31
doapageflush, 31

E
enable_grp_ism, 158

F
fastscan, 43
fs, 146
fsflush, 28

G
ge_intr_mode, 143

H
handspreadpages, 45
hires_tick, 81

I
inetd, 146
inetinit, 146
init, 146
ip_addrs_per_if, 119
ip_forward_src_routed, 119
ip_forwarding, 117
ip_icmp_err_burst, 117
ip_icmp_err_interval, 117
ip_icmp_return_data_bytes, 121
ip_ire_pathmtu_interval, 120
ip_respond_to_echo_broadcast, 118
ip_send_redirects, 118
ip_strict_dst_multihoming, 120
ip6_forward_src_routed, 119

171
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip6_forwarding</td>
<td>117</td>
</tr>
<tr>
<td>ip6_icmp_return_data_bytes</td>
<td>121</td>
</tr>
<tr>
<td>ip6_respond_to_echo_multicast</td>
<td>118</td>
</tr>
<tr>
<td>ip6_send_redirects</td>
<td>118</td>
</tr>
<tr>
<td>ip6_strict_dst_multihoming</td>
<td>120</td>
</tr>
<tr>
<td>ipc_tcp_conn_hash_size</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kbd</td>
<td>147</td>
</tr>
<tr>
<td>keyserv</td>
<td>147</td>
</tr>
<tr>
<td>kmem_flags</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>logevent_max_q_sz</td>
<td>28,163</td>
</tr>
<tr>
<td>login</td>
<td>147</td>
</tr>
<tr>
<td>lotsfree</td>
<td>37</td>
</tr>
<tr>
<td>lwp_default_stksize</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_nprocs</td>
<td>34,150,169</td>
</tr>
<tr>
<td>maxpgio</td>
<td>46</td>
</tr>
<tr>
<td>maxphys</td>
<td>53,169</td>
</tr>
<tr>
<td>maxpid</td>
<td>34</td>
</tr>
<tr>
<td>maxuprc</td>
<td>35</td>
</tr>
<tr>
<td>maxusers</td>
<td>32,149,165</td>
</tr>
<tr>
<td>md_mirror:md_resync_bufsz</td>
<td>83</td>
</tr>
<tr>
<td>min_percent_cpu</td>
<td>44</td>
</tr>
<tr>
<td>minfree</td>
<td>39</td>
</tr>
<tr>
<td>moddebug</td>
<td>52</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgmap</td>
<td>160</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgmax</td>
<td>71</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgmb</td>
<td>72</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgmni</td>
<td>72</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgseg</td>
<td>160</td>
</tr>
<tr>
<td>msgsystmsgsinfo_msgssz</td>
<td>159</td>
</tr>
<tr>
<td>msgsystmsgsinfo_mstql</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nca_conn_hash_size</td>
<td>140</td>
</tr>
<tr>
<td>nca_conn_req_max_q</td>
<td>140</td>
</tr>
<tr>
<td>nca_ppmax</td>
<td>141</td>
</tr>
<tr>
<td>nca_vmax</td>
<td>142</td>
</tr>
<tr>
<td>ncs_size</td>
<td>56</td>
</tr>
<tr>
<td>ndd</td>
<td>116</td>
</tr>
<tr>
<td>ndquot</td>
<td>61</td>
</tr>
<tr>
<td>nfs_32_time_ok</td>
<td>162</td>
</tr>
<tr>
<td>nfs_acl_cache</td>
<td>162</td>
</tr>
<tr>
<td>nfs_max_threads</td>
<td>92</td>
</tr>
<tr>
<td>nfs:nacache</td>
<td>102</td>
</tr>
<tr>
<td>nfs:nfs_allow_preePOCH_time</td>
<td>87</td>
</tr>
<tr>
<td>nfs:nfs_async_clusters</td>
<td>100</td>
</tr>
<tr>
<td>nfs:nfs_async_timeout</td>
<td>101</td>
</tr>
<tr>
<td>nfs:nfs_cots_timeo</td>
<td>87</td>
</tr>
<tr>
<td>nfs:nfs_disable_rdDir_cache</td>
<td>98</td>
</tr>
<tr>
<td>nfs:nfs_do_sylmlink_cache</td>
<td>89</td>
</tr>
<tr>
<td>nfs:nfs_dynamic</td>
<td>90</td>
</tr>
<tr>
<td>nfs:nfs_lookup_neg_cache</td>
<td>91</td>
</tr>
<tr>
<td>nfs:nfs_nra</td>
<td>94</td>
</tr>
<tr>
<td>nfs:nfs_shrinkreaddir</td>
<td>96</td>
</tr>
<tr>
<td>nfs:nfs_write_error_interval</td>
<td>97</td>
</tr>
<tr>
<td>nfs:nfs3_async_clusters</td>
<td>100</td>
</tr>
<tr>
<td>nfs:nfs3_bsize</td>
<td>99</td>
</tr>
<tr>
<td>nfs:nfs3_cots_timeo</td>
<td>88</td>
</tr>
<tr>
<td>nfs:nfs3_do_sylmlink_cache</td>
<td>89</td>
</tr>
<tr>
<td>nfs:nfs3_dynamic</td>
<td>90</td>
</tr>
<tr>
<td>nfs:nfs3_jukebox_delay</td>
<td>103</td>
</tr>
<tr>
<td>nfs:nfs3_lookup_neg_cache</td>
<td>102</td>
</tr>
<tr>
<td>nfs:nfs3_max_threads</td>
<td>93</td>
</tr>
<tr>
<td>nfs:nfs3_max_transfer_size</td>
<td>103</td>
</tr>
<tr>
<td>nfs:nfs3_nra</td>
<td>94</td>
</tr>
<tr>
<td>nfs:nfs3_pathconf_disable_cache</td>
<td>86</td>
</tr>
<tr>
<td>nfs:nrsnode</td>
<td>95</td>
</tr>
<tr>
<td>nfslogd</td>
<td>147</td>
</tr>
<tr>
<td>nfssrv:exi_cache_time</td>
<td>106</td>
</tr>
<tr>
<td>nfssrv:nfs_portmon</td>
<td>104</td>
</tr>
<tr>
<td>nfssrv:nfs_shrinkreadir</td>
<td>107</td>
</tr>
<tr>
<td>nfssrv:nfs3_shrinkreadir</td>
<td>108</td>
</tr>
<tr>
<td>nfssrv:nfsauth_ch_cache_max</td>
<td>108</td>
</tr>
<tr>
<td>nfssrv:rfs_write_async</td>
<td>105</td>
</tr>
<tr>
<td>noexec_user_stack</td>
<td>48,155,169</td>
</tr>
<tr>
<td>nstrpush</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pageout_reserve</td>
<td>41</td>
</tr>
<tr>
<td>pages_before_pager</td>
<td>45</td>
</tr>
</tbody>
</table>
pages_pp_maximum, 42, 165
passwd, 147
physmem, 26
pidmax, 34
power, 147
prioritypaging, 152, 164
pt_cnt, 68, 158
pt_max_pty, 69
pt_pctofmem, 68

R
rechoose_interval, 80
reserved_procs, 33
rlim_fd_cur, 55, 156
rlim_fd_max, 54, 156, 164, 166
rpc.nisd, 147
rpcmod:clnt_idle_timeout, 109
rpcmod:clnt_max_conns, 108
rpcmod:cosmaxdupreqs, 112
rpcmod:maxdupreqs, 111
rpcmod:svc_default_stksize, 110
rpcmod:svc_idle_timeout, 110
rstchown, 57

S
segkpsize, 157
segpt_minfree, 80, 166
semsys:seminfo_semaem, 77
semsys:seminfo_semmap, 161
semsys:seminfo_semmni, 74
semsys:seminfo_semmns, 74
semsys:seminfo_semmnu, 76, 170
semsys:seminfo_semms1, 75
semsys:seminfo_sempom, 76
semsys:seminfo_semmue, 77
semsys:seminfo_senuss, 161
semsys:seminfo_semmx, 75
shmsys:shminfo_shmmx, 78, 167
shmsys:shminfo_shmmx, 161, 164, 170
shmsys:shminfo_shmmni, 79
shmsys:shminfo_shmsseg, 161, 165, 167
slowscan, 44
sq_max_size, 143
strmsgsz, 70

su, 148
swapfs_minfree, 48
swapfs_reserve, 47
sys-suspend, 148
syslog, 148

T
tar, 148
tcp_compression_enabled, 135
tcp_conn_hash_size, 131
tcp_conn_req_max_q, 129
tcp_conn_req_max_q0, 129, 168
tcp_conn_req_min, 130
tcp_cwnd_max, 125
tcp_deferred_ack_interval, 121
tcp_deferred_acks_max, 122
tcp_ecn_permitted, 128
tcp_ip_abort_interval, 132
tcp_local_dack_interval, 122
tcp_local_dacks_max, 123
tcp_max_buf, 125
tcp_recv_hiwat, 124
tcp_recv_hiwat_minmss, 135
tcp_rev_src_routes, 127
tcp_rexmit_interval_extra, 134
tcp_rexmit_interval_initial, 133
tcp_rexmit_interval_max, 133, 168
tcp_rexmit_interval_min, 133
tcp_sack_permitted, 126
tcp_slow_start_after_idle, 126
tcp_slow_start_initial, 126, 168
tcp_time_wait_interval, 127
tcp_tstamp_always, 124
tcp_tstamp_if_wscale, 134
tcp_wscale_always, 123
tcp_xmit_hiwat, 124
throttlefree, 40
timer_max, 81
tmpfs_maxkmem, 65, 168
tmpfs_minfree, 66, 153, 168
tune_t_fsflush, 29
tune_t_gpgslo, 159
tune_t_minarmem, 43
tune_t_minasmem, 159

Index 173
U
udp_max_buf, 136
udp_recv_hiwat, 136
udp_xmit_hiwat, 136
ufs_ninode, 62
ufs:ufs_HW, 64
ufs:ufs_LW, 64
ufs:ufs_WRITES, 64
utmpd, 148

X
xxx:ip_forwarding, 118