»
2 Sun

microsystems

Federated Naming Service
Programming Guide

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-1470-10
September 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunOS and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunOS et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a &

Adobe PostScript

©

020613@4333

Contents

Preface 7

Introduction to the Federated Naming Service (FNS)
What is Federated Naming? 11
What Is XFN? 12
Why FNS? 12
FNS Policies 12
What FNS Policies Do Not Specify 13
What ENS Enterprise Policies Arrange 14
Initial Context Bindings 16
Examples of Composite Names 19
XEN Overview 20
XEN References 20
XEN Contexts 20
XEN Attributes 21
XFN Compound Names 21
XEN Composite Names = 22
XFN Links 23
XEN Initial Context 24
API Usage Model 25
FNS and Applications 25
Application Interaction with XFN 26

Interfaces for Writing XFN Applications 29
XEN Interface Overview 29

11

Interface Conventions 30
Usage 30
Abstract Data Types 30
Memory-Management Policies 31
The Base Context Interface 31
Names in Context Operations 32
Requirements for Supporting the Context Operations 32
Status Objects 33
Getting Context Handles 33
Lookup and List Contexts 34
Updating Bindings 36
Managing Contexts 37
Base Attribute Interface 39
XEN Attribute Model 40
Relationship to Naming Operations 40
Status Objects 41
Single-Attribute Operations 41
Multiple-Attribute Operations 43
Extended Attribute Interface (Preliminary Specification) 45
Attribute Search Interface = 45
Object Creation with Attributes 47
Status Objects and Status Codes 49
Parameters Used in the Interface 52
Composite Names 53
References and Addresses 53
Identifiers 53
Strings 54
Attributes and Attribute Values 54
Attribute Sets 54
Attribute-Modification Lists 54
Parameters Used in Extended Search (Preliminary Specification) 55
Search Control 55
Search Filter 56
Parsing Compound Names 60
Syntax Attributes 61
XEN Standard Syntax Model 61
Compound Names 64

4 Federated Naming Service Programming Guide * September 2002

3 XFN Programming Examples 65

Namespace Browser Example 65
Compiling and Executing Browser Example 71
Commands 72
Sample Output 72

Printer Programming Example 73
Client 74
Server 76

A XFN Composite Names 79

Syntax 79

Composite Name and Naming System Boundaries 81
Strong Separation 81
Weak Separation 82

Composite Name Resolution 83
Explicit NNSPs: Junctions 83
Implicit NNSPs 84
Coexistence of Explicit and Implicit NNSPs 85
XEN Links 85

Composite Name Encoding 85

Backus-Naur Form (BNF) 86
Decomposing the Composite Name String 87
Composing the Composite Name String 89

B XFN Composite Names Syntax 91
XEN Composite Name Encoding 91
XFN Backus-Naur Form (BNF) 92
XEN Decomposing the Composite Name String 93
XEN Composing the Composite Name String 95

Glossary 97

Index 101

Contents 5

6 Federated Naming Service Programming Guide * September 2002

Preface

The Federated Naming Service (FNS) is a set of application programming interfaces
and policies that allow applications to use a common set of names and policies over
different name services.

ENS is implemented on top of NIS+ and allows you to use a set of common names
with desktop applications. Sun’s implementation of FNS conforms to the X/Open™
federated naming (XFN) specification.

Who Should Use This Book

The primary audience of Federated Naming Service Guide is software developers who
write distributed applications. Use of this guide assumes basic competence in
programming, a working familiarity with the C programming language, and a
working familiarity with the UNIX® operating system. Developers should read all
four parts of this manual.

System and network administrators should look at System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP) for FNS setup and configuration,
as well as administration information. This manual does not cover NIS or the Domain
Name System (DNS) except as they relate to FNS. For information on all other Solaris
operating environment naming and directory services, please refer to the System
Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).

How This Book Is Organized

Chapter 1 is a high-level overview of FNS and the problems it addresses.

Chapter 2 describes the client programming interfaces for X/Open Federated Naming
(XEN).

Chapter 3 presents three self-contained executable programs: a namespace browser, a
printer client and server, and a tool to populate attributes of users.

Appendixes

Appendix A describes the XFN composite name string syntax and the resolution
techniques for composite names.

Appendix B gives supplemental information about composite name syntax.

8

Related Books

With the exception of the XFN specification, the following books do not specifically
cover ENS but they provide a good background on how name services work in
client-server computing:

® Raman Khanna. Distributed Computing—Implementation and Strategy. Prentice Hall,
1993

m Sape J. Mullender (editor).Distributed Systems. ACM Press, 1990

m P Albitz and C. Liu.DNS and BIND. O’Reilly, 1992

® Managing the X.500 Client Toolkit. SunSoft Inc., 1995

m X/Open Preliminary Specifications, Federated Naming: The XFN Specifications. X/Open
Document #P403, ISBN: 1-85912-045-8. X/Open, July 1994

You may also want to reference the following AnswerBook® on-line documentation:

Solaris Reference Manual Collection

Solaris Software Developer Collection

System Administration Guide: Basic Administration
System Administration Guide: Advanced Administration

Federated Naming Service Programming Guide * September 2002

Accessing Sun Documentation Online

The docs.sun.com®™ Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or Symbol | Meaning Example
AaBbCcl123 The names of commands, files, and Edit your . login file.
directories; on-screen computer output . .

P P Use 1s -a to list all files.
machine name% you have
mail.

AaBbCcl123 What you type, contrasted with machine_name$% su
on-screen computer output
Password:
AaBbCc123 Command-line placeholder: replace with | To delete a file, type rm
a real name or value filename.
AaBbCc123 Book titles, new words, or terms, or Read Chapter 6 in User’s Guide.
words to be emphasized.
P These are called class options.
You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface

9

10

TABLE P-2 Shell Prompts

Shell

Prompt

C shell prompt

machine name%

C shell superuser prompt

machine name#

Bourne shell and Korn shell prompt

$

Bourne shell and Korn shell superuser prompt

#

Federated Naming Service Programming Guide * September 2002

CHAPTER 1

Introduction to the Federated Naming
Service (FNS)

This chapter is an overview of the Federated Naming Service (FNS).

What is Federated Naming?

Federated Naming Service provides a method for hooking up, or federating, multiple
naming services under a single, simple uniform interface for the basic naming and
directory operations. The service supports resolution of composite names—names that
span multiple naming systems—through the naming interface. Each member of a
federation has autonomy in its choice of naming conventions, administrative
interfaces, and its particular set of operations, other than name resolution.

In the Solaris operating environment, the FNS implementation consists of a set of
enterprise-level naming services with specific policies and conventions for naming
organizations, users, hosts, sites, and services, as well as support for global naming
services such as DNS and X.500. More specifically, ENS has support for:

® Enterprise-level naming services: NIS+, NIS and files

m Global-level naming services: DNS, and X.500 (over LDAP or DAP). See System
Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) for
information on DNS Text records and X.500 attribute syntax for XEN references

m Application-specific namespaces: file naming, printer naming

m Generic application namespaces for other applications

1

What Is XFEN?

XEN stands for X/Open Federated Naming. XEN is a standard that is actively
supported by organizations such as Sun, IBM, Hewlett-Packard, DEC, Siemens, and
OSF. The programming interfaces and policies that FNS supports are specified by
XEN. An overview of XFN concepts is presented later in this chapter; Chapter 2
describes the XFN programming interface in detail.

Note — In a 64-bit XFN application, the X.500 directory service is not supported.

FNS is compliant with the X/Open CAE Specification for Federated Naming (July 1995).
Applications that use FNS are portable across platforms because the interface exported
by ENS is XEN, a public, open interface endorsed by other vendors and X/Open.
X/Open Co. Ltd. is part of the Open Group, which is an international standards
organization committed to defining computing standards that are endorsed and
adhered to by major computer vendors.

Why FNS?

FNS is useful for the following reasons:

® A single uniform naming interface is provided to clients for accessing different
naming services. As a consequence, the addition of new naming services does not
require changes to applications or to existing member naming services.
Furthermore, application developers need to learn and use only one naming
interface.

® Names can be composed in a uniform way, and the resulting composite names can
have any number of components. This allows the composite namespace to serve
the needs of diverse applications.

m Coherent naming is encouraged through the use of shared contexts and shared
names. This reduces duplication of effort in individual applications when
supplying similar functionality.

12

FINS Policies

FNS provides applications with a set of policies on how namespaces are arranged and
used. These policies specify:

® The namespaces for enterprise objects: organizations, hosts, users, sites, and
services. (These naming services support contexts that allow other objects to be
named relative to these objects.)

Federated Naming Service Programming Guide * September 2002

® The relationships between the organization, host, user, site, and service
namespaces, and the names used to refer to these namespaces

® The syntax of names in these namespaces

® How to federate the enterprise namespace so that it is accessible in the global

nhamespace

®m Names and bindings present in the initial context of every process

Table 1-1 is a summary of FNS policy for arranging the enterprise namespace and
Figure 1-1 shows that FNS policies provides a common framework for the three levels
of service: global, enterprise, and application.

TABLE 1-1 Policies for the Federated Enterprise Namespace

Namespace Name Service Subordinate Namespace
Identifiers Type Context Parent Context Organization Syntax
orgunit Organizational |Site, user, host, |Enterprise root |Hierarchical NIS+ domain name
) unit file system, Dot-separated,
orgunit k .
- service right-to-left
site Site Service, file Enterprise root, | Hierarchical Dot-separated,
, system organizational right-to-left
site)
— unit
user User Service, file Enterprise root, |Flat Solaris login name
system organizational
user i
_ unit
host Host Service, file Enterprise root, |Flat Solaris host name
system organizational
host ;
— unit
service Service Application Enterprise root, | Hierarchical / separated, left-to-right
, specific organizational
service e
- unit, site, user,
host
fs File system None Enterprise root, | Hierarchical / separated, left-to-right
organizational
fs S
_ unit, site, user,
host
printer Printer None Service Hierarchical / separated, left-to-right

What FNS Policies Do Not Specify

The ENS policies do not specify the specific names used within naming services. In
addition, naming within the application is the responsibility of individual applications
or groups of related applications. They also do not specify the attributes to use after
the object has been named.

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS)

13

Global I:I
=

)

2l

[l ooooo
ooooo
ooooo

Application

Ro=s

FIGURE 1-1 Different Levels of Naming Services

What FNS Enterprise Policies Arrange

The FNS enterprise policies deal with the arrangement of objects within the enterprise
namespace. The policies are summarized in Table 1-1.

m Organization — Entities such as departments, centers, and divisions. Sites, hosts,
users, and services can be named relative to an organization. The XFN term for
organization is organizational unit.

m Site — Physical locations, such as buildings, machines in buildings, and conference
rooms within buildings. Sites can have files and services associated with them.

®m Host — Computers. Hosts can have files and services associated with them.
m User — Human users. Users can have files and services associated with them.

m Service — Services such as printers, faxes, mail, and electronic calendars.

14 Federated Naming Service Programming Guide ® September 2002

m File - Files within a file system.

Application
specific o
pplication
specific

Application
specific

Application
specific

FIGURE 1-2 What FNS Policies Arrange

The namespace of an enterprise is structured around the hierarchical structure of
organizational units of an enterprise. Names of sites, hosts, users, files, and services
can be named relative to names of organizational units by composing the
organizational unit name with the appropriate namespace identifier and object name.

In Figure 1-3, a user, jsmith in the engineering organization of an enterprise, is
named using the name orgunit/desktop.sw.eng/user/jsmith

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 15

orgunit site

eng corp east west
sw hw chelmsford

desktop b21

%} user host G service O host G user service
jsmith

O O O
Oease Gabc O scarab laser color

FIGURE 1-3 Example of an Enterprise Namespace

Initial Context Bindings

Resolution of a name in XFN always begins with some context. XEN defines an initial
context as a starting point for name resolution. The initial context contains bindings
that allow the client application to (eventually) name any object in the enterprise
namespace. Figure 1-4 shows the same naming system as the one shown in Figure
1-3, except that the initial context bindings are shaded and shown in italics.

16 Federated Naming Service Programming Guide * September 2002

Bound in

theinitial context thisens
myens
orgunit site
org site
corp east west
chelmsford
thisorgunit
host

i printer
joe rlee mysel scarab
O ease O abc thi shost laser color

FIGURE 1-4 Example of Enterprise Bindings in the Initial Context

host Oserwce Ohost Ouser service
jsmith
f

The initial context has a flat namespace for namespace identifiers. The bindings of
these namespace identifiers are summarized in Table 1-2. The categories of bindings
are:

m User-related bindings
®m Host-related bindings
m “Shorthand” bindings

In Table 1-2, the user to which the bindings are related is denoted by U, and the host
to which the bindings are related is denoted by H. Not all of these names need to
appear in all initial contexts. For example, when a program is invoked by the
superuser, none of the user-related bindings appears in the initial context.

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 17

18

TABLE 1-2 Initial Context Bindings for Naming Within the Enterprise

Namespace
Identifier Binding
myself U’s user context
_myself
thisuser
myens The enterprise root of U
_myens
myorgunit U’s distinguished organizational unit context. For NIS+, the
, distinguished organizational unit is U’s NIS+ home domain. For NIS
—myorgunit and files, it is the current domain and system, respectively.
thishost H’s host context
_thishost
thisens The enterprise root of H
_thisens
thisorgunit H’s distinguished organizational unit context. For NIS+, the
, , distinguished organizational unit is H’s NIS+ home domain. For NIS
thisorgunit X s . R
- and files, it is the current domain and system, respectively.
user The context in which users in the same organizational unit as H are
named
_user
host The context in which hosts in the same organizational unit as H are
named
_host
org The root context of the organizational unit namespace in H’s enterprise.
. For NIS+, this corresponds to the NIS+ root domain. For NIS and files, it
orgunit . . .
is the current domain and system, respectively.
_orgunit
site The root context of the site namespace at the top organizational unit if
) the site namespace has been configured
_site
Global context for resolving DNS or X.500 names
/..
_dns Global context for resolving DNS names
_x500 Global context for resolving X.500 names

Federated Naming Service Programming Guide * September 2002

Examples of Composite Names

This section shows examples of names that follow FNS policies. The specific choices of
organization names, site names, user names, host names, file names, and service
names (such as “calendar” and “printer”) are illustrative only; these names are not
specified by FNS policy.

Composing Names Relative to Organizations

The naming systems to be found under an organization are: user, host, service,
fs,and site.

org/csl.parc/site/videoconference.northwing
names a conference room videoconference located in the north wing of the site
associated with the organization csl.parc.

org/csl.parc/user/mjones
names a user mjones in the organization csl.parc.

org/csl.parc/host/inmail
names a machine inmail belonging to the organization csl.parc.

org/csl.parc/fs/pub/blue-and-whites/CSL92-124
names a file pub/blue-and-whites/CSL92-124 belonging to the organization
csl .parc.

org/csl.parc/service/calendar
names the calendar service for the organization cs1.parc. This service might
manage the meeting schedules for the organization.

Composing Names Relative to Users
The naming systems associated with users are service and fs.

user/jsmith/service/calendar
names the calendar service of the user jsmith.

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles under the home directory of the user
jsmith.

Composing Names Relative to Hosts
The naming systems associated with hosts are service and £s.

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop.

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 19

host/mailhop/fs/pub/saf/archives.91l
names the directory pub/saf/archives. 91 found under the root directory of the
file system exported by the machine mailhop.

Composing Names Relative to Sites
The naming systems associated with sites are service and fs.

site/B5.MountainView/service/printer/speedy
names a printer speedy in the B5.MountainVieuw site.

site/B5.MountainView/fs/usr/dist
names a file directory usr/dist available in the BS . MountainView site.

20

XFN Overview

The following gives an overview of the main concepts in XFN and they are used in
defining a federated naming system.

XFN References

An XFN name is bound to a reference, which is the information on how to reach an
object. It contains a list of addresses, which identify communication endpoints on how
to reach the object. Multiple addresses identify multiple communication endpoints for
a single conceptual object or service. For example, a list of addresses might be required
because the object is distributed or because the object can be accessed through more
than one communication mechanism.

XFN Contexts

An XEN context is an object that exports the XFN base context programming interface.
A context contains a list of atomic names bound to references, as shown in Figure 1-5.
An atomic name can have zero or more attributes. Contexts are at the heart of the
lookup and binding operations, described extensively in Chapter 2.

Federated Naming Service Programming Guide * September 2002

A Context

M- —
(A A

|

LAt Aty

Ref] | [Attr) Attr) |
| T

I Y

Ref

FIGURE 1-5 An XFN Context

XFN Attributes

In addition to references, there can be zero or more attributes associated with each
named object, as shown in Figure 1-5. Each attribute has a unique attribute identifier,
an attribute syntax, and a set of zero or more distinct attribute values.

XEN defines operations for examining and modifying the values of attributes
associated, as well as searching for objects using their associated attributes.

XFN Compound Names

An XFN compound name is a sequence of one or more atomic names. An atomic name
in one context object can be bound to a reference to another context object of the same
type, called a subcontext. Objects in the subcontext are named using a compound
name. Compound names are resolved by looking up each successive atomic name in
each successive context.

A familiar analogy for UNIX users is the file naming model, where directories are
analogous to contexts, and path names serve as compound names. Furthermore,
contexts can be arranged in a “tree” structure, just as directories are, with the
compound names forming a hierarchical namespace.

m UNIX example: usr/local/bin. UNIX atomic names are ordered from left to
right and are delimited by slash (/) characters. The name usr is bound to a context
in which local is bound. The name local is bound to a context in which bin is
bound.

m DNS example: sales.Wiz.COM. DNS atomic names are ordered from right to left,
and are delimited by dot (.) characters. The domain name COM is bound to a
context in which Wiz is bound. Wiz is bound to a context in which sales is
bound.

®m X.500 example: c=us/o=wiz/ou=sales. An X.500 atomic name contains an
attribute type and an attribute value. Atomic names are known as relative
distinguished names in X.500. In this string representation, X.500 atomic names are
ordered from left to right, and are delimited by slash (/) characters. An attribute
type is separated from an attribute value by an equal sign (=) character.

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 21

Abbreviations are defined for commonly used attribute types (for example, “c”
represents country name). The country name US is bound to a context in which
wiz is bound. The organization name wiz is bound to a context in which the
organizational unit name sales is bound.

Note — In a 64-bit XFN application, the X.500 directory service is not supported.

Figure 1-6shows an example of a hierarchical naming system with compound names.

Context 1

Q
@) o
IIIIIII!I

4
|

Context 2

wiz

ii
o2

By)
@

Compound Names: wiz.COM, Y.COM, Z.COM

FIGURE 1-6 Hierarchical Naming System With Compound Names

XFN Composite Names

An XFN composite name is a name that spans multiple naming systems. It consists of
an ordered list of zero or more components. Each component is a name from the
namespace of a single naming system. Composite name resolution is the process of
resolving a name that spans multiple naming systems. Appendix A, and Appendix B,
supply more detail about composite names.

Components are slash-separated (/) and ordered from left to right, according to XFN
composite name syntax. For example, the composite name

sales.Wiz.COM/usr/local/bin

has two components, a DNS name (sales.Wiz.COM) and a UNIX path name
(usr/local/bin).

22 Federated Naming Service Programming Guide * September 2002

Figure 1-7 shows an example of a federated naming system with composite names.

The position of the name within a context has no inherent significance in this
illustration.

XEN Links

An XEN link is a special form of reference that is bound to an atomic name in a
context. Instead of an address, a link contains a composite name. Many naming
systems support a native notion of link that can be used within the naming system
itself. XFN does not specify whether there is any relationship between such native
links and XEN links.

“XFN Links” on page 85 describes links in detail.

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS)

23

Naming System

Another Naming System

Context 1

Name

gL
A

Re

N
Context 2

|

wiz

|

L

N
Context 3

sales

LA
L

_>

Context 1

L
U

usr

N
Context 2

local

1l
L

Context

W | 4

bin

el
U

Composite name: sales.wiz.com, ust/local/bin

FIGURE 1-7 Federated Naming System With Composite Names

24

XFN Initial Context

Every XFN name is interpreted relative to some context, and every XFN naming
operation is performed on a context object. The initial context object provides a starting
point for the resolution of composite names. The XEN interface provides a function

that allows the client to obtain an initial context.

The policies described inSystem Administration Guide: Naming and Directory Services
(DNS, NIS, and LDAP) specify a set of names that the client can expect to find in this
context and the semantics of their bindings. This provides the initial pathway to other

XEN contexts.

Federated Naming Service Programming Guide * September 2002

API Usage Model

Many clients of the XFN interface are only interested in lookups. Their usage of the
interface amounts to:

®m Obtaining the initial context
®m Looking up one or more names relative to the initial context

After the client obtains a desired reference from the lookup operation, it constructs a
client-side representation of the object from the reference. This need not be code
within the application layer but can be code inside the service layer. For example, RPC
services can provide clients with a means of constructing client-side handles from a
composite name for the service or from a reference containing an RPC address for the
service. After receiving this handle, the client performs all further operations on the
object or service by supplying the handle.

This is the basic model of how the XEN interface is expected to be used. The FNS
policies described earlier further encourage a bind /lookup model for how services
and clients can rendezvous through the use of the naming service.

FNS and Applications

Applications that are aware of FNS can expect the namespace to be arranged
according to the ENS policies, and applications that bind names in the FNS namespace
are expected to follow these policies.

Applications use FNS in the following ways:

1. Applications can use FNS through existing interfaces. A significant proportion of FNS
use is through existing application programming interfaces. For example, consider
a UNIX application that obtains a file name that it later supplies to the UNIX
open () function. With FNS support for resolution of file names, the application
need not be aware that the strings it deals with are composite names rather than
the traditional local path names. Many applications can thereby support the use of
composite names without modification.

2. Applications can be direct clients of the XFN interface and policies. Application-level
utilities, such as the file system, the printing service, and the desktop tools
(calendar manager, file manager) are examples of clients that use the XFN interface
directly.

3. Systems can export the XFN interface. Naming systems, such as DNS and X.500, and
naming systems embedded in other services, like the file system and printing
service, in combination with XFN, are examples of naming systems that export the

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 25

26

XFN interface.

This book addresses the needs of applications that use the XEN interface. Some
examples of these applications are given in the next chapter.

Application Interaction with XFN

The way that client applications interact with XFN to access different naming systems
is illustrated in a series of figures.Figure 1-8 shows an application that uses the XFN
API and library.

Client application

XFN API
XFN Client library

FIGURE 1-8 Client Application Interaction With XFN

Figure 1-9 shows the details beneath the API. A naming service that is federated is
accessed through the XEN client library and a context shared object module. This module
translates the XFN calls into naming service-specific calls.

Client application

XFN API
XFN Client library
Context implementation

Name service interface

Library
Protocol

Server

FIGURE 1-9 Details Beneath XFN API

X.500, DNS, and NIS+ are the naming services that have been federated in the
example shown in Figure 1-10.

As resolution of a composite name proceeds, it can cause these different modules to be
linked in, depending on the types of contexts referenced in the name.

Federated Naming Service Programming Guide * September 2002

Composite namesl

Client application

XFN API
XFN Client library

XDS API Resolver API NIS+ API
DUA libresolv libnsl/nis
X.500 DAP RFC 1035 NIS+ protocol

DSA DNS server NIS+ server

[J Context shared object modules for specific
name services.

FIGURE 1-10 XFN Implementation Examples

Chapter 1 ¢ Introduction to the Federated Naming Service (FNS) 27

28 Federated Naming Service Programming Guide * September 2002

CHAPTER 2

Interfaces for Writing XFN
Applications

This chapter describes the client programming interfaces for XFN. Additional
information on the XFN interfaces is available in the man pages.

“Interface Conventions” on page 30

“Usage” on page 30

“Abstract Data Types” on page 30
“Memory-Management Policies” on page 31
“The Base Context Interface” on page 31
“Base Attribute Interface” on page 39

“Status Objects and Status Codes” on page 49
“Parameters Used in the Interface” on page 52
“Parsing Compound Names” on page 60

XFEN Interface Overview

The XFN client interface consists of the base context interface, the base attribute
interface, the extended attribute interface, and some supporting interfaces.

The base context interface provides the basic operations for naming, such as binding a
name to a reference, looking up the reference bound to a name, and unbinding a
name.

The base attribute interface provides operations to examine and modify attributes
associated with named objects.

The extended attribute interface provides operations to search and create objects in the
namespace with attributes.

The supporting interfaces contain:

29

m Operations on the status object and status codes used in the context and attribute
operations

m Abstract data types that represent objects passed to and returned from the context
and attribute operations, such as composite names, references, and attributes

m A standard model and operations for parsing compound names whose syntax is
specific to a naming system. These are of interest primarily to service implementers

m Operations for manipulating objects that are used to specify the criteria of
extended search operations

“API Usage Model” on page 25 summarizes how an application typically uses the
programming interface.

Interface Conventions

The XEN interface is presented in ISO standard C, which is equivalent to ANSI
standard C. The symbols defined by the interface are prefixed by £n or FN, for federated
naming.

m The FN_ prefix is used for both data types and predefined constants.

In addition, data types have a _t suffix, such as FN_ref t. Predefined constants
appear in all-uppercase characters, such as FN_ID_STRING.

m The fn_ prefix is used for function names. Names of functions in the base context
interface have the prefix fn_ctx_, such as fn_ctx_lookup. Names of functions
in the base attribute interface have the prefix fn_attr ,suchas fn attr get.

Usage
Include the XEN header file in your code.

#include <xfn/xfn.h>

Include the XEN library when you compile.

cc -o program name filel.c file2.c -1xfn

Abstract Data Types

Except for FN_attrvalue_t and FN_identifier_t, the types defined in the
interface hide their actual data representation from the client. The client performs
every operation on an object of one of these types through a well-defined interface for
that data type.

30 Federated Naming Service Programming Guide * September 2002

When the client accesses these objects, the client refers to the objects solely through a
handle to an object. Operations are provided to create objects of each type and to
destroy them. The creation operation returns a handle to the new object. The destroy
operation releases all resources associated with the object.

The only information about this handle revealed to the client is that it is a pointer
type. The client cannot assume what this handle points to. In particular, the handle
might not point directly to the memory containing the object’s actual state.

The value 0 is defined for all pointer types. The functions that return handles in the
interface return the value 0 as an indication of failure. The values 0 and NULL are
equivalent.

Memory-Management Policies

The following memory—management policies are used for all client interfaces
described in this chapter:

® When a function returns a non-const pointer to an object, the client “owns” the
object. The client can alter the object and is responsible for freeing the space
allocated to it when the object is no longer required.

® When a function returns a const pointer to an object, the service “owns” the
object. The client must neither modify the object in any way, nor free the space
allocated to it. If the client needs to control a copy, it must make one for itself.

® When a function takes a non-const parameter that is passed by reference, the
service “borrows” the object during the function’s execution. It can modify the
object during this period, but it does not retain any reference to the object beyond
this period.

® When a function takes a const parameter that is passed by reference, the service
reads but does not modify the object. The service does not keep any reference to
the object beyond the period of the function’s execution.

The Base Context Interface

This section describes the operations in the base context interface. The interfaces to the
objects used in the operations are described in “Parameters Used in the Interface”
on page 52.

“Names in Context Operations” on page 32

“Requirements for Supporting the Context Operations” on page 32
“Status Objects” on page 33

“Getting Context Handles” on page 33

Chapter 2 ¢ Interfaces for Writing XFN Applications 31

m “Lookup and List Contexts” on page 34
m “Updating Bindings” on page 36
® “Managing Contexts” on page 37

Names in Context Operations

In most of the operations of the base context interface, the caller supplies a context and
a composite name argument. The supplied composite name is always interpreted
relative to the supplied context.

The operation might eventually be effected on a different context called the operation’s
target context. Each operation has an initial resolution phase that conveys the operation
to its target context, following which the operation is applied. The effect (but not
necessarily the implementation) is that of:

® Doing a lookup on that portion of the name that represents the target context
® Invoking the operation on the target context

The contexts involved only in the resolution phase are called intermediate contexts.
Normal resolution of names in context operations always follows XFN links, which are
defined in “XFN Links” on page 85.

Requirements for Supporting the Context
Operations

The lookup operation fn_ctx lookup () must be supported by all contexts. When
contexts do not support other operations, they can return an
FN E OPERATION NOT SUPPORTED status code (see codes in Table 2-3).

XEN contexts are required to support the resolution phase of every operation in the
base context and attribute interface when involved in the operation as intermediate
contexts. That is, each intermediate context must participate in the process of
conveying the operation to the target context, even if it does not support that
operation itself. For example, not all contexts need to allow binding and listing names.
However, all contexts must fully support the resolution phase of these operations.

Composite names are passed to an XFN context implementation in a structural form
as an ordered sequence of components. When resolving a name, the context
implementation is responsible for:

® Determining which set of leading components it must resolve
m Resolving that portion to a reference

® Returning a status object containing this reference and the portion of the name
unresolved

’

Composite name resolution is further discussed in “Composite Name Resolution’
on page 83.

32 Federated Naming Service Programming Guide ® September 2002

Status Objects

In each context operation, the caller supplies an FN_status_t parameter. The called
function sets this status object as described in “Status Objects and Status Codes”

on page 49. All status objects are handled in this way for each operation in the base
context interface (this is not restated in the individual operation descriptions).

Getting Context Handles

All operations on a context require a context handle. There are several ways of
obtaining a context handle. If you have a reference, you can use it to construct a
context handle. Otherwise, to get a handle to the initial context, you must call
fn ctx handle from initial().

fn_ctx _handle_ from initial
fn_ctx_handle_from_ ref

Construct Handle to Initial Context

This operation returns a handle to the callers initial context. On successful return, the
context handle points to a context containing the bindings described in “Initial
Context Bindings” on page 16.
FN _ctx t *fn ctx handle from initial(

unsigned int authoritative,

FN_status_t *status) ;

authoritative specifies whether the handle to the Initial Context returned should
be authoritative, with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on this context handle can
access the most authoritative information. When authoritative is zero, the handle to
the Initial Context returned need not be authoritative. Authoritativeness is determined
by specific naming services. In some, the authoritative source is a single “master”
servers, while in others, the authoritative source is a quorum of servers.

Construct Context Handle From Reference

This operation returns a handle to an FN_ctx_t object given a reference, ref, for that
context.

FN ctx t *fn ctx handle from ref (
const FN_ref t *ref
unsigned int authoritative,
FN_status_t *status) ;

authoritative specifies whether the handle to the context returned should be
authoritative, with respect to information the context obtains from the naming service.
When the flag is non-zero, subsequent operations on this context handle can access the

Chapter 2 ¢ Interfaces for Writing XFN Applications 33

most authoritative information. When authoritative is zero, the handle to the context
returned need not be authoritative. Authoritativeness is determined by specific
naming services. In some, the authoritative source is a single “master” server, while in
others, the authoritative source is a quorum of servers.

Lookup and List Contexts

fn_ctx_lookup

fn ctx list names

fn namelist next
fn_namelist_destroy
fn ctx_list bindings
fn bindinglist next
fn bindlist_ destroy
fn_ctx_lookup link

Lookup

This operation returns the reference bound to name relative to the context ctx.

FN_ref t *fn ctx_lookup (
FN _ctx t *ctx,
const FN_composite name_t *name,
FN_status_t *status) ;

List Names

This set of operations is used to list the set of names bound in the context named name
relative to the context ctx. The name must name a context. If the intent is to list the
contents of ctx, name should be an empty composite name.

FN nameslist t* fn ctx list names(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status) ;

FN_string t *fn namelist_next(
FN_namelist_t *nl,

FN_status_t *status) ;

void fn_namelist_destroy(
FN namelist t *nl);

The call to fn_ctx list names () initiates the enumeration process for the target
context. It returns an FN_nameslist_t object that you can use for the enumeration.

34 Federated Naming Service Programming Guide * September 2002

The operation fn_namelist_next () returns the next name in the enumeration
identified by nl and updates nl to indicate the state of the enumeration marker.
Successive calls to fn_namelist_next () using nl return successive names and
further update the state of the enumeration. fn_namelist_next () returns a NULL
pointer when the enumeration has been completed.

fn namelist destroy () is used to release resources used during the enumeration.
This call can be invoked at any time to terminate the enumeration.

The names enumerated using the list names operations are not in any order. There is
no guaranteed relation between the order in which names are added to a context and
the order in which names are obtained by enumeration. There is no guarantee that any
two enumerations will return the names in the same order.

When a name is added to or removed from the context, this might not necessarily
invalidate the enumeration handle that the client holds for that context. If the
enumeration handle remains valid, the update might or might not be visible to the
client.

List Bindings

This set of operations is used to list the set of names and bindings in the context
named by name, relative to the context ctx. The name must name a context. If the intent
is to list the contents of ctx, name should be an empty composite name.

FN_bindinglist t* fn ctx list bindings(

FN_ctx t *ctx,

const FN_composite_name_t *name,

FN_status_t *status) ;FN_string t *fn bindinglist next (
FN _bindinglist t =bl,

FN_ref_t ** ref,

FN_status_t *status) ;
void fn bindinglist destroy(

FN _bindinglist t =*bl);

The semantics of these operations are similar to those for listing names. In addition to
a name string being returned, fn_bindinglist_next () also returns the reference
of the binding for each member of the enumeration.

Lookup Link

This operation returns the XEN link bound to name. The terminal atomic part of name
must be bound to an XEN link.

FN_ref t *fn ctx lookup link(
FN_ctx t *ctx,
const FN_composite name_t *name,
FN_status_t *status) ;

Chapter 2 ¢ Interfaces for Writing XFN Applications 35

The normal fn_ctx_lookup () operation follows all XEN links encountered,
including any that are bound to the terminal atomic part of name. This operation
differs from the normal lookup in that when the terminal atomic part of name is an
XEN link, this last link is not followed, and the operation returns the link.

Updating Bindings

fn ctx bind
fn_ctx_unbind
fn_ctx_rename

Bindings can be added, overwritten, removed, or renamed.

Bind

This operation binds the supplied reference ref to the supplied composite name name,
taken relative to ctx. The binding is made in the target context—that named by all but
the terminal atomic part of name. The operation binds the terminal atomic name to the
supplied reference in the target context. The target context must already exist.

int fn_ctx bind(
FN_ctx_t *ctx,
const FN_composite name t *name,
const FN_ref t *ref,
unsigned int exclusive,
FN_status_t *status) ;

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is zero, the new binding replaces
any existing binding.

The value of ref cannot be NULL. If you want to reserve a name using the fn_ctx
bind () operation, bind a reference containing no address. This reference can be
naming service-specific or it can be the conventional NULL reference.

Unbind

This operation removes the terminal atomic name in name from the target
context—that named by all but the terminal atomic part of name.

int fn_ctx unbind(
FN _ctx t *ctx,
const FN_composite name t *name,
FN_status_t *status) ;

This operation is successful even if the terminal atomic name was not bound in target
context, but fails if any of the intermediate names are not bound. fn_ctx unbind ()
operations are idempotent.

36 Federated Naming Service Programming Guide * September 2002

Rename

This operation binds the reference currently bound to oldname, resolved relative to ctx
to newname, and unbinds oldname. The newname is resolved relative to the target
context—that named by all but the terminal atomic part of oldname.

int fn_ctx_rename (
FN_ctx t *ctx,
const FN_composite name t *oldname,
const FN_composite name t *newname,
unsigned int exclusive,
FN_status_t *status) ;

If exclusive is zero, this operation overwrites any old binding of newname. If
exclusive is nonzero, the operation fails if newname is already bound.

The only restriction that XEN places on newname is that it be resolved relative to the
target context. For example, in some implementations, newname might be restricted to
be a name in the same naming system as the terminal component of oldname. In
another implementation, newname might be restricted to an atomic name.

Managing Contexts

fn ctx create_ subcontext
fn ctx destroy_ subcontext
fn _ctx _get_ref

fn_ctx get_syntax attrs
fn ctx handle destroy

fn ctx_equivalent name

Contexts can be created, destroyed,and referenced.

Create Subcontext

This operation creates a new context of the same type as the target context—that
named by all but the terminal atomic part of name—and binds it to the composite
name name resolved relative to the context ctx, and returns a reference to the newly
created context.

FN_ref t *fn ctx create_subcontext (
FN_ctx t *ctx,
const FN_composite name t *name,
FN_status_t *status) ;

As with the bind operation, the target context must already exist. The new context is
created and bound in the target context using the terminal atomic name in name. The
operation fails if the terminal atomic name already exists in the target context.

Chapter 2 ¢ Interfaces for Writing XFN Applications 37

38

The new subcontext exports the context interface and is created in the same naming
system as the target context. XFN does not specify any further properties of the new
subcontext. Other properties of the subcontext are determined by the target context

and its naming system.

Destroy Subcontext

This operation destroys the subcontext named by name, interpreted relative to ctx, and
unbinds the name.

int fn ctx destroy subcontext (
FN_ctx t *ctx,
const FN_composite name_t *name,
FN_status_t *status) ;

As with the unbind operation, the operation succeeds if the terminal atomic name is
not bound in the target context—that named by all but the terminal atomic part of
name.

Some aspects of this operation are determined by the target context and its naming
system. For example, XFN does not specify what happens if the named subcontext is
not empty when the operation is invoked.

Get Reference to Context

This operation returns a reference to the supplied context object.

FN_ref t *fn ctx get ref(
const FN_ctx_t *cfx,
FN_status_t *status) ;

Get Syntax Attributes of Context

This operation returns the syntax attributes associated with the context named by
name, relative to the context ctx.

FN_attrset_t *fn ctx get syntax attrs(
FN_ctx_ t *ctx,
const FN_composite name t *name,
FN_status_t *status) ;

This operation is different from other XFN attribute operations in that these syntax
attributes could be obtained directly from the context. Attributes obtained through
other XFN attribute operations might not be associated with the context; they might be
associated with the reference of the context, rather than with the context itself (see
“Relationship to Naming Operations” on page 40).

Federated Naming Service Programming Guide * September 2002

Destroy Context Handler

This operation destroys the context handle ctx and allows the implementation to free
resources associated with the context handle. This operation does not affect the state of
the context itself.

void fn ctx handle destroy(FN_ctx_ t *ctx);

Construct an Equivalent Name (Preliminary Specification)

Given the name of an object name relative to the context ctx, the operation returns an
equivalent name for that object, relative to the same context ctx, that has leading_name
as its initial atomic name. Two names are said to be equivalent if they have prefixes
that resolve to the same context, and the parts of the names immediately following the
prefixes are identical. For example, for user jsmith, the names
“myself/service/calendar” is equivalent to
“user/jsmith/service/calendar” when resolved relative to the Initial Context.

FN composite name t *fn ctx equivalent name (
FN_ctx t *ctx,
const FN_composite name_ t *name,
const FN_string t *leading name,
FN_status_t *status) ;

If an equivalent name cannot be constructed, the value 0 is returned and the status
argument set appropriately.

Base Attribute Interface

This section describes the operations in the base attribute interface. The interfaces to
the objects used in operations in this interface are described in “Parameters Used in
the Interface” on page 52.

“XEN Attribute Model” on page 40

“Relationship to Naming Operations” on page 40
“Status Objects” on page 41

“Single-Attribute Operations” on page 41
“Multiple-Attribute Operations” on page 43

Chapter 2 ¢ Interfaces for Writing XFN Applications 39

40

XFN Attribute Model

In the XFN attribute model, a set of zero or more attributes can be associated with a
named object. Each attribute in the set has a unique attribute identifier, an attribute
syntax, and a set of zero or more distinct attribute values. Each attribute value has an
opaque data type. The attribute identifier serves as a name for the attribute. The
attribute syntax indicates how the attribute values are encoded.

The operations in the base attribute interface can be used to examine and modify the
settings of attributes associated with existing named objects. These objects can be
contexts or other types of objects. The attribute operations do not create names or
remove names in contexts.

The range of support for attribute operations can vary widely. Some naming systems
might not support any attribute operations. Other naming systems might support only
read operations or operations on attributes whose identifiers are in some fixed set. A
naming system might limit attributes to have single values or might require at least
one value. Some naming systems might associate attributes only with context objects,
while others might allow associating attributes with non-context objects.

Typically, attributes of an object are manipulated through operations that operate on a
single attribute, such as reading or updating a single attribute. Moreover, the client is
typically expected to be able to read all attribute values of a single attribute in one call.
However, sometimes there is a requirement to manipulate several attributes of a single
object or to obtain individual attribute values of a single attribute from the name
service. To address these requirements, two kinds of attribute operations are defined:

® Single-attribute operations
® Multiple-value and multiple-attribute operations

Relationship to Naming Operations

An XFN attribute operation might not be equivalently expressed as an independent
fn_ctx_lookup () operation followed by an attribute operation in which the caller
supplies the resulting reference and an empty name.

This is because some attribute models associate attributes with a named object in the
context in which the object is named. In others, an object’s attributes are stored in the
object itself. XFN accommodates both these models.

Note — Invoking an attribute operation using the target context and the terminal
atomic name accesses either the attributes that are associated with the terminal name
or the object named by the terminal name—this is dependent upon the underlying
attribute model. This document uses the term “attributes associated with a named object”
to refer to all of these cases.

Federated Naming Service Programming Guide * September 2002

XEN does not provide any guarantee about the validity of the relationship between
the attributes and the reference associated with a given name. Some naming systems
might store the reference bound to a name in one or more attributes associated with a
name. Attribute operations might affect the information used to construct a reference.

To avoid undefined results, programmers must use the operations in the context
interface and not the attribute operations when manipulating references. Applications
should avoid using specific knowledge about how an XFN context implementation
over a particular naming system constructs references.

Status Objects

In each attribute operation, the caller supplies an FN_status_t parameter. The called
function sets this status object as described in “Status Objects and Status Codes”

on page 49. All status objects are handled in this manner for each operation in the
base attribute interface; this will not be restated in the individual operation
descriptions.

Single-Attribute Operations

fn attr get

fn_attr modify
fn_attr get_values
fn_valuelist_next

fn _valuelist_destroy

Each of these operations takes as arguments a context and composite name relative to
this context and manipulates the attributes associated with the named object. Each
operation sets a status object to describe the status of the operation.

Get Attribute

This operation returns the identifier, syntax, and values of a specified attribute,
attribute_id, for the object named name relative to the context ctx. If name is empty, the
attribute associated with ctx is returned.

FN_attribute t *fn attr get(
FN_ctx t *ctx,
const FN _composite name t *name,
const FN_identifier t *attribute_id,
unsigned int follow_link,
FN_status_t *status) ;

fn_attr get values () and its related functions are for getting individual values
of an attribute and should be used if the combined size of all the values is expected to
be too large to be returned in a single invocation of fn_attr get ().

Chapter 2 ¢ Interfaces for Writing XFN Applications 41

Modity Attribute

This operation modifies according to mod_op the attribute attr associated with the
object named name, relative to ctx. If name is empty, the attribute associated with ctx is
modified.

int fn attr modify(
FN_ctx_t *ctx,
const FN_composite name t *name,
unsigned int mod_op,
const FN_attribute_t *attr,
FN_status_t *status) ;

TABLE 2-1 XEN Attribute-Modification Operations

Operation Code Meaning

FN_ATTR_OP ADD () Add an attribute with given attribute identifier and set of values. If
an attribute with this identifier already exists, replace the set of
values with those in the given set. The set of values can be empty if
the target naming system permits.

FN_ATTR_OP_ADD_ EXCLUSIVE () Add an attribute with the given attribute identifier and set of values.
The operation fails if an attribute with this identifier already exists.
The set of values can be empty if the target naming system permits.

FN_ATTR_OP_ADD VALUES () Add the given values to those of the given attribute (resulting in the
attribute having the union of its prior value set with the given set).
Create the attribute if it does not already exist. The set of values can
be empty if the target naming system permits.

FN_ATTR_OP_REMOVE () Remove the attribute with the given attribute identifier and all its
values. The operation succeeds even if the attribute does not exist.
The values of the attribute supplied with this operation are ignored.

FN_ATTR_OP_REMOVE_VALUES () Remove the given values from those of the given attribute (resulting
in the attribute having the set difference of its prior value set and the
given set). This succeeds even if some of the given values are not in
the set of values that the attribute has. In naming systems that
require an attribute to have at least one value, removing the last
value removes the attribute as well.

Get Attribute Values

This set of operations allows the caller to obtain attribute values associated
individually with a single attribute.

FN valuelist t *fn attr get values(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_identifier t *attribute_id,
unsigned int follow_link,
FN_status_t *status) ;

42 Federated Naming Service Programming Guide * September 2002

FN_attrvalue_t *fn valuelist_next (
FN valuelist t, *vl
FN_identifier_ t **attr_syntax,
FN_status_t *status) ;

void fn valuelist destroy(
FN valuelist t *vl);

This set of operations is used to obtain the set of values of a single attribute, identified
by attribute_id, associated with name, relative to ctx. If name is empty, the attribute
associated with ctx is obtained.

This interface should be used instead of fn_attr get () if the combined size of all
the values is expected to be too large to be returned by fn_attr get ().

The operation fn_attr_get_values () initiates the enumeration process. It returns
a handle to an FN_valuelist_t object that can be used for subsequent
fn_valuelist_next () calls to enumerate the values requested.

The operation fn_valuelist next () returns the next attribute value in the
enumeration and updates vl to indicate the state of the enumeration.

The operation fn_valuelist_destroy () frees the resources associated with the
enumeration. This operation can be invoked at any time to terminate the enumeration.

Multiple-Attribute Operations

fn_attr get ids

fn_attr multiget
fn_multigetlist_next

fn multigetlist destroy
fn attr multi modify

These operations allow the caller to specify an operation that handles on multiple
attributes using one or more calls.

The failure semantics can vary widely across naming systems. In some systems the
single function call can contain multiple individual naming system operations, with
no guarantees of atomicity.

Get Attribute Identifiers

This operation gets a list of all the attribute identifiers that are associated with the
object named name relative to the context ctx. If name is empty, the attribute identifiers
associated with ctx are returned.

FN_attrset_t *fn attr get_ ids(
FN_ctx t *ctx,
const FN_composite name t *name,

Chapter 2 ¢ Interfaces for Writing XFN Applications 43

unsigned int follow_link,
FN_status_t *status) ;

Get Multiple Attributes

Get one or more attributes associated with the object named name relative to the
context ctx. If name is empty, the attributes associated with ctx are returned.

FN_multigetlist_t *fn_attr multiget(
FN_ctx_ t *ctx,
const FN_composite name t *name,
const FN_attrset t *attr_ids,
unsigned int follow_link,
FN_status_t *status) ;

FN_attribute_t *fn multigetlist next (
FN_multigetlist_t *ml,
FN_status_t *status) ;

void fn multigetlist destroy(
FN_multigetlist_t *ml) ;

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all
attributes associated with the named object are returned. Any attribute values in
attr_ids provided by the caller are ignored; only the identifiers are relevant for this
operation. Each attribute (identifier, syntax, and values) is returned one at a time using
an enumeration scheme similar to that for listing a context. fn_attr multi get ()
initiates the enumeration process. It returns a handle to an FN_multigetlist_t
object that can be used for subsequent fn_multigetlist_next () callsto
enumerate the attributes requested.

The operation fn_multigetlist next () returns the next attribute (identifier,
syntax, and values) in the enumeration and updates m! to indicate the state of the
enumeration. Successive calls to fn_multigetlist_ next () using ml return
successive attributes in the enumeration and further update the state of the
enumeration.

The operation fn_multigetlist destroy () frees the resources used during the
enumeration. This operation can be invoked at any time to terminate the enumeration.

Implementations are not required to return all attributes requested by attr_ids. Some
might choose to return only the attributes found successfully; such implementations
might not necessarily return identifiers for attributes that could not be read.

Modify Multiple Attributes

Modify the attributes associated with the object named name, relative to ctx.

int fn_attr_multi_modify(
FN ctx t *ctx,
const FN_composite name t *name,

44 Federated Naming Service Programming Guide * September 2002

const FN_attrmodlist_t *mods,
unsigned int follow_ link,
FN_attrmodlist_t **unexecuted_mods,
FN_status_t *status) ;

In the mods parameter, the caller specifies a sequence of modifications that are to be
performed in order on the attributes. Each modification in the sequence specifies a
modification operation code (shown in Table 2-1) and an attribute on which to
operate.

If all the modifications were performed successfully, unexecuted_mods is a NULL
pointer. If an error is encountered while performing the list of modifications, status
indicates the type of error and unexecuted_mods is set to point to a list of unexecuted
modifications. The contents of unexecuted_mods do not share any state with mods; items
in unexecuted_mods are copies of items in mods and appear in the same order in which
they were originally supplied in mods. The first operation in unexecuted_mods is the
first one that failed, and the code in status applies to this modification operation in
particular. If status indicates a failure and a NULL pointer is returned in
unexecuted_mods, that means no modifications were executed.

Extended Attribute Interface
(Preliminary Specification)

fn_attr_search

fn searchlist next
fn_searchlist destroy
fn_attr ext search

fn _ext searchlist next
fn_ext searchlist destroy

The XFN extended attribute interface consists of operations that perform searching
and creation of objects in the namespace with attributes. The operations in this
interface are considered “preliminary,” in that they are not yet standard and might
change in the next revision of the specification.

Attribute Search Interface

The search interface contains several operations: a basic search operation, which
performs associative lookup in a single context, and an extended search operation that
allows the search criteria to be specified using an expression . It also allows the scope
of the search to encompass a wider scope than only a single context.

Chapter 2 ¢ Interfaces for Writing XFN Applications 45

Basic Search

This set of operations is used to enumerate names of objects bound in the target
context named name relative to the context ctx with attributes whose values match all
those specified by match_attrs. Using return_ref specifies whether to return the
references of named objects in the search, while return_attr_ids specifies the attributes
to be returned in the search.

FN_searchlist_t *fn attr_ search(
FN_ctx_t *ctx,
const FN_composite name_t *name,
const FN_attrset_t *match_attrs,
unsigned int return ref,
const FN _attrset t *return_attr_ids,
FN_status_t *status) ;

FN_string t *fn_searchlist next(
FN _searchlist t *sl,
FN_ref_t =*xreturned_ref,
FN_attrset t *xreturned_attrs,
FN_status_t *status) ;

void fn_searchlist_destroy(
FN_searchlist t *sl);

The call to fn_attr search() initiates the search in the target context. It returns a
handle to an FN_searchlist_t object that is used to enumerate the names of the
objects whose attributes match match_attrs.

fn searchlist next () returns the next name in the enumeration identified by sl.
The reference of the name, if requested, is returned in returned_ref. The attributes
specified by return_attr_ids are returned in returned_attrs. Successive calls to

fn searchlist next () using sl return successive names, and optionally,
references and attributes in the enumeration and further update the state of the
enumeration.

fn_searchlist destroy () releases resources used during the enumeration. It can
be called at any time to terminate the enumeration.

Extended Search

This set of operations is used to list names of objects whose attributes satisfy the filter
expression filter. The control argument encapsulates the option settings for the search.

FN_ext_ searchlist_t *fn attr_ext search(
FN _ctx t *ctx,
const FN_composite_name_t *name,,
const FN _search control t *control
FN_status_t *status) ;

FN_composite name t *fn ext searchlist next (

46 Federated Naming Service Programming Guide * September 2002

FN_ext_searchlist_t *esl,
FN_ref t x*returned_ref,
FN_attrset_t **returned_attrs,
FN_status_t *status) ;

void fn ext searchlist destroy(
FN_ext searchlist t *esl);

These options are:
1. The scope of the search. This can be any of the following:

m Search the named object
m Search the context named by name
m Search the entire subtree rooted at the context named by name

m Search the context implementation-defined subtree rooted at the context named
by name.

Whether XFN links are followed during the search
A limit on the number of names returned

Whether the reference associated with the named object is returned

SR S N

Which attributes associated with the named object are returned

The filter expression is evaluated against the attributes of the objects bound in the
scope of the search. The filter evaluates to either true or false.

The call to fn_attr ext search() initiates the search and, if successful, returns a
handle to an FN_ext_searchlist_t object, esl, that is used to enumerate the names
of the objects that satisfy the filter.

fn ext searchlist next () returns the next name, and optionally, its reference
and attributes, in the enumeration identified by esl. The name returned is a composite
name, to be resolved relative to the starting context for the search. The starting context
is the context named name relative to ctx, unless the scope of the search is only the
named object. If the scope of the search is only the named object, the terminal atomic
name is returned. Successive calls to fn_ext searchlist next () using es! return
successive names, and optionally, references and attributes, in the enumeration and
further update the state of the enumeration.

fn ext searchlist destroy () releases resources used during the search and
enumeration. It can be called at any time to terminate the enumeration.

Object Creation with Attributes

fn_attr bind
fn attr create_ subcontext

Chapter 2 ¢ Interfaces for Writing XFN Applications 47

48

At times it is useful or necessary to associate attributes with an object at the time the
object is created. The XFN extended attribute interface contains functions that provide
these capabilities. The two functions in this interface, fn_attr bind() and
fn_attr create subcontext (), are analogous to their counterparts in the base
context interface, fn_ctx _bind() and fn_ctx_create_subcontext (),
respectively, except that the versions in the extended attribute interface allow an extra
parameter for specifying attributes to be associated with the new binding.

Bind with Attributes

This operation binds the supplied reference ref to the supplied composite name name
relative to ctx, and associates the attributes specified in attrs with the named object.
The binding is made in the target context—that context named by all but the terminal
atomic part of name. The operation binds the terminal atomic part of name to the
supplied reference in the target context. The target context must already exist.

int fn _attr bind(
FN_ctx_t *ctx,
const FN_composite name t *name,
const FN_ref_ t *ref,
unsigned int exclusive,
FN_status_t *status) ;

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is non-zero and name is
already bound, the operation fails. If exclusive is zero, the new binding replaces
any existing binding, and attrs, if not NULL, replaces any existing attributes associated
with the named object.

Create Subcontext with Attributes

This operation creates a new XFN context of the same type as the target context—that
named by all but the terminal atomic component of name—and binds it to the
supplied composite name name. In addition, attributes given in attrs are associated
with the newly created context. The target context must already exist. The new context
is created and bound in the target context using the terminal atomic name in name.
The operation returns a reference to the newly created context.

FN_ref t *fn attr create_ subcontext (
FN ctx t *ctx,
const FN_composite name_t *name,
const FN_attrset_t *attrs,
FN_status_t *status) ;

Federated Naming Service Programming Guide * September 2002

Status Objects and Status Codes

The result statuses of operations in the context interface and the attribute interface are
encapsulated in FN_status_t objects. The FN_status_t object contains information
about how the operation completed: whether an error occurred in performing the
operation, the nature of the error, and information that helps locate where the error
occurred. If the error occurred while resolving an XEN link, the status object contains
additional information about that error.

The status object contains several items of information as shown in Table 2-2.

TABLE 2-2 Status Object

Information Type

Description

Primary status code

Resolved name

Resolved reference
Remaining name
Diagnostic message
Link status code
Resolved link name
Resolved link reference

Remaining link name

Link diagnostic message

An unsigned int code describing the disposition of the operation.

In the case of a failure during the resolution phase of the operation, this is the leading
portion of the name that was resolved successfully. Resolution might have been
successful beyond this point, but the error can not be pinpointed further.

The reference to which the resolved name is bound.
The remaining unresolved portion of the name.
Any diagnostic message returned by the context implementation.

If an error occurs while resolving an XEN link, the primary status code has the value
FN_E_LINK ERROR, and this code describes the error that occurred while resolving
the XFN link.

In the case of a link error, this contains the resolved portion of the name in the XFN
link.

In the case of a link error, this contains the reference to which the resolved link name
is bound.

In the case of a link error, this contains the remaining resolved portion of the name in
the XFN link.

Any diagnostic message related to the resolution of the link.

Both the primary status code and the link status code are values of type unsigned

int that are drawn from the same set of meaningful values. XFN reserves the values 0
through 127 for standard meanings. Currently, values and interpretations for the codes
in Table 2-3 are determined by XFN.

Chapter 2 ¢ Interfaces for Writing XFN Applications 49

TABLE 2-3 Status Codes

Code

Meaning

FN_SUCCESS

FN_E ATTR IN USE

FN E ATTR NO PERMISSION

FN_E_ATTR_VALUE_REQUIRED

FN_E_ AUTHENTICATION_ FAILURE

FN_E_COMMUNICATION_ FAILURE

FN_E_ CONFIGURATION_ ERROR

FN_E_CONTINUE

FN E CTX NO PERMISSION

FN E CTX NOT EMPTY

FN E CTX UNAVAILABLE

FN_E ILLEGAL_ NAME

FN_E_INCOMPATIBLE_ CODE_SETS

FN E INCOMPATIBLE LOCALES

FN _E INSUFFICIENT RESOURCES

The operation succeeded.

When an attribute is being modified using the operation
FN_ATTR_OP_ADD EXCLUSIVE and an attribute with the same
identifier already exists, the operation fails with

FN_E ATTR IN USE.

The caller did not have permission to perform the attempted
attribute operation.

The operation attempted to create an attribute without a value, and
the specific naming system does not allow this.

The identity of the client principal could not be verified.

An error occurred in communicating with one of the contexts
involved in the operation.

A problem was detected that indicated an error in the installation of
the XEN interfaces.

The operation should be continued using the remaining name and
the resolved reference returned in the status.

The client did not have permission to perform the operation.

Applies only to fn_ctx_destroy_subcontext (). The naming
system required that the context be empty before its destruction, and
it was not empty.

Service could not be obtained from one of the contexts involved in
the operation. This might be because the naming system is busy or is
not providing service. In some implementations this might not be
distinguished from a communication failure.

The name supplied to the operation was not a well-formed
composite name, or one of the component names was not well
formed according to the syntax of the naming systems involved in its
resolution.

The operation involved character strings of incompatible code sets or
the supplied code set is not supported by the implementation.

The operation involved character strings of incompatible language or
territory locale information, or the specified locale is not supported
by the implementation.

Either the client or one of the involved contexts could not obtain
sufficient resources (on memory, file descriptors, communication
ports, stable media space, for example) to complete the operation
successfully.

50 Federated Naming Service Programming Guide * September 2002

TABLE 2-3 Status Codes (Continued)

Code

Meaning

FN_E INVALID ATTR IDENTIFIER

FN_E_INVALID ATTR VALUE

FN_E INVALID ENUM HANDLE

FN E INVALID SYNTAX ATTRS

FN_E_LINK ERROR

FN _E LINK LOOP LIMIT

FN_E_MALFORMED LINK

FN_E_MALFORMED REFERENCE

FN E NAME IN USE

FN_E_NAME_NOT_FOUND

FN _E NO EQUIVALENT NAME

FN _E NO SUCH ATTRIBUTE

FN_E_NO_SUPPORTED ADDRESS

The attribute identifier was not in a format acceptable to the naming
system, or its contents were not valid for the format specified for the
identifier.

One of the values supplied was not in the appropriate form for the
given attribute.

The enumeration handle supplied was invalid, either because it was
from another enumeration, because an update operation occurred
during the enumeration, or for some other reason.

The syntax attributes supplied are invalid or insufficient to fully
specify the syntax.

An error occurred while resolving an XFN link encountered during
resolution of the supplied name.

A nonterminating loop (cycle) in the resolution is suspected. This
arises due to XFN links encountered during the resolution of a
supplied composite name. This code indicates either the definite
detection of such a cycle, or that resolution exceeded an
implementation-defined limit on the number of XFN links allowed
for a single operation invoked by the caller (and thus a cycle is
suspected).

A malformed link reference was encountered. For fn_ctx lookup
link (), the name supplied resolved to a reference that was not a
link.

A context object could not be constructed from the supplied reference
because the reference was not properly formed.

(Only for operations that bind names.) The supplied name was
already in use.

Resolution of the supplied composite name proceeded to a context in
which the next atomic component of the name was not bound.

No equivalent name can be constructed, either because there is no
meaningful equivalence between name and leading_name, or the
system does not support constructing the requested equivalent name,
for implementation-specific reasons.

The object does not have an attribute with the given identifier.

A context object could not be constructed from a particular reference.
The reference contained no address type over which the context
interface was supported.

Chapter 2 ¢ Interfaces for Writing XFN Applications 51

TABLE 2-3 Status Codes (Continued)

Code Meaning

FN_E_NOT A CONTEXT Either one of the intermediate atomic names did not name a context,
and resolution could not proceed beyond this point, or the operation
required that the caller supply the name of a context, and the name
did not resolve to a reference for a context.

FN_E_OPERATION_NOT_SUPPORTED The operation attempted is not supported.

FN_E PARTIAL_RESULT The operation attempted is returning a partial result.

FN_E SEARCH INVALID FILTER The filter expression had a syntax error or some other problem.
FN_E_SEARCH INVALID OP An operator in the filter expression is not supported or, if the

operator is an extended operator, the number of types of arguments
supplied does not match the signature of the operation.

FN_E_SEARCH_INVALID OPTION A supplied search control option could not be supported.
FN_E_SYNTAX NOT_ SUPPORTED The syntax type specified is not supported.
FN_E_TOO_MANY ATTR_VALUES The operation attempted to associate more values with an attribute

than the naming system supported.

FN_E_UNSPECIFIED_ ERROR An error occurred that could not be classified by any of the other
error codes.

Parameters Used in the Interface

“Composite Names” on page 53

“References and Addresses” on page 53
“Identifiers” on page 53

“Strings” on page 54

“Attributes and Attribute Values” on page 54
“Attribute Sets” on page 54

“ Attribute-Modification Lists” on page 54

This section gives an overview of the types of parameters that are passed and returned
by operations in the base context and attribute interfaces. Manipulation of these
objects using their corresponding interfaces does not affect their representation in the
underlying naming system.

Changes to objects in the underlying naming system can only be effected through the
use of the interfaces described in “The Base Context Interface” on page 31 and “Base
Attribute Interface” on page 39.

52 Federated Naming Service Programming Guide * September 2002

Composite Names

A composite name is represented by an object of type FN_composite name t.A
composite name is a sequence of components, where each component is a string (of
type FN_string_t) intended to contain a name from a single naming system. (See
“Syntax” on page 79 for a description of composite name syntax and structure.)
Operations are provided to iterate over this sequence, modify it, and compare two
composite names.

References and Addresses

A reference is represented by the type FN_ref_t. An object of this type contains a
reference type and a list of addresses. The ordering in this list at the time of binding
might not be preserved when the reference is returned upon lookup.

The reference type is represented by an object of type FN_identifier t.The
reference type is intended to identify the class of object referenced, but XFN does not
dictate its precise use.

Each address in a reference is represented by an object of type FN_ref_addr_t.An
address consists of an opaque data buffer and a type field, again of type
FN_identifier_ t.The address type is intended to identify the mechanism that
should be used to reach the object using that address.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses can arise
for various reasons; for example, because the object offers interfaces over more than
one communication mechanism.

The client process must interpret the contents of the opaque buffers based on the type
of the address and on the type of the reference. However, this interpretation is
intended to occur below the application layer.

Most application developers should not be required to manipulate the contents of
either address or reference objects themselves. These interfaces are generally used
within service libraries.

Identifiers

Identifiers are used to identify reference types and address types in the reference and
to identify attributes and their syntax in the attribute operations.

The FN_identifier t type is used to represent an identifier. It consists of an
unsigned integer, which determines the format of identifier, and the actual identifier,
which is expressed as a sequence of octets.

Chapter 2 ¢ Interfaces for Writing XFN Applications 53

54

XFN defines a small number of standard forms for identifiers, as shown in Table 2—4.

TABLE 2-4 XFN Identifier Formats

Identifier Format Description
FN_ID STRING The identifier is an ASCII string (ISO 646).
FN_ID DCE UUID The identifier is an OSF DCE UUID in string representation.

See the X/Open DCE RPC (ISBN 1-872630-95-2).

FN_ID_ISO_OID_STRING The identifier is an ISO OID in ASN.1 dot-separated integer
list string format. See the ISO ASN.1 (ISO 8824).

Strings

The FN_string t type represents character strings in the XFN interface. It provides a
layer of insulation from specific string representations. The FN_string t operations
contain operations for string comparison, substring searches, and manipulation. The
FN_string t type supports multiple code sets. In Solaris 2.5, FNS supports ISO 646.

Attributes and Attribute Values

An attribute is represented by the FN attribute t type, and contains:

® An attribute identifier (of type FN_identifier t)
®m Asyntax (of type FN_identifier_t)

m A set of distinct values (each value is a sequence of octets of type
FN attrvalue t)

Various operations allow the construction, destruction, and manipulation of an
attribute.

Attribute Sets

An attribute set is a set of attribute objects with distinct attribute identifiers. Attribute
sets are represented by the FN_attrset_t type.

There are operations to allow the construction, destruction, and manipulation of an
attribute set.

Attribute-Modification Lists

Use an attribute-modification list to specify multiple modification operations to be
performed on the attributes associated with a single named object.

Federated Naming Service Programming Guide * September 2002

An attribute-modification list is represented by the FN_attrmodlist_t type. It
consists of an ordered list of attribute-modification specifiers. Each specifier contains
an operation and an attribute object. The attribute’s identifier indicates the attribute
that is to be operated upon. How the attribute’s values are used depends on the
operation.

The operation specifier is one of the values described in Table 2-1. The operations
should be done in the order in which they appear in the list.

Parameters Used in Extended Search
(Preliminary Specification)

The types of objects used to specify the scope and details of an extended search
operation:

® the search control operations (FN_search _control t)
m the search filter expression (FN_search filter t)

Search Control

The FN_search control_t object encapsulates the different options that the
application can specify in controlling the scope and the return values of the extended
search operation, fn_attr_ext_ search() .

These options are:

m Scope of search. This determines which contexts and objects will be searched. The
default is FN_SEARCH ONE_CONTEXT.

TABLE 2-5 Different Scopes for Searching

Scope Meaning

FN_SEARCH_NAMED_OBJECT Search just the given named object.
FN_SEARCH_ONE_CONTEXT Search just the given context.
FN_SEARCH_SUBTREE Search given context and all its subcontexts.
FN_SEARCH CONSTRAINED SUBTREE Search given context and its subcontexts as

constrained by the context-specific policy in
place at the named context.

Chapter 2 ¢ Interfaces for Writing XFN Applications 55

m Follow links during search. This determines whether links encountered during the
search will be followed. The initial resolution phase of the operation (the resolution
up to the target context) always follow links. This option controls the following of
links after reaching the target context.

The default is to not follow links.

® Maximum names returned. This specifies the maximum number of names to be
returned before terminating the search. A value of 0 indicates that the search is
terminated only when all the context and objects specified by the scope have been
searched.

The default is to return all named objects found.
m Return reference. This determines whether the reference of the object is returned.
The default is to not return the reference.

m Return attributes. This determines which attributes associated with the named
object, if any, are returned.

The default is to not return any attributes.

Search Filter

The fn_attr ext search() operation allows the search for named objects whose
attributes satisfy a given filter expression. The filter is expressed in terms of logical
expressions involving attribute identifiers and their values of named objects examined
during the search. The filter is created from an expression string and a list of
arguments that replace substitution tokens within the expression string.

BNF of Filter Expression

<FilterExpr> ::= [<Expr>]
<Expr> ::= <Expr> "or" <Expr>
| <Expr> "and" <Exprs>
| "not" <Expr>

| n(n <EXpr> o

| <Attribute> [<Rel_Op> <Value>]

| <ExXt>
<Rel Op> ::= "==" | wi=m | wgn | owe=nm | s neomn "
<Attribute> ::= "%a"
<Value> ::= <Integer>

) n
| e

| <Wildcarded string>

<Wildcarded_string> ::= "*"
<String>
| g
| {<String> "*"}+ [<String>]
| {"*" <String>}+ ["*"]
<String> ::= "'" { <Char> } * nmam
| negn
<Char> ::= <PCS> // See BNF in Section 4.1.2 for PCS definition

56 Federated Naming Service Programming Guide * September 2002

| Characters in the repertoire of a string representation
<Identifier> ::= "%i"

<Ext> ::= <Ext Op> " (" [Arg List] ")"

<Ext Op> ::= <String> | <Identifiers

<Arg List> ::= <Arg> | <Arg> "," <Arg List>
<Arg> ::= <Value> | <Attribute> | <Identifiers

Specification of Filter Expression

The arguments to fn_search _filter create() are a return status, an expression
string, and a list of arguments. The string contains the filter expression with
substitution tokens for the attributes, attribute values, strings and identifiers that are
part of the expression. The remaining list of arguments contains the attributes and
values in the order of appearance of their corresponding substitution tokens in the
expression. The arguments are of types FN_attribute t*, FN_attrvalue_t*,
FN_string t* or FN_identifier_ tx*.

Except when attributes appear as arguments in specially defined extended operations,
any attribute values in an FN_attribute_t type of argument are ignored; only the
attribute identifier and attribute syntax are relevant. The argument type expected by
each substitution token is listed in Table 2-6.

TABLE 2-6 Substitute Tokens in Search Filter Expressions

Token Argument Type

o°
V]

FN_ attribute t*

o\°
e

FN_attrvalue_ t*

o°
n

FN string t*

o°
i

FN_identifier t*

Substitute Tokens in Search Filter Expressions

Precedence

The following precedence relations hold in the absence of parentheses, in the order of
lowest to highest:

or

and

not

relational operators

These Boolean and relational operators are left associative.

Chapter 2 ¢ Interfaces for Writing XFN Applications 57

Relational Operators

Table 2-7 contains descriptions of the relational operators. Comparisons and ordering
are specific to the syntax or rules of the supplied attribute.

Locale (code set, language or territory) mismatches that occur during string
comparisons and ordering operations are resolved in an implementation-dependent
way. Relational operations that have ordering semantics may be used for strings of
locales in which ordering is meaningful, but is not of general use in internationalized
environments.

An attribute that occurs in the absence of any relational operator tests for the presence
of the attribute.

TABLE 2-7 Relational Operators in Search Filter Expressions

Operator Meaning

== The sub-expression is TRUE if at least one value of the specified
attribute is equal to the supplied value.

I= The sub-expression is TRUE if no values of the specified attribute equal
the supplied value.

>= The sub-expression is TRUE if at least one value of the attribute is
greater than or equal to the supplied value.

> The sub-expression is TRUE if at least one value of the attribute is
greater then the supplied value.

<= The sub-expression is TRUE if at least one value of the attribute is less
than or equal to the supplied value.

< The sub-expression is TRUE if at least one value of the attribute is less
than the supplied value.

~= The sub-expression is TRUE if at least one value of the specified
attribute matches the supplied value according to some context-specific
approximate matching criterion. This criterion must subsume strict
equality.

Wildcarded Strings

A wildcarded string consists of a sequence of alternating wildcard specifiers and
strings. The sequence can start with either a wildcard specifier or a string, and end
with either a wildcard specifier or a string.

The wildcard specifier is denoted by the asterisk character (*) and means 0 or more
occurrences of any character.

Wildcarded strings can be used to specify substring matches. Table 2-8 contains
examples of wildcarded strings and their meaning.

58 Federated Naming Service Programming Guide * September 2002

TABLE 2-8 Examples of Wildcarded Strings

Wildcarded String Meaning

* Any string

‘tom’ The string tom

‘harv’ * Any string starting with harv

*7/ing’ Any string ending with ing

‘a’*'b’ Any string starting with a and ending with b

‘axb’ The string a*b

‘jo’*’'ph’*'ne’*’er’ Any string starting with jo, and containing the substring ph,

and which contains the substring ne in the portion of the
string following ph, and which ends with er

$s* Any string starting with the supplied string
‘bix’ *%s Any string starting with bix and ending with the supplied
string

Extended Operations

In addition to the relational operators, extended operators can be specified. All
extended operators return either TRUE or FALSE. A filter expression can contain both
relational and extended operations.

Extended operators are specified using an identifier (FN_identifier_t) or a string.
If the operator is specified using a string, the string is used to construct an identifier of
format FN_ID_STRING. Identifiers of extended operators and signatures of the
corresponding extended operations, as well as their suggested semantics, are
registered with X/Open.

The extended operations shown in Table 2-9 are currently defined:

TABLE 2-9 Extended Operations

‘name’ (<Wildcarded Strings>) The identifier for this operation is
name (FN_ID_STRING). The argument to this
operation is a wildcarded string. The operation
returns TRUE if the name of the object matches the
supplied wildcarded string.

‘reftype’ (%1i) The identifier for this operation is reftype
(FN_ID_STRING). The argument to this operation
is an identifier. The operation returns TRUE if the
reference type of the object is equal to the supplied
identifier.

Chapter 2 ¢ Interfaces for Writing XFN Applications 59

TABLE 2-9 Extended Operations (Continued)

‘addrtype’ (%1) The identifier for this operation is
addrtype (FN_ID_ STRING). The argument to this
operation is an identifier.

The operation returns TRUE if any of the address types in the reference of the object is
equal to the supplied identifier. Support and exact semantics of extended operations
are context-specific. If a context does not support an extended operation, or if the filter
expression supplies the extended operation with either an incorrect number or type of
arguments, the error FN_E_SEARCH_INVALID_OP is returned.

FN_E OPERATION NOT SUPPORTED is returned when fn_attr ext search() is
not supported.

Table 2-10 contains examples of filter expressions that contain extended operations.

TABLE 2-10 Extended Operations in Search Filter Expressions

Expression Meaning

‘name’ (‘bill’*) Evaluates to TRUE if the name of the object starts
with bill.

%$i(%a, %v) Evaluates to result of applying the specified

operation to the supplied arguments.

(%a == %v) and ‘name’ (‘joe’*) Evaluates to TRUE if the specified attribute has the
given value and if the name of the object starts with
joe.

Parsing Compound Names

®m “Syntax Attributes” on page 61
m “XFN Standard Syntax Model” on page 61

Because most applications treat names as opaque data, most clients of the XFN
interface do not need to parse compound names from specific naming systems. When
an application (such as a browser) needs to do this, however, it can use the
FN_compound_name_t object.

60 Federated Naming Service Programming Guide * September 2002

Syntax Attributes

Each context has an associated set of syntax-related attributes. The attribute
fn_syntax_ type (FN_ID_STRING format) identifies the naming syntax supported
by the context. The value “standard” (ASCII attribute syntax) in the

fn syntax type attribute specifies that the context supports the XFN standard
syntax model that is by default supported by the FN_compound_name_t object.

Implementations can choose to support other syntax types in addition to or in place of
the XFN standard syntax model, in which case the value of the fn_syntax_ type
attribute is set to an implementation-specific string and different or additional syntax
attributes are in the set.

Syntax attributes of a context can be generated automatically by a context, in response
to fn_ctx get_syntax attrs(), or can be created and updated using the
attribute operations. This is implementation dependent.

XEN Standard Syntax Model

Each naming system in an XFN federation has a naming convention. XEN defines a
standard model of expressing compound name syntax that covers a large number of
specific name syntaxes. This model is expressed in terms of syntax properties of the
naming convention and it uses XFN attributes to describe properties of the syntax.

Unless otherwise qualified, the syntax attributes described in this section have
attribute identifiers that use the FN_ID_ STRING format. This does not specify or
restrict the use of other formats for identifiers of additional syntax attributes
supported by specific implementations.

In the XEN standard syntax model, these attributes are interpreted according to the
following rules:

1. In a string without quotes or escapes, any instance of the separator string delimits
two atomic names.

2. A separator, quotation mark, or escape string is escaped if preceded immediately
(on the left) by the escape string.

3. Anon-escaped begin-quote that precedes a component must be matched by a
non-escaped end-quote at the end of the component. Quotes embedded in
nonquoted names are treated as simple characters and do not need to be matched.
An unmatched quotation fails with the status code FN_E ILLEGAL NAME.

4. If there are multiple values for begin-quote and end-quote, a specific begin-quote
value must be matched with its corresponding end-quote value.

5. When the separator appears between a (nonescaped) begin-quote and the
end-quote, it is ignored.

Chapter 2 ¢ Interfaces for Writing XFN Applications 61

6. When the separator is escaped, it is not treated as a separator. An escaped
begin-quote or end-quote string is not treated as a quotation mark. An escaped
escape string is not treated as an escape string.

7. Anon-escaped escape string appearing within quotes is interpreted as an escape
string. This can be used to embed an end-quote within a quoted string.

8. An escape string that precedes a character other than an escape string, a begin-
quote or an end-quote is consumed (in other words, escaping a non-meta character
returns the non-meta character itself).

After constructing a compound name from a string, the resulting component atoms
have one level of escape strings and quotations interpreted and consumed.

Code set mismatches that occur during the construction of the compound name’s
string form are resolved in an implementation-dependent way. When an
implementation discovers that a compound name has components with incompatible
code sets, it returns the error code FN_ E INCOMPATIBLE CODE SETS. When an
implementation discovers that a compound name has components with incompatible
language or territory locale information, it returns the error code

FN E_INCOMPATIBLE LOCALES.

Table 2-11 lists all the XFN standard syntax model attributes.

TABLE 2-11 XEN Syntax Attributes

Attribute Identifier Attribute Value

fn_syntax type Its value is the ASCII string ”standard” if the context supports the
XFN standard syntax model. Its value is an implementation-specific
value if another syntax model is supported.

fn_synt Its value is an ASCII string, one of “left-to-right,” “right-to-left,” or
“flat.” This determines whether the order of components in a
compound name string goes from left-to-right, right-to-left, or
whether the namespace is flat (that is, not hierarchical, with all
names atomic).

ax_direction

fn_std_syntax_ separator Its value is the separator string for this name syntax. This attribute is
required unless the fn_syntax_directionis flat.

fn_std syntax_escape If present, its value is the escape string for this name syntax.

fn_std_syntax_case_insensitive If present, it indicates that names differing only in case are
considered identical. If this attribute is absent, it indicates that case is
significant. If a value is present, it is ignored.

62 Federated Naming Service Programming Guide * September 2002

TABLE 2-11 XFN Syntax Attributes (Continued)

Attribute Identifier

Attribute Value

fn std syntax begin quotel

fn std syntax end quotel

fn std syntax begin quote2

fn std syntax_end quote2

fn std syntax ava_separator

fn _std syntax_ typeval_ separator

fn _std syntax locales

If present, its value is one of the begin-quote strings for this syntax. If
fn_std_syntax_end_gquotel is absent but

fn_std_syntax begin_quotel is present, the quote-string
specified in fn_std_syntax begin_guotel is used as both the
begin and end quote-strings. If fn_std_syntax_end_quotel is
present but fn_std_syntax_begin_quotel is absent, the
quote-string specified in fn_std_syntax_end_gquotel is used as
both the begin and end-quote-strings.

If present, its value is the end-quote string for this syntax. If

fn std syntax_end quotel is absent but

fn_std_syntax begin_guotel is present, the quote-string
specified in fn_std_syntax_begin_gquotel is used as both the
begin and end quote-strings. If fn_std_syntax end gquotel is
present but fn_std_syntax_begin_quotel is absent, the
quote-string specified in fn_std_syntax_end_quotel is used as
both the begin and end-quote-strings.

If present, its value is one of the begin-quote strings for this syntax. If
fn_std_syntax_end_quote?2 is absent but

fn_std syntax_begin_quote2 is present, the quote-string
specified in fn_std_syntax begin_guote2 is used as both the
begin and end quote-strings. If fn_std_syntax_end_quote2is
present but fn_std_syntax_begin quote2 is absent, the
quote-string specified in fn_std_syntax_end_quote2 is used as
both the begin and end-quote-strings.

If present, its value is the end-quote string for this syntax. If
fn_std_syntax_end_guote?2 is absent but

fn_std_syntax begin_gquote2 is present, the quote-string
specified in fn_std_syntax begin_guote?2 is used as both the
begin and end quote-strings. If fn_std_syntax_end_quote2is
present but fn_std_syntax_begin_quote?2 is absent, the
quote-string specified in fn_std_syntax_end_gquote2 is used as
both the begin and end-quote-strings.

If present, its value is the attribute-value assertion separator string
for this syntax.

If present, its value is the attribute type-value separator string for this
syntax.

If present, its value identifies the code sets of the string
representation for this syntax. Its value consists of a structure
containing an array of code sets supported by the context; the first
member of the array is the preferred code set of the context. The
values for the code sets are defined in the X/Open code set registry
currently defined in DCE RFC 40.1. If this attribute is not present, or
if the value is empty, the default code set is ISO 646 (same encoding
as ASCII).

Chapter 2 ¢ Interfaces for Writing XFN Applications 63

Compound Names
The FN_compound_name_t type is used to represent a compound name.

The FN_compound_name_t object has associated operations for applications to
process compound names that conform to the XFN standard syntax model of
expressing compound name syntax. Operations are provided to iterate over the list of
atomic components of the name, modify the list, and compare two compound names.

An FN compound name_t object is constructed using the operation

fn compound name from attrset (), with arguments consisting of a string name
and an attribute set that contains the attribute “fn_syntax_type” with the value
“standard.”

64 Federated Naming Service Programming Guide * September 2002

CHAPTER 3

XFN Programming Examples

This chapter presents self-contained executable programs for the following programs:

A namespace browser
A printer client and server
A tool to populate attributes of users

Namespace Browser Example

Figure 3-1 illustrates the XFN APIs that are used by the browser application.

65

Start

fn_ctx handle_ from initial()

fn ctx list names() fn ctx lookup ()

v v v
FN string t FN ctx t FN ref t
A A

fn ctx handle from ref ()

Namespace Browser Application

FIGURE 3-1 Diagram of fnbrowse Program

The first example is a browser that lists all names that it finds in the namespace. When
the program is invoked, the browser is set at the initial context or the composite name
given on the command line.

See “Commands” on page 72 and “Sample Output” on page 72.

EXAMPLE 3-1 fnbrowse Source
/ *

* fnbrowse.c -- FNS namespace browser.
*

* To keep this example program relatively short,
* limited error checking is done.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xfn/xfn.h>
#define LINELEN 128 /* maximum length of input line */
typedef enum {CMD DOWN, CMD UP, CMD LIST, CMD SHOW, CMD QUIT} command;
static FN_status_t *status;
static unsigned int auth = 0; /* non-authoritative */
/* Lookup a context named relative to the initial context. */

FN_ctx_t *lookup (const FN_composite name_t *name) ;

/* Set the browser’s focus to the given context. */

66 Federated Naming Service Programming Guide * September 2002

EXAMPLE 3-1 fnbrowse Source (Continued)

void browse (FN _ctx t *ctx);

/* Set the browser’s focus to a subcontext of the given context.
void cmd _down (FN_ctx t *ctx, const FN_composite name_t *child) ;

/* Print the names bound within a context. */
void cmd list (FN_ctx t *ctx);

/*

* Print a description of the reference bound to "child" in the

*/

* given context or, i1f "child" is the empty string, the reference

* of the context itself.
*/

void cmd_show (FN_ctx t *ctx, const FN_composite name_t *child) ;

/*

* Read and parse the next command typed by the user. If the
* command has an argument, set *argp to point to the argument.
*/

command read command (FN_string t **argp);

/* Print an error message, and the description associated
* with "status".
*/

void error (const char *msg) ;

int
main (int argc, char *argv(])

{

unsigned char *target;

switch (arge) {
case 1:
target = (unsigned char *)"";
break;
case 2:
target = (unsigned char *)argvI[1l];
break;
default:
fprintf (stderr, "Usage: %s [<composite name>]\n",
argv[0]) ;
return (1) ;

status = fn_status_create();

browse (lookup (fn_composite name from str(target)));
return (0);

FN_ctx t *

Chapter 3 « XFN Programming Examples

67

EXAMPLE 3-1 fnbrowse Source (Continued)

lookup (const FN_composite name t *name)

FN_ctx_ t *ctx;
FN_ref t *ref;

ctx = fn ctx handle from initial (auth,
if (ctx == NULL) {

status) ;

error ("Could not construct initial context");

exit (1) ;
}
if (fn composite name is empty (name)) {
return (ctx);
}

ref = fn ctx lookup (ctx, name, status);
fn_ctx handle_destroy (ctx) ;
if (ref == NULL) ({
error ("Lookup failed") ;
exit (1) ;
1
ctx = fn ctx handle from ref (ref, auth,
fn_ref destroy(ref);
if (ctx == NULL) ({

status) ;

error ("Could not construct context handle") ;

exit (1) ;

}

return (ctx);

void

browse (FN_ctx t *ctx)
FN string t *arg;
FN_composite name t *child;

while (1) {
switch (read command(&arg)) {
case CMD_DOWN:

child = fn composite name from string(arg) ;

fn_string destroy(arg) ;
cmd_down (ctx, child) ;
fn_composite name_destroy(child) ;
break;
case CMD_UP:
return;
case CMD_LIST:
cmd_list (ctx) ;
break;
case CMD_SHOW:

child = fn composite name from string(arg) ;

fn string destroy(arg) ;
cmd_show (ctx, child);
fn composite name destroy(child) ;

68 Federated Naming Service Programming Guide * September 2002

EXAMPLE 3-1 fnbrowse Source (Continued)

break;

case CMD_QUIT:
exit (0) ;

}

}

void
cmd_down (FN_ctx_t *ctx, const FN_composite name t *child)

{

FN_ref t *ref;
FN ctx t *subctx;

ref = fn ctx lookup(ctx, child, status);

if (ref == NULL) {
error ("Lookup failed");
return;

}
subctx = fn ctx handle from ref (ref, auth, status);
fn_ref destroy(ref);

if (subctx == NULL) ({
error ("Could not construct context handle");
return;

}

browse (subctx) ;
fn_ctx_handle_destroy (subctx) ;

void
cmd_list (FN _ctx t *ctx)

{

FN_string t *empty string = fn string create();
FN_composite name t *empty name;

FN namelist t *children;

FN_string t *child;

unsigned intstatcode;

int has_children = 0;

empty name = fn composite name from string(empty_ string) ;

fn_string destroy (empty string);

children = fn_ctx_list_names(ctx, empty_name, status);
fn composite name destroy(empty name) ;

if (children == NULL) {
error ("Could not list names");
return;
}
while ((child = fn namelist next (children, status))
I= NULL) {
has_children = 1;

Chapter 3 « XFN Programming Examples

69

EXAMPLE 3-1 fnbrowse Source (Continued)

printf("$s ", fn string str(child, &statcode));
fn string destroy(child) ;
}
if (has_children)
printf ("\n") ;
}

fn_namelist destroy(children) ;

}

void

cmd_show (FN_ctx t *ctx, const FN_composite name_ t *child)
FN_string t *desc;
FN_ref t *ref;
unsigned int statcode;

ref = fn ctx lookup (ctx, child, status);
if (ref == NULL) {

error ("Lookup failed") ;

return;

desc = fn ref description(ref, 2, NULL);

fn_ref destroy(ref) ;

if (desc != NULL) (
printf ("%s", fn string str(desc, &statcode)) ;
fn_string destroy (desc) ;

} else {
printf (" [No description]\n") ;

}

command
read_command (FN_string t **argp)
{
char buf [LINELEN + 1];
char *cmd;
char *child;

while (printf ("\n> "), fflush(stdout), gets(buf) != NULL) {
cmd = strtok(buf, " \t");
if (ecmd == NULL)
continue;
1
if (strcmp(cmd, "down") == 0) {
child = strtok (NULL, " \t");
if (child != NULL) {
*argp =

fn string from str((unsigned char *)child) ;
return (CMD_DOWN) ;

70 Federated Naming Service Programming Guide * September 2002

EXAMPLE 3-1 fnbrowse Source (Continued)

if (strcmp(cmd, "up") == 0)
return (CMD_UP) ;

if (strcmp(cmd, "list") == 0) {
return (CMD_LIST) ;

if (strcmp(cmd, "show") == 0) {
child = strtok (NULL, " \t");
*argp = (child != NULL)

? fn_string from str((unsigned char *)child)
: fn_string create();
return (CMD_SHOW) ;

if (strcmp(cmd, "quit") == 0) {
return (CMD_QUIT) ;

}

fprintf (stderr, "Valid commands are: "
"down <child>, up, list, show [<child>], quit\n");

}

return (CMD_QUIT) ; /* EOF */

void
error (const char *msg)

{

FN_string t *reason;
unsigned int statcode;

fprintf (stderr, "%s", msg);
reason = fn_status_description(status, 0, NULL);
if (reason != NULL) {
fprintf (stderr, ": %s",
(const char *)fn string str(reason, &statcode)) ;
fn_string destroy (reason) ;

}

fprintf (stderr, "\n");

Compiling and Executing Browser Example

To compile Example 3-1, type:

% cc -o fnbrowse fnbrowse.c -lxfn

To browse the namespace starting from the initial context, the program is invoked as:

% fnbrowse

Or to browse a composite name and its descendents, type:

Chapter 3 « XFN Programming Examples 71

% fnbrowse composite_name

Commands

The commands supported by the fnbrowse program are summarized in Table 3-1 .

TABLE 3-1 Namespace Browser Commands

Command Usage

down child Sets the browser at the subcontext of the child

up Sets the browser at one level higher than the current context
list Lists the names bound within the current context

show Prints the reference of the current context

show child Prints the reference of the current context’s child

quit Exits the browser

Sample Output

Sample output for navigating the entire namespace is displayed here.

Note the following:
m The first 1ist command shows the initial context bindings.

® The fnbrowse program lists all names it finds in the namespace, including names
with underscores. These names are explained in “Initial Context Bindings”
on page 16.

m The three dots (. . .) represent the global namespace.

% fnbrowse
> list

_myorgunit ... _myself thishost myself _orgunit _host
_thisens myens thisens org orgunit thisuser _thishost
myorgunit user thisorgunit host thisorgunit myens user

Navigating the namespace is accomplished with the up and down commands. In the
following output, the down command brings the focus of the browser to the enterprise
root of the namespace, thisens (can also be myens). The show command displays
information about the reference and address type for thisens.

> down thisens

> show

Reference type: onc_fn enterprise
Address type: on_fn nisplus

72 Federated Naming Service Programming Guide * September 2002

length: 20
context type: enterprise root
representation: normal
version: 0
internal name: eng.wiz.com

> up

> down thisorgunit

Continuing with the example, this 1ist command shows the contexts for
thisorgunit.

> list
service _fs _host _service _site site _user host fs user

> down usr
Lookup failed: Name Not Found: ’usr’

> down service
> list
printer

> down printer

The 1ist command shows the printer names that are bound in the printer context.
The show command displays the reference for the child, colorful.

> list
celeste _default color colorful quartz nuttree puffin

> show colorful
printer
Reference type: onc_printers
Address type: onc_printers bsdaddr
length: 12
data: 0x00 0x00 0x00 0x08 0x62 0x6c 0x61 0x63 0x6b 0x63
....blackc 0x61 0x74 at
> down colorful
Could not construct context handle: No Supported Address
> quit

<

Printer Programming Example

Printer client and server software can take advantage of FNS to advertise and to
browse the printers available with respect to organizations, sites, users, and hosts. The
APIs used by the server and the client are XEN APIs, thereby ensuring that the
application is portable across the different naming services used for storing printer
bindings.

Chapter 3 « XFN Programming Examples 73

The programming example in this section shows how printer clients and servers
obtain and store printer bindings. Users can then make use of the FNS commands,
fnlist and fnlookup, to browse the printer context.

For example, use fnlist to look at the user printer context for jsmith:

o

% fnlist user/jsmith/service/printer
celeste

1p

_default

myprinter

Similarly, you can look at the organization’s printers:

o

% fnlist org/wiz.com/service/printer
sales_printer

mktg printer

eng printer

Alternatively, you can type:

o

% fnlist thisorgunit/service/printer

You can look at the printers at a specific site, for example, the printers in the MTV site:

% fnlist thisorgunit/site/MTV/service/printer
bl printer

b2 printer

Client

The scenario for Example 3-2 is a user who would like to print to a printer named
colorful in his organization’s context,
thisorgunit/service/printer/colorful. The example printer client illustrates
how the bindings for a specific printer are obtained.

The variable printer_binding contains the reference (the binding information) of the
named printer. Using the binding information, the printer client can connect to the
server and send the printer request. Note that the fn _ctx lookup () function can be
replaced by fn_ctx_list_name () or fn_ctx_list_bindings () to list all the
names and their bindings.

EXAMPLE 3-2 Print Client source

#include
#include
#include
#include

/*

<stdio.h>
<xfn/xfn.h>
<string.h>
<stdlib.h>

* Routine to obtain the address of a specific printe.
* This routine takes the printer name and the address type

74 Federated Naming Service Programming Guide * September 2002

EXAMPLE 3-2 Print Client source (Continued)

* as the input arguments and returns the address
* of the requested printer.

*/

char *
get_address_of printer(const char *printer name,
const char *address_type)

FN _composite name t *printer name comp;
FN status_t *status = fn_status_create();
FN_ctx t *initial_context;

FN_ref t *printer ref;

const FN_identifier t *addr_id;

const FN_ref addr_ t *address;

char *addr data; /* Return value */

void *ip;
size_t address_type_len, addr_len;

/* Convert the printer name to a composite name */
printer name comp = fn composite name_ from string(
(const unsigned char *)printer name) ;

/* Get the initial context */
initial context = fn ctx handle from_initial (0, status);

/* Check status for any error messages */
if (!fn_status is success(status)) {
fprintf (stderr,
"Unable to obtain the initial context\n");
return (0);
}
/* Perform a lookup for the printer name */
printer ref = fn ctx lookup(initial context,
printer name comp, status);

/* Check status for any error messages */
if (!fn_status_is success(status)) {
fprintf (stderr, "Lookup failed on: %s\n",
printer name) ;
return (0);

fn_ctx _handle_destroy(initial_context) ;
fn composite name destroy(printer name comp) ;
address_type_len = strlen(address_type) ;

/* Obtain the requested address from the address type */
for (address = fn ref first(printer ref, &ip);
address != NULL;
address = fn ref next (printer ref, &ip)) {
addr_id = fn ref addr_ type (address) ;
if (addr id->length == address type len &&

Chapter 3 « XFN Programming Examples 75

EXAMPLE 3-2 Print Client source (Continued)

strncmp (address_type,
(char *)addr_id->contents,
address_type len) == 0)
break;
}
if (address == NULL)
return (0);
addr_len = fn ref addr length(address) ;

addr_data = (char *) (malloc(addr_len + 1));

strncpy (addr_data, (char*) (fn_ref addr data(address)),
addr_len) ;

addr dataladdr_len] = '\0’;

fn ref destroy(printer ref);
return (addr data);

Calling the Printer Client Function

The following code could be used to call the get_address_of_printer () routine
shown above.

char* printer_server;
printer server = get_address_of printer

"thisorgunit/service/printer/colorful",

"onc_bsdaddr") ;

Server

Using the XEN APIs, print servers can advertise their services. Example 3-3 illustrates
a host, labpc, that would like to advertise the binding for the color printer
colorful. The FNS name for this printer is
thisorgunit/service/printer/colorful.

The main tasks are to obtain the composite name for the printer name, to generate the
binding (reference) for the printer, and to bind the name and references to the FNS
namespace.

EXAMPLE 3-3 Print Server Source

#include <stdio.h>

#include <xfn/xfn.h>

#include <string.h>

/*
* Routine to export the printer binding to the FNS name space.
* This routine takes the printer name along with its

76 Federated Naming Service Programming Guide ® September 2002

EXAMPLE 3-3 Print Server Source (Continued)

* reference type, address type, and address. Returns the status.
*/
int
export_printer to_fns(const char *printer name,
const char *reference_ type,
const char *address_type,
const char *address_data)

int return_ status;

FN_composite name_ t *printer name comp;
FN_identifier_t ref_id, addr_id;
FN_status_t *status;

FN_ref t *printer ref;

FN_ref addr_t *address;

FN_ctx_t *initial_context;

/* Obtain the initial context */

status = fn_status_create();

initial_context = fn_ctx_handle_from initial (0, status);

/* Check status for any error messages */

if ((return_status = fn status_code(status)) != FN SUCCESS) ({
fprintf (stderr, "Unable to obtain the initial context\n");
return (return status);

}

/* Construct the composite name for the printer name */

printer name comp = fn composite name_from string(
(unsigned char *)printer name) ;

/* Construct the printer address */

addr_id.format = FN_ID_ STRING;

addr_id.length = strlen(address type) ;

addr_id.contents = (void *) address_ type;

address = fn ref addr create(&addr_id,
strlen(address_data), (const void *) address_data);

/* Construct the printer reference */

ref id.format = FN_ID STRING;
ref id.length = strlen(reference_ type);
ref id.contents = (void *) reference type;
printer ref = fn ref create(&ref_ id);

/* Add the printer address to the printer reference */
fn ref append_addr (printer_ref, address);

/* Bind the reference to the context */
fn ctx bind(initial_ context, printer name comp, printer_ref, 0,

status) ;
/* Check the error status and return */
return status = fn status_code (status) ;

fn composite name destroy(printer name comp) ;
fn ref addr destroy(address) ;
fn ref destroy(printer ref);

Chapter 3 « XFN Programming Examples

77

EXAMPLE 3-3 Print Server Source (Continued)

fn status_destroy (status) ;
fn ctx _handle destroy(initial_ context) ;
return (return_status);

Calling the Printer Server Function

The following code could be used to call the export_printer_to_fns () routine
shown above.

export printer to fns
"thisorgunit/service/printer/colorful",
"onc_printers",
"onc_bsdaddr",

"labpc") ;

78 Federated Naming Service Programming Guide * September 2002

APPENDIX A

XFN Composite Names

This appendix describes XFN composite names in detail.

“Syntax” on page 79

“Composite Name and Naming System Boundaries” on page 81
“Strong Separation” on page 81

“Weak Separation” on page 82

“Composite Name Resolution” on page 83

“Explicit NNSPs: Junctions” on page 83

“Implicit NNSPs” on page 84

“XEN Links” on page 85

“Composite Name Encoding” on page 85

“Backus-Naur Form (BNF)” on page 86

“Decomposing the Composite Name String” on page 87
“Composing the Composite Name String” on page 89

Syntax

The standard string form for XFN composite names is the concatenation of the
components of a composite name from left to right, with the XFN component

separator character (/) separating each component. Components can be quoted using
either double-quote (" ") or single-quote (* *) pairs. You can use a backslash character

(\) to escape the XFN component separator or quote characters if the intention is for

these characters not to behave as separators or quotes. Note that quotation marks and

escape characters are interpreted as such only when they appear in places that need
quotes or escapes. For example, a quote appearing in an unquoted component is not

interpreted as a quote.

79

80

XEN defines an abstract data type, FN_composite_name_t, for representing the
structural form of a composite name. XFN also defines the syntax of how component
string names are composed into an XFN composite name and the corresponding rules
for converting an XFN composite name to its structural form from its string form, and
vice versa. The XEN client interface includes operations that perform these

conversions.

Table A-1 contains some examples of how the string form of XFN composite names
are decomposed into components according to the syntax of XFN composite names.
See also “Composite Name Encoding” on page 85 for more information.

TABLE A-1 String and Structural Forms of XFN Composite Names

String form

Components in FN_composite_name_t

a
a/b/c

a/

/a

a//

a//b

/

//
"a/b/c"/d
"a.b.c"/d
a.b.c/d
a"b/c
a'b/c
"a/b/c
\"a/b/c
a\b\c/d
a\b\/c
"a\"b"/c
‘"a/b/c"’

ra\/b’' /c

nn
nn nn
1

nn nn nn
1 ’

a/b/c, d
a.b.c, d
a.b.c, d
a"b, ¢
a'b, ¢
illegal name
"a, b, ¢
a\b\c, d
a\b/c
a"b, ¢
"a/b/c"

a\/b, ¢

Federated Naming Service Programming Guide * September 2002

TABLE A-1 String and Structural Forms of XFN Composite Names (Continued)

String form Components in FN_composite_name_t
a\\b/c a\b, c
a/\ nb a, n b

Composite Name and Naming System
Boundaries

There might not be a one-to-one correspondence between component separators and
naming system boundaries if a composite name contains names from naming systems
that use the same character as the XFN component separator to separate their atomic
names. Consequently, a component of a composite name might represent an atomic
name from a hierarchical naming system that uses the XFIN component separator or a
compound name. Strong separation and weak separation refer to how a context considers
the XFN component separator as a naming system boundary.

Strong Separation

An XEN context that treats the XFN component separator as a naming system
boundary supports strong separation. An XFN component separator that appears
within a component to be resolved by the context must be escaped or quoted.

Support for strong separation is a property of a context. A context that supports strong
separation expects to receive the name that it is going to resolve entirely in one
component of the composite name structure. When a composite name is supplied to
such a context, it consumes the leading component of the name; any remaining
components are left to be resolved by subordinate naming systems.

An XEN context with a name syntax that is either flat or hierarchical, and does not use
the XFN component separator as its atomic separator, supports strong separation.
Examples of naming systems that support strong separation are DNS and NIS+, both
of which have right-to-left dot-separated names. The following are examples of names
with DNS and NIS+ components, respectively.

.. ./wiz.com/orgunit/ppt
orgunit/accountspayable.finance/user/jsmith

Appendix A « XFN Composite Names 81

82

Weak Separation

An XEN context that does not always treat the XFN component separator as a naming
system boundary supports weak separation. This arises when the component naming
system associated with the context uses the same character as the XFN component
separator as its atomic component separator. The context allows its atomic separator to
appear unescaped and unquoted in its compound names when they occur in
composite names. This means that an XFN component separator might not necessarily
signify a naming system boundary.

Support for weak separation is a property of a context. A context that supports weak
separation expects to receive its atomic names in separate components of the
composite name structure. When a composite name is supplied to a context that
supports weak separation, the context consumes the leading components of the name
(and treats them as atomic components); any remaining components are resolved by
subordinate naming systems. The number of components consumed is determined
either syntactically or dynamically.

CDS names and X.500 names are examples of names that use the XFN component
separator as their atomic name separator. X.500 supports weak separation using a
syntactic method (by scanning for typed names) while CDS supports weak separation
by determining the naming system boundary dynamically.

The following example shows a composite name with an X.500 component.

.. ./c=us/o=wiz.com/orgunit /ppt

Note — An XEN context that supports weak separation using only syntax-specific
discovery of its naming system boundary might not always be federated with
arbitrary subordinate naming systems. If the subordinate naming system has a naming
syntax that is indistinguishable from that of the superior naming system, the superior
naming system is not able to identify the naming system boundary.

Naming systems that use the same character as the XFN component separator as their
atomic separator, and which cannot support weak separation because it cannot use a
syntactic or dynamic method to determine the naming system boundary, must provide
context implementations that support strong separation. This means that occurrences
of atomic separators must be quoted or escaped when they appear in compound
names within composite names.

Federated Naming Service Programming Guide * September 2002

Composite Name Resolution

Composite name resolution combines resolution in each component naming system
and resolution across federated naming system boundaries. There are several
techniques for resolving an XFN composite name in the underlying federation of
naming systems.

This section describes two implementation techniques for composite name resolution
across a naming system boundary. One technique uses an explicit next naming system
pointer (NNSP) to resolve across a naming system boundary, while the other uses an

implicit NNSP.

An NNSP is the XEN reference of an XFN context in which composite name
components from subordinate naming systems are to be resolved. NNSPs are entities
that “tie” naming systems together into a federated system. NNSPs can be bound to
names, in which case they are explicit NNSPs or junctions. NNSPs can also be
nameless, in which case they are implicit NNSPs.

Explicit NNSPs: Junctions

A junction is an atomic name that is bound to an NNSP. It is a terminal name in the
superior naming system. There is no limit to the number of junctions bound in a single
context, except that imposed by the context. A context can reserve certain names for
use as junctions or have other policies for selecting names for use as junctions. The
conventions used for identifying junctions and their references are context-specific.

Composite name resolution involving junctions proceeds as follows, depending on
whether the context supports strong or weak separation.

A context that supports strong separation and junctions consumes the first component
of the composite name supplied to it. The last atomic name of the first component
must be a junction. Any remaining components are resolved in the context named by
the junction.

A context that supports weak separation and junctions resolves a composite name by
consuming leading components until a junction is reached, at which point resolution
of any remaining components is continued in the context resolved by the junction.
Determination of whether a component is a junction can be done statically, using a
syntactic policy, or dynamically during resolution.

Appendix A« XFN Composite Names 83

84

Implicit NNSPs

When a context does not want to use part of its namespace for junctions, it uses
implicit NNSPs for federating subordinate naming systems. An implicit NNSP is
named using the XFN component separator. For example, the name wiz.com/ names
the implicit NNSP of wiz . com. Each context can have one implicit NNSP.

Composite name resolution involving implicit NNSPs proceeds as follows, depending
on whether the context supports strong or weak separation.

A context that supports strong separation and resolves composite names using an
implicit NNSP consumes the first component of the composite name supplied to it.
Any remaining components are resolved in the context pointed to by the implicit
NNSP of the first component.

A context that supports weak separation and implicit NNSPs in its implementation
needs to distinguish the use of the XFN component separator character as an XFN
component separator or an atomic separator. This means that such a context needs to
know when to exit the current (native) naming system and follow the NNSP. This can
be achieved using a static, syntactic policy or a dynamic, resolution-based policy.

With the syntactic policy, a context syntactically discovers where the boundary
between its naming system and the subordinate naming system files. This can impose
certain restrictions on the syntax of subordinate naming systems. Subordinate naming
systems must not permit, as valid top-level names, that are syntactically
indistinguishable from names allowed in the superior naming system. For example,
assume the superior naming system has a name syntax whose distinguishing feature
is that each atomic part must have an equal sign (=). The superior naming system
might impose as a policy that subordinate naming systems must not have top-level
names with an equal sign in them. Resolution in the superior naming system
continues until all leading components of the supplied composite name fitting the
syntactic rule are consumed. Any remaining components are resolved in the context of
the NNSP of the last component fitting the syntactic rule.

If a context is not able to syntactically differentiate between atomic components and
composite name components, or does not want to impose any syntactic restrictions, it
might be able to determine the naming system boundary at runtime, during
resolution. The policy is to continue resolution in the current naming system until
resolution fails, at which point the implicit NNSP associated with the last context at
which resolution succeeded is used to continue the resolution. A conflict arises if the
same atomic name is bound both in the last context and the context pointed to by the
last context’s implicit NNSP. In this case, the binding in the last context takes
precedence. This way of supporting weak separation requires the context to have the
capability of returning remaining unresolved parts of a given name.

Federated Naming Service Programming Guide * September 2002

Coexistence of Explicit and Implicit NNSPs

Naming systems that implement either technique can coexist in a federation. A
naming system that supports composite name resolution using junctions can be
federated with one that supports implicit NNSPs, and vice versa.

XFN Links

An XEN link affects name resolution in the following way. Suppose Iname is a link
bound to the atomic name aname in the context ctx. If at some point resolution of a
composite name cname reaches the context ctx and the next atomic name is aname,
resolution of aname results in the resolution of the link name /name. This is termed
“following the link.” If the first component of the link /name is the atomic name “.”,
the remaining components of [name are resolved relative to ctx; otherwise, Iname is
resolved from the initial context. The resolution of any remaining portion of the name

cname proceeds from the reference that results by resolving Iname.

The link name can itself cause resolution to resolve through other links. This gives rise
to the possibility of a cycle of links whose resolution could not terminate normally. As
a simple means to avoid such nonterminating resolutions, implementations can define
limits on the number of XFN links that can may be resolved in any single operation
invoked by the caller.

Composite Name Encoding

All XEN implementations are required to support the ISO 646 portable representation
(same encoding as ASCII) for XFN composite names. All other representations are
optional.

All characters of the string form of an XFN composite name use a single encoding.
Characters with different encodings cannot exist in the same name string. This does
not preclude component names of a composite name in its structural form from
having different encodings. Code set mismatches that occur during the process of
converting a composite name structure to its string form are resolved in an
implementation-dependent way. Strings with code sets that are determined by the
implementation to be compatible are converted without loss of information into a
single representation, which is also determined by the implementation. When an
implementation discovers that a composite name has components with incompatible
code sets, it returns the error code FN_E INCOMPATIBLE CODE SETS.

Appendix A« XFN Composite Names 85

Backus-Naur Form (BNF)

The following defines the standard string form of XFN composite names in Backus-
Naur Form (BNF). All the characters of the string representation of one name must

uniformly use the same encoding and locale information. The notations used are as
shown in Table A-2:

TABLE A-2 Backus-Naur Notation

Symbol

Meaning

<text>

{1

Is defined to be

Alternatively

Nonterminal element

Literal expression

The preceding syntactic unit can appear 0 or more times.
The preceding syntactic unit can appear 1 or more times.

The enclosed syntactic units are grouped as a single syntactic unit
(can be nested).

The XEN composite name syntax in BNF is shown in Table A-3:

TABLE A-3 XFN Composite Name Syntax Using BNF

XFN Composite Name

BNF Syntax

NULL :=

<PCS> =

<CharSet> ::=

<EscapeChar> ::=

<ComponentSep>::=

// Empty set

// Portable Character Set

The set consists of the glyphs:

// V" #S%&" () *+,\0123456789: ;<=>7?
//@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_’
//abcdefghijklmnopgrstuvwxyz{ |}~

<PCS>
| Characters from the repertoire of a string representation

86 Federated Naming Service Programming Guide * September 2002

TABLE A-3 XFN Composite Name Syntax Using BNF (Continued)

XFN Composite Name BNF Syntax

<Quotel>:= "

<Quote2> ::= ‘

<MetaChar> ::= <EscapeChar> | <ComponentSep>
<SimpleChar> ::=

// any character from <CharSet> with <MetaChar>, <Quotels>,

// and <Quote2> excluded. An<EscapeChar> <MetaChar>, or

// <EscapeChar> <Quotel>, or <EscapeChar> <Quote2> is equivalent to
// <SimpleChars.

<Component> ::= ,
<SimpleChars>*

| <SimpleChar>+ {<Quotel> | <Quote2> | <SimpleChars>}*

| <Quotels> <CharSet>* {<EscapeChar> <Quotels>}* <Quotel>
// <CharSet> must not contain unescaped <Quotels>

// (note that <Quote2> can appear unescaped)

| <Quote2> <CharSet>* {<EscapeChar> <Quote2s>}* <Quote2>
// <CharSet> must not contain unescaped <Quote2s>

// (note that <Quotels> can appear unescaped)

<CompositeName> ::=
NULL

| <Component> {<ComponentSep> <Components}*

Decomposing the Composite Name String

The function fn_composite name from string () returns an XFN composite
name in its structural form, FN_composite name_t, given the composite name’s
string representation. The syntax rules used by fn_composite name from
string () are as follows:

® An XFN composite name is decomposed into an ordered set of components
(<Component>).

® Each component represents a compound name, or a single atomic name of a
compound name if the compound name’s syntax uses the XFN component
separator (/) as a separator for its atomic parts and the compound name is not
quoted.

The following are the rules for parsing a composite name.

1. Any <ComponentSep> character that is neither escaped nor enclosed in quoted
strings is considered to be a component separator.

Any string enclosed by component separators is a component (<Component>).

A composite name is parsed and decomposed into components from left to right:

Appendix A« XFN Composite Names 87

a. The first component is the string preceding the first occurrence of a component
separator.

b. Empty components are processed as follows:

i. Aleading component separator (the composite name begins with a
component separator) means a leading null component.

ii. A trailing component separator (the composite name ends with a component
separator) means a trailing null component.

c. Two consecutive component separators mean a null component.

d. The name string that immediately follows the last component separator of the
composite name is the final component.

4. A component string is evaluated from left to right and converted into its standard
form according to the following rules:

a. A component string is considered to be quoted if it is enclosed in a pair of
matching unescaped quote characters (either a <Quotel> or a <Quote2> pair).
The quoted string must represent the full component; that is, a begin quote
must immediately be preceded by a component separator or no character, and
the end quote must immediately be followed by a component separator or no
character.

b. If a component does not contain a valid begin quote (a <Quotel> or <Quote2>
immediately preceded by either a component separator or no character), any
occurrence of <Quotel> or <Quote2> within that component is treated just as
any other <SimpleChar>.

¢. An unmatched begin quote (missing or misplaced end quote) fails with an
FN_E ILLEGAL_ NAME status.

d. Quotes are considered to be escaped in quoted strings if a matching quote
character is preceded immediately by the unescaped <EscapeChar>.

e. Quoted components are resolved by eliminating the quote characters from the
component name and substituting possibly escaped quotes by simple quote
characters. <MetaChar>s and the nonmatching quote characters enclosed in
quoted strings are treated just as any other <SimpleChar>.

f. Any of the defined metacharacters (<ComponentSep> and <EscapeChar>) is
considered to be escaped in an unquoted component name string if preceded
immediately by the unescaped <EscapeChar> (for instance, the sequence
<EscapeChar> <EscapeChar> <ComponentSep> denotes an escaped <EscapeChar>
but an unescaped <ComponentSep>).

g. <Quotel> and <Quote2> are considered to be escaped in an unquoted
component if and only if <EscapeChar> is preceded by a component separator
(that is, sequences <ComponentSep> <EscapeChar> <Quotel> or <ComponentSep>
<EscapeChar> <Quote2>). Other occurrences of <Quotel> and <Quote2> in an
unquoted component are treated just as any other <SimpleChar>.

h. Any occurrence of escaped <MetaChar>, escaped <Quotel>, or escaped
<Quote2> in unquoted components is substituted by the corresponding
unescaped character.

88 Federated Naming Service Programming Guide * September 2002

i. No substitution is done for <EscapeChar> <SimpleChar>. <EscapeChar>
<SimpleChar> maps to <EscapeChar> <SimpleChar>.

Composing the Composite Name String

The function fn_string from composite name () returns the string
representation of an XFN composite name given its structural form
(FN_composite_name_t). The following are the rules used by

fn string from composite name ().

1.

The components are added to the composite name string in left to right order (that
is, rightmost is the tail).

Successive components are separated by the component separator
(<ComponentSep>).

Empty components are handled in the following way:

a. Aleading empty component is represented by a leading <ComponentSep>.
b. A trailing empty component is represented by a trailing <ComponentSep>.

¢. An empty component occurring within a composite name is represented by two
consecutive <ComponentSep>s.

A composite name denoting a single non-empty component does not contain any
unescaped component separator.

Any occurrence of <ComponentSep> in a component is escaped by inserting
<EscapeChar> immediately preceding <ComponentSep>.

If the first character of a component is either <Quotel> or <Quote2>, it will be
escaped by inserting <EscapeChar> immediately preceding the quote.

Any occurrence of <EscapeChar> before <ComponentSep> in a component is
escaped by inserting <EscapeChar> immediately preceding the <EscapeChar>.

Any occurrence of <EscapeChar> as the first character of a component with
<Quotel> or <Quote2> as the second character in a component is escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>. Subsequent
<EscapeChar> occurring before any matching quote character is also escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>.

Appendix A« XFN Composite Names 89

90 Federated Naming Service Programming Guide * September 2002

APPENDIX B

XFN Composite Names Syntax

This appendix provides supplemental information about XFN composite name syntax.

“XEN Composite Name Encoding” on page 91

“XFN Backus-Naur Form (BNF)” on page 92

“XFN Decomposing the Composite Name String” on page 93
“XEN Composing the Composite Name String” on page 95

XFN Composite Name Encoding

All XEN implementations are required to support the ISO 646 portable representation
(same encoding as ASCII) for XFN composite names. All other representations are
optional.

All characters of the string form of an XFN composite name use a single encoding.
There cannot be characters with different encodings in the same name string. This
does not preclude component names of a composite name in its structural form from
having different encodings. Code set mismatches that occur during the process of
converting a composite name structure to its string form are resolved in an
implementation-dependent way. Strings with code sets that are determined by the
implementation to be compatible are converted without loss of information into a
single representation, which is also determined by the implementation. When an
implementation discovers that a composite name has components with incompatible
code sets, it returns the error code FN_E INCOMPATIBLE CODE_SETS.

91

XFN Backus-Naur Form (BNF)

The following defines the standard string form of XFN composite names in Backus-
Naur Form (BNF). All the characters of the string representation of one name must
uniformly use the same encoding and locale information. The notations used are
shown in Table B-1:

TABLE B-1 Backus-Naur Notation

Symbol

Meaning

<text>

{1

Is defined to be

Alternatively

Nonterminal element

Literal expression

The preceding syntactic unit can appear 0 or more times.
The preceding syntactic unit can appear 1 or more times.

The enclosed syntactic units are grouped as a single syntactic unit
(can be nested).

The XFN composite name syntax in BNF is shown in Table B-2:

TABLE B-2 XFN Composite Name Syntax Using BNF

XFN Composite Name

BNF Syntax

NULL :=

<PCS> =

<CharSet> ::=

<EscapeChar> ::=

<ComponentSep>::=

// Empty set

// Portable Character Set.

The set consists of the glyphs:

// V" #S%&" () *+,\0123456789: ;<=>7?
//@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_’
//abcdefghijklmnopgrstuvwxyz{ |}~

<PCS>
| Characters from the repertoire of a string representation

92 Federated Naming Service Programming Guide * September 2002

TABLE B-2 XFN Composite Name Syntax Using BNF (Continued)

XFN Composite Name BNF Syntax

<Quotel>:= "

<Quote2> ::= ‘

<MetaChar> ::= <EscapeChar> | <ComponentSep>
<SimpleChar> ::=

// any character from <CharSet> with <MetaChar>, <Quotels>,

// and <Quote2> excluded. An<EscapeChar> <MetaChar>, or

// <EscapeChar> <Quotel>, or <EscapeChar> <Quote2> is equivalent to
// <SimpleChars.

<Component> ::= ,
<SimpleChars>*

| <SimpleChar>+ {<Quotel> | <Quote2> | <SimpleChars>}*
| <Quotels> <CharSet>* {<EscapeChar> <Quotels>}* <Quotel>
// <CharSet> must not contain unescaped <Quotels>

// (note that <Quote2> can appear unescaped)

| <Quote2> <CharSet>* {<EscapeChar> <Quote2s>}* <Quote2>
// <CharSet> must not contain unescaped <Quote2s>

// (note that <Quotels> can appear unescaped)

<CompositeName> ::=
NULL

| <Component> {<ComponentSep> <Components}*

XFN Decomposing the Composite Name
String

The function fn_composite_name_from string () returns an XFN composite
name in its structural form, FN composite name t, given the composite name’s
string representation. The syntax rules used by fn_composite name from
string () are as follows:

® An XFN composite name is decomposed into an ordered set of components
(<Component>).

m Each component represents a compound name, or a single atomic name of a
compound name if the compound name’s syntax uses the XFN component
separator (/) as a separator for its atomic parts and the compound name is not
quoted.

The following are the rules for parsing a composite name:

Appendix B « XFN Composite Names Syntax 93

1. Any <ComponentSep> character that is neither escaped nor enclosed in quoted
strings is considered to be a component separator.

2. Any string enclosed by component separators is a component (<Component>).

3. A composite name is parsed and decomposed into components from left to right:

a.

b.

C.
d.

The first component is the string preceding the first occurrence of a component
separator.

Empty components are processed as follows:

i. Aleading component separator (the composite name begins with a
component separator) means a leading null component.

ii. A trailing component separator (the composite name ends with a component
separator) means a trailing null component.

Two consecutive component separators mean a null component.

The name string that immediately follows the last component separator of the
composite name is the final component.

4. A component string is evaluated from left to right and converted into its standard
form, according to the following rules:

a.

A component string is considered to be quoted if it is enclosed in a pair of
matching unescaped quote characters (either a <Quotel> or a <Quote2> pair).
The quoted string must represent the full component; that is, a begin quote
must immediately be preceded by a component separator or no character, and
the end quote must immediately be followed by a component separator or no
character.

If a component does not contain a valid begin quote (a <Quotel> or <Quote2>
immediately preceded by either a component separator or no character), any

occurrence of <Quotel> or <Quote2> within that component is treated just as

any other <SimpleChar>.

An unmatched begin quote (missing or misplaced end quote) fails with an
FN_E ILLEGAL NAME status.

Quotes are considered to be escaped in quoted strings if a matching quote
character is preceded immediately by the unescaped <EscapeChar>.

Quoted components are resolved by eliminating the quote characters from the
component name and substituting possibly escaped quotes by simple quote
characters. <MetaChar>s and the nonmatching quote characters enclosed in
quoted strings are treated just as any other <SimpleChar>.

Any of the defined metacharacters (<ComponentSep> and <EscapeChar >) is
considered to be escaped in an unquoted component name string if preceded
immediately by the unescaped <EscapeChar> (for instance, the sequence
<EscapeChar> EscapeChar>ComponentSep> denotes an escaped <EscapeChar> but
an unescaped <ComponentSep>).

<Quotel> and <Quote2> are considered to be escaped in an unquoted
component if and only if EscapeChar> is preceded by a component separator
(that is, sequences <ComponentSep> <EscapeChar> <Quotel> or <ComponentSep>

94 Federated Naming Service Programming Guide * September 2002

<EscapeChar> <Quote2>). Other occurrences of <Quotel> and <Quote2> in an
unquoted component are treated just as any other <SimpleChar>.

h. Any occurrence of escaped <MetaChar>, escaped <Quotel>, or escaped
<Quote2> in unquoted components is substituted by the corresponding
unescaped character.

i. No substitution is done for <EscapeChar> SimpleChar>. <EscapeChar>
SimpleChar> maps to <EscapeChar> <SimpleChar>.

XEN Composing the Composite Name
String

The function fn_string from_composite_name () returns the string
representation of an XFN composite name given its structural form
(FN_composite name t). The following are the rules used by

fn string from composite name ().

1.

The components are added to the composite name string in left to right order (that
is, rightmost is the tail).

Successive components are separated by the component separator
(<ComponentSep>).

Empty components are handled in the following way:

a. Aleading empty component is represented by a leading <ComponentSep>.
b. A trailing empty component is represented by a trailing <ComponentSep>.

c. An empty component occurring within a composite name is represented by two
consecutive <ComponentSep>s.

A composite name denoting a single non-empty component does not contain any
unescaped component separator.

Any occurrence of <ComponentSep> in a component is escaped by inserting
<EscapeChar> immediately preceding <ComponentSep>.

If the first character of a component is either <Quotel> or <Quote2>, it will be
escaped by inserting <EscapeChar> immediately preceding the quote.

Any occurrence of <EscapeChar> before <ComponentSep> in a component is escaped
by inserting <EscapeChar> immediately preceding the <EscapeChar>.

Any occurrence of <EscapeChar> as the first character of a component with
<Quotel> or <Quote2> as the second character in a component is escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>. Subsequent
<EscapeChar> occurring before any matching quote character is also escaped by
inserting <EscapeChar> immediately preceding the EscapeChar>.

Appendix B « XFN Composite Names Syntax 95

96 Federated Naming Service Programming Guide * September 2002

Glossary

application-level name
service

atomic name

attribute

binding

BNF

composite name

compound name

context

DNS

Application-level name services are incorporated in applications
offering services such as files, mail, and printing. Application-level
name services are bound below enterprise-level name services. The
enterprise-level name services provide contexts in which contexts of
application-level name services can be bound.

An indivisible component of a name as defined by the naming
convention.

Each named object is associated with a set of zero or more attributes.
Each attribute in the set has a unique attribute identifier, an attribute
syntax, and a set of zero or more distinct attribute values.

The association of an atomic name with an object reference. For
simplicity, an object reference and the object it refers to are used
interchangeably in this guide.

Backus-Naur Form.

A name that spans multiple naming systems. It consists of an ordered
list of zero or more components. Each component is a name from the
namespace of a single naming system. Composite name resolution is
the process of resolving a name that spans multiple naming systems.

A sequence of atomic names composed according to the naming
convention of a naming system.

An object whose state is a set of bindings with distinct atomic names.
Every context has an associated naming convention. A context
provides a lookup (resolution) operation, which returns the reference,
and may provide operations such as binding names, unbinding names,
and listing bound names.

Domain Name System. A system that provides the naming policy and
mechanisms for mapping domain and machine names to addresses on
the Internet.

97

98

enterprise-level name
service

enterprise root
federated naming

service

federated naming
system

federated namespace

generic context

global context

global name service

host context

implicit naming system
pointer

initial context

junction

naming convention

namespace

namespace identifier

A name service that names objects within an enterprise. The types of
objects named are organizational units, sites, users, hosts, and files.
Enterprise-level name services are bound below global name services.
Global name services provide contexts in which the root contexts of
enterprise-level naming systems can be bound.

The root context of an enterprise. A context for naming objects found
at the root of the enterprise namespace.

The service offered by a federated naming system.

An aggregation of autonomous naming systems that cooperate to
support name resolution of composite names through a standard
interface. Each member of a federation has autonomy in its choice of
operations other than name resolution.

The set of all possible names generated according to the policies that
govern the relationships among member naming systems and their
respective namespaces.

A context for binding names used in applications.

A context for naming objects that have global names (currently, DNS
and X.500 are the only global naming systems specified by XFN).

A name service that has worldwide scope, such as Internet DNS and
X.500. The types of entities named at this global level are typically
countries, states, provinces, cities, companies, universities, institutions,
and government departments and ministries. Each of these entities can
be an enterprise.

A context for naming objects related to a computer.

An unnamed reference that points to a context in another naming
system.

Every XFN name is interpreted relative to some context, and every
XEN naming operation is performed on a context object. The XFN
interface provides a function that allows the client to obtain an initial
context object that provides a starting point for resolution of composite
names.

A name in one namespace bound to a context in the next naming
system.

Every name is generated by a set of syntactic rules called a naming
convention.

The set of all names in a naming system.

A special atomic name used to refer to the root of a namespace.

Federated Naming Service Programming Guide * September 2002

name service

naming system

next naming system
pointer (NNSP)

organizational units

organizational unit
context

parent context

reference

root context
service context
site context

strong separation

subcontext
user context

weak separation

XFN link

X.500

The service offered by a naming system. It is accessed through its
interface.

A connected set of contexts of the same type (having the same naming
convention) and providing the same set of operations with identical
semantics. In the UNIX operating system, for example, the set of
directories in a given file system (and the naming operations on
directories) constitutes a naming system.

Reference to a context in which composite names from subordinate
naming systems are resolved.

An enterprise is organized into organizational units such as centers,
laboratories, departments, divisions, and so on. An organizational unit
is a subunit of an enterprise.

A context for naming objects related to an organizational unit within
an enterprise.

A context in which this context and its siblings are bound.

The thing bound to a name. It contains addresses identifying the
communication endpoints of the object.

A context for naming the objects found in the root of the namespace.
A context for naming objects that provide services.
A context for naming objects related to a physical site.

The case where the XFN context treats the XFIN component separator
as the naming system boundary.

A context bound within another context.
A context for naming objects related to a human user.

The case where the XFN context does not treat the XFN component
separator as the naming system boundary.

A special form of reference that has a composite name as an address.
Like any other type of reference, an XFN link is bound to an atomic
name in a context.

A global-level directory service defined by an Open Systems
Interconnection (OSI) standard. The X.500 directory service is not
supported in a 64-bit application.

Glossary 99

100 Federated Naming Service Programming Guide * September 2002

Index

Numbers and Symbols
. (dots)
... hamespace identifier, 18
/... namespace identifier, 18
| (pipe) in BNF notation, 86, 92
" (quotation marks)
BNF notation, 86,92
XEN composite name syntax, 79
XEN standard syntax model, 61
’ (single quote) in XFN composite name syntax,
79
/ (slashes)
/... namespace identifier, 18
XFN component separator, 61, 79, 81
*in BNF notation, 86, 92
+ in BNF notation, 86, 92
O value, 31
{} (curly braces) in BNF notation, 86, 92
::=in BNF notation, 86, 92

A

abstract data types, 30
addresses

multiple, 20

references, 20

XEN interface parameters, 53
administration

FNS on NIS+

ENS context management, 37, 38

API usage model, 25

application programming
namespace browser example, 66
code, 66
commands, 72
diagram, 66
sample output, 72
printer example, 73
client, 74
server, 76
XFN composite names, 85
naming system boundaries and
component separators, 81, 82
resolution, 83, 85
syntax, 79,81
XFN interfaces, 29
abstract data types, 30
base attribute interface, 39, 45, 48
base context interface, 31, 39
conventions, 30
memory management policies, 31
overview, 29,31
parameters, 52, 60
parsing compound names, 60
status codes, 49,52
status objects, 33, 41, 49
usage, 30
applications
API usage model, 25
FNS implementation, 25
ENS interaction, 26,27
name services, 12,14
architectural model, 24
attributes, 21

101

architectural model (Continued)
composite names, 22,24
compound names, 21,22
contexts, 20
initial context, 24
references, 20
XFN links, 23
as XFN component escape character, 79
ASCII string XFN identifier format, 54
asterisk (*) in BNF notation, 86, 92
atomic names
in compound names, 21
in contexts, 20
attribute-modification lists, 54
attribute operations
attribute-modification operations, 42
get attribute, 41
get attribute identifiers, 43
get attribute values, 42
get multiple attributes, 44
modify attribute, 42
modify multiple attributes, 44
multiple-attribute operations, 43, 45, 48
relationship to naming operations, 40, 41
single-attribute operations, 41, 43
status objects, 41
XFN attribute model, 40
attributes
adding attributes or values, 42
base attribute interface, 39, 45, 48
attribute-modification operations, 42
multiple-attribute operations, 43, 45, 48
relationship to naming operations, 40,
41
single-attribute operations, 41, 43
status objects, 41
supporting interfaces, 29, 30
XFN attribute model, 40
described, 21
getting, 41
identifiers, 43
multiple attributes, 44
syntax attributes of context, 38
values, 42
sets, 54
syntax attributes, 61, 62
getting, 38
XEN interface parameters, 54

attributes (Continued)
XFN model, 40

backslash () as XFN component escape
character, 79
Backus-Naur Form (BNF), 86, 87,92,93
base attribute interface, 39, 45, 48
abstract data types, 30
attribute-modification operations, 42
conventions, 30
memory management policies, 31
multiple-attribute operations, 43, 45, 48
parameters, 52, 60
attribute modification lists, 54
attribute sets, 54
attributes and attribute values, 54
composite names, 53
identifiers, 53
references and addresses, 53
strings, 54
parsing compound names, 60
syntax attributes, 61, 62
XEN standard syntax model, 61, 62
relationship to naming operations, 40, 41
single-attribute operations, 41, 43
status objects, 41
supporting interfaces, 29, 30
usage, 30
XFN attribute model, 40
base context interface, 31
abstract data types, 30
context handles, 33
conventions, 30
lookup and list contexts, 34, 36
managing contexts, 37, 38
memory management policies, 31
names in context operations, 32
other context operations, 38, 39
parameters, 52, 60
attribute modification lists, 54
attribute sets, 54
attributes and attribute values, 54
composite names, 53
identifiers, 53
references and addresses, 53

102 Federated Naming Service Programming Guide * September 2002

parameters (Continued)
strings, 54
parsing compound names, 60
syntax attributes, 61, 62
XFN standard syntax model, 61, 62
requirements for operations, 32
status objects, 33
supporting interfaces, 29, 30
updating bindings, 36, 37
usage, 30
begin-quote (") in XFN standard syntax model,
61
bind/lookup model, 25
bindings
adding, 36
initial context bindings for enterprise
naming, 16
example, 17
table, 18
listing names and bindings in contexts, 35
removing
terminal atomic name, 36
renaming, 37
updating, 36, 37
BNF (Backus-Naur Form), 86, 87,92, 93
boundaries (naming system) and component
separators, 81, 82
strong separation, 81
weak separation, 82

browsing
namespace browser programming example,
66
code, 66

commands, 72
diagram, 66
sample output, 72

Cc

client programming interfaces, 29

abstract data types, 30

base attribute interface, 39, 45, 48
attribute-modification operations, 42
multiple-attribute operations, 43, 45, 48
relationship to naming operations, 40,

41

single-attribute operations, 41, 43

base attribute interface (Continued)
status objects, 41
XFN attribute model, 40
base context interface, 31, 39
context handles, 33
lookup and list contexts, 34, 36
managing contexts, 37,38
names in context operations, 32
other context operations, 38, 39
requirements for operations, 32
status objects, 33
updating bindings, 36, 37
conventions, 30
memory management policies, 31
overview, 29,31
parameters, 52, 60
attribute modification lists, 54
attribute sets, 54
attributes and attribute values, 54
composite names, 53
identifiers, 53
references and addresses, 53
strings, 54
parsing compound names, 60
syntax attributes, 61, 62
XEN standard syntax model, 61, 62
status codes, 49, 52
status objects, 49
base attribute interface, 41
base context interface, 33
supporting interfaces, 29, 30
usage, 30
codes
attribute-modification operation, 42
link status, 49
status, 49,52
commands
fnbrowse program, 72
XFN interface function names, 30
component separator (/)
naming system boundaries and, 81, 82
strong separation, 81
weak separation, 82
XFN composite name syntax, 79, 81
XFN standard syntax model, 61
composing XFN composite name strings, 89,
95

Index 103

composite names
applications” use of FNS, 25
defined, 11,22
examples
hosts, 19
illustration, 24
organizations, 19
sites, 20
user, 19
host naming systems, 19
organization naming systems, 19
parsing XFN composite names, 87, 89, 93,
95
resolution, 83, 85
coexistence of explicit and implicit
NNSPs, 85
explicit NNSPs, 83
implicit NNSPs, 84
XFN links, 85
site naming systems, 20
user naming systems, 19
XFN composite names, 85
naming system boundaries and
component separators, 81, 82
resolution, 83, 85
syntax, 79,81,89,91, 95
XEN context implementation, 32
XEN interface parameters, 53
XEN syntax, 79,81, 89,91, 95
Backus-Naur Form (BNF), 86, 87,92, 93
composing the composite name string,
89, 95
decomposing the composite name string,
87,89, 93,95
encoding, 85,91
string and structural forms, 80, 81
compound names, 21,22
described, 21
hierarchical naming system examples, 21,
22
parsing, 60
syntax attributes, 61, 62
XEN standard syntax model, 61, 62
const parameters, 31
const pointers, 31
constants, XFN interface conventions, 30
context operations
bind, 36

context operations (Continued)

construct context handle from reference,

construct handle to initial context,
context handles, 33

create subcontext,
destroy context handle,

destroy subcontext,

get reference to context,

37,38
39

38

38

get syntax attributes of context, 38

list bindings,

35

list names, 34, 35

lookup, 34
lookup link,

35,36

managing contexts,
names in, 32

rename, 37
requirements,
status objects,
unbind, 36

updating bindings,

32
33

37,38

36, 37

context shared object modules, 26

contexts

base context interface,

context handles,
lookup and list contexts,

managing contexts,
names in context operations, 32
other context operations, 38, 39
requirements for operations, 32
status objects, 33
supporting interfaces,
updating bindings,
creating subcontexts,

defined, 20

destroying
handles, 39
subcontexts, 38
getting

handles, 33
references, 38

syntax attributes,

initial context

31

33

34, 36

37,38

36,

29,30
37

37,38

38

bindings for enterprise naming,

described,

24

managing and examining,
syntax-related attributes,

tree structure,
XEN contexts,

104 Federated Naming Service Programming Guide * September 2002

21,22
20

37,38
61

33

16

33

curly braces in BNF notation, 86, 92

D

data types
abstract data types, 30
XEN interface conventions, 30
decomposing XFN composite name strings,
87, 89,93, 95
deleting
See removing
destroying
context handles, 39
subcontexts, 38
DNS
See Domain Name System (DNS)
Domain Name System (DNS), hierarchical
naming system, 21
dots (.)
... namespace identifier, 18
/... namespace identifier, 18
double quotes
BNF notation, 86, 92
XEN composite name syntax, 79
XEN standard syntax model, 61

E

encoding for XFN composite names, 85, 91
end quote (") in XFN standard syntax model,
61
enterprise level of service, 12,14
enterprise namespace policies
arrangement of objects, 14
illustrated, 14
initial context bindings, 16
example, 17
table, 18
namespace structure
example, 16
table of policies, 13
erasing
See removing
error messages
status codes, 50, 52

examining
See displaying
explicit NNSPs, 83
exporting the FNS interface, 26

F

federated enterprise namespace policies

See enterprise namespace policies
federated global namespace policies

See global namespace policies
Federated Naming Service

API usage model, 25

application view, 26, 27

architectural model, 24

described, 7,11

need for, 12

XEN compliance, 7,12
files and file systems

enterprise namespace policies, 13

as enterprise policy entities, 15
FN_ prefix, 30
fn_ prefix, 30
fn_attr_get() function, 41, 43
fn_attr_get_ids() function, 43
fn_attr_get_values() function, 41, 43
fn_attr_modify() function, 42
fn_attr_multi_modify() function, 44
fn_attr_multiget() function, 44
FN_ATTR_OP_ADD_EXCLUSIVE operation

code, 42
FN_ATTR_OP_ADD operation code, 42
FN_ATTR_OP_ADD_VALUES operation code,

42

FN_ATTR_OP_REMOVE operation code, 42
FN_ATTR_OP_REMOVE_VALUES operation

code, 42
fn_composite_name_from_string() function,

87,89, 93,95

fn_ctx_bind() function, 36
fn_ctx_bindinglist_destroy() function, 35
fn_ctx_bindinglist_next() function, 35
fn_ctx_create_subcontext() function, 37, 38
fn_ctx_destroy_subcontext() function, 38
fn_ctx_get_ref() function, 38
fn_ctx_get_syntax_attrs() function, 38
fn_ctx_handle_destroy() function, 39

Index 105

fn_ctx_handle_from_initial() function, getting
context handles, 33
fn_ctx_handle_from_ref() function, 33
fn_ctx_list_names() function, 34
fn_ctx_listbindings() function, 35
fn_ctx_lookup() function
support required, 32
using, 34
fn_ctx_lookup_link() function, 35, 36
fn_ctx_namelist_destroy() function, 34, 35
fn_ctx_namelist_next() function, 34, 35
fn_ctx_rename() function, 37
fn_ctx_unbind() function, 36
EN_E_ATTR_NO_PERMISSION status code,
50
FN_E_ATTR_VALUE_REQUIRED status code,
50
FN_E_AUTHENTICATION_FAILURE status
code, 50
FN_E_COMMUNICATION_FAILURE status
code, 50
FN_E_CONFIGURATION_ERROR status code,
50
FN_E_CONTINUE status code, 50
FN_E_CTX_NO_PERMISSION status code, 50
FN_E_CTX_NOT_EMPTY status code, 50
FN_E_CTX_UNAVAILABLE status code, 50
FN_E_ILLEGAL_NAME status code, 50, 61
FN_E_INCOMPATIBLE_CODE_SETS status
code, 50,62
FN_E_INSUFFICIENT_RESOURCES status
code, 50
FN_E_INVALID_ATTR_VALUE status code,
51
FN_E_INVALID_ENUM_HANDLE status code,
51
FN_E_INVALID_SYNTAX_ATTRS status code,
51
FN_E_LINK_ERROR status code, 49, 51
FN_E_LINK_LOOP_LIMIT status code, 51
FN_E_MALFORMED_LINK status code, 51
FN_E_MALFORMED_REFERENCE status
code, 51
FN_E_NAME_IN_USE status code, 51
FN_E_NAME_NOT_FOUND status code, 51
FN_E_NO_SUCH_ATTRIBUTE status code,
51

FN_E_NO_SUPPORTED_ADDRESS status
code, 51
FN_E_NOT_A_CLIENT status code, 52
FN_E_OPERATION_NOT_SUPPORTED status
code, 32,52
FN_E_PARTIAL_RESULT status code, 52
FN_E_SYNTAX_NOT_SUPPORTED status
code, 52
FN_E_TOO_MANY_ATTR_VALUES status
code, 52
FN_E_UNSPECIFIED_ERROR status code, 52
FN_ID_DCE_UUID XFN identifier format, 54
FN_ID_ISO_OID_STRING XFN identifier
format, 54
FN_ID_STRING XFN identifier format, 54
fn_multigetlist_destroy() function, 44
fn_multigetlist_next() function, 44
FN_status_t parameter, 33
fn_std_syntax_ava_separator XFN syntax
attribute, 63
fn_std_syntax_begin_quote XFN syntax
attribute, 63
fn_std_syntax_case_insensitive XFN syntax
attribute, 62
fn_std_syntax_code_sets XFN syntax attribute,
63
fn_std_syntax_end_quote XFN syntax attribute,
63
fn_std_syntax_escape XFN syntax attribute,
62
fn_std_syntax_separator XFN syntax attribute,
62
fn_std_syntax_typeval_separator XFN syntax
attribute, 63
fn_string_from_composite_name() function,
89, 95
FN_SUCCESS status code, 50
fn_syntax_direction XFN syntax attribute, 62
fn_syntax_type XEN syntax attribute, 62
fn_valuelist_destroy() function, 43
fn_valuelist_next() function, 43
fnbrowse program example, 66
code, 66
commands, 72
diagram, 66
sample output, 72

106 Federated Naming Service Programming Guide * September 2002

ENS

See Federated Naming Service
fs or _fs namespace identifier, FNS policy, 13
functions, XFN interface conventions, 30

G
getting
attribute identifiers, 43
attribute values, 42
attributes, 41
context handles, 33
multiple attributes, 44
reference to context, 38
syntax attributes of context, 38
global level of service, 13,14
global namespace policies, illustrated, 14

H
handles
context handles
destroying, 39
getting, 33
overview, 31
hierarchical naming system
compound name examples, 21,22
enterprise namespace structure, 15
host or _host namespace identifier
ENS policy, 13
initial context binding, 18
hosts
as enterprise policy entities, 14
composite name examples, 20
enterprise namespace policies, 13

identifiers
namespace
enterprise level, 18
XEN interface parameters, 53
implicit NNSPs, 84
initial context
bindings for enterprise naming, 16

bindings for enterprise naming (Continued)
example, 17
table, 18
described, 24
handle construction operation, 33
interfaces for programming
See client programming interfaces
Internet DNS
See domain name system (DNS)
ISO OID XFN identifier formats, 54

J

junctions, 83

L
links (XFN)
composite name resolution, 85
described, 23
lookup operation, 35, 36
status object information, 49
XFN header file, 30
XEN library, 30
listing
names and bindings in contexts, 35
names bound in contexts, 34, 35
namespace browser programming example,
66
code, 66
commands, 72
diagram, 66
sample output, 72
lookup model, 25
lookup operations
contexts, 34
XFN links, 35, 36

M

managing
See administration

memory management policies for client
interfaces, 31

Index 107

messages
See error messages

modules, context shared object, 26

multiple addresses, 20

multiple attributes
getting, 44
getting identifiers, 43
modifying, 44

myens or _myens namespace identifier, initial
context binding, 18

myorgunit or _myorgunit namespace identifier,
initial context binding, 18

myself or _myself namespace identifier, initial
context binding, 18

N

name resolution
context operation support requirements, 32
status object information, 49
XEN composite names, 83, 85
coexistence of explicit and implicit
NNSPs, 85
explicit NNSPs, 83
implicit NNSPs, 84
XEN links, 85
namespace browser programming example,
66
code, 66
commands, 72
diagram, 66
sample output, 72
namespace identifiers
enterprise level
initial context bindings, 18
namespace policies
See policies
naming
context operation names, 32
XEN attribute operations and, 40, 41
XFN interface conventions, 30
naming system boundaries and component
separators, 81, 82
strong separation, 81
weak separation, 82

navigating
See browsing
next naming system pointers (NNSPs)
XEN composite name resolution
coexistence of explicit and implicit
NNSPs, 85
explicit NNSPs, 83
implicit NNSPs, 84
NNSPs
See next naming system pointers (NNSPs)

o)

operations
See attribute operations
org namespace identifier, initial context binding,
18
organizational units
composite name examples, 19
described, 14
enterprise namespace policies, 13
orgunit or _orgunit namespace identifier
ENS policy, 13
initial context binding, 18
OSF DCE UUID XEN identifier format, 54

P
parsing
compound names, 60
syntax attributes, 61, 62
XFN standard syntax model, 61, 62
XFN composite names, 87, 89, 93, 95
periods

See dots (.)
pipe character (1) in BNF notation, 86, 92
plus sign (+) in BNF notation, 86, 92
pointer types, 31
policies
enterprise namespace
arrangement of objects, 14
illustrated, 14
initial context bindings, 16
table of policies, 13
global namespace
illustrated, 14

108 Federated Naming Service Programming Guide * September 2002

policies (Continued)
information specified, 12
levels of services, 14
overview, 15
predefined constants, 30
primary status code, 49
printer namespace identifier, FNS policy, 13
printers
enterprise namespace policies, 13
programming example, 73

client, 74
server, 76
programming

See application programming

Q

quotation marks
BNF notation, 86, 92
XEN composite name syntax, 79
XEN standard syntax model, 61

R

RAM, memory-management policies for client
interfaces, 31
references
defined, 20
getting for contexts, 38
handle construction operation, 33
status object information, 49
XFN interface parameters, 53
relative distinguished names, 22
removing
bindings, 36
destroying
context handles, 39
subcontexts, 38
renaming bindings, 37

resolution
See name resolution

S

separator character (/)
naming system boundaries and, 81, 82
strong separation, 81
weak separation, 82
XFN composite name syntax, 79, 81
XEN standard syntax model, 61
servers, print server programming example,

76
service or _service namespace identifier, FNS
policy, 13
services

as enterprise policy entities, 14
enterprise namespace policies, 13
levels, 14
sets of attributes, 54
single quote in XFN composite name syntax,
79
site or _site namespace identifier
ENS policy, 13
initial context binding, 18
sites
composite name examples, 20
enterprise namespace policies, 13
as enterprise policy entities, 14
slash (/)
/... namespace identifier, 18
XFN component separator, 61, 79, 81
Solaris
FNS implementation
applications, 25
status codes, 49, 52
link status, 49
status objects, 49
base attribute interface, 41
base context interface, 33
strings
composing XFN composite name strings,
89,95
decomposing XFN composite name strings,
87,89, 93,95
XFN composite name syntax, 79, 81
XFN identifier formats, 54

Index 109

strings (Continued)

XEN interface parameters, 54

XEN standard syntax model, 61
subcontexts

See subordinate contexts
subordinate contexts

creating, 37,38

destroying, 38

T

_tsuffix, 30

thisens or _thisens namespace identifier, initial
context binding, 18

thishost or _thishost namespace identifier, initial
context binding, 18

thisorgunit or _thisorgunit namespace identifier,
initial context binding, 18

thisuser namespace identifier, initial context
binding, 18

troubleshooting
status codes, 50, 52

U

UNIX hierarchical naming system, 21
updating
bindings, 36, 37
user or _user namespace identifier
FNS policy, 13
initial context binding, 18
users
as enterprise policy entities, 14
composite name examples, 19
enterprise namespace policies, 13

\'J
viewing
See displaying

X

X.500 global directory service, hierarchical
naming system, 22
X/Open Federated Naming
attribute model, 40
client programming interfaces, 29
abstract data types, 30
base attribute interface, 39, 45, 48
base context interface, 31, 39
conventions, 30
memory management policies, 31
overview, 29,31
parameters, 52, 60
parsing compound names, 60
status codes, 49, 52
status objects, 33, 41, 49
supporting interfaces, 29, 30
usage, 30
component separator and naming system
boundaries, 81, 82
strong separation, 81
weak separation, 82
composite names, 85
naming system boundaries and
component separators, 81, 82
resolution, 83, 85
syntax, 79,81,89,91,95
compound-name syntax model, 61, 62
contexts, 20
described, 12
FNS conformity, 7,12
identifier formats, 54
links
composite name resolution, 85
described, 23
lookup operation, 35, 36
status object information, 49
XFN header file, 30
XEN library, 30
XFN
See X/Open Federated Naming

110 Federated Naming Service Programming Guide * September 2002

