Contents

Preface  21

Introduction  27
Intro(1M)  28

System Administration Commands  29
6to4relay(1M)  30
accept(1M)  33
acct(1M)  35
acctadm(1M)  38
acctcms(1M)  41
acctcon(1M)  43
acctmerg(1M)  45
acctprc(1M)  46
acctsh(1M)  48
adbgen(1M)  51
addbadsec(1M)  54
add_drv(1M)  56
admintool(1M)  60
afbconfig(1M)  62
aliasadm(1M)  70
answerbook2_admin(1M)  72
apache(1M)  73
arp(1M)  75
aset(1M)  77
aset.restore(1M) 83
audit(1M) 84
auditconfig(1M) 85
auditd(1M) 91
auditreduce(1M) 93
audit_startup(1M) 101
auditstat(1M) 102
audit_warn(1M) 104
automount(1M) 106
automountd(1M) 113
autopush(1M) 114
bdconfig(1M) 116
boot(1M) 118
bootconfchk(1M) 139
bsmconv(1M) 140
bsmrecord(1M) 142
busstat(1M) 145
cachefs(1M) 149
cachefslog(1M) 150
cachefs backlog(1M) 152
cachefsstat(1M) 154
cachefs wsize(1M) 156
captoinfo(1M) 158
catman(1M) 159
cfgadm(1M) 163
cfgadm_ac(1M) 174
cfgadm_pci(1M) 178
cfgadm_sbd(1M) 183
cfgadm_scsi(1M) 197
cfgadm_sysctrl(1M) 203
cfgadm_usb(1M) 207
cfsadmin(1M) 217
cg14config(1M) 221
chat(1M) 223
check-hostname(1M) 231
check-permissions(1M) 232
chown(1M) 233
chroot(1M) 234
cimworkshop(1M) 235
clear_locks(1M) 237
clinfo(1M) 238
crl(1M) 239
consadm(1M) 240
conv_lp(1M) 242
conv_lpd(1M) 243
coreadm(1M) 245
cpustat(1M) 249
cron(1M) 252
cvcd(1M) 254
dcs(1M) 255
dd(1M) 257
devattr(1M) 263
devfree(1M) 264
devfsadm(1M) 265
devinfo(1M) 267
devlinks(1M) 268
devnm(1M) 272
devreserv(1M) 273
df(1M) 275
dfmounts(1M) 279
dfmounts_nfs(1M) 281
dfshares(1M) 282
dfshares_nfs(1M) 283
df_ufs(1M) 285
dhcpagent(1M) 286
dhcpconfig(1M) 290
dhcpmgr(1M) 297
dhtadm(1M) 299
dig(1M) 305
directoryserver(1M) 313
disks(1M) 329
diskscan(1M) 333
dispadmin(1M) 334
dmesg(1M) 337
dmi_cmd(1M) 338
dmiget(1M) 341
dminfo(1M)  342
dmispd(1M)  344
dnskeygen(1M)  345
domainname(1M)  347
drvconfig(1M)  348
dsvclockd(1M)  350
dumpadm(1M)  351
editmap(1M)  356
edquota(1M)  358
eeprom(1M)  360
efdaemon(1M)  369
etrn(1M)  370
fbconfig(1M)  372
fdetach(1M)  374
fdisk(1M)  375
f(1M)  381
ffbconfig(1M)  383
ff_ufs(1M)  391
flar(1M)  392
flarcreate(1M)  400
fmthard(1M)  405
fncheck(1M)  408
fncopy(1M)  409
fncreate(1M)  411
fn_create_fs(1M)  418
fncreate_printer(1M)  423
fndestroy(1M)  426
fnselect(1M)  427
fnypd(1M)  429
format(1M)  430
fruadm(1M)  434
fsck(1M)  436
fsck_cachefs(1M)  440
fsck_pcfs(1M)  441
fsck_udfs(1M)  443
fsck_udfs(1M)  446
fsdb(1M)  450
fsdb_udfs(1M)  451
lpset(1M) 855
lpshut(1M) 858
lpsystem(1M) 859
lpusers(1M) 860
lu(1M) 862
luactivate(1M) 865
lucancel(1M) 867
lucompare(1M) 868
lucreate(1M) 871
lucurr(1M) 886
ludelete(1M) 888
ludesc(1M) 890
lufslist(1M) 893
lumake(1M) 895
lumount(1M) 897
lurename(1M) 900
lustatus(1M) 902
luupgrade(1M) 904
luxadm(1M) 914
m64config(1M) 930
mail.local(1M) 935
makedbm(1M) 937
makemap(1M) 939
makeuuid(1M) 941
mdmonitor(1M) 943
medstat(1M) 944
metacler(1M) 946
metadb(1M) 949
metadevadm(1M) 954
metahts(1M) 957
metainit(1M) 961
metaoffline(1M) 971
metaparam(1M) 973
metarecover(1M) 975
metarenvname(1M) 977
metareplace(1M) 981
metaroot(1M) 984
metaset(1M) 986
metassist(1M) 992
metastat(1M) 997
metasync(1M) 1001
metattach(1M) 1003
mib2mof(1M) 1008
mibiisa(1M) 1010
mipagent(1M) 1033
mipagentconfig(1M) 1036
mipagentstat(1M) 1042
mkdevalloc(1M) 1044
mkdevmaps(1M) 1045
mkfifo(1M) 1046
mkfile(1M) 1047
mkfs(1M) 1048
mkfs_pcfs(1M) 1050
mkfs_udfs(1M) 1054
mkfs_ufs(1M) 1056
mknod(1M) 1060
modinfo(1M) 1061
modload(1M) 1062
modunload(1M) 1063
mofcomp(1M) 1064
mofreg(1M) 1067
monitor(1M) 1070
mount(1M) 1082
mountall(1M) 1085
mount_cachefs(1M) 1087
mountd(1M) 1090
mount_hsfs(1M) 1091
mount_nfs(1M) 1093
mount_pcfs(1M) 1101
mount_tmpfs(1M) 1103
mount_udfs(1M) 1105
mount_ufs(1M) 1107
mount_xmemfs(1M) 1111
mpstat(1M) 1113
msgid(1M) 1115
mvdir(1M) 1116
named-bootconf(1M) 1117
named-xfer(1M) 1118
ncacnfdf(1M) 1120
ncheck(1M) 1121
nccheck_ufs(1M) 1123
ndc(1M) 1124
ndd(1M) 1126
netstat(1M) 1128
newaliases(1M) 1135
newfs(1M) 1137
newkey(1M) 1143
nfsd(1M) 1145
nfslgd(1M) 1147
nfssstat(1M) 1150
nisaddcred(1M) 1155
nisaddent(1M) 1161
nisauthconf(1M) 1166
nisbackup(1M) 1168
nis_cachemgr(1M) 1171
nisclient(1M) 1173
nisinit(1M) 1178
nisldapmaptest(1M) 1182
nislog(1M) 1186
nisping(1M) 1187
nispopulate(1M) 1190
nisprefadm(1M) 1195
nisrestore(1M) 1199
nisserver(1M) 1202
nissetup(1M) 1205
nisshowcache(1M) 1206
nisstat(1M) 1207
nisupdkeys(1M) 1209
nlsadmin(1M) 1211
nscd(1M) 1217
nslookup(1M) 1219
nstest(1M) 1228
nsupdate(1M) 1232
ntdpdate(1M) 1235
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntpq(1M)</td>
<td>1238</td>
</tr>
<tr>
<td>ntptrace(1M)</td>
<td>1245</td>
</tr>
<tr>
<td>obpsym(1M)</td>
<td>1247</td>
</tr>
<tr>
<td>ocfserv(1M)</td>
<td>1249</td>
</tr>
<tr>
<td>parse_dynamic_clustertoc(1M)</td>
<td>1250</td>
</tr>
<tr>
<td>passmgmt(1M)</td>
<td>1251</td>
</tr>
<tr>
<td>patchadd(1M)</td>
<td>1253</td>
</tr>
<tr>
<td>patchrm(1M)</td>
<td>1264</td>
</tr>
<tr>
<td>pbind(1M)</td>
<td>1270</td>
</tr>
<tr>
<td>pcmciad(1M)</td>
<td>1272</td>
</tr>
<tr>
<td>pfinstall(1M)</td>
<td>1273</td>
</tr>
<tr>
<td>pgxconfig(1M)</td>
<td>1277</td>
</tr>
<tr>
<td>pidd(1M)</td>
<td>1282</td>
</tr>
<tr>
<td>ping(1M)</td>
<td>1284</td>
</tr>
<tr>
<td>pkgadd(1M)</td>
<td>1289</td>
</tr>
<tr>
<td>pkgadm(1M)</td>
<td>1295</td>
</tr>
<tr>
<td>pkgask(1M)</td>
<td>1299</td>
</tr>
<tr>
<td>pkgchk(1M)</td>
<td>1301</td>
</tr>
<tr>
<td>pkgrm(1M)</td>
<td>1304</td>
</tr>
<tr>
<td>pmadm(1M)</td>
<td>1307</td>
</tr>
<tr>
<td>pmconfig(1M)</td>
<td>1312</td>
</tr>
<tr>
<td>pntadm(1M)</td>
<td>1314</td>
</tr>
<tr>
<td>pooladm(1M)</td>
<td>1321</td>
</tr>
<tr>
<td>poolbind(1M)</td>
<td>1323</td>
</tr>
<tr>
<td>poolcfg(1M)</td>
<td>1325</td>
</tr>
<tr>
<td>ports(1M)</td>
<td>1329</td>
</tr>
<tr>
<td>powerd(1M)</td>
<td>1333</td>
</tr>
<tr>
<td>pppd(1M)</td>
<td>1334</td>
</tr>
<tr>
<td>pppoe(1M)</td>
<td>1359</td>
</tr>
<tr>
<td>pppoed(1M)</td>
<td>1362</td>
</tr>
<tr>
<td>pppstats(1M)</td>
<td>1367</td>
</tr>
<tr>
<td>praudit(1M)</td>
<td>1370</td>
</tr>
<tr>
<td>printmgr(1M)</td>
<td>1372</td>
</tr>
<tr>
<td>privatepw(1M)</td>
<td>1374</td>
</tr>
<tr>
<td>prodreg(1M)</td>
<td>1376</td>
</tr>
<tr>
<td>projadd(1M)</td>
<td>1394</td>
</tr>
<tr>
<td>projdel(1M)</td>
<td>1396</td>
</tr>
<tr>
<td>projmod(1M)</td>
<td>1397</td>
</tr>
</tbody>
</table>
rpc.metamedd(1M) 1485
rpc.metamhd(1M) 1486
rpc.nisd(1M) 1487
rpc.nisd_resolv(1M) 1492
rpc.nispasswdd(1M) 1493
rpc.rexd(1M) 1495
rpc.rstatd(1M) 1497
rpc.rusersd(1M) 1498
rpc.rwallld(1M) 1499
rpc.smserverd(1M) 1500
rpc.sprayd(1M) 1501
rpc.ypasswdd(1M) 1502
rpc.ypupdated(1M) 1505
rpld(1M) 1506
rquotad(1M) 1511
rsh(1M) 1512
rtc(1M) 1514
rtquery(1M) 1515
runacct(1M) 1517
rwall(1M) 1520
sac(1M) 1521
sacadm(1M) 1524
sadmind(1M) 1528
saf(1M) 1532
sar(1M) 1549
savecore(1M) 1551
scadm(1M) 1553
sckmd(1M) 1560
sendmail(1M) 1562
setuname(1M) 1583
sf880drd(1M) 1584
sftp-server(1M) 1585
share(1M) 1586
shareall(1M) 1588
share_nfs(1M) 1589
showmount(1M) 1596
showrev(1M) 1597
shutdown(1M) 1599
Contents

1762
1764
1767
1768
1769
1777
1785
1791
1805
1808
1809
1812
1813
1816
1819
1821
1823
1827
1828
1830
1833
1836
1839
1841
1845
1846
1847
1856
1858
1860
1867
1878
1880
1883
1885
1886
1887
1894
Preface

Both novice users and those familiar with the SunOS operating system can use online man pages to obtain information about the system and its features. A man page is intended to answer concisely the question “What does it do?” The man pages in general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the information it references:

- Section 1 describes, in alphabetical order, commands available with the operating system.
- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.
- Section 2 describes all of the system calls. Most of these calls have one or more error returns. An error condition is indicated by an otherwise impossible returned value.
- Section 3 describes functions found in various libraries, other than those functions that directly invoke UNIX system primitives, which are described in Section 2.
- Section 4 outlines the formats of various files. The C structure declarations for the file formats are given where applicable.
- Section 5 contains miscellaneous documentation such as character-set tables.
- Section 6 contains available games and demos.
- Section 7 describes various special files that refer to specific hardware peripherals and device drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls are also described.
Section 9 provides reference information needed to write device drivers in the kernel environment. It describes two device driver interface specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

Section 9F describes the kernel functions available for use by device drivers.

Section 9S describes the data structures used by drivers to share information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally follow this order, but include only needed headings. For example, if there are no bugs to report, there is no BUGS section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME

This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full path name is shown. Options and arguments are alphabetized, with single letter arguments first, and options with arguments next, unless a different argument order is required.

The following special characters are used in this section:

[ ] Brackets. The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values can be provided for the previous argument, or the previous argument can be specified multiple times, for example, "filename ...".

| Separator. Only one of the arguments separated by this character can be specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTOCOL</td>
<td>This section occurs only in subsection 3R to indicate the protocol description file.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, and functions are described under USAGE.</td>
</tr>
<tr>
<td>IOCTL</td>
<td>This section appears on pages in Section 7 only. Only the device class that supplies appropriate parameters to the ioctl(2) system call is called ioctl and generates its own heading. ioctl calls for a specific device are listed alphabetically (on the man page for that specific device). ioctl calls are used for a particular class of devices all of which have an io ending, such as mtio(7I).</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>This section lists the command options with a concise summary of what each option does. The options are listed literally and in the order they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.</td>
</tr>
<tr>
<td>OPERANDS</td>
<td>This section lists the command operands and describes how they affect the actions of the command.</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>This section describes the output – standard output, standard error, or output files – generated by the command.</td>
</tr>
<tr>
<td>RETURN VALUES</td>
<td>If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or -1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared void do not return values, so they are not discussed in RETURN VALUES.</td>
</tr>
</tbody>
</table>
| ERRORS        | On failure, most functions place an error code in the global variable errno indicating why they failed. This section lists alphabetically all error codes a function can generate and describes the conditions that cause each error. When more than

Preface 23
one condition can cause the same error, each condition is described in a separate paragraph under the error code.

**USAGE**

This section lists special rules, features, and commands that require in-depth explanations. The subsections listed here are used to explain built-in functionality:

- Commands
- Modifiers
- Variables
- Expressions
- Input Grammar

**EXAMPLES**

This section provides examples of usage or of how to use a command or function. Wherever possible a complete example including command-line entry and machine response is shown. Whenever an example is given, the prompt is shown as `example%`, or if the user must be superuser, `example#`. Examples are followed by explanations, variable substitution rules, or returned values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE sections.

**ENVIRONMENT VARIABLES**

This section lists any environment variables that the command or function affects, followed by a brief description of the effect.

**EXIT STATUS**

This section lists the values the command returns to the calling program or shell and the conditions that cause these values to be returned. Usually, zero is returned for successful completion, and values other than zero for various error conditions.

**FILES**

This section lists all file names referred to by the man page, files of interest, and files created or required by commands. Each is followed by a descriptive summary or explanation.

**ATTRIBUTES**

This section lists characteristics of commands, utilities, and device drivers by defining the attribute type and its corresponding value. See attributes(5) for more information.

**SEE ALSO**

This section lists references to other man pages, in-house documentation, and outside publications.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTICS</td>
<td>This section lists diagnostic messages with a brief explanation of the condition causing the error.</td>
</tr>
<tr>
<td>WARNINGS</td>
<td>This section lists warnings about special conditions which could seriously affect your working conditions. This is not a list of diagnostics.</td>
</tr>
<tr>
<td>NOTES</td>
<td>This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.</td>
</tr>
<tr>
<td>BUGS</td>
<td>This section describes known bugs and, wherever possible, suggests workarounds.</td>
</tr>
</tbody>
</table>
Introduction
### Intro(1M)

#### NAME
Intro – introduction to maintenance commands and application programs

#### DESCRIPTION
This section describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.

Because of command restructuring for the Virtual File System architecture, there are several instances of multiple manual pages that begin with the same name. For example, the `mount`, `mount(1M)`, `mount_cachefs(1M)`, `mount_hsfs(1M)`, `mount_nfs(1M)`, `mount_tmpfs(1M)`, and `mount_ufs(1M)`. In each such case the first of the multiple pages describes the syntax and options of the generic command, that is, those options applicable to all FSTypes (file system types). The succeeding pages describe the functionality of the FSType-specific modules of the command. These pages list the command followed by an underscore (_) and the FSType to which they pertain. Note that the administrator should not attempt to call these modules directly. The generic command provides a common interface to all of them. Thus the FSType-specific manual pages should not be viewed as describing distinct commands, but rather as detailing those aspects of a command that are specific to a particular FSType.

#### COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other arguments according to the following syntax:

```plaintext
name [option(s)] [cmdarg(s)]
```

where:

- **name** The name of an executable file.
- **option**
  - `-noargletter(s)` or,
  - `-argletter<>optarg`
  
  where `<>` is optional white space.
- **noargletter** A single letter representing an option without an argument.
- **argletter** A single letter representing an option requiring an argument.
- **optarg** Argument (character string) satisfying preceding `argletter`.
- **cmdarg** Pathname (or other command argument) not beginning with `−` or, `−` by itself indicating the standard input.

#### ATTRIBUTES
See `attributes(5)` for a discussion of the attributes listed in this section.

#### SEE ALSO
`getopt(1), getopt(3C), attributes(5)`

#### DIAGNOSTICS
Upon termination, each command returns 0 for normal termination and non-zero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other inability to cope with the task at hand. It is called variously “exit code,” “exit status,” or “return code,” and is described only where special conventions are involved.

#### NOTES
Unfortunately, not all commands adhere to the standard syntax.
System Administration Commands
The 6to4relay command is used to configure 6to4 relay router communication. Relay router communication support is enabled by setting the value of a variable that stores an IPv4 address within the tun module. This variable is global to all tunnels and defines the policy for communication with relay routers. By default, the address is set to INADDR_ANY (0.0.0.0), and the kernel interprets the value to indicate that support for relay router communication is disabled. Otherwise, support is enabled, and the specified address is used as the IPv4 destination address when packets destined for native IPv6 (non-6to4) hosts are sent through the 6to4 tunnel interface. The 6to4relay command uses a project private ioctl to set the variable.

6to4relay used without any options outputs the current, in-kernel, configuration status. Use the -a option to send packets to a specific relay router’s unicast address instead of the default anycast address. The address specified with the -a option does not specify the policy for receiving traffic from relay routers. The source relay router on a received packet is non-deterministic, since a different relay router may be chosen for each sending native IPv6 end-point.

Configuration changes made by using the 6to4relay are not persistent across reboot. The changes will persist in the kernel only until you take the tunnel down.

The 6to4relay command supports the following options:

- **-a** `addr` Use the specified address, `addr`.
- **-e** Enable support for relay router. Use `-a` `addr` if it is specified. Otherwise, use the default anycast address, 192.88.99.1.
- **-d** Disable support for the relay router.
- **-h** Help

The following operands are supported:

- **addr** A specific relay router’s unicast address. `addr` must be specified as a dotted decimal representation of an IPv4 address. Otherwise, an error will occur, and the command will fail.

**EXAMPLE 1** Printing the In-Kernel Configuration Status

Use `/usr/sbin/6to4relay` without any options to print the in-kernel configuration status.

```
example# /usr/sbin/6to4relay
```
EXAMPLE 1 Printing the In-Kernel Configuration Status  (Continued)

If 6to4 relay router communication is disabled, the administrator will see the following message:

6to4relay: 6to4 Relay Router communication support is disabled.

If 6to4 router communication is enabled, the user will see this message:

6to4relay: 6to4 Relay Router communication support is enabled.
IPv4 destination address of Relay Router = 192.88.99.1

EXIT STATUS

The following exit values are returned:

0  Successful completion.
>0  An error occurred.

FILES

/usr/sbin/6to4relay  The default installation root

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ifconfig(1M), attributes(5)


DIAGNOSTICS

The 6to4relay reports the following messages:

6to4relay: input (0.0.0.0) is not a valid IPv4 unicast address

Example:

example# 6to4relay -e -a 0.0.0.0

Description: The address specified with the -a option must be a valid unicast address.

6to4relay: option requires an argument -a

usage:

6to4relay
6to4relay -e [-a <addr>]
6to4relay -d
6to4relay -h
Example:
example# 6to4relay -e -a

Description: The -a option requires an argument.

usage:
6to4relay
6to4relay -e [-a <addr>]
6to4relay -d
6to4relay -h

Example:
example# 6to4relay -e -d

Description: The options specified are not permitted. A usage message is output to the screen.

usage:
6to4relay
6to4relay -e [-a <addr>]
6to4relay -d
6to4relay -h

Example:
example# 6to4relay -a 1.2.3.4

Description: The -e option is required in conjunction with the -a option. A usage message is output to the screen.

6to4relay: ioctl (I_STR) : Invalid argument

Example:
example# 6to4relay -e -a 239.255.255.255

Description: The address specified with the -a option must not be a class d addr.
accept(1M)

NAME
accept, reject – accept or reject print requests

SYNOPSIS
accept destination...
reject [-r reason] destination...

DESCRIPTION
accept allows the queueing of print requests for the named destinations.
reject prevents queueing of print requests for the named destinations.
Use lpstat -a to check if destinations are accepting or rejecting print requests.
accept and reject must be run on the print server; they have no meaning to a
client system.

OPTIONS
The following options are supported for reject:
-r reason Assigns a reason for rejection of print requests for destination.
Enclose reason in quotes if it contains blanks. reason is reported by
lpstat -a. By default, reason is unknown reason for existing
destinations, and newprinter for destinations added to the
system but not yet accepting requests.

OPERANDS
The following operands are supported.
destination The name of the destination accepting or rejecting print requests.
Destination specifies the name of a printer or class of printers (see
lpadmin(1M)). Specify destination using atomic name. See
printers.conf(4) for information regarding the naming
conventions for atomic names.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/var/spool/lp/* LP print queue.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
</tbody>
</table>

SEE ALSO
enable(1), lp(1), lpstat(1), lpadmin(1M), lpsched(1M), printers.conf (4),
attributes(5)
accept and reject affect only queueing on the print server’s spooling system. Requests made from a client system remain queued in the client system’s queueing mechanism until they are cancelled or accepted by the print server’s spooling system.

accept is CSI-enabled except for the destination name.
Accounting software is structured as a set of tools (consisting of both C programs and shell procedures) that can be used to build accounting systems. `acctsh(1M)` describes the set of shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into `/var/adm/wtmpx`, as described in `utmpx(4)`. The programs described in `acctcon(1M)` convert this file into session and charging records, which are then summarized by `acctmerg(1M)`.

Process accounting is performed by the system kernel. Upon termination of a process, one record per process is written to a file (normally `/var/adm/pacct`). The programs in `acctprc(1M)` summarize this data for charging purposes; `acctcms(1M)` is used to summarize command usage. Current process data may be examined using `acctcom(1)`.

Process accounting records and connect time accounting records (or any accounting records in the `tacct` format described in `acct(3HEAD)`) can be merged and summarized into total accounting records by `acctmerg(see tacct format in acct(3HEAD)))`. `prtacct(see acctsh(1M))` is used to format any or all accounting records.

`acctdisk` reads lines that contain user ID, login name, and number of disk blocks and converts them to total accounting records that can be merged with other accounting records. `acctdisk` returns an error if the input file is corrupt or improperly formatted.

`acctdusg` reads its standard input (usually from `find / -print`) and computes disk resource consumption (including indirect blocks) by login.

`accton` without arguments turns process accounting off. If `filename` is given, it must be the name of an existing file, to which the kernel appends process accounting records (see `acct(2)` and `acct(3HEAD)`).
acct writes a utmpx(4) record to filename. The record contains the current time and a string of characters that describe the reason. A record type of ACCOUNTING is assigned (see utmpx(4)) reason must be a string of 11 or fewer characters, numbers, $, or spaces. For example, the following are suggestions for use in reboot and shutdown procedures, respectively:

```
cacctwtmp "acctg on" /var/adm/wtmpx
cacctwtmp "acctg off" /var/adm/wtmpx
```

For each user currently logged on, closewtm p puts a false DEAD_PROCESS record in the /var/adm/wtmpx file. runacct (see runacct(1M)) uses this false DEAD_PROCESS record so that the connect accounting procedures can track the time used by users logged on before runacct was invoked.

For each user currently logged on, runacct uses utmp2wtm p to create an entry in the file /var/adm/wtmpx, created by runacct. Entries in /var/adm/wtmpx enable subsequent invocations of runacct to account for connect times of users currently logged in.

### OPTIONS

The following options are supported:

- `-u filename` Places in filename records consisting of those filenames for which acctdusg charges no one (a potential source for finding users trying to avoid disk charges).

- `-p filename` Specifies a password file, filename. This option is not needed if the password file is /etc/passwd.

### ENVIRONMENT VARIABLES

If any of the LC_* variables (LC_TYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the operational behavior of acct for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables are set in the environment, the "C" (U.S. style) locale determines how acct behaves.

- **LC_CTYPE** Determines how acct handles characters. When LC_CTYPE is set to a valid value, acct can display and handle text and filenames containing valid characters for that locale. acct can display and handle Extended Unix Code (EUC) characters where any character can be 1, 2, or 3 bytes wide. acct can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

- **LC_TIME** Determines how acct handles date and time formats. In the "C" locale, date and time handling follows the U.S. rules.

### FILES

- `/etc/passwd` Used for login name to user ID conversions.

- `/usr/lib/acct` Holds all accounting commands listed in sub-class 1M of this manual.
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO
acct.com(1), acct.cms(1M), acct.con(1M), acct.merg(1M), acct.prc(1M),
acct.sh(1M), fwtmp(1M), runacct(1M), acct(2), acct(3HEAD), passwd(4),
utmpx(4), attributes(5), environ(5)

System Administration Guide: Basic Administration
SYNOPSIS
/usr/sbin/acctadm [-DErux] [-d resource_list] [-e resource_list]
                         [-f filename] [task | process | flow]

DESCRIPTION
acctadm configures various attributes of the extended accounting facility. Without
arguments, acctadm displays the current status of the extended accounting facility.

OPTIONS
The following options are supported:

-d resource_list
  Disable reporting of resource usage for resource.
  Specify resource_list as a comma-separated list of
  resources or resource groups.

  This option requires an operand. See OPERANDS.

-D
  Disable accounting of the given operand type without closing the
  accounting file. This option can be used to temporarily stop writing
  accounting records to the accounting file without closing it. To close
  the file use the -x option. See -x.

-e resource_list
  Enable reporting of resource usage for resource. Specify
  resource_list as a comma-separated list of resources or
  resource groups.

  This option requires an operand. See OPERANDS.

-E
  Enable accounting of the given operand type without sending
  the accounting output to a file. This option
  requires an operand. See OPERANDS.

-f filename
  Send the accounting output for the given operand type
  to filename. If filename exists, its contents are lost.

  This option requires an operand. See OPERANDS.

-r
  Display available resource groups.

  When this option is used with an operand, it displays
  resource groups available for a given accounting type.
  When no operand is specified, this option displays
  resource groups for all available accounting types. See
  OPERANDS.

-u
  Configure accounting based on the contents of
  /etc/acctadm.conf.

-x
  Deactivate accounting of the given operand type. This
  option also closes the accounting file for the given
  accounting type if it is currently open.

  This option requires an operand. See OPERANDS.
The -d, -D, -e, -E, -f, and -x options require an operand.

The following operands are supported:

process Run acctadm on the process accounting components of the extended accounting facility.

task Run acctadm on the task accounting components of the extended accounting facility.

flow Run acctadm on the IPQoS accounting components of the extended accounting facility.

The optional final parameter to acctadm represents whether the command should act on the process, system task or IPQoS accounting components of the extended accounting facility.

EXAMPLES

EXAMPLE 1 Displaying the Current Status

The following command displays the current status. In this example, system task accounting is active and tracking only CPU resources. Process and flow accounting are not active.

$ acctadm
Task accounting: active
    Task accounting file: /var/adm/exacct/task
    Tracked task resources: extended,mstate
    Untracked task resources: host
    Process accounting: inactive
    Process accounting file: none
    Tracked process resources: none
    Untracked process resources: extended,host,mstate
    Flow accounting: inactive
    Flow accounting file: none
    Tracked flow resources: none
    Untracked flow resources: extended

EXAMPLE 2 Activating Basic Process Accounting

The following command activates basic process accounting:

$ acctadm -e basic -f /var/adm/exacct/proc process

EXAMPLE 3 Displaying Available Resource Groups

The following command displays available resource groups:

$ acctadm -r
process:
    extended pid,uid,gid,cpu,time,command,ttty,projid,taskid,ancpid,
    wait-status,flag
    basic pid,uid,gid,cpu,time,command,ttty,flag
    task:
    extended taskid,projid,cpu,time,host,mstate,anctaskid

acctadm(1M)
EXAMPLE 3 Displaying Available Resource Groups  (Continued)

basic  taskid,projid,cpu,time
flow:
extended saddr,daddr,sport,dport,proto,dsfield,nbytes,npkts,
action,ctime,lseen,projid,uid
basic saddr,daddr,sport,dport,proto,nbytes,npkts,action

EXAMPLE 4 Displaying Resource Groups for Task Accounting

The following command displays resource groups for task accounting:

```
$ acctadm -r task
```

extended taskid,projid,cpu,time,host,mstate,anctaskid
basic    taskid,projid,cpu,time

EXIT STATUS  The following exit values are returned:
0  Successful completion.
   The modifications to the current configuration were valid and made
   successfully.
1  An error occurred.
   A fatal error occurred either in obtaining or modifying the accounting
   configuration.
2  Invalid command line options were specified.

FILES  /etc/acctadm.conf

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  acct(2), attributes(5), ipqos(7IPP)

NOTES  Both extended accounting and regular accounting can be active.
Available resources can vary from system to system, and from platform to platform.
acctcms – command summary from process accounting records

SYNOPSIS

```
/usr/lib/acct/acctcms [-a [-o] [-p]] [-c] [-j] [-n] [-s] [-t] filename...
```

DESCRIPTION

acctcms reads one or more filenames, normally in the form described in acct(3HEAD). It adds all records for processes that executed identically named commands, sorts them, and writes them to the standard output, normally using an internal summary format.

OPTIONS

- **a**
  Print output in ASCII rather than in the internal summary format. The output includes command name, number of times executed, total kcore-minutes, total CPU minutes, total real minutes, mean size (in K), mean CPU minutes per invocation, "hog factor," characters transferred, and blocks read and written, as in acctcom(1). Output is normally sorted by total kcore-minutes.

  Use the following options only with the -a option:

  - **o**
    Output a (non-prime) offshift-time-only command summary.

  - **p**
    Output a prime-time-only command summary.

  When -o and -p are used together, a combination prime-time and non-prime-time report is produced. All the output summaries are total usage except number of times executed, CPU minutes, and real minutes, which are split into prime and non-prime.

- **c**
  Sort by total CPU time, rather than total kcore-minutes.

- **j**
  Combine all commands invoked only once under "***other".

- **n**
  Sort by number of command invocations.

- **s**
  Any file names encountered hereafter are already in internal summary format.

- **t**
  Process all records as total accounting records. The default internal summary format splits each field into prime and non-prime-time parts. This option combines the prime and non-prime time parts into a single field that is the total of both, and provides upward compatibility with old style acctcms internal summary format records.

EXAMPLES

**EXAMPLE 1** Using the acctcms command.

A typical sequence for performing daily command accounting and for maintaining a running total is:

```
example$ acctcms filename ... > today
example$ cp total previoustotal
example$ acctcms -s today previoustotal > total
example$ acctcms -a -s today
```
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO acctcom(1), acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

NOTES
Unpredictable output results if -t is used on new style internal summary format files, or if it is not used with old style internal summary format files.
NAME
acctcon, acctcon1, acctcon2 – connect-time accounting

SYNOPSIS
/usr/lib/acct/acctcon [-l lineuse] [-o reboot]

/usr/lib/acct/acctcon1 [-p] [-t] [-l lineuse] [-o reboot]

/usr/lib/acct/acctcon2

DESCRIPTION
acctcon converts a sequence of login/logoff records to total accounting records (see
the tacct format in acct(3HEAD)). The login/logoff records are read from standard
input. The file /var/adm/wtmpx is usually the source of the login/logoff records;
however, because it might contain corrupted records or system date changes, it should
first be fixed using wtmpfix. The fixed version of file /var/adm/wtmpx can then be
redirected to acctcon. The tacct records are written to standard output.

acctcon is a combination of the programs acctcon1 and acctcon2. acctcon1
converts login/logoff records, taken from the fixed /var/adm/wtmpx file, to ASCII
output. acctcon2 reads the ASCII records produced by acctcon1 and converts
them to tacct records. acctcon1 can be used with the -l and -o options, described
below, as well as with the -p and -t options.

OPTIONS
-p
Print input only, showing line name, login name, and time (in both
numeric and date/time formats).

-t
acctcon1 maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that its
input is a current file, so that it uses the current time as the ending
time for each session still in progress. The -t flag causes it to use,
instead, the last time found in its input, thus assuring reasonable
and repeatable numbers for non-current files.

-l lineuse
lineuse is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Hangup, termination of
login(l) and termination of the login shell each generate logoff
records, so that the number of logoffs is often three to four times
the number of sessions. See init(1M) and utmpx(4).

-o reboot
reboot is filled with an overall record for the accounting period,
giving starting time, ending time, number of reboots, and number
of date changes.

EXAMPLES
EXAMPLE 1 Using the acctcon command.
The acctcon command is typically used as follows:

example$ acctcon -l lineuse -o reboots < tmpwtmp > ctacct

The acctcon1 and acctcon2 commands are typically used as follows:
EXAMPLE 1 Using the acctcon command. (Continued)

```bash
eexample% acctcon1 -l lineuse -o reboots < tmpwtmp | sort +1n +2 > ctmp
eexample% acctcon2 < ctmp > ctacct
```

FILES

/var/adm/wtmpx History of user access and administration information

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

acctcom(1), login(1), acct(1M), acctcms(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), init(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

System Administration Guide: Basic Administration

NOTES

The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1M)), with the /var/adm/wtmpx file as an argument, to correct this situation.

During a single invocation of any given command, the acctcon, acctcon1, and acctcon2 commands can process a maximum of:

- 6000 distinct session
- 1000 distinct terminal lines
- 2000 distinct login names

If at some point the actual number of any one of these items exceeds the maximum, the command will not succeed.
acctmerg(1M)

NAME
acctmerg – merge or add total accounting files

SYNOPSIS
/usr/lib/acct/acctmerg [-a] [-i] [-p] [-t] [-u] [-v] [filename] ...

DESCRIPTION
acctmerg reads its standard input and up to nine additional files, all in the tacct format (see acct(3HEAD)) or an ASCII version thereof. It merges these inputs by adding records whose keys (normally user ID and name) are identical, and expects the inputs to be sorted on those keys.

OPTIONS
-a Produce output in ASCII version of tacct.
-i Produce input in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than by user ID and name.
-v Produce output in verbose ASCII format, with more precise notation for floating-point numbers.

EXAMPLES
EXAMPLE 1 Using the acctmerg command.
The following sequence is useful for making "repairs" to any file kept in this format:
example$ acctmerg -v <filename1 >filename2

Edit filename2 as you want:
example$ acctmerg -i <filename2 >filename1

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO
acctcom(1), acct(1M), acctcms(1M), acctcon(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

System Administration Guide: Basic Administration
acctprc reads the standard input, in the form described by , and converts it to total accounting records (see the tacct record in acct(3HEAD)). acctprc divides CPU time into prime time and non-prime time and determines mean memory size (in memory segment units). acctprc then summarizes the tacct records, according to user IDs, and adds login names corresponding to the user IDs. The summarized records are then written to the standard output. acctprc1 reads input in the form described by acct(3HEAD), adds login names corresponding to user IDs, then writes for each process an ASCII line giving user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and mean memory size (in memory segment units). If ctmp is given, it should contain a list of login sessions sorted by user ID and login name. If this file is not supplied, it obtains login names from the password file, just as acctprc does. The information in ctmp helps it distinguish between different login names that share the same user ID.

From the standard input, acctprc2 reads records in the form written by acctprc1, summarizes them according to user ID and name, then writes the sorted summaries to the standard output as total accounting records.

EXAMPLES

EXAMPLE 1 Examples of acctprc.

The acctprc command is typically used as shown below:

eexample% acctprc < /var/adm/pacct > ptacct

The acctprc1 and acctprc2s commands are typically used as shown below:

eexample% acctprc1 ctmp < /var/adm/pacct

eexample% acctprc2 > ptacct

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

acctcom(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctsh(1M), cron(1M), fwtmp(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)
Although it is possible for acctprc1 to distinguish among login names that share user IDs for commands run from a command line, it is difficult for acctprc1 to make this distinction for commands invoked in other ways. A command run from cron(1M) is an example of where acctprc1 might have difficulty. A more precise conversion can be done using the acctwtmp program in acct(1M). acctprc does not distinguish between users with identical user IDs.

A memory segment of the mean memory size is a unit of measure for the number of bytes in a logical memory segment on a particular processor.

During a single invocation of any given command, the acctprc, acctprc1, and acctprc2 commands can process a maximum of

- 6000 distinct sessions
- 1000 distinct terminal lines
- 2000 distinct login names

If at some point the actual number of any one of these items exceeds the maximum, the command will not succeed.
acctsh(1M)

NAME acctsh, chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, shutacct, startup, turnacct – shell procedures for accounting

SYNOPSIS

/usr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
/usr/lib/acct/dodisk [-o] [filename...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm filename...
/usr/lib/acct/prctmp filename
/usr/lib/acct/prdaily [-c] [-l] [mmdd]
/usr/lib/acct/prtacct filename ['' heading '']
/usr/lib/acct/shutacct ['' reason '']
/usr/lib/acct/startup
/usr/lib/acct/turnacct on | off | switch

DESCRIPTION

chargefee Command
chargefee can be invoked to charge a number of units to login-name. A record is written to /var/adm/fee, to be merged with other accounting records by runacct(1M).

ckpacct Command
ckpacct should be initiated using cron(1M) to periodically check the size of /var/adm/pacct. If the size exceeds blocks, 500 by default, turnacct will be invoked with argument switch. To avoid a conflict with turnacct switch execution in runacct, do not run ckpacct and runacct simultaneously. If the number of free disk blocks in the /var file system falls below 500, ckpacct will automatically turn off the collection of process accounting records via the off argument to turnacct. When at least 500 blocks are restored, the accounting will be activated again on the next invocation of ckpacct. This feature is sensitive to the frequency at which ckpacct is executed, usually by the cron(1M) command.

dodisk Command
dodisk should be invoked by cron(1M) to perform the disk accounting functions.

lastlogin Command
lastlogin is invoked by runacct(1M) to update /var/adm/acct/sum/loginlog, which shows the last date on which each person logged in.

monacct Command
monacct should be invoked once each month or each accounting period. number indicates which month or period it is. If number is not given, it defaults to the current month (01–12). This default is useful if monacct is to executed using cron(1M) on the first day of each month. monacct creates summary files in /var/adm/acct/fiscal and restarts the summary files in /var/adm/acct/sum.
nulladm

nulladm creates filename with mode 664 and ensures that owner and group are adm. It is called by various accounting shell procedures.

prctmp

prctmp can be used to print the session record file (normally /var/admacct/nite/ctmp created by acctcon1 (see acctcon(1M))

prdaily

prdaily is invoked by runacct(1M) to format a report of the previous day’s accounting data. The report resides in /var/admacct/sum/rprt/mmd where mmd is the month and day of the report. The current daily accounting reports may be printed by typing prdaily. Previous days’ accounting reports can be printed by using the mmd option and specifying the exact report date desired.

prtacct

prtacct can be used to format and print any total accounting (tacct) file.

shutacct

shutacct is invoked during a system shutdown to turn process accounting off and append a reason record to /var/adm/wtmpx.

startup

startup can be invoked when the system is brought to a multi-user state to turn process accounting on.

turnacct

turnacct is an interface to accton (see acct(1M)) to turn process accounting on or off. The switch argument moves the current /var/adm/pacct to the next free name in /var/adm/pacct.incr (where incr is a number starting with 0 and incrementing by one for each additional pacct file), then turns accounting back on again. This procedure is called by ckpacct and thus can be taken care of by the cron(1M) command and used to keep pacct to a reasonable size. shutacct uses turnacct to stop process accounting. startup uses turnacct to start process accounting.

OPTIONS

The following options are supported:

- This option prints a report of exceptional resource usage by command, and may be used on current day’s accounting data only.

- This option prints a report of exceptional usage by login id for the specified date. Previous daily reports are cleaned up and therefore inaccessible after each invocation of monacct.

- This option uses acctdusg (see acct(1M)) to do a slower version of disk accounting by login directory. filenames specifies the one or more filesystem names where disk accounting will be done. If filenames are used, disk accounting will be done on these filesystems only. If the -o option is used, filenames should be mount points of mounted filesystems. If the -o option is omitted, filenames should be the special file names of mountable filesystems.

FILES

/etc/logadm.conf

Configuration file for the logadm(1M) command

/usr/lib/acct

Holds all accounting commands listed in section 1M of this manual
acctsh(1M)

/usr/lib/acct/ptecms.awk
    Contains the limits for exceptional usage by command name
/usr/lib/acct/ptelus.awk
    Contains the limits for exceptional usage by login ID
/var/adm/acct/fiscal
    Fiscal reports directory
/var/adm/acct/nite
    Working directory
/var/adm/acct/sum
    Summary directory that contains information for monacct
/var/adm/acct/sum/loginlog
    File updated by last login
/var/adm/fee
    Accumulator for fees
/var/adm/pacct
    Current file for per-process accounting
/var/adm/pacctincr
    Used if pacct gets large and during execution of daily accounting procedure
/var/adm/wtmpx
    History of user access and administration information

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

acctcom(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), cron(1M), fwtmp(1M), logadm(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

NOTES

See runacct(1M) for the main daily accounting shell script, which performs the accumulation of connect, process, fee, and disk accounting on a daily basis. It also creates summaries of command usage.
adbgen makes it possible to write adb(1) scripts that do not contain hard-coded dependencies on structure member offsets. The input to adbgen is a file named `filename.adb` that contains header information, then a null line, then the name of a structure, and finally an adb script. adbgen only deals with one structure per file; all member names are assumed to be in this structure. The output of adbgen is an adb script in `filename.adb`. adbgen operates by generating a C program which determines structure member offsets and sizes, which in turn generate the adb script.

The header lines, up to the null line, are copied verbatim into the generated C program. Typically, these are `#include` statements, which include the headers containing the relevant structure declarations.

The adb script part may contain any valid adb commands (see adb(1)), and may also contain adbgen requests, each enclosed in braces `{ }`. Request types are:

- **Print a structure member.** The request form is `{member, format}`. `member` is a member name of the `structure` given earlier, and `format` is any valid adb format request or any of the adbgen format specifiers (such as `{POINTER}`) listed below. For example, to print the `p_pid` field of the `proc` structure as a decimal number, you would write `{p_pid,d}`.

- **Print the appropriate adb format character for the given adbgen format specifier.** This action takes the data model into consideration. The request form is `{format specifier}`. The valid adbgen format specifiers are:
  - `{POINTER}`: pointer value in hexadecimal
  - `{LONGDEC}`: long value in decimal
  - `{ULONGDEC}`: unsigned long value in decimal
  - `{ULONGHEX}`: unsigned long value in hexadecimal
  - `{LONGOCT}`: long value in octal
  - `{ULONGOCT}`: unsigned long value in octal

- **Reference a structure member.** The request form is `{*member, base}`. `member` is the member name whose value is desired, and `base` is an adb register name which contains the base address of the structure. For example, to get the `p_pid` field of the `proc` structure, you would get the `proc` structure address in an adb register, for example `<f`, and write `{*p_pid,<f}`.

- **Tell adbgen that the offset is valid.** The request form is `{OFFSETOK}`. This is useful after invoking another adb script which moves the adb `dot`.

- **Get the size of the structure.** The request form is `{SIZEOF}`. adbgen replaces this request with the size of the structure. This is useful in incrementing a pointer to step through an array of structures.
adbgen(1M)

- Calculate an arbitrary C expression. The request form is `{EXPR, expression}`. adbgen replaces this request with the value of the expression. This is useful when more than one structure is involved in the script.

- Get the offset to the end of the structure. The request form is `{END}`. This is useful at the end of the structure to get adb to align the dot for printing the next structure member.

adbgen keeps track of the movement of the adb dot and generates adb code to move forward or backward as necessary before printing any structure member in a script. adbgen’s model of the behavior of adb’s dot is simple: it is assumed that the first line of the script is of the form `struct_address/adb text` and that subsequent lines are of the form `+/adb text`. The adb dot then moves in a sane fashion. adbgen does not check the script to ensure that these limitations are met. adbgen also checks the size of the structure member against the size of the adb format code and warns if they are not equal.

OPTIONS

The following option is supported:

- `-m model` Specifies the data type model to be used by adbgen for the macro. This affects the outcome of the `{format specifier}` requests described under DESCRIPTION and the offsets and sizes of data types. model can be `ilp32` or `lp64`. If the `-m` option is not given, the data type model defaults to `ilp32`.

OPERANDS

The following operand is supported:

- `filename .adb` Input file that contains header information, followed by a null line, the name of the structure, and finally an adb script.

EXAMPLES

EXAMPLE 1 A sample adbgen file.

For an include file `x.h` which contained

```c
struct x {
    char *x_cp;
    char x_c;
    int x_i;
};
```

then, an adbgen file (call it `script.adb`) to print the file `x.h` would be:

```bash
#include "x.h"
x
./"x_cp*16t"x_c"8t"x_i*n[x_cp,[POINTER]]{x_c,C}{x_i,D}
```

After running adbgen as follows,

```bash
% /usr/lib/adb/adbgen script.adb
```

the output file `script` contains:

```bash
./"x_cp*16t"x_c"8t"x_i*nXC3+D
```
EXAMPLE 1 A sample adbgen file.  (Continued)

For a macro generated for a 64-bit program using the lp64 data model as follows,
% /usr/lib/adb/adbgen/ -m lp64 script.adb
the output file script would contain:
./"x_c"16t"x_c"8t"x_i"nJc3+D
To invoke the script, type:
example$ adb program
x$<script
FILES
/usr/platform/platform-name/lib/adb/*
platform-specific adb scripts for debugging the 32-bit kernel
/usr/platform/platform-name/lib/adb/sparcv9/*
platform-specific adb scripts for debugging the 64-bit SPARC V9 kernel
/usr/lib/adb/*
adb scripts for debugging the 32-bit kernel
/usr/lib/adb/sparcv9/*
adb scripts for debugging the 64-bit SPARC V9 kernel
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO adb(1), uname(1), kadb(1M), attributes(5)

DIAGNOSTICS Warnings are given about structure member sizes not equal to adb format items and about badly formatted requests. The C compiler complains if a structure member that does not exist is referenced. It also complains about an ampersand before array names; these complaints may be ignored.

NOTES platform-name can be found using the -i option of uname(1).

BUGS adb syntax is ugly; there should be a higher level interface for generating scripts.

Structure members which are bit fields cannot be handled because C will not give the address of a bit field. The address is needed to determine the offset.
addbadsec(1M)

NAME  
addbadsec – map out defective disk blocks

SYNOPSIS  
addbadsec [-p] [-a blkno [blkno...]] [-f filename] raw_device

DESCRIPTION  
addbadsec is used by the system administrator to map out bad disk blocks. Normally, these blocks are identified during surface analysis, but occasionally the disk subsystem reports unrecoverable data errors indicating a bad block. A block number reported in this way can be fed directly into addbadsec, and the block will be remapped. addbadsec will first attempt hardware remapping. This is supported on SCSI drives and takes place at the disk hardware level. If the target is an IDE drive, then software remapping is used. In order for software remapping to succeed, the partition must contain an alternate slice and there must be room in this slice to perform the mapping.

It should be understood that bad blocks lead to data loss. Remapping a defective block does not repair a damaged file. If a bad block occurs to a disk-resident file system structure such as a superblock, the entire slice might have to be recovered from a backup.

OPTIONS  
The following options are supported:
- a      Adds the specified blocks to the hardware or software map. If more than one block number is specified, the entire list should be quoted and block numbers should be separated by white space.
- f      Adds the specified blocks to the hardware or software map. The bad blocks are listed, one per line, in the specified file.
- p      Causes addbadsec to print the current software map. The output shows the defective block and the assigned alternate. This option cannot be used to print the hardware map.

OPERANDS  
The following operand is supported:
raw_device The address of the disk drive (see FILES).

FILES  
The raw device should be /dev/rdsk/c? [t?]d?p0. See disks(1M) for an explanation of SCSI and IDE device naming conventions.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  
disks(1M), diskscan(1M), fdisk(1M), fmthard(1M), format(1M), attributes(5)
The `format(1M)` utility is available to format, label, analyze, and repair SCSI disks. This utility is included with the `addbadsec`, `diskscan(1M)`, `fdisk(1M)`, and `fmthard(1M)` commands available for x86. To format an IDE disk, use the DOS "format" utility; however, to label, analyze, or repair IDE disks on x86 systems, use the Solaris `format(1M)` utility.
add_drv(1M)

NAME
add_drv – add a new device driver to the system

SYNOPSIS
add_drv [-b basedir] [-c class_name] [-i 'identify_name...'] [-m 'permission',...'] [-n] [-f] [-v] device_driver

DESCRIPTION
The add_drv command is used to inform the system about newly installed device drivers.

Each device on the system has a name associated with it. This name is represented by the name property for the device. Similarly, the device may also have a list of driver names associated with it. This list is represented by the compatible property for the device.

The system determines which devices will be managed by the driver being added by examining the contents of the name property and the compatible property (if it exists) on each device. If the value in the name property does not match the driver being added, each entry in the compatible property is tried, in order, until either a match occurs or there are no more entries in the compatible property.

In some cases, adding a new driver may require a reconfiguration boot. See the NOTES section.

Aliases might require quoting (with double-quotes) if they contain numbers. See EXAMPLES.

OPTIONS
-b basedir

Installs the driver on the system with a root directory of basedir rather than installing on the system executing add_drv. This option is typically used in package post-installation scripts when the package is not being installed on the system executing the pkgadd command. The system using basedir as its root directory must reboot to complete the driver installation.

-c class_name

The driver being added to the system exports the class class_name.

-i 'identify_name'

A white-space separated list of aliases for the driver device_driver.

-m 'permission'

Specify the file system permissions for device nodes created by the system on behalf of device_driver.

-n

Do not try to load and attach device_driver, just modify the system configuration files for the device_driver.

-f

Normally if a reconfiguration boot is required to complete the configuration of the driver into the system, add_drv will not add the driver. The force flag forces add_drv to add the driver even if a reconfiguration boot is required. See the -v flag.
add_drv(1M)

-v

The verbose flag causes add_drv to provide additional information regarding the success or failure of a driver's configuration into the system. See the EXAMPLES section.

EXAMPLES

EXAMPLE 1 Adding SUNW Example Driver to the System

The following example adds the SUNW_example driver to a 32-bit system, with an alias name of SUNW_alias. It assumes the driver has already been copied to /usr/kernel/drv.

```
example# add_drv -m "* 0666 bin bin","a 0644 root sys" \
    -i 'SUNW,alias' SUNW_example
```

Every minor node created by the system for the SUNW_example driver will have the permission 0666, and be owned by user bin in the group bin, except for the minor device a, which will be owned by root, group sys, and have a permission of 0644.

EXAMPLE 2 Adding Driver to the Client /export/root/sun1

The following example adds the driver to the client /export/root/sun1. The driver is installed and loaded when the client machine, sun1, is rebooted. This second example produces the same result as the first, except the changes are on the diskless client, sun1, and the client must be rebooted for the driver to be installed.

```
example# add_drv -m "* 0666 bin bin","a 0644 root sys" \
    -i 'SUNW,alias' -b /export/root/sun1 \
    SUNW_example
```

EXAMPLE 3 Adding Driver for a Device Already Managed by an Existing Driver

The following example illustrates the case where a new driver is added for a device that is already managed by an existing driver. Consider a device that is currently managed by the driver dumb_framebuffer. The name and compatible properties for this device are as follows:

```
name="display"
compatible="whizzy_framebuffer", "dumb_framebuffer"
```

If add_drv is used to add the whizzy_framebuffer driver, the following will result.

```
example# add_drv whizzy_framebuffer
Error: Could not install driver (whizzy_framebuffer)
Device managed by another driver.
```

If the -v flag is specified, the following will result.

```
example# add_drv -v whizzy_framebuffer
Error: Could not install driver (whizzy_framebuffer)
Device managed by another driver.
Driver installation failed because the following entries in /devices would be affected:
```

System Administration Commands 57
EXAMPLE 3 Adding Driver for a Device Already Managed by an Existing Driver (Continued)

/devices/iommu@f,e0000000/sbus@f,e0001000/display[:*]
(Device currently managed by driver "dumb_framebuffer")

The following entries in /dev would be affected:

/dev/fbs/dumb_framebuffer0

If the -v and -f flags are specified, the driver will be added resulting in the following.

```
example# add_drv -vf whizzy_framebuffer
```

A reconfiguration boot must be performed to complete the installation of this driver.

The following entries in /devices will be affected:

/devices/iommu@f,e0000000/sbus@f,e0001000/display[:*]
(Device currently managed by driver "dumb_framebuffer")

The following entries in /dev will be affected:

/dev/fbs/dumb_framebuffer0

The above example is currently only relevant to devices exporting a generic device name.

EXAMPLE 4 Use of Double Quotes in Specifying Driver Alias

The following example shows the use of double quotes in specifying a driver alias that contains numbers.

```
example# add_drv -i "pci10c5,25" smc
```

EXIT STATUS

add_drv returns 0 on success and 1 on failure.

FILES

/kernel/drv
32-bit boot device drivers

/kernel/drv/sparcv9
64-bit boot device drivers

/usr/kernel/drv
other 32-bit drivers that could potentially be shared between platforms

/usr/kernel/drv/sparcv9
other 64-bit drivers that could potentially be shared between platforms

/platform/`uname -i`/kernel/drv
32-bit platform-dependent drivers

/platform/`uname -i`/kernel/drv/sparcv9
64-bit platform-dependent drivers
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
boot(1M), devlinks(1M), disks(1M), drvconfig(1M), kernel(1M),
mmodinfo(1M), ports(1M), rem_drv(1M), tapes(1M), driver.conf(4), system(4),
attributes(5), ddi_create_minor_node(9F)

Writing Device Drivers

NOTES
It is possible to add a driver for a device already being managed by a different driver,
where the driver being added appears in the device’s compatible list before the
current driver. In such cases, a reconfiguration boot is required (see boot(1M) and
kernel(1M)). After the reconfiguration boot, device nodes in /devices, entries in
/dev, and references to these files may no longer be valid (see the -v flag). If a
reconfiguration boot would be required to complete the driver installation, add_drv
will fail unless the -f option is specified. See Example 3 in the EXAMPLES section.

BUGS
add_drv will accept a pathname for device_driver. However, the kernel does not use
the pathname; it only uses the final component and searches the internal driver search
path for the driver. This can lead to the kernel loading a different driver than expected.

For this reason, it is not recommended that you use add_drv with a pathname. See
kernel(1M) for more information on the driver search path.

A future version of add_drv will not support full pathnames.
admintool(1M)

NAME
admintool – system administration with a graphical user interface

SYNOPSIS
/usr/bin/admintool

DESCRIPTION
admintool is a graphical user interface that enables you to accomplish several system administration tasks on a local system. Membership in the sysadmin group (gid 14) is used to restrict access to administrative tasks. Members of the sysadmin group can use admintool to create, delete, and modify local system files. Non-members have read-only permissions (where applicable).

Help is available by using the Help button.

admintool is not the tool for a distributed environment. It is used for local administration.

USAGE
admintool allows you to do the following tasks:

Manage users
Use admintool to add, delete, or modify user accounts. admintool makes the appropriate changes to the system’s /etc/passwd file (see passwd(4)).

Manage groups
Use admintool to add, delete, or modify groups. admintool makes the appropriate changes to the system’s /etc/group file (see group(4)).

Manage hosts
Use admintool to add, delete, or modify hosts. admintool makes the appropriate changes to the system’s /etc/hosts file (see hosts(4)).

Manage printers
Use admintool to add or delete access to a printer, or to modify a system’s printer access. admintool makes the appropriate changes to the system’s /etc/lp directory.

Manage serial port services
Use admintool to enable or disable serial port services. admintool sets up the software services necessary to use a modem or terminal attached to a system’s serial port.

Manage software
Use admintool to add or remove software. admintool adds software from a product CD or on a hard disk to an installed system, or removes software from an installed system.

EXIT STATUS
admintool terminates with exit status 0.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmap</td>
</tr>
</tbody>
</table>
SEE ALSO | group(4), hosts(4), passwd(4), attributes(5)

Solaris Advanced User’s Guide

WARNINGS | If you use admintool to add a host, your local system and your site uses a network name service such as NIS or NIS+, admintool host operations may not have the desired effect. This is because information in the network name service will take precedence over the information in the local /etc/hosts file, which is where admintool updates information.

NOTES | admintool modifies files on the local system, i.e., the system on which you are running admintool. admintool does not modify or update global networked databases such as NIS or NIS+. 
NAME
afbbox, SUNWAfb_config – configure the AFB Graphics Accelerator

SYNOPSIS
/usr/sbin/afbconfig [-dev device-filename] [-res video-mode [now | try]
   [noconfirm | nocheck]] [-file machine | system]
   [-deflinear true | false] [-defoverlay true | false]
   [-overlayorder first | last] [-expvis enable | disable]
   [-sov enable | disable] [-maxwinds n]
   [-extovl enable | disable] [-g gamma-correction-value]
   [-gfile gamma-correction-file] [-propt] [-prconf] [-defaults]

/usr/sbin/afbconfig [-propt] [-prconf]

/usr/sbin/afbconfig [-help] [-res ?]

DESCRIPTION
afbbox configures the AFB Graphics Accelerator and some of the X11 window
system defaults for AFB.

The following form of afbbox stores the specified options in the OWconfig file:

/usr/sbin/afbconfig [-dev device-filename] [-res video-mode [now | try]
   [noconfirm | nocheck]] [-file machine | system]
   [-deflinear true | false] [-defoverlay true | false]
   [-overlayorder first | last] [-expvis enable | disable]
   [-sov enable | disable] [-maxwinds n]
   [-extovl enable | disable] [-g gamma-correction-value]
   [-gfile gamma-correction-file] [-propt] [-prconf] [-defaults]

The options are used to initialize the AFB device the next time the window system is
run on that device. Updating options in the OWconfig file provides persistence of
these options across window system sessions and system reboots.

The following forms of the afbbox command invoke only the -prconf, -propt,
-help, and -res ? options. None of these options update the OWconfig file.

/usr/sbin/afbconfig [-propt] [-prconf]

/usr/sbin/afbconfig [-help] [-res ?]

Additionally, the following invocation of afbbox ignores all other options:

/usr/sbin/afbconfig [-help] [-res ?]

You can only specify options for one AFB device at a time. Specifying options for
multiple AFB devices requires multiple invocations of the afbbox command.

Only AFB-specific options can be specified through afbbox. The normal window
system options for specifying default depth, visual class and so forth are still specified
as device modifiers on the openwin command line.

You can also specify the OWconfig file that is to be updated. By default, the
machine-specific file in the /etc/openwin directory tree is updated. The -file
option can be used to specify an alternate file to use. For example, the system-global
OWconfig file in the /usr/openwin directory tree can be updated instead.
Both of these standard OWconfig files can only be written by root. Consequently, the afbconfig program, which is owned by the root user, always runs with setuid root permission.

**Option Defaults**

For a given invocation of afbconfig command line if an option does not appear on the command line, the corresponding OWconfig option is not updated; it retains its previous value. When the window system is run, if an AFB option has never been specified by way of afbconfig, a default value is used. The option defaults are as follows:

- **-dev**
  /dev/fbs/afb0

- **-file**
  machine

- **-res**
  none

- **-deflinear**
  false

- **-defoverlay**
  false

- **-linearorder**
  last

- **-overlayorder**
  last

- **-expvis**
  enabled

- **-sov**
  enabled

- **-maxwids**
  32

- **-extovl**
  enabled

- **-g**
  2.22

The default for the **-res** option of none means that when the window system is run, the screen resolution is the video mode currently programmed in the device. This provides compatibility for users who are used to specifying the device resolution through the PROM. On some devices (for example, GX) this is the only way of specifying the video mode. This means that the PROM ultimately determines the default AFB video mode.
The following options are supported:

- **defaults**
  Resets all option values to their default values.

- **deflinear true | false**
  AFB possesses two types of visuals: linear and nonlinear. Linear visuals are gamma correct and nonlinear visuals are not. There are two visuals that have both linear and nonlinear versions: 24-bit TrueColor and 8-bit StaticGray.

  If true, the default visual is set to the linear visual that satisfies other specified default visual selection options (specifically, the Xsun(1) defdepth and defclass options described in the OpenWindows Reference Manual).

  If false, or if there is no linear visual that satisfies the other default visual selection options, the non-linear visual specified by these other options is chosen as the default. This option cannot be used when the -defoverlay option is present, because AFB doesn’t possess a linear overlay visual.

- **defoverlay true | false**
  The AFB provides an 8-bit PseudoColor visual whose pixels are disjoint from the rest of the AFB visuals. This is called the overlay visual. Windows created in this visual do not damage windows created in other visuals. The converse, however, is not true. Windows created in other visuals damage overlay windows.

  The number of colors available to the windows created using this visual depends on the settings for the -extovl option. If the -extovl is enabled, extended overlay with 256 opaque color values is available. See -extovl. If -extovl is disabled, extended overlay is not available and the visual has (256-maxwids) number of opaque color values. See -maxwids.

  If the value of -defoverlay is true, the overlay visual is made the default visual.

  If the value of -defoverlay is false, the non-overlay visual that satisfies the other default visual selection options, such as def, depth, and defclass, are chosen as the default visual. See the OpenWindows Reference Manual.

  Whenever the defoverlay true option is used, the default depth and class specified on the openwin command line must be 8-bit PseudoColor. If not, a warning message is printed and the -defoverlay option is treated as false.

  The -defoverlay option cannot be used when the -deflinear option specified, because AFB doesn’t possess a linear overlay visual.

- **dev device-filename**
  Specifies the AFB special file. The default is /dev/fbs/afb0.

- **expvis enable | disable**
  If enabled, activates OpenGL Visual Expansion. Multiple instances of selected visual groups (8-bit PseudoColor, 24-bit TrueColor and so forth) are in the screen visual list.
If enabled, makes extended overlay available. The overlay visuals have 256 opaque colors. The SOV visuals have 255 opaque colors and 1 transparent color.

This option also enables hardware supported transparency, thus provides better performance for windows using the SOV visuals.

Specifies which OWconfig file to update. If machine is specified, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system specifies the global OWconfig file in the /usr/openwin directory tree. If the specified file does not exist, it is created.

Allows changing the gamma correction value. All linear visuals provide gamma correction. By default, the gamma-correction-value is 2.22. Any value less than 0 is illegal. The gamma correction value is applied to the linear visual, which then has an effective gamma value of 1.0, which is the value returned by XSolarisGetVisualGamma(3). See XSolarisGetVisualGamma(3) for a description of that function.

This option can be used while the window system is running. Changing the gamma correction value affects all the windows being displayed using the linear visuals.

Loads the gamma correction table from the specified file (gamma-correction-file). This file should be formatted to provide the gamma correction values for R, G and B channels on each line. Each of these values should be in hexadecimal format and seperated from each other by at least one space. gamma-correction-file should also provide 256 such triplets.

An example of a gamma-correction-file follows.

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0x00</td>
<td>0x00</td>
</tr>
<tr>
<td>0x01</td>
<td>0x01</td>
<td>0x01</td>
</tr>
<tr>
<td>0x02</td>
<td>0x02</td>
<td>0x02</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0xff</td>
<td>0xff</td>
<td>0xff</td>
</tr>
</tbody>
</table>

Using this option, the gamma correction table can be loaded while the window system is running. The new gamma correction affects all the windows being displayed using the linear visuals. When gamma correction is being done using user specified table, the gamma correction value is undefined. By default, the window system assumes a gamma correction value of 2.22 and loads the gamma table it creates corresponding to this value.

Prints a list of the afbconfig command line options, along with a brief explanation of each.
-linearorder first | last
  If first, linear visuals come before their non-linear counterparts on the X11 screen visual list for the AFB screen. If last, the nonlinear visuals come before the linear ones.

-maxwids n
  Specifies the maximum number of AFB X channel pixel values that are reserved for use as window IDs (WIDs). The remainder of the pixel values in overlay colormaps are used for normal X11 opaque color pixels. The reserved WIDs are allocated on a first-come first-serve basis by 3D graphics windows (such as XGL), MBX windows, and windows that have a non-default visual. The X channel codes 0 to (255 - n) are opaque color pixels. The X channel codes (255 - n + 1) to 255 are reserved for use as WIDs. Legal values are 1, 2, 4, 8, 16, 32, and 64.

  This option is available only if the -extovl is disabled.

-overlayorder first | last
  If first, the depth 8 PseudoColor Overlay visual comes before the non-overlay visual on the X11 screen visual list for the AFB screen. If last, the non-overlay visual comes before the overlay one.

-propt
  Prints the current values of all AFB options in the OWconfig file specified by the -file option for the device specified by the -dev option. Prints the values of options as they will be in the OWconfig file after the call to afbconfig completes.

  The following is a typical display:

  --- OpenWindows Configuration for /dev/fbs/afb0 ---
  OWconfig: machine
  Video Mode: 1280x1024x76
  Default Visual: Non-Linear Normal Visual
  Visual Ordering: Linear Visuals are last
    Overlay Visuals are last
  OpenGL Visual Expansion: enabled
  Server Overlay Visuals: enabled
  Extended Overlay: enabled
  Underlay WIDs: 64 (not configurable)
  Overlay WIDs: 4 (not configurable)
  Gamma Correction Value: 2.220
  Gamma Correction Table: Available

-prconf
  Prints the AFB hardware configuration.

  The following is a typical display:

  --- Hardware Configuration for /dev/fbs/afb0 ---
  Type: double-buffered AFB with Z-buffer
  Board: rev 0 (Horizontal)
  Number of Floats: 6
  PROM Information: @(#)afb.fth x.xx xx/xx/xx
  AFB ID: 0x101df06d
  DAC: Brooktree 9070, version 1 (Pac2)
  3DRAM: Mitsubishi 130a, version x
EDID Data: Available - EDID version 1 revision x
Monitor Sense ID: 4 (Sun 37x29cm RGB color monitor)
Monitor possible resolutions: 1024x768x77, 1024x800x84, 1152x900x76, 1280x1024x67, 1280x1024x76, 960x680xx108s
Current resolution setting: 1280x1024x76

-sov enable | disable
   If enabled, the root window’s SERVER_OVERLAY_VISUALS property are advertised. SOV visuals are exported and their transparent types, values and layers can be retrieved through this property. If disabled, the SERVER_OVERLAY_VISUALS property are not defined and SOV visuals are not exported.

-res video-mode [ now | try [ noconfirm | nocheck ] ]
   Specifies the video mode used to drive the monitor connected to the specified AFB device.

   The format of these built-in video modes is: \texttt{width\times height\times rate}, where \texttt{width} is the screen width in pixels, \texttt{height} is the screen height in pixels, and \texttt{rate} is the vertical frequency of the screen refresh.

   The \texttt{s} suffix of \texttt{960x680x112s} and \texttt{960x680x108s} means that these are stereo video modes. The \texttt{i} suffix of \texttt{640x480x60i} and \texttt{768x575x50i} designates interlaced video timing. If absent, non-interlaced timing is used.

   As a convenience, the \texttt{-res} also accepts formats with an at sign (@) in front of the refresh rate instead of \texttt{n}, \texttt{(1280x1024@76)}. Some video-modes, supported by AFB, may not be supported by the monitor. The list of video-modes supported by the AFB device and the monitor can be obtained by running \texttt{afbconfig} with the \texttt{-res ?} option (the third form shown SYNOPSIS).

A list of all possible video-modes supported on AFB follows:

\begin{verbatim}
1024x768x60 1024x768x70 1024x768x75 1024x768x77 1024x800x84 1152x900x66 1152x900x76 1280x800x76 1280x1024x60 1280x1024x67 1280x1024x76 960x680x112s (Stereo) 960x680x108s (Stereo) 640x480x60 640x480x60i (Interlaced) 768x575x50i (Interlaced)
\end{verbatim}
For convenience, some of the video-modes supported on the AFB have symbolic names defined for them. Instead of the form `widthxheightxrate`, one of these names may be supplied as the argument to the `-res` option. The meaning of the symbolic name `none` is that when the window system is run, the screen resolution is the video mode that is currently programmed in the device.

A list of symbolic names for video-modes supported on AFB follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Corresponding Video Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>svga</td>
<td>1024x768x60</td>
</tr>
<tr>
<td>1152</td>
<td>1152x900x76</td>
</tr>
<tr>
<td>1280</td>
<td>1280x1024x76</td>
</tr>
<tr>
<td>stereo</td>
<td>960x680x112s</td>
</tr>
<tr>
<td>ntsc</td>
<td>640x480x60i</td>
</tr>
<tr>
<td>pal</td>
<td>768x575x50i</td>
</tr>
<tr>
<td>none</td>
<td>(see text above)</td>
</tr>
</tbody>
</table>

The `-res` option also accepts the additional, optional arguments immediately following the video mode specification. Any or all of the following arguments can be specified:

- **noconfirm**
  - Using the `-res` option, the user could potentially put the system into an unusable state, a state where there is no video output. This can happen if there is ambiguity in the monitor sense codes for the particular code read. To reduce the chance of this, the default behavior of `afbconfig` is to print a warning message to this effect and to prompt the user to find out if it is okay to continue. The `noconfirm` option instructs `afbconfig` to bypass this confirmation and to program the requested video mode anyway. This option is useful when `afbconfig` is being run from a shell script.

- **nocheck**
  - If present, the normal error checking based on the monitor sense code is suspended. The video mode specified by the user is accepted regardless of whether it is appropriate for the currently attached monitor. (This option is useful if a different monitor is to be connected to the AFB device). Use of this option implies **noconfirm** well.

- **now**
  - Updates the video mode in the OWconfig file, and immediately programs the AFB device to display this video mode. This is useful for changing the video mode before starting the window system.

  It is inadvisable to use this argument with `afbconfig` while the configured device is being used (for example, while running the window system); unpredictable results may occur. To run `afbconfig` with the now argument, first bring the window system down. If the now argument is used within a window system session, the video mode is changed immediately, but the width and height of the
affected screen won’t change until the window system is exited and re-entered again. In addition, the system may not recognize changes in stereo mode. Consequently, this usage is strongly discouraged.

try
If present, the specified video mode is programmed on a trial basis. The user is asked to confirm the video mode by typing y within 10 seconds. Or the user may terminate the trial before 10 seconds are up by typing any character. Any character other than y or Return is considered a no. The previous video mode is restored and afbconfig does not change the video mode in the OWconfig file (other options specified still take effect). If a Return is typed, the user is prompted for a yes or no answer on whether to keep the new video mode. This option implies the now argument (see the warning note on the now argument).

EXAMPLES

EXAMPLE 1 Switching the monitor type
The following example switches the monitor type to a resolution of 1280 x 1024 at 76 Hz:

```
example% /usr/sbin/afbconfig -res 1280x1024x76
```

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWafbcf</td>
</tr>
</tbody>
</table>

SEE ALSO
mmap(2), attributes(5)
## NAME
aliasadm – manipulate the NIS+ aliases map

## SYNOPSIS
```bash
aliasadm -a alias expansion [options comments] optional flags
aliasadm -c alias expansion [options comments] [optional flags]
aliasadm -d alias [optional flags]
aliasadm -e alias [optional flags]
aliasadm -l alias [optional flags]
aliasadm -m alias [optional flags]
aliasadm [-i] [-D domainname] [-f filename] [-M mapname]
```

## DESCRIPTION
aliasadm makes changes to the alias map.

The alias map is an NIS+ table object with four columns:

- **alias**: The name of the alias as a null terminated string.
- **expansion**: The value of the alias as it would appear in a `sendmail /etc/aliases` file.
- **options**: A list of options applicable to this alias. The only option currently supported is `CANON`. With this option, if the user has requested an inverse alias lookup, and there is more than one alias with this expansion, this alias is given preference.
- **comments**: An arbitrary string containing comments about this alias. The `sendmail(1M)` command reads this map in addition to the NIS aliases map and the local `/etc/aliases` database.

## OPTIONS
- `-a` Add an alias.
- `-c` Change an alias.
- `-d` Delete an alias.
- `-e` Edit the alias map.
- `-I` Initialize the NIS+ aliases database.
- `-l` List the alias map.
- `-m` Print or match an alias.
- `-D domainname` Edit the map in domain `domainname` instead of the current domain.
- `-f filename` When editing or listing the database, use `filename` instead of invoking the editor.
- `-M mapname` Edit `mapname` instead of `mail_aliases`.

## FILES
`/etc/aliases` mail aliases for the local host in ASCII format
attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

see also

sendmail(1M), attributes(5)

Notes

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
answerbook2_admin(1M)

NAME
answerbook2_admin – bring up AnswerBook2 administration tool GUI

SYNOPSIS
/usr/dt/bin/answerbook2_admin [-h]

DESCRIPTION
The AnswerBook2 server product is no longer included with Solaris or the Solaris Documentation CD products. Solaris documentation is now provided in HTML and PDF format on the Documentation CD and does not require the Answerbook2 server to be viewed.

answerbook2_admin brings up the default web browser showing the administration interface for the local AnswerBook2 server.

The administration functionality is also accessible through the AnswerBook2 Admin option within the System_Admin subset of the Application Manager function on the CDE front panel Applications menu.

If you need an AnswerBook2 server, you can download the AnswerBook2 server software from http://www.sun.com.

OPTIONS
The following option is supported:

- h Displays a usage statement.

USAGE
At startup time, answerbook2_admin starts up the default web browser (for example, HotJava or Netscape) and displays the URL specified for administering the local AnswerBook2 server (http://localhost:8888). If the user has set up administration access control, the web browser prompts for a valid administrator login and password for this document server before displaying the administration tool.

FILES
/usr/lib/ab2/dweb/data/config/admin_passwd
File containing username: password

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td><a href="http://www.sun.com">http://www.sun.com</a></td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

NOTES
Once there is an open web browser and access to the AnswerBook2 Administration tool, use its online Help system to find out more about administering the AnswerBook2 server.
### NAME
apache - Apache hypertext transfer protocol server overview

### DESCRIPTION
apache consists of a main server daemon, loadable server modules, some additional support utilities, configuration files, and documentation.

### FILES
The apache HTTPD server is integrated with Solaris.

The following files specify the installation locations for apache:

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/apache</td>
<td>Contains server configuration files.</td>
</tr>
<tr>
<td></td>
<td>A newly-installed server must be manually configured before use. Typically this involves copying httpd.conf-example to the httpd.conf file and making local configuration adjustments.</td>
</tr>
<tr>
<td>/usr/apache/bin</td>
<td>Contains the httpd executable as well as other utility programs.</td>
</tr>
<tr>
<td>/usr/apache/htdocs</td>
<td>Contains the Apache manual in HTML format. This documentation is accessible by way of a link on the server test page that gets installed upon fresh installation.</td>
</tr>
<tr>
<td>/usr/apache/include</td>
<td>Contains the Apache header files, which are needed for building various optional server extensions with apxs(8)</td>
</tr>
<tr>
<td>/usr/apache/jserv</td>
<td>Contains documentation for the mod_jserv java servlet module. Documention can be read with a web browser using the url: file:/usr/apache/jserv/docs/index.html</td>
</tr>
<tr>
<td>/usr/apache/libexec</td>
<td>Contains loadable modules (DSOs) supplied with the server. Any modules which are added using apxs(8) are also copied into this directory.</td>
</tr>
<tr>
<td>/usr/apache/man</td>
<td>Contains man pages for the server, utility programs, and mod_perl.</td>
</tr>
<tr>
<td></td>
<td>Add this directory to your MANPATH to read the Apache man pages. See NOTES.</td>
</tr>
<tr>
<td>/usr/apache/perl5</td>
<td>Contains the modules and library files used by the mod_perl extension to Apache.</td>
</tr>
<tr>
<td>/var/apache/cgi-bin</td>
<td>Default location for the CGI scripts.</td>
</tr>
<tr>
<td></td>
<td>This can be changed by altering the httpd.conf file and restarting the server.</td>
</tr>
<tr>
<td>/var/apache/htdocs</td>
<td>Default document root.</td>
</tr>
</tbody>
</table>
This can be changed by altering the `httpd.conf` file and restarting the server.

```
/var/apache/icons
```

Icons used by the server.

```
/var/apache/logs
```

Contains server log files.

The formats, names, and locations of the files in this directory can be altered by various configuration directives in the `httpd.conf` file.

```
/var/apache/proxy
```

Directory used to cache pages if the caching feature of `mod_proxy` is enabled in the `httpd.conf` file.

The location of the cache can also be changed by changing the proxy configuration in the `httpd.conf` file.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWapchr</td>
</tr>
<tr>
<td></td>
<td>SUNWapchu</td>
</tr>
<tr>
<td></td>
<td>SUNWapchd</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`attributes(5)`

http://www.apache.org

**NOTES**

In addition to the documentation and man pages included with Solaris, more information is available at http://www.apache.org

The Apache man pages are provided with the programming modules. To view the manual pages for the Apache modules with the man command, add `/usr/apache/man` to the `MANPATH` environment variable. See `man(1)` for more information. Running `catman(1M)` on the Apache manual pages is not supported.
arp(1M)

NAME
arp – address resolution display and control

SYNOPSIS
arp hostname
arp -a [-n]
arp -d hostname
arp -f filename
arp -s hostname ether_address [temp] [pub] [trail]

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the address resolution protocol (see arp(7P)).

With no flags, the program displays the current ARP entry for hostname. The host may be specified by name or by number, using Internet dot notation.

OPTIONS
-a Display all of the current ARP entries. The definition for the flags in the table are:

M Mapping; only used for the multicast entry for 224.0.0.0
P Publish; includes IP address for the machine and the addresses that have explicitly been added by the -s option. ARP will respond to ARP requests for this address.
S Static; not learned for the ARP protocol.
U Unresolved; waiting for ARP response.

You can use the -n option with the -a option to disable the automatic numeric IP address-to-name translation. Use arp -an or arp -na to display numeric IP addresses.

-d Delete an entry for the host called hostname. This option may only be used by the super-user.

-f Read the file named filename and set multiple entries in the ARP tables. Entries in the file should be of the form:

hostname ether_address [temp] [pub] [trail]

See the -s option for argument definitions.

-s Create an ARP entry for the host called hostname with the Ethernet address ether_address. The Ethernet address is given as six hexadecimal bytes separated by colons. The entry will be permanent unless the word temp is given in the command. If the word pub is given, the entry will be published. For instance, this system will respond to ARP requests for hostname even though the hostname is not its own. The word trail indicates that trailer encapsulations may be sent to this host. arp -s can be used for a limited form of proxy ARP when a host on one of the directly attached networks is not physically present on the subnet. Another
machine can then be configured to respond to ARP requests using `arp -s`. This is useful in certain SLIP configurations.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`ifconfig(1M), arp(7P), attributes(5)`
The Automated Security Enhancement Tool (ASET) is a set of administrative utilities that can improve system security by allowing the system administrators to check the settings of system files, including both the attributes (permissions, ownership, and the like) and the contents of the system files. It warns the users of potential security problems and, where appropriate, sets the system files automatically according to the security level specified.

The security level for ASET can be specified by setting the -l command line option or the ASETSECLEVEL environment variable to be one of 3 values: low, med, or high. All the functionality operates based on the value of the security level.

At the low level, ASET performs a number of checks and reports any potential security weaknesses.

At the med level, ASET modifies some of the settings of system files and parameters, thus restricting system access, to reduce the risks from security attacks. Again reports the security weaknesses and the modifications performed to restrict access. This does not affect the operations of system services. All the system applications and commands maintain all of their original functionality.

At the high level, further restrictions are made to system access, rendering a very defensive system. Security practices which are not normally required are included. Many system files and parameters settings are modified to minimum access permissions. At this level, security is the foremost concern, higher than any other considerations that affect system behavior. The vast majority of system applications and commands maintain their functionality, although there may be a few that exhibit behaviors that are not familiar in normal system environment.

More exact definitions of what exactly ASET does at each level can be found in the System Administration Guide: Basic Administration. The asetenv(4) file and the master files determine to a large extent what ASET performs at each level, and can be used by the experienced administrators to redefine the definitions of the levels to suit their particular needs. See asetmasters(4). These files are provided by default to fit most security conscious environments and in most cases provide adequate security safeguards without modification. They are, however, designed in a way that can be easily edited by experienced administrators with specific needs.

ASET can be periodically activated at the specified security level with default definitions using the -p option. ASET is automatically activated at a frequency specified by the administrator starting from a designated future time (see asetenv(4)). Without the -p option, ASET operates only once immediately.

The following options are supported:

- `-d aset_dir` Specifies a working directory other than `/usr/aset` for ASET. `/usr/aset` is the default working directory.
It is where ASET is installed, and is the root directory of all ASET utilities and data files. If another directory is to be used as the ASET working directory, you can either define it with the -d option, or set the ASETDIR environment variable before invoking aset. The command line option, if specified, overwrites the environment variable.

-spec_level

Specifies a security level, low, med, or high, for aset to operate at. The default level is low. Each security level is explained in detail above. The level can also be specified by setting the ASETSECLVL environment variable before invoking aset. The command line option, if specified, overwrites the environment variable.

-n user@host

Notifies user at machine host. Send the output of aset to user through e-mail. If this option is not specified, the output is sent to the standard output. Note that this is not the reports of ASET, but rather an execution log including error messages if there are any. This output is typically brief. The actual reports of ASET are found in the /usr/aset/reports/latest directory. See the -d option.

-p

Schedules aset to be executed periodically. This adds an entry for aset in the /etc/crontab file. The PERIODIC_SCHEDULE environment variable in the /usr/aset/asetenv file is used to define the time for execution. See crontab(1) and asetenv(4). If a crontab (1) entry for aset already exists, a warning is produced in the execution log.

-u userlist_file

Specifies a file containing a list of users. aset performs environment checks, for example, UMASK and PATH variables, on these users. By default, aset only checks for root. userlist_file is an ASCII text file. Each entry in the file is a line that contains only one user name (login name).

**USAGE**

The following paragraphs discuss the features provided by ASET. Hereafter, each feature is referred to as a task. The first task, tune, is executed only once per installation of ASET. The other tasks are executed periodically at the specified frequency.

**tune Task**

This task is used to tighten system file permissions. In standard releases, system files or directories have permissions defined to maximize open information sharing. In a more security conscious environment, the administrator may want to redefine these permission settings to more restrictive values. aset allows resetting of these
permissions, based on the specified security level. Generally, at the low level the permissions are set to what they should be as released. At the medium level, the permissions are tightened to ensure reasonable security that is adequate for most environments. At the high level they are further tightened to very restrictive access. The system files affected and the respective restrictions at different levels are configurable, using the tune.low, tune.med, and tune.high files. See asetmasters(4).

cklist Task  System directories that contain relatively static files, that is, their contents and attributes do not change frequently, are examined and compared with a master description file. The /usr/aset/masters/cklist.level files are automatically generated the first time the cklist task is executed. See asetenv(4). Any discrepancy found is reported. The directories and files are compared based on the following:

- owner and group
- permission bits
- size and checksum (if file)
- number of links
- last modification time

The lists of directories to check are defined in asetenv(4), based on the specified security level, and are configurable using the CKLISTPATH_LOW, CKLISTPATH_MED, and CKLISTPATH_HIGH environment variables. Typically, the lower level lists are subsets of the higher level lists.

usrgrp Task  aset checks the consistency and integrity of user accounts and groups as defined in the passwd and group databases, respectively. Any potential problems are reported. Potential problems for the passwd file include:

- passwd file entries are not in the correct format.
- User accounts without a password.
- Duplicate user names.
- Duplicate user IDs. Duplicate user IDs are reported unless allowed by the uid_alias file. See asetmasters(4).
- Invalid login directories.
- If C2 is enabled, check C2 hidden passwd format.

Potential problems for the group file include:

- Group file entries not in the right format.
- Duplicate group names.
- Duplicate group IDs.
- Null group passwords.
**sysconf Task**

aset checks various system configuration tables, most of which are in the `/etc` directory. aset checks and makes appropriate corrections for each system table at all three levels except where noted. The following discussion assumes familiarity with the various system tables. See the manual pages for these tables for further details.

The operations for each system table are:

**/etc/hosts.equiv**

The default file contains a single "+" line, thus making every known host a trusted host, which is not advised for system security. aset performs the following operations:

- **Low**: Warns the administrators about the "+" line.
- **Medium**: Warns about and deletes that entry.
- **High**: Deletes that entry.

**/etc/inetd.conf**

The following entries for system daemons are checked for possible weaknesses.

- **tftp(1)** does not do any authentication. aset ensures that `in.tftpd(1M)` is started in the right directory on the server and is not running on clients. At the low level, it gives warnings if the mentioned condition is not true. At the medium and high levels, it gives warnings and changes (if necessary) the `in.tftpd` entry to include the `-s /tftpboot` option after ensuring the directory `/tftpboot` exists.

- **ps(1)** and `netstat(1M)` provide valuable information to potential system crackers. These are disabled when aset is executed at a high security level.

- **rex(1)** is also known to have poor authentication mechanism. aset disables rexd for medium and high security levels by commenting out this entry. If rexd is activated with the `-s` (secure RPC) option, it is not disabled.

**/etc/aliases**

The decode alias of UUCP is a potential security weakness. aset disables the alias for medium and high security levels by commenting out this entry.

**/etc/default/login**

The `CONSOLE=` line is checked to allow root login only at a specific terminal depending on the security level:
Low  No action taken.

Medium

High  Adds the following line to the file:

`CONSOLE=/dev/console`

/etc/vfstab  aset checks for world-readable or writable device files for mounted file systems.

/etc/dfs/dfstab  aset checks for file systems that are exported without any restrictions.

/etc/ftpd/ftpusers  At high security level, aset ensures root is in

/etc/ftpd/ftpusers, thus disallowing root from logging into in.ftpd(1M). If necessary, create

/etc/ftpd/ftpusers. See ftpusers(4).

/var/adm/utmpx  aset makes these files not world-writable for the high level (some applications may not run properly with this setting.)

/.rhosts  The usage of a .rhosts file for the entire system is not advised. aset gives warnings for the low level and moves it to /.rhosts.bak for levels medium and high.

env Task

aset checks critical environment variables for root and users specified with the -u userlist_file option by parsing the /.profile, /.login, and /.cshrc files. This task checks the PATH variable to ensure that it does not contain './' as a directory, which makes an easy target for trojan horse attacks. It also checks that the directories in the PATH variable are not world-writable. Furthermore, it checks the UMASK variable to ensure files are not created as readable or writable by world. Any problems found by these checks are reported.

eeprom Task

Newer versions of the EEPROM allow specification of a secure parameter. See eeprom(1M), aset recommends that the administrator sets the parameter to command for the medium level and to full for the high level. It gives warnings if it detects the parameter is not set adequately.

firewall Task

At the high security level, aset takes proper measures such that the system can be safely used as a firewall in a network. This mainly involves disabling IP packets forwarding and making routing information invisible. Firewalling provides protection against external access to the network.

ENVIRONMENT VARIABLES

ASETDIR  Specify ASET’s working directory. Defaults to /usr/aset.

ASETSECLEVEL  Specify ASET’s security level. Defaults to low.

TASKS  Specify the tasks to be executed by aset. Defaults to all tasks.

FILES

/usr/aset/reports  directory of ASET reports
**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWast</td>
</tr>
</tbody>
</table>

**SEE ALSO**

crontab(1), ps(1), tftp(1), aset.restore(1M), eeprom(1M), in.ftpd(1M), in.tftpd(1M), netstat(1M), asetenv(4), asetmasters(4), ftpusers(4), attributes(5)

*System Administration Guide: Basic Administration*
aset.restore(1M)

NAME
aset.restore – restores system files to their content before ASET is installed

SYNOPSIS
aset.restore [-d aset_dir]

DESCRIPTION
aset.restore restores system files that are affected by the Automated Security Enhancement Tool (ASET) to their pre-ASET content. When ASET is executed for the first time, it saves and archives the original system files in the /usr/aset/archives directory. The aset.restore utility reinstates these files. It also deschedules ASET, if it is currently scheduled for periodic execution. See asetenv(4).

If you have made changes to system files after running ASET, these changes are lost when you run aset.restore. If you want to be absolutely sure that you keep the existing system state, it is recommended that you back-up your system before using aset.restore.

You should use aset.restore, under the following circumstances:

You want to remove ASET permanently and restore the original system (if you want to deactivate ASET, you can remove it from scheduling).

You are unfamiliar with ASET and want to experiment with it. You can use aset.restore to restore the original system state.

When some major system functionality is not working properly and you suspect that ASET is causing the problem; you may want to restore the system to see if the problem persists without ASET.

aset.restore requires root privileges to execute.

OPTIONS
The following options are supported:

- `-d aset_dir` Specify the working directory for ASET. By default, this directory is /usr/aset. With this option the archives directory will be located under aset_dir.

FILES
/usr/aset/archives archive of system files prior to executing aset

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWast</td>
</tr>
</tbody>
</table>

SEE ALSO
aset(1M), asetenv(4), attributes(5)

System Administration Guide: Basic Administration
audit(1M)

NAME audit – control the behavior of the audit daemon

SYNOPSIS audit -n | -s | -t

DESCRIPTION The audit command is the general administrator's interface to maintaining the audit trail. The audit daemon may be notified to read the contents of the audit_control(4) file and re-initialize the current audit directory to the first directory listed in the audit_control file or to open a new audit file in the current audit directory specified in the audit_control file as last read by the audit daemon. The audit daemon may also be signaled to close the audit trail and disable auditing.

OPTIONS -n Signal audit daemon to close the current audit file and open a new audit file in the current audit directory.

-s Signal audit daemon to read audit control file. The audit daemon stores the information internally.

-t Signal audit daemon to close the current audit trail file, disable auditing and die.

DIAGNOSTICS The audit command will exit with 0 upon success and a positive integer upon failure.

FILES /etc/security/audit_user

/etc/security/audit_control

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO bsmconv(1M), praudit(1M), audit(2), audit_control(4), audit_user(4), attributes(5)

NOTES The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

This command does not modify a process’s preselection mask. It only affects which audit directories are used for audit data storage and to specify the minimum size free.
### NAME

auditconfig – configure auditing

### SYNOPSIS

**auditconfig** option...

### DESCRIPTION

**auditconfig** provides a command line interface to get and set kernel audit parameters.

This functionality is available only if the Basic Security Module (BSM) has been enabled. See **bsmconv(1M)** for more information.

### OPTIONS

**-aconf**

Set the non-attributable audit mask from the **audit_control(4)** file. For example:

```
# auditconfig -aconf
```

Configured non-attributable events.

**-audit event sorf retval string**

This command constructs an audit record for audit event *event* using the process’s audit characteristics containing a text token *string*. The return token is constructed from the *sorf* (success/failure flag) and the *retval* (return value). The event is type *char*, the *sorf* is 0/1 for success/failure, *retval* is an errno value, *string* is type *char*. This command is useful for constructing an audit record with a shell script. An example of this option:

```
# auditconfig -audit AUE_ftpd 0 0 "test string"
```

```
# audit record from audit trail:
    header,76,2,ftp access,,Fri Dec 08 08:44:02 2000, + 669 msec
    subject,abc,root,other,root,other,104449,102336,235 197121 elbow
text,test string
    return,success,0
```

**-chkacconf**

Checks the configuration of the non-attributable events set in the kernel against the entries in **audit_control(4)**. If the runtime class mask of a kernel audit event does not match the configured class mask, a mismatch is reported.

**-chkconf**

Check the configuration of kernel audit event to class mappings. If the runtime class mask of a kernel audit event does not match the configured class mask, a mismatch is reported.

**-conf**

Configure kernel audit event to class mappings. Runtime class mappings are changed to match those in the audit event to class database file.

**-getasid**

Prints the audit session ID of the current process. For example:

```
# auditconfig -getasid
audit session id = 102336
```

**-getaudit**

Returns the audit characteristics of the current process.
# auditconfig -getaudit
audit id = abc(666)
process preselection mask = lo(0x1000,0x1000)
terminal id (maj,min,host) = 235,197121,elbow(129.146.89.77)
audit session id = 102336

-getauid
Prints the audit ID of the current process. For example:
# auditconfig -getauid
audit id = abc(666)

-getcar
Prints current active root location (anchored from root at system boot). For example:
# auditconfig -getcar
current active root = /

-getclass event
Display the preselection mask associated with the specified kernel audit event. event is the kernel event number or event name.

-getcond
Display the kernel audit condition. The condition displayed is the literal string auditing meaning auditing is enabled and turned on (the kernel audit module is constructing and queuing audit records); noaudit, meaning auditing is enabled but turned off (the kernel audit module is not constructing and queuing audit records); disabled, meaning that the audit module has not been enabled; or nospace, meaning there is no space for saving audit records. See auditon(2) and auditd(1M) for further information.

-getestate event
For the specified event (string or event number), print out classes event has been assigned. For example:
# auditconfig -getestate 20
audit class mask for event AUE_REBOOT(20) = 0x800
# auditconfig -getestate AUE_RENAME
audit class mask for event AUE_RENAME(42) = 0x30

-getfsize
Return the maximum audit file size in bytes and the current size of the audit file in bytes.

-getkaudit
Get audit characteristics of machine. For example:
# auditconfig -getkaudit
audit id = unknown(-2)
process preselection mask = lo,na(lo\(0x1400,0x1400\))
terminal id (maj,min,host) = 0,0,(0.0.0.0)
audit session id = 0

-getkmask
Get non-attributable pre-selection mask for machine. For example:
auditconfig(1M)

# auditconfig -getkmask
audit flags for non-attributable events = lo,na(0x1400,0x1400)

-getpinfo pid
  Display the audit ID, preselection mask, terminal ID, and audit session ID for the specified process.

-getpolicy
  Display the kernel audit policy.

-getcwd
  Prints current working directory (anchored from root at system boot). For example:
  # cd /usr/tmp
  # auditconfig -getcwd
  current working directory = /var/tmp

-getqbufsz
  Get audit queue write buffer size. For example:
  # auditconfig -getqbufsz
  audit queue buffer size (bytes) = 1024

-getqctrl
  Get audit queue write buffer size, audit queue hiwater mark, audit queue lowater mark, audit queue prod interval (ticks).
  # auditconfig -getqctrl
  audit queue hiwater mark (records) = 100
  audit queue lowater mark (records) = 10
  audit queue buffer size (bytes) = 1024
  audit queue delay (ticks) = 20

-getqdelay
  Get interval at which audit queue is prodded to start output. For example:
  # auditconfig -getqdelay
  audit queue delay (ticks) = 20

-getqhiwater
  Get high water point in undelivered audit records when audit generation will block. For example:
  # ./auditconfig -getqhiwater
  audit queue hiwater mark (records) = 100

-getqlowater
  Get low water point in undelivered audit records where blocked processes will resume. For example:
  # auditconfig -getqlowater
  audit queue lowater mark (records) = 10

-getstat
  Print current audit statistics information. For example:
  # auditconfig -getstat
  gen nona kern aud ctl enq wrtn wbtk rblk drop tot mem
-gettid
Print audit terminal ID for current process. For example:

# auditconfig -gettid
terminal id (maj,min,host) = 235,197121,elbow(129.146.89.77)

-lsevent
Display the currently configured (runtime) kernel and user level audit event information.

-lspolicy
Display the kernel audit policies with a description of each policy.

-setasid session-ID [cmd]
Execute shell or cmd with specified session-ID. For example:

# ./auditconfig -setasid 2000 /bin/ksh
#
# ./auditconfig -getpinfo 104485
audit id = abc(666)
process preselection mask = lo(0x1000,0x1000)
terminal id (maj,min,host) = 235,197121,elbow(129.146.89.77)
audit session id = 2000

-setaudit audit-ID preselect_flags term-ID session-ID [cmd]
Execute shell or cmd with the specified audit characteristics.

-setaudit audit-ID [cmd]
Execute shell or cmd with the specified audit-ID.

-setclass event audit_flag[audit_flag ...]
Map the kernel event event to the classes specified by audit_flags. event is an event number or name. An audit_flag is a two character string representing an audit class. See audit_control(4) for further information.

-setcond [auditing|noaudit|nospace]
Set the kernel audit condition to the condition specified where condition is the literal string auditing, indicating auditing should be enabled; noaudit, indicating auditing should be disabled; ornospace, which forces a no-space condition. (See -getcond, above.)

-setfsize size
Set the maximum size of an audit file to size bytes. When the size limit is reached, the audit file is closed and another is started.

-setkaudit IP-address_type IP_address
Set IP address of machine to specified values. IP-address_type is ipv6 or ipv4.

-setkmask audit_flags
Set non-attributes selection flags of machine.

-setpmask pid flags
Set the preselection mask of the specified process. flags is the ASCII representation of the flags similar to that in audit_control(4).
-setpolicy [+|-]policy_flag[,policy_flag ...]
Set the kernel audit policy. A policy policy_flag is literal strings that denotes an audit policy. A prefix of + adds the policies specified to the current audit policies. A prefix of - removes the policies specified from the current audit policies. The following are the valid policy flag strings (auditconfig -lspolicy also lists the current valid audit policy flag strings):

- **all** Include all policies.
- **arge** Include the execv(2) system call environment arguments to the audit record. This information is not included by default.
- **argv** Include the execv(2) system call parameter arguments to the audit record. This information is not included by default.
- **cnt** Do not suspend processes when audit resources are exhausted. Instead, drop audit records and keep a count of the number of records dropped. By default, processes are suspended until audit resources become available.
- **group** Include the supplementary group token in audit records. By default, the group token is not included.
- **none** Include no policies.
- **path** Add secondary path tokens to audit record. These are typically the pathnames of dynamically linked shared libraries or command interpreters for shell scripts. By default, they are not included.
- **public** Audit public files. By default, read-type operations are not audited for certain files which meet public characteristics: owned by root, readable by all, and not writable by all.
- **trail** Include the trailer token in every audit record. By default, the trailer token is not included.
- **seq** Include the sequence token as part of every audit record. By default, the sequence token is not included. The sequence token attaches a sequence number to every audit record.

-setqbufsz buffer_size
Set the audit queue write buffer size (bytes).

-setqctrl hiwater lowater bufsz interval
Set the audit queue write buffer size (bytes), hiwater audit record count, lowater audit record count, and wakeup interval (ticks).

-setqdelay interval
Set the audit queue wakeup interval (ticks). This determines the interval at which the kernel pokes the audit queue, to write audit records to the audit trail.

-setqhhiwater hiwater
Set the number of undelivered audit records in the audit queue at which audit record generation blocks.
- setlowater lowater
  Set the number of undelivered audit records in the audit queue at which blocked auditing processes unblock.

- setmask asid flags
  Set the preselection mask of all processes with the specified audit session ID.

- setstat
  Reset audit statistics counters.

- setumask auid flags
  Set the preselection mask of all processes with the specified audit ID.

EXAMPLES

EXAMPLE 1 Using auditconfig

The following is an example of an auditconfig program:

```
# map kernel audit event number 10 to the "fr" audit class
#
% auditconfig -setclass 10 fr

# turn on inclusion of exec arguments in exec audit records
#
% auditconfig -setpolicy +argv
```

EXIT STATUS

0    Successful completion.
1    An error occurred.

FILES

/etc/security/audit_event
/etc/security/audit_class

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

auditd(1M), bsmconv(1M), praudit(1M), auditon(2), execv(2), audit_class(4), audit_control(4), audit_event(4), attributes(5)
The audit daemon controls the generation and location of audit trail files. If auditing is desired, `auditd` reads the `audit_control(4)` file to get a list of directories into which audit files can be written and the percentage limit for how much space to reserve on each filesystem before changing to the next directory.

If `auditd` receives the signal `SIGUSR1`, the current audit file is closed and another is opened. If `SIGHUP` is received, the current audit trail is closed, the `audit_control` file reread, and a new trail is opened. If `SIGTERM` is received, the audit trail is closed and auditing is terminated. The program `audit(1M)` sends these signals and is recommended for this purpose.

Each time the audit daemon opens a new audit trail file, it updates the file `audit_data(4)` to include the correct name.

The audit daemon invokes the program `audit_warn(1M)` under the following conditions with the indicated options:

- `audit_warn soft pathname`  
  The filesystem upon which `pathname` resides has exceeded the minimum free space limit defined in `audit_control(4)`. A new audit trail has been opened on another filesystem.

- `audit_warn allsoft`  
  All available filesystems have been filled beyond the minimum free space limit. A new audit trail has been opened anyway.

- `audit_warn hard pathname`  
  The filesystem upon which `pathname` resides has filled or for some reason become unavailable. A new audit trail has been opened on another filesystem.

- `audit_warn allhard count`  
  All available filesystems have been filled or for some reason become unavailable. The audit daemon will repeat this call to `audit_warn` every twenty seconds until space becomes available. `count` is the number of times that `audit_warn` has been called since the problem arose.

- `audit_warn ebusy`  
  There is already an audit daemon running.

- `audit_warn tmpfile`  
  The file `/etc/security/audit/audit_tmp` exists, indicating a fatal error.

- `audit_warn nostart`  
  The internal system audit condition is `AUC_FCHDONE`. Auditing cannot be started without rebooting the system.

- `audit_warn auditoff`  
  The internal system audit condition has been changed to not be `AUC_AUDITING` by someone other than the audit daemon. This causes the audit daemon to exit.
auditd(1M)

audit_warn postsigterm
An error occurred during the orderly shutdown of the auditing system.

audit_warn getacdir
There is a problem getting the directory list from /etc/security/audit/audit_control.

The audit daemon will hang in a sleep loop until this file is fixed.

FILES
/etc/security/audit/audit_control
/etc/security/audit/audit_data

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
audit(1M), audit_warn(1M), bsmconv(1M), praudit(1M), auditon(2), auditsvc(2), audit.log(4), audit_control(4), audit_data(4), attributes(5)

NOTES
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
auditreduce(1M)

NAME
   auditreduce – merge and select audit records from audit trail files

SYNOPSIS
   auditreduce [options] [audit-trail-file...]

DESCRIPTION
   auditreduce allows you to select or merge records from audit trail files. Audit files
   can be from one or more machines.

   The merge function merges together audit records from one or more input audit trail
   files into a single output file. The records in an audit trail file are assumed to be sorted
   in chronological order (oldest first) and this order is maintained by auditreduce in
   the output file.

   Unless instructed otherwise, auditreduce will merge the entire audit trail, which
   consists of all the audit trail files in the directory structure audit_root_dir/*files (see
   audit_control(4) for details of the structure of the audit root). Unless stated with
   the -R or -S option, audit_root_dir defaults to /etc/security/audit. By using the
   file selection options it is possible to select some subset of these files, or files from
   another directory, or files named explicitly on the command line.

   The select function allows audit records to be selected on the basis of numerous
   criteria relating to the record’s content (see audit.log(4) for details of record
   content). A record must meet all of the record-selection-option criteria to be selected.

   Any audit trail file not named on the command line must conform to the audit trail
   filename format. Files produced by the audit system already have this format. Output
   file names produced by auditreduce are in this format. It is:

   start-time . end-time . suffix

   where start-time is the 14-character timestamp of when the file was opened, end-time is
   the 14-character timestamp of when the file was closed, and suffix is the name of the
   machine which generated the audit trail file, or some other meaningful suffix (for
   example, all, if the file contains a combined group of records from many machines).
   The end-time can be the literal string not_terminated, to indicate that the file is still
   being written to by the audit system. Timestamps are of the form yyyymmddhhmnnss
   (year, month, day, hour, minute, second). The timestamps are in Greenwich Mean
   Time (GMT).

OPTIONS

   File Selection Options

   The file selection options indicate which files are to be processed and certain types of
   special treatment.

   -A
       All of the records from the input files will be selected regardless of their timestamp.
       This option effectively disables the -a, -b, and -d options. This is useful in
       preventing the loss of records if the -D option is used to delete the input files after
       they are processed. Note, however, that if a record is not selected due to another
       option, then -A will not override that.
-C
Only process complete files. Files whose filename end-time timestamp is not_terminated are not processed (such a file is currently being written to by the audit system). This is useful in preventing the loss of records if -D is used to delete the input files after they are processed. It does not apply to files specified on the command line.

-D suffix
Delete input files after they are read if the entire run is successful. If auditreduce detects an error while reading a file, then that file is not deleted. If -D is specified, -A, -C and -O are also implied. suffix is given to the -O option. This helps prevent the loss of audit records by ensuring that all of the records are written, only complete files are processed, and the records are written to a file before being deleted. Note that if both -D and -O are specified in the command line, the order of specification is significant. The suffix associated with the latter specification is in effect.

-M machine
Allows selection of records from files with machine as the filename suffix. If -M is not specified, all files are processed regardless of suffix. -M can also be used to allow selection of records from files that contain combined records from many machines and have a common suffix (such as all).

-N
Select objects in new mode. This flag is off by default, thus retaining backward compatibility. In the existing, old mode, specifying the -e, -f, -g, -r, or -u flags would select not only actions taken with those IDs, but also certain objects owned by those IDs. When running in new mode, only actions are selected. In order to select objects, the -o option must be used.

-O suffix
Direct output stream to a file in the current audit root dir with the indicated suffix. suffix can alternatively contain a full pathname, in which case the last component is taken as the suffix, ahead of which the timestamps will be placed, ahead of which the remainder of the pathname will be placed. If the -O option is not specified, the output is sent to the standard output. When auditreduce places timestamps in the filename, it uses the times of the first and last records in the merge as the start-time and end-time.

-Q
Quiet. Suppress notification about errors with input files.

-R pathname
Specify the pathname of an alternate audit root directory audit_root_dir to be pathname. Therefore, rather than using /etc/security/audit/*/files by default, pathname/*/files will be examined instead.

-S server
This option causes auditreduce to read audit trail files from a specific location (server directory). server is normally interpreted as the name of a subdirectory of the audit root, therefore auditreduce will look in audit_root_dir/server/*files for
the audit trail files. But if server contains any ‘/’ characters, it is the name of a specific directory not necessarily contained in the audit root. In this case, server/files will be consulted. This option allows archived files to be manipulated easily, without requiring that they be physically located in a directory structure like that of /etc/security/audit.

-V
Verbose. Display the name of each file as it is opened, and how many records total were written to the output stream.

The record selection options listed below are used to indicate which records are written to the output file produced by auditreduce.

Multiple arguments of the same type are not permitted.

-a date-time
Select records that occurred at or after date-time. The date-time argument is described under Option Arguments, below. date-time is in local time. The -a and -b options can be used together to form a range.

-b date-time
Select records that occurred before date-time.

-c audit-classes
Select records by audit class. Records with events that are mapped to the audit classes specified by audit-classes are selected. Audit class names are defined in audit_class(4). The audit-classes can be a comma separated list of audit flags like those described in audit_control(4). Using the audit flags, one can select records based upon success and failure criteria.

-d date-time
Select records that occurred on a specific day (a 24-hour period beginning at 00:00:00 of the day specified and ending at 23:59:59). The day specified is in local time. The time portion of the argument, if supplied, is ignored. Any records with timestamps during that day are selected. If any hours, minutes, or seconds are given in time, they are ignored. -d can not be used with -a or -b.

-e effective-user
Select records with the specified effective-user.

-f effective-group
Select records with the specified effective-group.

-g real-group
Select records with the specified real-group.

-j subject-ID
Select records with the specified subject-ID where subject-ID is a process ID.

-m event
Select records with the indicated event. The event is the literal string or the event number.
Select records by object type. A match occurs when the record contains the information describing the specified object_type and the object ID equals the value specified by objectID_value. The allowable object types and values are as follows:

- **file=pathname**
  Select records containing file system objects with the specified pathname, where pathname is a comma separated list of regular expressions. If a regular expression is preceded by a tilde (~), files matching the expression are excluded from the output. For example, the option file=-/usr/openwin,/usr,/etc would select all files in /usr or /etc except those in /usr/openwin. The order of the regular expressions is important because auditreduce processes them from left to right, and stops when a file is known to be either selected or excluded. Thus the option file= /usr,/etc,-/usr/openwin would select all files in /usr and all files in /etc. Files in /usr/openwin are not excluded because the regular expression /usr is matched first. Care should be given in surrounding the pathname with quotes so as to prevent the shell from expanding any tildes.

- **filegroup=group**
  Select records containing file system objects with group as the owning group.

- **fileowner=user**
  Select records containing file system objects with user as the owning user.

- **msgqid=ID**
  Select records containing message queue objects with the specified ID where ID is a message queue ID.

- **msgqgroup=group**
  Select records containing message queue objects with group as the owning or creating group.

- **msgqowner=user**
  Select records containing message queue objects with user as the owning or creating user.

- **pid=ID**
  Select records containing process objects with the specified ID where ID is a process ID. Process are objects when they are receivers of signals.

- **procgroup=group**
  Select records containing process objects with group as the real or effective group.

- **procowner=user**
  Select records containing process objects with user as the real or effective user.

- **semid=ID**
  Select records containing semaphore objects with the specified ID where ID is a semaphore ID.

- **semgroup=group**
  Select records containing semaphore objects with group as the owning or creating group.
semowner=user
Select records containing semaphore objects with user as the owning or creating user.

shmid=ID
Select records containing shared memory objects with the specified ID where ID is a shared memory ID.

shmgroupl=group
Select records containing shared memory objects with group as the owning or creating group.

shmowner=user
Select records containing shared memory objects with user as the owning or creating user.

sock=port_number | machine
Select records containing socket objects with the specified port_number or the specified machine where machine is a machine name as defined in hosts(4).

-x real-user
Select records with the specified real-user.

-u audit-user
Select records with the specified audit-user. When one or more filename arguments appear on the command line, only the named files are processed. Files specified in this way need not conform to the audit trail filename format. However, -M, -S, and -R must not be used when processing named files. If the filename is "-" then the input is taken from the standard input.

Option Arguments

audit-trail-file
An audit trail file as defined in audit.log(4). An audit trail file not named on the command line must conform to the audit trail file name format. Audit trail files produced as output of auditreduce are in this format as well. The format is:

start-time . end-time . suffix

start-time is the 14 character time stamp denoting when the file was opened. end-time is the 14 character time stamp denoting when the file was closed. end-time can also be the literal string not_terminated, indicating the file is still be written to by the audit daemon or the file was not closed properly (a system crash or abrupt halt occurred). suffix is the name of the machine that generated the audit trail file (or some other meaningful suffix; for example, all would be a good suffix if the audit trail file contains a combined group of records from many machines).

date-time
The date-time argument to -a, -b, and -d can be of two forms: An absolute date-time takes the form:

yyyymmd [ hh [ mm [ ss ]]]

System Administration Commands  97
auditreduce(1M)

where yyyy specifies a year (with 1970 as the earliest value), mm is the month (01-12), dd is the day (01-31), hh is the hour (00-23), mm is the minute (00-59), and ss is the second (00-59). The default is 00 for hh, mm and ss.

An offset can be specified as: +n d|h|m|s where n is a number of units, and the tags d, h, m, and s stand for days, hours, minutes and seconds, respectively. An offset is relative to the starting time. Thus, this form can only be used with the -b option.

event
The literal string or ordinal event number as found in audit_event(4). If event is not found in the audit_event file it is considered invalid.

group
The literal string or ordinal group ID number as found in group(4). If group is not found in the group file it is considered invalid. group can be negative.

pathname
A regular expression describing a pathname.

user
The literal username or ordinal user ID number as found in passwd(4). If the username is not found in the passwd file it is considered invalid. user can be negative.

EXAMPLES

EXAMPLE 1 The auditreduce command.

praudit(1M) is available to display audit records in a human-readable form.

This will display the entire audit trail in a human-readable form:

% auditreduce | praudit

If all the audit trail files are being combined into one large file, then deleting the original files could be desirable to prevent the records from appearing twice:

% auditreduce -V -D /etc/security/audit/combined/all

This displays what user milner did on April 13, 1988. The output will be displayed in a human-readable form to the standard output:

% auditreduce -d 19880413 -u milner | praudit

The above example might produce a large volume of data if milner has been busy. Perhaps looking at only login and logout times would be simpler. The -c option will select records from a specified class:

% auditreduce -d 19880413 -u milner -c login_logout | praudit

To see milner’s login/logout activity for April 13, 14, and 15 the following is used. The results are saved to a file in the current working directory. Note that the name of the output file will have milnerlo as the suffix, with the appropriate timestamp prefixes. Note that the long form of the name is used for the -c option:

% auditreduce -a 19880413 -b +3d -u milner -c login_logout -O milnerlo
EXAMPLE 1 The auditreduce command. (Continued)

To follow milner's movement about the file system on April 13, 14, and 15 the chdir record types could be viewed. Note that in order to get the same time range as the above example we needed to specify the -b time as the day after our range. This is because 19880416 defaults to midnight of that day, and records before that fall on 0415, the end-day of the range.

% auditreduce -a 19880413 -b 19880416 -u milner -m AUE_CHDIR | praudit

In this example the audit records are being collected in summary form (the login/logout records only). The records are being written to a summary file in a different directory than the normal audit root to prevent the selected records from existing twice in the audit root.

% auditreduce -d 19880330 -c lo -O /etc/security/audit_summary/logins

If activity for user ID 9944 has been observed, but that user is not known to the system administrator, then the following example will search the entire audit trail for any records generated by that user. auditreduce will query the system as to the current validity of ID 9944, and display a warning message if it is not currently active:

% auditreduce -O /etc/security/audit_suspect/user9944 -u 9944

FILES /etc/security/audit/server/files/*

location of audit trails, when stored

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO bsmconv(1M), praudit(1M), audit.log(4), audit_class(4), audit_control(4), group(4), hosts(4), passwd(4), attributes(5)

DIAGNOSTICS auditreduce displays error messages if there are command line errors and then exit. If there are fatal errors during the run auditreduce displays an explanatory message and exit. In this case the output file might be in an inconsistent state (no trailer or partially written record) and auditreduce displays a warning message before exiting. Successful invocation returns 0 and unsuccessful invocation returns 1.

Since auditreduce might be processing a large number of input files, it is possible that the machine-wide limit on open files will be exceeded. If this happens, auditreduce displays a message to that effect, give information on how many file there are, and exit.

If auditreduce displays a record’s timestamp in a diagnostic message, that time is in local time. However, when filenames are displayed, their timestamps are in GMT.
Conjunction, disjunction, negation, and grouping of record selection options should be allowed.

The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See `bsmconv(1M)` for more information.
**NAME**  audit_startup – audit subsystem initialization script

**SYNOPSIS**  
/etc/security/audit_startup

**DESCRIPTION**  The audit_startup script is used to initialize the audit subsystem before the audit daemon is started. This script is configurable by the system administrator, and currently consists of a series of auditconfig(1M) commands to set the system default policy, and download the initial event to class mapping.

**SEE ALSO**  auditconfig(1M), auditd(1M), bsmconv(1M), attributes(5)

**NOTES**  The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
**NAME**
auditstat – display kernel audit statistics

**SYNOPSIS**
auditstat [-c count] [-h numlines] [-i interval] [-n] [-v]

**DESCRIPTION**
auditstat displays kernel audit statistics. The fields displayed are as follows:

- **aud**: The total number of audit records processed by the audit(2) system call.
- **ctl**: This field is obsolete.
- **drop**: The total number of audit records that have been dropped. Records are dropped according to the kernel audit policy. See auditon(2), AUDIT_CNT policy for details.
- **enq**: The total number of audit records put on the kernel audit queue.
- **gen**: The total number of audit records that have been constructed (not the number written).
- **kern**: The total number of audit records produced by user processes (as a result of system calls).
- **mem**: The total number of Kbytes of memory currently in use by the kernel audit module.
- **nona**: The total number of non-attributable audit records that have been constructed. These are audit records that are not attributable to any particular user.
- **rblk**: The total number of times that auditsvc(2) has blocked waiting to process audit data.
- **tot**: The total number of Kbytes of audit data written to the audit trail.
- **wblk**: The total number of times that user processes blocked on the audit queue at the high water mark.
- **wrtn**: The total number of audit records written. The difference between enq and wrtn is the number of outstanding audit records on the audit queue that have not been written.

**OPTIONS**

- **-c count**: Display the statistics a total of count times. If count is equal to zero, statistics are displayed indefinitely. A time interval must be specified.
- **-h numlines**: Display a header for every numlines of statistics printed. The default is to display the header every 20 lines. If numlines is equal to zero, the header is never displayed.
- **-i interval**: Display the statistics every interval where interval is the number of seconds to sleep between each collection.
- **-n**: Display the number of kernel audit events currently configured.
- **-v**: Display the version number of the kernel audit module software.
**EXIT STATUS**

auditstat returns 0 upon success and 1 upon failure.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

auditconfig(1M), praudit(1M), bsmconv(1M), audit(2), auditon(2), auditsvc(2), attributes(5)

**NOTES**

The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
The `audit_warn` utility processes warning or error messages from the audit daemon. When a problem is encountered, the audit daemon, `auditd(1M)` calls `audit_warn` with the appropriate arguments. The `option` argument specifies the error type.

The system administrator can specify a list of mail recipients to be notified when an `audit_warn` situation arises by defining a mail alias called `audit_warn` in `aliases(4)`. The users that make up the `audit_warn` alias are typically the `audit` and `root` users.

The following options are supported:

- **allhard count**: Indicates that the hard limit for all filesystems has been exceeded `count` times. The default action for this option is to send mail to the `audit_warn` alias only if the `count` is 1, and to write a message to the machine console every time. It is recommended that mail not be sent every time as this could result in the saturation of the file system that contains the mail spool directory.

- **allsoft**: Indicates that the soft limit for all filesystems has been exceeded. The default action for this option is to send mail to the `audit_warn` alias and to write a message to the machine console.

- **auditoff**: Indicates that someone other than the audit daemon changed the system audit state to something other than `AUC_AUDITING`. The audit daemon will have exited in this case. The default action for this option is to send mail to the `audit_warn` alias and to write a message to the machine console.

- **ebusy**: Indicates that the audit daemon is already running. The default action for this option is to send mail to the `audit_warn` alias and to write a message to the machine console.

- **getacdir count**: Indicates that there is a problem getting the directory list from `audit_control(4)`. The audit daemon will hang in a sleep loop until the file is fixed. The default action for this option is to send mail to the `audit_warn` alias only if `count` is 1, and to write a message to the machine console every time. It is recommended that mail not be sent every time as this could result in the saturation of the file system that contains the mail spool directory.
hard filename Indicates that the hard limit for the file has been exceeded. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

no start Indicates that auditing could not be started. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console. Some administrators may prefer to modify audit_warn to reboot the system when this error occurs.

post sigterm Indicates that an error occurred during the orderly shutdown of the audit daemon. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

soft filename Indicates that the soft limit for filename has been exceeded. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

tmp file Indicates that the temporary audit file already exists indicating a fatal error. The default action for this option is to send mail to the audit_warn alias and to write a message to the machine console.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>See below</td>
</tr>
</tbody>
</table>

The interface stability is evolving. The file content is unstable.

SEE ALSO audit(1M), auditd(1M), bsmconv(1M), aliases(4), audit.log(4), audit_control(4), attributes(5)

NOTES This functionality is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
The `automount` utility installs `autofs` mount points and associates an `automount` map with each mount point. The `autofs` file system monitors attempts to access directories within it and notifies the `automountd(1M)` daemon. The daemon uses the map to locate a file system, which it then mounts at the point of reference within the `autofs` file system. A map can be assigned to an `autofs` mount using an entry in the `/etc/auto_master` map or a direct map.

If the file system is not accessed within an appropriate interval (10 minutes by default), the `automountd` daemon unmounts the file system.

The file `/etc/auto_master` determines the locations of all `autofs` mount points. By default, this file contains four entries:

```
# Master map for automounter
#
+auto_master
/net  -hosts  -nosuid
/home  auto_home
/xfn  -xfn
```

The `+auto_master` entry is a reference to an external NIS or NIS+ master map. If one exists, then its entries are read as if they occurred in place of the `+auto_master` entry. The remaining entries in the master file specify a directory on which an `autofs` mount will be made followed by the automounter map to be associated with it.

Optional mount options may be supplied as an optional third field in each entry. These options are used for any entries in the map that do not specify mount options explicitly. The `automount` command is usually run without arguments. It compares the entries `/etc/auto_master` with the current list of `autofs` mounts in `/etc/mnttab` and adds, removes or updates `autofs` mounts to bring the `/etc/mnttab` up to date with the `/etc/auto_master`. At boot time it installs all `autofs` mounts from the master map. Subsequently, it may be run to install `autofs` mounts for new entries in the master map or the direct map, or to perform unmounts for entries that have been removed from these maps.

The following options are supported:

- `-t duration` Specifies a `duration`, in seconds, that a file system is to remain mounted when not in use. The default is 10 minutes.

- `-v`Verbose mode. Notifies of `autofs` mounts, unmounts, or other non-essential information.

A simple map entry (mapping) takes the form:

```
key [ -mount-options ] location . . .
```
where key is the full pathname of the directory to mount when used in a direct map, or the simple name of a subdirectory in an indirect map. mount-options is a comma-separated list of mount options, and location specifies a file system from which the directory may be mounted. In the case of a simple NFS mount, the options that can be used are as specified in mount_nfs(1M), and location takes the form:

```
host: pathname
```

host is the name of the host from which to mount the file system, and pathname is the absolute pathname of the directory to mount.

Options to other file systems are documented on the other mount_* reference manual pages, for example, mount_cachefs(1M).

Multiple location fields can be specified for replicated NFS file systems, in which case automount and the kernel will each try to use that information to increase availability. If the read-only flag is set in the map entry, automount mounts a list of locations that the kernel may use, sorted by several criteria. When a server does not respond, the kernel will switch to an alternate server. The sort ordering of automount is used to determine how the next server is chosen. If the read-only flag is not set, automount will mount the best single location, chosen by the same sort ordering, and new servers will only be chosen when an unmount has been possible, and a remount is done. Servers on the same local subnet are given the strongest preference, and servers on the local net are given the second strongest preference. Among servers equally far away, response times will determine the order if no weighting factors (see below) are used.

If the list includes server locations using both the NFS Version 2 Protocol and the NFS Version 3 Protocol, automount will choose only a subset of the server locations on the list, so that all entries will be the same protocol. It will choose servers with the NFS Version 3 Protocol so long as an NFS Version 2 Protocol server on a local subnet will not be ignored. See the System Administration Guide: IP Services for additional details.

If each location in the list shares the same pathname then a single location may be used with a comma-separated list of hostnames:

```
hostname,hostname . . . : pathname
```

Requests for a server may be weighted, with the weighting factor appended to the server name as an integer in parentheses. Servers without a weighting are assumed to have a value of zero (most likely to be selected). Progressively higher values decrease the chance of being selected. In the example,

```
man -ro alpha,bravo,charlie(1),delta(4) : /usr/man
```

hosts alpha and bravo have the highest priority; host delta has the lowest.
Server proximity takes priority in the selection process. In the example above, if the server `delta` is on the same network segment as the client, but the others are on different network segments, then `delta` will be selected; the weighting value is ignored. The weighting has effect only when selecting between servers with the same network proximity.

In cases where each server has a different export point, the weighting can still be applied. For example:

```
man -ro alpha:/usr/man bravo,charlie(l1):/usr/share/man
delta(3):/export/man
```

A mapping can be continued across input lines by escaping the NEWLINE with a backslash (\). Comments begin with a number sign (#) and end at the subsequent NEWLINE.

The ampersand (&) character is expanded to the value of the key field for the entry in which it occurs. In this case:

```
jane sparcserver : /home/\n```

the & expands to `jane`

The asterisk (*) character, when supplied as the key field, is recognized as the catch-all entry. Such an entry will match any key not previously matched. For instance, if the following entry appeared in the indirect map for `/config`:

```
*   & : /export/config/\n```

this would allow automatic mounts in `/config` of any remote file system whose location could be specified as:

```
hostname : /export/config/hostname
```

Client specific variables can be used within an automount map. For instance, if `$HOST` appeared within a map, automount would expand it to its current value for the client's host name. Supported variables are:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH</td>
<td>The application architecture is derived from the output of <code>uname -m</code></td>
</tr>
<tr>
<td>CPU</td>
<td>The output of <code>uname -p</code></td>
</tr>
<tr>
<td>HOST</td>
<td>The output of <code>uname -n</code></td>
</tr>
</tbody>
</table>

The architecture name. For example, "sun4" on a sun4u machine.
The processor type. For example, "sparc"
The host name. For example, "biggles"
The output of `uname -s` is the OS name. For example, "SunOS".

The output of `uname -r` is the OS release name. For example, "5.3".

The output of `uname -v` is the OS version. For example, "beta1.0".

The native instruction set architecture for the system. For example, "sparcv9".

If a reference needs to be protected from affixed characters, you can surround the variable name with curly braces (`{ }`).

### Multiple Mounts

A multiple mount entry takes the form:

```
key [mount-options] [[mountpoint] [mount-options] location...]...
```

The initial `[/mountpoint ]` is optional for the first mount and mandatory for all subsequent mounts. The optional `mountpoint` is taken as a pathname relative to the directory named by `key`. If `mountpoint` is omitted in the first occurrence, a `mountpoint` of `/ (root)` is implied.

Given an entry in the indirect map for `/src`:

```
beta -ro
  /     svr1,svr2:/export/src/beta \
  /1.0  svr1,svr2:/export/src/beta/1.0 \
  /1.0/man svr1,svr2:/export/src/beta/1.0/man
```

All offsets must exist on the server under `beta`. `automount` will automatically mount `/src/beta`, `/src/beta/1.0`, and `/src/beta/1.0/man`, as needed, from either `svr1` or `svr2`, whichever host is nearest and responds first.

### Other File System Types

The automounter assumes NFS mounts as a default file system type. Other file system types can be described using the `fstype` mount option. Other mount options specific to this file system type can be combined with the `fstype` option. The location field must contain information specific to the file system type. If the location field begins with a slash, a colon character must be prepended, for instance, to mount a CD file system:

```
cdrom -fstype=hsfs,ro : /dev/sr0
```

or to perform an `autofs` mount:
src -fstype=autofs auto_src

Note: Use this procedure only if you are not using Volume Manager.

Mounts using CacheFS are most useful when applied to an entire map as map defaults. The following entry in the master map describes cached home directory mounts. It assumes the default location of the cache directory, /cache.

/home auto_home -fstype=cachefs,backfstype=nfs

See the NOTES section for information on option inheritance.

Indirect Maps
An indirect map allows you to specify mappings for the subdirectories you wish to mount under the directory indicated on the command line. In an indirect map, each key consists of a simple name that refers to one or more file systems that are to be mounted as needed.

Direct Maps
Entries in a direct map are associated directly with autofs mount points. Each key is the full pathname of an autofs mount point. The direct map as a whole is not associated with any single directory.

Included Maps
The contents of another map can be included within a map with an entry of the form

+mapname

If mapname begins with a slash, it is assumed to be the pathname of a local file. Otherwise, the location of the map is determined by the policy of the name service switch according to the entry for the automounter in /etc/nsswitch.conf, such as

automount: files nis

If the name service is files, then the name is assumed to be that of a local file in /etc. If the key being searched for is not found in the included map, the search continues with the next entry.

Special Maps
There are three special maps available: -hosts, -xfn, and -null. The -hosts map is used with the /net directory and assumes that the map key is the hostname of an NFS server. The automountd daemon dynamically constructs a map entry from the server’s list of exported file systems. References to a directory under /net/hermes will refer to the corresponding directory relative to hermes root.

The -xfn map is used to mount the initial context of the Federated Naming Service (FNS) namespace under the /xfn directory. For more information on FNS, see fns(5), fns_initial_context(5), fns_policies(5), and the Federated Naming Service Guide.
The -null map cancels a previous map for the directory indicated. This is most useful in the /etc/auto_master for cancelling entries that would otherwise be inherited from the +auto_master include entry. To be effective, the -null entries must be inserted before the included map entry.

Executable Maps

Local maps that have the execute bit set in their file permissions will be executed by the automounter and provided with a key to be looked up as an argument. The executable map is expected to return the content of an automounter map entry on its stdout or no output if the entry cannot be determined. A direct map cannot be made executable.

Configuration and the auto_master Map

When initiated without arguments, automount consults the master map for a list of autofs mount points and their maps. It mounts any autofs mounts that are not already mounted, and unmounts autofs mounts that have been removed from the master map or direct map.

The master map is assumed to be called auto_master and its location is determined by the name service switch policy. Normally the master map is located initially as a local file /etc/auto_master.

Browsing

The Solaris 2.6 release supports browsability of indirect maps. This allows all of the potential mount points to be visible, whether or not they are mounted. The -nobrowse option can be added to any indirect autofs map to disable browsing. For example:

```
/net -hosts -nosuid,nobrowse
/home auto_home
```

In this case, any hostnames would only be visible in /net after they are mounted, but all potential mount points would be visible under /home. The -browse option enables browsability of autofs file systems. This is the default for all indirect maps.

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  An error occurred.

FILES

/etc/auto_master  master automount map.
/etc/auto_home  map to support automounted home directories.
/etc/nsswitch.conf  the name service switch configuration file.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
autofs mount points must not be hierarchically related. automount does not allow an autofs mount point to be created within another autofs mount.

Since each direct map entry results in a new autofs mount such maps should be kept short.

Entries in both direct and indirect maps can be modified at any time. The new information is used when automountd next uses the map entry to do a mount.

New entries added to a master map or direct map will not be useful until the automount command is run to install them as new autofs mount points. New entries added to an indirect map may be used immediately.

As of the Solaris 2.6 release, a listing (see ls(1)) of the autofs directory associated with an indirect map shows all potential mountable entries. The attributes associated with the potential mountable entries are temporary. The real file system attributes will only be shown once the file system has been mounted.

Default mount options can be assigned to an entire map when specified as an optional third field in the master map. These options apply only to map entries that have no mount options. Note that map entities with options override the default options, as at this time, the options do not concatenate. The concatenation feature is planned for a future release.

When operating on a map that invokes an NFS mount, the default number of retries for the automounter is 0, that is, a single mount attempt, with no retries. Note that this is significantly different from the default (10000) for the mount_nfs(1M) utility.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same.
NAME
automountd – automfs mount/unmount daemon

SYNOPSIS
automountd [-Tv] [-D name=value]

DESCRIPTION
automountd is an RPC server that answers file system mount and unmount requests from the automfs file system. It uses local files or name service maps to locate file systems to be mounted. These maps are described with the automount(1M) command.

The automountd daemon is automatically invoked in run level 2.

OPTIONS
-T Trace. Expand each RPC call and display it on the standard output.
-v Verbose. Log status messages to the console.
-n Turn off browsing for all automfs mount points. This option overrides the -browse automfs map option on the local host.
-D name=value Assign value to the indicated automount map substitution variable. These assignments cannot be used to substitute variables in the master map auto_master.

FILES
/etc/auto_master master map for automounter

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
automount(1M), attributes(5), largefile(5)
NAME
autopush - configures lists of automatically pushed STREAMS modules

SYNOPSIS
autopush -f filename
autopush -g -M major -m minor
autopush -r -M major -m minor

DESCRIPTION
The autopush command configures the list of modules to be automatically pushed onto the stream when a device is opened. It can also be used to remove a previous setting or get information on a setting.

OPTIONS
The following options are supported:
- f filename
  Sets up the autopush configuration for each driver according to the information stored in filename. An autopush file consists of lines of four or more fields, separated by spaces as shown below:
  
major minor last-minor module1 module2 . . . module8

  The first field is a string that specifies the major device name, as listed in the /kernel/drv directory. The next two fields are integers that specify the minor device number and last-minor device number. The fields following represent the names of modules. If minor is −1, then all minor devices of a major driver specified by major are configured, and the value for last-minor is ignored. If last-minor is 0, then only a single minor device is configured. To configure a range of minor devices for a particular major, minor must be less than last-minor.

  The remaining fields list the names of modules to be automatically pushed onto the stream when opened, along with the position of an optional anchor. The maximum number of modules that can be pushed is eight. The modules are pushed in the order they are specified. The optional special character sequence [anchor] indicates that a STREAMS anchor should be placed on the stream at the module previously specified in the list; it is an error to specify more than one anchor or to have an anchor first in the list.

  A nonzero exit status indicates that one or more of the lines in the specified file failed to complete successfully.

- g
  Gets the current configuration setting of a particular major and minor device number specified with the -M and -m options respectively and displays the autopush modules associated with it. It will also return the starting minor device number if the request corresponds to a setting of a range (as described with the -f option).

- m minor
  Specifies the minor device number.
autopush(1M)

-M major Specifies the major device number.
-r Removes the previous configuration setting of the particular major and minor device number specified with the -M and -m options respectively. If the values of major and minor correspond to a previously established setting of a range of minor devices, where minor matches the first minor device number in the range, the configuration would be removed for the entire range.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

EXAMPLES
EXAMPLE 1 Using the autopush command.
The following example gets the current configuration settings for the major and minor device numbers as indicated and displays the autopush modules associated with them for the character-special device /dev/term/a:
example# autopush -g -M 29 -m 0
Major Minor Lastminor Modules
29 0 1 ldterm ttcompat

FILES
/etc/iu.ap

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
bdconfig(1M), ttymon(1M), attributes(5), ldterm(7M), sad(7D), streamio(7I), ttcompat(7M)
STREAMS Programming Guide
bdconfig(1M)

NAME
bdconfig – configures the bd (buttons and dials) stream

SYNOPSIS
bsdconfig [startup] [off] [on] [term] [status] [verbose]

DESCRIPTION
The bdconfig utility is responsible for configuring the autopush facility and defining to the system what serial device to use for the bd stream.

OPTIONS
If no options are given, then an interactive mode is assumed. In this mode the current status is presented along with this usage line, and a series of interactive questions asked to determine the user’s desires.

Root privilege is required to change the configuration. The status option does not require root privilege. bdconfig can be installed as a setuid root program.

The non-interactive options below can be given in any order.

term
  Specify to the system the serial device for bd use. This option implies the on option unless the off option is present.

iff
  Reconfigure the configured term for tty use.

on
  Reconfigure the configured term for bd use. If term has not been previously specified, interactive questions are asked to determine the user’s desires.

startup
  Configure as was last configured before the system went down. This option is used by the startup script, and precludes the use of the on, off, and term options. This option implies non-interactive mode.

status
  Emit the current configuration in terms of the words used as options: off, on, /dev/term/a, /dev/term/b, and so forth. This option implies non interactive mode.

verbose
  bdconfig describes what it finds and what it is doing.

EXIT STATUS
The bdconfig utility returns 0 on success, 1 on general error, and 2 on argument error.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdialh</td>
</tr>
</tbody>
</table>

SEE ALSO
autopush(1M), attributes(5), x_buttonertest(6), x_dialtest(6), bd(7M), sad(7D), streamio(7I)

NOTES
All bdconfig does is configure the AUTOPUSH facility. bdconfig does not actually manipulate the serial port or stream in any way. Only the first open of a dismantled stream will see the effects of a previously run bdconfig.
The `bdconfig` utility is silent except for error messages unless:

a) invoked with no args: status / usage line emitted
b) interactive modes are invoked as described above
c) the verbose option is used

**BUGS**
The interface does not support more than one dialbox and one buttonbox, both of which must be on the same serial device.

There should be a library routine to read, parse, and validate records in the `iu.ap` file, so that `bdconfig` could return to the appropriate record in `iu.ap` as the default configuration.
boot – start the system kernel or a standalone program

**SYNOPSIS**

**SPARC**  
`boot [OBP names] [file] [-aEV] [-D default-file] [boot-flags] [---]
            [client-program-args]

**x86**  
`b [file] [-f] [-D default-file] [boot-flags]
            [client-program-args]

**DESCRIPTION**

Bootstrapping is the process of loading and executing a standalone program. For the purpose of this discussion, bootstrapping means the process of loading and executing the bootable operating system. Typically, the standalone program is the operating system kernel (see `kernel(1M)`), but any standalone program can be booted instead. On a SPARC-based system, the diagnostic monitor for a machine is a good example of a standalone program other than the operating system that can be booted.

If the standalone is identified as a dynamically-linked executable, boot will load the interpreter (linker/loader) as indicated by the executable format and then transfer control to the interpreter. If the standalone is statically-linked, it will jump directly to the standalone.

Once the kernel is loaded, it starts the UNIX system, mounts the necessary file systems (see `vfstab(4)`), and runs `/sbin/init` to bring the system to the "initdefault" state specified in `/etc/inittab`. See `inittab(4)`.

**SPARC Bootstrap Procedure**

On SPARC-based systems, the bootstrap procedure on most machines consists of the following basic phases.

After the machine is turned on, the system firmware (in PROM) executes power-on self-test (POST). The form and scope of these tests depends on the version of the firmware in your system.

After the tests have been completed successfully, the firmware attempts to autoboot if the appropriate flag has been set in the non-volatile storage area used by the firmware. The name of the file to load, and the device to load it from can also be manipulated.

These flags and names can be set using the `eeprom(1M)` command from the shell, or by using PROM commands from the `ok` prompt after the system has been halted.

The second level program is either `ufsboot` (when booting from a disk), or `inetboot` or `wanboot` (when booting across the network).

**Network Booting**

Network booting occurs in two steps: the client first obtains an IP address and any other parameters necessary to permit it to load the second-stage booter. The second-stage booter in turn loads the UNIX kernel.
An IP address can be obtained in one of three ways: RARP, DHCP, or manual configuration, depending on the functions available in and configuration of the PROM. Machines of the sun4u kernel architecture have DHCP-capable PROMs.

The boot command syntax for specifying the two methods of network booting are:

```
boot net: rarp
boot net: dhcp
```

The command:

```
boot net
```

without a rarp or dhcp specifier, invokes the default method for network booting over the network interface for which net is an alias.

The sequence of events for network booting using RARP/bootparams is described in the following paragraphs. The sequence for DHCP follows the RARP/bootparams description.

When booting over the network using RARP/bootparams, the PROM begins by broadcasting a reverse ARP request until it receives a reply. When a reply is received, the PROM then broadcasts a TFTP request to fetch the first block of inetboot. Subsequent requests will be sent to the server that initially answered the first block request. After loading, inetboot will also use reverse ARP to fetch its IP address, then broadcast bootparams RPC calls (see bootparams(4)) to locate configuration information and its root file system. inetboot then loads the kernel via NFS and transfers control to it.

When booting over the network using DHCP, the PROM broadcasts the hardware address and kernel architecture and requests an IP address, boot parameters, and network configuration information. After a DHCP server responds and is selected (from among potentially multiple servers), that server sends to the client an IP address and all other information needed to boot the client. After receipt of this information, the client PROM examines the name of the file to be loaded, and will behave in one of two ways, depending on whether the file’s name appears to be an HTTP URL. If it does not, the PROM downloads inetboot, loads that file into memory, and executes it. inetboot invokes the kernel, which loads the files it needs and releases inetboot. Startup scripts then initiate the DHCP agent (see dhcpagent(1M)), which implements further DHCP activities.

If the file to be loaded is an HTTP URL, the PROM will use HTTP to load the referenced file. If the client has been configured with an HMAC SHA-1 key, it will check the integrity of the loaded file before proceeding to execute it. The file is expected to be the wanboot binary. When wanboot begins executing, it will determine whether sufficient information is available to it to allow it to proceed. If any necessary information is missing, it will either exit with an appropriate error or bring up a command interpreter and prompt for further configuration information. Once wanboot has obtained the necessary information, it will load its boot file system into memory by means of HTTP. If an encryption key has been installed on the client,
wanboot will decrypt the file system image and its accompanying hash (presence of an encryption key but no hashing key is an error), then verify the hash. The boot file system contains various configuration data needed to allow wanboot to set the correct time and proceed to obtain a root file system.

The boot file system is examined to determine whether wanboot should use HTTP or secure HTTP. If the former, and if the client has been configured with an HMAC SHA-1 key, wanboot will perform an integrity check of the root file system. Once the root file system has been loaded into memory (and possibly had an integrity check performed), wanboot loads and executes UNIX from it. If provided with a boot_logger URL by means of the wanboot.conf(4) file, wanboot will periodically log its progress.

Not all PROMs are capable of consuming URLs. You can determine whether a client is so capable using the list-security-keys OBP command (see monitor(1M)).

WAN booting is not currently available on the x86 platform.

The wanboot Command Line

When the client program is wanboot, it accepts client-program-args of the form:

```
boot ... -o opt1[,opt2[,...]]
```

where each option may be an action:

- **dhcp**
  - Require wanboot to obtain configuration parameters by means of DHCP.

- **prompt**
  - Cause wanboot to enter its command interpreter.

- `<cmd>`
  - One of the interpreter commands listed below.

- ...or an assignment, using the interpreter’s parameter names listed below.

The wanboot Command Interpreter

The wanboot command interpreter is invoked by supplying a client-program-args of ”-o prompt” when booting. Input consists of single commands or assignments, or a comma-separated list of commands or assignments. The configuration parameters are:

- **host-ip**
  - IP address of the client (in dotted-decimal notation)

- **router-ip**
  - IP address of the default router (in dotted-decimal notation)

- **subnet-mask**
  - subnet mask (in dotted-decimal notation)
client-id
    DHCP client identifier (a quoted ASCII string or hex ASCII)
hostname
    hostname to request in DHCP transactions (ASCII)
http-proxy
    HTTP proxy server specification (IPADDR[:PORT])

The key names are:
3des
    the triple DES encryption key (48 hex ASCII characters)
aes
    the AES encryption key (32 hex ASCII characters)
sha1
    the HMAC SHA-1 signature key (40 hex ASCII characters)

Finally, the URL or the WAN boot CGI is referred to by means of:
bootserver
    URL of WAN boot’s CGI (the equivalent of OBP’s file parameter)

The interpreter accepts the following commands:
help
    Print a brief description of the available commands
var=val
    Assign val to var, where var is one of the configuration parameter names, the key
    names, or bootserver.
var=
    Unset parameter var.
list
    List all parameters and their values (key values retrieved by means of OBP are
    never shown).
prompt
    Prompt for values for unset parameters. The name of each parameter and its
    current value (if any) is printed, and the user can accept this value (press Return) or
    enter a new value.
go
    Once the user is satisfied that all values have been entered, leave the interpreter
    and continue booting.
exit
    Quit the boot interpreter and return to OBP’s ok prompt.
Any of these assignments or commands can be passed on the command line as part of the -o options, subject to the OBP limit of 128 bytes for boot arguments. For example, -olist,go would simply list current (default) values of the parameters and then continue booting.

Booting from Disk

When booting from disk (or disk-like device), the bootstrapping process consists of two conceptually distinct phases, primary boot and secondary boot. In the primary boot phase, the PROM loads the primary boot block from blocks 1 to 15 of the disk partition selected as the boot device.

If the pathname to the standalone is relative (does not begin with a slash), the second level boot will look for the standalone in a platform-dependent search path. This path is guaranteed to contain /platform/platform-name. Many SPARC platforms next search the platform-specific path entry /platform/hardware-class-name. See filesystem(5). If the pathname is absolute, boot will use the specified path. The boot program then loads the standalone at the appropriate address, and then transfers control.

If the filename is not given on the command line or otherwise specified, for example, by the boot-file NVRAM variable, boot chooses an appropriate default file to load based on what software is installed on the system, the capabilities of the hardware and firmware, and on a user configurable policy file (see FILES, below).

The OpenBoot boot command takes arguments of the following form:

```
ok boot [device-specifier] [arguments]
```

The default boot command has no arguments:

```
ok boot
```

If no device-specifier is given on the boot command line, OpenBoot typically uses the boot-device or diag-device NVRAM variable. If no optional arguments are given on the command line, OpenBoot typically uses the boot-file or diag-file NVRAM variable as default boot arguments. (If the system is in diagnostics mode, diag-device and diag-file are used instead of boot-device and boot-file).

arguments may include more than one string. All argument strings are passed to the secondary booter; they are not interpreted by OpenBoot.

If any arguments are specified on the boot command line, then neither the boot-file nor the diag-file NVRAM variable is used. The contents of the NVRAM variables are not merged with command line arguments. For example, the command:

```
ok boot -s
```

ignores the settings in both boot-file and diag-file; it interprets the string " -s " as arguments. boot will not use the contents of boot-file or diag-file.
With older PROMs, the command:

```
ok boot net
```

took no arguments, using instead the settings in `boot-file` or `diag-file` (if set) as the default file name and arguments to pass to boot. In most cases, it is best to allow the `boot` command to choose an appropriate default based upon the system type, system hardware and firmware, and upon what is installed on the root file system. It is accepted practice to augment the `boot` command’s policy by modifying the policy file; however, changing `boot-file` or `diag-file` may generate unexpected results in certain circumstances.

This behavior is found on most OpenBoot 2.x and 3.x based systems. Note that differences may occur on some platforms.

The command:

```
ok boot cdrom
```

...also normally takes no arguments. Accordingly, if `boot-file` is set to the 64-bit kernel filename and you attempt to boot the installation CD with `boot cdrom`, boot will fail if the installation CD contains only a 32-bit kernel.

Because the contents of `boot-file` or `diag-file` can be ignored depending on the form of the `boot` command used, reliance upon `boot-file` should be discouraged for most production systems. To change the OS policy, change the policy file. A significant exception is when a production system has both 32-bit and 64-bit packages installed, but the production system requires use of the 32-bit OS.

When executing a WAN boot from a local (CD) copy of wanboot, one must use:

```
ok boot cdrom -F wanboot - install
```

Modern PROMs have enhanced the network boot support package to support the following syntax for arguments to be processed by the package:

```
[protocol,] [key=value,]*
```

All arguments are optional and can appear in any order. Commas are required unless the argument is at the end of the list. If specified, an argument takes precedence over any default values, or, if booting using DHCP, over configuration information provided by a DHCP server for those parameters.

`protocol`, above, specifies the address discovery protocol to be used.

Configuration parameters, listed below, are specified as `key=value` attribute pairs.

```
tftp-server
    IP address of the TFTP server
```

```
```
file
data to download using TFTP or URL for WAN boot

host-ip
IP address of the client (in dotted-decimal notation)

router-ip
IP address of the default router

subnet-mask
subnet mask (in dotted-decimal notation)

client-id
DHCP client identifier

hostname
hostname to use in DHCP transactions

http-proxy
HTTP proxy server specification (IPADDR[:PORT])

tftp-retries
maximum number of TFTP retries

dhcp-retries
maximum number of DHCP retries

The list of arguments to be processed by the network boot support package is
specified in one of two ways:

- As arguments passed to the package’s open method, or
- arguments listed in the NVRAM variable network-boot-arguments.

Arguments specified in network-boot-arguments will be processed only if there
are no arguments passed to the package’s open method.

Argument Values

protocol specifies the address discovery protocol to be used. If present, the possible
values are rarp or dhcp.

If other configuration parameters are specified in the new syntax and style specified
by this document, absence of the protocol parameter implies manual configuration.

If no other configuration parameters are specified, or if those arguments are specified
in the positional parameter syntax currently supported, the absence of the protocol
parameter causes the network boot support package to use the platform-specific
default address discovery protocol.

Manual configuration requires that the client be provided its IP address, the name of
the boot file, and the address of the server providing the boot file image. Depending
on the network configuration, it might be required that subnet-mask and
router-ip also be specified.
If the *protocol* argument is not specified, the network boot support package uses the platform-specific default address discovery protocol.

*tftp-server* is the IP address (in standard IPv4 dotted-decimal notation) of the TFTP server that provides the file to download if using TFTP.

When using DHCP, the value, if specified, overrides the value of the TFTP server specified in the DHCP response.

The TFTP RRQ is unicast to the server if one is specified as an argument or in the DHCP response. Otherwise, the TFTP RRQ is broadcast.

*file* specifies the file to be loaded by TFTP from the TFTP server, or the URL if using HTTP. The use of HTTP is triggered if the file name is a URL, that is, the file name starts with `http:` (case-insensitive).

When using RARP and TFTP, the default file name is the ASCII hexadecimal representation of the IP address of the client, as documented in a preceding section of this document.

When using DHCP, this argument, if specified, overrides the name of the boot file specified in the DHCP response.

When using DHCP and TFTP, the default file name is constructed from the root node’s name property, with commas (,) replaced by periods (.)

When specified on the command line, the filename must not contain slashes (/).

The format of URLs is described in RFC 2396. The HTTP server must be specified as an IP address (in standard IPv4 dotted-decimal notation). The optional port number is specified in decimal. If a port is not specified, port 80 (decimal) is implied.

The URL presented must be “safe-encoded”, that is, the package does not apply escape encodings to the URL presented. URLs containing commas must be presented as a quoted string. Quoting URLs is optional otherwise.

*host-ip* specifies the IP address (in standard IPv4 dotted-decimal notation) of the client, the system being booted. If using RARP as the address discovery protocol, specifying this argument makes use of RARP unnecessary.

If DHCP is used, specifying the *host-ip* argument causes the client to follow the steps required of a client with an “Externally Configured Network Address”, as specified in RFC 2131.

*router-ip* is the IP address (in standard IPv4 dotted-decimal notation) of a router on a directly connected network. The router will be used as the first hop for communications spanning networks. If this argument is supplied, the router specified here takes precedence over the preferred router specified in the DHCP response.
subnet-mask (specified in standard IPv4 dotted-decimal notation) is the subnet mask on the client’s network. If the subnet mask is not provided (either by means of this argument or in the DHCP response), the default mask appropriate to the network class (Class A, B, or C) of the address assigned to the booting client will be assumed.

client-id specifies the unique identifier for the client. The DHCP client identifier is derived from this value. Client identifiers can be specified as:

- The ASCII hexadecimal representation of the identifier, or
- a quoted string

Thus, client-id="openboot" and client-id=6f70656e626f6f74 both represent a DHCP client identifier of 006f70656e626f6f74.

Identifiers specified on the command line must not include slash (/) or spaces.

The maximum length of the DHCP client identifier is 32 bytes, or 64 characters representing 32 bytes if using the ASCII hexadecimal form. If the latter form is used, the number of characters in the identifier must be an even number. Valid characters are 0-9, a-f, and A-F.

For correct identification of clients, the client identifier must be unique among the client identifiers used on the subnet to which the client is attached. System administrators are responsible for choosing identifiers that meet this requirement.

Specifying a client identifier on a command line takes precedence over any other DHCP mechanism of specifying identifiers.

hostname (specified as a string) specifies the hostname to be used in DHCP transactions. The name might or might not be qualified with the local domain name. The maximum length of the hostname is 255 characters.

Note – The hostname parameter can be used in service environments that require that the client provide the desired hostname to the DHCP server. Clients provide the desired hostname to the DHCP server, which can then register the hostname and IP address assigned to the client with DNS.

http-proxy is specified in the following standard notation for a host:

```
host ["": port]
```

...where host is specified as an IP address (in standard IPv4 dotted-decimal notation) and the optional port is specified in decimal. If a port is not specified, port 8080 (decimal) is implied.

tftp-retries is the maximum number of retries (specified in decimal) attempted before the TFTP process is determined to have failed. Defaults to using infinite retries.

dhcp-retries is the maximum number of retries (specified in decimal) attempted before the DHCP process is determined to have failed. Defaults to using infinite retries.
**x86 Bootstrap Procedure**

On x86 based systems, the bootstrapping process consists of two conceptually distinct phases, primary boot and secondary boot. The primary boot is implemented in the BIOS ROM on the system board, and BIOS extensions in ROMs on peripheral boards. It is distinguished by its ability to control the installed peripheral devices and to provide I/O services through software interrupts. It begins the booting process by loading the first physical sector from a floppy disk, hard disk, or CD-ROM, or, if supported by the system or network adapter BIOS, by reading a bootstrap program from a network boot server. The primary boot is implemented in x86 real-mode code.

The secondary boot is loaded by the primary boot. It is implemented in 32-bit, paged, protected mode code. It also loads and uses peripheral-specific BIOS extensions written in x86 real-mode code. The secondary boot is called `boot.bin` and is capable of reading and booting from a UFS file system on a hard disk or a CD or by way of a LAN using the NFS protocol.

The secondary boot is responsible for running the Configuration Assistant program which determines the installed devices in the system (possibly with help from the user). The secondary boot then reads the script in `/etc/bootrc`, which controls the booting process. This file contains boot interpreter commands, which are defined below, and can be modified to change defaults or to adapt to a specific machine.

The standard `/etc/bootrc` script prompts the user to enter a b character to boot with specified options, or an i character to invoke the interpreter interactively. Pressing ENTER without entering a character boots the default kernel. All other responses are considered errors and cause the script to restart.

Once the kernel is loaded, it starts the operating system, loads the necessary modules, mounts the necessary file systems (see `vfstab(4)`), and runs `/sbin/init` to bring the system to the "initdefault" state specified in `/etc/inittab`. See `inittab(4)`.

**OPTIONS**

**SPARC**

The following SPARC options are supported:

- **-a**  
The boot program interprets this flag to mean ask me, and so it prompts for the name of the standalone. The `-a` flag is then passed to the standalone program.

- **-D default-file**  
Explicitly specify the `default-file`. On some systems, `boot` chooses a dynamic default file, used when none is otherwise specified. This option allows the `default-file` to be explicitly set and can be useful when booting `kadb(1M)` since, by default, `kadb` loads the default-file as exported by the `boot` program.

- **-f**  
When booting an Autoclient system, this flag forces the boot program to bypass the client's local cache and read all files over the network from the client's file.
server. This flag is ignored for all non-Autoclient systems. The -f flag is then passed to the standalone program.

```
-V
```

Display verbose debugging information.

```
boot-flags
```

The boot program passes all boot-flags to file. They are not interpreted by boot. See the kernel(1M) and kaadb(1M) manual pages for information about the options available with the default standalone program.

```
client-program-args
```

The boot program passes all client-program-args to file. They are not interpreted by boot.

```
file
```

Name of a standalone program to boot. If a filename is not explicitly specified, either on the boot command line or in the boot-file NVRAM variable, boot chooses an appropriate default filename. On most systems, the default filename is the 32-bit kernel. On systems capable of supporting both the 32-bit and 64-bit kernels, the 64-bit kernel will be chosen in preference to the 32-bit kernel. boot chooses an appropriate default file to boot based on what software is installed on the system, the capabilities of the hardware and firmware, and on a user configurable policy file.

```
OBP names
```

Specify the open boot prom designations. For example, on Desktop SPARC based systems, the designation /sbus/esp@0,800000/sd@3,0:a indicates a SCSI disk (sd) at target 3, lun0 on the SCSI bus, with the esp host adapter plugged into slot 0.

```
x86
```

The following x86 options are supported:

```
-D default-file
```

Explicitly specify the default-file. On some systems, boot chooses a dynamic default file, used when none is otherwise specified. This option allows the default-file to be explicitly set and can be useful when booting kaadb(1M) since, by default, kaadb loads the default-file as exported by the boot program.

```
-f
```

When booting an Autoclient system, this flag forces the boot program to bypass the client’s local cache and read all files over the network from the client’s file server. This flag is ignored for all non-Autoclient systems. The -f flag is then passed to the standalone program.

```
boot-args
```

The boot program passes all boot-args to file. They are not interpreted by boot. See kernel(1M) and kaadb(1M) for information about the options available with the kernel.
After a PC-compatible machine is turned on, the system firmware in the BIOS ROM executes a power-on self test (POST), runs BIOS extensions in peripheral board ROMs, and invokes software interrupt INT 19h, Bootstrap. The INT 19h handler typically performs the standard PC-compatible boot, which consists of trying to read the first physical sector from the first diskette drive, or, if that fails, from the first hard disk. The processor then jumps to the first byte of the sector image in memory.

The first sector on a floppy disk contains the master boot block. The boot block is responsible for loading the image of the boot loader strap.com, which then loads the secondary boot, boot.bin. A similar sequence occurs for CD-ROM boot, but the master boot block location and contents are dictated by the El Torito specification. The El Torito boot also leads to strap.com, which in turn loads boot.bin.

The first sector on a hard disk contains the master boot block, which contains the master boot program and the FDISK table, named for the PC program that maintains it. The master boot finds the active partition in the FDISK table, loads its first sector, and jumps to its first byte in memory. This completes the standard PC-compatible hard disk boot sequence.

An x86 FDISK partition for the Solaris software begins with a one-cylinder boot slice, which contains the partition boot program (pboot) in the first sector, the standard Solaris disk label and volume table of contents (VTOC) in the second and third sectors, and the bootblk program in the fourth and subsequent sectors. When the FDISK partition for the Solaris software is the active partition, the master boot program (mboot) reads the partition boot program in the first sector into memory and jumps to it. It in turn reads the bootblk program into memory and jumps to it. Regardless of the type of the active partition, if the drive contains multiple FDISK partitions, the user is given the opportunity to reboot another partition.

bootblk or strap.com (depending upon the active partition type) reads boot.bin from the file system in the Solaris root slice and jumps to its first byte in memory.

For network booting, you have the choice of the boot floppy or Intel’s Preboot eXecution Environment (PXE) standard. When booting from the network using the boot floppy, you can select which network configuration strategy you want by editing the boot properties, changing the setting for net-config-strategy. By default, net-config-strategy is set to rarp. It can have two settings, rarp or dhcp. When booting from the network using PXE, the system or network adapter BIOS uses DHCP to locate a network bootstrap program (NBP) on a boot server and reads it using Trivial File Transfer Protocol (TFTP). The BIOS executes the NBP by jumping to its first byte in memory. The NBP uses DHCP to locate the secondary bootstrap on a boot server, reads it using TFTP, and executes it.
The secondary boot, `boot.bin`, switches the processor to 32-bit, paged, protected mode, and performs some limited machine initialization. It runs the Configuration Assistant program which either auto-boots the system, or presents a list of possible boot devices, depending on the state of the auto-boot? variable (see `eeprom(1M)`).

Disk target devices (including CDROM drives) are expected to contain UFS file systems. Network devices can be configured to use either DHCP or Reverse Address Resolution Protocol (RARP) and `bootparams RPC` to discover the machine’s IP address and which server will provide the root file system. The root file system is then mounted using NFS. After a successful root mount, `boot.bin` invokes a command interpreter, which interprets `/etc/bootrc`.

The wide range of hardware that must be supported on x86 based systems demands great flexibility in the booting process. This flexibility is achieved in part by making the secondary boot programmable. The secondary boot contains an interpreter that accepts a simple command language similar to those of `sh` and `csh`. The primary differences are that pipelines, loops, standard output, and output redirection are not supported.

The boot interpreter splits input lines into words separated by blanks and tabs. The metacharacters are dollar sign (`$`), single-quote (`'`), double-quote (`"`), number sign (`#`), new-line, and backslash (`\`). The special meaning of metacharacters can be avoided by preceding them with a backslash. A new-line preceded by a backslash is treated as a blank. A number sign introduces a comment, which continues to the next new-line.

A string enclosed in a pair of single-quote or double-quote characters forms all or part of a single word. White space and new-line characters within a quoted string become part of the word. Characters within a quoted string can be quoted by preceding them with a backslash character; thus a single-quote character can appear in a single-quoted string by preceding it with a backslash. Two backslashes produce a single backslash, and a new-line preceded by a backslash produces a new-line in the string.

The boot maintains a set of variables, each of which has a string value. The first character of a variable name must be a letter, and subsequent characters can be letters, digits, or underscores. The `set` command creates a variable and/or assigns a value to it, or displays the values of variables. The `unset` command deletes a variable.

Variable substitution is performed when the interpreter encounters a dollar-sign that is not preceded by a backslash. The variable name following the dollar sign is replaced by the value of the variable, and parsing continues at the beginning of the value. Variable substitution is performed in double-quoted strings, but not in single-quoted strings. A variable name can be enclosed in braces to separate it from following characters.

A command is a sequence of words terminated by a new-line character. The first word is the name of the command and subsequent words are arguments to the command. All commands are built-in commands. Standalone programs are executed with the `run` command.
Commands can be conditionally executed by surrounding them with the `if`, `elseif`, `else`, and `endif` commands:

```plaintext
if expr1
  ...
elseif expr2
  ...
elseif expr3
else
  ...
endif
```

An `if` block may be embedded in other `if` blocks.

**x86 Expressions**

The `set`, `if`, and `elseif` commands evaluate arithmetic expressions with the syntax and semantics of the C programming language. The `|`, `&`, `^`, `&&`, `||`, `==`, `!=`, `<`, `>`, `<=`, `>=`, `>>`, `<<`, `+`, `−`, `*`, `/`, `~`, and `!` operators are accepted, as are `()`, and comma. Signed 32-bit integer arithmetic is performed.

Expressions are parsed after the full command line has been formed. Each token in an expression must be a separate argument word, so blanks must separate all tokens on the command line.

Before an arithmetic operation is performed on an operand word, it is converted from a string to a signed 32-bit integer value. After an optional leading sign, a leading 0 produces octal conversion and a leading 0x or 0X produces hexadecimal conversion. Otherwise, decimal conversion is performed. A string that is not a legal integer is converted to zero.

Several built-in functions for string manipulation are provided. Built-in function names begin with a dot. String arguments to these functions are not converted to integers. To cause an operator, for example, `−`, to be treated as a string, it must be preceded by a backslash, and that backslash must be quoted with another backslash. Also be aware that a null string can produce a blank argument, and thus an expression syntax error. For example:

```plaintext
if .strneq ( ${usrarg}X , \− , 1 )
```

is the safe way to test whether the variable `usrarg` starts with a `−`, even if it could be null.

**x86 I/O**

The boot interpreter takes its input from the system console or from one or more files. The source command causes the interpreter to read a file into memory and begin parsing it. The console command causes the interpreter to take its input from the system console. Reaching EOF causes the interpreter to resume parsing the previous input source. CTRL-D entered at the beginning of console line is treated as EOF.

The `echo` command writes its arguments to the display. The `read` command reads the system console and assigns word values to its argument variables.
x86 Debugging

The `verbose` command turns verbose mode on and off. In verbose mode, the interpreter displays lines from the current source file and displays the command as actually executed after variable substitution.

The `singlestep` command turns singlestep mode on and off. In singlestep mode, the interpreter displays `step ?` before processing the next command, and waits for keyboard input, which is discarded. Processing proceeds when ENTER is pressed. This allows slow execution in verbose mode.

x86 Initialization

When the interpreter is first invoked by the `boot`, it begins execution of a compiled-in initialization string. This string typically consists of "source /etc/bootrc" to run the boot script in the root file system.

The boot passes information to standalone programs through arguments to the `run` command. A standalone program can pass information back to the boot by setting a boot interpreter variable using the `var_ops()` boot service function. It can also pass information to the kernel using the `setprop()` boot service function. The `whoami` property is set to the name of the standalone program.

x86 Communication With Standalone Programs

console

Interpret input from the console until CTRL-D.

echo arg1 ...

Display the arguments separated by blanks and terminate with a new-line.

echo -n arg1 ...

Display the arguments separated by blanks, but do not terminate with a new-line.

getprop propname varname

Assign the value of property `propname` to the variable `varname`. A property value of length zero produces a null string. If the property does not exist, the variable is not set.

getproplen propname varname

Assign the length in hexadecimal of the value of property `propname` to the variable `varname`. Property value lengths include the terminating null. If the property does not exist, the variable is set to 0xFFFFFFFF (-1).

if expr

If the expression `expr` is true, execute instructions to the next elseif, else, or endif. If `expr` is false, do not execute the instructions.

elseif expr

If the preceding if and elseif commands all failed, and `expr` is true, execute instructions to the next elseif, else, or endif. Otherwise, do not execute the instructions.

else

If the preceding if and elseif commands all failed, execute instructions to the next elseif, else, or endif. Otherwise, do not execute the instructions.
endif
  Revert to the execution mode of the surrounding block.

help
  Display a help screen that contains summaries of all available boot shell commands.

read name1 . . .
  Read a line from the console, break it into words, and assign them as values to the variables name1, and so forth.

readt time . . .
  Same as read, but timeout after time seconds.

run name arg1 . . .
  Load and transfer control to the standalone program name, passing it arg1 and further arguments.

set
  Display all the current variables and their values.

set name
  Set the value of the variable name to the null string.

set name word
  Set the value of the variable name to word.

set name expr
  Set the value of the variable name to the value of expr. expr must consist of more than one word. The value is encoded in unsigned hexadecimal, so that \(-1\) is represented by 0xFFFFFFFF.

setcolor
  Set the text mode display attributes. Allowable colors are black, blue, green, cyan, red, magenta, brown, white, gray, lt_blue, lt_green, lt_cyan, lt_red, lt_magenta, yellow, and hi_white.

setprop propname word
  Set the value of the property propname to word.

singlestep or singlestep on
  Turn on singlestep mode, in which the interpreter displays step? before each command is processed, and waits for keyboard input. Press ENTER to execute the next command.

singlestep off
  Turn off singlestep mode.

source name
  Read the file name into memory and begin to interpret it. At EOF, return to the previous source of input.

unset name
  Delete the variable name.
verbose or verbose on
Turn on verbose mode, which displays lines from source files and commands to be executed.

verbose off
Turn off verbose mode.

The following built-in functions are accepted within expressions:

\texttt{.strcmp(string1, string2)}
Returns an integer value that is less than, equal to, or greater than zero, as \texttt{string1} is lexicographically less than, equal to, or greater than \texttt{string2}.

\texttt{.strncmp(string1, string2, n)}
Returns an integer value that is less than, equal to, or greater than zero, as \texttt{string1} is lexicographically less than, equal to, or greater than \texttt{string2}. At most, \texttt{n} characters are compared.

\texttt{.streq(string1, string2)}
Returns true if \texttt{string1} is equal to \texttt{string2}, and false otherwise.

\texttt{.strneq(string1, string2, n)}
Returns true if \texttt{string1} is equal to \texttt{string2}, and false otherwise. At most, \texttt{n} characters are compared.

\texttt{.strfind(string, addr, n)}
Scans \texttt{n} locations in memory starting at \texttt{addr}, looking for the beginning of \texttt{string}. The \texttt{string} in memory need not be null-terminated. Returns true if \texttt{string} is found, and false otherwise. \texttt{.strfind} can be used to search for strings in the ROM BIOS and BIOS extensions that identify different machines and peripheral boards.

\textbf{EXAMPLES}

\textbf{SPARC} \textbf{EXAMPLE 1} To Boot the Default Kernel In Single-User Interactive Mode

To boot the default kernel in single-user interactive mode, respond to the \texttt{ok} prompt with one of the following:

\begin{verbatim}
boot -as
boot disk3 -as
\end{verbatim}

\textbf{32-bit SPARC} \textbf{EXAMPLE 2} To Boot kadb Specifying The 32–Bit Kernel As The Default File

To boot \texttt{kadb} specifying the 32–bit kernel as the default file:

\begin{verbatim}
boot kadb -D kernel/unix
\end{verbatim}
EXAMPLE 2 To Boot kadu Specifying The 32-Bit Kernel As The Default File

EXAMPLE 3 To Boot the 32-Bit Kernel Explicitly

To boot the 32-bit kernel explicitly, the kernel file name should be specified. So, to boot the 32-bit kernel in single-user interactive mode, respond to the ok prompt with one of the following:

- boot kernel/unix -as
- boot disk3 kernel/unix -as

EXAMPLE 4 To Boot the 64-Bit Kernel Explicitly

To boot the 64-bit kernel explicitly, the kernel file name should be specified. So, to boot the 64-bit kernel in single-user interactive mode, respond to the ok prompt with one of the following:

- boot kernel/sparcv9/unix -as
- boot disk3 kernel/sparcv9/unix -as

Refer to the NOTES section “Booting UltraSPARC Systems” before booting the 64-bit kernel using an explicit filename.

EXAMPLE 5 Network Booting with WAN Boot-Capable PROMs

To illustrate some of the subtle repercussions of various boot command line invocations, assume that the network-boot-arguments are set and that net is devalised as shown in the commands below.

In the following command, device arguments in the device alias are processed by the device driver. The network boot support package processes arguments in network-boot-arguments.

- boot net

The command below results in no device arguments. The network boot support package processes arguments in network-boot-arguments.

- boot net:

The command below results in no device arguments. rarp is the only network boot support package argument. network-boot-arguments is ignored.

- boot net:rarp

In the command below, the specified device arguments are honored. The network boot support package processes arguments in network-boot-arguments.

- boot net:speed=100,duplex=full
EXAMPLE 6 Using wanboot with Older PROMs

The command below results in the wanboot binary being loaded from CD-ROM, at which time wanboot will perform DHCP and then drop into its command interpreter to allow the user to enter keys and any other necessary configuration.

```bash
boot cdrom -P wanboot -o dhcp,prompt
```

EXAMPLE 7 To Boot the Default Kernel In Single-User Interactive Mode

To boot the default kernel in single-user interactive mode, respond to the > prompt with one of the following:

- `b -as`
- `b kernel/unix -as`

FILES

- `/platform/platform-name/ufsboot`
  second level program to boot from a disk or CD.
- `/etc/inittab`
  table in which the "initdefault" state is specified.
- `/sbin/init`
  program that brings the system to the "initdefault" state.
- `/platform/platform-name/boot.conf`
- `/platform/hardware-class-name/boot.conf`
  Primary and alternate pathnames for the boot policy file. Note that the policy file is not implemented on all platforms.
- `/platform/platform-name/kernel/unix`
  default program to boot system.
- `/platform/platform-name/kernel/sparcv9/unix`
  default program to boot system.
- `/etc/bootrc`
  script that controls the booting process.
- `/platform/platform-name/boot/solaris/boot.bin`
  second level boot program used on x86 systems in place of ufsboot.
- `/platform/platform-name/boot`
  directory containing boot-related files.

SEE ALSO

- `uname(1)`, `eprom(1M)`, `init(1M)`, `installboot(1M)`, `kadb(1M)`, `kernel(1M)`, `monitor(1M)`, `shutdown(1M)`, `uadmin(2)`, `bootparams(4)`, `inittab(4)`, `vfstab(4)`, `wanboot.conf(4)`, `filesystem(5)`
boot(1M)

RFC 2131, Dynamic Host Configuration Protocol,
http://www.ietf.org/rfc/rfc2131.txt

RFC 2132, DHCP Options and BOOTP Vendor Extensions,
http://www.ietf.org/rfc/rfc2132.txt

RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax,
http://www.ietf.org/rfc/rfc2396.txt

System Administration Guide: Basic Administration

Sun Hardware Platform Guide

OpenBoot Command Reference Manual

WARNINGS

The `boot` utility is unable to determine which files can be used as bootable programs. If the booting of a file that is not bootable is requested, the `boot` utility loads it and branches to it. What happens after that is unpredictable.

NOTES

`platform-name` can be found using the `-i` option of `uname(1)`. `hardware-class-name` can be found using the `-m` option of `uname(1)`.

64-bit SPARC

Boot UltraSPARC Systems

Certain platforms may need a firmware upgrade to run the 64-bit kernel. See the Sun Hardware Platform Guide for details. If the 64-bit kernel packages are installed and `boot` detects that the platform needs a firmware upgrade to run 64-bit, `boot` displays a message on the console and chooses the 32-bit kernel as the default file instead.

On systems containing 200MHz or lower UltraSPARC-1 processors, it is possible for a user to run a 64-bit program designed to exploit a problem that could cause a processor to stall. Because 64-bit programs cannot run on the 32-bit kernel, the 32-bit kernel is chosen as the default file on these systems.

The code sequence that exploits the problem is very unusual and is not likely to be generated by a compiler. Assembler code had to be specifically written to demonstrate the problem. It is highly unlikely that a legitimate handwritten assembler routine would use this code sequence.

Users willing to assume the risk that a user might accidentally or deliberately run a program that was designed to cause a processor to stall may choose to run the 64-bit kernel by modifying the `boot` policy file. Edit `/platform/platform-name/boot.conf` so that it contains an uncommented line with the variable named `ALLOW_64BIT_KERNEL_ON_UltraSPARC_1_CPU` set to the value `true` as shown in the example that follows:

`ALLOW_64BIT_KERNEL_ON_UltraSPARC_1_CPU`-true

For more information, see the Sun Hardware Platform Guide.
Because the "-" key on national language keyboards has been moved, an alternate key must be used to supply arguments to the `boot` command on an x86 based system using these keyboards. Use the "-" on the numeric keypad. The specific language keyboard and the alternate key to be used in place of the "-" during bootup is shown below.

<table>
<thead>
<tr>
<th>Keyboard</th>
<th>Substitute Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>'</td>
</tr>
<tr>
<td>Spain</td>
<td>'</td>
</tr>
<tr>
<td>Sweden</td>
<td>+</td>
</tr>
<tr>
<td>France</td>
<td>?</td>
</tr>
<tr>
<td>Germany</td>
<td>?</td>
</tr>
</tbody>
</table>

For example, `b - r` would be typed as `b + r` on Swedish keyboards, although the screen display will show as `b - r`. 
NAME
bootconfchk – verify the integrity of a network boot configuration file

SYNOPSIS
/usr/sbin/bootconfchk [bootconf-file]

DESCRIPTION
The bootconfchk command checks that the file specified is a valid network boot configuration file as described in wanboot.conf(4).

Any discrepancies are reported on standard error.

EXIT STATUS
0  Successful completion.
1  An error occurred.
2  Usage error.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
wanboot.conf(4), attributes(5)
bsmconv(1M)

NAME
bsmconv, bsmunconv – enable or disable the Basic Security Module (BSM) on Solaris

SYNOPSIS
/etc/security/bsmconv [rootdir...]
/etc/security/bsmunconv [rootdir...]

DESCRIPTION
The bsmconv and bsmunconv scripts are used to enable or disable the BSM features on a Solaris system. The optional argument rootdir is a list of one or more root directories of diskless clients which have already been configured by way of the Host Manager, see admintool(1M)

To enable or disable BSM on a diskless client, a server, or a stand-alone system, logon as super-user to the system being converted and use the bsmconv or bsmunconv commands without any options.

To enable or disable BSM on a diskless client from that client’s server, logon to the server as super-user and use bsmconv, specifying the root directory of each diskless client you wish to affect. For example, the command:

myhost# bsmconv /export/root/client1 /export/root/client2

enables BSM on the two machines named client1 and client2. While the command:

myhost# bsmconv

enables BSM only on the machine called myhost. It is no longer necessary to enable BSM on both the server and its diskless clients.

After running bsmconv the system can be configured by editing the files in /etc/security. Each diskless client has its own copy of configuration files in its root directory. You might want to edit these files before rebooting each client.

Following the completion of either script, the affected system(s) should be rebooted to allow the auditing subsystem to come up properly initialized.

FILES
The following files are created by bsmconv:

/etc/security/device_maps Administrative file defining the mapping of device special files to allocatable device names.

/etc/security/device_allocate Administrative file defining parameters for device allocation.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>
SEE ALSO | admintool(1M), auditconfig(1M), auditd(1M), audit_startup(1M), audit.log(4), audit_control(4), attributes(5)
bsmrecord(1M)

NAME       bsmrecord – display Solaris audit record formats

SYNOPSIS   /usr/sbin/bsmrecord [-d] [-a] [-e string] [-c class] [-i id]
            [-p programname] [-s syscall] [-h]

DESCRIPTION The bsmrecord utility displays the event ID, audit class and selection mask, and
record format for audit record event types defined in audit_event(4). You can use
bsmrecord to generate a list of all audit record formats, or to select audit record
formats based on event class, event name, generating program name, system call
name, or event ID.

There are two output formats. The default format is intended for display in a terminal
window; the optional HTML format is intended for viewing with a web browser.

OPTIONS The following options are supported:

-  a                List all audit records.
-  c class          List all audit records selected by class. class is one of the
two-character class codes from the file
        /etc/security/audit_class.
-  d                Debug mode. Display number of audit records that are
defined in audit_event, the number of classes
defined in audit_class, any mismatches between the
two files, and report which defined events do not have
format information available to bsmrecord.
-  e string         List all audit records for which the event ID label
contains the string string. The match is case insensitive.
-  h                Generate the output in HTML format.
-  i id             List the audit records having the numeric event ID id.
-  p programname    List all audit records generated by the program
        programname, for example, audit records generated by a
user-space program.
-  s syscall        List all audit records generated by the system call
        syscall, for example, audit records generated by a
system call.

The -p and -s options are different names for the same thing and are mutually
exclusive. The -a option is ignored if any of -c, -e, -i, -p, or -s are given.
Combinations of -c, -e, -i, and either -p or -s are ANDeD together.

EXAMPLES EXAMPLE 1 Displaying an Audit Record with a Specified Event ID

The following example shows how to display the contents of a specified audit record.

% bsmrecord -i 6152
login: terminal login
        program /usr/sbin/login     see login(1)
EXAMPLE 1 Displaying an Audit Record with a Specified Event ID

(Continued)

<table>
<thead>
<tr>
<th>event ID</th>
<th>6152</th>
<th>AUE_login</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>lo</td>
<td>(0x00001000)</td>
</tr>
</tbody>
</table>

header-token
subject-token
text-token error message
exit-token

EXAMPLE 2 Displaying an Audit Record with an Event ID Label that Contains a Specified String

The following example shows how to display the contents of an audit record with an event ID label that contains the string login.

```
# bsmrecord -e login
terminal login
program /usr/sbin/login see login(1)
```

event ID 6152 AUE_login
class lo (0x00001000)

header-token
subject-token
text-token error message
exit-token

```
 rlogin
program /usr/sbin/login see login(1) - rlogin
```

event ID 6155 AUE_rlogin
class lo (0x00001000)

header-token
subject-token
text-token error message
exit-token

EXIT STATUS
0 Successful operation
non-zero Error

FILES
/etc/security/audit_class
Provides the list of valid classes and the associated audit mask.

/etc/security/audit_event
Provides the numeric event ID, the literal event name, and the name of the associated system call or program.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>
bsmrecord(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO audit_class(4), audit_event(4), attributes(5)

DIAGNOSTICS

If unable to read either of its input files or to write its output file, bsmrecord shows the name of the file on which it failed and exits with a non-zero return.

If no options are provided, if an invalid option is provided, or if both -s and -p are provided, an error message is displayed and bsmrecord displays a usage message then exits with a non-zero return.

NOTES

If /etc/security/audit_event has been modified to add user-defined audit events, bsmrecord displays the record format as undefined.
**SYNOPSIS**

```bash
busstat [-a] [-n] [-w device-inst [,pic0=event, picn=event ]]...
       [-r device-inst]... [interval [count]]
```

**DESCRIPTION**

`busstat` provides access to the bus-related performance counters in the system. These performance counters allow for the measurement of statistics like hardware clock cycles, bus statistics including DMA and cache coherency transactions on a multiprocessor system. Each bus device that supports these counters can be programmed to count a number of events from a specified list. Each device supports one or more Performance Instrumentation Counters (PIC) that are capable of counting events independently of each other.

Separate events can be selected for each PIC on each instance of these devices. `busstat` summarizes the counts over the last interval seconds, repeating forever. If a count is given, the statistics are repeated count times.

Only root users can program these counters. Non-root users have the option of reading the counters that have been programmed by a root user.

The default value for the `interval` argument is 1 second, and the default `count` is unlimited.

The devices that export these counters are highly platform-dependent and the data may be difficult to interpret without an in-depth understanding of the operation of the components that are being measured and of the system they reside in.

**OPTIONS**

The following options are supported:

- `-a`
  Display absolute counter values. The default is `delta` values.

- `-e device-inst`
  Display the list of events that the specified device supports for each PIC.

  Specify `device-inst` as device (name) followed by an optional instance number. If an instance number is specified, the events for that instance are displayed. If no instance number is specified, the events for the first instance of the specified device are displayed.

- `-h`
  Print a usage message.

- `-l`
  List the devices in the system which support performance counters.

- `-n`
  Do not display a title in the output. The default is to display titles.

- `-r device-inst`
  Read and display all PIC values for the specified device.
Specify device-inst as device (name) followed by instance number, if specifying an instance number of a device whose counters are to be read and displayed. If all instances of this device are to be read, use device (name) without an instance number. All pic values will be sampled when using the -r option.

-w device-inst [,pic0=event] [,picn=event]
Program (write) the specified devices to count the specified events. Write access to the counters is restricted to root users only. Non-root users can use -z option.

Specify device-inst as device (name) followed by an optional instance number. If specifying an instance number of a device to program these events on. If all instances of this device are to be programmed the same, then use device without an instance number. Specify an event to be counted for a specified pic by providing a comma separated list of picn=event values.

The -e option displays all valid event names for each device. Any devices that are programmed will be sampled every interval seconds and repeated count times. It is recommended that the interval specified is small enough to ensure that counter wraparound will be detected. The rate at which counters wraparound varies from device to device. If a user is programming events using the -w option and busstat detects that another user has changed the events that are being counted, the tool will terminate as the programmed devices are now being controlled by another user. Only one user can be programming a device instance at any one time. Extra devices can be sampled using the -r option. Using multiple instances of the -w option on the same command line, with the same device-inst specifying a different list of events for the pics will give the effect of multiplexing for that device. busstat will switch between the list of events for that device every interval seconds. Event can be a string representing the event name, or even a number representing the bit pattern to be programmed into the Performance Control Register (PCR). This assumes explicit knowledge of the meaning of the control register bits for a device. The number can be specified in hexadecimal, decimal, or octal, using the usual conventions of strtol(3C).

EXIT STATUS
The following exit values are returned:
0 Successful completion.
1 An error occurred.
2 Another user is writing to the same devices.

EXAMPLES

SPARC Only

EXAMPLE 1 Programming and monitoring the Address Controller counters

In this example, ac0 refers to the Address Controller instance 0. The counters are programmed to count Memory Bank stalls on an Ultra Enterprise system at 10 second intervals with the values displayed in absolute form instead of deltas.

```bash
# busstat -a -w ac0,pic0=mem_bank0_stall,pic1=mem_bank1_stall 10
time dev event0 pic0 event1 pic1
10 ac0 mem_bank0_stall 1234 mem_bank1_stall 5678
```
EXAMPLE 1 Programming and monitoring the Address Controller counters

(Continued)

20 ac0 mem_bank0_stall 5678 mem_bank1_stall 12345
30 ac0 mem_bank0_stall 12345 mem_bank1_stall 56789
...

For a complete list of the supported events for a device, use the -e option.

EXAMPLE 2 Programming and monitoring the counters on all instances of the Address Controller

In this example, ac refers to all ac instances. This example programs all instances of the Address Controller counters to count_clock cycles and mem_bank0_rds at 2 second intervals, 100 times, displaying the values as deltas.

# busstat -w ac,pic0=clock_cycles,pic1=mem_bank0_rds 2 100

```plaintext
time dev event0 pic0 event1 pic1
 2 ac0 clock_cycles 167242902 mem_bank0_rds 3144
 2 ac1 clock_cycle 167254476 mem_bank0_rds 1392
 4 ac0 clock_cycle 168025190 mem_bank0_rds 40302
 4 ac1 clock_cycle 168024056 mem_bank0_rds 40580
...
```

EXAMPLE 3 Monitoring the events being counted

This example monitors the events that are being counted on the sbus1 device, 100 times at 1 second intervals. It suggests that a root user has changed the events that sbus1 was counting to be dvma_tlb_misses and interrupts instead of pio_cycles.

% busstat -r sbus0 1 100

```plaintext
time dev event0 pic0 event1 pic1
 1 sbus1 pio_cycles 2321 pio_cycles 2321
 2 sbus1 pio_cycles 48 pio_cycles 48
 3 sbus1 pio_cycles 49 pio_cycles 49
 4 sbus1 pio_cycles 2281 pio_cycles 2281
 5 sbus1 dvma_tlb_misses 0 interrupts 0
 6 sbus1 dvma_tlb_misses 6 interrupts 2
 7 sbus1 dvma_tlb_misses 8 interrupts 11
...
```

EXAMPLE 4 Event Multiplexing

This example programs ac0 to alternate between counting (clock cycles, mem_bank0_rds) and (addr_pkts, data_pkts) at 2 second intervals while also monitoring what ac1 is counting:

It shows the expected output of the above busstat command. Another root user on the machine has changed the events that this user had programmed and busstat has detected this and terminates the command with a message.
EXAMPLE 4 Event Multiplexing  (Continued)

```bash
# busstat -w ac0,pic0=clock_cycles,pic1=mem_bank0_rds \ 
   -w ac0,pic0=addr_pkts,pic1=data_pkts \ 
   -r acl 2

time  dev  event0  pic0   event1  pic1
2   ac0  addr_pkts  12866  data_pkts  17015
2   acl  rio_pkts  385    rio_pkts  385
4   ac0  clock_cycles 168018914 mem_bank0_rds 2865
4   acl  rio_pkts  506    rio_pkts  506
6   ac0  addr_pkts  144236 data_pkts  149223
6   acl  rio_pkts  522    rio_pkts  522
8   ac0  clock_cycles 168021245 mem_bank0_rds 2564
8   acl  rio_pkts  387    rio_pkts  387
10  ac0  addr_pkts  144292 data_pkts  159645
10  acl  rio_pkts  506    rio_pkts  506
12  ac0  clock_cycles 168020364 mem_bank0_rds 2665
12  acl  rio_pkts  522    rio_pkts  522
```
busstat: events changed (possibly by another busstat).
#

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  iostat(1M), mpstat(1M), vmstat(1M), strtol(3C), attributes(5)
NAME
cachefsd – CacheFS daemon

SYNOPSIS
/usr/lib/fs/cachefs/cachefsd

DESCRIPTION
The `cachefsd` server implements features of the cache filesystem (CacheFS). It is invoked at boot time and run if the `/` (root) and `/usr` filesystems are being cached. If `/usr` is being cached, `cachefsd` is invoked by `inetd(1M)` from `inetd.conf(4)`. At run time, `cachefsd` is invoked by the `inetd` mechanism in response to an RPC request from a user command such as `mount_cachefs(1M)`.

The `cachefsd` server supports the “disconnected mode” of CacheFS. In this mode, a user can continue to read and, depending on the option selected, write to files in a cached filesystem when the NFS server for the cached files is not available.

The `cachefsd` daemon performs the following functions in support of the CacheFS:

- Implements the connection policy. The daemon determines whether the NFS server backing the cache is connected or disconnected from the cache, or is in transition from the connected or disconnected states.

- Implements “log rolling,” wherein the daemon monitors a disconnected NFS server for reconnection. After such a server returns to a connected state, `cachefsd` rolls any local changes to cached files (kept in a log) back to the server.

- Manages “packing,” wherein `cachefsd` makes a best effort to ensure that files in a user-specified list are available in the cache in disconnected mode.

- Supports user interfaces by supplying statistics, reporting conflicts between the cache and the back filesystem, and supporting a list of files for packing.

The running of `cachefsd` is required for the disconnected mode of CacheFS.

OPTIONS
The following options are supported:

- `-r` Used for invoking `cachefsd` for the `/` filesystem.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
`cachefspack(1M)`, `cfsadmin(1M)`, `mount_cachefs(1M)`, `inetd.conf(4)`, `attributes(5)`

*System Administration Guide: Basic Administration*
cachefslog(1M)

NAME  cachefslog – Cache File System logging

SYNOPSIS  cachefslog [-f logfile | -h] cachefs_mount_point

DESCRIPTION  The cachefslog command displays where CacheFS statistics are being logged. Optionally, it sets where CacheFS statistics are being logged, or it halts logging for a cache specified by cachefs_mount_point. The cachefs_mount_point argument is a mount point of a cache file system. All file systems cached under the same cache as cachefs_mount_point will be logged.

OPTIONS  The following options are supported. You must be super-user to use the -f and -h options.

-f logfile  Specify the log file to be used.

-h  Halt logging.

OPERANDS  cachefs_mount_point  A mount point of a cache file system.

USAGE  See largefile(5) for the description of the behavior of cachefslog when encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES  EXAMPLE 1  Checking the Logging of a directory.

The example below checks if the directory /home/sam is being logged:

example% cachefslog /home/sam
not logged: /home/sam

EXAMPLE 2  Changing the logfile.

The example below changes the logfile of /home/sam to /var/tmp/samlog:

example# cachefslog -f /var/tmp/samlog /home/sam
/var/tmp/samlog: /home/sam

EXAMPLE 3  Verifying the change of a logfile.

The example below verifies the change of the previous example:

example% cachefslog /home/sam
/var/tmp/samlog: /home/sam

EXAMPLE 4  Halting the logging of a directory.

The example below halts logging for the /home/sam directory:

example# cachefslog -h /home/sam
not logged: /home/sam

EXIT STATUS  The following exit values are returned:

0  success
non-zero an error has occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO cachefsstat(1M), cachefswsize(1M), cfsadmin(1M), attributes(5), largefile(5)

DIAGNOSTICS
Invalid path It is illegal to specify a path within a cache file system.
cachefspack(1M)

NAME  cachefspack – pack files and file systems in the cache

SYNOPSIS cachefspack [-h] [-i | -p | -u] [-f packing-list] [-U cache-directory] [file...]

DESCRIPTION The cachefspack utility is used to set up and maintain files in the cache. This utility affords greater control over the cache, ensuring that the specified files will be in the cache whenever possible.

OPTIONS The following options are supported:

- `f packing-list` Specify a file containing a list of files and directories to be packed. Options within subdirectories and files can also be specified. The format and rules governing `packing-list` are described on the `packingrules(4)` manual page. Directories are packed recursively. Symlinks that match a regular expression on a `LIST` command are followed. Symlinks encountered while recursively processing directories are not followed.

- `-h` Help. Print a brief summary of all the options.

- `-i` View information about the packed files.

- `-p` Pack the file or files specified by file. This is the default behavior.

- `-u` Unpack the file or files specified by file.

- `-U cache-directory` Unpack all files in the specified cache directory.

OPERANDS The following operands are supported:

- `file` A path name of a file to be packed or unpacked.

USAGE See `largefile(5)` for the description of the behavior of cachefspack when encountering files greater than or equal to 2 Gbyte (2¹⁹ bytes).

EXAMPLES EXAMPLE 1 The following example packs the file `projects` in the cache.

```
% cachefspack -p projects
```

EXAMPLE 2 The following example packs the files `projects`, `updates`, and `master_plan` in the cache.

```
% cachefspack -p projects updates master_plan
```

EXAMPLE 3 The following example unpacks the file `projects` from the cache.

```
% cachefspack -u projects
```
EXAMPLE 4 The following example unpacks the files projects, updates, and master_plan from the cache.

```
% cachefspack -u projects updates master_plan
```

EXAMPLE 5 The following example unpacks all files in the cache directory cachel.

```
% cachefspack -U /cache/cachel
```

EXAMPLE 6 The following example illustrates the use of a packing list to specify files to be packed in the cache. The contents of lists.pkg are as follows:

```
IGNORE SCCS BASE /src/junk LIST *.c LIST *.h
```

This example will pack all files in the directory /src/junk with .c and .h extensions that do not contained the string SCCS in the file’s path name.

```
% cachefspack -f lists.pkg
```

EXIT STATUS

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO cachefspack(1M), cfsadmin(1M), mount_cachefs(1M), packingrules(4), attributes(5), largefile(5)
The `cachefsstat` command displays statistical information about the cache file system mounted on `path`. The statistical information includes cache hits and misses, consistency checking, and modification operations. If `path` is not specified, all mounted cache file systems are used.

The statistical information can also be used to reinitialize this information (see `-z` option).

The statistical information has the following format:

```
<cache hit rate>
<consistency checks>
<modifies>
```

where:

- **hit rate**: The percentage of cache hits over the total number of attempts, followed by the actual numbers of hits and misses.
- **consistency checks**: The number of consistency checks performed, followed by the number that passed, and the number that failed.
- **modifies**: The number of modify operations, including writes, creates, etc.

**OPTIONS**

The following option is supported:

- `-z` Zero (reinitialize) statistics. Execute `cachefsstat -z` before executing `cachefsstat` again to gather statistics on the cache performance. This option can only be use by the superuser. The statistics printed reflect those just before the statistics are reinitialized.

**USAGE**

See `largefile(5)` for the description of the behavior of `cachefsstat` when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXAMPLES**

**EXAMPLE 1 Using cachefsstat**

The following example shows the `cachefsstat` command run on file system `/test`:

```bash
example# cachefsstat /test
/test
    cache hit rate: 100% (0 hits, 0 misses)
    consistency checks: 0 (0 pass, 0 fail)
    modifies: 0
    garbage collection: 0
```

**EXIT STATUS**

The following exit values are returned:

- `0` Successful completion.
- non-zero An error occurred.
ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

`cachefslog(1M), cachefswsize(1M), cfsadmin(1M), attributes(5), largefile(5)`
NAME  cachefswsize – determine working set size for cachefs

SYNOPSIS  cachefswsize logfile

DESCRIPTION  The cachefswsize command displays the workspace size determined from logfile. This includes the amount of cache space needed for each filesystem that was mounted under the cache, as well as a total.

USAGE  See largefile(5) for the description of the behavior of cachefswsize when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXAMPLES  EXAMPLE 1 A sample output of cachefswsize.

    example% cachefswsize /var/tmp/samlog

    /home/sam
    end size: 10688k
    high water size: 10704k

    /foo
    end size: 128k
    high water size: 128k

    /usr/dist
    end size: 1472k
    high water size: 1472k

    total for cache
    initial size: 110960k
    end size: 12288k
    high water size: 12304k

EXIT STATUS  The following exit values are returned:

    0       success
    non-zero an error has occurred.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO cacheslog(1M), cachefsstat(1M), cfsadmin(1M), attributes(5), largefile(5)

DIAGNOSTICS

- **problems were encountered writing log file**
  - There were problems encountered when the kernel was writing the log file. The most common problem is running out of disk space.
- **invalid log file**
  - The log file is not a valid log file or was created with a newer version of Solaris than the one where cachefswssize is running.
NAME

captinfo – convert a termcap description into a terminfo description

SYNOPSIS

captinfo [-l] [-v...][-V] [-w width] filename...

DESCRIPTION
captinfo looks in filename for termcap descriptions. For each one found, an equivalent terminfo description is written to standard output, along with any comments found. A description which is expressed as relative to another description (as specified in the termcap tc = field) is reduced to the minimum superset before being displayed.

If no filename is given, then the environment variable TERM is used for the filename or entry. If TERM is a full pathname to a file, only the terminal whose name is specified in the environment variable TERM is extracted from that file. If the environment variable TERM is not set, then the file /usr/share/lib/termcap is read.

OPTIONS

-1 Display the fields one to a line. Otherwise, the fields are printed several to a line, with a maximum width of 60 characters.

-v Display tracing information on the standard error as the program runs. Specifying additional -v options displays more detailed information.

-V Display the version of the program in use on the standard error and then exit.

-w width Change the output to width characters.

FILES

/usr/share/lib/terminfo/?/* compiled terminal description database
/usr/share/lib/termcap

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

infocmp(1M), curses(3CURSES), terminfo(4), attributes(5)

NOTES

captinfo should be used to convert termcap entries to terminfo entries because the termcap database may not be supplied in future releases.
catman(1M)

**NAME**
catman – create the formatted files for the reference manual

**SYNOPSIS**
[-T macro-package] [sections]

**DESCRIPTION**
The *catman* utility creates the preformatted versions of the on-line manual from the *nroff*(1) or *sgml*(5) input files. This feature allows easy distribution of the preformatted manual pages among a group of associated machines (for example, with *rdist*(1)), since it makes the directories of preformatted manual pages self-contained and independent of the unformatted entries.

catman also creates the *windex* database file in the directories specified by the *MANPATH* or the -M option. The *windex* database file is a three column list consisting of a keyword, the reference page that the keyword points to, and a line of text that describes the purpose of the utility or interface documented on the reference page. Each keyword is taken from the comma separated list of words on the *NAME* line before the ‘-’ (dash). The reference page that the keyword points to is the first word on the *NAME* line. The text after the – on the *NAME* line is the descriptive text in the third column. The *NAME* line must be immediately preceded by the page heading line created by the .TH macro (see *NOTES* for required format).

Each manual page is examined and those whose preformatted versions are missing or out of date are recreated. If any changes are made, *catman* recreates the *windex* database.

If a manual page is a *shadow* page, that is, it sources another manual page for its contents, a symbolic link is made in the *catx* or *fmtx* directory to the appropriate preformatted manual page.

Shadow files in an unformatted *nroff* source file are identified by the first line being of the form .so manx/yxx.x.

Shadow files in the SGML sources are identified by the string *SHADOW_PAGE*. The file entity declared in the shadow file identifies the file to be sourced.

**OPTIONS**
The following options are supported:

- **-c**
  Create unformatted *nroff* source files in the appropriate *man* subdirectories from the SGML sources. This option will overwrite any existing file in the *man* directory of the same name as the SGML file.

- **-n**
  Do not create (or recreate) the *windex* database. If the -n option is specified, the *windex* database is not created and the *apropos*, *whatis*, *man -f*, and *man -k* commands will fail.

- **-p**
  Print what would be done instead of doing it.
Create `troff`ed entries in the appropriate `fmt` subdirectories instead of `nroff`ing into the `cat` subdirectories.

Only create the `windex` database that is used by `whatis(1)` and the `man(1) -f` and `-k` options. No manual reformatting is done.

Update manual pages located in the specified `directory`, (`/usr/share/man` by default). If the `-M` option is specified, the directory argument must not contain a `,` (comma), since a comma is used to delineate section numbers. See `man(1)`.

Use `macro-package` in place of the standard manual page macros, (`man(5)` by default).

The following operand is supported:

`sections` If there is one parameter not starting with a `-' or `-', it is taken to be a space separated list of manual sections to be processed by `catman`. If this operand is specified, only the manual sections in the list will be processed. For example,

```
catman 1 2 3
```

only updates manual sections 1, 2, and 3. If specific sections are not listed, all sections in the `man` directory specified by the environment variable `MANPATH` are processed.

The name of the formatter to use when the `-t` flag is given. If not set, `troff(1)` is used.

A colon-separated list of directories that are processed by `catman` and `man(1)`. Each directory can be followed by a comma-separated list of sections. If set, its value overrides `/usr/share/man` as the default directory search path, and the `man.cf` file as the default section search path. The `-M` and `-s` flags, in turn, override these values.

`/usr/share/man` default manual directory location

`/usr/share/man/man*/**.*` raw `nroff` input files

`/usr/share/man/sman*/**.*` raw SGML input files

`/usr/share/man/cat*/**.*` preformatted `nroff`ed manual pages

`/usr/share/man/fmt*/**.*` preformatted `troff`ed manual pages

`/usr/share/man/windex` table of contents and keyword database

`/usr/lib/makewhatis` command script to make `windex` database

`/usr/share/lib/tmac/an` default macro package
**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`apropos(1)`, `man(1)`, `nroff(1)`, `rdist(1)`, `rm(1)`, `troff(1)`, `whatis(1)`, `attributes(5)`, `man(5)`, `sgml(5)`

**DIAGNOSTICS**

`man?/xxx.? (.so` ed from man?/yyy.?): No such file or directory

The file outside the parentheses is missing, and is referred to by the file inside them.

target of .so in man?/xxx.? must be relative to /usr/man

catman only allows references to filenames that are relative to the directory /usr/man.

`opendir:man?: No such file or directory`

A harmless warning message indicating that one of the directories `catman` normally looks for is missing.

`.*: No such file or directory`

A harmless warning message indicating `catman` came across an empty directory.

**WARNINGS**

If a user, who has previously run `catman` to install the `cat*` directories, upgrades the operating system, the entire `cat*` directory structure should be removed prior to running `catman`. See `rm(1)`.

Do not re-run `catman` to re-build the `whatis` database unless the complete set of `man*` directories is present. `catman` builds this `windex` file based on the `man*` directories.

**NOTES**

To generate a valid `windex` index file, `catman` has certain requirements. Within the individual man page file, `catman` requires two macro lines to have a specific format. These are the `.TH` page heading line and the `.SH NAME` line.

The `.TH` macro requires at least the first three arguments, that is, the filename, section number, and the date. The `.TH` line starts off with the `.TH` macro, followed by a space, the man page filename, a single space, the section number, another single space, and the date. The date should appear in double quotes and is specified as “day month year,” with the month always abbreviated to the first three letters (Jan, Feb, Mar, and so forth).

The `.SH NAME` macro, also known as the `NAME` line, must immediately follow the `.TH` line, with nothing in between those lines. No font changes are permitted in the `NAME` line. The `NAME` line is immediately followed by a line containing the man page filename; then shadow page names, if applicable, separated by commas; a dash; and a brief summary statement. These elements should all be on one line; no carriage returns are permitted.
An example of proper coding of these lines is:

.TH nismatch 1M "10 Apr 1998"
.SH NAME
nismatch, nisgrep \- utilities for searching NIS+ tables
NAME  \texttt{cfgadm} – configuration administration

SYNOPSIS  
\texttt{/usr/sbin/cfgadm [-f] [-y | -n] [-v] [-o hardware_options] -c function \hspace{1em} ap_id...} 
\texttt{/usr/sbin/cfgadm [-f] [-y | -n] [-v] [-o hardware_options] \hspace{1em} -x hardware_function ap_id...} 
\texttt{/usr/sbin/cfgadm [-v] [-a] [-s listing_options] [-o hardware_options] [-l \hspace{1em} [ap_id | ap_type]]} 
\texttt{/usr/sbin/cfgadm [-v] [-o hardware_options] -t ap_id...} 
\texttt{/usr/sbin/cfgadm [-v] [-o hardware_options] -h [ap_id | ap_type]}

DESCRIPTION  
The \texttt{cfgadm} command provides configuration administration operations on dynamically reconfigurable hardware resources. These operations include displaying status, (-l), initiating testing, (-t), invoking configuration state changes, (-c), invoking hardware specific functions, (-x), and obtaining configuration administration help messages (-h). Configuration administration is performed at \textit{attachment points}, which are places where system software supports dynamic reconfiguration of hardware resources during continued operation of Solaris.

Configuration administration makes a distinction between hardware resources that are physically present in the machine and hardware resources that are configured and visible to Solaris. The nature of configuration administration functions are hardware specific, and are performed by calling hardware specific libraries.

Configuration administration operates on an \textit{attachment point}. Hardware resources located at attachment points can or can not be physically replaceable during system operation, but are dynamically reconfigurable by way of the configuration administration interfaces.

An attachment point defines two unique elements, which are distinct from the hardware resources that exist beyond the attachment point. The two elements of an attachment point are a \textit{receptacle} and an \textit{occupant}. Physical insertion or removal of hardware resources occurs at attachment points and results in a receptacle gaining or losing an occupant. Configuration administration supports the physical insertion and removal operations as well as other configuration administration functions at an attachment point.

Attachment points have associated state and condition information. The configuration administration interfaces provide control for transitioning attachment point states. A receptacle can exist in one of three states: \textit{empty}, \textit{disconnected} or \textit{connected}, while an occupant can exist in one of two states: \textit{configured} or \textit{unconfigured}.

A receptacle can provide the \textit{empty} state, which is the normal state of a receptacle when the attachment point has no occupants. A receptacle can also provide the \textit{disconnected} state if it has the capability of isolating its occupants from normal system access. Typically this state is used for various hardware specific testing prior to bringing the occupant’s resources into full use by the system, or as a step in preparing...
an occupant for physical removal or reconfiguration. A receptacle in the disconnected state isolates its occupant from the system as much as its hardware allows, but can provide access for testing and setup. A receptacle must provide the connected state, which allows normal access to hardware resources contained on any occupants. The connected state is the normal state of a receptacle that contains an occupant and that is not currently undergoing configuration administration operations.

The hardware resources contained on an occupant in the unconfigured state are not represented by normal Solaris data structures and are thus not available for use by Solaris. Operations allowed on an unconfigured occupant are limited to configuration administration operations. The hardware resources of an occupant in the configured state are represented by normal Solaris data structures and thus some or all of those hardware resources can be in use by Solaris. All occupants provide both the configured and unconfigured states.

An attachment point can be in one of five conditions: unknown, ok, failing, failed, or unusable. An attachment point can enter the system in any condition depending upon results of power-on tests and non-volatile record keeping.

An attachment point with an occupant in the configured state is in one of four conditions: unknown, ok, failing, or failed. If the condition is not failing or failed an attachment point can change to failing during the course of operation if a hardware dependent recoverable error threshold is exceeded. If the condition is not failed an attachment point can change to failed during operation as a result of an unrecoverable error.

An attachment point with an occupant in the unconfigured state can be in any of the defined conditions. The condition of an attachment point with an unconfigured occupant can decay from ok to unknown after a machine dependent time threshold. Initiating a test function changes the attachment point’s condition to ok, failing or failed depending on the outcome of the test. An attachment point that does not provide a test function can leave the attachment point in the unknown condition. If a test is interrupted, the attachment point’s condition can be set to the previous condition, unknown or failed. An attachment point in the unknown, ok, failing, or failed conditions can be re-tested.

An attachment point can exist in the unusable condition for a variety of reasons, such as inadequate power or cooling for the receptacle, an occupant that is unidentifiable, unsupported, incorrectly configured, etc. An attachment point in the unusable condition can never be used by the system. It typically remains in this condition until the physical cause is remedied.

An attachment point also maintains busy information that indicates when a state change is in progress or the condition is being reevaluated.

Attachment points are referred to using hardware specific identifiers (ap_ids) that are related to the type and location of the attachment points in the system device hierarchy. An ap_id can not be ambiguous, it must identify a single attachment point.
Two types of ap_id specifications are supported: physical and logical. A physical ap_id contains a fully specified pathname, while a logical ap_id contains a shorthand notation that identifies an attachment point in a more user-friendly way.

For example, an attachment point representing a system's backplane slot number 7 could have a physical ap_id of /devices/central/fhc/sysctrl:slot7 while the logical ap_id could be system:slot7. Another example, the third receptacle on the second PCI I/O bus on a system could have a logical ap_id of pcie:plug3.

Attachment points may also be created dynamically. A dynamic attachment point is named relative to a base attachment point which is present in the system. ap_ids for dynamic attachment points consist of a base component followed by two colons (::) and a dynamic component. The base component is the base attachment point ap_id. The dynamic component is hardware specific and generated by the corresponding hardware specific library.

For example, consider a base attachment point, which represents a SCSI HBA, with the physical ap_id /devices/sbus@1f,0/SUNW,fas@e,8800000:scsi and logical ap_id c0. A disk attached to this SCSI HBA could be represented by a dynamic attachment point with logical ap_id c0::dsk/c0t0d0 where c0 is the base component and dsk/c0t0d0 is the hardware specific dynamic component. Similarly the physical ap_id for this dynamic attachment point would be:
/devices/sbus@1f,0/SUNW,fas@e,8800000:scsi::dsk/c0t0d0

An ap_type is a partial form of a logical ap_id that can be ambiguous and not specify a particular attachment point. An ap_type is a substring of the portion of the logical ap_id up to but not including the colon (:) separator. For example, an ap_type of pci would show all attachment points whose logical ap_ids begin with pci.

The use of ap_types is discouraged. The new select sub-option to the -s option provides a more general and flexible mechanism for selecting attachment points. See OPTIONS.

The cfgadm command interacts primarily with hardware dependent functions contained in hardware specific libraries and thus its behavior is hardware dependent.

For each configuration administration operation a service interruption can be required. Should the completion of the function requested require a noticeable service interruption to interactive users, a prompt is output on the standard error output for confirmation on the standard input before the function is started. Confirmation can be overridden using the -y or -n options to always answer yes or no respectively.

Hardware specific options, such as test level, are supplied as sub-options using the -o option.

Operations that change the state of the system configuration are audited by the system log daemon syslogd(1M).

The arguments for this command conform to the getopt(3C) and getsubopt(3C) syntax convention.
The following options are supported:

-a
  Specifies that the -l option must also list dynamic attachment points.

-c function
  Performs the state change function on the attachment point specified by ap_id.

Specify function as insert, remove, disconnect, connect, configure or unconfigure. These functions cause state transitions at the attachment point by calling hardware specific library routines and are defined in the following list.

insert
  Performs operations that allows the user to manually insert an occupant or to activate a hardware supplied mechanism that performs the physical insertion. insert can have hardware specific side effects that temporarily suspend activity in portions of the system. In such cases the hardware specific library generates appropriate warning messages and informs the user of any special considerations or procedures unique to that hardware. Various hardware specific errors can cause this function to fail and set the receptacle condition to unusable.

remove
  Performs operations that allow the user to manually remove an occupant or to activate a hardware supplied mechanism to perform the physical removal. remove can have hardware specific side effects that temporarily suspend activity in portions of the system. In such cases the hardware specific library generates appropriate warning messages and informs the user of any special considerations or procedures unique to that hardware. Various hardware specific errors can cause this function to fail and set the receptacle condition to unusable.

disconnect
  Performs hardware specific operations to put a receptacle in the disconnected state, which can prevent an occupant from operating in a normal fashion through the receptacle.

connect
  Performs hardware specific operations to put the receptacle in the connected state, which allows an occupant to operate in a normal fashion through the receptacle.

configure
  Performs hardware specific operations that allow an occupant’s hardware resources to be usable by Solaris. Occupants that are configured are part of the system configuration and are available for manipulation by Solaris device manipulation maintenance commands (e.g. psadm(1M), mount(1M), ifconfig(1M)).

unconfigure
  Performs hardware specific operations that logically remove an occupant’s hardware resources from the system. The occupant must currently be configured and its hardware resources must not be in use by Solaris.
State transition functions can fail due to the condition of the attachment point or other hardware dependent considerations. All state change functions in the direction of adding resources, (insert, connect and configure) are passed onto the hardware specific library when the attachment point is in the ok or unknown condition. All other conditions require the use of the force option to allow these functions to be passed on to the hardware specific library. Attachment point condition does not prevent a hardware specific library being called for related to the removal (remove, disconnect and unconfigure), of hardware resources from the system. Hardware specific libraries can reject state change functions if the attachment point is in the unknown condition.

The condition of an attachment point is not necessarily changed by the state change functions, however errors during state change operations can change the attachment point condition. An attempt to override a condition and force a state change that would otherwise fail can be made by specifying the force option (-f). Hardware specific safety and integrity checks can prevent the force option from having any effect.

- \texttt{f}
  Forces the specified action to occur. Typically, this is a hardware dependent override of a safety feature. Forcing a state change operation can allow use of the hardware resources of occupant that is not in the ok or unknown conditions, at the discretion of any hardware dependent safety checks.

- \texttt{h [ap\_id | ap\_type ...]}
  Prints out the help message text. If \texttt{ap\_id} or \texttt{ap\_type} is specified, the help routine of the hardware specific library for the attachment point indicated by the argument is called.

- \texttt{l [ap\_id | ap\_type ...]}
  Lists the state and condition of attachment points specified. Attachment points can be filtered by using the -s option and select sub-option. Invoking \texttt{cfgadm} without one of the action options is equivalent to -l without an argument. The format of the list display is controlled by the -v and -s options. When the -a option is specified attachment points are dynamically expanded.

- \texttt{n}
  Suppress any interactive confirmation and assume that the answer is no. If neither -n or -y is specified, interactive confirmation is obtained through the standard error output and the standard input. If either of these standard channels does not correspond to a terminal (as determined by \texttt{isatty(3C)}) then the -n option is assumed.

- \texttt{o hardware\_options}
  Supplies hardware specific options to the main command option. The format and content of the hardware option string is completely hardware specific. The option string \texttt{hardware\_options} conforms to the getsubopt(3C) syntax convention.

- \texttt{s listing\_options}
  Supplies listing options to the list (-l) command. \texttt{listing\_options} conforms to the getsubopt(3C) syntax convention. The sub-options are used to specify the
attachment point selection criteria (select=select_string), the type of matching desired (match=match_type), order of listing (sort=field_spec), the data that is displayed (cols=field_spec and cols2=field_spec), the column delimiter (delim=string) and whether to suppress column headings (noheadings).

When the select sub-option is specified, only attachment points which match the specified criteria will be listed. The select sub-option has the following syntax:

cfgadm -s select=attr1(value1):attr2(value2)...

where an attr is one of ap_id, class or type. ap_id refers to the logical ap_id field, class refers to attachment point class and type refers to the type field. value1, value2, etc. are the corresponding values to be matched. The type of match can be specified by the match sub-option as follows:

cfgadm -s match=match_type,select=attr1(value1)...

where match_type can be either exact or partial. The default value is exact.

Arguments to the select sub-option can be quoted to protect them from the shell.

A field_spec is one or more data-fields concatenated using colon (:), as in data-field:data-field:data-field. A data-field is one of ap_id, physid, r_state, o_state, condition, type, busy, status_time, status_time_p, class, and info. The ap_id field output is the logical name for the attachment point, while the physid field contains the physical name. The r_state field can be empty, disconnected or connected. The o_state field can be configured or unconfigured. The busy field can be either y if the attachment point is busy, or n if it is not. The type and info fields are hardware specific. The status_time field provides the time at which either the r_state, o_state, or condition of the attachment point last changed. The status_time_p field is a parsable version of the status_time field. If an attachment point has an associated class, the class field lists the class name. If an attachment point does not have an associated class, the class field lists none.

The order of the fields in field_spec is significant: For the sort sub-option, the first field given is the primary sort key. For the cols and cols2 sub-options, the fields are printed in the order requested. The order of sorting on a data-field can be reversed by placing a minus (−) before the data-field name within the field_spec for the sort sub-option. The default value for sort is ap_id. The defaults values for cols and cols2 depend on whether the -v option is given: Without it cols is ap_id:r_state:o_state:condition and cols2 is not set. With -v cols is ap_id:r_state:o_state:condition:info and cols2 is status_time:type:busy:physid. The default value for delim is a single space. The value of delim can be a string of arbitrary length. The delimiter cannot include comma (,) character, see getsubopt(3C). These listing options can be used to create parsable output. See NOTES.

-t

Performs a test of one or more attachment points. The test function is used to re-evaluate the condition of the attachment point. Without a test level specifier in hardware_options, the fastest test that identifies hard faults is used.
More comprehensive tests are hardware specific and are selected using the `hardware_options`.

The results of the test is used to update the condition of the specified occupant to either `ok` if no faults are found, `failing` if recoverable faults are found or `failed` if any unrecoverable faults are found.

If a test is interrupted, the attachment point’s condition can be restored to its previous value or set to `unknown` if no errors were found or `failing` if only recoverable errors were found or to `failed` if any unrecoverable errors were found. The attachment point should only be set to `ok` upon normal completion of testing with no errors.

```
-v
```

Executes in verbose mode. For the `-c`, `-t` and `-x` options outputs a message giving the results of each attempted operation. Outputs detailed help information for the `-h` option. Outputs verbose information for each attachment point for the `-l` option.

```
-x hardware_function
```

Performs hardware specific functions. Private hardware specific functions can change the state of a receptacle or occupant. Attachment point conditions can change as the result of errors encountered during private hardware specific functions. The format and content of the `hardware_function` string is completely hardware specific. The option string `hardware_function` conforms to the `getsubopt(3C)` syntax convention.

```
-y
```

Suppresses any interactive confirmation and assume that the answer is `yes`.

**EXAMPLE** 1 Listing Attachment Points in the Device Tree

The following example lists all attachment points except dynamic attachment points.

```
example# cfgadm

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>system:slot0</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot1</td>
<td>sbus-upa</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot2</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot3</td>
<td>unknown</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>system:slot4</td>
<td>dual-sbus</td>
<td>connected</td>
<td>configured</td>
<td>failing</td>
</tr>
<tr>
<td>system:slot5</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot6</td>
<td>unknown</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>unusable</td>
</tr>
<tr>
<td>system:slot7</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
```
EXAMPLE 2 Listing All Configurable Hardware Information

The following example lists all current configurable hardware information, including those represented by dynamic attachment points:

```
example# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>system:slot0</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot1</td>
<td>sbus-upa</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot2</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot3</td>
<td>unknown</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>system:slot4</td>
<td>dual-sbus</td>
<td>connected</td>
<td>configured</td>
<td>failing</td>
</tr>
<tr>
<td>system:slot5</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>system:slot6</td>
<td>unknown</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>unusable</td>
</tr>
<tr>
<td>system:slot7</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t14d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t11d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t8d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Listing Selectively, Based on Attachment Point Attributes

The following example lists all attachment points whose class begins with `scsi`, `ap_id` begins with `c` and `type` field begins with `scsi`. The argument to the `-s` option is quoted to protect it from the shell.

```
example# cfgadm -s "match=partial,select=class(scsi):ap_id(c):type(scsi)"
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

EXAMPLE 4 Listing Current Configurable Hardware Information in Verbose Mode

The following example lists current configurable hardware information for `ap-type` `system` in verbose mode:

```
example# cfgadm -v -l system
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>system:slot1</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Apr 4 23:50</td>
<td>sbus-upa</td>
<td>n</td>
<td>/devices/central/fhc/sysctrl:slot1</td>
<td></td>
</tr>
<tr>
<td>system:slot3</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Apr 17 11:20</td>
<td>cpu/mem</td>
<td>n</td>
<td>/devices/central/fhc/sysctrl:slot3</td>
<td></td>
</tr>
<tr>
<td>system:slot5</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Apr 4 23:50</td>
<td>cpu/mem</td>
<td>n</td>
<td>/devices/central/fhc/sysctrl:slot5</td>
<td></td>
</tr>
<tr>
<td>system:slot7</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Apr 4 23:50</td>
<td>dual-sbus</td>
<td>n</td>
<td>/devices/central/fhc/sysctrl:slot7</td>
<td></td>
</tr>
</tbody>
</table>

The `When` column represents the `status_time` field.
EXAMPLE 5 Testing Two Occupants Using the Hardware Specific Extended Test

The following example tests two occupants using the hardware specific extended test:

```
example# cfgadm -v -o extended -t system:slot3 system:slot5
Testing attachment point system:slot3 ... ok
Testing attachment point system:slot5 ... ok
```

EXAMPLE 6 Configuring an Occupant Using the Force Option

The following example configures an occupant in the failing state to the system using the force option:

```
example# cfgadm -f -c configure system:slot3
```

EXAMPLE 7 Unconfiguring an Occupant From the System

The following example unconfigures an occupant from the system:

```
example# cfgadm -c unconfigure system:slot4
```

EXAMPLE 8 Configuring an Occupant at an Attachment Point

The following example configures an occupant:

```
example# cfgadm -c configure c0::dsk/c0t0d0
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of cfgadm: LC_TIME, LC_MESSAGES, NLSPATH and TZ.

- **LC_MESSAGES**
  Determines how cfgadm displays column headings and error messages. Listing output data is not affected by the setting of this variable.

- **LC_TIME**
  Determines how cfgadm displays human readable status changed time (status_time).

- **TZ**
  Specifies the timezone used when converting the status changed time. This applies to both the human readable (status_time) and parsable (status_time_p) formats.

EXIT STATUS

The following exit values are returned:

- **0**
  Successful completion.
- **1**
  An error occurred.
- **2**
  Configuration administration not supported on specified target.
- **3**
  Usage error.
cfaqadm(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
cfaqadm_pci(1M), cfaqadm_sbd(1M), cfaqadm_usb(1M), cfaqadm_scsi(1M),
ifconfig(1M), mount(1M), prtdiag(1M), psradm(1M), syslogd(1M),
config_admin(3CFGADM), getopt(3C), getsubopt(3C), isatty(3C),
attributes(5), environ(5)

DIAGNOSTICS

Diagnostic messages appear on the standard error output. Other than options and
usage errors, the following are diagnostic messages produced by this utility:

cfaqadm: Configuration administration not supported on ap_id

cfaqadm: No library found for ap_id

cfaqadm: ap_id is ambiguous

cfaqadm: operation: Insufficient privileges

cfaqadm: Attachment point is busy, try again

cfaqadm: No attachment points with specified attributes found

cfaqadm: System is busy, try again

cfaqadm: operation: Operation requires a service interruption

cfaqadm: operation: Operation requires a service interruption

cfaqadm: operation: Hardware specific failure: error_text

See config_admin(3CFGADM) for additional details regarding error messages.

NOTES

Hardware resources enter the unconfigured pool in a hardware specific manner. This
can occur at various times such as: system initialization or as a result of an
unconfigure operation. An occupant that is in the unconfigured state is not
available for use by the system until specific intervention occurs. This intervention can
be manifested as an operator initiated command or it can be by way of an automatic
configuring mechanism.

The listing option of the cfaqadm command can be used to provide parsable input for
another command, for example within a shell script. For parsable output, the -s
option must be used to select the fields required. The -s option can also be used to
suppress the column headings. The following fields always produce parsable output:
ap_id, physid, r_state, o_state, condition, busy status_time_p, class,
and type. Parsable output never has white-space characters embedded in the field value.
The following shell script fragment finds the first good unconfigured occupant of type CPU.

```bash
cfgadm -l -s "noheadings,cols=ap_id,r_state:condition:type" | \
while read ap_id r_state cond type
do
  if [ "$r_state" = unconfigured -a "$cond" = ok -a "$type" = CPU ]
    then
      if [ -z "$found" ]
        then
          found=$ap_id
          fi
      fi
done
if [ -n "$found" ]
then
  echo "Found CPU $found"
fi
```

The format of the parsable time field (status_time_p) is YYYYMMDDhhmmss, giving the year, month, day, hour, minute and second in a form suitable for string comparison.

Reference should be made to the hardware specific documentation for details of System Configuration Administration support.
The ac hardware specific library /usr/platform/sun4u/lib/cfgadm/cfgadm_ac.so.1 provides the functionality for configuring and unconfiguring memory banks on E6X00, E5X00, E4X00 and E3X00 systems as part of the Dynamic Reconfiguration of CPU/Memory boards using cfgadm_sysctrl(1M).

Memory banks appear as attachment points in the device tree. For each CPU/Memory board, two attachment points are published, one for each bank on the board: bank0 and bank1. If the bank is unpopulated, the receptacle state is empty. If the bank is populated, the receptacle state is connected. The receptacle state of a memory bank can never be disconnected. The occupant state of a connected memory bank can be configured or unconfigured. If the occupant state is configured, the memory is in use by Solaris, if unconfigured it is not.

Refer to cfgadm(1M) for complete descriptions of the command options.

The following options are supported:
- 
  -c configure | unconfigure
  Change the occupant state. The configure argument ensures that the memory is initialized and adds the memory to the Solaris memory pool. The unconfigure argument removes the memory from use by Solaris. When a CPU/Memory board is to be removed from a system, both banks of memory must be unconfigured.

  cfgadm refuses the configure operation if the memory on the board is marked disabled-at-boot (see info field), unless either the -f (force) option or the enable at boot flag, (-o enable-at-boot), is given. The configure operation takes a short time proportional to the size of memory that must be initialized.

  cfgadm refuses the unconfigure operation if there is not enough uncommitted memory in the system (VM viability error) or if the bank to be unconfigured has memory that can't be removed (non-relocatable pages error). The presence of non-relocatable pages is indicated by the word permanent in the info listing field. Removing memory from use by Solaris may take a significant time due to factors such as system load and how much paging to secondary storage is required. The unconfigure operation can be cancelled at any time and the memory...
returned to the fully configured state by interrupting the command invocation with a signal. The unconfigure operation self-cancels if no memory can be removed within a timeout period. The default timeout period of 60 seconds can be changed using the \(-o timeout=\)# option, with a value of 0 disabling the timeout.

\(-f\)
Force option. Use this option to override the block on configuring a memory bank marked as disabled at boot in the non-volatile disabled-memory-list variable. See Platform Notes: Sun Enterprise 6x00/5x00/4x00/3x00 Systems

\(-l\)
List option. This option is supported as described in \texttt{cfgadm(1M)}.

The type field is always \textit{memory}.

The \textit{info} field has the following information for empty banks:

\texttt{slot# empty}

The slot# indicates the system slot into which the CPU/Memory board is inserted. For example, if this were slot11 the attachment point for use with \texttt{cfgadm} to manipulate the associated board would be sysctrl0:slot11.

The \textit{info} field has the following information for connected banks:

\texttt{slot# sizeMb | sizeGb [(sizeMb | sizeGb used)] base 0x### [interleaved #-way] [disabled at boot] [permanent]}

The size of the bank is given in Mb or Gb as appropriate. If the memory is less than completely used, the used size is reported. The physical base address is given in hexadecimal. If the memory bank is interleaved with some other bank, the interleave factor is reported. If the memory on the board is disabled at boot using the non-volatile disabled-memory-list variable, this is reported. If the bank has memory that cannot be removed this is reported as permanent.

\(-o disable-at-boot | enable-at-boot\)
These options allow the state of the non-volatile disabled-memory-list variable to be modified. These options can be used in conjunction with the issuing of a \(-c\) option or with the explicit or implied listing command, \(-l\), if no command is required. Use of \(-o enable-at-boot\) with the configure command to override the block on configuring memory on a board in the disabled memory list.

\(-o extended | normal | quick\)
Use with the \(-t\) option to specify test level.

The normal test level ensures that each memory cell stores both a 0 and a 1, and checks that all cells are separately addressable. The quick test level only does the 0s and 1s test, and typically misses address line problems. The extended test uses patterns to test for adjacent cell interference problems. The default test level is normal. See \(-t\) option.

\(-o max\_errors=#\)
Use with the \(-t\) option to specify the maximum number of allowed errors. If not specified, a default of 32 is assumed.
Use with the unconfigure command to set the self-cancelling timeout. The default value is 60 and the unit is seconds. A value of 0 means no timeout.

Test an unconfigured bank of memory. Specify the test level using the -o quick | normal | extended option.

cfgadm exits with a 0 (success) if the test was able to run on the memory bank. The result of the test is available in the condition for the attachment point.

Verbose option. Use this option in combination with the -t option to display detailed progress and results of tests.

For all pages of memory in use on the specified memory bank, a relocation operation as used in the unconfigure command is attempted. The success of this operation does not guarantee that the bank can be unconfigured. Failure indicates that it probably cannot be unconfigured. This option is for test purposes only.

The following operand is supported:

- ac#:bank#

The attachment points for memory banks are published by instances of the address controller (ac) driver (ac#). One instance of the ac driver is created for each system board, but only those instances associated with CPU/Memory boards publish the two bank attachment points, bank0 and bank1.

This form conforms to the logical ap_id specification given in cfgadm(1M). The corresponding physical ap_ids are listed in the FILES section.

The ac driver instance numbering has no relation to the slot number for the corresponding board. The full physical attachment point identifier has the slot number incorporated into it as twice the slot number in hexadecimal directly following the fhc@ part.

FILES

/devices/fhc@*,f8800000/ac@0,1000000:bank?

/usr/platform/sun4u/lib/cfgadm/cfgadm_ac.so.1

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
**cfgadm_ac(1M)**

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm.u</td>
</tr>
</tbody>
</table>

**SEE ALSO**
cfgadm(1M), cfgadm_sysctl(1M), config_admin(3CFGADM), attributes(5)

*Sun Enterprise 6x00, 5x00, 4x00 and 3x00 Systems Dynamic Reconfiguration User's Guide*

**NOTES**
Refer to the *Sun Enterprise 6x00, 5x00, 4x00 and 3x00 Systems Dynamic Reconfiguration User’s Guide* for additional details regarding dynamic reconfiguration of EXX00 system CPU/Memory boards.
**NAME**
cfgadm_pci – PCI Hotplug hardware specific commands for cfgadm

**SYNOPSIS**

```
/usr/sbin/cfgadm [-f] [-y | -n] [-v] [-o hardware_options]
 -c function ap_id [ap_id]
```

```
/usr/sbin/cfgadm [-f] [-y | -n] [-v] [-o hardware_options]
 -x hardware_function ap_id [ap_id]
```

```
/usr/sbin/cfgadm [-v] [-s listing_options] [-o hardware_options]
 [-l [ ap_id | ap_type]]
```

```
/usr/sbin/cfgadm [-v] [-o hardware_options] -t ap_id [ap_id]
```

```
/usr/sbin/cfgadm [-v] [-o hardware_function] -h [ ap_id | ap_type]
```

**DESCRIPTION**
The PCI hardware specific library /usr/lib/cfgadm/pci.so.1 provides the support for hot plugging pci adapter cards into pci hot pluggable slots in a system that is hot plug capable, through cfgadm(1M). See cfgadm(1M).

For PCI Hot Plug, each hot plug slot on a specific PCI bus is represented by an attachment point of that specific PCI bus.

An attachment point consist of two parts: a receptacle and an occupant. The receptacle under PCI hot plug is usually referred to as the physical hot pluggable slot; and the occupant is usually referred to as the PCI adapter card that plugs into the slot.

Attachment points are named through ap_ids. There are two types of ap_ids: logical and physical. The physical ap_id is based on the physical pathname, that is, /devices/pci@1/hpc0_slot3, whereas the logical ap_id is a shorter, and more user-friendly name. For PCI hot pluggable slots, the logical ap_id is usually the corresponding hot plug controller driver name plus the logical slot number, that is, pci@hpc0slot1;pci nexus driver, with hot plug controller driver named hpc and slot number 1. The ap_type for Hot plug PCI is pci.

Note that the ap_type is not the same as the information in the Type field.

See the System Administration Guide, Volume I for a detailed description of the hot plug procedure.

**OPTIONS**
The following options are supported:

- **-c function**
  The following functions are supported for PCI hot pluggable slots:
  - **configure** Configure the PCI device in the slot to be used by Solaris.
  - **connect** Connect the slot to PCI bus.
  - **disconnect** Disconnect the slot from the PCI bus.
  - **insert** Not supported.
  - **remove** Not supported.
cfgadm_pci(1M)

unconfigure  Logically remove the PCI device’s resources from the system.

-\[f\]  Not supported.

-\[h\] \[ap_id\] \[ap_type\]  Print out PCI hot plug specific help message.

-\[l\] \[list\]  List the values of PCI Hot Plug slots.

-\[o\] \[hardware_options\]  No hardware specific options are currently defined.

-\[s\] \[listing_options\]  Same as the generic \(\text{cfgadm}\)(1M).

-\[t\] \[ap_id\]  This command is only supported on platforms which support testing capability on the slot.

-\[v\]  Execute in verbose mode.

When -\[v\] is used with -\[l\] option the \(\text{cfgadm}\) command outputs information about the attachment point. For PCI Hot Plug, the Information field will be the slot’s system label. This string will be obtained from the slot-name property of the slot’s bus node. The information in the Type field is printed with or without the -\[v\] option. The occupant Type field will describe the contents of the slot. There are 2 possible values:

**NULL**  The slot is empty. NULL should be unknown. There could be a card in the slot that is simply not configured.

**subclass,board**  The card in the slot is either a single-function or multi-function device.

\(\text{subclass}\) is a string representing the subclass code of the device, for example, SCSI, ethernet, pci-isa, and so forth. If the card is a multi-functional device, MULT will get printed instead.

\(\text{board}\) is a string representing the board type of the device, for example, hp for PCI Hot Plug adapter, hs for Hot Swap Board, nhs for Non—Hot Swap cPCI Board, bhs for Basic Hot Swap cPCI Board, fhs for Full Hot Swap cPCI Board.

Most pci cards with more than one device on them are not actually multi-function devices, but are implemented as a pci bridge with arbitraty devices behind it. In that case, the subclass displayed will be
that of the pci bridge.

-x hardware_function
Perform hardware specific function. These hardware specific functions should not normally change the state of a receptacle or occupant.

The following hardware_functions are supported:

enable_slot | disable_slot
Change the state of the slot and preserve the state of slot across reboot.
Preservation of state across reboot is only supported on select platforms.

enable_slot enables the addition of hardware to this slot for hot plugging and at boot time.

disable_slot disables the addition of hardware to this slot for hot plugging and at boot time. When a slot is disabled its condition is shown as unusable.

enable_autoconfig | disable_autoconfig
Change the ability to autoconfigure the occupant of the slot. Only platforms that support auto configuration support this feature.

enable_autoconfig enables the ability to autoconfigure the slot.

disable_autoconfig disables the ability to autoconfigure the slot.

led=[led_sub_arg],mode=[mode_sub_arg]
Without sub-arguments, print a list of the current LED settings. With sub-arguments, set the mode of a specific LED for a slot.

Specify led_sub_arg as fault, power, att, or active.

Specify mode_sub_arg as on, off or blink.

Changing the state of the LED does not change the state of the receptacle or occupant. Normally, the LEDs are controlled by the hot plug controller, no user intervention is necessary. Use this command for testing purposes.

Caution: Changing the state of the LED can misrepresent the state of occupant or receptacle.

The following command prints the values of LEDs:

```bash
example# cfgadm -x led pci0:hpc0_slot1 Ap_Id Led
pci0:hpc0_slot1 power-on,fault=off,active=off,attn=off
```

The following command turns on the Fault LED:

```bash
example# cfgadm -x led=fault,mode=on pci0:hpc0_slot1
```

The following command turns off the Power LED:

```bash
example# cfgadm -x led=power,mode=off pci0:hpc0_slot1
```
The following command sets the active LED to blink to indicate the location of the slot:

```
example# cfgadm -x led=active,mode=on pci0:hpc0_slot3
```

### EXAMPLE 1 Printing out the Value of Each Slot

The following command prints out the values of each slot:

```
example# cfgadm -l
Ap_Id   Type       Receptacle   Occupant    Condition
pci1:hpc0_slot0 unknown empty unconfigured unknown
pci1:hpc0_slot1 unknown empty unconfigured unknown
pci1:hpc0_slot2 unknown empty unconfigured unknown
pci1:hpc0_slot3 HP/SCSI connected configured ok
pci1:hpc0_slot4 unknown empty unconfigured unknown
```

### EXAMPLE 2 Replacing a Card

The following command lists all DR-capable attachment points:

```
example# cfgadm
Ap_Id   Type       Receptacle   Occupant    Condition
c0      scsi-bus   connected    configured    unknown
pci_pci0:cpci_slot1 stpcipci/fhs connected configured ok
pci_pci0:cpci_slot4 stpcipci/fhs connected configured ok
pci_pci0:cpci_slot5 unknown empty unconfigured unknown
```

The following command unconfigures and electrically disconnects the card:

```
example# cfgadm -c disconnect pci_pci0:cpci_slot4
```

The change can be verified by entering the following command:

```
example# cfgadm
Ap_Id   Type       Receptacle   Occupant    Condition
c0      scsi-bus   connected    configured    unknown
pci_pci0:cpci_slot1 stpcipci/fhs connected configured ok
pci_pci0:cpci_slot4 unknown empty unconfigured unknown
pci_pci0:cpci_slot5 unknown empty unconfigured unknown
```

Now the card can be swapped. The following command electrically connects and configures the card:

```
example# cfgadm -c configure pci_pci0:cpci_slot4
```

The change can be verified by entering the following command:

```
# cfgadm
Ap_Id   Type       Receptacle   Occupant    Condition
c0      scsi-bus   connected    configured    unknown
```
EXAMPLE 2 Replacing a Card  (Continued)

pci_pci0:cpci_slot1 stpcipci/fhs connected configured ok
pci_pci0:cpci_slot2 unknown empty unconfigured unknown
pci_pci0:cpci_slot4 stpcipci/fhs connected configured ok
pci_pci0:cpci_slot5 unknown empty unconfigured unknown

FILES
/usr/lib/cfgadm/pci.so.1                  Hardware specific library for PCI hot plugging.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm.u</td>
</tr>
</tbody>
</table>

SEE ALSO
cfgadm(1M), config_admin(3CFGADM), libcfgadm(3LIB)attributes(5)

System Administration Guide: Basic Administration
The `cfgadm_sbd` plugin provides dynamic reconfiguration functionality for connecting, configuring, unconfiguring, and disconnecting class `sbd` system boards. It also enables you to connect or disconnect a system board from a running system without having to reboot the system.

The `cfgadm` command resides in `/usr/sbin`. See `cfgadm(1M)`. The `cfgadm_sbd` plugin resides /usr/platform/sun4u/lib/cfgadm.

Each board slot appears as a single attachment point in the device tree. Each component appears as a dynamic attachment point. You can view the type, state, and condition of each component, and the states and condition of each board slot by using the `-a` option.

The `cfgadm` options perform differently depending on the platform. Additionally, the form of the attachment points is different depending on the platform. See the Platform Notes section for more information.

### Component Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>The component failed testing.</td>
</tr>
<tr>
<td>ok</td>
<td>The component is operational.</td>
</tr>
<tr>
<td>unknown</td>
<td>The component has not been tested.</td>
</tr>
</tbody>
</table>

### Component States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected</td>
<td>The component is connected to the board slot.</td>
</tr>
</tbody>
</table>

The following are the names and descriptions of the occupant states for components:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configured</td>
<td>The component is available for use by the Solaris operating environment.</td>
</tr>
<tr>
<td>unconfigured</td>
<td>The component is not available for use by the Solaris operating environment.</td>
</tr>
</tbody>
</table>

### Board Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>The board failed testing.</td>
</tr>
<tr>
<td>ok</td>
<td>The board is operational.</td>
</tr>
<tr>
<td>unknown</td>
<td>The board has not been tested.</td>
</tr>
</tbody>
</table>
### Board States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>usable</td>
<td>The board slot is unusable.</td>
</tr>
<tr>
<td>connected</td>
<td>The board is powered on and connected to the system bus. You can view the components on a board only after it is in the connected state.</td>
</tr>
<tr>
<td>disconnected</td>
<td>The board is disconnected from the system bus. A board can be in the disconnected state without being powered off. However, a board must be powered off and in the disconnected state before you remove it from the slot.</td>
</tr>
<tr>
<td>empty</td>
<td>A board is not present.</td>
</tr>
</tbody>
</table>

Caution: Removing a board that is in the connected state or that is powered on and in the disconnected state crashes the operating system and can result in permanent damage to the system.

The following are the names and descriptions of the receptacle states for boards:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configured</td>
<td>At least one component on the board is configured.</td>
</tr>
<tr>
<td>unconfigured</td>
<td>All of the components on the board are unconfigured.</td>
</tr>
</tbody>
</table>

### Dynamic System Domains

Platforms based on dynamic system domains (DSDs, referred to as domains in this document) divide the slots in the chassis into electrically isolated hardware partitions (that is, DSDs). Platforms that are not based on DSDs assign all slots to the system permanently.

A slot can be empty or populated, and it can be assigned or available to any number of domains. The number of slots available to a given domain is controlled by an available component list (ACL) that is maintained on the system controller. The ACL is not the access control list provided by the Solaris operating environment.

A slot is visible to a domain only if the slot is in the domain’s ACL and if it is not assigned to another domain. An unassigned slot is visible to all domains that have the slot in their ACL. After a slot has been assigned to a domain, the slot is no longer visible to any other domain.

A slot that is visible to a domain, but not assigned, must first be assigned to the domain before any other state changing commands are applied. The assign can be done explicitly using `-x assign` or implicitly as part of a connect. A slot must be unassigned from a domain before it can be used by another domain. The unassign is always explicit, either directly using `-x unassign` or as an option to disconnect using `-o unassign.`
Functions that change the state of a board slot or a component on the board can be issued concurrently against any attachment point. Only one state changing operation is permitted at a given time. A Y in the Busy field in the state changing information indicates an operation is in progress.

The following list contains the functions that change the state:
- configure
- unconfigure
- connect
- disconnect

Commands that change the availability of a board can be issued concurrently against any attachment point. Only one availability change operation is permitted at a given time. These functions also change the information string in the `cfgadm -l` output. A Y in the Busy field indicates that an operation is in progress.

The following list contains the functions that change the availability:
- assign
- unassign

Functions that change the condition of a board slot or a component on the board can be issued concurrently against any attachment point. Only one condition change operation is permitted at a given time. These functions also change the information string in the `cfgadm -l` output. A Y in the Busy field indicates an operation is in progress.

The following list contains the functions that change the condition:
- poweron
- poweroff
- test

This section contains a description of the unconfigure process, and illustrates the states of source and target boards at different stages during the process of moving permanent memory.

In the following code examples, the permanent memory on board 0 must be moved to another board in the domain. Thus, board 0 is the source, and board 1 is the target.

A status change operation cannot be initiated on a board while it is marked as busy. For brevity, the CPU information has been removed from the code examples.

The process is started with the following command:

```
# cfgadm -c unconfigure -y SB0::memory &
```
First, the memory on board 1 in the same address range as the permanent memory on board 0 must be deleted. During this phase, the source board, the target board, and the memory attachment points are marked as busy. You can display the status with the following command:

```
# cfgadm -a -s cols=ap_id:type:r_state:o_state:busy SB0 SB1
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB0::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB1</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB1::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
</tbody>
</table>

After the memory has been deleted on board 1, it is marked as unconfigured. The memory on board 0 remains configured, but it is still marked as busy, as in the following example.

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB0::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB1</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB1::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
</tbody>
</table>

The memory from board 0 is then copied to board 1. After it has been copied, the occupant state for the memory is switched. The memory on board 0 becomes unconfigured, and the memory on board 1 becomes configured. At this point in the process, only board 0 remains busy, as in the following example.

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>y</td>
</tr>
<tr>
<td>SB0::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
<tr>
<td>SB1</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
<tr>
<td>SB1::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
</tbody>
</table>

After the entire process has been completed, the memory on board 0 remains unconfigured, and the attachment points are not busy, as in the following example.

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
<tr>
<td>SB0::memory</td>
<td>memory</td>
<td>connected</td>
<td>unconfigured</td>
<td>n</td>
</tr>
<tr>
<td>SB1</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
<tr>
<td>SB1::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>n</td>
</tr>
</tbody>
</table>

The permanent memory has been moved, and the memory on board 0 has been unconfigured. At this point, you can initiate a new state changing operation on either board.
You can specify platform-specific options that follow the options interpreted by the system board plugin. All platform-specific options must be preceded by the platform keyword. The following example contains the general format of a command with platform-specific options:

```
command -o sbd_options, platform=platform_options
```

This man page does not include the -v, -a, -s, or -h options for the `cfgadm` command. See `cfgadm(1M)` for descriptions of those options. The following options are supported by the `cfgadm_sbd` plugin:

```
-c function
```

Performs a state change function. You can use the following functions:

```
unconfigure
```

Changes the occupant state to unconfigured. This function applies to system board slots and to all of the components on the system board.

The unconfigure function removes the CPUs from the CPU list and deletes the physical memory from the system memory pool. If any device is still in use, the `cfgadm` command fails and reports the failure to the user. You can retry the command as soon as the device is no longer busy. If a CPU is in use, you must ensure that it is off line before you proceed. See `pbind(1M), psradm(1M)` and `psrinfo(1M)`.

The unconfigure function moves the physical memory to another system board before it deletes the memory from the board you want to unconfigure. Depending of the type of memory being moved, the command fails if it cannot find enough memory on another board or if it cannot find an appropriate physical memory range.

For permanent memory, the operating system must be suspended (that is, quiesced) while the memory is moved and the memory controllers are reprogrammed. If the operating system must be suspended, you will be prompted to proceed with the operation. You can use the -y or -n options to always answer yes or no respectively.

Moving memory can take several minutes to complete, depending on the amount of memory and the system load. You can monitor the progress of the operation by issuing a status command against the memory attachment point. You can also interrupt the memory operation by stopping the `cfgadm` command. The deleted memory is returned to the system memory pool.
disconnect
Changes the receptacle state to disconnected. This function applies only to system board slots.

If the occupant state is configured, the disconnect function attempts to unconfigure the occupant. It then powers off the system board. At this point, the board can be removed from the slot.

This function leaves the board in the assigned state on platforms that support dynamic system domains.

If you specify -o nopoweroff, the disconnect function leaves the board powered on. If you specify -o unassign, the disconnect function unassigns the board from the domain.

If you unassign a board from a domain, you can assign it to another domain. However, if it is assigned to another domain, it is not available to the domain from which it was unassigned.

configure
Changes the occupant state to configured. This function applies to system board slots and to any components on the system board.

If the receptacle state is disconnected, the configure function attempts to connect the receptacle. It then walks the tree of devices that is created by the connect function, and attaches the devices if necessary. Running this function configures all of the components on the board, except those that have already been configured.

For CPUs, the configure function adds the CPUs to the CPU list. For memory, the configure function ensures that the memory is initialized then adds the memory to the system memory pool. The CPUs and the memory are ready for use after the configure function has been completed successfully.

For I/O devices, you must use the mount and the ifconfig commands before the devices can be used. See ifconfig(1M) and mount(1M).

connect
Changes the receptacle state to connected. This function applies only to system board slots.

If the board slot is not assigned to the domain, the connect function attempts to assign the slot to the domain. Next, it powers on and tests the board, then it connects the board electronically to the system bus and probes the components.
After the `connect` function is completed successfully, you can use the `-a` option to view the status of the components on the board. The `connect` function leaves all of the components in the unconfigured state.

The assignment step applies only to platforms that support dynamic system domains.

-`f` Overrides software state changing constraints.

The `-f` option never overrides fundamental safety and availability constraints of the hardware and operating system.

-`l` Lists the state and condition of attachment points specified in the format controlled by the `-s`, `-v`, and `-a` options as specified in `cfgadm(1M)`. The `cfgadm_sbd` plugin provides specific information in the info field as described below. The format of this information might be altered by the `-o parsable` option.

The parsable `info` field is composed of the following:

**cpu**

The `cpu` type displays the following information:

`cpuid=#[,#...]`

Where # is a number, and represents the ID of the CPU. If more than one # is present, this CPU has multiple active virtual processors.

`speed=#`

Where # is a number and represents the speed of the CPU in MHz.

`ecache=#`

Where # is a number and represents the size of the ecache in MBytes. If the CPU has multiple active virtual processors, the ecache could either be shared among the virtual processors, or divided between them.

**memory**

The `memory` type displays the following information, as appropriate:

`address=#`

Where # is a number, representing the base physical address.

`size=#`

Where # is a number, representing the size of the memory in KBytes.

`permanent=#`

Where # is a number, representing the size of permanent memory in KBytes.
unconfigurable
   An operating system setting that prevents the memory from being unconfigured.

inter-board-interleave
   The board is participating in interleaving with other boards.

source=ap_id
   Represents the source attachment point.

target=ap_id
   Represents the target attachment point.

deleted=#
   Where # is a number, representing the amount of memory that has already been deleted in KBytes.

remaining=#
   Where # is a number, representing the amount of memory to be deleted in KBytes.

io
   The io type displays the following information:

device=path
   Represents the physical path to the I/O component.

referenced
   The I/O component is referenced.

board
   The board type displays the following boolean names. If they are not present, then the opposite applies.

assigned
   The board is assigned to the domain.

powered-on
   The board is powered on.

The same items appear in the info field in a more readable format if the -o parsable option is not specified.

-o parsable
   Returns the information in the info field as a boolean name or a set of name=value pairs, separated by a space character.

The -o parsable option can be used in conjunction with the -s option. See the cfgadm(1M) man page for more information about the -s option.

-t
   Tests the board.

Before a board can be connected, it must pass the appropriate level of testing.
Use of this option always attempts to test the board, even if it has already passed the appropriate level of testing. Testing is also performed when a `-c connect` state change function is issued, in which case the test step can be skipped if the board already shows an appropriate level of testing. Thus the `-t` option can be used to explicitly request that the board be tested.

```-x function```  
Performs an sbd-class function. You can use the following functions:

- `assign`  
  Assigns a board to a domain.
  
  The receptacle state must be disconnected or empty. The board must also be listed in the domain available component list. See Dynamic System Domains.

- `unassign`  
  Unassigns a board from a domain.
  
  The receptacle state must be disconnected or empty. The board must also be listed in the domain available component list. See Dynamic System Domains.

- `poweron`  
  Powers the system board on.
  
  The receptacle state must be disconnected.

- `poweroff`  
  Powers the system board off.
  
  The receptacle state must be disconnected.

**OPERANDS**  
The following operands are supported:

- **Receptacle `ap_id`**  
  For the Sun Fire high-end systems such as the Sun Fire 15K, the receptacle attachment point ID takes the form `SBX` or `IOX`, where `X` equals the slot number.
  
  The exact format depends on the platform and typically corresponds to the physical labelling on the machine. See the platform specific information in the **NOTES** section.

- **Component `ap_id`**  
  The component attachment point ID takes the form `component_typeX`, where `component_type` equals one of the component types described in “Component Types” and `X` equals the component number. The component number is a board-relative unit number.
The above convention does not apply to memory components. Any DR action on a memory attachment point affects all of the memory on the system board.

The following examples show user input and system output on a Sun Fire 15K system. User input, specifically references to attachment points and system output might differ on other Sun Fire systems, such as the Sun Fire midrange systems such as the 6800. Refer to the Platform Notes for specific information about using the `cfgadm_sbd` plugin on non-Sun Fire high-end models.

**EXAMPLE 1** Listing All of the System Board

```bash
# cfgadm -a -s "select=class(sbd)"
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0</td>
<td>CPU</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB0::cpu0</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB0::memory</td>
<td>memory</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>IO1</td>
<td>HPCI</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>IO1::pci0</td>
<td>io</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>IO1::pci1</td>
<td>io</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB2</td>
<td>CPU</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>failed</td>
</tr>
<tr>
<td>SB3</td>
<td>CPU</td>
<td>disconnected</td>
<td>unconfigured</td>
<td>unusable</td>
</tr>
<tr>
<td>SB4</td>
<td>unknown empty</td>
<td>unconfigured</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

This example demonstrates the mapping of the following conditions:

- The board in Slot 2 failed testing.
- Slot 3 is unusable; thus, you cannot hot plug a board into that slot.

**EXAMPLE 2** Listing All of the CPUs on the System Board

```bash
# cfgadm -a -s "select=class(sbd):type(cpu)"
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB0::cpu0</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB0::cpu1</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB0::cpu2</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>SB0::cpu3</td>
<td>cpu</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

**EXAMPLE 3** Displaying the CPU Information Field

```bash
# cfgadm -l -s noheadings,cols=info SB0::cpu0
```

cpu id 16, speed 400 MHz, ecache 8 Mbytes

**EXAMPLE 4** Displaying the CPU Information Field in Parsable Format

```bash
# cfgadm -l -s noheadings,cols=info -o parsable SB0::cpu0
```

cpuid=16 speed=400 ecache=8
EXAMPLE 5 Displaying the Devices on an I/O Board

# cfgadm -a -s noheadings,cols=ap_id:info -o parsable IO1

IO1 powered-on assigned
IO1::pci0 device=/devices/saf@0/pci@0,2000 referenced
IO1::pci1 device=/devices/saf@0/pci@1,2000 referenced

EXAMPLE 6 Monitoring an Unconfigure Operation

In the following example, the memory sizes are displayed in Kbytes.

# cfgadm -c unconfigure -y SB0::memory &
# cfgadm -l -s noheadings,cols=info -o parsable SB0::memory SB1::memory

address=0x0 size=2097152 permanent=752592 target=SB1::memory
   deleted=1273680 remaining=823472
address=0x1000000 size=2097152 source=SB0::memory

EXAMPLE 7 Assigning a Slot to a Domain

# cfgadm -x assign SB2

EXAMPLE 8 Unassigning a Slot from a Domain

# cfgadm -x unassign SB3

ATTRIBUTES

See attributes(5) for a description of the following attribute:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm.u</td>
</tr>
<tr>
<td>Stability</td>
<td>See below.</td>
</tr>
</tbody>
</table>

The interface stability is evolving. The output stability is unstable.

SEE ALSO

cfgadm(1M), devfsadm(1M), ifconfig(1M), mount(1M), pbind(1M), psradm(1M),
psbinfo(1M), config_admin(3CFGADM), attributes(5)

NOTES

This section contains information on how to monitor the progress of a memory delete operation. It also contains platform specific information.

Memory Delete Monitoring

The following shell script can be used to monitor the progress of a memory delete operation.

# This is the watch_memdel script.

`#!/bin/sh`

```sh
# This is the watch_memdel script.
```
if [ -z "$1" ]; then
    printf "usage: %s board_id\n" 'basename $0'
    exit 1
fi

board_id=$1
cfgadm_info='cfgadm -s noheadings,cols=info -o parsable'
eval 'cfgadm_info $board_id::memory'
if [ -z "$remaining" ]; then
    echo no memory delete in progress involving $board_id
    exit 0
fi

echo deleting target $target
while true
do
    eval 'cfgadm_info $board_id::memory'
    if [ -n "$remaining" -a "$remaining" -ne 0 ]
    then
        echo $deleted KBytes deleted, $remaining KBytes remaining
        remaining=
    else
        echo memory delete is done
        exit 0
    fi
    sleep 1
done
exit 0

The following syntax is used to refer to Platform Notes attachment points on the Sun Enterprise 10000 system:

```
board::component
```

where `board` refers to the system board; and `component` refers to the individual component. System boards can range from SB0 (zero) to SB15. A maximum of sixteen system boards are available.

The DR 3.0 model running on a Sun Enterprise 10000 domain supports a limited subset of the functionality provided by the `cfgadm_sbd` plugin. The only supported operation is to view the status of attachment points in the domain. This corresponds to the `-l` option and all of its associated options.

Attempting to perform any other operation from the domain will result in an error that states that the operation is not supported. All operations to add or remove a system board must be initiated from the System Service Processor.

The following syntax is used to refer to attachment points on the Sun Fire high-end systems:

```
cfgadm_sbd(1M)
```

Sun Enterprise 10000 Platform Notes

Sun Fire High-End System Platform Notes

194 man pages section 1M: System Administration Commands • Last Revised 13 Oct 2003
where \textit{board} refers to the system board or I/O board; and \textit{component} refers to the individual component.

Depending on the system’s configuration, system boards can range from \texttt{SB0} (zero) through \texttt{SB17}, and I/O boards can range from \texttt{IO0} (IO zero) through \texttt{IO17}. (A maximum of eighteen system and I/O boards are available).

The \texttt{-t} and \texttt{-x} options behave differently on the Sun Fire high-end system platforms. The following list describes their behavior:

\texttt{-t}  \hspace{1cm} The system controller uses a CPU to test system boards by running \texttt{LPOST}, sequenced by the \texttt{hpost} command. To test I/O boards, the driver starts the testing in response to the \texttt{-t} option, and the test runs automatically without user intervention. The driver unconfigures a CPU and a stretch of contiguous physical memory. Then, it sends a command to the system controller to test the board. The system controller uses the CPU and memory to test the I/O board from inside of a transaction/error cage. You can only use CPUs from system boards (not MCPU boards) to test I/O boards.

\texttt{-x assign | unassign}  \hspace{1cm} In the Sun Fire high-end system administration model, the platform administrator controls the platform hardware through the use of an available component list for each domain. This information is maintained on the system controller. Only the platform administrator can modify the available component list for a domain.

The domain administrator is only allowed to assign or unassign a board if it is in the available component list for that domain. The platform administrator does not have this restriction, and can assign or unassign a board even if it is not in the available component list for a domain.

The following are the names and descriptions of the component types:

\begin{itemize}
\item \texttt{cpu} \hspace{1cm} CPU
\item \texttt{io} \hspace{1cm} I/O device
\item \texttt{memory} \hspace{1cm} Memory
\end{itemize}

\textbf{Note:} An operation on a memory component affects all of the memory components on the board.
References to attachment points are slightly different on Sun Fire midrange servers such as the 6800, 4810, 4800, and 3800 systems than on the Sun Fire high-end systems. The following syntax is used to refer to attachment points on Sun Fire systems other than the Sun Fire 15K:

\[ \text{n#} \cdot \text{board} : \text{component} \]

where \( \text{n#} \) refers to the node; \( \text{board} \) refers to the system board or I/O board; and \( \text{component} \) refers to the individual component.

Depending on the system’s configuration, system boards can range from SB0 through SB5, and I/O boards can range from IB6 through IB9. (A maximum of six system and four I/O boards are available).

The following are the names and descriptions of the component types:

- **cpu**  
  CPU

- **pci**  
  I/O device

- **memory**  
  Memory

**Note:** An operation on a memory component affects all of the memory components on the board.
The SCSI hardware specific library /usr/lib/cfgadm/scsi.so.1 provides the functionality for SCSI hot-plugging through the cfgadm(1M) command. cfgadm operates on attachment points, which are locations in the system where hardware resources can be dynamically reconfigured. Refer to cfgadm(1M) for information regarding attachment points.

For SCSI hot-plugging, each SCSI controller is represented by an attachment point in the device tree. In addition, each SCSI device is represented by a dynamic attachment point. Attachment points are named through ap_ids. Two types of ap_ids are defined: logical and physical. The physical ap_id is based on the physical pathname, whereas the logical ap_id is a shorter more user-friendly name. For SCSI controllers, the logical ap_id is usually the corresponding disk controller number. For example, a typical logical ap_id would be c0.

SCSI devices are named relative to the controller ap_id. Thus if a disk device is attached to controller c0, its ap_id can be:

```
c0::dsk/c0t0d0
```

where dsk/c0t0d0 identifies the specific device. In general, the device identifier is derived from the corresponding logical link for the device in /dev. For example, a SCSI tape drive logical ap_id could be c0::rmt/0. Here c0 is the logical ap_id for the SCSI controller and rmt/0 is derived from the logical link for the tape drive in /dev/rmt. If an identifier can not be derived from the link in /dev, a unique identifier will be assigned to it. For example, if the tape device has no link in /dev, it can be assigned an ap_id of the form c0::st3 where st3 is a unique internally generated identifier.

A simple listing of attachment points in the system will include attachment points at SCSI controllers but not SCSI devices. Use the -a flag to the list option (-l) to list SCSI devices as well. For example:

```
# cfgadm -a
<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>sysctr10:slot0</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>sysctr10:slot1</td>
<td>sbus-upa</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>
```

---

**NAME**

cfgadm_scsi - SCSI hardware specific commands for cfgadm

**SYNOPSIS**

```
/usr/sbin/cfgadm [-f] [-y | -n ] [-v] [-o hardware_option]
      -c function ap_id...

/usr/sbin/cfgadm [-f] [-y | -n ] [-v] [-o hardware_option]
      -x hardware_function ap_id...

/usr/sbin/cfgadm [-v] [-a] [-s listing_option] [-o hardware_option]
      [-l [ap_id | ap_type ... ]]

/usr/sbin/cfgadm [-v] [-o hardware_option] -t ap_id...

/usr/sbin/cfgadm [-v] [-o hardware_option] -h [ap_id...]
```
To list SCSI devices in addition to SCSI controllers:

```bash
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>scsi-bus</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t14d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t11d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t8d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::dsk/c0t0d0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::rmt/0</td>
<td>tape</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>sysctr10:slot0</td>
<td>cpu/mem</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>sysctr10:slot1</td>
<td>sbus-upa</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

Refer to `cfgadm(1M)` for more information regarding listing attachment points. The receptacle and occupant state for attachment points at the SCSI controller have the following meanings:

- **empty**: not applicable
- **disconnected**: bus quiesced (I/O activity on bus is suspended)
- **connected**: bus active
- **configured**: one or more devices on the bus is configured
- **unconfigured**: no device on the bus is configured

The corresponding states for individual SCSI devices are:

- **empty**: not applicable
- **disconnected**: bus to which the device is attached is quiesced
- **connected**: bus to which device is attached is active
- **configured**: device is configured
- **unconfigured**: device is not configured

**OPTIONS**

`cfgadm` defines several types of operations besides listing (`-l`). These operations include testing, (`-t`), invoking configuration state changes, (`-c`), invoking hardware specific functions (`-x`), and obtaining configuration administration help messages (`-h`).
The following generic commands are defined for the SCSI hardware specific library:

For SCSI controller attachment points, the following configuration state change operations are supported:

- **connect**  Unquiesce the SCSI bus.
- **disconnect**  Quiesce the bus (suspend I/O activity on bus).

Incorrect use of this command can cause the system to hang. See NOTES.

- **configure**  Configure new devices on SCSI bus.
- **unconfigure**  Unconfigure all devices connected to bus.

The following generic commands are defined for SCSI devices:

- **configure**  configure a specific device
- **unconfigure**  unconfigure a specific device

- **f**  When used with the **disconnect** command, forces a quiesce of the SCSI bus, if supported by hardware.

Incorrect use of this command can cause the system to hang. See NOTES.

- **h ap_id**  SCSI specific help can be obtained by using the help option with any SCSI attachment point.

- **o hardware_option**  No hardware specific options are currently defined.

- **s listing_option**  Attachment points of class **scsi** can be listed by using the **select** sub-option. Refer to the **cfgadm**(1M) man page for additional information.

- **t ap_id**  No test commands are available at present.

- **x hardware_function**  Some of the following commands can only be used with SCSI controllers and some only with SCSI devices.

In the following, **controller_ap_id** refers to an **ap_id** for a SCSI controller, for example, **c0**. **device_ap_id** refers to an **ap_id** for a SCSI device, for example: **c0::dsk/c0dt3d0**.

The following hardware specific functions are defined:
insert_device controller_ap_id
   Add a new device to the SCSI controller, controller_ap_id.

   This command is intended for interactive use only.

remove_device device_ap_id
   Remove device device_ap_id.

   This command is intended for interactive use only.

replace_device device_ap_id
   Remove device device_ap_id and replace it with another device of the same kind.

   This command is intended for interactive use only.

reset_device device_ap_id
   Reset device_ap_id.

reset_bus controller_ap_id
   Reset bus controller_ap_id without resetting any devices attached to the bus.

reset_all controller_ap_id
   Reset bus controller_ap_id and all devices on the bus.

EXAMPLES

EXAMPLE 1 Configuring a Disk
The following command configures a disk attached to controller c0:

# cfgadm -c configure c0::dsk/c0t3d0

EXAMPLE 2 Unconfiguring a Disk
The following command unconfigures a disk attached to controller c0:

# cfgadm -c unconfigure c0::dsk/c0t3d0

EXAMPLE 3 Adding a New Device
The following command adds a new device to controller c0:

# cfgadm -x insert_device c0

The system responds with the following:

Adding device to SCSI HBA: /devices/sbus@1f,0/SUNW,fas@e,8800000
This operation will suspend activity on SCSI bus c0
Continue {yes/no}?

Enter:
y
**EXAMPLE 3** Adding a New Device  
(Continued)

The system responds with the following:

SCSI bus quiesced successfully.
It is now safe to proceed with hotplug operation.
Enter y if operation is complete or n to abort (yes/no)?

Enter:

Y

**EXAMPLE 4** Replacing a Device

The following command replaces a device attached to controller c0:

```
# cfgadm -x replace_device c0::dsk/c0t3d0
```

The system responds with the following:

Replacing SCSI device: /devices/sbus@1f,0/SUNW,fas@e,88000000/sd@3,0
This operation will suspend activity on SCSI bus: c0
Continue (yes/no)?

Enter:

Y

The system responds with the following:

SCSI bus quiesced successfully.
It is now safe to proceed with hotplug operation.
Enter y if operation is complete or n to abort (yes/no)?

Enter:

Y

**EXAMPLE 5** Encountering a Mounted File System While Unconfiguring a Disk

The following command illustrates encountering a mounted file system while unconfiguring a disk:

```
# cfgadm -c unconfigure c1::dsk/c1t0d0
```

The system responds with the following:

cfgadm: Component system is busy, try again: failed to offline:
/devices/pci@1f,4000/scsi@3,1/sd@1,0
Resource Information
-------------- --------------------------
/dev/dsk/c1t0d0s0 mounted filesystem "/mnt"

**FILES**

/usr/lib/cfgadm/scsi.so.1  

hardware specific library for generic SCSI hot-plugging
The disconnect (quiesce) operation is not supported on controllers which control disks containing critical partitions such as root (/), /usr, swap, or /var. The disconnect operation should not be attempted on such controllers. Incorrect usage can result in a system hang and require a reboot.

Hotplugging operations are not supported by all SCSI controllers.

The connectors on some SCSI devices do not conform to SCSI hotplug specifications. Performing hotplug operations on such devices can cause damage to the hardware on the SCSI bus. Refer to your hardware manual for additional information.
### NAME

cfgadm_sysctrl – EXX00 system board administration

### SYNOPSIS

```
/usr/sbin/cfgadm -c function [-f]
    [-o disable-at-boot | enable-at-boot] [-n | -y]
    sysctrl0:slot# ...

/usr/sbin/cfgadm -x quiesce-test sysctrl0:slot#

/usr/sbin/cfgadm -x insert-test | remove-test sysctrl0:slot# ...

/usr/sbin/cfgadm [-l] -o disable-at-boot | enable-at-boot
    sysctrl0:slot# ...
```

### DESCRIPTION

The sysctrl hardware specific library
```
/usr/platform/sun4u/lib/cfgadm/sysctrl.so.1 provides dynamic reconfiguration functionality for configuring and disconnecting system boards on E6X00, E5X00, E4X00, and E3X00 systems. You can insert both I/O and CPU boards into a slot on a running system that is configured for Solaris without rebooting. You can also disconnect and remove both types of boards from a running system without rebooting.
```

System slots appear as attachment points in the device tree, one attachment point for each actual slot in the system chassis. If a board is not in a slot, the receptacle state is empty. If a board is powered-off and ready to remove, the receptacle state is disconnected. If a board is powered-on and is connected to the system bus, the receptacle state is connected.

The occupant state is unconfigured when the receptacle state is empty or disconnected. The occupant state is either unconfigured or configured when the receptacle state is connected.

In the configured state the devices on a board are available for use by Solaris. In the unconfigured state, the devices on the board are not.

Inserting a board changes the receptacle state from empty to disconnected. Removing a board changes the receptacle state from disconnected to empty. Removing a board that is in the connected state crashes the operating system and can result in permanent damage to the system.

### OPTIONS

Refer to `cfgadm(1M)` for a more complete description options.

The following options are supported:

```
-c function
    Perform the state change function. Specify function as connect, disconnect, configure or unconfigure.
```

configure
    Change the occupant state to configure.
If the receptacle state is disconnected, the configure function first attempts to connect the receptacle. The configure function walks the OBP device tree created as part of the connect function and creates the Solaris device tree nodes, attaching devices as required. For CPU/Memory boards, configure adds CPUs to the CPU list in the powered-off state. These are visible to the psrinfo(1M) and psradm(1M) commands. Two memory attachment points are published for CPU/memory boards. Use mount(1M) and ifconfig(1M) to use I/O devices on the new board. To use CPUs, use psradm -n to on-line the new processors. Use cfgadm_ac(1M) to test and configure the memory banks.

connect
Change the receptacle state to connected.

Changing the receptacle state requires that the system bus be frozen while the bus signals are connected and the board tested. The bus is frozen by running a quiesce operation which stops all process activity and suspends all drivers. Because the quiesce operation and the subsequent resume can be time consuming, and are not supported by all drivers, the -x quiesce-test is provided. While the system bus is frozen, the board being connected is tested by firmware. This operation takes a short time for I/O boards and a significant time for CPU/Memory boards due to CPU external cache testing. This does not provide memory testing. The user is prompted for confirmation before proceeding with the quiesce. Use the -y or -n option to override the prompt. The connect operation is refused if the board is marked as disabled-at-boot, unless either the force flag, -f, or the enable at boot flag, -o enable-at-boot, is given. See -l.

disconnect
Change the receptacle state to disconnected.

If the occupant state is configure, the disconnect function first attempts to unconfigure the occupant. The disconnect operation does not require a quiesce operation and operates quickly. The board is powered-off ready for removal.

unconfigure
Change the occupant state to unconfigured.

Devices on the board are made invisible to Solaris during this process. The I/O devices on an I/O board are removed from the Solaris device tree. Any device that is still in use stops the unconfigure process and be reported as in use. The unconfigure operation must be retried after the device is made non-busy. For CPU/Memory boards, the memory must have been changed to the unconfigured state prior to issuing the board unconfigure operation. The CPUs on the board are off-lined, powered off and removed from the Solaris CPU list. CPUs that have processes bound to them cannot be off-lined. See psradm(1M), psrinfo(1M), pbins(1M), and p_online(2) for more information on off-lining CPUs.
-f
  Force a block on connecting a board marked as disabled-at-boot in the non-volatile disabled-board-list variable. See Platform Notes: Sun Enterprise 6x00/5x00/4x00/3x00 Systems.

-l
  List options. Supported as described in cfgadm(1M).

The type field can be one of cpu/mem, mem, dual-sbus, sbus-upa, dual-pci, soc+sbus, soc+upa, disk or unknown.

The hardware-specific info field is set as follows: [disabled at boot] [non-detachable] [100 MHz capable]

For sbus-upa and soc+upa type boards, the following additional information appears first: [single buffered ffb | double buffered ffb | no ffb installed] For disk type boards, the following additional information appears first: {target: # | no disk} {target: # | no disk}

-o disable-at-boot | enable-at-boot
  Modify the state of the non-volatile disabled-board-list variable. Use this the -o option in conjunction with the -c function or -l option.

Use -o enable-at-boot with the -c connect to override a block on connecting a disabled-at-boot board.

-x insert-test | remove-test
  Perform a test.

Specify remove-test to change the driver state for the specified slot from disconnected to empty without the need for physically removing the board during automated test sequences.

Specify insert-test to change the driver state of a slot made to appear empty using the remove-test command to the disconnected state as if it had been inserted.

-x quiesce-test sysctrl0:slot1
  Perform a test.

Allows the quiesce operation required for board connect operations to be exercised. The execution of this test confirms that, with the current software and hardware configuration, it is possible to quiesce the system. If a device or process cannot be quiesced, its name is printed in an error message. Any valid board attachment point can be used with this command, but since all systems have a slot1 the given form is recommended.

-x set-condition-test=#
  Perform a test.
cfgadm_sysctrl(1M)

Allows the the condition of a system board attachment point to be set for testing the policy logic for state change commands. The new setting is given as a number indicating one of the following condition values:

0 unknown
1 ok
2 failing
3 failed
4 unusable

OPERANDS  The following operand is supported:

sysctrl0:slot#  The attachment points for boards on EXX00 systems are published by instance 0 of the sysctrl driver (sysctrl0). The names of the attachment points are numbered from slot0 through slot15. Specify # as a number between 0 and 15, indicating the slot number. This form conforms to the logical ap_id specification given in cfgadm(1M). The corresponding physical ap_ids are listed in the FILES section.

FILES  /usr/platform/sun4u/lib/cfgadm/sysctrl.so.1
Hardware specific library
/devices/central@1f,0/fhc@0,f8800000/clock-board@0,900000:slot*
Attachment Points

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm.u</td>
</tr>
</tbody>
</table>

SEE ALSO  cfgadm(1M), cfgadm_ac(1M), ifconfig(1M), mount(1M), pbind(1M), psadm(1M), psrinfo(1M), config_admin(3CFGADM), attributes(5)

Sun Enterprise 6x00, 5x00, 4x00 and 3x00 Systems Dynamic Reconfiguration User’s Guide

Platform Notes: Sun Enterprise 6x00, 5x00, 4x00 and 3x00 Systems Dynamic Reconfiguration User’s Guide for additional details regarding dynamic reconfiguration of EXX00 system CPU/Memory boards.
The Universal Serial Bus (USB) hardware-specific library
/usr/lib/cfgadm/usb.so.1 provides the functionality for administering USB
devices via the `cfgadm(1M)` command. `cfgadm` operates on attachment points. For
details regarding attachment points, refer to `cfgadm(1M)`.

For USB administration, the only attachment points supported are the ports of hubs
attached to the USB bus.

Attachment points are named through attachment point IDs (`ap_ids`). The USB bus is
hierarchical, so the `ap_ids` are as well. USB hubs have ports, numbered from 1 to `n`. All
USB `ap_ids` consist of a string of the following form:

```
usbN/A[B,C[...]]
```

where

- `N` is the `N`th USB host controller on the system,
- `A` is port `A` on the root (top) hub.
- `B` is port `B` of the hub plugged into port `A` of the hub above it.
- `C` is port `C` of the hub plugged into port `B` of the hub above it, and so forth.

For example, the first port on the root hub of USB controller 0 (the only controller), has
a logical `ap_id`:

```
usb0/1
```

Similarly, the second port on the first external hub plugged into the first port on the
root hub of the first USB controller has a logical `ap_id`:

```
usb0/1.2
```

For example, if the `ap_id` is `usb0/1.4.3.4`, it represents port 4 of the hub plugged
into port 3 of the hub plugged into port 4 of the hub plugged into port 1 of the root
hub of the first USB bus controller on the system.

The following listing of USB attachment points in the system includes all attachment
points for USB ports, even if the port is empty (no device plugged in):

```
example# cfgadm -l
Ap_Id   Type     Receptacle  Occupant    Condition
usb0/1  USB-hub  connected  configured  ok
usb0/2  unknown  empty     unconfigured ok
```
The receptacle states for attachment points at the USB port have the following meanings:

- **connected**: USB port is powered on and enabled. A USB device is plugged in to the port. The device is logically connected to the USB bus.

- **disconnected**: USB port is powered on and enabled. A USB device is plugged into the port. The device has been logically disconnected from the USB bus (using the `cfgadm -c disconnect` command).

- **empty**: USB port is powered on, but no device is plugged in to it.

The occupant states for devices at USB port attachment points at the USB port have the following meanings:

- **configured**: The USB device at the USB port is configured and usable by Solaris.

- **unconfigured**: The USB device at the USB port was explicitly off-lined using `cfgadm -c unconfigure`, or was not successfully configured for use with Solaris, for example, having no driver or a device problem.

The attachment point conditions are:

- **ok**: Normal state - ready for use.

- **failing**: Not used.

- **failed**: Not used.

- **unusable**: The user has physically removed a device while an application had the device open (there may be outstanding I/O). Users need to reinsert the same physical device and close the application properly before removing the device again. The port cannot configure other inserted devices until this is done.

If the original device cannot be reinserted into the port, see the *System Administration Guide, Volume 1* for instructions for clearing this attachment point condition.

- **unknown**: Not used.
A USB device can be hotplugged or hotunplugged at any time, and the system detects the event and takes the appropriate action.

It is not necessary to transition a receptacle to the disconnected state before removing its device from the USB. However, it is not recommended to hot-remove devices currently in use (such as removable disks currently opened by volume manager (see vold(1M)) or some other application).

The following options are supported:

```
-c function
```

The following generic commands are defined for the USB hardware specific library. The following configuration state change operations are supported:

```
configure
```

If there is a USB device plugged into the port, this command attempts to configure it and set everything up so that it is usable by Solaris. This command does an implied connect (reverse of disconnect) if necessary. This command accomplishes nothing, and returns an error message, if the device at that port is already configured. After successful execution of this command, the device is ready for use under Solaris.

```
disconnect
```

 Performs an unconfigure on the ap_id (if it is not already unconfigured), and then transitions the receptacle to the disconnected state, even though a device will still be plugged into the port. Issuing a cfgadm -c configure, or physically hotplugging the device, will bring the device back to the connected receptacle state, and to the configured occupant state, assuming a driver can be found and there are no problems enumerating and configuring the device.

```
unconfigure
```

Makes the device plugged into the port unusable by Solaris (offline it). If successful, cfgadm will now report this ap_id’s occupant state as unconfigured. Issuing a configure to the ap_id (if successful) will
bring its occupant back to the configured (online) condition, as will physically hotplugging the device on the port.

-\texttt{-f}

Not supported.

-\texttt{-h \textit{ap_id}}

USB specific help may be obtained by using the help option with any USB attachment point.

-\texttt{-l[v]}

The -l option works as described in \texttt{cfgadm(1M)}. When paired with the -v option, the Information field contains the following USB-specific information:

- \texttt{Mfg}: manufacturer string (\texttt{iManufacturer})
- \texttt{Product}: product string (\texttt{iProduct})
- \texttt{NConfigs}: total number of configurations the device supports (\texttt{bNumConfigurations})
- \texttt{Config}: current configuration setting in decimal (configuration index, not configuration value).
- The configuration string descriptor for the current configuration (\texttt{iConfiguration})

See the Universal Serial Bus specification for a description of these fields.

-\texttt{-o hardware\_options}

Hardware options are only supported for the hardware-specific command, -\texttt{x usb\_config}. See the description of that command below for an explanation of the options available.

-\texttt{-s listing\_options}

Attachment points of class USB may be listed by using the select sub-option. See \texttt{cfgadm(1M)}.

-\texttt{-x hardware\_function}

The following hardware-specific functions are defined:

\texttt{usb\_config -o config=n}

This command requires the mandatory config value to be specified using the -o option.

Sets the USB configuration of a multi-configuration USB device at ap_id to configuration index \texttt{n}. The device is set to this configuration henceforth and this setting persists across reboots, hot-removes, and unconfigure/configure of the device.

Valid values of \texttt{n} range from 0 to (Nconfigs -1). The device is reset by a disconnect followed by a configure. The configure causes the device to be configured to the new configuration setting.
If any of these steps fail, the configuration file and the device are restored to their previous state and an error message is issued.

**usb_reset**

Performs a software reset (re-enumeration) of the device. This is the equivalent of removing the device and inserting it back again. The port on the hub will be power cycled if the hub supports power cycling of individual ports.

If the connected device is a hub, this function has the effect of resetting that hub and any devices down the tree of which it is the root.

If any of these steps fail, the device is restored to its previous state and an error message is issued.

State table: attachment points state versus commands:

Valid states:
- **empty/unconfigured** → no device connected
- **disconnected/unconfigured** → logically disconnected, unavailable, devinfo node removed, device physically connected
- **connected/unconfigured** → logically connected, unavailable, devinfo node present
- **connected/configured** → connected, available

The table below clarifies the state transitions resulting from actions or commands:

<table>
<thead>
<tr>
<th>current state operation</th>
<th>new state</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty/unconfigured</td>
<td></td>
</tr>
<tr>
<td>device plugged in:</td>
<td>connected/configured or</td>
</tr>
<tr>
<td></td>
<td>connected/unconfigure</td>
</tr>
<tr>
<td></td>
<td>(if enumeration failed)</td>
</tr>
<tr>
<td>device removed:</td>
<td>n/a</td>
</tr>
<tr>
<td>cfgadm -c unconfigure:</td>
<td>empty/unconfigured</td>
</tr>
<tr>
<td>cfgadm -c configure:</td>
<td>empty/unconfigured</td>
</tr>
<tr>
<td>cfgadm -c disconnect:</td>
<td>empty/unconfigured</td>
</tr>
<tr>
<td></td>
<td>(no-op and error)</td>
</tr>
<tr>
<td>disconnected/unconfigured</td>
<td></td>
</tr>
<tr>
<td>device plugged in:</td>
<td>n/a</td>
</tr>
<tr>
<td>device removed:</td>
<td>empty/unconfigured</td>
</tr>
<tr>
<td>cfgadm -c unconfigure:</td>
<td>disconnected/unconfigured</td>
</tr>
<tr>
<td>cfgadm -c configure:</td>
<td>connected/configured, or</td>
</tr>
<tr>
<td></td>
<td>connected/unconfigured</td>
</tr>
</tbody>
</table>

```
 cfgadm -c disconnect: disconnected/unconfigured

connected/unconfigured:
  device plugged in: n/a
  device removed: empty/unconfigured
  cfgadm -c unconfigure: connected/unconfigured
  cfgadm -c configure: connected/configured, or
  connected/unconfigured
  (if reenumeration failed)
  cfgadm -c disconnect: disconnected/unconfigured

connected/configured:
  device plugged in: n/a
  device removed: empty/unconfigured or
  connected/configured, but with ap condition
  ‘unusable’ if device
  was open when removed
  cfgadm -c unconfigure: connected/unconfigure
  cfgadm -c configure: connected/configured
  cfgadm -c disconnect: disconnected/unconfigured

EXAMPLES

EXAMPLE 1Listing the status of all USB devices

The following command lists the status of all USB devices on the system:

```
# cfgadm
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/1</td>
<td>USB-hub</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/2</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/1.1</td>
<td>USB-storage</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/1.2</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/1.3</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
<tr>
<td>usb0/1.4</td>
<td>USB-composit</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>

Notice that `cfgadm` treats the composite device at `ap_id usb0/1.4` as a single unit, since it cannot currently control individual interfaces.

EXAMPLE 2Listing the status of a port with no device plugged in

The following command lists the status of a port with no device plugged in:

```
example# cfgadm -1 usb0/1.3
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/1.3</td>
<td>unknown</td>
<td>empty</td>
<td>unconfigured</td>
<td>ok</td>
</tr>
</tbody>
</table>

EXAMPLE 3Listing the status of the same port with a device plugged in

The following command lists the status of the same port after physically plugging in a device that configures without problems:

```
example# cfgadm -1 usb0/1.3
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>usb0/1.3</td>
<td>USB-hub</td>
<td>connected</td>
<td>configured</td>
<td>ok</td>
</tr>
</tbody>
</table>
EXAMPLE 4 Unconfiguring an existing USB device

The following command unconfigures the USB device attached to usb0/1.3, then displays the status of the ap_id:

```
example# cfgadm -c unconfigure usb0/1.3
Unconfigure the device: /devices/pci@0,0/pci8086,7112@7,2/hub@2:2.3
This operation will suspend activity on the USB device
Continue (yes/no)?
```

Enter:

```
y
```

```
example# cfgadm -l usb0/1.3
Ap_Id Type Receptacle Occupant Condition
usb0/1.3 unknown connected unconfigured ok
```

EXAMPLE 5 Unconfiguring and logically disconnecting an existing USB device

The following command unconfigures and logically disconnects a USB device attached to usb0/1.3:

```
example# cfgadm -c disconnect usb0/1.3
Disconnect the device: /devices/pci@0,0/pci8086,7112@7,2/hub@2:2.3
This operation will suspend activity on the USB device
Continue (yes/no)?
```

Enter:

```
y
```

```
example# cfgadm -l usb0/1.3
Ap_Id Type Receptacle Occupant Condition
usb0/1.3 unknown disconnected unconfigured ok
```

A disconnect implies that `cfgadm` does an unconfigure first. The receptacle status now shows disconnected, even though the device is still physically connected. In this case, a physical hotplug or using the `cfgadm` -c configuration on the ap_id will bring it back on-line.

EXAMPLE 6 Configuring a previously unconfigured USB device

The following command configures a USB device that was previously attached to usb0/1.3:

```
example # cfgadm -yc configure usb0/1.3
example# cfgadm -l usb0/1.3
Ap_Id Type Receptacle Occupant Condition
usb0/1.3 unknown connected configured ok
```

EXAMPLE 7 Resetting a USB device

The following command resets a USB device:

```
```
EXAMPLE 7 Resetting a USB device  (Continued)

eexample# cfgadm -x usb_reset usb0/1.3
Reset the device: /devices/pci@0,0/pci8086,7112@7,2/hub@2:2.3
This operation will suspend activity on the USB device
Continue (yes/no)?

Enter:
y

EXAMPLE 8 Displaying detailed information about a USB device

The following command displays detailed information about a USB device. This
device shows the following USB-specific information in the ‘Information’ field:

- Manufacturer string: Iomega
- Product string: USB Zip 250
- Number of configurations supported: 1
- Configuration currently active: 0
- Configuration string descriptor for configuration 0: Default

eexample# cfgadm -lv usb0/1.5
Ap_Id Receptacle Occupant Condition Information
When Type Busy Phys_Id
usb0/1.5 connected configured ok  Mfg:"Iomega" Product:"USB Zip 250"

example# cfgadm -l -s "cols=ap_id:info" usb0/1.5
Ap_Id Information
usb0/1.5 Mfg:"Iomega" Product:"USB Zip 250"

EXAMPLE 9 Displaying detailed information about all USB devices on the system

The following command displays detailed information about all USB devices on the
system:

eexample# cfgadm -l -s "select=class(usb),cols=ap_id:info"
Ap_Id Information
usb0/1 Mfg:<undefined> Product:<undefined> NConfigs:1 Config:0 <no cfg str descr>
usb0/2
usb0/1.1 Mfg:<undefined> Product:<undefined> NConfigs:1 Config:0 <no cfg str descr>
usb0/1.2
usb0/1.3
usb0/1.4 Mfg:"Wizard" Product:"Modem/ISDN" NConfigs:3 Config:1 : V.90 Analog Modem
usb0/1.5 Mfg:"Iomega" Product:"USB Zip 250" NConfigs:1 Config:0 : Default
usb0/1.6 Mfg:"SOLID YEAR" Product:"SOLID YEAR USB" NConfigs:1 Config:0 <no cfg str descr>
usb0/1.7
EXAMPLE 9 Displaying detailed information about all USB devices on the system

(Continued)

Lines containing only an `ap_id` are empty ports. These can be filtered out. This example only lists USB `ap_ids` with connected devices, and information about those devices.

```
example$ cfgadm -l -s "select=class(usb),cols=ap_id:info" | grep Mfg
usb0/1 Mfg:<undefined> Product:<undefined>
NConfigs:1 Config:0 <no cfg str descr>
usb0/1.1 Mfg:<undefined> Product:<undefined>
NConfigs:1 Config:0 <no cfg str descr>
usb0/1.4 Mfg:"Wizard" Product:"Modem/ISDN"
NConfigs:3 Config:1 : V.90 Analog Modem
usb0/1.5 Mfg:"Iomega" Product:"USB Zip 250"
NConfigs:1 Config:0 : Default
usb0/1.6 Mfg:"SOLID YEAR" Product:"SOLID YEAR USB"
```

EXAMPLE 10 Listing information about a multi-configuration USB device

The following example lists information about a multi-configuration USB device.

```
Notice the NConfigs field: the configurations available for this device are 0, 1, and 2 (0 to (NConfigs-1)).
```

```
example$ cfgadm -l -s "cols=ap_id:info" usb0/1.4
Ap_Id Information
usb0/1.4 Mfg:"Wizard" Product:"Modem/ISDN"
NConfigs:3 Config:1 V.90 Analog Modem"
```

EXAMPLE 11 Setting the current configuration of a multi-configuration USB device

The following example sets the current configuration of a multi-configuration USB device:

```
example$ cfgadm -o config=2 -x usb_config usb0/1.4
Setting the device: /devices/pci@1f,2000/usb@1/device@3
to USB configuration 2
This operation will suspend activity on the USB device
Continue (yes/no)?
Enter:
Y
USB configuration changed successfully.
```

The device path should be checked to ensure that the right instance of a device is being referred to, in the case where multiple devices of the exact same type are on the same bus. This information is available in the 'Information' field.

FILES

```
/usr/lib/cfgadm/usb.so.1
Hardware specific library for generic USB device administration
```

CFGADM_USB(1M)
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

cfgadm(1M), vold(1M), config_admin(3CFGADM), attributes(5),
scsa2usb(7D), usba(7D)

Universal Serial Bus 1.1 Specification (www.usb.org)

System Administration Guide, Volume 1

NOTES

cfgadm(1M) can not unconfigure, disconnect, reset, or change the configuration of any USB device currently opened by vold(1M) or any other application. These operations also fail on a hub if a device in its hierarchy is opened by an application. See scsa2usb(7D) for unconfiguring a USB mass-storage device that is being used by vold(1M).

Only super-users can execute any functions on an attachment point. However, one need not be a super-user to list the attachment points.
NAME
cfsadmin – administer disk space used for caching file systems with the Cache File-System (CacheFS)

SYNOPSIS
cfsadmin -c [-o cacheFS-parameters] cache_directory

cfsadmin -d {cache_ID | all} cache_directory

cfsadmin -l cache_directory

cfsadmin -s {mntpt1 ...} | all

cfsadmin -u [-o cacheFS-parameters] cache_directory

DESCRIPTION
The cfsadmin command provides the following functions:

- cache creation
- deletion of cached file systems
- listing of cache contents and statistics
- resource parameter adjustment when the file system is unmounted.

You must always supply an option for cfsadmin. For each form of the command except -s, you must specify a cache directory, that is, the directory under which the cache is actually stored. A path name in the front file system identifies the cache directory. For the -s form of the command, you must specify a mount point.

You can specify a cache ID when you mount a file system with CacheFS, or you can let the system generate one for you. The -l option includes the cache ID in its listing of information. You must know the cache ID to delete a cached file system.

OPTIONS
- -c [-o cacheFS-parameters] cache_directory
  Create a cache under the directory specified by cache_directory. This directory must not exist prior to cache creation.

- -d {cache_ID | all} cache_directory
  Remove the file system whose cache ID you specify and release its resources, or remove all file systems in the cache by specifying all. After deleting a file system from the cache, you must run the fsck_cachefs(1M) command to correct the resource counts for the cache.

  As indicated by the syntax above, you must supply either a cache_ID or all, in addition to cache_directory.

- -l cache_directory
  List file systems stored in the specified cache, as well as statistics about them. Each cached file system is listed by cache ID. The statistics document resource utilization and cache resource parameters.

- -s {mntpt1 ...} | all
  Request a consistency check on the specified file system (or all cachefs mounted file systems). The -s option will only work if the cache file system was mounted with demandconst enabled (see mount_cachefs(1M)). Each file in the specified cache file system is checked for consistency with its corresponding file in the back file system. Note that the consistency check is performed file by file as files are
accessed. If no files are accessed, no checks are performed. Use of this option does not result in a sudden "storm" of consistency checks.

As indicated by the syntax above, you must supply one or more mount points, or all.

```
-u [-o cacheFS-parameters] cache_directory
```

Update resource parameters of the specified cache directory. Parameter values can only be increased. To decrease the values, you must remove the cache and recreate it. All file systems in the cache directory must be unmounted when you use this option. Changes will take effect the next time you mount any file system in the specified cache directory. The `-u` option with no `-o` option sets all parameters to their default values.

You can specify the following CacheFS resource parameters as arguments to the `-o` option. Separate multiple parameters with commas.

- `maxblocks=n` Maximum amount of storage space that CacheFS can use, expressed as a percentage of the total number of blocks in the front file system. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the space the `maxblocks` parameter allows will be available. The default is 90.

- `minblocks=n` Minimum amount of storage space, expressed as a percentage of the total number of blocks in the front file system, that CacheFS is always allowed to use without limitation by its internal control mechanisms. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the space the `minblocks` parameter attempts to reserve will be available. The default is 0.

- `threshblocks=n` A percentage of the total blocks in the front file system beyond which CacheFS cannot claim resources once its block usage has reached the level specified by `minblocks`. The default is 85.

- `maxfiles=n` Maximum number of files that CacheFS can use, expressed as a percentage of the total number of inodes in the front file system. If CacheFS does not have exclusive use of the front file system, there is no guarantee that all the inodes the `maxfiles` parameter allows will be available. The default is 90.

- `minfiles=n` Minimum number of files, expressed as a percentage of the total number of inodes in the front file system, that CacheFS is always allowed to use without limitation by its internal control mechanisms. If CacheFS does not have exclusive use of the front file system, there is no
guarantee that all the inodes the minfiles parameter attempts to reserve will be available. The default is 0.

threshfiles=n  A percentage of the total inodes in the front file system beyond which CacheFS cannot claim inodes once its usage has reached the level specified by minfiles. The default is 85.

maxfilesize=n  Largest file size, expressed in megabytes, that CacheFS is allowed to cache. The default is 3. You cannot decrease the block or inode allotment for a cache. To decrease the size of a cache, you must remove it and create it again with different parameters.

Currently maxfilesize is ignored by cachefs, therefore, setting it will have no effect.

OPERANDS

<table>
<thead>
<tr>
<th>OPERAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache_directory</td>
<td>The directory under which the cache is actually stored.</td>
</tr>
<tr>
<td>mntpt1</td>
<td>The directory where the CacheFS is mounted.</td>
</tr>
</tbody>
</table>

EXAMPLES

**EXAMPLE 1** Creating a cache directory.

The following example creates a cache directory named /cache:

```bash
eexample# cfsadmin -c /cache
```

**EXAMPLE 2** Creating a cache specifying maxblocks, minblocks and threshblocks.

The following example creates a cache named /cache1 that can claim a maximum of 60 percent of the blocks in the front file system, can use 40 percent of the front file system blocks without interference by CacheFS internal control mechanisms, and has a threshold value of 50 percent. The threshold value indicates that after CacheFS reaches its guaranteed minimum, it cannot claim more space if 50 percent of the blocks in the front file system are already used.

```bash
eexample# cfsadmin -c -o maxblocks=60, minblocks=40, threshblocks=50 /cache1
```

**EXAMPLE 3** Changing the maxfilesize parameter.

The following example changes the maxfilesize parameter for the cache directory /cache2 to 2 megabytes:

```bash
eexample# cfsadmin -u -o maxfilesize=2 /cache2
```
EXAMPLE 3 Changing the maxfilesize parameter. (Continued)

EXAMPLE 4 Listing the contents of a cache directory.

The following example lists the contents of a cache directory named /cache3 and provides statistics about resource utilization:

example# cfsadmin -l /cache3

EXAMPLE 5 Removing a cached file system.

The following example removes the cached file system with cache ID 23 from the cache directory /cache3 and frees its resources (the cache ID is part of the information returned by cfsadmin -l):

example# cfsadmin -d 23 /cache3

EXAMPLE 6 Removing all cached file systems.

The following example removes all cached file systems from the cache directory /cache3:

example# cfsadmin -d all /cache3

EXAMPLE 7 Checking for consistency in file systems.

The following example checks for consistency all file systems mounted with demandconst enabled. No errors will be reported if no demandconst file systems were found.

example# cfsadmin -s all

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

cacheslog(1M), cachefsstat(1M), cachefswsize(1M), fsck_cachefs(1M), mount_cachefs(1M), attributes(5), largefile(5)
NAME
cg14config – configure the cgfourteen device

SYNOPSIS
/usr/platform/platform-name/sbin/cg14config [-d device] [-r resolution]
               [-g gammavalue] [-G gammapfile] [-u degammavalue] [-U degammafile]

DESCRIPTION
cg14config sets up state on the selected cgfourteen device. platform-name can be
found using the -i option of uname(1).

cg14config is supported only on Desktop SPARCsystems with SX graphics option.
The interface, output, and command location are uncommitted and subject to change
in future releases.

OPTIONS
- d device Use device as the cgfourteen device to configure.
  Default is /dev/fb.
- r resolution Use resolution as the desired screen resolution.
  Resolution is specified in terms of screen width and
  height (in pixels), and vertical refresh (in hz). Available
  resolutions are:

  1024x768@60
  1024x768@66
  1024x768@70
  1152x900@66
  1152x900@76
  1280x1024@66
  1280x1024@76
  1600x1280@72
  1920x1080@72

  The default is the value read from the monitor sense
  codes. Note that some or all of the resolutions above
  may not be supported by any given monitor. If a
  programmed resolution is outside of the range of
  allowable values for a monitor, unpredictable results
  can occur, including damage to the monitor. Thus, care
  should be taken when programming the resolution. See
  Openboot Command Reference for a description of how to
  reset the console device to the default value if it
  becomes unusable from programming an unsupported
  resolution.

  The -r option is not available when the window
  system is running.

- g gammavalue Each entry of the gamma lookup table will be loaded
  with entry^1/gammavalue. The gamma lookup table
  has 256 entries. Default gammavalue is 2.2.

- G filename Initialize the gamma lookup table with the contents of
  filename. The format of filename is 256 triplets (red green
blue) of non-negative integers separated by NEWLINE characters. The integers must be in the range 0 to 1023, inclusive.

- `degammavalue`

Each entry of the degamma lookup table will be loaded with entry\(^{(degammavalue)}\). The degamma lookup table has 256 entries. Default `degammavalue` is 2.2.

- `-U filename`

Initialize the degamma lookup table with the contents of `filename`. The format of `filename` is 256 entries of non-negative integers separated by NEWLINE characters. The integers must be in the range 0 to 255, inclusive.

**EXIT STATUS**

cgl4config returns 0 on success and a positive integer on failure.

1. Selected device is not a cgfourteen device.
2. Requested action failed.
3. Unsupported resolution.
4. Gamma or degamma value out of range.

**FILES**

/platform/platform-name/kernel/drv/cgfourteen
cgfourteen device driver

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm</td>
</tr>
</tbody>
</table>

**SEE ALSO**

uname(1), init(1M), mmap(2), attributes(5)

Platform Notes: SPARCstation 10SX System Configuration Guide

Openboot Command Reference
### NAME
chat – automated conversational exchange tool

### SYNOPSIS
`chat [options] script`

### DESCRIPTION
The `chat` program implements a conversational text-based exchange between the computer and any serial device, including (but not limited to) a modem, an ISDN TA, and the remote peer itself, establishing a connection between the Point-To-Point Protocol daemon (`pppd`) and the remote `pppd` process.

### OPTIONS
The `chat` command supports the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f &lt;chat file&gt;</code></td>
<td>Read the chat script from the chat file. This option is mutually exclusive with the chat script parameters. You must have read access to use the file. Multiple lines are permitted in the file. Use the space or horizontal tab characters to separate the strings.</td>
</tr>
<tr>
<td><code>-t &lt;timeout&gt;</code></td>
<td>Set the timeout for the expected string to be received. If the string is not received within the time limit, the reply string is not sent. If specified, a ‘subexpect’ (alternate reply) string can be sent. Otherwise, if no alternate reply strings remain, the chat script fails. A failed script will cause the chat program to terminate with a non-zero error code.</td>
</tr>
<tr>
<td><code>-r &lt;report file&gt;</code></td>
<td>Set the file for output of the report strings. If you use the keyword <code>REPORT</code>, the resulting strings are written to this file. If the <code>-r</code> option is not used and you use the <code>REPORT</code> keyword, the <code>stderr</code> file is used for the report strings.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Start with the echo option turned on. You turn echo on or off at specific points in the chat script using the <code>ECHO</code> keyword. When echoing is enabled, all output from the modem is echoed to <code>stderr</code>.</td>
</tr>
<tr>
<td><code>-E</code></td>
<td>Enables environment variable substitution within chat scripts using the standard <code>$xxx</code> syntax.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Request that the chat script execute in a verbose mode. The chat program logs the execution state of the chat script as well as all text received from the modem and output strings sent to the modem. The default is to log through <code>syslog(3C)</code> with facility <code>local12</code>; the logging method is alterable using the <code>-S</code> and <code>-s</code> options.</td>
</tr>
</tbody>
</table>
| `-V` | Request that the chat script be executed in a `stderr` verbose mode. The chat program logs all text received from the modem and output strings sent to the modem.
to stderr. stderr is usually the local console at the station running the chat or pppd program.

-s Use stderr. Log messages from -v and error messages are sent to stderr.

-S Do not use syslog. By default, error messages are set to syslog. This option prevents log messages from -v and error messages from being sent to syslog.

-T <phone number> Pass in an arbitrary string (usually a telephone number) that will be substituted for the \T substitution metacharacter in a send string.

-U <phone number 2> Pass in a second string (usually a telephone number) that will be substituted for the \U substitution metacharacter in a send string. This is useful when dialing an ISDN terminal adapter that requires two numbers.

script If the script is not specified in a file with the -f option, the script is included as parameters to the chat program.

The chat script defines communications. A script consists of one or more "expect-send" pairs of strings separated by spaces, with an optional "subexpect-subsend" string pair, separated by a dash (as in the following example:)

login:-BREAK-login: ppp ssword: hello2u2

The example indicates that the chat program should expect the string "login: ". If it fails to receive a login prompt within the time interval allotted, it sends a break sequence to the remote and then expects the string "login: ". If the first "login: " is received, the break sequence is not generated.

Upon receiving the login prompt, the chat program sends the string "ppp" and then expects the prompt "ssword: ". When the password prompt is received, it sends the password hello2u2.

A carriage return is normally sent following the reply string. It is not expected in the "expect" string unless it is specifically requested by using the \r character sequence.

The expect sequence should contain only what is needed to identify the received data. Because it’s stored on a disk file, it should not contain variable information. Generally it is not acceptable to look for time strings, network identification strings, or other variable pieces of data as an expect string.
To correct for characters that are corrupted during the initial sequence, look for the string "ogin:" rather than "login:". The leading "l" character may be received in error, creating problems in finding the string. For this reason, scripts look for "ogin:" rather than "login:" and "ssword:" rather than "password:".

An example of a simple script follows:

```
login: ppp ssword: hello2u2
```

The example can be interpreted as: expect login:, send ppp, expect ...ssword:, send hello2u2.

When login to a remote peer is necessary, simple scripts are rare. At minimum, you should include sub-expect sequences in case the original string is not received. For example, consider the following script:

```
login:--login: ppp ssword: hello2u2
```

This script is more effective than the simple one used earlier. The string looks for the same login prompt; however, if one is not received, a single return sequence is sent and then the script looks for login: again. If line noise obscures the first login prompt, send the empty line to generate a login prompt again.

Comments

Comments can be embedded in the chat script. Comment lines are ignored by the chat program. A comment starts with the hash ("#") character in column one. If a # character is expected as the first character of the expect sequence, quote the expect string. If you want to wait for a prompt that starts with a # character, write something like this:

```
# Now wait for the prompt and send logout string
  "# " logout
```

Sending Data From A File

If the string to send begins with an at sign ("@"), the remainder of the string is interpreted as the name of the file that contains the string. If the last character of the data read is a newline, it is removed. The file can be a named pipe (or fifo) instead of a regular file. This enables chat to communicate with another program, for example, a program to prompt the user and receive a password typed in.

Abort

Many modems report the status of a call as a string. These status strings are often "CONNECTED" or "NO CARRIER" or "BUSY." If the modem fails to connect to the remote, you can terminate the script. Abort strings may be specified in the script using the ABORT sequence. For example:

```
ABORT BUSY ABORT 'NO CARRIER' ' ' ATZ OK ATDT5551212 CONNECT
```

This sequence expects nothing and sends the string ATZ. The expected response is the string OK. When OK is received, the string ATDT5551212 dials the telephone. The expected string is CONNECT. If CONNECT is received, the remainder of the script is
When the modem finds a busy telephone, it sends the string BUSY, causing the string to match the abort character sequence. The script fails because it found a match to the abort string. If the NO CARRIER string is received, it aborts for the same reason.

**Clr_Abort**

The CLR_ABORT sequence clears previously set ABORT strings. ABORT strings are kept in an array of a pre-determined size; CLR_ABORT reclaims the space for cleared entries, enabling new strings to use that space.

**Say**

The SAY string enables the script to send strings to a user at a terminal via standard error. If chat is being run by pppd and pppd is running as a daemon (detached from its controlling terminal), standard error is normally redirected to the /etc/ppp/connect-errors file.

SAY strings must be enclosed in single or double quotes. If carriage return and line feed are required for the output, you must explicitly add them to your string.

The SAY string can provide progress messages to users even with “ECHO OFF.” For example, add a line similar to the following to the script:

```
ABORT BUSY
ECHO OFF
SAY "Dialing your ISP...
'' ATDT5551212
TIMEOUT 120
SAY "Waiting up to 2 minutes for connection ...
CONNECT ''
SAY "Connected, now logging in ...
login: account
password: pass
$ \c
SAY "Logged in OK ...
```

This sequence hides script detail while presenting the SAY string to the user. In this case, you will see:

```
Dialing your ISP...
Waiting up to 2 minutes for connection...Connected, now logging in...
Logged in OK ...
```

**Report**

REPORT is similar to the ABORT string. With REPORT, however, strings and all characters to the next control character (such as a carriage return), are written to the report file.

REPORT strings can be used to isolate a modem’s transmission rate from its CONNECT string and return the value to the chat user. Analysis of the REPORT string logic occurs in conjunction with other string processing, such as looking for the expect string. It’s possible to use the same string for a REPORT and ABORT sequence, but probably not useful.
Report strings may be specified in the script using the REPORT sequence. For example:

```bash
REPORT CONNECT
ABORT BUSY
ATDT5551212 CONNECT
login: account
```

The above sequence expects nothing, then sends the string ATDT5551212 to dial the telephone. The expected string is CONNECT. If CONNECT is received, the remainder of the script is executed. In addition, the program writes the string CONNECT to the report file (specified by -r) in addition to any characters that follow.

**Clr_Report**

CLR_REPORT clears previously set REPORT strings. REPORT strings are kept in an array of a pre-determined size; CLR_REPORT reclaims the space for cleared entries so that new strings can use that space.

**Echo**

ECHO determines if modem output is echoed to stderr. This option may be set with the -e option, but can also be controlled by the ECHO keyword. The “expect-send” pair ECHO ON enables echoing, and ECHO OFF disables it. With ECHO, you can select which parts of the conversation should be visible. In the following script:

```bash
ABORT 'BUSY'
ABORT 'NO CARRIER'
** AT&T
OK\r\n ATD1234567
\r\n \c
ECHO ON
CONNECT \c
login: account
```

All output resulting from modem configuration and dialing is not visible, but output is echoed beginning with the CONNECT (or BUSY) message.

**Hangup**

The HANGUP option determines if a modem hangup is considered as an error. HANGUP is useful for dialing systems that hang up and call your system back. HANGUP can be ON or OFF. When HANGUP is set to OFF and the modem hangs up (for example, following the first stage of logging in to a callback system), chat continues running the script (for example, waiting for the incoming call and second stage login prompt). When the incoming call is connected, use the HANGUP ON string to reinstall normal hang up signal behavior. An example of a simple script follows:

```bash
ABORT 'BUSY'
** AT&T
OK\r\n ATD1234567
\r\n \c
CONNECT \c
'Callback login:' call_back_ID
HANGUP OFF
ABORT "Bad Login"
'Callback Password:' Call_back_password
TIMEOUT 120
```
CONNECT \c
HANGUP ON
ABORT "NO CARRIER"
login:--BREAK--login: real_account

**Timeout**
The initial timeout value is 45 seconds. Use the `-t` parameter to change the initial timeout value.

To change the timeout value for the next expect string, the following example can be used:
```
'*AT&T
OK ATDT5551212
CONNECT \c
TIMEOUT 10
login:--login: username
TIMEOUT 5
password: hello2u2
```
The example changes the timeout to ten seconds when it expects the login: prompt. The timeout is changed to five seconds when it looks for the password prompt.

Once changed, the timeout value remains in effect until it is changed again.

**EOT**
The EOT special reply string instructs the `chat` program to send an EOT character to the remote. This is equivalent to using `^D\c` as the reply string. The EOT string normally indicates the end-of-file character sequence. A return character is not sent following the EOT. The EOT sequence can be embedded into the send string using the sequence `^D`.

**BREAK**
The BREAK special reply string sends a break condition. The break is a special transmitter signal. Many UNIX systems handle break by cycling through available bit rates, and sending break is often needed when the remote system does not support autobaud. BREAK is equivalent to using `\K\c` as the reply string. You embed the break sequence into the send string using the `\K` sequence.

**Escape Sequences**
Expect and reply strings can contain escape sequences. Reply strings accept all escape sequences, while expect strings accept most sequences. A list of escape sequences is presented below. Sequences that are not accepted by expect strings are indicated.

```
''
Expect or sends a null string. If you send a null string, `chat` sends the return character. If you expect a null string, `chat` proceeds to the reply string without waiting. This sequence can be a pair of apostrophes or quote mark characters.

\b
Represents a backspace character.

\c
Suppresses the newline at the end of the reply string. This is the only method to send a string without a trailing return character. This sequence must be at the end of the send string. For example, the sequence `hello\c` will simply send the characters h, e, l, l, o. (Not valid in expect.)
```
Delay for one second. The program uses `sleep(1)` which delays to a maximum of one second. (Not valid in expect.)

Insert a BREAK. (Not valid in expect.)

Send a newline or linefeed character.

Send a null character. The same sequence may be represented by `\0`. (Not valid in expect.)

Pause for 1/10th of a second. (Not valid in expect.)

Suppress writing the string to syslog. The string `??????` is written to the log in its place. (Not valid in expect.)

Send or expect a carriage return.

Represents a space character in the string. Can be used when it is not desirable to quote the strings which contains spaces. The sequence ‘HI TIM’ and HI\sTIM are the same.

Send or expect a tab character.

Send the phone number string as specified with the `-T` option. (Not valid in expect.)

Send the phone number 2 string as specified with the `-U` option. (Not valid in expect.)

Send or expect a backslash character.

Collapse the octal digits (ddd) into a single ASCII character and send that character. (`\000` is not valid in an expect string.)

Substitute the sequence with the control character represented by C. For example, the character DC1 (17) is shown as `^Q`. (Some characters are not valid in expect.)

Environment variables are available within chat scripts if the `-E` option is specified on the command line. The metacharacter `$` introduces the name of the environment variable to substitute. If the substitution fails because the requested environment variable is not set, nothing is replaced for the variable.

The chat program terminates with the following completion codes:

- **0**: Normal program termination. Indicates that the script was executed without error to normal conclusion.
- **1**: One or more of the parameters are invalid or an expect string was too large for the internal buffers. Indicates that the program was not properly executed.
- **2**: An error occurred during the execution of the program. This may be due to a read or write operation failing or chat receiving a signal such as SIGINT.
A timeout event occurred when there was an expect string without having a ".-subsend" string. This indicates that you may not have programmed the script correctly for the condition or that an unexpected event occurred and the expected string could not be found.

The first string marked as an ABORT condition occurred.

The second string marked as an ABORT condition occurred.

The third string marked as an ABORT condition occurred.

The fourth string marked as an ABORT condition occurred.

... The other termination codes are also strings marked as an ABORT condition.

To determine which event terminated the script, use the termination code. It is possible to decide if the string "BUSY" was received from the modem versus "NO DIALTONE." While the first event may be retried, the second probably will not succeed during a retry.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

Additional information on chat scripts are available with UUCP documentation. The chat script format was taken from scripts used by the uucico program.
NAME | check-hostname – check if sendmail can determine the system’s fully-qualified host name

SYNOPSIS | /usr/lib/mail/sh/check-hostname

DESCRIPTION | The check-hostname script is a migration aid for sendmail(1M). This script tries to determine the local host’s fully-qualified host name (FQHN) in a manner similar to sendmail(1M). If check-hostname is able to determine the FQHN of the local host, it reports success. Otherwise, check-hostname reports how to reconfigure the system so that the FQHN can be properly determined.

FILES | /etc/hosts host name database
/etc/nsswitch.conf name service switch configuration file
/etc/resolv.conf configuration file for name server routines

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO | sendmail(1M), hosts(4), attributes(5)
check-permissions(1M)

NAME  
check-permissions – check permissions on mail rerouting files

SYNOPSIS  
/usr/lib/mail/sh/check-permissions [login]

DESCRIPTION  
The check-permissions script is intended as a migration aid for sendmail(1M). It checks the /etc/mail/sendmail.cf file for all configured alias files, and checks the alias files for :include: files. It also checks for certain .forward files. For each file that check-permissions checks, it verifies that none of the parent directories are group- or world-writable. If any directories are overly permissive, it is reported. Otherwise it reports that no unsafe directories were found.

As to which .forward files are checked, it depends on the arguments included on the command line. If no argument is given, the current user’s home directory is checked for the presence of a .forward file. If any arguments are given, they are assumed to be valid logins, and the home directory of each one is checked.

If the special argument ALL is given, the passwd entry in the /etc/nsswitch.conf file is checked, and all password entries that can be obtained through the switch file are checked. In large domains, this can be time-consuming.

OPERANDS  
The following operands are supported:

login  
Where login is a valid user name, checks the home directory for login.

ALL  
Checks the home directory of all users.

FILES  
/etc/mail/sendmail.cf defines environment for sendmail
/etc/mail/aliases ascii mail aliases file

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO  
getent(1M), sendmail(1M), aliases(4), attributes(5)
chown

SYNOPSIS  /usr/ucb/chown  [-f]  [-R]  owner  [group]  filename...

DESCRIPTION  chown changes the owner of the filenames to owner. The owner may be either a decimal user ID (UID) or a login name found in the password file. An optional group may also be specified. The group may be either a decimal group ID (GID) or a group name found in the GID file.

Only the super-user of the machine where the file is physically located can change owner, in order to simplify accounting procedures.

OPTIONS  
   -f      Do not report errors.
   -R      Recursively descend into directories setting the ownership of all files in each directory encountered. When symbolic links are encountered, their ownership is changed, but they are not traversed.

FILES   /etc/passwd    password file

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  chgrp(1), chown(2), group(4), passwd(4), attributes(5)
NAME  chroot – change root directory for a command

SYNOPSIS  /usr/sbin/chroot newroot command

DESCRIPTION  The chroot utility causes command to be executed relative to newroot. The meaning of any initial slashes ( | ) in the path names is changed to newroot for command and any of its child processes. Upon execution, the initial working directory is newroot.

Notice that redirecting the output of command to a file,

```
chroot newroot command >x
```

will create the file x relative to the original root of command, not the new one.

The new root path name is always relative to the current root. Even if a chroot is currently in effect, the newroot argument is relative to the current root of the running process.

This command can be run only by the super-user.

RETURN VALUES  The exit status of chroot is the return value of command.

EXAMPLES  EXAMPLE 1 Using the chroot utility.

The chroot utility provides an easy way to extract tar files (see tar(1)) written with absolute filenames to a different location:

```
example# cp /usr/sbin/static/tar /tmp
example# dd if=/dev/nrst0 | chroot /tmp tar xvf -
```

Note that tar is statically linked, so it is not necessary to copy any shared libraries to the newroot filesystem.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

```
+-----------------+-------------------+
| ATTRIBUTE TYPE   | ATTRIBUTE VALUE   |
|-----------------+-------------------|
| Availability    | SUNWcsu           |
+-----------------+-------------------+
```

SEE ALSO  cd(1), tar(1), chroot(2), ttyname(3C), attributes(5)

NOTES  Exercise extreme caution when referencing device files in the new root file system.

References by routines such as ttyname(3C) to stdin, stdout, and stderr will find that the device associated with the file descriptor is unknown after chroot is run.
The `cimworkshop` command starts Sun WBEM CIM WorkShop, a graphical user interface that enables you to create, modify, and view the classes and instances that describe the managed resources on your system.

Managed resources are described using a standard information model called Common Information Model (CIM). A CIM class is a computer representation, or model, of a type of managed resource, such as a printer, disk drive, or CPU. A CIM instance is a particular managed resource that belongs to a particular class. Instances contain actual data. Objects can be shared by any WBEM-enabled system, device, or application. CIM objects are grouped into meaningful collections called schema. One or more schemas can be stored in directory-like structures called namespaces.

The CIM WorkShop application displays a Login dialog box. Context help is displayed on the left side of the CIM WorkShop dialog boxes. When you click on a field, the help content changes to describe the selected field.

By default, CIM WorkShop uses the RMI protocol to connect to the CIM Object Manager on the local host, in the default namespace, `root\cimv2`. You can select HTTP if you want to communicate to a CIM Object Manager using the standard XML/HTTP protocol from the Desktop Management Task Force. When a connection is established, all classes contained in the default namespace are displayed in the left side of the CIM WorkShop window.

The name of the current namespace is listed in the tool bar. All programming operations are performed within a namespace. Four namespaces are created in a root namespace during installation:

- **cimv2**: Contains the default CIM classes that represent managed resources on your system.
- **security**: Contains the security classes used by the CIM Object Manager to represent access rights for users and namespaces.
- **system**: Contains properties for configuring the CIM Object Manager.
- **snmp**: Contains pre-defined SNMP-related classes and all SNMP MOF files that are compiled.

The `cimworkshop` application allows you to perform the following tasks:

- **Create, view, and change namespaces.**
  
  Use the CIM WorkShop application to view all namespaces. A namespace is a directory-like structure that can store CIM classes and instances.

- **Create, delete, and view CIM classes.**
  
  You cannot modify the unique attributes of the classes that make up the CIM and Solaris Schema. You can create a new instance or subclass of the class and modify the desired attributes in that instance or subclass.
Create, modify, delete, and view CIM instances.
You can add instances to a class and modify its inherited properties or create new properties. You can also change the property values of a CIM instance.

Invoke methods.
You can set input values for a parameter of a method and invoke the method.

When CIM WorkShop connects to the CIM Object Manager in a particular namespace, all subsequent operations occur within that namespace. When you connect to a namespace, you can access the classes and instances in that namespace (if they exist) and in any namespaces contained in that namespace.

When you use CIM WorkShop to view CIM data, the WBEM system validates your login information on the current host. By default, a validated WBEM user is granted read access to the CIM Schema. The CIM Schema describes managed objects on your system in a standard format that all WBEM-enabled systems and applications can interpret.

Read Only Allows read-only access to CIM Schema objects. Users with this privilege can retrieve instances and classes, but cannot create, delete, or modify CIM objects.

Read/Write Allows full read, write, and delete access to all CIM classes and instances.

Write Allows write and delete, but not read access to all CIM classes and instances.

None Allows no access to CIM classes and instances.

The `cimworkshop` command is not a tool for a distributed environment. Rather, this command is used for local administration on the machine on which the CIM Object Manager is running.

The `cimworkshop` utility terminates with exit status 0.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbdev</td>
</tr>
</tbody>
</table>

SEE ALSO mofcomp(1M), wbemlogviewer(1M), init.wbem(1M), attributes(5)
clear_locks(1M)

NAME  clear_locks – clear locks held on behalf of an NFS client

SYNOPSIS  /usr/sbin/clear_locks [-s] hostname

DESCRIPTION  The clear_locks command removes all file, record, and share locks created by the
hostname and held on the current host, regardless of which process created or owns the
locks.

This command can be run only by the super-user.

This command should only be used to repair the rare case of a client crashing and
failing to clear held locks. Clearing locks held by an active client may cause
applications to fail in an unexpected manner.

OPTIONS  -s  Remove all locks created by the current machine and held by the server
hostname.

OPERANDS  The following operands are supported:

hostname  name of host server

EXIT STATUS  0  Successful operation.
1  If not root.
2  Usage error.
3  If unable to contact server (RPC).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  fcntl(2), attributes(5)
The clinfo command displays cluster configuration information about the node from which the command is executed.

Without arguments, clinfo returns an exit status of 0 if the node is configured and booted as part of a cluster. Otherwise, clinfo returns an exit status of 1.

The following options are supported:

- **-h**
  Displays the highest node number allowed to be configured. This is different from the maximum number of nodes supported in a given cluster. The current highest configured node number can change immediately after the command returns since new nodes can be dynamically added to a running cluster.

  For example, clinfo -h might return 64, meaning that the highest number you can use to identify a node is 64. See the Sun Cluster 3.0 System Administration Guide for a description of utilities you can use to determine the number of nodes in a cluster.

- **-n**
  Prints the number of the node from which clinfo is executed.

The following exit values are returned:

- **0**
  Successful completion.

- **1**
  An error occurred.

  This is usually because the node is not configured or booted as part of a cluster.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
NAME
cpri, dcopy – clear inode

SYNOPSIS
cpri [-F FSType] [-V] special i-number
dcopy [-F FSType] [-V] special i-number

DESCRIPTION
cpri writes zeros on the inodes with the decimal i-number on the file system stored on special. After cpri, any blocks in the affected file show up as missing in an fsck(1M) of special.

Read and write permission is required on the specified file system device. The inode becomes allocatable.

The primary purpose of this routine is to remove a file that for some reason appears in no directory. If it is used to zap an inode that does appear in a directory, care should be taken to track down the entry and remove it. Otherwise, when the inode is reallocated to some new file, the old entry will still point to that file. At that point, removing the old entry will destroy the new file. The new entry will again point to an unallocated inode, so the whole cycle is likely to be repeated again and again.

dcopy is a symbolic link to cpri.

OPTIONS
- F FSType Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching special with an entry in the table, or by consulting /etc/default/fs.
- V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

USAGE See largefile(5) for the description of the behavior of cpri and dcopy when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES
/etc/default/fs Default local file system type
/etc/vfstab List of default parameters for each file system

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO fsck(1M), vfstab(4), attributes(5), largefile(5)

NOTES This command might not be supported for all FSTypes.
NAME  
consadm – select or display devices used as auxiliary console devices

SYNOPSIS  
/usr/sbin/consadm
/usr/sbin/consadm [-a device . . .] [-p]
/usr/sbin/consadm [-d device . . .] [-p]
/usr/sbin/consadm [-p]

DESCRIPTION  
consadm selects the hardware device or devices to be used as auxiliary console devices, or displays the current device. Only superusers are allowed to make or display auxiliary console device selections.

Auxiliary console devices receive copies of console messages, and can be used as the console during single user mode. In particular, they receive kernel messages and messages directed to /dev/sysmsg. On Solaris or x86 based systems they can also be used for interaction with the bootstrap.

By default, selecting a display device to be used as an auxiliary console device selects that device for the duration the system remains up. If the administrator needs the selection to persist across reboots the -p option can be specified.

consadm runs a daemon in the background, monitoring auxiliary console devices. Any devices that are disconnected (hang up, lose carrier) are removed from the auxiliary console device list, though not from the persistent list. While auxiliary console devices may have been removed from the device list receiving copies of console messages, those messages will always continue to be displayed by the default console device.

The daemon will not run if it finds there are not any auxiliary devices configured to monitor. Likewise, after the last auxiliary console is removed, the daemon will shut itself down. Therefore the daemon persists for only as long as auxiliary console devices remain active.

OPTIONS  
The following options are supported:

-a device  Adds device to the list of auxiliary console devices. Specify device as the path name to the device or devices to be added to the auxiliary console device list.

-d device  Removes device from the list of auxiliary console devices. Specify device as the path name to the device or devices to be removed from the auxiliary console device list.

-p  Prints the list of auxiliary consoles that will be auxiliary across reboots.

When invoked with the -a or -d options, tells the application to make the change persist across reboot.
EXAMPLES

EXAMPLE 1 Adding to the list of devices that will receive console messages

The following command adds /dev/term/a to the list of devices that will receive console messages.

example# consadm -a /dev/term/a

EXAMPLE 2 Removing from the list of devices that will receive console messages

The following command removes /dev/term/a from the list of devices that will receive console messages. This includes removal from the persistent list.

example# consadm -d -p /dev/term/a

EXAMPLE 3 Printing the list of devices selected as auxiliary console devices

The following command prints the name or names of the device or devices currently selected as auxiliary console devices.

example# consadm

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of consadm: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

eeprom(1M), syslogd(1M), kadb(1M), environ(5), attributes(5), sysmsg(7d), console(7d)

NOTES

Auxiliary console devices are not usable for kadb or firmware I/O, do not receive panic messages, and do not receive output directed to /dev/console.
conv_lp(1M)

NAME
conv_lp – convert LP configuration

SYNOPSIS
conv_lp [-d dir] [-f file]

DESCRIPTION
conv_lp reads LP printer configuration information from a directory and converts it
to an output file for use with print client software.

OPTIONS
The following options are supported:
- d dir   The root ('/') directory from which LP configuration information is read.
           The default is root ('/').
- f file  The output file to which conv_lp writes the converted LP configuration
           information. The default is /etc/printers.conf.

EXAMPLES
EXAMPLE 1 Converting LP Configuration Information from the Default Directory and File
The following example converts LP configuration information from directory root (/)
to file /etc/printers.conf.

% conv_lp

EXAMPLE 2 Converting LP Configuration Information From a Specified Directory and File
The following example converts LP configuration information from directory
/export/root/client to file /export/root/client/etc/printers.conf.

% conv_lp -d /export/root/client -f /export/root/client/etc/printers.conf

EXIT STATUS
The following exit values are returned:
0       Successful completion.
non-zero An error occurred.

FILES
/etc/printers.conf System printer configuration database.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

+-------------+-------------+
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO
lpset(1M), printers.conf(4), attributes(5)
NAME | conv_lpd – convert LPD configuration
SYNOPSIS | conv_lpd [-c printers | -c printcap] [-n] file
DESCRIPTION | conv_lpd converts LPD printer configuration information from file to a printers.conf or a printcap file (see printers.conf(4)). file specifies the name of the input file, and can be either in printers.conf or printcap format. If file is in printers.conf format, it converts it to a printcap file. If file is in printcap format, it converts it to a printers.conf file.
OPTIONS | The following options are supported:
-c printers | -c printcap | Specifies the type of output file produced by the conversion. -c printers converts to a printers.conf file. -c printcap converts to a printcap file. -c printers is the default.
-n | Preserves the namelist during the conversion.
OPERANDS | The following operands are supported:
file | The file to be converted.
EXAMPLES | EXAMPLE 1 Converting a printcap file to a printers.conf file.
The following example converts a printcap file to a printers.conf file.
example$ conv_lpd /etc/printcap
EXAMPLE 2 Converting a printcap file to a printers.conf file and preserving the namelist.
The following example converts a printcap file to a printers.conf file and preserves the namelist.
example$ conv_lpd -c printers -n /etc/printcap
EXAMPLE 3 Converting a printers.conf file to a printcap file and preserving the namelist.
The following example converts a printers.conf file to a printcap file and preserves the namelist.
example$ conv_lpd -c printcap -n /etc/printers.conf
EXIT STATUS | The following exit values are returned:
0 | Successful completion.
non-zero | An error occurred.
conv_lpd(1M)

FILES

/etc/printers.conf    System printer configuration database.
/etc/printcap         SunOS 4.x printer capability database.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO

lpset(1M), printers.conf(4), attributes(5)
coreadm
– core file administration

SYNOPSIS

coreadm [-g pattern] [-i pattern] [-d option...] [-e option...]
coreadm [-p pattern] [pid...]
coreadm -u

DESCRIPTION

The coreadm command is used to specify the name and location of core files produced by abnormally-terminating processes. See core(4).

The first form shown in the synopsis can be executed only by the super-user and is used to configure system-wide core file options, including a global core file name pattern and a per-process core file name pattern for the init(1M) process. All such settings are saved in coreadm’s configuration file /etc/coreadm.conf for setting on reboot. See init(1M)

The second form can be executed by non-privileged users and is used to specify the file name pattern to be used by the operating system when generating a per-process core file.

The third form can be executed only by the super-user and is used to update all system-wide core file options based on the contents of /etc/coreadm.conf. Normally this option is used only on reboot by the startup script /etc/init.d/coreadm.

A core file name pattern is a normal file system path name with embedded variables, specified with a leading % character, that are expanded from values in effect when a core file is generated by the operating system. The possible variables are:

%p process-ID
%u effective user-ID
%g effective group-ID
%f executable file name, up to a maximum of MAXCOMLEN characters
%n system node name (uname -n)
%m machine name (uname -m)
%t decimal value of time(2)
%% literal %

For example, the core file name pattern:

/var/core/core.%f.%p

would result, for command foo with process-ID 1234, in the core file name:

/var/core/core.foo.1234

The coreadm command with no arguments reports the current system configuration, for example:
The `coreadm` command with only a list of process-IDs reports each process’s per-process core file name pattern, for example:

```
$ coreadm 278 5678
278: core.%f.%p
5678: /home/george/cores/%f.%p.%t
```

Only the owner of a process or the super-user can interrogate a process in this manner.

When a process is dumping core, the operating system will generate two possible core files, the global core file and the per-process core file. Both files, one or the other, or no file will be generated, based on the system options in effect at the time.

When generated, a global core file will be created mode 600 and will be owned by the super-user. Non-privileged users cannot examine such files.

Ordinary per-process core files are created mode 600 under the credentials of the process. The owner of the process can examine such files.

A process that is or ever has been `setuid` or `setgid` since its last `exec(2)`, including a process that began life with super-user privileges and gave up that privilege by way of `setuid(2)`, presents security issues with respect to dumping core, as it may contain sensitive information in its address space to which the current non-privileged owner of the process should not have access. If setid core files are enabled, they will be created mode 600 and will be owned by the super-user.

### OPTIONS

The following options are supported:

- `-d option...`
  Disable the specified core file option. See the `-e option` for descriptions of possible options.

- `-e option...`
  Enable the specified core file option. Specify `option` as one of the following:

  - `global`
    Allow core dumps using global core pattern
  - `process`
    Allow core dumps using per-process core pattern
  - `global-setid`
    Allow set-id core dumps using global core pattern

`coreadm(1M)`
proc-setid  Allow set-id core dumps using per-process core pattern

log    Generate a syslog(3C) message when generation of a global core file is attempted. Multiple -e and -d options can be specified on the command line. Only super-users can use this option.

-g pattern  Set the global core file name pattern to pattern. The pattern must start with a / and can contain any of the special % variables described in the DESCRIPTION.

Only super-users can use this option.

-i pattern  Set the per-process core file name pattern for init(1M) to pattern. This is the same as coreadm -p pattern 1 except that the setting will be persistent across reboot.

Only super-users can use this option.

-p pattern  Set the per-process core file name pattern to pattern for each of the specified process-IDs. The pattern can contain any of the special % variables described in the DESCRIPTION and need not begin with / If it does not begin with /, it will be evaluated relative to the current directory in effect when the process generates a core file.

A non-privileged user can apply the -p option only to processes owned by that user. The super-user can apply it to any process. The per-process core file name pattern will be inherited by future child processes of the affected processes. See fork(2).

-u  Update system-wide core file options from the contents of the configuration file /etc/coreadm.conf. If the configuration file is missing or contains invalid values, default values are substituted. Following the update, the configuration file is resynchronized with the system core file configuration. Only super-users can use this option.

OPERANDS  The following operands are supported:

pid  process-ID

EXIT STATUS  The following exit values are returned:

0  Successful completion.
coreadm(1M)

1 A fatal error occurred while either obtaining or modifying the system core file configuration.

2 Invalid command line options were specified.

EXAMPLE 1 Setting the core file name pattern

When executed from a user’s $HOME/.profile or $HOME/.login, the following command sets the core file name pattern for all processes run during the login session:

```
example$ coreadm -p core.%f.%p $$
```

$$ is the process-id of the currently running shell. The per-process core file name pattern is inherited by all child processes.

EXAMPLE 2 Dumping user’s files into a subdirectory

The following command dumps all of the user’s core dumps into the corefiles subdirectory of the home directory, discriminated by the system node name. This is useful for users who use many different machines but have a shared home directory.

```
example$ coreadm -p $HOME/corefiles/%n.%f.%p $$
```

FILES
/etc/init.d/coreadm
/etc/coreadm.conf

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO gcore(1), init(1M), exec(2), fork(2), setuid(2), time(2), syslog(3C), core(4), attributes(5)

248 man pages section 1M: System Administration Commands • Last Revised 3 Jan 2002
NAME

cpustat – monitor system behavior using CPU performance counters

SYNOPSIS

```
  cpustat -c eventspec [-c eventspec]... [-ntD] [interval [count]]
```

```
  cpustat -h
```

DESCRIPTION

The cpustat utility allows CPU performance counters to be used to monitor the overall behavior of the CPUs in the system.

If `interval` is specified, `cpustat` samples activity every `interval` seconds, repeating forever. If a `count` is specified, the statistics are repeated `count` times. If neither are specified, an interval of five seconds is used, and there is no limit to the number of samples that will be taken.

OPTIONS

The following options are supported:

```
  -c eventspec  Specifies a set of events for the CPU performance counters to monitor. The syntax of these event specification can be determined using the -h option to cause the usage message to be generated. The semantics of these event specifications can be determined by reading the CPU manufacturers documentation for the events. See cpc_strtoevent(3CPC) for a description of the syntax.
```

Multiple `-c` options can be specified, in which case the command cycles between the different event settings on each sample.

```
  -D            Enables debug mode.
```

```
  -h            Prints an extensive help message on how to use the utility and how to program the processor-dependent counters.
```

```
  -n            Omits all header output (useful if `cpustat` is the beginning of a pipeline).
```

```
  -t            Prints an additional column of processor cycle counts, if available on the current architecture.
```

USAGE

A closely related utility, `cputrack(1)`, can be used to monitor the behavior of individual applications with little or no interference from other activities on the system.

The `cpustat` utility must be run by the super-user, as there is an intrinsic conflict between the use of the CPU performance counters system-wide by `cpustat` and the use of the CPU performance counters to monitor an individual process (for example, by `cputrack`.)

Once any instance of this utility has started, no further per-process or per-LWP use of the counters is allowed until the last instance of the utility terminates.
The times printed by the command correspond to the wallclock time when the hardware counters were actually sampled, instead of when the program told the kernel to sample them. The time is derived from the same timebase as `gethrtime(3C)`.

The processor cycle counts enabled by the `-t` option always apply to both user and system modes, regardless of the settings applied to the performance counter registers.

On some hardware platforms, the counters are implemented using 32-bit registers. While the kernel attempts to catch all overflows to synthesize 64-bit counters, because of hardware implementation restrictions, overflows can be lost unless the sampling interval is kept short enough. The events most prone to wrap are those that count processor clock cycles. If such an event is of interest, sampling should occur frequently so that less than 4 billion clock cycles can occur between samples.

The output of `cpustat` is designed to be readily parseable by `nawk(1)` and `perl(1)`, thereby allowing performance tools to be composed by embedding `cpustat` in scripts. Alternatively, tools can be constructed directly using the same APIs that `cpustat` is built upon using the facilities of `libcpc(3LIB)`. See `cpc(3CPC)`.

The `cpustat` utility only monitors the CPUs that are accessible to it in the current processor set. Thus, several instances of the utility can be running on the CPUs in different processor sets. See `psrset(1M)` for more information about processor sets.

Because `cpustat` uses LWPs bound to CPUs, the utility might have to be terminated before the configuration of the relevant processor can be changed.

**WARNINGS**

By running the `cpustat` command, the super-user will forcibly invalidate all existing performance counter context. This can in turn cause all invocations of the `cputrack` command, and other users of performance counter context, to exit prematurely with unspecified errors.

If `cpustat` is invoked on a system that has CPU performance counters, but on which the packages containing the kernel support for those counters is not installed, the following message appears:

```
cpustat: CPU performance counters are inaccessible on this machine
```

This error message implies that `cpc_access()` has failed and is documented in `cpc_access(3CPC)`. Review this documentation for more information about the problem and possible solutions.

If a short interval is requested, `cpustat` might not be able to keep up with the desired sample rate. In this case, some samples might be dropped.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:
cpustat(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcpcu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

cputrack(1), awk(1), perl(1), iostat(1M), prstat(1M), psrset(1M), vmstat(1M), cpc(3CPC), cpc_access(3CPC), cpc_strtoevent(3CPC), gethrtime(3C), libcpc(3LIB), attributes(5)


**cron(1M)**

<table>
<thead>
<tr>
<th>NAME</th>
<th>cron – clock daemon</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/sbin/cron</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>cron starts a process that executes commands at specified dates and times. You can specify regularly scheduled commands to cron according to instructions found in the directory /var/spool/cron/crontabs. Users can submit their own crontab file using the crontab(1) command. Commands which are to be executed only once can be submitted using the at(1) command. cron only examines crontab or at command files during its own process initialization phase and when the crontab or at command is run. This reduces the overhead of checking for new or changed files at regularly scheduled intervals. As cron never exits, it should be executed only once. This is done routinely by way of the /etc/rc2.d/S75cron file at system boot time. The file /etc/cron.d/FIFO file is used as a lock file to prevent the execution of more than one instance of cron. cron captures the output of the job’s stdout and stderr streams, and, if it is not empty, mails the output to the user. If the job does not produce output, no mail is sent to the user. An exception is if the job is an at(1) job and the -m option was specified when the job was submitted. cron and at jobs are not executed if your account is locked. Jobs and processes execute. The shadow(4) file defines which accounts are not locked and will have their jobs and processes executed. The timezone of the cron daemon sets the system-wide timezone for cron entries. This, in turn, is by set by default system-wide using /etc/default/init. If some form of daylight savings or summer/winter time is in effect, then jobs scheduled during the switchover period could be executed once, twice, or not at all. To keep a log of all actions taken by cron, you must specify CRONLOG=YES in the /etc/default/cron file. If you specify CRONLOG=NO, no logging is done. Keeping the log is a user configurable option since cron usually creates huge log files. You can specify the PATH for user cron jobs by using PATH= in /etc/default/cron. You can set the PATH for root cron jobs using SUPATH= in /etc/default/cron. Carefully consider the security implications of setting PATH and SUPATH. Example /etc/default/cron file: CRONLOG=YES PATH=/usr/bin:/usr/ucb: This example enables logging and sets the default PATH used by non-root jobs to /usr/bin:/usr/ucb:. Root jobs continue to use /usr/sbin:/usr/bin. The cron log file is periodically rotated by logadm(1M).</td>
</tr>
</tbody>
</table>
FILES
/etc/cron.d     Main cron directory
/etc/cron.d/FIFO  Lock file
/etc/default/cron  cron default settings file
/var/cron/log    cron history information
/var/spool/cron    Spool area
/etc/cron.d/queuedefs Queue description file for at, batch, and cron
/etc/logadm.conf  Configuration file for logadm

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
at(1), crontab(1), sh(1), logadm(1M), queuedefs(4), shadow(4), attributes(5)

DIAGNOSTICS
A history of all actions taken by cron is stored in /var/cron/log and possibly in /var/cron/olog.
cvcd(1M)

NAME

 cvcd – virtual console daemon

SYNOPSIS

 /platform/platform_name/cvcd

DESCRIPTION

The virtual console daemon, cvcd, is a server process that supports the network console provided on some platforms. The cvcd daemon accepts network console connections from a remote host (only one host at any given time). Console input is read from this connection and forwarded to cvc(7D) by way of cvcredir(7D).

Similarly, console output is read from cvcredir(7D) and forwarded across the network console connection. If cvcd dies, console traffic is automatically rerouted through an internal hardware interface.

The cvcd daemon normally starts at system boot time. Each domain supports only one cvcd process at a time.

Caution: On Sun Enterprise 10000 domains, cvcd uses a configuration file (/etc/ssphostname) to determine the name of the host from which network console connections are allowed. If the remote console host is renamed, you must edit the configuration file to reflect that change.

OPERANDS

The following operands are supported:

 platform_name  The official Sun platform name used in packaging and code. For example, for Sun Fire 15K servers, the platform_name would be SUNW,Sun-Fire-15000.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Sun Enterprise 10000 servers, Sun Fire High-End Systems</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcvd.u</td>
</tr>
</tbody>
</table>

SEE ALSO

services(4), attributes(5), cvc(7D), cvcredir(7D)

Sun Enterprise 10000 SSP Reference Manual

System Management Services (SMS) Reference Manual
The Domain Configuration Server (DCS) is a daemon process that runs on Sun servers that support remote Dynamic Reconfiguration (DR) clients. It is started by `inetd(1M)` when the first DR request is received from a client connecting to the network service `sun-dr`. After the DCS accepts a DR request, it uses the `libcfgadm(3LIB)` interface to execute the DR operation. After the operation is performed, the results are returned to the client.

The DCS listens on the network service labeled `sun-dr`. Its underlying protocol is TCP, and it is invoked as an inetd server using the TCP transport. The entries for the DCS in the `/etc/inet/inetd.conf` file are as follows:

```
sun-dr stream tcp wait root /usr/lib/dcs dcs
sun-dr stream tcp6 wait root /usr/lib/dcs dcs
```

These entries enable remote DR operations. If you remove the entries, DR operations initiated from a remote host fail. There is no negative impact on the server. If you are using a Sun Fire high-end system and IPSec is configured on the `sun-dr` port (port 665), you must also remove the policies in `/etc/inet/ipsecinit.conf` that reference the `sun-dr` port, then use the `ipsecconf(1M)` command with appropriate options to flush the policies.

If you remove the `sun-dr` entries from `/etc/inet/inetd.conf` without deleting and flushing the corresponding entries from `/etc/inet/ipsecinit.conf`, any process that attempts to use the `sun-dr` port will hang. This is because the IPSec policy is still in effect for that port.

The following options are supported:

```
-s sessions
```

Set the number of active sessions that the DCS allows at any one time. When the limit is reached, the DCS stops accepting connections until active sessions complete the execution of their DR operation. If this option is not specified, a default value of 128 is used.

The DCS uses `syslog(3C)` to report status and error messages. All of the messages are logged with the `LOG_DAEMON` facility. Error messages are logged with the `LOG_ERR` and `LOG_NOTICE` priorities, and informational messages are logged with the `LOG_INFO` priority. The default entries in the `/etc/syslog.conf` file log all of the DCS error messages to the `/var/adm/messages` log.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdcsu, SUNWdcsr</td>
</tr>
</tbody>
</table>
SEE ALSO

cfgadm_sbd(1M), inetd(1M), ipsecconf(1M), syslog(3C),
config_admin(3CFGADM), libcfgadm(3LIB), inetd.conf(4), syslog.conf(4),
attributes(5), dr(7D)
The `dd` utility copies the specified input file to the specified output with possible conversions. The standard input and output are used by default. The input and output block sizes may be specified to take advantage of raw physical I/O. Sizes are specified in bytes; a number may end with k, b, or w to specify multiplication by 1024, 512, or 2, respectively. Numbers may also be separated by x to indicate multiplication.

The `dd` utility reads the input one block at a time, using the specified input block size. `dd` then processes the block of data actually returned, which could be smaller than the requested block size. `dd` applies any conversions that have been specified and writes the resulting data to the output in blocks of the specified output block size.

cbs is used only if ascii, asciiib, unblock, ebcadic, ebcdicb, ibm, ibmb, or block conversion is specified. In the first two cases, cbs characters are copied into the conversion buffer, any specified character mapping is done, trailing blanks are trimmed, and a `NEWLINE` is added before sending the line to output. In the last three cases, characters up to `NEWLINE` are read into the conversion buffer and blanks are added to make up an output record of size cbs. ASCII files are presumed to contain `NEWLINE` characters. If cbs is unspecified or 0, the ascii, asciiib, ebcadic, ebcdicb, ibm, and ibmb options convert the character set without changing the input file’s block structure. The unblock and block options become a simple file copy.

After completion, `dd` reports the number of whole and partial input and output blocks.

**Operands**

The following operands are supported:

- **if=file**
  Specifies the input path. Standard input is the default.

- **of=file**
  Specifies the output path. Standard output is the default. If the `seek=expr` conversion is not also specified, the output file will be truncated before the copy begins, unless `conv=notrunc` is specified. If `seek=expr` is specified, but `conv=notrunc` is not, the effect of the copy will be to preserve the blocks in the output file over which `dd` seeks, but no other portion of the output file will be preserved. (If the size of the seek plus the size of the input file is less than the previous size of the output file, the output file is shortened by the copy.)

- **ibs=n**
  Specifies the input block size in n bytes (default is 512).

- **obs=n**
  Specifies the output block size in n bytes (default is 512).

- **bs=n**
  Sets both input and output block sizes to n bytes, superseding `ibs` and `obs`. If no conversion other than sync, noerror, and notrunc is specified, each input block is copied to the output as a single block without aggregating short blocks.
cbs=n
Specifies the conversion block size for block and unblock in bytes by n (default is 0). If cbs= is omitted or given a value of 0, using block or unblock produces unspecified results.

This option is used only if ASCII or EBCDIC conversion is specified. For the ascii and asciib operands, the input is handled as described for the unblock operand except that characters are converted to ASCII before the trailing SPACE characters are deleted. For the ebcdic, ebcdicb, ibm, and ibmb operands, the input is handled as described for the block operand except that the characters are converted to EBCDIC or IBM EBCDIC after the trailing SPACE characters are added.

files=n
Copies and concatenates n input files before terminating (makes sense only where input is a magnetic tape or similar device).

skip=n
Skips n input blocks (using the specified input block size) before starting to copy. On seekable files, the implementation reads the blocks or seeks past them. On non-seeable files, the blocks are read and the data is discarded.

iseek=n
Seeks n blocks from beginning of input file before copying (appropriate for disk files, where skip can be incredibly slow).

oseek=n
Seeks n blocks from beginning of output file before copying.

seek=n
Skips n blocks (using the specified output block size) from beginning of output file before copying. On non-seeable files, existing blocks are read and space from the current end-of-file to the specified offset, if any, is filled with null bytes. On seekable files, the implementation seeks to the specified offset or reads the blocks as described for non-seeable files.

count=n
Copies only n input blocks.

cnv=value[value...]
Where values are comma-separated symbols from the following list:

ascii  Converts EBCDIC to ASCII.
asciib Converts EBCDIC to ASCII using BSD-compatible character translations.
ebcdic Converts ASCII to EBCDIC. If converting fixed-length ASCII records without NEWLINEs, sets up a pipeline with dd conv=unblock beforehand.
Converts ASCII to EBCDIC using BSD-compatible character translations. If converting fixed-length ASCII records without NEWLINES, sets up a pipeline with `dd conv=unblock` beforehand.

Slightly different map of ASCII to EBCDIC. If converting fixed-length ASCII records without NEWLINES, sets up a pipeline with `dd conv=unblock` beforehand.

Slightly different map of ASCII to EBCDIC using BSD-compatible character translations. If converting fixed-length ASCII records without NEWLINES, sets up a pipeline with `dd conv=unblock` beforehand.

The ascii (or asciib), ebcdic (or ebcdicb), and ibm (or ibmb) values are mutually exclusive.

Treats the input as a sequence of NEWLINE-terminated or EOF-terminated variable-length records independent of the input block boundaries. Each record is converted to a record with a fixed length specified by the conversion block size. Any NEWLINE character is removed from the input line. SPACE characters are appended to lines that are shorter than their conversion block size to fill the block. Lines that are longer than the conversion block size are truncated to the largest number of characters that will fit into that size. The number of truncated lines is reported.

Converts fixed-length records to variable length. Reads a number of bytes equal to the conversion block size (or the number of bytes remaining in the input, if less than the conversion block size), delete all trailing SPACE characters, and append a NEWLINE character.

The block and unblock values are mutually exclusive.

Maps upper-case characters specified by the `LC_CTYPE` keyword `tolower` to the corresponding lower-case character. Characters for which no mapping is specified are not modified by this conversion.

Maps lower-case characters specified by the `LC_CTYPE` keyword `toupper` to the corresponding upper-case character. Characters for which no mapping is specified are not modified by this conversion.

The lcase and ucase symbols are mutually exclusive.

Swaps every pair of input bytes. If the current input record is an odd number of bytes, the last byte in the input record is ignored.
noerror | Does not stop processing on an input error. When an input error occurs, a diagnostic message is written on standard error, followed by the current input and output block counts in the same format as used at completion. If the sync conversion is specified, the missing input is replaced with null bytes and processed normally. Otherwise, the input block will be omitted from the output.

notrunc | Does not truncate the output file. Preserves blocks in the output file not explicitly written by this invocation of dd. (See also the preceding of=file operand.)

sync | Pads every input block to the size of the ibs= buffer, appending null bytes. (If either block or unblock is also specified, appends SPACE characters, rather than null bytes.)

If operands other than conv= are specified more than once, the last specified operand=value is used.

For the bs=, cbs=, ibs=, and obs= operands, the application must supply an expression specifying a size in bytes. The expression, expr, can be:

1. a positive decimal number
2. a positive decimal number followed by k, specifying multiplication by 1024
3. a positive decimal number followed by b, specifying multiplication by 512
4. two or more positive decimal numbers (with or without k or b) separated by x, specifying the product of the indicated values.

All of the operands will be processed before any input is read.

**USAGE**

See largefile(5) for the description of the behavior of dd when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1** Copying from one tape drive to another

The following example copies from tape drive 0 to tape drive 1, using a common historical device naming convention.

```bash
example% dd if=/dev/rmt/0h of=/dev/rmt/1h
```

**EXAMPLE 2** Stripping the first 10 bytes from standard input

The following example strips the first 10 bytes from standard input:

```bash
example% dd ibs=10 skip=1
```
EXAMPLE 3 Reading a tape into an ASCII file

This example reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into the ASCII file `x`:

```
example% dd if=/dev/tape of=x ibs=800 cbs=80 conv=ascii,lcase
```

EXAMPLE 4 Using conv=sync to write to tape

The following example uses conv=sync when writing to a tape:

```
example% tar cvf - . | compress | dd obs=1024k of=/dev/rmt/0 conv=sync
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of dd: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- **0**: The input file was copied successfully.
- **>0**: An error occurred.

If an input error is detected and the noerror conversion has not been specified, any partial output block will be written to the output file, a diagnostic message will be written, and the copy operation will be discontinued. If some other error is detected, a diagnostic message will be written and the copy operation will be discontinued.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

cp(1), sed(1), tr(1), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS

```
f+p records in (out) numbers of full and partial blocks read(written)
```

NOTES

Do not use `dd` to copy files between file systems having different block sizes.

Using a blocked device to copy a file will result in extra nulls being added to the file to pad the final block to the block boundary.

When `dd` reads from a pipe, using the `ibs=X` and `obs=Y` operands, the output will always be blocked in chunks of size Y. When `bs=Z` is used, the output blocks will be whatever was available to be read from the pipe at the time.
When using `dd` to copy files to a tape device, the file size must be a multiple of the device sector size (for example, 512 Kbyte). To copy files of arbitrary size to a tape device, use `tar(1)` or `cpio(1)`.

For `SIGINT`, `dd` writes status information to standard error before exiting. It takes the standard action for all other signals.
devattr(1M)

NAME
devattr – display device attributes

SYNOPSIS
devattr [-v] device [attribute...]

DESCRIPTION
devattr displays the values for a device’s attributes. The display can be presented in
two formats. Used without the -v option, only the attribute values are shown. Used
with the -v option, the attributes are shown in an attribute=value format. When no
attributes are given on the command line, all attributes for the specified device are
displayed in alphabetical order by attribute name. If attributes are given on the
command line, only those attributes are shown, displayed in command line order.

OPTIONS
The following options are supported:

  -v  Specifies verbose format. Attribute values are displayed in an
       attribute=value format.

OPERANDS
The following operands are supported:

  attribute  Defines which attribute, or attributes, should be shown. Default is
to show all attributes for a device. See the putdev(1M) manual
page for a complete listing and description of available attributes.

  device    Defines the device whose attributes should be displayed. Can be
the pathname of the device or the device alias.

EXIT STATUS
The following exit values are returned:

  0   successful completion.
  1   Command syntax was incorrect, invalid option was used, or an internal
      error occurred.
  2   Device table could not be opened for reading.
  3   Requested device could not be found in the device table.
  4   Requested attribute was not defined for the specified device.

FILES
/etc/device.tab

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
getdev(1M), putdev(1M), attributes(5)
devfree(1M)

NAME
devfree – release devices from exclusive use

SYNOPSIS
devfree key [device...]

DESCRIPTION
devfree releases devices from exclusive use. Exclusive use is requested with the
command devreserv.

When devfree is invoked with only the key argument, it releases all devices that have
been reserved for that key. When called with key and device arguments, devfree
releases the specified devices that have been reserved with that key.

OPERANDS
The following operands are supported:

device Defines device that this command will release from exclusive use. device
can be the pathname of the device or the device alias.

key Designates the unique key on which the device was reserved.

EXIT STATUS
The following exit values are returned:

0  Successful completion.
1  Command syntax was incorrect, an invalid option was used, or an internal
error occurred.
2  Device table or device reservation table could not be opened for reading.
3  Reservation release could not be completely fulfilled because one or more
   of the devices was not reserved or was not reserved on the specified key.

FILES
/etc/device.tab
/etc/devlkfile

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
devreserv(1M), attributes(5)

NOTES
The commands devreserv and devfree are used to manage the availability of
devices on a system. These commands do not place any constraints on the access to
the device. They serve only as a centralized bookkeeping point for those who wish to
use them. Processes that do not use devreserv may concurrently use a device with a
process that has reserved that device.
NAME

devfsadm, devfsadmd – administration command for /dev and /devices

SYNOPSIS

/usr/sbin/devfsadm [-C] [-c device_class] [-i driver_name] [-n]
  [-r root_dir] [-s] [-t table_file] [-v]

/usr/lib/devfsadm/devfsadmd

DESCRIPTION

devfsadm(1M) maintains the /dev and /devices namespaces. It replaces the
previous suite of devfs administration tools including drvconfig(1M), disks(1M),
tapes(1M), ports(1M), audlinks(1M), and devlinks(1M).

The default operation is to attempt to load every driver in the system and attach to all
possible device instances. devfsadm then creates device special files in /devices
and logical links in /dev.

devfsadmd(1M) is the daemon version of devfsadm(1M). The daemon is started by
the /etc/rc* scripts during system startup and is responsible for handling both
reconfiguration boot processing and updating /dev and /devices in response to
dynamic reconfiguration event notifications from the kernel.

For compatibility purposes, drvconfig(1M), disks(1M), tapes(1M), ports(1M),
audlinks(1M), and devlinks(1M) are implemented as links to devfsadm.

In addition to managing /dev and /devices, devfsadm also maintains the
path_to_inst(4) database.

OPTIONS

The following options are supported:

-C Clean up mode. Prompt devfsadm to cleanup dangling
/dev links that are not normally removed. If the -c
option is also used, devfsadm only cleans up for the
listed devices' classes.

-c device_class Restrict operations to devices of class device_class.
Solaris defines the following values for device_class:
disk, tape, port, audio, and pseudo. This option
may be specified more than once to specify multiple
device classes.

-i driver_name Configure only the devices for the named driver,
driver_name.

-n Do not attempt to load drivers or add new nodes to the
kernel device tree.

-s Suppress any changes to /dev or /devices. This is
useful with the -v option for debugging.

-t table_file Read an alternate devlink.tab file. devfsadm
normally reads /etc/devlink.tab.
Presume that the /dev and /devices directory trees are found under root_dir, not directly under root (/).
No other use or assumptions are made about root_dir.

Print changes to /dev and /devices in verbose mode.

The following exit values are returned:
0  Successful completion.
1  An error occurred.

/device nodes directory
/logical symbolic links to /devices
devfsadm daemon
daemon start/stop script
link to init.d script
link to init.d script
update lock file
daemon lock file

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

add_drv(1M), devlinks(1M), disks(1M), drvconfig(1M), modinfo(1M),
modload(1M), modunload(1M), ports(1M), rem_drv(1M), tapes(1M),
path_to_inst(4), attributes(5)

This document does not constitute an API. The /devices directory might not exist or
might have different contents or interpretations in a future release. The existence of
this notice does not imply that any other documentation that lacks this notice
constitutes an API.
The `devinfo` command is used to print device specific information about disk devices on standard out. The command can only be used by the superuser.

### OPTIONS
- `i` Prints the following device information:
  - Device name
  - Software version (not supported and prints as 0)
  - Drive id number (not supported and prints as 0)
  - Device blocks per cylinder
  - Device bytes per block
  - Number of device partitions with a block size greater than zero

- `p` Prints the following device partition information:
  - Device name
  - Device major and minor numbers (in hexadecimal)
  - Partition start block
  - Number of blocks allocated to the partition
  - Partition flag
  - Partition tag

This command is used by various other commands to obtain device specific information for the making of file systems and determining partition information. If the device cannot be opened, an error message is reported.

### OPERANDS
- `device` Device name.

### EXIT STATUS
- 0 Successful operation.
- 2 Operation failed.

### ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

### SEE ALSO
- `prtvtoc(1M)`, `attributes(5)`
devlinks(1M)

NAME  devlinks – adds /dev entries for miscellaneous devices and pseudo-devices

SYNOPSIS /usr/sbin/devlinks [-d] [-r rootdir] [-t table-file]

DESCRIPTION devfsadm(1M) is now the preferred command for /dev and /devices and should be
used instead of devlinks.

devlinks creates symbolic links from the /dev directory tree to the actual block- and
character-special device nodes under the /devices directory tree. The links are
created according to specifications found in the table-file (by default
/etc/devlink.tab).

devlinks is called each time the system is reconfiguration-booted, and can only be
run after drvconfig(1M) is run, since drvconfig(1M) builds the kernel data
structures and the /devices tree.

The table-file (normally /etc/devlink.tab) is an ASCII file, with one line per record.
Comment lines, which must contain a hash character (‘#’) as their first character, are
allowed. Each entry must contain at least two fields, but may contain three fields.
Fields are separated by single TAB characters.

The fields are:

devfs-spec Specification of devinfo nodes that will have links
created for them. This specification consists of one or
more keyword-value pairs, where the keyword is
separated from the value by an equal-sign (‘=’), and
keyword-value pairs are separated from one another by
semicolons.

The possible keywords are:

type The devinfo device type. Possible
values are specified in
ddi_create_minor_node(9F)

name The name of the node. This is the
portion of the /devices tree entry
name that occurs before the first ‘@’
or ‘:’ character.

addr[n] The address portion of a node
name. This is the portion of a node
name that occurs between the ‘@’
and the ‘:’ characters. It is possible
that a node may have a name
without an address part, which is
the case for many of the
pseudo-device nodes. If a number
is given after the addr it specifies a
match of a particular
comma-separated subfield of the address field: \texttt{addr1} matches the first subfield, \texttt{addr2} matches the second, and so on. \texttt{addr0} is the same as \texttt{addr} and matches the whole field.

\texttt{minor[n]} The minor portion of a node name – the portion of the name after the ‘:’. As with \texttt{addr} above, a number after the \texttt{minor} keyword specifies a subfield to match.

Of these four specifications, only the \texttt{type} specification must always be present.

\texttt{name} Specification of the \texttt{/dev} links that correspond to the \texttt{devinfo} nodes. This field allows \texttt{devlinks} to determine matching \texttt{/dev} names for the \texttt{/devices} nodes it has found. The specification of this field uses escape-sequences to allow portions of the \texttt{/devices} name to be included in the \texttt{/dev} name, or to allow a counter to be used in creating node names. If a counter is used to create a name, the portion of the name before the counter must be specified absolutely, and all names in the \texttt{/dev/-subdirectory} that match (up to and including the counter) are considered to be subdevices of the same device. This means that they should all point to the same directory, \texttt{name} and \texttt{address} under the \texttt{/devices/-tree}.

The possible escape-sequences are:

\begin{itemize}
  \item \texttt{\D} Substitute the \texttt{device-name (name)} portion of the corresponding \texttt{devinfo} node-name.
  \item \texttt{\An} Substitute the \texttt{n}th component of the \texttt{address} component of the corresponding \texttt{devinfo} node name. Sub-components are separated by commas, and sub-component \texttt{0} is the whole \texttt{address} component.
  \item \texttt{\Mn} Substitute the \texttt{n}th sub-component of the \texttt{minor} component of the corresponding \texttt{devinfo} node name. Sub-components are separated by commas, and sub-component \texttt{0} is the whole \texttt{minor} component.
\end{itemize}
\N
Substitute the value of a ‘counter’ starting at \n. There can be only one counter for each
dev-spec, and counter-values will be
selected so they are as low as possible while
not colliding with already-existing link
names.

In a dev-spec the counter sequence should
not be followed by a digit, either explicitly
or as a result of another escape-sequence
expansion. If this occurs, it would not be
possible to correctly match already-existing
links to their counter entries, since it would
not be possible to unambiguously parse the
already-existing /dev-name.

extra-dev-link

Optional specification of an extra /dev link that points
to the initial /dev link (specified in field 2). This field
may contain a counter escape-sequence (as described
for the dev-spec field) but may not contain any of the
other escape-sequences. It provides a way to specify an
alias of a particular /dev name.

OPTIONS
-\d Debugging mode – print out all devinfo nodes found, and
indicate what links would be created, but do not do anything.

-\x rootdir Use rootdir as the root of the /dev and /devices directories
under which the device nodes and links are created. Changing the
root directory does not change the location of the
/etc/devlink.tab default table, nor is the root directory
applied to the filename supplied to the -t option.

-\x table-file Set the table file used by devlinks to specify the links that must
be created. If this option is not given, /etc/devlink.tab is
used. This option gives a way to instruct devlinks just to
perform a particular piece of work, since just the links-types that
develinks is supposed to create can be specified in a
command-file and fed to devlinks.

ERRORS
If devlinks finds an error in a line of the table-file it prints a warning message on its
standard output and goes on to the next line in the table-file without performing any of
the actions specified by the erroneous rule.

If it cannot create a link for some filesystem-related reason it prints an error-message
and continues with the current rule.

If it cannot read necessary data it prints an error message and continues with the next
table-file line.
EXAMPLES

Example /etc/devlink.tab fields are:

type=pseudo;name=win \M0

type=ddi_display framebuffer/\M0 fb\N0

The first example states that all devices of type pseudo with a name component of win will be linked to /dev/win\x, where \x is the minor-component of the devinfo-name (this is always a single-digit number for the win driver).

The second example states that all devinfo nodes of type ddi_display will be linked to entries under the /dev/framebuffer directory, with names identical to the entire minor component of the /devices name. In addition an extra link will be created pointing from /dev/fbn to the entry under /dev/framebuffer. This entry will use a counter to end the name.

FILES

/dev entries for the miscellaneous devices for general use
/devices device nodes
/etc/devlink.tab the default rule-file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

devfsadm(1M), ddi_create_minor_node(9F), disks(1M), drvconfig(1M), ports(1M), tapes(1M), attributes(5)

BUGS

It is very easy to construct mutually-contradictory link specifications, or specifications that can never be matched. The program does not check for these conditions.
The `devnm` command identifies the special file associated with the mounted file system where the argument `name` resides. One or more `name` can be specified.

**EXAMPLE 1** Using the devnm Command

Assuming that `/usr` is mounted on `/dev/dsk/c0t3d0s6`, the following command:
```
/usr/sbin/devnm /usr
```
produces:
```
/dev/dsk/c0t3d0s6 /usr
```

**FILES**

`/dev/dsk/*`

`/etc/mnttab`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`mnttab(4), attributes(5)`
devreserv (1M)

NAME
devreserv – reserve devices for exclusive use

SYNOPSIS
devreserv [key [device-list...]]

DESCRIPTION
devreserv reserves devices for exclusive use. When the device is no longer required, use devfree to release it.

devreserv reserves at most one device per device-list. Each list is searched in linear order until the first available device is found. If a device cannot be reserved from each list, the entire reservation fails.

When devreserv is invoked without arguments, it lists the devices that are currently reserved and shows to which key it was reserved. When devreserv is invoked with only the key argument, it lists the devices that are currently reserved to that key.

OPERANDS
The following operands are supported:

device-list Defines a list of devices that devreserv will search to find an available device. The list must be formatted as a single argument to the shell.

key Designates a unique key on which the device will be reserved. The key must be a positive integer.

EXAMPLES

EXAMPLE 1 Reserving a Floppy Disk and a Cartridge Tape

The following example reserves a floppy disk and a cartridge tape:

$ key=$$
$ echo "The current Process ID is equal to: $key"
   The Current Process ID is equal to: 10658
$ devreserv $key diskette1 ctape1

EXAMPLE 2 Listing All Devices Currently Reserved

The following example lists all devices currently reserved:

$ devreserv
   disk1 2423
   diskette1 10658
   ctape1 10658

EXAMPLE 3 Listing All Devices Currently Reserved to a Particular Key

The following example lists all devices currently reserved to a particular key:

$ devreserv $key
   diskette1
tape1

EXIT STATUS
The following exit values are returned:
devreserv(1M)

0    Successful completion.
1    Command syntax was incorrect, an invalid was option used, or an internal
     error occurred.
2    Device table or device reservation table could not be opened for reading.
3    Device reservation request could not be fulfilled.

FILES    
/etc/device.tab
/etc/devlkfile

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO    
devfree(1M), attributes(5)

NOTES    
The commands devreserv and devfree are used to manage the availability of
devices on a system. Their use is on a participatory basis and they do not place any
constraints on the actual access to the device. They serve as a centralized bookkeeping
point for those who wish to use them. Devices which have been reserved cannot be
used by processes which utilize the device reservation functions until the reservation
has been canceled. However, processes that do not use device reservation may use a
device that has been reserved since such a process would not have checked for its
reservation status.
NAME
df – displays number of free disk blocks and files

SYNOPSIS
/usr/bin/df [-F FSType] [-abeghklntVv] [-o FSType-specific_options]
    [block_device | directory | file | resource ...]
/usr/xpg4/bin/df [-F FSType] [-abeghlnPtV] [-o FSType-specific_options]
    [block_device | directory | file | resource ...]

DESCRIPTION
The df utility displays the amount of disk space occupied by mounted or unmounted
file systems, the amount of used and available space, and how much of the file
system’s total capacity has been used. The file system is specified by device, or by
referring to a file or directory on the specified file system.

Used without operands or options, df reports on all mounted file systems.

df may not be supported for all FSTypes.

If df is run on a networked mount point that the automounter has not yet mounted,
the file system size will be reported as zero. As soon as the automounter mounts the
file system, the sizes will be reported correctly.

OPTIONS
The following options are supported for both /usr/bin/df and
/usr/xpg4/bin/df:

-a                      Reports on all file systems including ones whose
                        entries in /etc/mnttab (see mnttab(4)) have the
                        ignore option set.
-b                      Prints the total number of kilobytes free.
-e                      Prints only the number of files free.
-F FSType               Specifies the FSType on which to operate. The -F option
                        is intended for use with unmounted file systems. The
                        FSType should be specified here or be determinable
                        from /etc/vfstab (see vfstab(4)) by matching the
directory, block_device, or resource with an entry in the
                        table, or by consulting /etc/default/fs. See
default_fs(4).
-g                      Prints the entire statvfs(2) structure. This option is
                        used only for mounted file systems. It can not be used
                        with the -o option. This option overrides the -b, -e,
                        -k, -n, -P, and -t options.
-h                      Like -k, except that sizes are in a more human readable
                        format. The output consists of one line of information
                        for each specified file system. This information includes
                        the file system name, the total space allocated in the file
                        system, the amount of space allocated to existing files,
                        the total amount of space available for the creation of
                        new files by unprivileged users, and the percentage of

System Administration Commands  275
normally available space that is currently allocated to all files on the file system. All sizes are scaled to a human readable format, for example, 14K, 234M, 2.7G, or 3.0T. Scaling is done by repetitively dividing by 1024.

This option overrides the `-b`, `-e`, `-g`, `-k`, `-n`, `-t`, and `-V` options. This option only works on mounted filesystems and cannot be used together with `-o` option.

- `k`  
  Prints the allocation in kbytes. The output consists of one line of information for each specified file system. This information includes the file system name, the total space allocated in the file system, the amount of space allocated to existing files, the total amount of space available for the creation of new files by unprivileged users, and the percentage of normally available space that is currently allocated to all files on the file system. This option overrides the `-b`, `-e`, `-n`, and `-t` options.

- `l`  
  Reports on local file systems only. This option is used only for mounted file systems. It cannot be used with the `-o` option.

- `n`  
  Prints only the `FSType` name. Invoked with no operands, this option prints a list of mounted file system types. This option is used only for mounted file systems. It cannot be used with the `-o` option.

- `-o FSType-specific_options`  
  Specifies `FSType-specific` options. These options are comma-separated, with no intervening spaces. See the manual page for the `FSType-specific` command for details.

- `t`  
  Prints full listings with totals. This option overrides the `-b`, `-e`, and `-n` options.

- `v`  
  Echoes the complete set of file system specific command lines, but does not execute them. The command line is generated by using the options and operands provided by the user and adding to them information derived from `/etc/mnttab`, `/etc/vfstab`, or `/etc/default/fs`. This option may be used to verify and validate the command line.

The following option is supported for `/usr/bin/df` only:

- `-v`  
  Like `-k`, except that sizes are displayed in multiples of the smallest block size supported by each specified file system.
The output consists of one line of information for each file system. This one line of information includes the following:

- the file system’s mount point
- the file system’s name
- the total number of blocks allocated to the file system
- the number of blocks allocated to existing files
- the number of blocks available for the creation of new files by unprivileged users
- the percentage of blocks in use by files

The following option is supported for \texttt{/usr/xpg4/bin/df} only:

\texttt{-P} Same as \texttt{-k} except in 512-byte units.

\section*{OPERANDS}

The \texttt{df} utility interprets operands according to the following precedence: \texttt{block\_device, directory, file}. The following operands are supported:

- \texttt{block\_device} Represents a block special device (for example, \texttt{/dev/dsk/c1d0s7}); the corresponding file system need not be mounted.
- \texttt{directory} Represents a valid directory name. \texttt{df} reports on the file system that contains \texttt{directory}.
- \texttt{file} Represents a valid file name. \texttt{df} reports on the file system that contains \texttt{file}.
- \texttt{resource} Represents an NFS resource name.

\section*{USAGE}

See \texttt{largefile(5)} for the description of the behavior of \texttt{df} when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

\section*{EXAMPLES}

\textbf{EXAMPLE 1} Writing Portable Information About the /usr File System

The following example writes portable information about the /usr file system:

\begin{verbatim}
example$ /usr/xpg4/bin/df -P /usr
\end{verbatim}

\textbf{EXAMPLE 2} Writing Portable Information About the /usr/src File System

Assuming that /usr/src is part of the /usr file system, the following example writes portable information:

\begin{verbatim}
example$ /usr/xpg4/bin/df -P /usr/src
\end{verbatim}

\textbf{EXAMPLE 3} Using df to Display Inode Usage

The following example displays inode usage on all ufs file systems:

\begin{verbatim}
example$ /usr/bin/df -F ufs -o i
\end{verbatim}
ENVIROMENT VARIABLES

SYSV3 This variable is used to override the default behavior of df and provide compatibility with INTERACTIVE UNIX System and SCO UNIX installation scripts. As the SYSV3 variable is provided for compatibility purposes only, it should not be used in new scripts.

When set, any header which normally displays “files” will now display “nodes”. See environ(5) for descriptions of the following environment variables that affect the execution of df: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/dev/dsk/* Disk devices

/etc/default/fs Default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs, where LOCAL is the default partition for a command if no FSType is specified.

/etc/mnttab Mount table

/etc/vfstab List of default parameters for each file system

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

SEE ALSO

find(1), df_ufs(1M), mount(1M), statvfs(2), default_fs(4), mnttab(4), vfstab(4), attributes(5), environ(5), largefile(5), standards(5)

NOTES

If UFS logging is enabled on a file system, the disk space used for the log is reflected in the df report. The log is allocated from free blocks on the file system, and it is sized approximately 1 Mbyte per 1 Gbyte of file system, up to a maximum of 64 Mbytes.
### NAME
dfmounts – display mounted resource information

### SYNOPSIS
dfmounts [-F FSType] [-h] [-o specific_options] [restriction...]

### DESCRIPTION
dfmounts shows the local resources shared through a distributed file system FSType along with a list of clients that have the resource mounted. If restriction is not specified, dfmounts shows file systems that are currently shared on any NFS server. specific_options as well as the availability and semantics of restriction are specific to particular distributed file system types.

If dfmounts is entered without arguments, all remote resources currently mounted on the local system are displayed, regardless of file system type.

### dfmounts Output
The output of dfmounts consists of an optional header line (suppressed with the -h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

```
resource server pathname clients ...
```

where:

- **resource**: Specifies the resource name that must be given to the `mount(1M)` command.
- **server**: Specifies the system from which the resource was mounted.
- **pathname**: Specifies the pathname that must be given to the `share(1M)` command.
- **clients**: Is a comma-separated list of systems that have mounted the resource. Clients are listed in the form domain., domain.system, or system, depending on the file system type.

A field may be null. Each null field is indicated by a hyphen (−) unless the remainder of the fields on the line are also null; in which case, the hyphen may be omitted.

Fields with whitespace are enclosed in quotation marks (" ").

### OPTIONS

- **-F FSType**: Specify filesystem type. Defaults to the first entry in `/etc/dfs/fstypes`. Note: currently the only valid FSType is nfs.

- **-h**: Suppress header line in output.

- **-o specific_options**: Specify options specific to the filesystem provided by the -F option. Note: currently no options are supported.

### FILES

/etc/dfs/fstypes file system types
dfmounts(1M)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO dfshares(1M), mount(1M), share(1M), unshare(1M), attributes(5)
NAME

dfmounts_nfs – display mounted NFS resource information

SYNOPSIS

dfmounts [-F nfs] [-h] [server…]

DESCRIPTION

dfmounts shows the local resources shared through NFS, along with the list of clients that have mounted the resource. The -F flag may be omitted if NFS is the only file system type listed in the file /etc/dfs/fstypes.

dfmounts without options, displays all remote resources mounted on the local system, regardless of file system type.

The output of dfmounts consists of an optional header line (suppressed with the -h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

resource server pathname clients ... where

resource Does not apply to NFS. Printed as a hyphen (-).
server Specifies the system from which the resource was mounted.
pathname Specifies the pathname that must be given to the share(1M) command.
clients Is a comma-separated list of systems that have mounted the resource.

OPTIONS

-F nfs Specifies the nfs-FSType.
-h Suppress header line in output.
server Displays information about the resources mounted from each server, where server can be any system on the network. If no server is specified, the server is assumed to be the local system.

FILES

/etc/dfs/fstypes

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfsCu</td>
</tr>
</tbody>
</table>

SEE ALSO

mount(1M), share(1M), unshare(1M), attributes(5)
dfshares(1M)

NAME

dfshares – list available resources from remote or local systems

SYNOPSIS

dfshares [-F FSType] [-h] [-o specific_options] [server…]

DESCRIPTION

dfshares provides information about resources available to the host through a
distributed file system of type FSType. specific_options as well as the semantics of server
are specific to particular distributed file systems.

If dfshares is entered without arguments, all resources currently shared on the local
system are displayed, regardless of file system type.

The output of dfshares consists of an optional header line (suppressed with the -h
flag) followed by a list of lines containing whitespace-separated fields. For each
resource, the fields are:

resource server access transport

where

resource Specifies the resource name that must be given to the mount(1M)
command.

server Specifies the name of the system that is making the resource
available.

access Specifies the access permissions granted to the client systems,
either ro (for read-only) or rw (for read/write). If dfshares
cannot determine access permissions, a hyphen (−) is displayed.

transport Specifies the transport provider over which the resource is shared.

A field may be null. Each null field is indicated by a hyphen (−) unless the remainder
of the fields on the line are also null; in which case, the hyphen may be omitted.

OPTIONS

-F FSType Specify filesystem type. Defaults to the first entry in
/etc/dfs/fstypes.

-h Suppress header line in output.

-o specific_options Specify options specific to the filesystem provided by
the -F option.

FILES

/etc/dfs/fstypes

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

dfmounts(1M), mount(1M), share(1M), unshare(1M), attributes(5)
NAME  dfshares_nfs – list available NFS resources from remote systems

SYNOPSIS  dfshares [-F nfs] [-h] [server...]

DESCRIPTION  dfshares provides information about resources available to the host through NFS. The -F flag may be omitted if NFS is the first file system type listed in the file /etc/dfs/fstypes.

The query may be restricted to the output of resources available from one or more servers.

dfshares without arguments displays all resources shared on the local system, regardless of file system type.

Specifying server displays information about the resources shared by each server. Server can be any system on the network. If no server is specified, then server is assumed to be the local system.

The output of dfshares consists of an optional header line (suppressed with the -h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

resource server access transport

where

resource  Specifies the resource name that must be given to the mount(1M) command.

server  Specifies the system that is making the resource available.

access  Specifies the access permissions granted to the client systems; however, dfshares cannot determine this information for an NFS resource and populates the field with a hyphen (-).

transport  Specifies the transport provider over which the resource is shared; however, dfshares cannot determine this information for an NFS resource and populates the field with a hyphen (-).

A field may be null. Each null field is indicated by a hyphen (-) unless the remainder of the fields on the line are also null; in which case, the hyphen may be omitted.

OPTIONS  

-F nfs  Specify the NFS file system type

-h  Suppress header line in output.

FILES  /etc/dfs/fstypes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfs cu</td>
</tr>
</tbody>
</table>

SEE ALSO mount(1M), share(1M), unshare(1M), attributes(5)
NAME | df_ufs – report free disk space on ufs file systems
SYNOPSIS | df -F ufs [generic_options] [-o i] [directory | special]
DESCRIPTION | df displays the amount of disk space occupied by ufs file systems, the amount of used and available space, and how much of the file system’s total capacity has been used. The amount of space reported as used and available is less than the amount of space in the file system; this is because the system reserves a fraction of the space in the file system to allow its file system allocation routines to work well. The amount reserved is typically about 10%; this may be adjusted using tunefs(1M). When all the space on the file system except for this reserve is in use, only the superuser can allocate new files and data blocks to existing files. When the file system is overallocated in this way, df may report that the file system is more than 100% utilized. If neither directory nor special is specified, df displays information for all mounted ufs file systems.
OPTIONS | The following options are supported:
| generic_options | Options supported by the generic df command. See df(1M) for a description of these options.
| -o | Specify ufs file system specific options. The available option is:
| i | Report the number of used and free inodes. This option may not be used with generic_options.
FILES | /etc/mnttab list of file systems currently mounted
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu, SUNWxcu4</td>
</tr>
</tbody>
</table>
SEE ALSO | df(1M), tunefs(1M), mnttab(4), attributes(5), ufs(7FS)
NOTES | df calculates its results differently for mounted and unmounted file systems. For unmounted systems, the numbers reflect the 10% reservation mentioned above; this reservation is not reflected in df output for mounted file systems. For this reason, the available space reported by the generic command may differ from the available space reported by this module.
NAME
dhcagent – Dynamic Host Configuration Protocol (DHCP) client daemon

SYNOPSIS
dhcagent [-a] [-d n] [-f] [-v]

DESCRIPTION
dhcagent implements the client half of the Dynamic Host Configuration Protocol (DHCP) for machines running Solaris software.

The dhcagent daemon obtains configuration parameters for the client (local) machine's network interfaces from a DHCP server. These parameters may include a lease on an IP address, which gives the client machine use of the address for the period of the lease, which may be infinite. If the client wishes to use the IP address for a period longer than the lease, it must negotiate an extension using DHCP. For this reason, dhcagent must run as a daemon, terminating only when the client machine powers down.

The dhcagent daemon is controlled through ifconfig(1M) in much the same way that the init(1M) daemon is controlled by telinit(1M). dhcagent may be invoked as a user process, albeit one requiring root privileges, but this is not necessary, as ifconfig(1M) will start it automatically.

When invoked, dhcagent enters a passive state while it awaits instructions from ifconfig(1M). When it receives a command to configure an interface, it starts DHCP. Once DHCP is complete, dhcagent may be queried for the values of the various network parameters. In addition, if DHCP was used to obtain a lease on an address for an interface, the interface is configured and brought up. When a lease is obtained, it is automatically renewed as necessary. If the lease cannot be renewed, dhcagent will take the interface down at the end of the lease. If the configured interface is found to have a different IP address, subnet mask or broadcast address from those obtained from DHCP, the interface is abandoned from DHCP control.

In addition to DHCP, dhcagent also supports BOOTP. See RFC 951, Bootstrap Protocol. Configuration parameters obtained from a BOOTP server are treated identically to those received from a DHCP server, except that the IP address received from a BOOTP server always has an infinite lease.

DHCP also acts as a mechanism to configure other information needed by the client, for example, the domain name and addresses of routers. Aside from the IP address, netmask, broadcast address and default router, the agent does not directly configure the workstation, but instead acts as a database which may be interrogated by other programs, and in particular by dhcpinfo(1).

On clients with a single interface, this is quite straightforward. Clients with multiple interfaces may present difficulties, as it is possible that some information arriving on different interfaces may need to be merged, or may be inconsistent. Furthermore, the configuration of the interfaces is asynchronous, so requests may arrive while some or all of the interfaces are still unconfigured. To handle these cases, one interface may be designated as primary, which makes it the authoritative source for the values of DHCP parameters in the case where no specific interface is requested. See dhcpinfo(1) and ifconfig(1M) for details.
The dhcpagent daemon can be configured to request a particular host name. See the REQUEST_HOSTNAME description in the FILES section. When first configuring a client to request a host name, you must perform the following steps as root to ensure that the full DHCP negotiation takes place:

```
# pkill dhcpagent
# rm /etc/dhcp/*interface.dhc
# reboot
```

**Messages**

The dhcpagent daemon writes information and error messages in five categories:

- **critical**
  Critical messages indicate severe conditions that prevent proper operation.

- **errors**
  Error messages are important, sometimes unrecoverable events due to resource exhaustion and other unexpected failure of system calls; ignoring errors may lead to degraded functionality.

- **warnings**
  Warnings indicate less severe problems, and in most cases, describe unusual or incorrect datagrams received from servers, or requests for service that cannot be provided.

- **informational**
  Informational messages provide key pieces of information that can be useful to debugging a DHCP configuration at a site. Informational messages are generally controlled by the `-v` option. However, certain critical pieces of information, such as the IP address obtained, are always provided.

- **debug**
  Debugging messages, which may be generated at two different levels of verbosity, are chiefly of benefit to persons having access to source code, but may be useful as well in debugging difficult DHCP configuration problems. Debugging messages are only generated when using the `-d` option.

When dhcpagent is run without the `-f` option, all messages are sent to the system logger syslog(3C) at the appropriate matching priority and with a facility identifier LOG_DAEMON. When dhcpagent is run with the `-f` option, all messages are directed to standard error.

**OPTIONS**

The following options are supported:

- `-a` Adopt a configured interface. This option is for use with diskless DHCP clients. In the case of diskless DHCP, DHCP has already been performed on the network interface providing the operating system image prior to running dhcpagent. This option instructs the agent to take over control of the interface. It is intended primarily for use in boot scripts.
-d n Set debug level to n. Two levels of debugging are currently available, 1 and 2; the latter is more verbose.

-f Run in the foreground instead of as a daemon process. When this option is used, messages are sent to standard error instead of to syslog(3C).

-v Provide verbose output useful for debugging site configuration problems.

FILES

/etc/dhcp/if.dhc
Contains the configuration for interface. The mere existence of this file does not imply that the configuration is correct, since the lease may have expired.

/etc/default/dhcpagent
Contains default values for tunable parameters. All values may be qualified with the interface they apply to by prepending the interface name and a period (".") to the interface parameter name. The parameters include:

RELEASE_ON_SIGTERM
Indicates that a RELEASE rather than a DROP should be performed on managed interfaces when the agent terminates.

OFFER_WAIT
Indicates how long to wait between checking for valid OFFERs after sending a DISCOVER.

ARP_WAIT
Indicates how long to wait for clients to respond to an ARP request before concluding the address in the ARP request is unused.

IGNORE_FAILED_ARP
Specifies whether or not the agent should assume an address is available, in the unlikely event that ARP cannot be performed on that address.

CLIENT_ID
Indicates the value that should be used to uniquely identify the client to the server.

PARAM_REQUEST_LIST
Specifies a list of comma-separated integer values of options for which the client would like values.

REQUEST_HOSTNAME
Indicates the client requests the DHCP server to map the client’s leased IP address to the host name associated with the network interface that performs DHCP on the client. The host name must be specified in the /etc/hostname.interface file for the relevant interface on a line of the form

inet hostname
where hostname is the host name requested.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
dhcpinfo(1), ifconfig(1M), init(1M), syslog(3C), attributes(5), dhcp(5)

System Administration Guide: IP Services


NOTES
Currently, configurations where more than one interface is attached to the same physical network are unsupported. This precludes use of virtual interfaces.
The `dhcpconfig` command is used to configure and manage the Dynamic Host
Configuration Protocol (DHCP) service or BOOTP relay services. It is intended for use
by experienced Solaris system administrators and is designed for ease of use in scripts.
The `dhcpmgr` utility is recommended for less experienced administrators or those
preferring a graphical utility to configure and manage the DHCP service or BOOTP
relay service.

The `dhcpconfig` command can be run by root, or by other users assigned to the
DHCP Management profile. See `rbac(5)` and `user_attr(4)`.

`dhcpconfig` requires one of the following function flags: `-D`, `-R`, `-U`, `-N`, `-C`, `-X`, or
`-I`.

The `dhcpconfig` menu driven mode is supported in Solaris 8 and previous versions
of Solaris.

dhcpconfig scans various configuration files on your Solaris machine for
information it can use to assign values to options contained in macros it adds to the
dhcptab configuration table. The following table lists information `dhcpconfig`
needs, the source used, and how the information is used:

<table>
<thead>
<tr>
<th>Information</th>
<th>Source</th>
<th>Where Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timezone</td>
<td>System date, timezone settings, <code>nsswitch.conf</code>, <code>/etc/resolve.conf</code></td>
<td>Locale macro</td>
</tr>
<tr>
<td>DNS parameters</td>
<td><code>nsswitch.conf</code></td>
<td>Server macro</td>
</tr>
<tr>
<td>NIS parameters</td>
<td>System domainname, <code>nsswitch.conf</code>, NIS</td>
<td>Network macros</td>
</tr>
</tbody>
</table>
If you have not set these parameters on your server machine, you should do so before configuring the DHCP server with dhcpconfig. Note that if you specify options with the dhcpconfig -D command line, the values you supply override the values obtained from the system files.

OPTIONS

The following options are supported:

- `C`  
  Convert to using a new data store, recreating the DHCP data tables in a format appropriate to the new data store, and setting up the DHCP server to use the new data store.

  The following sub-options are required:

  - `-p path_to_data`  
    The paths for SUNWfiles and SUNWbinfiles must be absolute UNIX pathnames. The path for SUNWnisplus must be a fully specified NIS+ directory (including the tailing period.) See dhcp_modules(5).

  - `-r data_resource`  
    New data store resource. One of the following must be specified: SUNWfiles, SUNWbinfiles, or SUNWnisplus. See dhcp_modules(5).

  The following sub-options are optional:

  - `-f`  
    Do not prompt for confirmation. If `-f` is not used, a warning and confirmation prompt are issued before the conversion starts.

  - `-k`  
    Keep the old DHCP data tables after successful conversion. If any problem occurs during conversion, tables are not deleted even if `-k` sub-option is not specified.

  - `-u uninterpreted`  
    Data which is ignored by dhcpconfig, but passed on to the datastore for interpretation. The private layer provides for module-specific configuration information through the use of the RESOURCE_CONFIG keyword. Uninterpreted data is stored within RESOURCE_CONFIG keyword of dhcpsvc.conf(4). The `-u` sub-option is not used.
Configure the DHCP service.

The following sub-options are required:

- `r data_resource`
  One of the following must be specified: SUNWfiles, SUNWbinfiles, or SUNWnisplus. Other data stores may be available. See dhcp_modules(5).

- `p path`
  The paths for SUNWfiles and SUNWbinfiles must be absolute UNIX pathnames. The path for SUNWnisplus must be a fully specified NIS+ directory (including the tailing period). See dhcp_modules(5).

The following sub-options are optional:

- `a DNS_servers`
  IP addresses of DNS servers, separated with commas.

- `d DNS_domain`
  DNS domain name.

- `h hosts_resource`
  Resource in which to place hosts data. Usually, the name service in use on the server. Valid values are nisplus, files, or dns.

- `l seconds`
  Lease length used for addresses not having a specified lease length, in seconds.

- `n`
  Non-negotiable leases

- `y hosts_domain`
  DNS or NIS+ domain name to be used for hosts data. Valid only if dns or nisplus is specified for `-h` sub-option.

- `u uninterpreted`
  Data which is ignored by dhcpconfig, but passed on to the datastore for interpretation. The private layer provides for module-specific configuration information through the use of the RESOURCE_CONFIG keyword. Uninterpreted data is stored within RESOURCE_CONFIG keyword of dhcpsvc.conf(4). The `-u` sub-option is not used.
with the SUNWfiles, SUNWbinfiles, and SUNWnisplus data stores. See dhcp_modules(5).

- I filename

Import data from filename, containing data previously exported from a Solaris DHCP server. Note that after importing, you may have to edit macros to specify the correct domain names, and edit network tables to change the owning server of addresses in imported networks. Use dhtadm and pntadm to do this.

The following sub-option is supported:

- f
  Replace any conflicting data with the data being imported.

- N net_address

Configure an additional network for DHCP service.

The following sub-options are supported:

- a NIS_server_addresses
  List of IP addresses of NIS servers.

- b
  Network is a point-to-point (PPP) network, therefore no broadcast address should be configured. If -b is not used, the network is assumed to be a LAN, and the broadcast address is determined using the network address and subnet mask.

- m xxx.xxx.xxx.xxx
  Subnet mask for the network; if -m is not used, subnet mask is obtained from netmasks.

- t router_addresses
  List of router IP addresses; if not specified, router discovery flag is set.

- y NIS_domain_name
  If NIS is used on this network, specify the NIS domain name.

- R server_addresses

Configure the BOOTP relay service. BOOTP or DHCP requests are forwarded to the list of servers specified.

server_addresses is a comma separated list of hostnames and/or IP addresses.

- U

Unconfigure the DHCP service or BOOTP relay service.

The following sub-options are supported:
dhcpconfig(1M)

- f
  Do not prompt for confirmation. If -f is not used, a warning and confirmation prompt is issued.

- h
  Delete hosts entries from name service.

- x
  Delete the dhcp.tab and network tables.

- x filename
  Export data from the DHCP data tables, saving to filename, to move the data to another Solaris DHCP server.

The following sub-options are optional:

- a networks_to_export
  List of networks whose addresses should be exported, or the keyword ALL to specify all networks. If -a is not specified, no networks are exported.

- m macros_to_export
  List of macros to export, or the keyword ALL to specify all macros. If -m is not specified, no macros are exported.

- o options_to_export
  List of options to export, or the keyword ALL to specify all options. If -o is not specified, no options are exported.

- x
  Delete the data from this server after it is exported. If -x is not specified you are in effect copying the data.

EXAMPLES

EXAMPLE 1 Configuring DHCP Service with Binary Files Data Store

The following command configures DHCP service, using the binary files data store, in the DNS domain acme.eng, with a lease time of 28800 seconds (8 hours).

eample# dhcpconfig -D -r SUNWbinfiles -p /var/dhcp -l 28800 -d acme.eng
    -a 120.30.33.4 -h dns -y acme.eng

EXAMPLE 2 Configuring BOOTP Relay Agent

The following command configures the DHCP daemon as a BOOTP relay agent, which forwards BOOTP and DHCP requests to the servers having the IP addresses 120.30.33.7 and 120.30.42.132:

eample# dhcpconfig -R 120.30.33.7,120.30.42.132
EXAMPLE 3 Unconfiguring DHCP Service

The following command unconfigures the DHCP service, with confirmation, and deletes the DHCP data tables and host table entries:

```
example# dhcpconfig -U -x -h
```

EXAMPLE 4 Configuring a Network for DHCP Service

The following command configures an additional LAN network for DHCP service, specifying that clients should use router discovery and providing the NIS domain name and NIS server address:

```
example# dhcpconfig -N 120.30.171.0 -y east.acme.eng.com -a 120.30.33.4
```

EXAMPLE 5 Converting to SUNWnisplus Data Store

The following command converts a DHCP server from using a text or binary files data store to a NIS+ data store, deleting the old data store’s DHCP tables:

```
example# dhcpconfig -C -r SUNWnisplus -p whatever.com.
```

EXAMPLE 6 Exporting a Network, Macros, and Options from a DHCP Server

The following command exports one network (120.30.171.0) and its addresses, the macro 120.30.171.0, and the options motd and PSptr from a DHCP server, saves the exported data in file /export/var/120301710_data, and deletes the exported data from the server.

```
example# dhcpconfig -X /var/dhcp/120301710_export
                      -a 120.30.171.0 -m 120.30.171.0 -o motd,PSptr
```

EXAMPLE 7 Importing Data on a DHCP Server

The following command imports DHCP data from a file, /net/golduck/export/var/120301710_data, containing data previously exported from a Solaris DHCP server, and overwrites any conflicting data on the importing server:

```
example# dhcpconfig -I /net/golduck/export/var/120301710_data -f
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
dhcpmgr(1M), dhtadm(1M), in.dhcpd(1M), pntadm(1M), dhcp_network(4), dhcptab(4), dhcpsvc.conf(4), nsswitch.conf(4), resolv.conf(4), user_attr(4), attributes(5), dhcp(5), dhcp_modules(5), rbac(5)
## dhcpmgr — graphical interface for managing DHCP service

### SYNOPSIS

```bash
/usr/sadm/admin/bin/dhcpmgr
```

### DESCRIPTION

dhcpmgr is a graphical user interface which enables you to manage the Dynamic Host Configuration Protocol (DHCP) service on the local system. It performs the functions of the `dhcpconfig`, `dhtadm`, and `pntadm` command line utilities. You must be `root` to use `dhcpmgr`. The `dhcpmgr` Help, available from the `Help` menu, contains detailed information about using the tool.

### USAGE

You can perform the following tasks using `dhcpmgr`:

- **Configure DHCP service**
  Use `dhcpmgr` to configure the DHCP daemon as a DHCP server, and select the data store to use for storing network configuration tables.

- **Configure BOOTP relay service**
  Use `dhcpmgr` to configure the DHCP daemon as a BOOTP relay.

- **Manage DHCP or BOOTP relay service**
  Use `dhcpmgr` to start, stop, enable, disable or unconfigure the DHCP service or BOOTP relay service, or change DHCP server parameters.

- **Manage DHCP addresses**
  Use `dhcpmgr` to add, modify, or delete IP addresses leased by the DHCP service.

- **Manage DHCP macros**
  Use `dhcpmgr` to add, modify or delete macros used to supply configuration parameters to DHCP clients.

- **Manage DHCP options**
  Use `dhcpmgr` to add, modify or delete options used to define parameters deliverable through DHCP.

- **Convert to a new DHCP data store**
  Use `dhcpmgr` to configure the DHCP server to use a different data store, and convert the DHCP data to the format used by the new data store.

- **Move DHCP data to another server**
  Use `dhcpmgr` to export data from one Solaris DHCP server and import data onto another Solaris DHCP server.

### EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- non-zero An error occurred.

### ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcm</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

See Also

dhcpconfig(1M), dhtadm(1M), pntadm(1M), in.dhcpd(1M), dhcpsvc.conf(4),
dhcp_network(4), dhcptab(4), attributes(5), dhcp(5), dhcp_modules(5)

Solaris DHCP Service Developer’s Guide

System Administration Guide: IP Services
NAME
dhtadm – DHCP configuration table management utility

SYNOPSIS
dhtadm -C [-r resource] [-p path] [-u uninterpreted]
dhtadm -A -s symbol_name -d definition [-r resource] [-p path]
[-u uninterpreted]
dhtadm -A -m macro_name -d definition [-r resource] [-p path]
[-u uninterpreted]
dhtadm -M -s symbol_name -d definition [-r resource] [-p path]
[-u uninterpreted]
dhtadm -M -s symbol_name -n new_name [-r resource] [-p path]
[-u uninterpreted]
dhtadm -M -m macro_name -n new_name [-r resource] [-p path]
[-u uninterpreted]
dhtadm -M -m macro_name -d definition [-r resource] [-p path]
[-u uninterpreted]
dhtadm -M -m macro_name -e symbol=value [-r resource] [-p path]
[-u uninterpreted]
dhtadm -D -s symbol_name [-r resource] [-p path] [-u uninterpreted]
dhtadm -D -m macro_name [-r resource] [-p path] [-u uninterpreted]
dhtadm -P [-r resource] [-p path] [-u uninterpreted]
dhtadm -R [-r resource] [-p path] [-u uninterpreted]
dhtadm -B [-v] [batchfile]

DESCRIPTION
dhtadm manages the Dynamic Host Configuration Protocol (DHCP) service
configuration table, dhcptab. You can use it to add, delete, or modify DHCP
configuration macros or options or view the table. For a description of the table
format, see dhcptab(4).

The dhtadm command can be run by root, or by other users assigned to the DHCP
Management profile. See rbac(5) and user_attr(4).

After you make changes with dhtadm, you should issue a SIGHUP to the DHCP
server, causing it to read the dhcptab and pick up the changes. Use the pkill-HUP
in.dhcpd command. See in.dhcpd(1M).

OPTIONS
One of the following function flags must be specified with the dhtadm command: -A,
-B, -C, -D, -M, -P or -R.

The following options are supported:

-A
Add a symbol or macro definition to the dhcptab table.

The following sub-options are required:
Specify a macro or symbol definition.

definition must be enclosed in single quotation marks. For macros, use the form -d
'symbol=value;symbol=value'. For symbols, the definition is a series of fields that define a symbol's characteristics. The fields are separated by commas. Use the form -d
'context,code,type,granularity,maximum'. See dhcptab(4) for information about these fields.

-m macro_name
Specify the name of the macro to be added.

The -d option must be used with the -m option. The -s option cannot be used with the -m option.

-s symbol_name
Specify the name of the symbol to be added.

The -d option must be used with the -s option. The -m option cannot be used with the -s option.

-B Batch process dhtadm commands. dhtadm reads from the specified file or from standard input a series of dhtadm commands and execute them within the same process. Processing many dhtadm commands using this method is much faster than running an executable batchfile itself. Batch mode is recommended for using dhtadm in scripts.

The following sub-option is optional:

-v Display commands to standard output as they are processed.

-C Create the DHCP service configuration table, dhcptab.

-D Delete a symbol or macro definition.

The following sub-options are required:

-m macro_name
Delete the specified macro.

-s symbol_name
Delete the specified symbol.

-M Modify an existing symbol or macro definition.

The following sub-options are required:
-d definition
Specify a macro or symbol definition to modify.

The definition must be enclosed in single quotation marks. For macros, use the form `-d
'symbol=value;symbol=value;'
. For symbols, the definition is a series of fields that define a symbol’s characteristics. The fields are separated by commas. Use the form `-d
'context,code,type,granularity,maximum'
. See dhcptab(4) for information about these fields.

-e
This sub-option uses the `symbol=value` argument. Use it to edit a symbol/value pair within a macro. To add a symbol which does not have an associate value, enter:

`symbol=_NULL_VALUE_`

To delete a symbol definition from a macro, enter:

`symbol=`

-m
This sub-option uses the `macro_name` argument. The `-n`, `-d`, or `-e` sub-options are legal companions for this sub-option.

-n
This sub-option uses the `new_name` argument and modifies the name of the object specified by the `-m` or `-s` sub-option. It is not limited to macros. Use it to specify a new macro name or symbol name.

-s
This sub-option uses the `symbol_name` argument. Use it to specify a symbol. The `-d` sub-option is a legal companion.

-p path
Override the dhcpsvc.conf(4) configuration value for `PATH=` with `path`. See dhcpsvc.conf(4) for more details regarding `path`. See dhcp_modules(5) for information regarding data storage modules for the DHCP service.

-P
Print (display) the dhcptab table.

-r data_store_resource
Override the dhcpsvc.conf(4) configuration value for `RESOURCE=` with the `data_store_resource` specified. See dhcpsvc.conf(4) for more details on resource type. See Solaris DHCP Service Developer’s Guide for
more information about adding support for other data
stores. See dhcp_modules(5) for information
regarding data storage modules for the DHCP service.

-R
Remove the dhcptab table.

-u uninterpreted
Data which is ignored by dhtadm, but passed to
currently configured public module, to be interpreted
by the data store. The private layer provides for
module-specific configuration information through the
use of the RESOURCE_CONFIG keyword. Uninterpreted
data is stored within RESOURCE_CONFIG keyword of
dhcpsvc.conf(4). See dhcp_modules(5) for
information regarding data storage modules for the
DHCP service.

EXAMPLES

EXAMPLE 1 Creating the DHCP Service Configuration Table

The following command creates the DHCP service configuration table, dhcptab:

```
# dhtadm -C
```

EXAMPLE 2 Adding a Symbol Definition

The following command adds a Vendor option symbol definition for a new symbol
called MySym to the dhcptab table in the SUNWfiles resource in the /var/mydhcp
directory:

```
# dhtadm -A -s MySym
   -d 'Vendor=SUNW.PCW.LAN,20,IP,1,0'
   -r SUNWfiles -p /var/mydhcp
```

EXAMPLE 3 Adding a Macro Definition

The following command adds the aruba macro definition to the dhcptab table. Note
that symbol/value pairs are bracketed with colons (:).

```
# dhtadm -A -m aruba
   -d ':Timeserv=10.0.0.10 10.0.0.11:DNSserv=10.0.0.1:'
```

EXAMPLE 4 Modifying a Macro Definition

The following command modifies the Locale macro definition, setting the value of
the UTCoffst symbol to 18000 seconds. Note that any macro definition which
includes the definition of the Locale macro inherits this change.

```
# dhtadm -M -m Locale -e 'UTCoffst=18000'
```
EXAMPLE 4 Modifying a Macro Definition

(Continued)

EXAMPLE 5 Deleting a Symbol

The following command deletes the Timeserv symbol from the aruba macro. Any macro definition which includes the definition of the aruba macro inherits this change.

# dhtadm -M -m aruba -e 'Timeserv='

EXAMPLE 6 Adding a Symbol to a Macro

The following command adds the Hostname symbol to the aruba macro. Note that the Hostname symbol takes no value, and thus requires the special value _NULL_VALUE_. Note also that any macro definition which includes the definition of the aruba macro inherits this change.

# dhtadm -M -m aruba -e 'Hostname=_NULL_VALUE_'

EXAMPLE 7 Renaming a Macro

The following command renames the Locale macro to MyLocale. Note that any Include statements in macro definitions which include the Locale macro also need to be changed.

# dhtadm -M -m Locale -n MyLocale

EXAMPLE 8 Deleting a Symbol Definition

The following command deletes the MySym symbol definition. Note that any macro definitions which use MySym needs to be modified.

# dhtadm -D -s MySym

EXAMPLE 9 Removing a dhcptab

The following command removes the dhcptab table in the NIS+ directory specified.


EXAMPLE 10 Printing a dhcptab

The following command prints to standard output the contents of the dhcptab that is located in the data store and path indicated in the dhcpsvc.conf file.

# dhtadm -P
EXAMPLE 10 Printing a dhcptab

EXAMPLE 11 Executing dhtadm in Batch Mode

The following command runs a series of dhtadm commands contained in a batch file:

```
# dhtadm -B addmacros
```

**EXIT STATUS**

0  Successful completion.
1  Object already exists.
2  Object does not exist.
3  Non-critical error.
4  Critical error.

**FILES**

/etc/inet/dhcpsvc.conf

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

dhcpconfig(1M), dhcpmgr(1M), in.dhcpd(1M), dhcpsvc.conf(4),
dhcp_network(4), dhcptab(4), hosts(4), user_attr(4), attributes(5), dhcp(5),
dhcp_modules(5) rbac(5)

Solaris DHCP Service Developer's Guide

System Administration Guide: IP Services

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, RFC 1533,
Lachman Technology, Inc., Bucknell University, October 1993.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell University,
October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 1541, Bucknell University, October
1993.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542, Carnegie
Mellon University, October 1993.
dig(1M)

NAME  dig – send domain name query packets to name servers

SYNOPSIS  
dig [@server] domain [query-type] [query-class] [+query-option] [-dig-option]
  [%ignored-comment]

DESCRIPTION  Use dig (“domain information groper”) to gather information from the Domain Name System (“DNS”) servers. dig has two modes, simple interactive mode for a single query, and batch mode, which executes a query for each line in a list of several query lines. All query options are accessible from the command line.

OPTIONS  The dig utility supports the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@server</td>
<td>Either a domain name or a raw IPV4 or IPv6 Internet address. If this field is omitted, dig attempts to use the default name server for the machine. If a domain name is specified, this will be resolved using the domain name system resolver, for example, BIND. If the system does not support DNS, specify a literal IPv4 or IPv6 address. Alternatively, /etc/resolv.conf should be present. It indicates where the default name servers reside, so that server itself can be resolved. See resolver(3RESOLV) for information on /etc/resolv.conf. As an option, set the environment variable LOCALRES to name a file which is to be used instead of the /etc/resolv.conf standard resolver. LOCALRES is specific to the dig resolver and is not referenced by the system resolver. If the LOCALRES variable is not set or the specified file is not readable, then /etc/resolv.conf will be used.</td>
</tr>
<tr>
<td>-domain</td>
<td>The domain name for which you are requesting information. See the -x option for a convenient way to specify an inverse address query.</td>
</tr>
<tr>
<td>query-type</td>
<td>The type of information (DNS query type) that you are requesting. If omitted, the default is a (T_A=address). The following types are recognized:</td>
</tr>
<tr>
<td></td>
<td>a T_A network address</td>
</tr>
<tr>
<td></td>
<td>any T_ANY any and all information about specified domain</td>
</tr>
<tr>
<td></td>
<td>mx T_MX mail exchanger for the domain</td>
</tr>
<tr>
<td></td>
<td>ns T_NS name servers</td>
</tr>
</tbody>
</table>
soa T_SOA  zone of authority record
hinfo T_HINFO  host information
axfr T_AXFR  zone transfer (must ask an authoritative server)
txt T_TXT  arbitrary number of strings

See RFC 1035 for a complete list of values for query-type.

query-class
The network class requested in the query. If omitted, the default is in (C_IN=Internet). The following classes are recognized:

in C_IN  Internet class domain
any C_ANY  any and all class information

See RFC 1035 for a complete list of values for query-class.

any can be used to specify a class and a type of query. dig parses the first occurrence of any to mean query-type=T_ANY. To specify query-class=C_ANY, either specify any twice, or set query-class using the -c option.

%ignored-comment
"%" is used to include an argument that is not parsed. This is useful when running dig in batch mode. For example:

example$ dig @128.9.0.32 %venera.isi.edu mx isi.edu

-dig option
"-" is used to specify an option that affects the operation of dig. The following options are currently available:

-x dot-notation-address
Specify inverse address mapping. Instead of:

example$ dig 32.0.9.128.in-addr.arpa

Specify:
dig(1M)
example% dig -x 128.9.0.32

-x IPv6-address
Specify inverse address maping. Instead of:
example% dig 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. \
0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa

Specify:
example% dig -x ::1

-f file
Batch mode. file contains a list of query
specifications, that is, dig command lines, which are
to be executed successively. Lines that begin with
‘;’, ‘#’, or ‘\n’ are ignored. Other options may still
appear on command line that will be in effect for
each batch query.
-T time
Specify the time in seconds between the start of
successive queries in batch mode. This option can be
used synchronize two or more batch dig
commands. The default is zero.
-p port
Specify port number. This option allows you to
query a name server that listens to a non-standard
port number. The default is 53.
-P [ping-string]
After query returns, execute a ping(1M) command
for response time comparison. This option makes a
call to the shell. The last three ,lines of statistics are
printed for the command:
example % ping -s -server_name -56 -3

If the optional ping_string is present, it replaces ping
-s in the shell command.
-t query-type
Specify type of query. You may specify either an
integer value to be included in the type field, or use
the abbreviated mnemonic. for example, mx =
T_MX.
-c query-class
Specify class of query. You may specify either an
integer value to be included in the class field, or use
the abbreviated mnemonic, for example, in =
C_IN.
System Administration Commands

307


-k keydir:keyname
   Sign the query with the TSIG key named keyname that is in the directory keydir.

-envsav
   Specifies that after all of the arguments are parsed, the dig environment should be saved to a file to become the default environment. This is useful to bypass the standard set of defaults and use a custom set of options each time dig is used. The environment consists of resolver state variable flags, timeout, and retries as well as the flags detailing dig output. If the shell environment variable LOCALDEF is set to the name of a file, this is where the default dig environment is saved. If not, the file DiG.env is created in the current working directory.

LOCALDEF is specific to the dig resolver, and will not affect operation of the standard resolver() library.

Each time dig is executed, it looks for ./DiG.env or the file specified by the shell environment variable LOCALDEF. If such file exists and is readable, then the environment is restored from this file before any arguments are parsed. The DiG.env file contains binary data and should not be modified directly.

-envset
   Specifies that after the arguments are parsed, the dig environment becomes the default environment for the duration of the batch file, or until the next line that specifies -envset. This flag is set by including it in a line in a dig batch file. It only affects batch query runs.

- [no] stick
   Specifies that the dig environment, either as read initially or set by the -envset option, is to be restored before each query line in a dig batch file. The default -nostick means that the dig environment does not stick. Hence, options specified on a single line in a dig batch file will remain in effect for subsequent lines, that is, they are not restored to the ”sticky” default. This option only affects batch query runs.

-query-option
   “+” is used to specify an option to be changed in the query packet or to change dig output specifics. Many
of these are the same parameters accepted by
nslookup(1M). If an option requires a parameter, the
form is as follows:

* + keyword [=value]

Most keywords can be abbreviated. The parsing of the
“+” options is very simplistic. A value must not be
separated from its keyword by white space. The
following keywords are currently available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Meaning [default]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] debug</td>
<td>[deb]</td>
<td>Turn on or off debugging mode [deb]</td>
</tr>
<tr>
<td>[no] d2</td>
<td></td>
<td>Turn on or off extra debugging mode [nod2]</td>
</tr>
<tr>
<td>[no] recurse</td>
<td>[rec]</td>
<td>Use or do not use recursive lookup [rec]</td>
</tr>
<tr>
<td>retry=#</td>
<td>[ret]</td>
<td>Set number of retries to # [4]</td>
</tr>
<tr>
<td>time=#</td>
<td>[ti]</td>
<td>Set timeout length to # seconds [4]</td>
</tr>
<tr>
<td>[no] ko</td>
<td></td>
<td>Keep open option. Implies vc. [noko]</td>
</tr>
<tr>
<td>[no] vc</td>
<td></td>
<td>Use or do not use virtual circuit [novc]</td>
</tr>
<tr>
<td>[no] defname</td>
<td>[def]</td>
<td>Use or do not use default domain name [def]</td>
</tr>
<tr>
<td>[no] search</td>
<td>[sea]</td>
<td>Use or do not use domain search list [sea]</td>
</tr>
<tr>
<td>domain=NAME</td>
<td>[do]</td>
<td>Set default domain name to NAME</td>
</tr>
<tr>
<td>[no] ignore</td>
<td>[i]</td>
<td>Ignore or do not ignore truncated errors [noi]</td>
</tr>
<tr>
<td>Keyword</td>
<td>Abbreviation</td>
<td>Meaning [default]</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>[no] primary</td>
<td>[pr]</td>
<td>Use or do not use primary server [nopr]</td>
</tr>
<tr>
<td>[no] aaonly</td>
<td>[aa]</td>
<td>Authoritative query only flag [noaa]</td>
</tr>
<tr>
<td>[no] cmd</td>
<td></td>
<td>Echo parsed arguments [cmd]</td>
</tr>
<tr>
<td>[no] stats</td>
<td>[st]</td>
<td>Print query statistics [st]</td>
</tr>
<tr>
<td>[no] Header</td>
<td>[H]</td>
<td>Print basic header [H]</td>
</tr>
<tr>
<td>[no] header</td>
<td>[he]</td>
<td>Print header flags [he]</td>
</tr>
<tr>
<td>[no] ttlid</td>
<td>[tt]</td>
<td>Print TTLs [tt]</td>
</tr>
<tr>
<td>[no] trunc</td>
<td>[tr]</td>
<td>Truncate origin from names [tr]</td>
</tr>
<tr>
<td>[no] cl</td>
<td></td>
<td>Print class info [nocl]</td>
</tr>
<tr>
<td>[no] qr</td>
<td></td>
<td>Print outgoing query [noqr]</td>
</tr>
<tr>
<td>[no] reply</td>
<td>[rep]</td>
<td>Print reply [rep]</td>
</tr>
<tr>
<td>[no] ques</td>
<td>[qu]</td>
<td>Print question section [qu]</td>
</tr>
<tr>
<td>[no] answer</td>
<td>[an]</td>
<td>Print answer section [an]</td>
</tr>
<tr>
<td>[no] author</td>
<td>[au]</td>
<td>Print authoritative section [au]</td>
</tr>
<tr>
<td>[no] addit</td>
<td>[ad]</td>
<td>Print additional section [ad]</td>
</tr>
<tr>
<td>[no] dnssec</td>
<td>[dn]</td>
<td>Set the DNSSEC OK bit in the OPT pseudo record [nodn]</td>
</tr>
<tr>
<td>pfdef</td>
<td></td>
<td>Set to default print flags</td>
</tr>
</tbody>
</table>
dig(1M)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Meaning [default]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmin</td>
<td></td>
<td>Set to minimal default print flags</td>
</tr>
<tr>
<td>pflags</td>
<td>pfset=##</td>
<td>Set print flags to #. The value of # can be hex, octal, or decimal.</td>
</tr>
<tr>
<td></td>
<td>pfand=##</td>
<td>Bitwise and print flags with #</td>
</tr>
<tr>
<td></td>
<td>pfor=##</td>
<td>Bitwise or print flags with #</td>
</tr>
</tbody>
</table>

The retry and time options affect the retransmission strategy used by the resolver library() when sending datagram queries. The algorithm is as follows:

```plaintext
for i = 0 to retry - 1
  for j = 1 to num_servers
    send_query
    wait((time * (2**i)) / num_servers)
  end
end
```

dig always uses a value of 1 for num_servers.

ENVIRONMENT VARIABLES

LOCALRES     File to use in place of /etc/resolv.conf
LOCALDEF     default environment file
FILES
/etc/resolv.conf    Initial domain name and name server addresses
./DiG.env         Default save file for default options

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>External</td>
</tr>
</tbody>
</table>

SEE ALSO

in.named(1M), nslookup(1M), resolver(3RESOLV), attributes(5)

dig does not consistently exit with appropriate status messages when a problem occurs somewhere in the resolver(), although most of the common exit cases are handled. This can be problematic when running in batch mode. If dig exits abnormally and is not caught, the entire batch aborts. When such an event is trapped, dig simply continues with the next query.
The `directoryserver` command is a comprehensive, front end to the utility programs provided by the Solaris Directory Server (DS).

Options for the `directoryserver` command itself must appear before the subcommand. Arguments for a subcommand must appear after the subcommand. Subcommands have specific arguments. See `SUBCOMMANDS`.

The following subcommands are supported:

- `account-inactivate` *args*
  Inactivates and locks an entry or group of entries.

  The `account-inactivate` subcommand supports the following arguments:

  - `[-D rootdn]`
    Directory Server `userDN` with root permissions, such as Directory Manager.

  - `[-h host]`
    Host name of Directory Server. The default value is the full hostname of the machine where Directory Server is installed.

  - `[-I DN]`
    Entry DN or role DN to activate.

  - `[-j file]`
    Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting.

    This is considered insecure. Use with extreme caution.

**SYNOPSIS**

```
/usr/sbin/directoryserver { setup [-f configuration_file] | uninstall}
/usr/sbin/directoryserver {start-admin | stop-admin | restart-admin | startconsole}
/usr/sbin/directoryserver [{-s | -server} server-instance ]{start | stop | restart}
/usr/sbin/directoryserver { -s | -server } server-instance {monitor | saveconfig | restoreconfig | db2index-task | ldif2db-task | ldif2ldap | vlvindex | db2ldif | db2ldif-task | db2bak | db2bak-task | bak2db | bak2db-task | suffix2instance | account-status | account-activate | account-inactivate } {...}
/usr/sbin/directoryserver nativetoascii | admin_ip | ldif | pwdhash | idsktune | mmldif | keyupg {...}
/usr/sbin/directoryserver { magt | sagt } {...}
/usr/sbin/directoryserver help [subcommand]
```
directoryserver(1M)

[-p port]
Directory Server port. The default value is the LDAP port of Directory Server
specified at installation time.

-w password
Password associated with the user DN. Supplying the password on the
command line is visible using the /bin/ps command. This is considered
insecure. Use with extreme caution.

The value - can be used in place the password. The program prompts the user
for a password to be entered from the terminal.

account-activate args
Activates an entry or group of entries.

The account-activate subcommand supports the following arguments

-D rootdn
Directory Server userDN with root permissions, such as Directory Manager.

-h host
Host name of Directory Server. The default value is the full hostname of the
machine where Directory Server is installed.

-I DN
Entry DN or role DN to activate.

-j file
Password associated with the user DN. This option allows the password to be
stored in clear text in the named file for scripting.

This is considered insecure. Use with extreme caution.

-p port
Directory Server port. The default value is the LDAP port of Directory Server
specified at installation time.

-w password
Password associated with the user DN. Supplying the password on the
command line is visible using the /bin/ps command. This is considered
insecure. Use with extreme caution.

The value - can be used in place the password. The program prompts the user
for a password to be entered from the terminal.

account-status args
Provides account status information to establish whether an entry or group of
entries is inactivated or not.

The account-status subcommand supports the following arguments:
-D rootdn
- h host
    Host name of Directory Server. The default value is the full hostname of the machine where Directory Server is installed.
-I DN
    Entry DN or role DN whose status is required.
-j file
    Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting.
    This is considered insecure. Use with extreme caution.
-p port
    Directory Server port. The default value is the LDAP port of Directory Server specified at installation time.
-w password
    Password associated with the rootDN. Supplying the password on the command line is visible using the /bin/pw command. This is considered insecure. Use with extreme caution.
    The value - can be used in place of the password. The program prompts the user for a password to be entered from the terminal.

admin_ip args
    Change the IP address of the administrative server in the configuration.
    The admin_ip subcommand supports the following arguments:
    dir_mgr_DN
        Directory Manager’s DN.
    dir_mgr_password
        Directory Manager’s password.
    old_ip
        Old IP.
    new_ip
        New IP.
    port #
        Port number.

bak2db backup_directory
    Restore the database from the most recent archived backup.
    Specify backup_directory as the backup directory.

bak2db-task args
    Restore the data to the database.
The `bak2db-task` subcommand supports the following arguments:

```
[-a directory]  Directory where the backup files are stored. By default it is under /var/ds5/slapd-serverID/bak

-D rootDN       User DN with root permissions, such as Directory Manager. The default is the DN of the directory manager which is read from the `nsslapd-root` attribute under `cn=config`.

-j file         Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting.

This is considered insecure. Use with extreme caution.
```

```
[-t database_type]  Database type. The only possible database type is ldbm.

-v               Verbose mode.

-w password      Password associated with the user DN. Supplying the password on the command line is visible using the `/bin/ps` command. This is considered insecure. Use with extreme caution.

The value `-` can be used in place the password. The program prompts the user for a password to be entered from the terminal.
```

db2bak-task `args`

Back up the contents of the database. It creates an entry in the directory that launches this dynamic task. An entry is generated based upon the values provided for each option.

The `db2bak-task` subcommand supports the following arguments:

```
[-a directory]  Directory where the backup files are stored. By default it is under /var/ds5/slapd-serverID/bak. The backup file is named according to the year-month-day-hour format (`YYYY_MM_DD_hhmmss`).

-D rootDN       User DN with root permissions, such as Directory Manager. The default is the DN of the directory manager which is read from the `nsslapd-root` attribute under `cn=config`.

-j file         Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting.

This is considered insecure. Use with extreme caution.
```
-t  database_type  
   Database type. The only possible database type is ldbm.

[-v]  
   Verbose mode.

-w  password  
   Password associated with the user DN. Supplying the password on the command line is visible using the /bin/ps command. This is considered insecure. Use with extreme caution.

   The value - can be used in place the password. The program prompts the user for a password to be entered from the terminal.

db2bak [backup_directory]  
Create a backup of the current database contents. The server must be stopped to run this subcommand.

   The default is /var/ds5/slapd-serverID/bak. The backup file is named according to the year-month-day-hour format (YYYY_MM_DD_hhmmss).

db2index-text args  
Create and generate the new set of indexes to be maintained following the modification of indexing entries in the cn=config configuration file.

   The db2index-text subcommand supports the following arguments:

-D  rootdn  
   User DN with root permissions, such as Directory Manager.

-j  file  
   Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting. This is considered insecure. Use with extreme caution.

-n  backend_instance  
   Instance to be indexed.

[ -t  attributeName]  
   Name of the attribute to be indexed. If omitted, all indexes defined for that instance are generated.

[-v]  
   Verbose mode.

-w  password  
   Password associated with the user DN. Supplying the password on the command line is visible using the /bin/ps command. This is considered insecure. Use with extreme caution.

   The value - can be used in place the password. The program prompts the user for a password to be entered from the terminal.
**db2ldif-task** *args*

Exports the contents of the database to LDIF. It creates an entry in the directory that launches this dynamic task. The entry is generated based upon the values you provide for each option. To run this subcommand the server must be running and either `-n backend_instance` or `-s include suffix` is required.

The `db2ldif-task` subcommand supports the following arguments:

[-a *outputfile*
  File name of the output LDIF file.

-`C`
  Only the main db file is used.

-`D` *rootDN*
  User DN with root permissions, such as Directory Manager.

-`j` *file*
  Password associated with the user DN. This option allows the password to be stored in clear text in the named file for scripting. This is considered insecure. Use with extreme caution.

[-M]
  Output LDIF is stored in multiple files.

[-n]  
  Minimal base 64 encoding.

{-n `backend_instance`}*
  Instance to be exported.

[-N]
  Minimal base 64 encoding.

[-o]
  Output LDIF to be stored in one file by default with each instance stored in `instance_file` name.

[-r]
  Export replica.

[-s `include suffix`]*
  Suffix(es) to be included or to specify the subtrees to be included if `-n` has been used.

[-u]
  Request that the unique ID is not exported.

[-U]
  Request that the output LDIF is not folded.

-`w` *password*
  Password associated with the user DN. Supplying the password on the command line is visible using the `/bin/ps` command. This is considered insecure. Use with extreme caution.
The value - can be used in place the password. The program prompts the user for a password to be entered from the terminal.

\[-x excludesuffix]\*
Suffixes to be excluded.

\[-1]\nDelete, for reasons of backward compatibility the first line of the LDIF file that gives the version of the LDIF standard.

db2ldif args
Export the contents of the database to LDIF. You must specify either the \(-n\) or the \(-s\) option or both.

The db2ldif subcommand supports the following options:

\[-a outputfile]\nFile name of the output LDIF file.

\[-C]\nOnly use the main db file.

\[-m]\nMinimal base64 encoding.

\[-M]\nUse of several files for storing the output LDIF with each instance stored in instance file name (where file name is the file name specified for \(-a\) option).

\[-n bcelmd_instance]\*Instance to be exported.

\[-N]\nSpecify that the entry IDs are not to be included in the LDIF output. The entry IDs are necessary only if the db2ldif output is to be used as input to db2index-text.

\[-r]\nExport replica.

\[-s includesuffix]\*Suffixes to be included or to specify the subtrees to be included if \(-n\) has been used.

\[[\-x excludesuffix]\]*Suffixes to be excluded.

\[-u]\nRequest that the unique id is not exported.

\[-U]\nRequest that the output LDIF is not folded.
directoryserver(1M)

[-1]
Delete, for reasons of backward compatibility, the first line of the LDIF file which gives the version of the LDIF standard.

help [subcommand]
Display directoryserver usage message or subcommand specific usage message.

idsktune args
Provide an easy and reliable way of checking the patch levels and kernel parameter settings for your system. You must install the Directory Server before you can run idsktune. It gathers information about the operating system, kernel, and TCP stack to make tuning recommendations.

The idsktune subcommand supports the following arguments:

[-c]
Client-specific tuning: the output only includes tuning recommendations for running a directory client application.

[-D]
Debug mode: the output includes the commands it runs internally, preceded by DEBUG heading.

[-i installdir]
The install directory.

[-q]
Quiet mode. Output only includes tuning recommendations. OS version statements are omitted.

[-v]
Version. Gives the build date identifying the version of the toll.

keyupg args
Upgrade the key from Lite to normal (only one way).

The keyupg subcommand supports the following arguments:

-\keyboard{key}
The key to be upgraded.

-\keyboard{-} [key_file_path]
The key file path.

ldif2db-task args
Import data to the directory. It create an entry in the directory that launches this dynamic task. The entry is generated based upon the values you provide for each option. The server must be running when you run this subcommand.

The ldif2db-task subcommand supports the following arguments:

[-c]
Request that only the core db is created without attribute indexes.
-D rootDN
   User DN with root permissions, such as Directory Manager.

[-g string]
   Generation of a unique ID. Enter none for no unique ID to be generated and
deterministic for the generated unique ID to be name-based. Generates a
time based unique ID by default.

   If you use the deterministic generation to have a name-based unique ID,
you can also specify the namespace you want the server to use as follows:

   -g deterministic namespace_id
   where namespace_id is a string of characters in the following format

   00-xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxxx

   Use this option if you want to import the same LDIF file into two different
directory servers, and you want the contents of both directories to have the same
set of unique IDs. If unique IDs already exist in the LDIF file you are importing,
then the existing IDs are imported to the server regardless of the options you
have specified.

[-G namespace_id ]
   Generate a namespace ID as a name-based unique ID. This is the same as
specifying -g deterministic.

[-i filename]*
   File name of the input LDIF files. When you import multiple files, they are
imported in the order in which you specify them on the command line.

-j file
   Password associated with the user DN. This option allows the password to be
stored in clear text in the named file for scripting. This is considered insecure.
   Use with extreme caution.

-n backend_instance
   Instance to be imported.

[-O]
   Request that only the core db is created without attribute indexes.

[-a includesuffix ]*
   Suffixes to be included. This argument can also be used to specify the subtrees to
be included with -n.

-w password
   Password associated with the user DN. Supplying the password on the
command line is visible using the /bin/ps command. This is considered
insecure. Use with extreme caution.

   The value - can be used in place the password. The program prompts the user
for a password to be entered from the terminal.
directoryserver(1M)

[[-x excludesuffix] *]
[[-v]]
   Verbose mode.

ldif args
   Format LDIF files, and create base 64 encoded attribute values. With Base 64
   Encoding you can represent binary data, such as a JPEG image, in LDIF by using
   base 64 encoding. You identify base 64 encoded data by using the :: symbol. The
   ldif subcommand takes any input and formats it with the correct line continuation
   and appropriate attribute information. The subcommand also senses whether the
   input requires base 64 encoding.

   The ldif subcommand supports the following arguments

   [-b]
   Interpret the entire input as a single binary value. If -b is not present, each line
   is considered to be a separate input value.

   [attrtype]
   If -b is specified, the output is attrtype:: <base 64 encoded value.

ldif2db args
   Import the data to the directory. To run this subcommand the server must be
   stopped. Note that ldif2db supports LDIF version 1 specifications. You can load an
   attribute using the URL specifier notation, for example:
   jpegphoto:file:///tmp/myphoto.jpg

   [-c]
   Merge chunk size.

   [-g string]
   Generation of a unique ID. Type none for no unique ID to be generated and
deterministic for the generated unique ID to be name-based. By default a time
based unique ID is generated.

   If you use the deterministic generation to have a name-based unique ID, you can
also specify the namespace you want the server to use as follows:
   -g deterministic namespace_id

   where namespace_id is a string of characters in the following format:

   00-xxxxxxxx-xxxxxxx-xxxxxxx-xxxxxxxx

   Use this option if you want to import the same LDIF file into two different
directory servers, and you want the contents of both directories to have the same
set of unique IDs. If unique IDs already exist in the LDIF file you are importing,
then the existing IDs are imported to the server regardless of the options you
have specified.
Generate a namespace ID as a name-based unique ID. This is the same as specifying the `-g deterministic` option.

File name of the input LDIF file(s). When you import multiple files, they are imported in the order in which you specify them on the command line.

Instance to be imported.

Request that only the core db is created without attribute indexes.

Suffixes to be included or to specify the subtrees to be included if `-n` has been used.

Suffixes to be excluded

Perform an import operation over LDAP to the Directory Server. To run this subcommand the server must be running.

The `ldif2ldap` subcommand supports the following arguments:

User DN with root permissions, such as Directory Manager.

Password associated with the user DN.

File name of the file to be imported. When you import multiple files, they are imported in the order in which you specify them on the command line.

Start SNMP master agent. The Config and INIT files are in `/usr/iplanet/ds5/plugins/snmp/magt`. For more information, see the `iPlanet Directory Server 5.1 Administrator's Guide`.

The `magt` subcommand supports the following options:

The `CONFIG` file defines the community and the manager that master agent works with. Specify the manager value as a valid system name or an IP address.

The INIT file is a nonvolatile file that contains information from the MIB-II system group, including system location and contact information. If INIT doesn’t already exist, starting the master agent for the first time creates it. An invalid manager name in the CONFIG file causes the master agent start-up to fail.
monitor
Retrieves performance monitoring information using the ldapsearch command-line utility.

mmldif args
Combine multiple LDIF files into a single authoritative set of entries. Typically each LDIF file is from a master server cooperating in a multi master replication agreement.[e.g. masters that refuse to sync up for whatever reason]. Optionally, it can generate LDIF change files that could be applied to original to bring it up to date with authoritative. At least two input files must be specified.

The mmldif subcommand supports the following arguments:

[-c inputfile ...]
   Write a change file (.delta) for each input file. Specify inputfile as the input LDIF files.

[-D]
   Print debugging information.

[-o out.ldif]
   Write authoritative data to this file.

nativetoascii args
Convert one language encoding to another. For example, convert a native language to UTF-8 format.

The nativetoascii subcommand supports the following options:

-a Encodings Directory
   Path to the directory which contains the conv directory

[-i input_filename -o output_filename]
   The input file name and output file name.

-l
   List supported encodings

-r
   Replace existing files.

-s suffix
   Suffix to be mapped to the backend.

-s SourceEncoding
   Source Encoding of input stream.

-t TargetEncoding
   Target Encoding of output stream.

-v
  Verbose output.
pwdhash args
Print the encrypted form of a password using one of the server’s encryption algorithms. If a user cannot log in, you can use this script to compare the user’s password to the password stored in the directory.

The pwdhash subcommand supports the following arguments:

- c comparepwd | - s scheme
The available schemes are SSHA, SHA, CRYPT and CLEARE. It generates the encrypted passwords according to scheme’s algorithm. The -c specifies the encrypted password to be compared with. The result of comparison is either OK or doesn’t match.

-D instance-dir
The instance directory.

[ -H ]
The passwords are hex-encoded.

password ...
The clear passwords to generate encrypted form from or to be compared with.

restart
Restarts the directory server.

When the -s option is not specified, restarts all instances of servers. When the -s option is specified, restarts the server specified by -s.

restart-admin
Restarts the administration server.

restoreconfig
Restores the most recently saved Administration Server configuration information to the NetscapeRoot partition under /var/ds5/slapd-serverID/confbak.

sagt -c CONFIG
Start proxy SNMP agent. For more information, see the iPlanet Directory Server 5.1 Administrator’s Guide.

The sagt subcommand supports the following options:

- c configfile
The CONFIG file includes the port that the SNMP daemon listens to. It also needs to include the MIB trees and traps that the proxy SNMP agent forwards. Edit the CONFIG file located in /usr/iplanet/ds5/plugins/snmp/sagt.

saveconfig
Saves the administration server configuration information to the /var/ds5/slapd-serverID/confbak directory.
directoryserver(1M)

setup [-f configuration_file]
     Configures an instance of the directory server or administration server. Creates a
     basic configuration for the directory server and the administrative server that is
     used to manage the directory.

     The setup subcommand has two modes of operation. You can invoke it with a
     curses-based interaction to gather input. Alternatively, you can provide input in a
     configuration file using the -f option.

     The setup subcommand supports the following option:

     -f configuration_file
     Specifies the configuration file for silent installation.

start
     Starts the directory server. When the -s option is not specified, starts servers of all
     instances. When the -s option is specified, starts the server instance specified by
     -s.

start-admin
     Starts the directory server.
     When the -s option is not specified, restarts all instances of servers. When the -s
     option is specified, restarts the server specified by -s.

startconsole
     Starts the directory console.

stop
     Stops the directory server.
     When the -s option is not specified, restarts all instances of servers. When the -s
     option is specified, restarts the server specified by -s.

stop-admin
     Stop the administration server.

suffix2instance [-s suffix]
     Map a suffix to a backend name.
     Specify -s suffix as the suffix to be mapped to the backend.

uninstall
     Uninstalls the directory server and the administration server.
     This subcommand stops servers of all instances and removes all the changes
     created by setup.

vlvindex args
     Create virtual list view (VLV) indexes, known in the Directory Server Console as
     Browsing Indexes. The server must be stopped beforehand.
     The vlvindex subcommand supports the following arguments:
directoryserver(1M)

-á debug_level
   Specify the debug level to use during index creation. Debug levels are defined in
   nsslapd-errorlog-level (error Log Level). See the iPlanet Directory
   Server 5.1 Configuration, Command, and File Reference.

-n backend_instance
   Name of the database containing the entries to index.

-s suffix
   Name of the suffix containing the entries to index.

-T VLVTag
   Name of the database containing the entries to index.

OPTIONS
Options for the directoryserver command itself must appear before the
subcommand argument.

The following options are supported:

-s server-instance
-server
   The server instance name. Specify the directory server instance to
   process the command against. For some of the listed
   subcommands the server instance is optional and for other sub
   commands it is a required option.

EXAMPLES

EXAMPLE 1 Starting All Instances of the Directory Servers

The following command starts all the instances of the directory servers:

example% directoryserver start

EXAMPLE 2 Starting the Instances of myhost of the Directory Server

The following command starts the instances myhost of the directory server.

example% directoryserver -s myhost start

EXAMPLE 3 Running the Monitor Tool and Outputting the Current Status

The following command runs the monitor tool and output the current status of the
ephesus directory instance.

example% directoryserver -s ephesus monitor

EXAMPLE 4 Running the idsktune Tool and Outputting Performance Tuning Information

The following command runs the idsktune tool and outputs performance tuning
information:

example% directoryserver idsktune
directoryserver(1M)

**EXIT STATUS**

The following exit values are returned:

- 0 Successful completion.
- non-zero An error occurred.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>IPLTdsr, IPLTdsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

iPlanet Directory Server 5.1 Administrator’s Guide

iPlanet Directory Server 5.1 Configuration, Command, and File Reference
### NAME

disks – creates /dev entries for hard disks attached to the system

### SYNOPSIS

```
/usr/sbin/disks [-C] [-r rootdir]
```

### DESCRIPTION

devfsadm(1M) is now the preferred command for /dev and /devices and should be used instead of disks.

disks creates symbolic links in the /dev/dsk and /dev/rdsk directories pointing to the actual disk device special files under the /devices directory tree. It performs the following steps:

1. disks searches the kernel device tree to see what hard disks are attached to the system. It notes the /devices pathnames for the slices on the drive and determines the physical component of the corresponding /dev/dsk or /dev/rdsk name.

2. The /dev/dsk and /dev/rdsk directories are checked for disk entries – that is, symbolic links with names of the form cN[t:N]dNsN, or cN[t:N]dNpN, where N represents a decimal number. cN is the logical controller number, an arbitrary number assigned by this program to designate a particular disk controller. The first controller found on the first occasion this program is run on a system, is assigned number 0. tN is the bus-address number of a subsidiary controller attached to a peripheral bus such as SCSI or IPI (the target number for SCSI, and the facility number for IPI controllers). dN is the number of the disk attached to the controller. sN is the slice number on the disk. pN is the FDISK partition number used by fdisk(1M). (x86 Only)

3. If only some of the disk entries are found in /dev/dsk for a disk that has been found under the /devices directory tree, disks creates the missing symbolic links. If none of the entries for a particular disk are found in /dev/dsk, disks checks to see if any entries exist for other disks attached to the same controller, and if so, creates new entries using the same controller number as used for other disks on the same controller. If no other /dev/dsk entries are found for slices of disks belonging to the same physical controller as the current disk, disks assigns the lowest-unused controller number and creates entries for the disk slices using this newly-assigned controller number.

disks is run automatically each time a reconfiguration-boot is performed or when add_drv(1M) is executed. When invoking disks(1M) manually, first run drvconfig(1M) to ensure /devices is consistent with the current device configuration.

### Notice to Driver Writers

disks considers all devices with a node type of DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, DDI_NT_BLOCK_WWN or DDI_NT_CD_CHAN to be disk devices. disks(1M) requires the minor name of disk devices obey the following format conventions.

The minor name for block interfaces consists of a single lowercase ASCII character, a through u. The minor name for character (raw) interfaces consists of a single lowercase ASCII character, a through u, followed by ,raw.
disks(1M)

Disks translates a through p to s0 through s15, while it translates q through u to p0 through p4. SPARC drivers should only use the first 8 slices: a through h, while x86 drivers can use a through u, with q through u corresponding to fdisk(1M) partitions. q represents the entire disk, while r, s, t, and u represent up to 4 additional partitions.

To prevent disks from attempting to automatically generate links for a device, drivers must specify a private node type and refrain from using a node type: DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, or DDI_NT_CD_CHAN when calling ddi_create_minor_node(9F).

Options

-C Causes disks to remove any invalid links after adding any new entries to /dev/dsk and /dev/rdsk. Invalid links are links which refer to non-existent disk nodes that have been removed, powered off, or are otherwise inaccessible.

-x rootdir Causes disks to presume that the /dev/dsk, /dev/rdsk and /devices directory trees are found under rootdir, not directly under /.

Errors

If disks finds entries of a particular logical controller linked to different physical controllers, it prints an error message and exits without making any changes to the /dev directory, since it cannot determine which of the two alternative logical-to-physical mappings is correct. The links should be manually corrected or removed before another reconfiguration-boot is performed.

Examples

Example 1: Creating The Block And Character Minor Devices From Within The xkdisk Driver's attach(9E) Function.

The following example demonstrates creating the block and character minor devices from within the xkdisk driver's attach(9E) function.

```
#include <sys/dkio.h>

/* Create the minor number by combining the instance number
 * with the slice number.
 */
#define MINOR_NUM(i, s) ((i) << 4 | (s))

int xkdiskattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
    int instance, slice;
    char name[8];

    /* other stuff in attach... */

    instance = ddi_get_instance(dip);
    for (slice = 0; slice < V_NUMPAR; slice++) {
        /*
         * create block device interface
         */
        sprintf(name, "%c", slice + 'a');
```
EXAMPLE 1 Creating The Block And Character Minor Devices From Within The xkdisk Driver's attach(9E) Function.  (Continued)

```c
ddi_create_minor_node(dip, name, S_IFBLK,
    MINOR_NUM(instance, slice), DDI_NT_BLOCK_CHAN, 0);

/*
   * create the raw (character) device interface
   */
   sprintf(name,"%c,raw", slice + 'a');
   ddi_create_minor_node(dip, name, S_IFCHR,
    MINOR_NUM(instance, slice), DDI_NT_BLOCK_CHAN, 0);
}
```

Installing the xkdisk disk driver on a SPARCstation 20, with the driver controlling a SCSI disk (target 3 attached to an esp(7D) SCSI HBA) and performing a reconfiguration-boot (causing disks to be run) creates the following special files in /devices.

```bash
# ls -l /devices/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/
brw-r----- 1 root  sys       32, 16  Aug 29 00:02  xkdisk@3,0:a
brw-r----- 1 root  sys       32, 17  Aug 29 00:02  xkdisk@3,0:b
brw-r----- 1 root  sys       32, 18  Aug 29 00:02  xkdisk@3,0:c
brw-r----- 1 root  sys       32, 19  Aug 29 00:02  xkdisk@3,0:d
brw-r----- 1 root  sys       32, 20  Aug 29 00:02  xkdisk@3,0:e
brw-r----- 1 root  sys       32, 21  Aug 29 00:02  xkdisk@3,0:f
brw-r----- 1 root  sys       32, 22  Aug 29 00:02  xkdisk@3,0:g
brw-r----- 1 root  sys       32, 23  Aug 29 00:02  xkdisk@3,0:h
```

```
and /dev/dsk will contain the disk entries to the block device nodes in /devices

# ls -l /dev/dsk
/dev/dsk/c0t3d0s0 -> ../../devices/[...]/xkdisk@3,0:a
/dev/dsk/c0t3d0s1 -> ../../devices/[...]/xkdisk@3,0:b
/dev/dsk/c0t3d0s2 -> ../../devices/[...]/xkdisk@3,0:c
/dev/dsk/c0t3d0s3 -> ../../devices/[...]/xkdisk@3,0:d
/dev/dsk/c0t3d0s4 -> ../../devices/[...]/xkdisk@3,0:e
/dev/dsk/c0t3d0s5 -> ../../devices/[...]/xkdisk@3,0:f
/dev/dsk/c0t3d0s6 -> ../../devices/[...]/xkdisk@3,0:g
/dev/dsk/c0t3d0s7 -> ../../devices/[...]/xkdisk@3,0:h
```

```
and /dev/rdsk will contain the disk entries for the character device nodes in /devices

# ls -l /dev/rdsk
/dev/rdsk/c0t3d0s0 -> ../../devices/[...]/xkdisk@3,0:a,raw
/dev/rdsk/c0t3d0s1 -> ../../devices/[...]/xkdisk@3,0:b,raw
```

System Administration Commands 331
EXAMPLE 1 Creating The Block And Character Minor Devices From Within The `xkdisk` Driver's `attach(9E)` Function.  (Continued)

/dev/rdsk/c0t3d0s2 -> ../../devices/[...]/xkdisk@3,0:c,raw
/dev/rdsk/c0t3d0s3 -> ../../devices/[...]/xkdisk@3,0:d,raw
/dev/rdsk/c0t3d0s4 -> ../../devices/[...]/xkdisk@3,0:e,raw
/dev/rdsk/c0t3d0s5 -> ../../devices/[...]/xkdisk@3,0:f,raw
/dev/rdsk/c0t3d0s6 -> ../../devices/[...]/xkdisk@3,0:g,raw
/dev/rdsk/c0t3d0s7 -> ../../devices/[...]/xkdisk@3,0:h,raw

FILES
/dev/dsk/* disk entries (block device interface)
/dev/rdsk/* disk entries (character device interface)
/devices/* device special files (minor device nodes)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
add_drv(1M), devfsadm(1M), devlinks(1M), drvconfig(1M), fdisk(1M),
ports(1M), tapes(1M), attributes(5), dkio(7I), esp(7D), attach(9E),
ddi_create_minor_node(9F)

Writing Device Drivers

BUGS
`disks` silently ignores malformed minor device names.
**NAME**
diskscan – perform surface analysis

**SYNOPSIS**
diskscan [-W] [-n] [-y] raw_device

**DESCRIPTION**
diskscan is used by the system administrator to perform surface analysis on a portion of a hard disk. The disk portion may be a raw partition or slice; it is identified using its raw device name. By default, the specified portion of the disk is read (non-destructive) and errors reported on standard error. In addition, a progress report is printed on standard out. The list of bad blocks should be saved in a file and later fed into addbadsec(1M), which will remap them.

**OPTIONS**
The following options are supported:

- `-n` Causes diskscan to suppress linefeeds when printing progress information on standard out.
- `-W` Causes diskscan to perform write and read surface analysis. This type of surface analysis is destructive and should be invoked with caution.
- `-y` Causes diskscan to suppress the warning regarding destruction of existing data that is issued when `-W` is used.

**OPERANDS**
The following operands are supported:

- `raw_device` The address of the disk drive (see FILES).

**FILES**
The raw device should be `/dev/rdsk/c? [t?]d? [ps]?`. See disks(1M) for an explanation of SCSI and IDE device naming conventions.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
addbadsec(1M), disks(1M), fdisk(1M), fmthard(1M), format(1M), attributes(5)

**NOTES**
The format(1M) utility is available to format, label, analyze, and repair SCSI disks. This utility is included with the diskscan, addbadsec(1M), fdisk(1M), and fmthard(1M) commands available for x86. To format an IDE disk, use the DOS format utility; however, to label, analyze, or repair IDE disks on x86 systems, use the Solaris format(1M) utility.
The `dispadmin` command displays or changes process scheduler parameters while the system is running.

`dispadmin` does limited checking on the values supplied in file to verify that they are within their required bounds. The checking, however, does not attempt to analyze the effect that the new values have on the performance of the system. Inappropriate values can have a negative effect on system performance. (See System Administration Guide: Basic Administration)

The following options are supported:

- `-c class` Specifies the class whose parameters are to be displayed or changed. Valid class values are: `RT` for the real-time class, `TS` for the time-sharing class, `IA` for the inter-active class, `FSS` for the fair-share class, and `FX` for the fixed-priority class. The time-sharing and inter-active classes share the same scheduler, so changes to the scheduling parameters of one will change those of the other.

- `-d [class]` Sets or displays the name of the default scheduling class to be used on reboot by the startup script `/etc/init.d/sysetup`. If class name is not specified, the name and description of the current default scheduling class is displayed. If class name is specified and is a valid scheduling class name, then it is saved in `dispadmin`'s private configuration file `/etc/dispadmin.conf`. Only super-users can set the default scheduling class.

- `-g` Gets the parameters for the specified class and writes them to the standard output. Parameters for the real-time class are described in `rt_dptbl(4)`. Parameters for the time-sharing and inter-active classes are described in `ts_dptbl(4)`. Parameters for the fair-share class are described in `FSS(7)`. Parameters for the fixed-priority class are described in `fx_dptbl(4)`.

The `-g` and `-s` options are mutually exclusive: you may not retrieve the table at the same time you are overwriting it.

- `-l` Lists the scheduler classes currently configured in the system.

- `-r res` When using the `-g` option you may also use the `-r` option to specify a resolution to be used for outputting the time quantum values. If no resolution is specified, time quantum values are in milliseconds. If `res` is specified it must be a positive integer between 1 and 1000000000 inclusive, and the resolution used is the
reciprocal of \( \text{res} \) in seconds. For example, a \( \text{res} \) value of 10 yields time quantum values expressed in tenths of a second; a \( \text{res} \) value of 1000000 yields time quantum values expressed in microseconds. If the time quantum cannot be expressed as an integer in the specified resolution, it is rounded up to the next integral multiple of the specified resolution.

\textbf{-s file}

Sets scheduler parameters for the specified class using the values in \textit{file}. These values overwrite the current values in memory—they become the parameters that control scheduling of processes in the specified class. The values in \textit{file} must be in the format output by the \textbf{-g} option. Moreover, the values must describe a table that is the same size (has same number of priority levels) as the table being overwritten. Super-user privileges are required in order to use the \textbf{-s} option.

Specify time quantum values for scheduling classes in system clock ticks, and not in constant-time units. Time quantum values are based on the value of the kernel’s \texttt{hz} variable. If kernel variable \texttt{hires_tick} is set to 1 to get higher resolution clock behavior, the actual time quanta will be reduced by the order of 10.

The \textbf{-g} and \textbf{-s} options are mutually exclusive: you may not retrieve the table at the same time you are overwriting it.

\textbf{EXAMPLE 1} Retrieving the Current Scheduler Parameters for the real-time class

The following command retrieves the current scheduler parameters for the real-time class from kernel memory and writes them to the standard output. Time quantum values are in microseconds.

\[ \text{dispadmin} -c \text{RT} -g -r 1000000 \]

\textbf{EXAMPLE 2} Overwriting the Current Scheduler Parameters for the Real-time Class

The following command overwrites the current scheduler parameters for the real-time class with the values specified in \texttt{rt.config}.

\[ \text{dispadmin} -c \text{RT} -s \text{rt.config} \]

\textbf{EXAMPLE 3} Retrieving the Current Scheduler Parameters for the Time-sharing Class

The following command retrieves the current scheduler parameters for the time-sharing class from kernel memory and writes them to the standard output. Time quantum values are in nanoseconds.

\[ \text{dispadmin} -c \text{TS} -g -r 1000000000 \]
EXAMPLE 4 Overwriting the Current Scheduler Parameters for the Time-sharing Class

The following command overwrites the current scheduler parameters for the time-sharing class with the values specified in ts.config.

dispadmin -c TS -s ts.config

FILES
/etc/dispadmin.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
priocntl(1), priocntl(2), fx_dptbl(4), rt_dptbl(4), ts_dptbl(4), attributes(5), FSS(7)

System Administration Guide: Basic Administration Programming Interfaces Guide

DIAGNOSTICS
dispadmin prints an appropriate diagnostic message if it fails to overwrite the current scheduler parameters due to lack of required permissions or a problem with the specified input file.
NAME
dmesg – collect system diagnostic messages to form error log

SYNOPSIS
/usr/bin/dmesg
/usr/sbin/dmesg

DESCRIPTION
dmesg is made obsolete by syslogd(1M) for maintenance of the system error log.

dmesg looks in a system buffer for recently printed diagnostic messages and prints
them on the standard output.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO
syslogd(1M), attributes(5)
NAME
dmi_cmd – DMI command line interface utility

SYNOPSIS
dmi_cmd -AL -c compId -g groupId [-dp] [-a attrId] [-m max-count] [-r req-mode] [-s hostname]
dmi_cmd -CD -c compId [-s hostname]
dmi_cmd -CI mif-file [-s hostname]
dmi_cmd -CL [-dp] [-c compId] [-m max-count] [-r req-mode] [-s hostname]
dmi_cmd -GD -c compId -g groupId [-s hostname]
dmi_cmd -GI schema-file -c compId [-s hostname]
dmi_cmd -GL -c compId -g groupId [-dp] [-m max-count] [-r req-mode] [-s hostname]
dmi_cmd -GM -c compId [-m max-count] [-s hostname]
dmi_cmd -h

dmi_cmd -ND -c compId -l language-string [-s hostname]
dmi_cmd -NI schema-file -c compId [-s hostname]
dmi_cmd -NL -c compId [-s hostname]
dmi_cmd -V [-s hostname]
dmi_cmd -W config-file [-s hostname]
dmi_cmd -X [-s hostname]

DESCRIPTION
The dmi_cmd utility provides the ability to:

- Obtain version information about the DMI Service Provider
- Set the configuration to describe the language required by the management application
- Obtain configuration information describing the current language in use for the session
- Install components into the database
- List components in a system to determine what is installed
- Delete an existing component from the database
- Install group schemas to an existing component in the database
- List class names for all groups in a component
- List the groups within a component
- Delete a group from a component
- Install a language schema for an existing component in the database
- List the set of language mappings installed for a specified component
- Delete a specific language mapping for a component
List the properties for one or more attributes in a group

**OPTIONS**

The following options are supported:

- `-a attrId` Specify an attribute by its ID (positive integer). The default value is 0.
- `-AL` List the attributes for the specified component.
- `-c compld` Specify a component by its ID (positive integer). The default value is 0.
- `-CD` Delete the specified component.
- `-CT mif-file` Install the component described in the `mif-file`.
- `-CL` List component information.
- `-d` Display descriptions.
- `-g groupId` Specify a group by its ID (positive integer). The default value is 0.
- `-GD` Delete a group for the specified component.
- `-GI schema-file` Install the group schema specified in `schema-file`.
- `-GL` List the groups for the specified component.
- `-GM` List the class names for the specified component.
- `-h` Help. Print the command line usage.
- `-l language-string` Specify a language mapping.
- `-m max-count` Specify the maximum number of components to display.
- `-ND` Delete a language mapping for the specified component.
- `-NL schema-file` Install the language schema specified in `schema-file`.
- `-NI` List the language mappings for a specified component.
- `-p` Display the pragma string.
- `-r req-mode` Specify the request mode. The valid values are:
  1. DMI_UNIQUE - access the specified item (or table row).
  2. DMI_FIRST - access the first item.
  3. DMI_NEXT - access the next item. The default request mode is DMI_UNIQUE.
- `-s hostname` Specify the host machine on which `dmispd` is running. The default host is the local host.
dmi_cmd(1M)

- v  Version. Prints version information about the DMI Service Provider.

- w config-file  Set the configuration specified in config-file to dmispd.

- x  Retrieve configuration information describing the current language in use.

EXIT STATUS  The following error values are returned:
0  Successful completion.
-1  An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadmi</td>
</tr>
</tbody>
</table>

SEE ALSO  dmiget(1M), dmispd(1M), attributes(5)
NAME  dmiget – DMI command line retrieval utility

SYNOPSIS  dmiget  -c  compld  [-a  attrId]  [-g  groupld]  [-s  hostname]
           dmiget  -h

DESCRIPTION  The dmiget utility retrieves the table information of a specific component in the DMI Service Provider.

OPTIONS  The following options are supported:

   -a  attrId  Display the attribute information for the component specified with the -c argument.
   -c  compld  Display all the table information for the specified component.
   -g  groupld  Display all the attribute information in the group specified with groupld for the component specified with the -c argument
   -h  Help. Print the command line usage.
   -s  hostname  Specify the host machine on which dmispd is running. The default host is the local host.

EXIT STATUS  The following error values are returned:

   0  Successful completion.
   -1  An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadmi</td>
</tr>
</tbody>
</table>

SEE ALSO  dmicmd(1M), dmispd(1M), attributes(5)
NAME
dminfo – report information about a device entry in a device maps file

SYNOPSIS
dminfo [-v] [-a] [-f pathname]
dminfo [-v] [-a] [-f pathname] -n dev-name...
dminfo [-v] [-a] [-f pathname] -d dev-path...
dminfo [-v] [-a] [-f pathname] -t dev-type...
dminfo [-v] [-f pathname] -u dm-entry

DESCRIPTION
dminfo reports and updates information about the device_maps(4) file.

OPTIONS
The following options are supported

-a
   Succeed if any of the requested entries are found. If used with -v, all entries that match the requested case(s) are printed.

-d dev-path
   Search by dev-path. Search device_maps(4) for a device special pathname in the device_list field matching the dev-path argument. This option cannot be used with -n, -t or -u.

-f pathname
   Use a device_maps file with pathname instead of /etc/security/device_maps.

-n dev-name
   Search by dev-name. Search device_maps(4) for a device_name field matching dev-name. This option cannot be used with -d, -t or -u.

-t dev-type
   Search by dev-type. Search device_maps(4) for a device_type field matching the given dev-type. This option cannot be used with -d, -n or -u.

-u dm-entry
   Update the device_maps(4) file. This option is provided to add entries to the device_maps(4) file. The dm-entry must be a complete device_maps(4) file entry. The dm-entry has fields, as in the device_maps file. It uses the colon (:) as a field separator, and white space as the device_list subfield separators. The dm-entry is not made if any fields are missing, or if the dm-entry would be a duplicate. The default device maps file can be updated only by the super user.

-v
   Verbose. Print the requested entry or entries, one line per entry, on the standard output. If no entries are specified, all are printed.

EXIT STATUS
0   Successful completion.
1   Request failed.
2   Incorrect syntax.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

bsmconv(1M), device_maps(4), attributes(5)

NOTES

The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
NAME  dmispd – Sun Solstice Enterprise DMI Service Provider

SYNOPSIS  /usr/lib/dmi/dmispd [-h] [-c config-dir] [-d debug-level]

DESCRIPTION  The DMI Service Provider, dmispd, is the core of the DMI solution. Management applications and Component instrumentations communicate with each other through the Service Provider. The Service Provider coordinates and arbitrates requests from the management application to the specified component instrumentations. The Service Provider handles runtime management of the Component Interface (CI) and the Management Interface (MI), including component installation, registration at the MI and CI level, request serialization and synchronization, event handling for CI, and general flow control and housekeeping.

The Service Provider is invoked from a start-up script at boot time only if contents of the DMI Service Provider configuration file /etc/dmi/conf/dmispd.conf are non-trivial.

OPTIONS  The following options are supported:

- `c config-dir`  Specify the full path of the directory containing the dmispd.conf configuration file. The default directory is /etc/dmi/conf.

- `d debug-level`  Debug. Levels from 0 to 5 are supported, giving various levels of debug information. The default is 0, meaning no debug information is given.

If this option is omitted, then dmispd is run as a daemon process.

- `h`  Help. Print the command line usage.

EXIT STATUS  The following error values are returned:

0  Successful completion.

1  An error occurred.

FILES  

/etc/dmi/conf/dmispd.conf  DMI Service Provider configuration file

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadmi</td>
</tr>
</tbody>
</table>

SEE ALSO  snmpXdmid(1M), attributes(5)
NAME
dnskeygen – generate public, private, and shared secret keys for DNS

SYNOPSIS

DESCRIPTION
The dnskeygen utility is a tool to generate and maintain keys for DNS security with
the Domain Name System ("DNS"). Use dnskeygen to generate public and private
keys to authenticate zone data or shared secret keys for request and transaction
signatures.

dnskeygen stores each key in two files:

K<name>+<algorithm>+<footprint>.private

and

K<name>+<algorithm>+<footprint>.key

The key is stored in a portable format within
K<name>+<alg>+<footprint>.private. The public key is stored in
K<name>+<alg>+<footprint>.private in the DNS zone file format:

K<name> IN KEY <flags><algorithm><protocol><exponent|modulus>

The underlying cryptographic math is done by the DNSSAFE and Foundation Toolkit
libraries.

OPTIONS
The dnskeygen utility supports the following options:

-D Generate a DSA/DSS key. The value of size must be one of the
    following: 512, 576, 640, 704, 768, 832, 896, 960 or 1024.

-F Use a large exponent for key generation. Use for RSA only.

-H Generate a HMAC-MD5 key. The value of size must be between
    128 and 504.

-R Generate an RSA key. The value of size must be between 512 and
    4096.

-a Cannot use key for authentication.

-c Cannot use key for encryption.

-h Generate host or service key.

-n name Set the key’s name to name.

-p num Set the key’s protocol field to num. The values for num are as
    follows:

<table>
<thead>
<tr>
<th>num</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>If -z or -h is specified (DNSSEC), this is the</td>
</tr>
<tr>
<td></td>
<td>default value.</td>
</tr>
<tr>
<td>2</td>
<td>Unless specified, the default value for all</td>
</tr>
<tr>
<td></td>
<td>other options.</td>
</tr>
</tbody>
</table>
1 Use this value for TLS.
4 Use this value for IPSEC.
255 Use this value for ANY.

-s num Set the key's strength field to num. The default value of num is 0.
-u Generate User key, for example, for email.
-z Generate Zone key for DNS validation.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard Bind 8.2.4</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)


domainname(1M)

NAME
domainname – Set or display name of the current domain

SYNOPSIS
domainname [name-of-domain]

DESCRIPTION
Without an argument, domainname displays the name of the current domain, which typically encompasses a group of hosts or passwd entries under the same administration. The domainname command is used by various components of Solaris to resolve names for types such as passwd, hosts and aliases. By default, various naming services such as NIS, NIS+, the Internet Domain Name Service (DNS) and sendmail(1M) use this domainname to resolve names. The domainname is normally a valid Internet domain name.

The domainname for various naming services can also be set by other means. For example, ypinit can be used to specify a different domain for all NIS calls. The file /etc/resolv.conf can be used to specify a different domain for DNS lookups. For sendmail, the domainname can be specified through the sendmail_vars entry in the /etc/nsswitch.conf file, or through the /etc/mail/sendmail.cf file. Only the superuser can set the name of the domain by specifying the new domainname as an argument. The domain name of the machine is usually set during boot-time through the domainname command in the /etc/init.d/inetinit file. If the new domain name is not saved in the /etc/defaultdomain file, the machine will revert back to the old domain after rebooting.

FILES
/etc/defaultdomain
/etc/init.d/inetinit
/etc/mail/sendmail.cf
/etc/nsswitch.conf
/etc/resolv.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
nis+(1), nischown(1), nispwd(1), hostconfig(1M), named(1M), nisaddcred(1M), sendmail(1M), ypinit(1M), sys-unconfig(1M), aliases(4), defaultdomain(4), hosts(4), nsswitch.conf(4), passwd(4), attributes(5)
The default operation of `drvconfig` is to create the `/devices` directory tree that describes, in the filesystem namespace, the hardware layout of a particular machine. Hardware devices present on the machine and powered on as well as pseudo-drivers are represented under `/devices`. Normally this command is run automatically after a new driver has been installed (with `add_drv(1M)`) and the system has been rebooted.

`drvconfig` reads the `/etc/minor_perm` file to obtain permission information and applies the permissions only to nodes that it has just created. It does not change permissions on already existing nodes. The format of the `/etc/minor_perm` file is as follows:

```
name: minor_name permissions owner group
```

`minor_name` may be the actual name of the minor node, or contain shell metacharacters to represent several minor nodes (see `sh(1)`).

For example:

```
sd:* 0640 root sys
zs:[a-z],cu 0600 uucp uucp
mm:kmem 0640 root bin
```

The first line sets all devices exported by the `sd` node to 0640 permissions, owned by `root`, with group `sys`. In the second line, devices such as `a,cu` and `z,cu` exported by the `zs` driver are set to 0600 permission, owned by `uucp`, with group `uucp`. In the third line the `kmem` device exported by the `mm` driver is set to 0640 permission, owned by `root`, with group `bin`.

The following options are supported:

- `-a alias_name` Add the name `alias_name` to the list of aliases that this driver is known by. This option, if used, must be used with the `-m major_num`, the `-b` and the `-i drivername` options.
- `-b` Add a new major number to name binding into the kernel’s internal `name_to_major` tables. This option is not normally used directly, but is used by other utilities such as `add_drv(1M)`. Use of the `-b` option requires that `-i` and `-m` be used also. No `/devices` entries are created.
- `-c class_name` The driver being added to the system exports the class `class_name`. This option is not normally used directly, but is used by other utilities. It is only effective when used with the `-b` option.
Only configure the devices for the named driver. The following options are used by the implementation of add_drv(1M) and rem_drv(1M), and may not be supported in future versions of Solaris:

- **-m major_num** Specify the major number major_num for this driver to add to the kernel’s name_to_major binding tables.

- **-n** Do not try to load and attach any drivers, or if the -i option is given, do not try to attach the driver named drivername.

- **-r rootdir** Build the device tree under the directory specified by rootdir instead of the default /devices directory.

**EXIT STATUS**

0 Successful completion.

non-zero An error occurred.

**FILES**

- /devices Device nodes directory
- /etc/minor_perm Minor mode permissions
- /etc/name_to_major Major number binding
- /etc/driver_classes Driver class binding file

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

sh(1), add_drv(1M), devlinks(1M), disks(1M), modinfo(1M), modload(1M), modunload(1M), ports(1M), rem_drv(1M), tapes(1M), path_to_inst(4), attributes(5)

**NOTES**

This document does not constitute an API. /etc/minor_perm, /etc/name_to_major, /etc/driver_classes, and /devices may not exist or may have different contents or interpretations in a future release. The existence of this notice does not imply that any other documentation that lacks this notice constitutes an API.
dsvclockd(1M)

NAME  dsvclockd – DHCP service lock daemon

SYNOPSIS  /usr/lib/inet/dsvclockd [-d 1 | 2] [-f] [-v]

DESCRIPTION  The dsvclockd daemon is a lock manager that works in conjunction with the Dynamic Host Configuration Protocol (DHCP) Data Service Library (libdhcpsvc). It provides shared or exclusive access to the dhcp_network(4) and dhcptab(4) tables. This service is used by the SUNWbinfiles and SUNWfiles DHCP data store modules. See dhcp_modules(5).

dsvclockd is started on demand by libdhcpsvc. The dsvclockd daemon should be started manually only if command line options need to be specified.

OPTIONS  The following options are supported:

- -d 1 | 2  Set debug level. Two levels of debugging are currently available, 1 and 2. Level 2 is more verbose.

- f  Run in the foreground instead of as a daemon process. When this option is used, messages are sent to standard error instead of to syslog(3C).

- v  Provide verbose output.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO  syslog(3C), dhcp_network(4), dhcptab(4), dhcp_modules(5), attributes(5)
dumpadm – configure operating system crash dump

**SYNOPSIS**

```bash
/usr/sbin/dumpadm [-nuy] [-c content-type] [-d dump-device] [-m minx
| minm | min%] [-s savecore-dir] [-r root-dir]
```

**DESCRIPTION**

The `dumpadm` program is an administrative command that manages the configuration of the operating system crash dump facility. A crash dump is a disk copy of the physical memory of the computer at the time of a fatal system error. When a fatal operating system error occurs, a message describing the error is printed to the console. The operating system then generates a crash dump by writing the contents of physical memory to a predetermined dump device, which is typically a local disk partition. The dump device can be configured by way of `dumpadm`. Once the crash dump has been written to the dump device, the system will reboot.

Fatal operating system errors can be caused by bugs in the operating system, its associated device drivers and loadable modules, or by faulty hardware. Whatever the cause, the crash dump itself provides invaluable information to your support engineer to aid in diagnosing the problem. As such, it is vital that the crash dump be retrieved and given to your support provider. Following an operating system crash, the `savecore(1M)` utility is executed automatically during boot to retrieve the crash dump from the dump device, and write it to a pair of files in your file system named `unix.X` and `vmcore.X`, where X is an integer identifying the dump. Together, these data files form the **saved crash dump**. The directory in which the crash dump is saved on reboot can also be configured using `dumpadm`.

By default, the dump device is configured to be an appropriate swap partition. Swap partitions are disk partitions reserved as virtual memory backing store for the operating system, and thus no permanent information resides there to be overwritten by the dump. See `swap(1M)`. To view the current dump configuration, execute `dumpadm` with no arguments:

```
example$ dumpadm

Dump content: kernel pages
Dump device: /dev/dsk/c0t0d0s1 (swap)
Savecore directory: /var/crash/saturn
Savecore enabled: yes
```

When no options are specified, `dumpadm` prints the current crash dump configuration. The example shows the set of default values: the dump content is set to kernel memory pages only, the dump device is a swap disk partition, the directory for `savecore` files is set to `/var/crash/hostname`, and `savecore` is set to run automatically on reboot.

When one or more options are specified, `dumpadm` verifies that your changes are valid, and if so, reconfigures the crash dump parameters and displays the resulting configuration. You must be `root` to view or change dump parameters.

**OPTIONS**

The following options are supported:
-c content-type

Modify the dump configuration so that the crash dump consists of the specified dump content. The content should be one of the following:

- kernel: Kernel memory pages only.
- all: All memory pages.
- curproc: Kernel memory pages, and the memory pages of the process whose thread was currently executing on the CPU on which the crash dump was initiated. If the thread executing on that CPU is a kernel thread not associated with any user process, only kernel pages will be dumped.

-d dump-device

Modify the dump configuration to use the specified dump device. The dump device may one of the following:

- dump-device: A specific dump device specified as an absolute pathname, such as `/dev/dsk/cNtNdNsN`.
- swap: If the special token swap is specified as the dump device, dumpadm examines the active swap entries and selects the most appropriate entry to configure as the dump device. See swap(1M). Refer to the NOTES below for details of the algorithm used to select an appropriate swap entry. When the system is first installed, dumpadm uses swap to determine the initial dump device setting.

-m minK | minM | minG

Create a minfree file in the current savecore directory indicating that savecore should maintain at least the specified amount of free space in the file system where the savecore directory is located. The min argument can be one of the following:

- k: A positive integer suffixed with the unit k specifying kilobytes.
- m: A positive integer suffixed with the unit m specifying megabytes.
A % symbol, indicating that the minfree value should be computed as the specified percentage of the total current size of the file system containing the savecore directory. The savecore command will consult the minfree file, if present, prior to writing the dump files. If the size of these files would decrease the amount of free disk space below the minfree threshold, no dump files are written and an error message is logged. The administrator should immediately clean up the savecore directory to provide adequate free space, and re-execute the savecore command manually. The administrator can also specify an alternate directory on the savecore command-line.

-\textbf{-n} Modify the dump configuration to not run savecore automatically on reboot. This is not the recommended system configuration; if the dump device is a swap partition, the dump data will be overwritten as the system begins to swap. If savecore is not executed shortly after boot, crash dump retrieval may not be possible.

-\textbf{-r root-dir} Specify an alternate root directory relative to which dumpadm should create files. If no -r argument is specified, the default root directory "/" is used.

-\textbf{-s savecore-dir} Modify the dump configuration to use the specified directory to save files written by savecore. The directory should be an absolute path and exist on the system. If upon reboot the directory does not exist, it will be created prior to the execution of savecore. See the \texttt{NOTES} section below for a discussion of security issues relating to access to the savecore directory. The default savecore directory is /var/crash/hostname where hostname is the output of the -n option to the \texttt{uname} command.

-\textbf{-u} Forcibly update the kernel dump configuration based on the contents of /etc/dumpadm.conf. Normally this option is used only on reboot by the startup script /etc/init.d/savecore, when the dumpadm settings from the previous boot must be restored. Your dump configuration is saved in the configuration file for this purpose. If the configuration file is missing or contains invalid values for any dump properties, the
dumpadm(1M)

default values are substituted. Following the update, the configuration file is resynchronized with the kernel dump configuration.

-\(y\) Modify the dump configuration to automatically run savecore on reboot. This is the default for this dump setting.

**EXAMPLE 1** Reconfiguring The Dump Device To A Dedicated Dump Device:

The following command reconfigures the dump device to a dedicated dump device:

```
example# dumpadm -d /dev/dsk/c0t2d0s2
```

Dump content: kernel pages
Dump device: /dev/dsk/c0t2d0s2 (dedicated)
Savecore directory: /var/crash/saturn
Savecore enabled: yes

**EXIT STATUS** The following exit values are returned:

0 Dump configuration is valid and the specified modifications, if any, were made successfully.

1 A fatal error occurred in either obtaining or modifying the dump configuration.

2 Invalid command line options were specified.

**FILES** /dev/dump
/etc/init.d/savecore
/etc/dumpadm.conf
savecore-directory
minfree

**ATTRIBUTES** See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>

**SEE ALSO** uname(1), savecore(1M), swap(1M), attributes(5)

**NOTES**

**Dump Device Selection** When the special swap token is specified as the argument to dumpadm -d the utility will attempt to configure the most appropriate swap device as the dump device. dumpadm configures the largest swap block device as the dump device; if no block devices are available for swap, the largest swap entry is configured as the dump device.
device. If no swap entries are present, or none can be configured as the dump device, a warning message will be displayed. While local and remote swap files can be configured as the dump device, this is not recommended.

In the event that the dump device is also a swap device, and the swap device is deleted by the administrator using the `swap -d` command, the `swap` command will automatically invoke `dumpadm -d swap` in order to attempt to configure another appropriate swap device as the dump device. If no swap devices remain or none can be configured as the dump device, the crash dump will be disabled and a warning message will be displayed. Similarly, if the crash dump is disabled and the administrator adds a new swap device using the `swap -a` command, `dumpadm -d swap` will be invoked to re-enable the crash dump using the new swap device.

Once `dumpadm -d swap` has been issued, the new dump device is stored in the configuration file for subsequent reboots. If a larger or more appropriate swap device is added by the administrator, the dump device is not changed; the administrator must re-execute `dumpadm -d swap` to reselect the most appropriate device from the new list of swap devices.

If the `dumpadm -m` option is used to create a `minfree` file based on a percentage of the total size of the file system containing the `savecore` directory, this value is not automatically recomputed if the file system subsequently changes size. In this case, the administrator must re-execute `dumpadm -m` to recompute the `minfree` value. If no such file exists in the `savecore` directory, `savecore` will default to a free space threshold of one megabyte. If no free space threshold is desired, a `minfree` file containing size 0 can be created.

If, upon reboot, the specified `savecore` directory is not present, it will be created prior to the execution of `savecore` with permissions 0700 (read, write, execute by owner only) and owner `root`. It is recommended that alternate `savecore` directories also be created with similar permissions, as the operating system crash dump files themselves may contain secure information.
editmap(1M)

NAME
editmap – query and edit single records in database maps for sendmail

SYNOPSIS
editmap -C file [-N] [-f] [-q | -u | -x] maptype mapname key ["value"...]

DESCRIPTION
The editmap command queries or edits one record in a database maps used by the
keyed map lookups in sendmail(1M). Arguments are passed on the command line
and output (for queries) is directed to standard output.

Depending on how it is compiled, editmap handles up to three different database
formats, selected using the maptype parameter. See OPERANDS.

If the TrustedUser option is set in the sendmail configuration file and editmap is
invoked as root, the generated files are owned by the specified TrustedUser.

OPTIONS
The following options are supported:
- C file Use the specified sendmail configuration file (file) to look up the
  TrustedUser option.
- f Disable the folding of all upper case letters in the key to lower
case. Normally, all upper case letters in the key are folded to upper
case. This is intended to mesh with the -f flag in the K line in
sendmail.cf. The value is never case folded.
- N Include the null byte that terminates strings in the map (for alias
  maps).
- q Query the map for the specified key. If found, print value to
standard output and exit with 0. If not found then print an error
message to stdout and exit with EX_UNAVAILABLE.
- u Update the record for key with value or inserts a new record if one
doesn’t exist. Exits with 0 on success or EX_IOERR on failure.
- x Delete the specific key from the map. Exit with 0 on success or
EX_IOERR on failure.

OPERANDS
The following operands are supported:
key The left hand side of a record.
  Each record is of the form:
    key value
  key and value are separated by white space.
mapname File name of the database map being created.
maptype Specifies the database format. The following maptype parameters
  are available:
    dbm Specifies DBM format maps.
    btree Specifies B-Tree format maps.
hash

Specifies hash format maps.

value

The right hand side of a record.

Each record is of the form:

key value

key and value are separated by white space.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO

makemap(1M), sendmail(1M), attributes(5)
edquota is a quota editor. One or more users may be specified on the command line. For each user a temporary file is created with an ASCII representation of the current disk quotas for that user for each mounted ufs file system that has a quotas file, and an editor is then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(1) unless the EDITOR environment variable specifies otherwise.

Only the super-user may edit quotas. In order for quotas to be established on a file system, the root directory of the file system must contain a file, owned by root, called quotas. (See quotaon(1M).)

proto_user and username can be numeric, corresponding to the UID of a user. Unassigned UIDs may be specified; unassigned names may not. In this way, default quotas can be established for users who are later assigned a UID.

If no options are specified, the temporary file created will have one or more lines of the format, where a block is considered to be a 1024 byte (1K) block:

```
fs mount_point blocks (soft = number, \ hard =number ) inodes (soft =number, \ hard =number)
```

The number fields may be modified to reflect desired values.

The following options are supported:

- `-p` Duplicate the quotas of the proto_user specified for each username specified. This is the normal mechanism used to initialize quotas for groups of users.

- `-t` Edit the soft time limits for each file system. If the time limits are zero, the default time limits in /usr/include/sys/fs/ufs_quotas.h are used. The temporary file created will have one or more lines of the form

```
fs mount_point blocks time limit = number tmunit, files time limit = number tmunit
```

tmunit may be one of “month”, “week”, “day”, “hour”, “min” or “sec”; characters appended to these keywords are ignored, so you may write “months” or “minutes” if you prefer. The number and tmunit fields may be modified to set desired values. Time limits are printed in the greatest possible time unit such that the value is greater than or equal to one. If “default” is printed after the tmunit, this indicates that the value shown is zero (the default).
See largefile(5) for the description of the behavior of edquota when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

FILES
- quotas: quota file at the file system root
- /etc/mnttab: table of mounted file systems

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
- vi(1), quota(1M), quotacheck(1M), quotaon(1M), repquota(1M), attributes(5), largefile(5), quotactl(7I)

NOTES
All UIDs can be assigned quotas.
**SYNOPSIS**

**SPARC**

```
/usr/platform/platform-name/sbin/eeprom [-f device] [parameter [value]]
```

**x86**

```
/usr/platform/platform-name/sbin/eeprom [-f device] [-I] [mmu-modlist] [parameter [value]]
```

**DESCRIPTION**

eeprom displays or changes the values of parameters in the EEPROM. It processes parameters in the order given. When processing a `parameter` accompanied by a `value`, `eeprom` makes the indicated alteration to the EEPROM; otherwise, it displays the `parameter`'s value. When given no parameter specifiers, `eeprom` displays the values of all EEPROM parameters. A `-` (hyphen) flag specifies that parameters and values are to be read from the standard input (one `parameter` or `parameter=value` per line).

Only the super-user may alter the EEPROM contents.

eeprom verifies the EEPROM checksums and complains if they are incorrect.

`platform-name` is the name of the platform implementation and can be found using the `-i` option of `uname(1)`.

**SPARC**

SPARC based systems implement firmware password protection with `eeprom`, using the `security-mode`, `security-password` and `security-#badlogins` properties.

**x86**

EEPROM storage is simulated using a file residing in the platform-specific boot area. The `/platform/platform-name/boot/solaris/bootenv.rc` file simulates EEPROM storage.

Because x86 based systems typically implement password protection in the system BIOS, there is no support for password protection in the `eeprom` program. While it is possible to set the `security-mode`, `security-password` and `security-#badlogins` properties on x86 based systems, these properties have no special meaning or behavior on x86 based systems.

**OPTIONS**

- `-f device`
  
  Use `device` as the EEPROM device.

- `-I`
  
  Initialize boot properties on an x86 based system. Only `init(1M)` run-level initialization scripts should use this option.

**OPERANDS**

- `acpi-user-options`
  
  A configuration variable that controls the use of ACPI. A value of `0x0` attempts to use ACPI if it is available on the system. A value of `0x2` disables the use of ACPI. Defaults to `0x0`.

- `mmu-modlist`
  
  A colon-separated list of candidate modules that implement memory management. If `mmu-modlist` is defined, it overrides the default list derived from the memory configuration on x86 based
Instead, the first module in the list that is found in 
/platform/platform-name/kernel/mmu is used.

Not all OpenBoot systems support all parameters. Defaults vary depending on the system and the PROM revision. See the output in the “Default Value” column of the printenv command, as entered at the ok (OpenBoot) prompt, to determine the default for your system.

auto-boot?
   If true, boots automatically after power-on or reset. Defaults to true.

ansi-terminal?
   Configuration variable used to control the behavior of the terminal emulator. The value false makes the terminal emulator stop interpreting ANSI escape sequences; instead, echoes them to the output device. Defaults to true.

bootpath
   Automates the selection of the boot device instead of manually using the Device Configuration Assistant.

boot-args
   Holds a string of arguments that are passed to the boot subsystem. For example, you can use boot-args=’ -install dhcp’ to request a customer jumpstart installation. See boot(1M), kadb(1M) and kernel(1M).

boot-command
   Command executed if auto-boot? is true. Defaults to boot.

boot-device
   Device from which to boot. boot-device may contain 0 or more device specifiers separated by spaces. Each device specier may be either a prom device alias or a prom device path. The boot prom will attempt to open each successive device specier in the list beginning with the first device specier. The first device specier that opens successfully will be used as the device to boot from. Defaults to disk net.

boot-file
   File to boot (an empty string lets the secondary booter choose default). Defaults to empty string.

boot-from
   Boot device and file (OpenBoot PROM version 1.x only). Defaults to vmunix.

boot-from-diag
   Diagnostic boot device and file (OpenBoot PROM version 1.x only). Defaults to le( )unix.

comX-noprobe
   Where X is the number of the serial port, prevents device probe on serial port X.

diag-device
   Diagnostic boot source device. Defaults to net.
diag-file
File from which to boot in diagnostic mode. Defaults to empty string.

diag-level
Diagnostics level. Values include off, min, max and menus. There may be
additional platform-specific values. When set to off, POST is not called. If POST is
called, the value is made available as an argument to, and is interpreted by POST.
Defaults to platform-dependent.

diag-switch?
If true, run in diagnostic mode. Defaults to false on most desktop systems, true
on most servers.

error-reset-recovery
Recover after an error reset trap. Defaults to platform-specific setting.

On platforms supporting this variable, it replaces the watchdog-reboot?,
watchdog-sync?, redmode-reboot?, redmode-sync?, sir-sync?, and
xir-sync? parameters.

The options are:
none Print a message describing the reset trap and go to OpenBoot PROM’s
user interface, aka OK prompt.
sync Invoke OpenBoot PROM’s sync word after the reset trap. Some
platforms may treat this as none after an externally initiated reset (XIR)
trap.
boot Reboot after the reset trap. Some platforms may treat this as none after
an XIR trap.

code-debug?
If true, include name parameter for plug-in device FCodes. Defaults to false.

hardware-revision
System version information.

input-device
Input device used at power-on (usually keyboard, ttya, or ttyb). Defaults to
keyboard.

keyboard-click?
If true, enable keyboard click. Defaults to false.

keymap
Keymap for custom keyboard.

last-hardware-update
System update information.

load-base
Default load address for client programs. Default value is 16384.
local-mac-address?
    If true, network drivers use their own MAC address, not the system’s. Defaults to false.

mfg-mode
    Manufacturing mode argument for POST. Possible values include off or chamber. The value is passed as an argument to POST. Defaults to off.

mfg-switch?
    If true, repeat system self-tests until interrupted with STOP-A. Defaults to false.

nvramrc
    Contents of NVRAMRC. Defaults to empty.

network-boot-arguments
    Arguments to be used by the PROM for network booting. Defaults to an empty string. network-boot-arguments can be used to specify the boot protocol (RARP/DHCP) to be used and a range of system knowledge to be used in the process.

    The syntax for arguments supported for network booting is:

    \[ \text{protocol}, \{ \text{key}=\text{value}, \}^* \]

    All arguments are optional and can appear in any order. Commas are required unless the argument is at the end of the list. If specified, an argument takes precedence over any default values, or, if booting using DHCP, over configuration information provided by a DHCP server for those parameters.

    protocol, above, specifies the address discovery protocol to be used.

    Configuration parameters, listed below, are specified as key=value attribute pairs.

    tftp-server
        IP address of the TFTP server

    file
        file to download using TFTP or URL for WAN boot

    host-ip
        IP address of the client (in dotted-decimal notation)

    router-ip
        IP address of the default router (in dotted-decimal notation)

    subnet-mask
        subnet mask (in dotted-decimal notation)

    client-id
        DHCP client identifier

    hostname
        hostname to use in DHCP transactions
http-proxy
   HTTP proxy server specification (IPADDR[:PORT])

 tftp-retries
   maximum number of TFTP retries

 dhcp-retries
   maximum number of DHCP retries

If no parameters are specified (that is, network-boot-arguments is an empty string), the PROM will use the platform-specific default address discovery protocol.

Absence of the protocol parameter when other configuration parameters are specified implies manual configuration.

Manual configuration requires that the client be provided with all the information necessary for boot. If using manual configuration, information required by the PROM to load the second-stage boot program must be provided in network-boot-arguments while information required for the second-stage boot program can be specified either as arguments to the boot program or by means of the boot program’s interactive command interpreter.

Information required by the PROM when using manual configuration includes the booting client’s IP address, name of the boot file, and the address of the server providing the boot file image. Depending on network configuration, it might be required that the subnet mask and address of the default router to use also be specified.

 oem-banner
   Custom OEM banner (enabled by setting oem-banner? to true). Defaults to empty string.

 oem-banner?
   If true, use custom OEM banner. Defaults to false.

 oem-logo
   Byte array custom OEM logo (enabled by setting oem-logo? to true). Displayed in hexadecimal.

 oem-logo?
   If true, use custom OEM logo (else, use Sun logo). Defaults to false.

 output-device
   Output device used at power-on (usually screen, ttya, or ttyb). Defaults to screen.

 redmode-reboot?
   Specify true to reboot after a redmode reset trap. Defaults to true. (Sun Enterprise 10000 only.)

 redmode-sync?
   Specify true to invoke OpenBoot PROM’s sync word after a redmode reset trap. Defaults to false. (Sun Enterprise 10000 only.)
sbus-probe-list
Designate which SBus slots are probed and in what order. Defaults to 0123.

screen-#columns
Number of on-screen columns (characters/line). Defaults to 80.

screen-#rows
Number of on-screen rows (lines). Defaults to 34.

scsi-initiator-id
SCSI bus address of host adapter, range 0-7. Defaults to 7.

sd-targets
Map SCSI disk units (OpenBoot PROM version 1.x only). Defaults to 31204567, which means that unit 0 maps to target 3, unit 1 maps to target 1, and so on.

security-#badlogins
Number of incorrect security password attempts. This property has no special meaning or behavior on x86 based systems.

security-mode
Firmware security level (options: none, command, or full). If set to command or full, system will prompt for PROM security password. Defaults to none. This property has no special meaning or behavior on x86 based systems.

security-password
Firmware security password (never displayed). Can be set only when security-mode is set to command or full. This property has no special meaning or behavior on x86 based systems.

eeprom security-password=
Changing PROM password:
New password:
Retype new password:

selftest-#megs
Megabytes of RAM to test. Ignored if diag-switch? is true. Defaults to 1.

sir-sync?
Specify true to invoke OpenBoot PROM's sync word after a software-initiated reset (SIR) trap. Defaults to false. (Sun Enterprise 10000 only.)

skip-vme-loopback?
If true, POST does not do VMEbus loopback tests. Defaults to false.

st-targets
Map SCSI tape units (OpenBoot PROM version 1.x only). Defaults to 45670123, which means that unit 0 maps to target 4, unit 1 maps to target 5, and so on.

sunmon-compat?
If true, display Restricted Monitor prompt (>). Defaults to false.

testarea
One-byte scratch field, available for read/write test. Defaults to 0.
tpe-link-test?
   Enable 10baseT link test for built-in twisted pair Ethernet. Defaults to true.

ttya-mode
   TTYA (baud rate, #bits, parity, #stop, handshake). Defaults to 9600, 8, n, 1, −.
   Fields, in left-to-right order, are:
   Baud rate: 110, 300, 1200, 4800, 9600 . . .
   Data bits: 5, 6, 7, 8
   Parity: n(none), e(even), o(odd), m(mark), s(space)
   Stop bits: 1, 1.5, 2
   Handshake: −(none), h(hardware:rts/cts), s(software:xon/xoff)

ttyb-mode
   TTYB (baud rate, #bits, parity, #stop, handshake). Defaults to 9600, 8, n, 1, −.
   Fields, in left-to-right order, are:
   Baud rate: 110, 300, 1200, 4800, 9600 . . .
   Data bits: 5, 6, 7, 8
   Stop bits: 1, 1.5, 2
   Parity: n(none), e(even), o(odd), m(mark), s(space)
   Handshake: −(none), h(hardware:rts/cts), s(software:xon/xoff)

ttya-ignore-cd
   If true, operating system ignores carrier-detect on TTYA. Defaults to true.

ttyb-ignore-cd
   If true, operating system ignores carrier-detect on TTYB. Defaults to true.

ttya-rts-dtr-off
   If true, operating system does not assert DTR and RTS on TTYA. Defaults to false.

ttyb-rts-dtr-off
   If true, operating system does not assert DTR and RTS on TTYB. Defaults to false.

use-nvramrc?
   If true, execute commands in NVRAMRC during system start-up. Defaults to false.

version2?
   If true, hybrid (1.x/2.x) PROM comes up in version 2.x. Defaults to true.

watchdog-reboot?
   If true, reboot after watchdog reset. Defaults to false.
watchdog-sync?
Specify true to invoke OpenBoot PROM's sync word after a watchdog reset trap. Defaults to false. (Sun Enterprise 10000 only.)

xir-sync?
Specify true to invoke OpenBoot PROM's sync word after an XIR trap. Defaults to false. (Sun Enterprise 10000 only.)

EXAMPLE 1 Changing the Number of Megabytes of RAM.
The following example demonstrates the method for changing from one to two the number of megabytes of RAM that the system will test.

```
example# eeprom selftest-#megs
selftest-#megs=1
example# eeprom selftest-#megs=2
example# eeprom selftest-#megs
selftest-#megs=2
```

EXAMPLE 2 Setting the auto-boot? Parameter to true.
The following example demonstrates the method for setting the auto-boot? parameter to true.
```
example# eeprom auto-boot?=true
```

When the eeprom command is executed in user mode, the parameters with a trailing question mark (?) need to be enclosed in double quotation marks (" ") to prevent the shell from interpreting the question mark. Preceding the question mark with an escape character (\) will also prevent the shell from interpreting the question mark.

```
example$ eeprom "auto-boot?"=true
```

EXAMPLE 3 Enabling and Disabling PAE Mode
Certain IA machines support Physical Address Extension (PAE) mode. To enable and disable PAE mode on these machines, use commands such as those below.

To enable PAE mode:
```
example# eeprom mmu-modlist=mmu36
```

To disable PAE mode:
```
example# eeprom mmu-modlist=mmu32
```

The commands take effect following your next reboot.

EXAMPLE 4 Using network-boot-arguments
To use DHCP as the boot protocol and a hostname of abcd.sun.com for network booting, set these values in network-boot-arguments as:
EXAMPLE 4 Using network-boot-arguments (Continued)

eexample# eeprom network-boot-arguments="dhcp,hostname=abcd.sun.com"

...then boot using the command:

ok boot net

Note that network boot arguments specified from the PROM command line cause the contents of network-boot-arguments to be ignored. For example, with network-boot-arguments set as shown above, the boot command:

ok boot net:dhcp

...causes DHCP to be used, but the hostname specified in network-boot-arguments will not be used during network boot.

FILES
/dev/openprom
Device file

/usr/platform/platform-name/sbin/eeprom
Platform-specific version of eeprom. Use uname -i to obtain platform-name.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO passwd(1), boot(1M), kadb(1M), kernel(1M), init(1M), sh(1), uname(1), attributes(5)

OpenBoot 3.x Command Reference Manual

ONC+ Developer’s Guide
efdaemon – embedded FCode interpreter daemon

/usr/lib/efcode/sparcv9/efdaemon

efdaemon, the embedded FCode interpreter daemon, invokes the embedded FCode interpreter when the daemon receives an interpretation request. A new session of the interpreter is started for each unique request by invoking the script /usr/lib/efcode/efcode.

efdaemon is used on selected platforms as part of the processing of some dynamic reconfiguration events.

The following option is supported:

-d Set debug output. Log debug messages as LOG_DEBUG level messages by using syslog(). See syslog(3C).

FCode interpreter pseudo device, which is a portal for receipt of FCode interpretation requests

Shell script that invokes the embedded FCode interpreter

Embedded FCode interpreter

Embedded FCode interpreter

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWefcx, SUNWefcux, SUNWefcr, SUNWefclx</td>
</tr>
</tbody>
</table>

SEE ALSO prtconf(1M), syslog(3C), attributes(5)
etran(1M)

NAME  
etrn – start mail queue run

SYNOPSIS  
etrn [-v] server-host [client-hosts]

DESCRIPTION  
SMTP’s ETRN command allows an SMTP client and server to interact, giving the server an opportunity to start the processing of its queues for messages to go to a given host. This is meant to be used in start-up conditions, as well as for mail nodes that have transient connections to their service providers.

The etrn utility initiates an SMTP session with the host server-host and sends one or more ETRN commands as follows: If no client-hosts are specified, etrn looks up every host name for which sendmail(1M) accepts email and, for each name, sends an ETRN command with that name as the argument. If any client-hosts are specified, etrn uses each of these as arguments for successive ETRN commands.

OPTIONS  
The following option is supported:

- v      The normal mode of operation for etrn is to do all of its work silently. The -v option makes it verbose, which causes etrn to display its conversations with the remote SMTP server.

ENVIRONMENT VARIABLES  
No environment variables are used. However, at system start-up, /etc/init.d/sendmail reads /etc/default/sendmail. In this file, if the variable ETRN_HOSTS is set, /etc/init.d/sendmail parses this variable and invokes etrn appropriately. ETRN_HOSTS should be of the form:

"s1:c1.1,c1.2 s2:c2.1 s3:c3.1,c3.2,c3.3"

That is, white-space separated groups of server:client where client can be one or more comma-separated names. The :client part is optional. server is the name of the server to prod; a mail queue run is requested for each client name. This is comparable to running:

/usr/lib/sendmail -qR client

on the host server.

EXAMPLES  
EXAMPLE 1 Using etrn

Inserting the line:

ETRN_HOSTS="s1.domain.com:clnt.domain.com s2.domain.com:clnt.domain.com"

in /etc/default/sendmail results in /etc/init.d/sendmail invoking etrn such that ETRN commands are sent to both s1.domain.com and s2.domain.com, with both having clnt.domain.com as the ETRN argument.

The line:

ETRN_HOSTS="server.domain.com:client1.domain.com,client2.domain.com"
EXAMPLE 1 Using etrn  (Continued)

results in two ETRN commands being sent to server.domain.com, one with the argument client1.domain.com, the other with the argument client2.domain.com.

The line:

ETRN_HOSTS="server1.domain.com server2.domain.com"

results in set of a ETRN commands being sent to both server1.domain.com and server2.domain.com; each set contains one ETRN command for each host name for which sendmail(1M) accepts email, with that host name as the argument.

FILES
/etc/mail/sendmail.cf
   sendmail configuration file
/etc/default/sendmail
   Variables used by /etc/init.d/sendmail

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO  sendmail(1M), RFC 1985.

CAVEATS  Not all SMTP servers support ETRN.
fbconfig(1M)

NAME  fbconfig – Frame Buffer configuration utility

SYNOPSIS  fbconfig [-list | -help ]

fbconfig [-dev device_filename] [-prconf] [-propt] [-res]

fbconfig [-dev device_filename] [-res resolution-specification]
  device_specific_options

DESCRIPTION  fbconfig is the generic command line interface to query and configure frame buffer attributes.

The following form of fbconfig is the interface for the device independent operations performed by fbconfig:

fbconfig [-list | -help ]

The following form of fbconfig is the interface for configuring a frame buffer:

fbconfig [-dev device_filename] [-prconf] [-propt] [-res]

If the -dev option is omitted, the default frame buffer (/dev/fb or /dev/fb0) is assumed. In the absence of specific options, the response will depend upon the device specific configuration program and how it responds to no options.

OPTIONS  The following options are supported:

-dev device_filename
  Specify the FFB special file. The default is /dev/fbs/ffb0.

-help
  Print the fbconfig command usage summary. This is the default option.

-list
  Print the list of installed frame buffers and associated device specific configuration routines.

<table>
<thead>
<tr>
<th>Device Filename</th>
<th>Specific Config Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/fbs/ffb0</td>
<td>SUNWffb_config</td>
</tr>
<tr>
<td>/dev/fbs/ffb1</td>
<td>SUNWffb_config</td>
</tr>
<tr>
<td>/dev/fbs/m640</td>
<td>SUNWm64_config</td>
</tr>
<tr>
<td>/dev/fbs/cgsix0</td>
<td>not configurable</td>
</tr>
</tbody>
</table>

-prconf
  Print the current hardware configuration.

-propt
  Print the current software configuration.

OPERANDS  The following operands are supported:

device_specific_options
  device_specific_options are specified in the format shown by the -help output, or the corresponding
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfbc</td>
</tr>
</tbody>
</table>

Because of limitations in the m64 kernel driver and related software, fbconfig (with the -prconf option) is unable to distinguish between a current depth of 24 or 8+24. The -propt option returns the depth specified in the OWconfig file, which will be in effect following the next restart of the window system. The xwininfo utility, usually shipped in the package containing frame buffer software (such as SUNWxwplt), reports current depth of a specified window.
fdetach(1M)

NAME fdetach – detach a name from a STREAMS-based file descriptor

SYNOPSIS fdetach path

DESCRIPTION The fdetach command detaches a STREAMS-based file descriptor from a name in
the file system. Use the path operand to specify the path name of the object in the file
system name space, which was previously attached. See fattach(3C).

The user must be the owner of the file or a user with the appropriate privileges. All
subsequent operations on path will operate on the underlying file system entry and not
on the STREAMS file. The permissions and status of the entry are restored to the state
they were in before the STREAMS file was attached to the entry.

OPERANDS The following operands are supported:

path Specifies the the path name of the object in the file system name space,
which was previously attached.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO fattach(3C), fdetach(3C), attributes(5), streamio(7I)

STREAMS Programming Guide
fdisk – create or modify fixed disk partition table

SYNOPSIS

[-h] [-b masterboot] [-A id : act : bhead : bsect : bcyl : ehead : 
esect : ccyl : rsect : numsect} [-D id : act : bhead : bsect : bcyl : ehead :
esect : ccyl : rsect : numsect] rddevice

DESCRIPTION

This command is used to do the following:

- Create and modify an fdisk partition table on x86 systems
- Create and modify an fdisk partition table on removable media on SPARC or x86 systems
- Install the master boot record that is put in the first sector of the fixed disk on x86 systems only

This table is used by the first-stage bootstrap (or firmware) to identify parts of the disk reserved for different operating systems, and to identify the partition containing the second-stage bootstrap (the active Solaris partition). The rddevice argument must be used to specify the raw device associated with the fixed disk, for example, /dev/rdsk/c0t0d0p0.

The program can operate in three different modes. The first is interactive mode. In interactive mode, the program displays the partition table as it exists on the disk, and then presents a menu allowing the user to modify the table. The menu, questions, warnings, and error messages are intended to be self-explanatory.

In interactive mode, if there is no partition table on the disk, the user is given the options of creating a default partitioning or specifying the initial table values. The default partitioning allocates the entire disk for the Solaris system and makes the Solaris system partition active. In either case, when the initial table is created, fdisk also writes out the first-stage bootstrap (x86 only) code along with the partition table.

The second mode of operation is used for automated entry addition, entry deletion, or replacement of the entire fdisk table. This mode can add or delete an entry described on the command line. In this mode the entire fdisk table can be read in from a file replacing the original table. fdisk can also be used to create this file. There is a command line option that will cause fdisk to replace any fdisk table with the default of the whole disk for the Solaris system.

The third mode of operation is used for disk diagnostics. In this mode, a section of the disk can be filled with a user specified pattern, and mode sections of the disk can also be read or written.

Menu Options

The menu options for interactive mode given by the fdisk program are:

Create a partition

This option allows the user to create a new partition. The maximum number of partitions is 4. The program will ask for the type of the partition (SOLARIS, MS-DOS, UNIX, or other). It will then ask for the size of the partition as a
percentage of the disk. The user may also enter the letter c at this point, in which case the program will ask for the starting cylinder number and size of the partition in cylinders. If a c is not entered, the program will determine the starting cylinder number where the partition will fit. In either case, if the partition would overlap an existing partition or will not fit, a message is displayed and the program returns to the original menu.

Change Active (Boot from) partition
This option allows the user to specify the partition where the first-stage bootstrap will look for the second-stage bootstrap, otherwise known as the active partition.

Delete a partition
This option allows the user to delete a previously created partition. Note that this will destroy all data in that partition.

Use the following options to include your modifications to the partition table at this time or to cancel the session without modifying the table:

Exit
This option writes the new version of the table created during this session with fdisk out to the fixed disk, and exits the program.

Cancel
This option exits without modifying the partition table.

The following options apply to fdisk:

Add a partition as described by the argument (see the -F option below for the format). Use of this option will zero out the VTOC on the Solaris partition if the fdisk table changes.

-b master_boot
Specify the file master_boot as the master boot program. The default master boot program is /usr/lib/fs/ufs/mboot.

-B
Default to one Solaris partition that uses the whole disk.

-d
Turn on verbose debug mode. This will cause fdisk to print its state on stderr as it is used. The output from this option should not be used with -F.

Delete a partition as described by the argument (see the -F option below for the format). Note that the argument must be an exact match or the entry will not be deleted! Use of this option will zero out the VTOC on the Solaris partition if the fdisk table changes.

-F fdisk_file
Use fdisk file fdisk_file to initialize table. Use of this option will zero out the VTOC on the Solaris partition if the fdisk table changes.
The *fdisk* file contains up to four specification lines. Each line is delimited by a new-line character (\n). If the first character of a line is an asterisk (*), the line is treated as a comment. Each line is composed of entries that are position-dependent, are separated by “white space” or colons, and have the following format:

```
id act bhead bsect bcyl ehead esect ecyl rsect numsect
```

where the entries have the following values:

- **id**: This is the type of partition and the correct numeric values may be found in *fdisk.h*.
- **act**: This is the active partition flag; 0 means not active and 128 means active.
- **bhead**: This is the head where the partition starts. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **bsect**: This is the sector where the partition starts. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **bcyl**: This is the cylinder where the partition starts. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **ehead**: This is the head where the partition ends. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **esect**: This is the sector where the partition ends. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **ecyl**: This is the cylinder where the partition ends. If this is set to 0, *fdisk* will correctly fill this in from other information.
- **rsect**: The relative sector from the beginning of the disk where the partition starts. This must be specified and can be used by *fdisk* to fill in other fields.
- **numsect**: The size in sectors of this disk partition. This must be specified and can be used by *fdisk* to fill in other fields.

- **-g**: Get the label geometry for disk and display on stdout (see the `-S` option for the format).
- **-G**: Get the physical geometry for disk and display on stdout (see the `-S` option for the format).
- **-h**: Issue verbose message; message will list all options and supply an explanation for each.
-I
  Forgo device checks. This is used to generate a file image of what would go on a
  disk without using the device. Note that you must use -S with this option (see
  above).

-n
  Don’t update fdisk table unless explicitly specified by another option. If no other
  options are used, -n will only write the master boot record to the disk. In addition,
  note that fdisk will not come up in interactive mode if the -n option is specified.

-o offset
  Block offset from start of disk. This option is used for -P, -r, and -w. Zero is
  assumed when this option is not used.

-P fill_patt
  Fill disk with pattern fill_patt. fill_patt can be decimal or hex and is used as number
  for constant long word pattern. If fill_patt is #, then pattern is block # for each block.
  Pattern is put in each block as long words and fills each block (see -o and -s).

-r
  Read from disk and write to stdout. See -o and -s, which specify the starting point
  and size of the operation.

-R
  Treat disk as read-only. This is for testing purposes.

-S size
  Number of blocks to perform operation on (see -o).

-S geom_file
  Set the label geometry to the content of the geom_file. The geom_file contains one
  specification line. Each line is delimited by a new-line character (\n). If the first
  character of a line is an asterisk (*), the line is treated as a comment. Each line is
  composed of entries that are position-dependent, are separated by white space, and
  have the following format:

  pcyl ncy1 acyl bcyl nheads nsectors sectsiz

  where the entries have the following values:

  pcyl    This is the number of physical cylinders for the drive.
  ncy1    This is the number of usable cylinders for the drive.
  acyl    This is the number of alt cylinders for the drive.
  bcyl    This is the number of offset cylinders for the drive (should be
            zero).
  nheads  The number of heads for this drive.
  nsectors The number of sectors per track.
  sectsiz The size in bytes of a sector.
-t
Adjust incorrect slice table entries so that they will not cross partition table boundaries.

-T
Remove incorrect slice table entries that span partition table boundaries.

-v
Output the HBA (virtual) geometry dimensions. This option must be used in conjunction with the -w flag. This option will work for platforms which support virtual geometry. (x86 only)

-w
Write to disk and read from stdin. See -o and -s, which specify the starting point and size of the operation.

-W
Output the disk table to stdout.

-W fdisk_file
Create an fdisk file fdisk_file from disk table. This can be used with the -F option below.

FILES
/dev/rdsk/c0t0d0p0 Raw device associated with the fixed disk.
/usr/lib/fs/ufs/mboot Default master boot program.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>IA and SPARC</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
uname(1), fmthard(1M), prtvtoc(1M), attributes(5)

DIAGNOSTICS
Most messages will be self-explanatory. The following may appear immediately after starting the program:

Fdisk: cannot open <device>
This indicates that the device name argument is not valid.

Fdisk: unable to get device parameters for device <device>
This indicates a problem with the configuration of the fixed disk, or an error in the fixed disk driver.

Fdisk: error reading partition table
This indicates that some error occurred when trying initially to read the fixed disk. This could be a problem with the fixed disk controller or driver, or with the configuration of the fixed disk.
Fdisk: error writing boot record
This indicates that some error occurred when trying to write the new partition table out to the fixed disk. This could be a problem with the fixed disk controller, the disk itself, the driver, or the configuration of the fixed disk.
ff – list file names and statistics for a file system

**SYNOPSIS**

```
ff [-F FSType] [-V] [generic_options] [-o specific_options] special...
```

**DESCRIPTION**

`ff` prints the pathnames and inode numbers of files in the file system which resides on the special device `special`. Other information about the files may be printed using options described below. Selection criteria may be used to instruct `ff` to only print information for certain files. If no selection criteria are specified, information for all files considered will be printed (the default); the `-i` option may be used to limit files to those whose inodes are specified.

Output is sorted in ascending inode number order. The default line produced by `ff` is:

```
path-name  i-number
```

The maximum information the command will provide is:

```
path-name  i-number  size  uid
```

**OPTIONS**

- `-F`
  Specify the FSType on which to operate. The FSType should either be specified here or be determinable from `/etc/vfstab` by matching the `special` with an entry in the table, or by consulting `/etc/default/fs`.

- `-V`
  Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from `/etc/vfstab`. This option may be used to verify and validate the command line.

**generic_options**

Options that are supported by most FSType-specific modules of the command. The following options are available:

- `-I`
  Do not print the i-node number after each path name.

- `-l`
  Generate a supplementary list of all path names for multiply-linked files.

- `-p prefix`
  The specified `prefix` will be added to each generated path name. The default is `'.'` (dot).

- `-s`
  Print the file size, in bytes, after each path name.

- `-u`
  Print the owner’s login name after each path name.
- a -n  Select if the file has been accessed in n days.

- m -n  Select if the file has been written or created in n days.

- c -n  Select if file's status has been changed in n days.

- n file  Select if the file has been modified more recently than the argument file.

- i i-node-list  Generate names for only those i-nodes specified in i-node-list. i-node-list is a list of numbers separated by commas (with no intervening spaces).

- o  Specify FSType-specific options in a comma separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the FSType-specific module of the command.

OPERANDS  special  A special device.

USAGE  See largefile(5) for the description of the behavior of ff when encountering files greater than or equal to 2 Gbyte (2**31 bytes).

FILES  /etc/default/fs  default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs

        LOCAL  The default partition for a command if no FSType is specified.

        /etc/vfstab  list of default parameters for each file system

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>


NOTES  This command may not be supported for all FSTypes.

The -a, -m, and -c flags examine the st_atime, st_mtime, and st_ctime fields of the stat structure respectively. (See stat(2).)
NAME

ffbbox, SUNWff_bbox – configure the FFB Graphics Accelerator

SYNOPSIS

/usr/sbin/ffbconfig [-dev device-filename] [-res video-mode [now | try]
[noconfirm | nocheck]] [-file | machine | system] [-deflinear
| true | false] [-defoverlay | true | false] [-linearorder
| first | last] [-overlayorder | first | last] [-expvis
| enable | disable] [-sov | enable | disable] [-maxwids n]
[-extovl | enable | disable] [-g gamma-correction-value]
[-gfile gamma-correction-file] [-propt] [-prconf] [-defaults]

/usr/sbin/ffbconfig [-propt] [-prconf]

/usr/sbin/ffbconfig [-help] [-res ?]

DESCRIPTION

ffbconfig configures the FFB Graphics Accelerator and some of the X11 window system defaults for FFB.

The first form of ffbconfig stores the specified options in the OWconfig file. These options will be used to initialize the FFB device the next time the window system is run on that device. Updating options in the OWconfig file provides persistence of these options across window system sessions and system reboots.

The second and third forms of ffbconfig, which invoke only the -prconf, -propt, -help, and -res ? options do not update the OWconfig file. Additionally, for the third form all other options are ignored.

Options may be specified for only one FFB device at a time. Specifying options for multiple FFB devices requires multiple invocations of ffbconfig.

Only FFB-specific options can be specified through ffbconfig. The normal window system options for specifying default depth, default visual class and so forth are still specified as device modifiers on the openwin command line. See the OpenWindows Desktop Reference Manual for details.

The user can also specify the OWconfig file that is to be updated. By default, the machine-specific file in the /etc/openwin directory tree is updated. The -file option can be used to specify an alternate file to use. For example, the system-global OWconfig file in the /usr/openwin directory tree can be updated instead.

Both of these standard OWconfig files can only be written by root. Consequently, the ffbconfig program, which is owned by the root user, always runs with setuid root permission.

OPTIONS

-dev device-filename
Specifies the FFB special file. The default is /dev/fbs/ffbo.

-file machine | system
Specifies which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.
ffbcfg(1M)

-\texttt{res \textit{video-mode}} [\texttt{now} | \texttt{try} [\texttt{noconfirm} | \texttt{nocheck}]]

Specifies the video mode used to drive the monitor connected to the specified FFB device.

\textit{video-mode} has the format of \texttt{width\times height\times rate} where \texttt{width} is the screen width in pixels, \texttt{height} is the screen height in pixels, and \texttt{rate} is the vertical frequency of the screen refresh.

The \texttt{s} suffix, as in \texttt{960x680x112s} and \texttt{960x680x108s}, indicates stereo video modes. The \texttt{i} suffix, as in \texttt{640x480x60i} and \texttt{768x575x50i}, indicates interlaced video timing. If absent, non-interlaced timing will be used.

-\texttt{res} (the third form in the \texttt{SYNOPSIS}) also accepts formats with @ (at sign) in front of the refresh rate instead of x. \texttt{1280x1024@76} is an example of this format.

Some video-modes are supported only on certain revisions of FFB. Also, some video-modes, supported by FFB, may not be supported by the monitor. The list of video-modes supported by the FFB device and the monitor can be obtained by running \texttt{ffbconfig} with the -\texttt{res} \texttt{?} option.

The following table lists all possible video modes supported on FFB:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024x768x60</td>
<td></td>
</tr>
<tr>
<td>1024x768x70</td>
<td></td>
</tr>
<tr>
<td>1024x768x75</td>
<td></td>
</tr>
<tr>
<td>1024x768x77</td>
<td></td>
</tr>
<tr>
<td>1024x800x84</td>
<td></td>
</tr>
<tr>
<td>1152x900x66</td>
<td></td>
</tr>
<tr>
<td>1152x900x76</td>
<td></td>
</tr>
<tr>
<td>1280x800x76</td>
<td></td>
</tr>
<tr>
<td>1280x1024x60</td>
<td></td>
</tr>
<tr>
<td>1280x1024x67</td>
<td></td>
</tr>
<tr>
<td>1280x1024x76</td>
<td></td>
</tr>
<tr>
<td>960x680x112s</td>
<td>(stereo)</td>
</tr>
<tr>
<td>960x680x108s</td>
<td>(stereo)</td>
</tr>
<tr>
<td>640x480x60</td>
<td></td>
</tr>
<tr>
<td>640x480x60i</td>
<td>(interlaced)</td>
</tr>
</tbody>
</table>
Symbolic names

For convenience, some video modes have symbolic names defined for them. Instead of the form \textit{width}x\textit{height}x\textit{rate}, one of these names may be supplied as the argument to \texttt{-res}. The meaning of the symbolic name \texttt{none} is that when the window system is run the screen resolution will be the video mode that is currently programmed in the device.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Name & Corresponding Video Mode \\
\hline
svga & 1024x768x60 \\
1152 & 1152x900x76 \\
1280 & 1280x1024x76 \\
stereo & 960x680x112s \\
ntsc & 640x480x60i \\
pal & 768x575x50i \\
none & (video mode currently programmed in device) \\
\hline
\end{tabular}
\end{table}

The \texttt{-res} option also accepts additional, optional arguments immediately following the video mode specification. Any or all of these may be present.

\texttt{now}

Specifies that the FFB device will be immediately programmed to display this video mode, in addition to updating the video mode in the OWconfig file. This option is useful for changing the video mode before starting the window system.

It is inadvisable to use this suboption with \texttt{ffbconfig} while the configured device is being used (for example, while running the window system); unpredictable results may occur. To run \texttt{ffbconfig} with the \texttt{now} suboption, first bring the
window system down. If the now suboption is used within a window system session, the video mode will be changed immediately, but the width and height of the affected screen won’t change until the window system is exited and re-entered. In addition, the system may not recognize changes in stereo mode. Consequently, this usage is strongly discouraged.

**noconfirm**

Instructs `ffbconfig` to bypass confirmation and warning messages and to program the requested video mode anyway.

Using the `-res` option, the user could potentially put the system into an unusable state, a state where there is no video output. This can happen if there is ambiguity in the monitor sense codes for the particular code read. To reduce the chance of this, the default behavior of `ffbconfig` is to print a warning message to this effect and to prompt the user to find out if it is okay to continue. This option is useful when `ffbconfig` is being run from a shell script.

**nocheck**

Suspends normal error checking based on the monitor sense code. The video mode specified by the user will be accepted regardless of whether it is appropriate for the currently attached monitor. This option is useful if a different monitor is to be connected to the FFB device. Note: Use of this option implies `noconfirm` as well.

**try**

Programs the specified video mode on a trial basis. The user will be asked to confirm the video mode by typing `y` within 10 seconds. The user may also terminate the trial before 10 seconds are up by typing any character. Any character other than `y` or RETURN is considered a `no` and the previous video mode will be restored and `ffbconfig` will not change the video mode in the OWconfig file and other options specified will still take effect. If a RETURN is pressed, the user is prompted for a yes or no answer on whether to keep the new video mode. This option implies the now suboption (see the warning note on the now suboption).

**-deflinear true | false**

FBF possesses two types of visuals: linear and nonlinear. Linear visuals are gamma corrected and nonlinear visuals are not. There are two visuals that have both linear and nonlinear versions: 24-bit TrueColor and 8-bit StaticGray.

- **-deflinear true** sets the default visual to the linear visual that satisfies other specified default visual selection options. Specifically, the default visual selection options are those set by the `Xsun (1)` `defdepth` and `defclass` options. See `OpenWindows Desktop Reference Manual` for details.

- **-deflinear false** (or if there is no linear visual that satisfies the other default visual selection options) sets the default visual to the non-linear visual as the default.

This option cannot be used when the `-defoverlay` option is present, because FFB does not possess a linear overlay visual.
FFB provides an 8-bit PseudoColor visual whose pixels are disjoint from the rest of the FFB visuals. This is called the overlay visual. Windows created in this visual will not damage windows created in other visuals. The converse, however, is not true. Windows created in other visuals will damage overlay windows. This visual has 256 maxwids of opaque color values. See -maxwids in OPTIONS.

If -defoverlay is true, the overlay visual will be made the default visual. If -defoverlay is false, the nonoverlay visual that satisfies the other default visual selection options, such as defdepth and defclass, will be chosen as the default visual. See the OpenWindows Desktop Reference Manual for details.

Whenever -defoverlay true is used, the default depth and class chosen on the openwin command line must be 8-bit PseudoColor. If not, a warning message will be printed and the -defoverlay option will be treated as false. This option cannot be used when the -deflinear option is present, because FFB doesn’t possess a linear overlay visual.

If first, linear visuals will come before their non-linear counterparts on the X11 screen visual list for the FFB screen. If last, the nonlinear visuals will come before the linear ones.

If true, the depth 8 PseudoColor Overlay visual will come before the non-overlay visual on the X11 screen visual list for the FFB screen. If false, the non-overlay visual will come before the overlay one.

If enabled, OpenGL Visual Expansion will be activated. Multiple instances of selected visual groups (8-bit PseudoColor, 24-bit TrueColor and so forth) can be found in the screen visual list.

Advertises the root window’s SERVER_OVERLAY_VISUALS property. SOV visuals will be exported and their transparent types, values and layers can be retrieved through this property. If -sov disable is specified, the SERVER_OVERLAY_VISUALS property will not be defined. SOV visuals will not be exported.

Specifies the maximum number of FFB X channel pixel values that are reserved for use as window sIDs (WIDs). The remainder of the pixel values in overlay colormaps are used for normal X11 opaque color pixels. The reserved WIDs are allocated on a first-come first-serve basis by 3D graphics windows (such as XGL), MBX windows, and windows that have a non-default visual. The X channel codes 0 to (255-n) will be opaque color pixels. The X channel codes (255-n+1) to 255 will be reserved for use as WIDs. Legal values on FFB, FFB2 are: 1, 2, 4, 8, 16, and 32. Legal values on FFB2+ are: 1, 2, 4, 8, 16, 32, and 64.
-extovl enable | disable
   This option is available only on FFB2+. If enabled, extended overlay is available.
   The overlay visuals will have 256 opaque colors. The SOV visuals will have 255
   opaque colors and 1 transparent color. This option enables hardware supported
   transparency which provides better performance for windows using the SOV
   visuals.

-g gamma-correction value
   This option is available only on FFB2+. This option allows changing the gamma
   correction value. All linear visuals provide gamma correction. By default the
   gamma correction value is 2.22. Any value less than zero is illegal. The gamma
   correction value is applied to the linear visual, which then has an effective gamma
   value of 1.0, which is the value returned by XSolarisGetVisualGamma(3). See
   XSolarisGetVisualGamma(3) for a description of that function.

   This option can be used while the window system is running. Changing the gamma
   correction value will affect all the windows being displayed using the linear visuals.

-gfile gamma-correction file
   This option is available only on FFB2+. This option loads gamma correction table
   from the specified file. This file should be formatted to provide the gamma
   correction values for R, G and B channels on each line. This file should provide 256
   triplet values, each in hexadecimal format and separated by at least 1 space.
   Following is an example of this file:

   0x00 0x00 0x00
   0x01 0x01 0x01
   0x02 0x02 0x02
   ...
   ...
   0xff 0xff 0xff

   Using this option, the gamma correction table can be loaded while the window
   system is running. The new gamma correction will affect all the windows being
   displayed using the linear visuals. Note, when gamma correction is being done
   using user specified table, the gamma correction value is undefined. By default, the
   window system assumes a gamma correction value of 2.22 and loads the gamma
   table it creates corresponding to this value.

-defaults
   Resets all option values to their default values.

-propt
   Prints the current values of all FFB options in the OWconfig file specified by the
   -file option for the device specified by the -dev option. Prints the values of
   options as they will be in the OWconfig file after the call to ffbconfig completes.
   The following is a typical display using the -propt option:

   --- OpenWindows Configuration for /dev/fbs/ffb0 ---
   OWconfig: machine
   Video Mode: NONE
   Default Visual: Non-Linear Normal Visual
Visual Ordering: Linear Visuals are last
Overlay Visuals are last
OpenGL Visuals: disabled
SOV: disabled
Allocated WIDs: 32

-prconf
Prints the FFB hardware configuration. The following is a typical display using the
-prconf option:

--- Hardware Configuration for /dev/fbs/ffb0 ---
Type: double-buffered FFB2 with Z-buffer
Board: rev x
PROM Information: @(#)ffb2.fth x.x xx/xx/xx
FBC: version x
DAC: Brooktree 9068, version x
3DRAM: Mitsubishi 1309, version x
EDID Data: Available - EDID version 1 revision x
Monitor Sense ID: 4 (Sun 37x29cm RGB color monitor)
Monitor possible resolutions: 1024x768x60, 1024x768x70,
1024x768x75, 1152x900x66, 1152x900x76,
1280x1024x67, 1280x1024x76, 960x680x112s,
640x480x60
Current resolution setting: 1280x1024x76

-help
Prints a list of the ffbconfig command line options, along with a brief
explanation of each.

**DEFAULTS**
For a given invocation of ffbconfig command line options if an option does not appear on
the command line, the corresponding OWconfig option is not updated; it retains its
previous value.

When the window system is run, if an FFB option has never been specified via
ffbconfig, a default value is used. The option defaults are listed in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dev</td>
<td>/dev/fbs/ffb0</td>
</tr>
<tr>
<td>-file</td>
<td>machine</td>
</tr>
<tr>
<td>-res</td>
<td>none</td>
</tr>
<tr>
<td>-deflinear</td>
<td>false</td>
</tr>
<tr>
<td>-defoverlay</td>
<td>false</td>
</tr>
<tr>
<td>-linearorder</td>
<td>last</td>
</tr>
</tbody>
</table>
The default for the -res option of none means that when the window system is run the screen resolution will be the video mode that is currently programmed in the device.

This provides compatibility for users who are used to specifying the device resolution through the PROM. On some devices (for example, GX) this is the only way of specifying the video mode. This means that the PROM ultimately determines the default FFB video mode.

**EXAMPLE 1 Changing The Monitor Type**

The following example switches the monitor type to the resolution of 1280 × 1024 at 76 Hz:

```
example$ /usr/sbin/ffbconfig -res 1280x1024x76
```

**FILES**

```
/dev/fbs/ffb0  device special file
```

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWffbcf</td>
</tr>
</tbody>
</table>

**SEE ALSO**

mmap(2), attributes(5), fbio(7I), ffb(7D)

*OpenWindows Desktop Reference Manual*
NAME
ff_ufs – list file names and statistics for a ufs file system

SYNOPSIS
ff -F ufs [generic_options] [-o a, m, s] special...

DESCRIPTION
ff prints the pathnames and inode numbers of files in the file system which resides
on the special device special.

See ff(1M) for information regarding the ff command. See OPTIONS for information
regarding the ufs-specific options.

OPTIONS
The following options are supported:
-o Specify ufs file system specific options. The following options available are:
a Print the ‘.’ and ‘.’ directory entries.
m Print mode information. This option must be specified in
 conjunction with the -i i-node-list option (see ff(1M)).
s Print only special files and files with set-user-ID mode.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
find(1), ff(1M), ncheck(1M), attributes(5)
The `flar` command is used to administer flash archives. A flash archive is an easily transportable version of a reference configuration of the Solaris operating environment, plus optional other software. Such an archive is used for the rapid installation of Solaris on large numbers of machines. You can create a flash archive using either `flar` with the `create` subcommand or the `flarcreate(1M)` command. See `flash_archive(4)

In flash terminology, a system on which an archive is created is called a *master*. The system image stored in the archive is deployed to systems that are called *clones*.

There are two types of flash archives: full and differential. Both are created with the `create` subcommand. A full archive contains all the files that are in a system image. A differential archive contains only differences between two system images. Installation of a differential archive is faster and consumes fewer resources than installation of a full archive.

In creating a differential archive, you compare two system images. A system image can be any of:

- a Live Upgrade boot environment, mounted on some directory using `lumount(1M)` (see `live_upgrade(5)`)
- a clone system mounted over NFS with root permissions
- a full flash archive expanded into some local directory

To explain the creation of a differential flash archive, the following terminology is used:

- **old** The image prior to upgrade or other modification. This is likely the image as it was installed on clone systems.
- **new** The old image, plus possible additions or changes and minus possible deletions. This is likely the image you want to duplicate on clone systems.

The `flar` command compares `old` and `new`, creating a differential archive as follows:

- files on `new` that are not in `old` are added to the archive;
files of the same name that are different between *old* and *new* are taken from *new* and added to the archive;

- files that are in *old* and not in *new* are put in list of files to be deleted when the differential archive is installed on clone systems.

When creating a differential flash archive, the currently running image is, by default, the new image and a second image, specified with the -A option, is the old image. You can use the -R option to designate an image other than the currently running system as the new image. These options are described below.

You can run `flarcreate` in multi- or single-user mode. You can also use the command when the master system is booted from the first Solaris software CD or from a Solaris net image. Archive creation should be performed when the master system is in as stable a state as possible.

Following creation of a flash archive, you can use JumpStart to clone the archive on multiple systems.

The `flar` command includes subcommands for creating, combining, splitting, and providing information about archives. A subcommands is the first argument in a `flar` command line. These subcommands are as follows:

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>create</strong></td>
<td>Create a new flash archive, of a name you specify with the -n argument, based on the currently running system. Use the -A option (described below) to create a differential flash archive.</td>
</tr>
<tr>
<td><strong>combine</strong></td>
<td>Combine the individual sections that make up an archive into the archive. If <code>dir</code> is specified (see -d option below), the sections will be gathered from <code>dir</code>; otherwise, they will be gathered from the current directory. Each section is assumed to be in a separate file, the names of which are the section names. At a minimum, the archive cookie (<code>cookie</code>), archive identification (<code>identification</code>), and archive files (<code>archive</code>) sections must be present. If <code>archive</code> is a directory, its contents are archived using <code>cpio</code> prior to inclusion in the archive. If so specified in the <code>identification</code> section, the contents are compressed.</td>
</tr>
<tr>
<td><strong>info</strong></td>
<td>Extract information on an archive. This subcommand is analogous to <code>pkginfo</code>.</td>
</tr>
</tbody>
</table>

Note that no validation is performed on any of the sections. In particular, no fields in the `identification` section are validated or updated. See `flash_archive(4)` for a description of the archive sections.
split

Split an archive into one file for each section of the archive. Each section is copied into a separate file in dir, if dir is specified (see -d option below), or the current directory if it is not. The files resulting from the split are named after the sections. The archive cookie is stored in a file named cookie. If section is specified (see -u option below), only the named section is copied.

The create subcommand requires root privileges.

The options for each subcommand are described below.

OPTIONS

The create subcommand has one required argument:

- n name
  name is supplied as the value of the content_name keyword. See flash_archive(4).

The options for the create subcommand below. Many of these options supply values for keywords in the identification section of a file containing a flash archive. See flash_archive(4) for a description of these keywords.

- a author
  author is used to provide an author name for the archive identification section of the new flash archive. If you do not specify -a, no author name is included in the identification section.

- A system_image
  Create a differential flash archive by comparing a new system image (see DESCRIPTION) with the image specified by the system_image argument. By default, the new system image is the currently running system. You can change the default with the -R option, described below. system_image is a directory containing an image. It can be accessible through UFS, NFS, or lumount(1M).

  The rules for inclusion and exclusion of files in a differential archive are described in DESCRIPTION. You can modify the effect of these rules with the use of the -x, -X, -y, and -z options, described below.

- c
  Compress the archive using compress(1)

- f filelist
  Use the contents of filelist as a list of files to include in the archive. The files are included in addition to the normal file list, unless -F is specified (see below). If filelist is -, the list is taken from standard input.

- e descr
  The description to be included in the archive as the value of the content_description archive identification key. This option is incompatible with -E.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-E descr_file</code></td>
<td>The description to be used as the value of the archive identification <code>content_description</code> key is retrieved from the file <code>descr_file</code>. This option is incompatible with <code>-e</code>.</td>
</tr>
<tr>
<td><code>-F</code></td>
<td>Include only files in the list specified by <code>-f</code>. This option makes <code>-f filelist</code> an absolute list, rather than a list that is appended to the normal file list.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Do not generate hash identifier.</td>
</tr>
<tr>
<td><code>-I</code></td>
<td>Ignore integrity check. To prevent you from excluding important system files from an archive, <code>flar</code> runs an integrity check. This check examines all files registered in a system package database and stops archive creation if any of them are excluded. Use this option to override this integrity check.</td>
</tr>
<tr>
<td><code>-i date</code></td>
<td>By default, the value for the <code>creation_date</code> field in the identification section is generated automatically, based on the current system time and date. If you specify the <code>-i</code> option, <code>date</code> is used instead.</td>
</tr>
<tr>
<td><code>-m master</code></td>
<td>By default, the value for the <code>creation_master</code> field in the identification section is the name of the system on which you run <code>flarcreate</code>, as reported by <code>uname -n</code>. If you specify <code>-m</code>, <code>master</code> is used instead.</td>
</tr>
<tr>
<td><code>-M</code></td>
<td>Used only when you are creating a differential flash archive. When creating a differential archive, <code>flar</code> creates a long list of the files in the system that remain the same, are changed, and are to be deleted on clone systems. This list is stored in the manifest section of the archive (see <code>flash_archive(4)</code>). When the differential archive is deployed, the flash software uses this list to perform a file-by-file check, ensuring the integrity of the clone system. Use of this option to avoids such a check and saves the space used by the manifest section in a differential archive. However, you must weigh the savings in time and disk space against the loss of an integrity check upon deployment. Because of this loss, use of this option is not recommended.</td>
</tr>
<tr>
<td><code>-R root</code></td>
<td>Create the archive from the file system tree rooted at <code>root</code>. If you do not specify this option, <code>flar</code> creates an archive from a file system rooted at <code>/</code>. When creating a differential flash archive, the system image specified by <code>-R</code> replaces the currently running system as the new image. See <code>DESCRIPTION</code>.</td>
</tr>
</tbody>
</table>
Skip the disk space check and do not write archive size data to the archive. Without `-S`, `flar` builds a compressed archive in memory before writing the archive to disk, to ensure you have sufficient disk space. Use `-S` to skip this step. The result of the use of `-S` is a significant decrease in the time it takes to create an archive.

Content type included in the archive as the value of the `content_type` archive identification key. If you do not specify `-T`, the `content_type` keyword is not included.

Include the user-defined keyword(s) and values in the archive identification section. See `flash_archive(4)`.

Include the user-defined section located in the file `section` in the archive. `section` must be a blank-separated list of section names as described in `flash_archive(4)`.

Exclude the file or directory `exclude` from the archive. Note that the `exclude` file or directory is assumed to be relative to the alternate root specified using `-R`. If the parent directory of the file `exclude` is included with the `-y` option (see `-y include`), then only the specific file or directory specified by `exclude` is excluded. Conversely, if the parent directory of an included file is specified for exclusion, then only the file `include` is included. For example, if you specify:

```
-x /a -y /a/b
```

all of `/a` except for `/a/b` is excluded. If you specify:

```
-y /a -x /a/b
```

all of `/a` except for `/a/b` is included.

Include the file or directory `include` in the archive. Note that the `exclude` file or directory is assumed to be relative to the alternate root specified using `-R`. See the description of the `-x` option, above, for a description of the interaction of the `-x` and `-y` options.

Use the contents of `filelist` as a list of files to exclude from the archive. If `filelist` is `~`, the list is taken from standard input.

`filelist` is a list of files prefixed with a plus (`+`) or minus (`-`). A plus indicates that a file should be included in
the archive; the minus indicates exclusion. If filelist is -, the list is taken from standard input.

The options for flar info subcommand are as follows:

- **-k keyword** Only the value of the keyword *keyword* is returned.
- **-l** List all files in the archive. Does not process content from any sections other than the archive section.

The following are flar info options used with tape archives:

- **-b blocksize** The block size to be used when creating the archive. If not specified, a default block size of 64K is used.
- **-p posn** Specifies the position on the tape device where the archive should be created. If not specified, the current position of the tape device is examined.
- **-t** The archive to be analyzed is located on a tape device. The path to the device is specified by archive (see OPERANDS).

The options for flar split and combine (split and combine archives) subcommands are as follows:

- **-d dir** Retrieve sections from *dir*, rather than from the current directory.
- **-f** (Used with split only.) Extract the archive section into directory called archive, rather than placing it in a file of the same name as the section.
- **-S section** (Used with split only.) Extract only the section named *section* from the archive.
- **-u section...** Appends *section* to the list of sections to be included. The default list includes the cookie, identification, and archive sections. *section* can be a single section name or a space-separated list of section names.

The following options are used with tape archives (with both split and combine):

- **-b blocksize** The block size to be used when creating the archive. If not specified, a default block size of 64K is used.
- **-p posn** Used only with -t. Specifies the position on the tape device where the archive should be created. If not specified, the current position of the tape device is used.
- **-t** Create an archive on or read an archive from a tape device. The *archive* operand (see OPERANDS) is
assumed to be the name of the tape device.

**EXAMPLE 1 Creating a Flash Archive**

The command below creates a flash archive named `pogoS9` and stores it in `/export/home/archives/s9fcs.flar`. The currently running system is the basis for the new archive.

```bash
# flar create -n pogoS9 /export/home/archives/s9fcs.flar
```

**EXAMPLE 2 Creating Differential Flash Archives**

The command below creates a differential flash archive.

```bash
# flar create -n diff_pogoS9 -A /images \
/export/home/archives/diff_s9fcs.flar
```

In the following example the *old* system image is accessed through `lumount`.

```bash
# lumount s9BE /test
# flar create -n diff_pogoS9 -A /test /export/home/archives/diff_s9fcs.flar
```

The following example shows the use of the `-R` option to specify a new system image other than the currently running system.

```bash
# flar create -n diff_pogoS9 -R /test -A /images /export/home/archives/diff_s9fcs.flar
```

**OPERANDS**

The following operand is supported:

- `archive`
  
  Path to tape device if the `-t` option was used. Otherwise, the complete path name of a flash archive. By convention, a file containing a flash archive has a file extension of `.flar`.

**EXIT STATUS**

The following exit values are returned for the `create`, `split`, and `combine` subcommands:

- 0: Successful completion.
- >0: An error occurred.

The following exit values are returned for the `info` subcommand:

- 0:Successful completion.
- 1: Command failed. If the `-k` option is used and the requested keyword is not found, `flar` returns 2.
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWinst</td>
</tr>
</tbody>
</table>

SEE ALSO
flarcreate(1M), flash_archive(4), attributes(5)
**NAME**
flarcreate – create a flash archive from a master system

**SYNOPSIS**
```
```

**DESCRIPTION**
The `flarcreate` command creates a flash archive from a master system. A master system is one that contains a reference configuration, which is a particular configuration of the Solaris operating environment, plus optional other software. A flash archive is an easily transportable version of the reference configuration.

In flash terminology, a system on which an archive is created is called a *master*. The system image stored in the archive is deployed to systems that are called *clones*.

There are two types of flash archives: full and differential. A full archive contains all the files that are in a system image. A differential archive contains only differences between two system images. Installation of a differential archive is faster and consumes fewer resources than installation of a full archive.

In creating a differential archive, you compare two system images. A system image can be any of:

- a Live Upgrade boot environment, mounted on some directory using `lumount(1M)` (see `live_upgrade(5)`)
- a clone system mounted over NFS with root permissions
- a full flash archive expanded into some local directory

To explain the creation of a differential flash archive, the following terminology is used:

- **old**
  The image prior to upgrade or other modification. This is likely the image as it was installed on clone systems.

- **new**
  The old image, plus possible additions or changes and minus possible deletions. This is likely the image you want to duplicate on clone systems.

The `flarcreate` command compares *old* and *new*, creating a differential archive as follows:

- files on *new* that are not in *old* are added to the archive;
- files of the same name that are different between *old* and *new* are taken from *new* and added to the archive;
- files that are in *old* and not in *new* are put in list of files to be deleted when the differential archive is installed on clone systems.
When creating a differential flash archive, the currently running image is, by default, the new image and a second image, specified with the `-A` option, is the old image. You can use the `-R` option to designate an image other than the currently running system as the new image. These options are described below.

Following creation of a flash archive, you can use JumpStart to clone the archive on multiple systems.

You can run `flarcreate` in multi- or single-user mode. You can also use the command when the master system is booted from the first Solaris software CD or from a Solaris net image.

Archive creation should be performed when the master system is in as stable a state as possible. Following archive creation, use the `flar` command to administer a flash archive.

See `flash_archive(4)` for a description of the flash archive.

The `flarcreate` command requires root privileges.

**OPTIONS**

The `flarcreate` command has one required argument:

- `-n name` Specifies the name of the flash archive. `name` is supplied as the value of the `content_name` keyword. See `flash_archive(4)`.

The `flarcreate` command has the following general options:

- `-A system_image` Create a differential flash archive by comparing a new system image (see `DESCRIPTION`) with the image specified by the `system_image` argument. By default, the new system image is the currently running system. You can change the default with the `-R` option, described below. `system_image` is a directory containing an image. It can be accessible through UFS, NFS, or `lumount(1M)`.

  The rules for inclusion and exclusion of files in a differential archive are described in `DESCRIPTION`. You can modify the effect of these rules with the use of the `-x`, `-X`, `-y`, and `-z` options, described below.

- `-c` Compress the archive using `compress(1)`

- `-f filelist` Use the contents of `filelist` as a list of files to include in the archive. The files are included in addition to the normal file list, unless `-F` is specified (see below). If `filelist` is ``, the list is taken from standard input.
flarcreate(1M)

- F
  Include only files in the list specified by -f. This option makes -f filelist an absolute list, rather than a list that is appended to the normal file list.

- H
  Do not generate hash identifier.

- I
  Ignore integrity check. To prevent you from excluding important system files from an archive, flarcreate runs an integrity check. This check examines all files registered in a system package database and stops archive creation if any of them are excluded. Use this option to override this integrity check.

- M
  Used only when you are creating a differential flash archive. When creating a differential archive, flarcreate creates a long list of the files in the system that remain the same, are changed, and are to be deleted on clone systems. This list is stored in the manifest section of the archive (see flash_archive(4)). When the differential archive is deployed, the flash software uses this list to perform a file-by-file check, ensuring the integrity of the clone system. Use of this option to avoid such a check and saves the space used by the manifest section in a differential archive. However, you must weigh the savings in time and disk space against the loss of an integrity check upon deployment. Because of this loss, use of this option is not recommended.

- R root
  Create the archive from the file system tree rooted at root. If you do not specify this option, flarcreate creates an archive from a file system rooted at /.

- S
  Skip the disk space check and do not write archive size data to the archive. Without -S, flarcreate builds a compressed archive in memory before writing the archive to disk, to ensure you have sufficient disk space. Use -S to skip this step. The result of the use of -S is a significant decrease in the time it takes to create an archive.

- U key=value...
  Include the user-defined keyword(s) and values in the archive identification section.

- x exclude...
  Exclude the file or directory exclude from the archive. Note that the exclude file or directory is assumed to be relative to the alternate root specified using -R. If the parent directory of the file exclude is included with the -y option (see -y include), then only the specific file or directory specified by exclude is excluded. Conversely, if
the parent directory of an included file is specified for exclusion, then only the file include is included. For example, if you specify:

```
-x/a -y/a/b
```

all of /a except for /a/b is excluded. If you specify:

```
-y/a -x/a/b
```

all of /a except for /a/b is included.

```
-y include...
```

Include the file or directory include in the archive. Note that the exclude file or directory is assumed to be relative to the alternate root specified using -R. See the description of the -x option, above, for a description of the interaction of the -x and -y options.

```
-x filelist...
```

Use the contents of filelist as a list of files to exclude from the archive. If filelist is ~, the list is taken from standard input.

```
-z filelist...
```

filelist is a list of files prefixed with a plus (+) or minus (-). A plus indicates that a file should be included in the archive; the minus indicates exclusion. If filelist is ~, the list is taken from standard input.

Use the following option with user-defined sections.

```
-u section...
```

Include the user-defined section located in the file section in the archive. section must be a blank-separated list of section names as described in flash_archive(4).

Use the following options with tape archives.

```
-b blocksize
```

The block size to be used when creating the archive. If not specified, a default block size of 64K is used.

```
-p posn
```

Used only with -t. Specifies the position on the tape device where the archive should be created. If not specified, the current position of the tape device is used.

```
-t
```

Create an archive on a tape device. The archive operand (see OPERANDS) is assumed to be the name of the tape device.

The following options are used for archive identification.
The following operand is supported:

archive
  Path to tape device if the -t option was used. Otherwise, the complete path name of a flash archive. By convention, a file containing a flash archive has a file extension of .flar.

The following exit values are returned:

0    Successful completion.
>0   An error occurred.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWinst</td>
</tr>
</tbody>
</table>

See also flar(1M), flash_archive(4), attributes(5)
fmthard – populate label on hard disks

**SYNOPSIS**

**SPARC**

```
fmthard -d data | -n volume_name | -s datafile [-i] /dev/rdsk/c? [t?]
d?s2
```

**x86**

```
fmthard -d data | -n volume_name | -s datafile [-i] [-p pboot] [-b bootblk]
/dev/rdsk/c? [t?] d?s2
```

**DESCRIPTION**

The `fmthard` command updates the VTOC (Volume Table of Contents) on hard disks and, on x86 systems, adds boot information to the Solaris `fdisk` partition. One or more of the options `-s datafile`, `-d data`, or `-n volume_name` must be used to request modifications to the disk label. To print disk label contents, see `prtvtoc(1M)`. The `/dev/rdsk/c?[t?]d?s2` file must be the character special file of the device where the new label is to be installed. On x86 systems, `fdisk(1M)` must be run on the drive before `fmthard`.

If you are using an x86 system, note that the term “partition” in this page refers to *slices* within the x86 `fdisk` partition on x86 machines. Do not confuse the partitions created by `fmthard` with the partitions created by `fdisk`.

**OPTIONS**

The following options are supported:

- **-d data**  
The `data` argument of this option is a string representing the information for a particular partition in the current VTOC. The string must be of the format `part:tag:flags:start:size` where `part` is the partition number, `tag` is the ID TAG of the partition, `flag` is the set of permission flags, `start` is the starting sector number of the partition, and `size` is the number of sectors in the partition. See the description of the `datafile` below for more information on these fields.

- **-i**  
This option allows the command to create the desired VTOC table, but prints the information to standard output instead of modifying the VTOC on the disk.

- **-n volume_name**  
This option is used to give the disk a `volume_name` up to 8 characters long.

- **-s datafile**  
This option is used to populate the VTOC according to a `datafile` created by the user. If the `datafile` is “-”, `fmthard` reads from standard input. The `datafile` format is described below. This option causes all of the disk partition timestamp fields to be set to zero.

Every VTOC generated by `fmthard` will also have partition 2, by convention, that corresponds to the whole disk. If the input in `datafile` does not specify an
entry for partition 2, a default partition 2 entry will be created automatically in VTOC with the tag V_BACKUP and size equal to the full size of the disk.

The datafile contains one specification line for each partition, starting with partition 0. Each line is delimited by a new-line character (\n). If the first character of a line is an asterisk (*), the line is treated as a comment. Each line is composed of entries that are position-dependent, separated by "white space" and having the following format:

\textit{partition tag flag starting\_sector size\_in\_sectors}

where the entries have the following values:

\textbf{partition} \hspace{2cm} The partition number. Currently, for Solaris SPARC, a disk can have up to 8 partitions, 0–7. Even though the partition field has 4 bits, only 3 bits are currently used. For x86, all 4 bits are used to allow slices 0–15. Each Solaris fdisk partition can have up to 16 slices.

\textbf{tag} \hspace{2cm} The partition tag: a decimal number. The following are reserved codes: 0 (V UNASSIGNED), 1 (V_BOOT), 2 (V_ROOT), 3 (V_SWAP), 4 (V_USR), 5 (V_BACKUP), 6 (V_STAND), 7 (V_VAR), and 8 (V_HOME).

\textbf{flag} \hspace{2cm} The flag allows a partition to be flagged as unmountable or read only, the masks being: V_UNMNT 0x01, and V_RONLY 0x10. For mountable partitions use 0x00.

\textbf{starting\_sector} \hspace{2cm} The sector number (decimal) on which the partition starts.

\textbf{size\_in\_sectors} \hspace{2cm} The number (decimal) of sectors occupied by the partition.

You can save the output of a prtvtoc command to a file, edit the file, and use it as the datafile argument to the -s option.
The functionality provided by the following two x86 options is also provided by `installboot(1M)`. Because the functionality described here may be removed in future versions of `fmthard`, you should use `installboot` to install boot records.

The following options are supported:

- `-b bootblk` This option allows the user to override the default `bootblk` file, `/usr/platform/platform-name/lib/fs/ufs/bootblk`. The boot block file is platform dependent, where `platform-name` can be determined using the `-i` option to `uname(1)`.

- `-p pboot` This option allows the user to override the default partition boot file, `/usr/platform/platform-name/lib/fs/ufs/pboot`. The partition boot file is platform dependent, where `platform-name` can be determined using the `-i` option to `uname(1)`.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`uname(1), format(1M), prtvtoc(1M), attributes(5)`

**x86 Only**

`fdisk(1M), installboot(1M)`

**NOTES**

Special care should be exercised when overwriting an existing VTOC, as incorrect entries could result in current data being inaccessible. As a precaution, save the old VTOC.

For disks under one terabyte, `fmthard` cannot write a VTOC on an unlabeled disk. Use `format(1M)` for this purpose.
fncheck(1M)

NAME fncheck – check for consistency between FNS data and NIS+ data

SYNOPSIS fncheck [-r] [-s] [-u] [-t type] [domain_name]

DESCRIPTION fncheck is used for checking for inconsistencies between FNS username or hostname contexts and the contents of the corresponding NIS+ passwd.org_dir or hosts.org_dir tables, respectively, in the NIS+ domain domain_name. If domain_name is omitted, the domain name of the current machine is used. By default (in the absense of the -r and -s options), the following inconsistencies are displayed:
- items that appear only in the FNS context but do not appear in the NIS+ table,
- items that appear only in the NIS+ table but do not appear in the FNS context.

OPTIONS
- r  Display only items that appear in the FNS context but do not appear in the corresponding NIS+ table.
- s  Display items that appear in the NIS+ table but do not appear in the corresponding FNS context.
- u  Update the FNS context based on information in the corresponding NIS+ table. If the -r option is used, items that appear only in the FNS context are removed from the FNS context. If the -s option is used, items that appear only in the NIS+ table are added to the FNS context. If neither -r or -s are specified, items are added and removed from the FNS context to make it consistent with the corresponding NIS+ table.
- t type  Specify the type of context to check. type can be either hostname or username. If this option is omitted, both hostname and username contexts are checked. If type is hostname, the FNS hostname context is checked against the NIS+ hosts.org_dir table. If type is username, the FNS username context is checked against the NIS+ passwd.org_dir table.

USAGE Although fncheck can be used to add users and hosts to the username and hostname contexts as new users and hosts are added to NIS+, that is not its intended purpose. fncheck is an expensive operation because it makes complete comparisons of the NIS+ table and the corresponding FNS context. When a user or host is added or removed from NIS+ using admintool (see admintool(1M)), it automatically updates the appropriate FNS contexts.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO admintool(1M), fncreate(1M), fndestroy(1M), nis(1), attributes(5), fns(5), fns_policies(5)
fncopy(1M)

NAME
  fncopy – copy FNS contexts, possibly from one naming service to another naming service

SYNOPSIS
  fncopy [-f filename] [-i old-naming-service] [-o new-naming-service]
          old-fns-context new-fns-context

DESCRIPTION
  fncopy copies recursively the FNS context, old-fns-context, and attributes to a new
  FNS context, new-fns-context. If -i and -o options are specified with the respective
  naming service, the old-fns-context will be resolved using old-naming-service as the
  underlying naming service, and new-fns-context will be created using
  new-naming-service as the underlying naming service. In the absence of -i and -o
  options, the default naming service will be used (see fnselect(1M)).

  When the -f option is used, filename names a file containing a list of contexts in the
  old-fns-context that should be copied to the new-fns-context.

  If the FNS context new-fns-context already exists in the target naming service,
  new-naming-service, this command will copy only the contexts and bindings that do not
  exist in the target naming service. This command will not over-write any of the
  existing FNS contexts in the target naming service.

  This command follows links and copies FNS contexts and binding to the
  new-fns-context namespace.

OPTIONS
  The following options are supported:

    -f filename
        Specifies a file name that contains a list of FNS contexts
        to be copied.

    -i old-naming-service
        Specifies the source naming service; currently only nis
        is supported.

    -o new-naming-service
        Specifies the target naming service; currently only
        nisplus is supported.

OPERANDS
  The following operands are supported:

    new-fns-context
        The new FNS context.

    old-fns-context
        The current FNS context.

EXAMPLES
  EXAMPLE 1 Copying the fncopy FNS Printer Context

  The following command copies the FNS printer context 
  .../fed-naming.eng.sun.com/service/printer and its subcontexts and bindings to the
  FNS printer context .../sun.com/orgunit/ssi.eng/service/printer.

  % fncopy .../fed-naming.eng.sun.com/service/printer \
          .../sun.com/orgunit/ssi.eng/service/printer
EXAMPLE 2 Copying the NIS FNS Users’ Contexts

The following command copies the NIS FNS users’ contexts specified in the file /etc/ssi-users-list to NIS+ FNS users’ context of the orgunit ssi.eng:

```
fncopy -i nis -o nisplus -f /etc/ssi-users-list \
  thisorgunit/user org/ssi.eng/user
```

EXIT STATUS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation was successful.</td>
</tr>
<tr>
<td>1</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

fnbind(1), fnunbind(1), fncreate(1M), fncreate_fs(1M), fncreate_printer(1M), fndestroy(1M), attributes(5), fns(5)
fncreate – create an FNS context

SYNOPSIS

fncreate -t context_type [-Dosv] [-f input_file] [-r reference_type] composite_name

DESCRIPTION

fncreate creates an FNS context of type context_type, where a context_type must be one of org, hostname, host, username, user, service, fs, site, nsid, or generic. It takes as the last argument a composite name, composite_name, for the context to be created. In addition to creating the context named, fncreate also creates subcontexts of the named context using FNS Policies of what types of contexts should be bound in those contexts. See fns_policies(5).

fncreate discovers which naming service is in use and creates contexts in the appropriate naming service. When FNS is being initially set up, it will by default create contexts for NIS+. This default can be changed by the use of fnselect(1M) to explicitly select a naming service.

When using FNS for a NIS+ environment, fncreate creates NIS+ tables and directories in the NIS+ hierarchy. See fns_nis+(5) for more information on the necessary NIS+ credentials and the use of the environment variable NIS_GROUP when using fncreate and other FNS commands.

When using FNS for a NIS environment, fncreate creates NIS maps and hence must be executed as superuser on the NIS master of the FNS-related maps. See fns_nis(5) for more information specific to the use of FNS in a NIS environment.

When using FNS for an environment that uses /etc files for its naming information, fncreate creates files in the /var/fn directory. See fns_files(5) for more information specific to the use of FNS for files.

OPTIONS

The following options are supported:

- Do information about the creation of a context, and corresponding NIS+ directories and tables, or NIS maps, or files entry, is displayed as each context is created.

- f input_file

Create a context for every user or host listed in input_file. This option is only applicable when used with the -t username or -t hostname options. The format of the file is an atomic user name or host name per line. This option is used to create contexts for a subset of the users/hosts found in the corresponding passwd or hosts database of the naming service (that is, for NIS+ these are the passwd.org_dir or hosts.org_dir tables, respectively). If this option is omitted, fncreate creates a context for every user/host found in the corresponding passwd or hosts database.
Only the context named by composite_name is created; no subcontexts are created. When this option is omitted, subcontexts are created according to the FNS Policies for the type of the new object.

-t context_type

The following are valid entries for context_type:

org
Create organization context, and default subcontexts, for an existing NIS+ domain, NIS domain, or /etc files environment.

For NIS+, composite_name is of the form org/domain/ where domain is a NIS+ domain. An empty domain name indicates the creation of the organization context for the root NIS+ domain; otherwise, the domain name names the corresponding NIS+ domain. domain can be either the fully-qualified NIS+ domain name — dot (’.’)-terminated — or the NIS+ domain name named relative to the NIS+ root domain.

For example, the following creates the root organization context and its subcontexts for the NIS+ root domain Wiz.Com.:

eg% fncreate -t org org/

The same thing could have been achieved using the following command:

eg% fncreate -t org org/Wiz.COM./

Typically, this is the first FNS context created.

To create the organization context for a subdomain of Wiz.COM., execute either of the following commands:

eg% fncreate -t org org/sales/
or

eg% fncreate -t org \org/sales.Wiz.COM./

Note that if the corresponding NIS+ domain does not exist, fncreate fails. See nissetup(1M) for setting up a NIS+ domain.

A ctx_dir directory is created under the directory of the organization named.
For NIS or an /etc files environment, domain should be NULL (empty) because NIS and /etc files do not support a hierarchy namespace of domains. For example, the following command creates the organization context for the NIS or /etc files environment:

```
eg% fncreate -t org org/
```

For NIS+, NIS, and /etc files, creating the organization context also creates the organization’s immediate subcontexts host, user, and service and their subcontexts. This includes a context for every host entry in the corresponding hosts database of the naming service (that is, hosts.org_dir NIS+ table, or hosts NIS map, or /etc/hosts file), and a context for every user entry in the passwd database of the naming service (that is, passwd.org_dir NIS+ table, or passwd NIS map, or /etc/passwd file) unless the option -o is specified. Bindings for these subcontexts are recorded under the organization context.

**hostname**

Create a hostname context in which atomic host names can be bound, and bind the reference of the context to composite_name. If the suffix of composite_name is host/, the hostname context created is also bound to the composite name with this suffix replaced by _host/, and the reverse (that is, if a composite name with a _host/ suffix was supplied, a binding would be created for host/).

Also create a host context for every host entry in the corresponding hosts database of the naming service (hosts.org_dir NIS+ table, or hosts NIS map, or /etc/hosts file), unless either option -o or -f is specified. The following example creates host contexts for all hosts in the sales organization:

```
eg% fncreate -t hostname org/sales/host/
```

Typically, a hostname context need not be created explicitly since it is created by default, as a subcontext under org.

**host**

Create a host context for a specific host, and its service and fs subcontexts, and bind the reference of the context to composite_name. For
example, the following creates a host context and service and fs subcontexts for host sylvan:

```
eg% fncreate -t host \n  org/sales/host/sylvan/
```

**username**

Create a username context in which atomic user names can be bound, and bind the reference of the context to `composite_name`. If the suffix of `composite_name` is `user/`, the username context created is also bound to the composite name with this suffix replaced by `_user/`, and the reverse. Also create a user context for every user entry in the corresponding `passwd` database of the naming service (that is, `passwd.org_dir` NIS+ table, or `passwd` NIS map, or `/etc/passwd` file), unless either the option `-o` or `-f` is specified. The following example creates username contexts for all users in the `sales` organization:

```
eg% fncreate -t username \n  org/sales/user/
```

Typically, a username context need not be created explicitly since it is created by default, as a subcontext under `org`.

**user**

Create a user context for a specific user, and its service and fs subcontexts, and bind the reference of the context to `composite_name`. For example, the following creates a user context and service and fs subcontexts for user jsmith:

```
eg% fncreate -t user \n  org/sales/user/jsmith/
```

**service**

Create a service context in which slash-separated left-to-right service names can be bound, and bind the reference of the context to `composite_name`. If the suffix of `composite_name` is `service/`, the service context created is also bound to the composite name with this suffix replaced by `_service/`, and the reverse. Typically, a service context need not be created explicitly since it is created by default, as a subcontext under `org`, `host`, or `user` contexts.

**fs**

Create a file system context for a user or host, and bind the reference of the context to `composite_name`. 
The composite name must be the name of a host or a user, with either _fs/ or _fs/ appended to it. If the suffix of composite_name is _fs/, the file system context created is also bound to the composite name with this suffix replaced by _fs/, and the reverse.

Typically, a file system context need not be created explicitly since it is created by default, as a subcontext of a user or host context.

The file system context of a user is the user’s home directory as stored in the passwd database of the naming service (that is, in NIS+ table passwd.org_dir, or passwd NIS map, or /etc/passwd file). The file system context of a host is the set of NFS file systems that the host exports.

Use the fncreate_fs(1M) command to create file system contexts for organizations and sites, or to create file system contexts other than the defaults for users and hosts.

site
Create a site context in which dot-separated right-to-left site names can be bound, and a service subcontext, and bind the reference of the context to composite_name. If the suffix of composite_name is site/, the hostname context created is also bound to the composite name with this suffix replaced by _site/, and the reverse. Typically, a site context is created at the same level as the org context and is used for creating a geographical namespace that complements the organizational namespace of an enterprise.

nsid
Create a context in which namespace identifiers can be bound. This context has a flat namespace, in which only atomic names can be bound. An example of such a context is the context to which the name site/east/ is bound. This context can have the following bindings: site/east/host, site/east/user, and site/east/service.

generic
Create a generic context in which slash-separated left-to-right names can be bound, and bind the reference of the context to composite_name. The option -r can be used to specify the reference type to be associated with the context. If the -r option is
omitted, the reference type used is the reference type of the parent context if the parent context is a generic context; otherwise, the reference type is onc_fn_generic.

-\texttt{r} reference\_type

Use reference\_type as the reference type of the generic context being created. This option can be used only with the \texttt{-t generic} option.

-\texttt{s}

Create the context and bind it in to supercede any existing binding associated with composite\_name. If this option is omitted, \texttt{fncreate} fails if composite\_name is already bound.

-\texttt{v}

Information about the creation of a context is displayed as each context is created.

**OPERANDS**

The following operand is supported:

\texttt{composite\_name}

An FNS named object.

**EXAMPLES**

**EXAMPLE 1 Creating A Host Context**

This example illustrates the creation of a host context in the root organization and a user context in a sub-organization.

The following command creates a context, and subcontexts, for the root organization:

\%
\texttt{fncreate -t org org//}

It causes the following commands to be invoked automatically:

\%
\texttt{fncreate -t service org//service/}
\%
\texttt{fncreate -t hostname org//host/}
\%
\texttt{fncreate -t username org//user/}

The following command creates a context, and subcontexts, for host sylvan:

\%
\texttt{fncreate -t host org//host/sylvan/}

It causes the following commands to be invoked automatically:

\%
\texttt{fncreate -t service org//host/sylvan/service/}
\%
\texttt{fncreate -t fs org//host/sylvan/fs/}

The following command creates a context, and subcontexts, associated with a sub-organization dct:

\%
\texttt{fncreate -t org org/dct/}

It causes the following commands to be invoked automatically:

\%
\texttt{fncreate -t service org/dct/service/}
\%
\texttt{fncreate -t hostname org/dct/host/}
\%
\texttt{fncreate -t username org/dct/user/}
EXAMPLE 1 Creating A Host Context  (Continued)

The following command creates a context, and subcontexts, for user msmith:

% fncreate -t user org/dct/user/msmith/

It causes the following commands to be invoked automatically:

% fncreate -t service org/dct/user/msmith/service/
% fncreate -t fs org/dct/user/msmith/fs/

The following commands create service contexts:

% fncreate -t service org/dct/service/fax
% fncreate -t service org/dct/service/fax/classA

EXIT STATUS

0 Operation was successful.
1 Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

nis(1), fncheck(1M), fncreate_fs(1M), fndestroy(1M), fnselect(1M),
nissetup(1M), xfn(3XFN), attributes(5), fns(5), fns_files(5), fns_nis(5),
fns_nis+(5), fns_policies(5), fns_references(5)
fncreate_fs(1M)

NAME  fncreate_fs – create FNS file system contexts

SYNOPSIS  fncreate_fs [-r] [-v] -f input_file composite_name
           fncreate_fs [-r] [-v] composite_name [mount_options] [mount_location...]

DESCRIPTION  The fncreate_fs command creates or updates the FNS file system context named by composite_name. A description of the context’s bindings is provided in input_file if the first form of the command is used, or is given on the command line if the second form is used.

OPTIONS

- r  Replace the bindings in the context named by composite_name with only those specified in the input. This is equivalent to destroying the context (and, recursively, its subcontexts), and then running fncreate_fs without this option. This option should be used with care.

- v  Verbose. Display information about the contexts being created and modified.

- f input_file  Read input from input_file. If input_file is ‘-’ (hyphen), read from standard input instead.

OPERANDS  The following operand is supported:

    composite_name  An FNS named object.

USAGE  The fncreate_fs command populates the file system portions of the FNS namespace. The automounter (see automount(1M)) will then “mount” the FNS namespace under /xfn. The directory with the FNS name org/engineering/fs, for example, can be found on the file system as /xfn/org/engineering/fs.

The format of the input to fncreate_fs is similar, but not identical, to the format of indirect automount maps. Differences are enumerated in the NOTES section below.

Input File Format  The input file supplies the names and values to be bound in the context of composite_name. Its format is a sequence of lines of the form:

    name  [ -options ]  [ location ... ]  For each such entry, a reference to the location(s) and the corresponding options is bound to the name composite_name/name. The name field may be a simple atomic name, a slash-separated hierarchical name, or ‘.’ (period). If it is ‘.’ then the reference is bound directly to composite_name. The name field must not begin with a slash.

    The location field specifies the host or hosts that serve the files for composite_name/name. In the case of a simple NFS mount, location takes the form:

    host : path  where host is the name of the host from which to mount the file system, and path is the path name of the directory to mount.
The `options` field is a comma-separated list of the mount options to use when mounting the location bound to `composite_name/name`. These options also apply to any subcontexts of `composite_name/name` that do not specify their own mount options. If `options` is given but `location` is not, the options apply to subcontexts only.

If neither `options` nor a `location` is given, then no reference is bound to `composite_name/name`. Any existing reference is unbound.

A single logical line may be continued across multiple input lines by escaping the newline with a ‘\’ (backslash). Comments begin with a ‘#’ that is either at the beginning of a line or is prefixed by whitespace, and end at the end of the line.

If no `input_file` is specified on the command line, then the `options` and `location` fields given on the command line are bound directly to `composite_name`. This is equivalent to providing a one-line input file with a ‘.’ in the `name` field.

Multiple `location` fields may be specified for NFS file systems that are exported from multiple, functionally-equivalent locations. If several locations in the list share the same path name, they may be combined using a comma-separated list of host names:

```
host1, host2, ... : path
```

The hosts may be weighted, with the weighting factor appended to the host name as a non-negative integer in parentheses: the lower the number, the more desirable the server. The default weighting factor is 0 (most desirable). In the example:

```
alpha,bravo,charlie(1),delta(2):/usr/man
```

hosts `alpha` and `bravo` are the most desirable; host `delta` is the least desirable.

See the `USAGE` section of `automount(1M)` for additional information on how the automounter interprets the location field.

Variable names, prefixed by ‘$’, may be used with the `options` or `location` fields. For example, a `location` may be given as:

```
svr1:/export/$CPU
```

The automounter will substitute client-specific values for these variables when mounting the corresponding file systems. In the above example, `$CPU` is replaced by the output of `uname -p`; for example, "sparc". See the `USAGE` section of `automount(1M)` for more information on how the automounter treats variable substitution.

For additional compatibility with automount maps (see `automount(1M)`), the following input format is accepted:

```
name [options] [location . . .] \ 
/offset1 [options1] location1 . . . \ 
/offset2 [options2] location2 . . . \ 
```

System Administration Commands 419
where each offset field is a slash-separated hierarchy. This is interpreted as being equivalent to:

```
name  [options] [location ...]
name/offset1  [options1] location1 ...
name/offset2  [options2] location2 ...
... (the first line being omitted if both options and location are omitted).
```

This format is for compatibility only; it provides no additional functionality. Its use is deprecated.

### EXAMPLE 1 Using the `fncreate_fs` Command

The following examples illustrate the use of the `fncreate_fs` command. The call:

```
example% cat input1
src -ro svr1:/export/src
dist -ro svr2,svr3:/export/dist
example% fncreate_fs -f input1 org/engineering/fs
```

creates a file system context for the engineering organization. It specifies that org/engineering/fs/src is a read-only NFS mount from server svr1, and that org/engineering/fs/dist is a read-only NFS mount from either svr2 or svr3.

Once this is done, there are several equivalent ways to create the engineering organization's src/cmd context. It could be done using the composite name org/engineering/fs:

```
example% cat input2
src/cmd svr1:/export/cmd
dist -ro svr2,svr3:/export/dist
example% fncreate_fs -f input2 org/engineering/fs
```

Equivalently, it could be done using the composite name org/engineering/fs/src:

```
example% cat input3
src/cmd svr1:/export/cmd
dist svr2,svr3:/export/dist
dist -ro svr2,svr3:/export/dist
dist -ro svr2,svr3:/export/dist
example% fncreate_fs -f input3 org/engineering/fs/src
```

The same results could also be achieved by:

```
example% fncreate_fs org/engineering/fs/src/cmd svr1:/export/cmd
```

Note that cmd will also be mounted read-only, since it is a subcontext of src and does not have mount options of its own.

In the first example of this section, the -ro mount option was specified for each entry in the input file. It could instead have been specified only once:

```
example% cat input4
  -ro
src svr1:/export/src
dist svr2,svr3:/export/dist
dist -ro svr2,svr3:/export/dist
example% fncreate_fs -f input4 org/engineering/fs
```
EXAMPLE 1 Using the fncreate_fs Command  (Continued)

The -ro option here applies to all bindings in the context org/engineering/fs and any of its subcontexts. In particular, it also applies to the cmd context from the above examples.

The following will change the NFS server for the src context:

```
example% fncreate_fs org/engineering/fs/src svr4:/export/src
```

Had the -r option been used, the cmd subcontext would have been destroyed as well:

```
example% fncreate_fs -r org/engineering/fs/src svr4:/export/src
```

Only the FNS context is destroyed. The /export/cmd directory on svr1 is not affected.

The file system contexts of users and hosts are not usually created by fncreate_fs (see the NOTES section below). The defaults set by fncreate, however, may be overridden. For example, the call:

```
example% fncreate_fs user/jane/fs svr1:/export/home/jane
```

sets Jane’s file system to be an NFS mount from svr1.

EXIT STATUS

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation was successful.</td>
</tr>
<tr>
<td>1</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), nis+(1), automount(1M), fncreate(1M), fndestroy(1M), attributes(5), fns(5), fns_files(5), fns_nis(5), fns_nis+(5), fns_policies(5)

NOTES

The fncreate_fs command affects the FNS file system namespace only. It does not have any effect on the servers that export the files and directories from which the namespace is constructed. Destroying an FNS context does not remove any files on any server.

FNS policies specify that file system contexts are bound after the namespace identifier fs in composite names (see fns_policies(5)). Therefore, composite_name must contain an fs. The alias _fs may be used in place of fs.

The context named by the components of composite_name preceding fs must exist prior to the call to fncreate_fs, since fncreate_fs creates only file system contexts.
Default file system contexts for hosts and users are generally created by the command `fncreate(1M)`. These defaults may be overridden using `fncreate_fs`. Overriding a host’s default file system context is unlikely to make sense.

The input file format is similar to the format of indirect automount maps (see `automount(1M)`). The differences are:

- the `name` field may be hierarchical, and may be ‘.’
- there are no included maps or special maps
- there may be entries with neither options nor locations
- the characters ‘*’ and ‘&’ have no special meaning

The process executing the `fncreate_fs` command may need certain credentials to update information in the underlying naming service. See `fns_nis(5)`, `fns_nis+(5)`, and `fns_files(5)` for more information.
fncreate_printer – create new printers in the FNS namespace

SYNOPSIS

fncreate_printer [-sv] compositename printername printeraddr [printeraddr...]

fncreate_printer [-sv] [-f filename] compositename

DESCRIPTION

fncreate_printer creates a new printer context for an organization, user, host, or site object. compositename is the FNS name of the object. fncreate_printer uses printername to name the new printer and binds it to an FNS reference constructed from the set of printeraddr. fncreate_printer may also be used to add new printeraddr for an existing printername.

The command also supports creating a set of printers as listed in the file filename.

The new printer context is created with the FNS name <compositename>/service/printer/<printername>. If the intermediate service or printer names do not exist, their FNS contexts are also created by this command. Normally, these intermediate contexts would be created by an administrative script that uses fncreate(1M), and is run at the time a new FNS organization is set up. The reference bound to the FNS printer name is of type onc_printers and is constructed from the set of printeraddr. A printeraddr is of the form <addresstype>=<address>. See printers.conf(4) for the format of printeraddr and also the examples below for currently supported address types and address strings.

An FNS printer name is accepted as a valid printer name by lp(1), lpstat(1), cancel(1), lpmove(1M), lpr(1B), lpq(1B), and lprm(1B).

The printername argument may be a slash-separated name. In this case, prior to creating the printer context denoted by the “leaf” name, this command will create printer context(s) for the intermediate node(s) if they do not already exist. See EXAMPLES.

fncreate_printer creates entries in the naming service determined by fnselect(1M). See fnselect(1M) for more information on the default naming service and on selecting a naming service. Furthermore, the process executing the fncreate_printer command may require certain credentials to update information in the underlying namespace. See fns_nis+(5), fns_nis(5), and fns_files(5) for more information.

OPTIONS

- s
    The new address supersedes an existing address with the same addresstype, if any, for <compositename>/service/printer/<printername>. If this option is omitted, it appends the printeraddr to an existing reference, or creates a new reference using printeraddr for the printer.

- v
    Displays information about individual printer contexts as they are created.

- f filename
    Use filename to obtain a list of printers for which to create contexts. If this option is omitted, /etc/printers.conf is used as the
fncreate_printer(1M)

OPERANDS

filename
The file that contains a list of printers to be created. This file uses the same format as /etc/printers.conf. See printers.conf(4) for more information.

printename
The name of the new printer context created.

printeraddr
An address to be associated with the printer context name.

compositename
The FNS name for the org, host, user, or site object for which the new printer contexts are created.

EXAMPLES

EXAMPLE 1 Creating Printer Contexts

The following examples illustrate creating a set of printer contexts under an organization, a printer context for a user, and a printer context associated with a hierarchical printer name for a site, respectively. To create printers for an organization:

eexample% fncreate_printer -s org/marketing
This causes the creation of a printer context for every entry listed in the /etc/printers.conf file on the system where the command is executed. The printer contexts thus created are bound under the organization’s printer context, org/marketing/service/printer. The -s flag is required to force the creation of the printer contexts in the underlying namespace, since the default /etc/printers.conf file is being used.

To create a printer named ps for user jsmith and associate it with the killtree printer served by the print server paperwaster:

eexample% fncreate_printer -susr/jsmith ps bsdaddr=paperwaster,killtree
This causes jsmith’s ps printename to be associated with the killtree printer on the server paperwaster, overwriting any existing address of type bsdaddr. The user can print to this printer using the command:

eexample% lp -dthisuser/service/printer/ps <filename>

To create a printer with the hierarchical name color/fast under a site:

eexample% fncreate_printer site/bldg14/northwing color/fast \ bsdaddr=paperwaster,laser
This causes the printer named site/bldg14/northwing/service/printer/color/fast to be associated with the laser printer on server paperwaster. If the intermediate printer context site/bldg14/northwing/service/printer/color does not exist, it will also be created and associated with the same printer. If the printer name site/bldg14/northwing/service/printer/color/fast already exists and has an address of type bsdaddr associated with it, this command will fail.

EXIT STATUS

0 Successful operation.
Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), fncreate(1M), fnselect(1M), lpmv(1M), printers(4), printers.conf(4), attributes(5), fns(5), fns_files(5), fns_nis(5), fns_nis+(5)
fndestroy(1M)

NAME       fndestroy – destroy an FNS context
SYNOPSIS   fndestroy composite_name
DESCRIPTION fndestroy removes the context bound to composite_name. The context is not removed if there are subcontexts associated with composite_name.
EXAMPLES   EXAMPLE 1 Using The fndestroy Command
The command
example$ fndestroy user/jsmith/
destroys the context named by user/jsmith/ and removes the binding of jsmith from the context user/.

This command fails if the context user/jsmith/ contains subcontexts, or if the invoker does not have the NIS+ credentials required to delete the NIS+ tables that store the user’s bindings. See fns(5).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO fnlist(1), fnlookup(1), fnunbind(1), fncreate(1M), attributes(5), fns(5), fns_policies(5)
fnselect – select a specific naming service to use for the FNS Initial Context

**SYNOPSIS**

```
fnselect [-D]

fnselect naming-service
```

**DESCRIPTION**

`fnselect` is used to set the specified naming service to be used to construct the bindings in the FNS Initial Context. This setting affects the entire machine and affects applications that make subsequent calls to `fn_ctx_handle_from_initial(3XFN)`. This setting can be changed only by an administrator who has root privilege on the machine.

**OPTIONS**

- `-D` Displays the actual naming service used to generate the FNS Initial Context.

**OPERANDS**

`naming-service` The following are possible values for `naming-service`:

- `default` Use the FNS default algorithm for determining the target naming service.
- `nisplus` Use NIS+ as the target naming service.
- `nis` Use NIS as the target naming service.
- `files` Use `/etc` files as the target naming service.

**USAGE**

When the `default` option is selected, FNS determines the underlying naming service using the following algorithm:

- First, it checks for NIS+ with FNS installed.
- If the result is `TRUE`, then FNS assumes `nisplus` as the underlying naming service.
- Otherwise, it checks if the system is a NIS client.
- If `TRUE`, FNS assumes `nis` as the underlying naming service.
- Otherwise, FNS assumes `/etc` files.

`fnselect` without any arguments displays the service currently selected for the Initial Context (one of `default`, `nisplus`, `nis`, or `files`).

When the `-D` option is specified and the current setting is `default`, `fnselect` will use the algorithm that is used by FNS and display the actual naming service used for the FNS Initial Context.

**EXAMPLES**

**EXAMPLE 1** Using The `fnselect` Command

The command

```
example$ fnselect nisplus
```

will select NIS+ as the underlying naming service for the FNS Initial Context.
EXAMPLE 1 Using The fnselect Command  (Continued)

example$ fnselect
will print the naming service currently being used to generate the FNS Initial Context.

EXIT STATUS

0     Operation was successful.
1     Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), fncreate(1M),
fncreate_fs(1M), fncreate_printer(1M), fndestroy(1M),
fn_ctx_handle_from_initial(3XFN), attributes(5), fns(5),
fns_initial_context(5)
The `fnsypd` daemon is a Remote Procedure Call (RPC) service that accepts requests from NIS clients to update and modify Federated Naming Service (FNS) contexts. This daemon runs on an NIS master server with FNS on top of it. The `fnsypd` daemon requires the Secure Key Infrastructure (SKI) mechanism for authentication. The SKI mechanism is part of the SUNWski package. If SUNWski is not installed, authentication cannot be performed and users will receive "permission denied" error messages. The SUNWski man pages are located at `/opt/SUNWski/man`.

`fnsypd` enables users and hosts to modify only their respective FNS contexts. Organization, site, hostname and username contexts cannot be modified using `fnsypd`.

**EXIT STATUS**

The following exit values are returned:

- 0  Successful completion.
- 1  An error occurred.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`nis(1), attributes(5), fns(5), fns_policies(5)`
format(1M)

NAME
format – disk partitioning and maintenance utility

SYNOPSIS
[-t disk-type] [-p partition-name] [-s] [-m] [-M] [-e] [disk-list]

DESCRIPTION
format enables you to format, label, repair and analyze disks on your system. Unlike
previous disk maintenance programs, format runs under SunOS. Because there are
limitations to what can be done to the system disk while the system is running,
format is also supported within the memory-resident system environment. For most
applications, however, running format under SunOS is the more convenient
approach.

format first uses the disk list defined in data-file if the -x option is used. format then
checks for the FORMAT_PATH environment variable, a colon-separated list of
filenames and/or directories. In the case of a directory, format searches for a file
named format.dat in that directory; a filename should be an absolute pathname,
and is used without change. format adds all disk and partition definitions in each
specified file to the working set. Multiple identical definitions are silently ignored. If
FORMAT_PATH is not set, the path defaults to /etc/format.dat.

disk-list is a list of disks in the form c?t?d? or /dev/rdsk/c?t?d?s?. With the
latter form, shell wildcard specifications are supported. For example, specifying
/dev/rdsk/c2* causes format to work on all drives connected to controller c2
only. If no disk-list is specified, format lists all the disks present in the system that can
be administered by format.

Removable media devices are listed only when users execute format in expert mode
(option -e). This feature is provided for backward compatibility. Use rmformat(1) for
rewritable removable media devices.

OPTIONS
The following options are supported:

-< disk-name Specify which disk should be made current upon entry
into the program. The disk is specified by its logical
name (for instance, -d c0t1d0). This can also be
accomplished by specifying a single disk in the disk
list.

-e Enable SCSI expert menu. Note this option is not
recommended for casual use.

-f command-file Take command input from command-file rather than the
standard input. The file must contain commands that
appear just as they would if they had been entered
from the keyboard. With this option, format does not
issue continue? prompts; there is no need to specify
y(es) or n(o) answers in the command-file. In
non-interactive mode, format does not initially expect
the input of a disk selection number. The user must
specify the current working disk with the -< disk-name
option when format is invoked, or specify disk and the disk selection number in the command-file.

-l log-file
Log a transcript of the format session to the indicated log-file, including the standard input, the standard output and the standard error.

-m
Enable extended messages. Provides more detailed information in the event of an error.

-M
Enable extended and diagnostic messages. Provides extensive information on the state of a SCSI device’s mode pages, during formatting.

-p partition-name
Specify the partition table for the disk which is current upon entry into the program. The table is specified by its name as defined in the data file. This option can be used only if a disk is being made current, and its type is either specified or available from the disk label.

-s
Silent. Suppress all of the standard output. Error messages are still displayed. This is generally used in conjunction with the -F option.

-t disk-type
Specify the type of disk which is current upon entry into the program. A disk’s type is specified by name in the data file. This option can only be used if a disk is being made current as described above.

-x data-file
Use the list of disks contained in data-file.

**USAGE**
When you invoke format with no options or with the -e, -l, -m, -M, or -s options, the program displays a numbered list of available disks and prompts you to specify a disk by list number. If the machine has more than 10 disks, press SPACE to see the next screenful of disks.

You can specify a disk by list number even if the disk is not displayed in the current screenful. For example, if the current screen shows disks 11-20, you can enter 25 to specify the twenty-fifth disk on the list. If you enter a number for a disk that is not currently displayed, format prompts you to verify your selection. If you enter a number from the displayed list, format silently accepts your selection.

After you specify a disk, format displays its main menu. This menu enables you to perform the following tasks:

- **analyze** Run read, write, and compare tests.
- **backup** Search for backup labels.
- **cache** Enable, disable, and query the state of the write cache and read cache. This menu item only appears when format is invoked with the -e option, and is only supported on SCSI devices.
### current
Display the device name, the disk geometry, and the pathname to the disk device.

### defect
Retrieve and print defect lists. This option is supported only on SCSI devices. IDE disks perform automatic defect management. Upon using the `defect` option on an IDE disk, you receive the message:

```
Controller does not support defect management
or disk supports automatic defect management.
```

### disk
Choose the disk that will be used in subsequent operations (known as the current disk.)

### fdisk
Run the `fdisk(1M)` program to create a `fdisk` partition for Solaris software (x86 based systems only).

### format
Format and verify the current disk. This option is supported only on SCSI devices. IDE disks are pre-formatted by the manufacturer. Upon using the `format` option on an IDE disk, you receive the message:

```
Cannot format this drive. Please use your manufacturer-supplied formatting utility.
```

### inquiry
Display the vendor, product name, and revision level of the current drive.

### label
Write a new label to the current disk.

### partition
Create and modify slices.

### quit
Exit the format menu.

### repair
Repair a specific block on the disk.

### save
Save new disk and slice information.

### type
Select (define) a disk type.

### verify
Read and display labels. Print information such as the number of cylinders, alternate cylinders, heads, sectors, and the partition table.

### volname
Label the disk with a new eight character volume name.

### ENVIRONMENT VARIABLES

| FORMAT_PATH | a colon-separated list of filenames and/or directories of disk and partition definitions. If a directory is specified, `format` searches for the file `format.dat` in that directory. |

### FILES

| /etc/format.dat | default data file |
format(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
fmthard(1M), prtvtoc(1M), rmformat(1), format.dat(4), attributes(5), sd(7D)

System Administration Guide: Basic Administration

x86 Only
fdisk(1M)

WARNINGS
When the format function is selected to format the Maxtor 207MB disk, the following message displays:

Mode sense page(4) reports rpm value as 0, adjusting it to 3600

This is a drive bug that may also occur with older third party drives. The above message is not an error; the drive will still function correctly.

Cylinder 0 contains the partition table (disk label), which can be overwritten if used in a raw disk partition by third party software.

format supports writing EFI-compliant disk labels in order to support disks or LUNs with capacities greater than one terabyte. However, care should be exercised since many software components, such as filesystems and volume managers, are still restricted to capacities of one terabyte or less. See the System Administration Guide: Basic Administration for additional information.

NOTES
format provides a help facility you can use whenever format is expecting input. You can request help about what information is expected by simply entering a question mark (?) and format prints a brief description of what type of input is needed. If you enter a ? at the menu prompt, a list of available commands is displayed.

For SCSI disks, formatting is done with both Primary and Grown defects list by default. However, if only Primary list is extracted in defect menu before formatting, formatting will be done with Primary list only.

Changing the state of the caches is only supported on SCSI devices, and not all SCSI devices support changing or saving the state of the caches.
NAME | fruadm – prints and updates customer data associated with FRUs

SYNOPSIS |
/usr/platform/sun4u/sbin/fruadm

/usr/platform/sun4u/sbin/fruadm -l

/usr/platform/sun4u/sbin/fruadm [-r] path [text]

DESCRIPTION | fruadm prints or sets the customer data for Field-Replaceable Units (FRUs).

Without arguments, fruadm prints the paths of all FRU ID-capable FRUs (containers) in the system, along with the contents of the customer data record, if present, for each such FRU; for FRUs without customer data, fruadm prints only the container’s path.

Only a privileged user can create or update data in containers. The privileges required to perform these write operations are hardware dependent. Typically, a default system configuration restricts write operations to the superuser or to the platform-administrator user.

OPTIONS | The following options are supported:

- -l | List the system’s frutree paths.

- -r | Recursively display or update the data for all containers rooted at the argument path.

OPERANDS | The following operands are supported:

path | A full or partial system frutree path for or under which to print or set the customer data. The first field of each line of output of fruadm -l gives the valid full frutree paths for the system.

Paths can include shell meta-characters; such paths should be quoted appropriately for the user’s shell. For partial paths, the first matching full path is selected for display or update. Without the -r option, the path must be that of a container; with the -r option, all containers (if any) under path will be selected.

text | Up to 80 characters of text set as the customer data. If the text contains white space or shell metacharacters, it should be quoted appropriately for the user’s shell.

EXAMPLES | EXAMPLE 1 Displaying All Customer Data

The following example prints all customer data available from FRUs on the system. For containers with no customer data, only the containers’ paths will be listed.

dispatcher% fruadm

EXAMPLE 2 Displaying Customer Data For a Single FRU

The following command prints the customer data, if present, for the specified FRU:

example% fruadm /frutree/chassis/system-board

EXAMPLE 3 Displaying Customer Data For a Single FRU

The following command prints the customer data, if present, for the first mem-module found:

example% fruadm mem-module

EXAMPLE 4 Setting Customer Data

The following example sets the customer data for a FRU:

example# fruadm system-board ‘Asset Tag 123456’

EXAMPLE 5 Setting Customer Data

The following command sets the customer data for all FRUs under chassis:

example# fruadm -r /frutree/chassis *Property of XYZ, Inc.*

EXIT STATUS

The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfruip.u</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO

prtfru(1M), attributes(5)
**NAME**
fsck – check and repair file systems

**SYNOPSIS**
```
fsck [-F FSType] [-m] [-V] [special...]
```
```
fsck [-F FSType] [-n | N | y | Y] [-V] [-o FSType-specific-options] [special...]
```

**DESCRIPTION**
`fsck` audits and interactively repairs inconsistent file system conditions. If the file system is inconsistent the default action for each correction is to wait for the user to respond yes or no. If the user does not have write permission `fsck` defaults to a no action. Some corrective actions will result in loss of data. The amount and severity of data loss can be determined from the diagnostic output.

`FSType-specific-options` are options specified in a comma-separated (with no intervening spaces) list of options or keyword-attribute pairs for interpretation by the `FSType-specific module of the command.`

`special` represents the character special device on which the file system resides, for example, `/dev/rdsk/c0t0d0s7`. Note: the character special device, not the block special device, should be used. `fsck` will not work on a block device if it is mounted.

If no `special` device is specified, `fsck` checks the file systems listed in `/etc/vfstab`. Those entries in `/etc/vfstab` which have a character special device entry in the `fsckdev` field and have a non-zero numeric entry in the `fsckpass` field will be checked. Specifying `-F FSType` limits the file systems to be checked to those of the type indicated.

If `special` is specified, but `-F` is not, the file system type will be determined by looking for a matching entry in `/etc/vfstab`. If no entry is found, the default local file system type specified in `/etc/default/fs` will be used.

If a file system type supports parallel checking, for example, `ufs`, some file systems eligible for checking may be checked in parallel. Consult the file system-specific man page (for example, `fsck_ufs(1M)`) for more information.

**OPTIONS**
The following generic options are supported:

- `-F FSType`
  Specify the file system type on which to operate.

- `-m`
  Check but do not repair. This option checks that the file system is suitable for mounting, returning the appropriate exit status. If the file system is ready for mounting, `fsck` displays a message such as:

  `ufs fsck: sanity check: /dev/rdsk/c0t3d0s1 okay`

- `-n | -N`
  Assume a no response to all questions asked by `fsck`; do not open the file system for writing.
-v
  Echo the expanded command line but do not execute the command. This option may be used to verify and to validate the command line.

- y | Y
  Assume a yes response to all questions asked by fsck.

- o specific-options
  These specific-options can be any combination of the following separated by commas (with no intervening spaces).

  b=n
  Use block n as the super block for the file system. Block 32 is always one of the alternate super blocks. Determine the location of other super blocks by running newfs(1M) with the -Nv options specified.

  c
  If the file system is in the old (static table) format, convert it to the new (dynamic table) format. If the file system is in the new format, convert it to the old format provided the old format can support the file system configuration. In interactive mode, fsck will list the direction the conversion is to be made and ask whether the conversion should be done. If a negative answer is given, no further operations are done on the file system. In preen mode, the direction of the conversion is listed and done if possible without user interaction. Conversion in preen mode is best used when all the file systems are being converted at once. The format of a file system can be determined from the first line of output from fstyp(1M). Note: the c option is seldom used and is included only for compatibility with pre-4.1 releases. There is no guarantee that this option will be included in future releases.

  f
  Force checking of file systems regardless of the state of their super block clean flag.

  p
  Check and fix the file system non-interactively ("preen"). Exit immediately if there is a problem requiring intervention. This option is required to enable parallel file system checking.

  w
  Check writable file systems only.

**EXIT STATUS**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>file system is okay and does not need checking</td>
</tr>
<tr>
<td>1</td>
<td>erroneous parameters are specified</td>
</tr>
</tbody>
</table>
fsck(1M)

32  file system is unmounted and needs checking (fsck -m only)
33  file system is already mounted
34  cannot stat device
36  uncorrectable errors detected - terminate normally
37  a signal was caught during processing
39  uncorrectable errors detected - terminate immediately
40  for root, same as 0.

**USAGE**
See largefile(5) for the description of the behavior of fsck when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**FILES**
/etc/default/fs  default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs.

    LOCAL  The default partition for a command if no FSType is specified.

/etc/vfstab  list of default parameters for each file system

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
crli(1M), fsck_cachefs(1M), fsck_ufs(1M), fsdb_ufs(1M), fsirand(1M),
fstyp(1M), mkfs(1M), mkfs_ufs(1M), mountall(1M), newfs(1M), reboot(1M),
vfstab(4), attributes(5), largefile(5), ufs(7FS)

**WARNINGS**
The operating system buffers file system data. Running fsck on a mounted file system can cause the operating system’s buffers to become out of date with respect to the disk. For this reason, the file system should be unmounted when fsck is used. If this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately after fsck is run. Quite often, however, this will not be sufficient. A panic will probably occur if running fsck on a file system modifies the file system.

**NOTES**
This command may not be supported for all FSTypes.

Running fsck on file systems larger than 2 Gb fails if the user chooses to use the block interface to the device:

    fsck /dev/dsk/c?t?d?s?

rather than the raw (character special) device:
Starting with Solaris 9, fsck manages extended attribute data on the disk. (See fsattr(5) for a description of extended file attributes.) A file system with extended attributes can be mounted on versions of Solaris that are not attribute-aware (versions prior to Solaris 9), but the attributes will not be accessible and fsck will strip them from the files and place them in lost+found. Once the attributes have been stripped, the file system is completely stable on versions of Solaris that are attribute-aware, but would be considered corrupted on attribute-aware versions. In the latter circumstance, run the attribute-aware fsck to stabilize the file system before using it in an attribute-aware environment.
NAME
fsck_cachefs -- check integrity of data cached with CacheFS

SYNOPSIS
fsck -F cachefs [-m] [-o noclean] cache_directory

DESCRIPTION
The CacheFS version of the fsck command checks the integrity of a cache
directory. This utility corrects any CacheFS problems it finds by default. There is no
interactive mode. The most likely invocation of fsck for CacheFS file systems is at
boot time from an entry in the /etc/vfstab file. See vfstab(4).

OPTIONS
The following options are supported:
- m Check, but do not repair.
- o noclean Force a check on the cache even if there is no reason to suspect
there is a problem.

EXAMPLES
EXAMPLE 1 Using fsck_cachefs to Force a Check on the Cache Directory

The following example forces a check on the cache directory /cache3:
example% fsck -F cachefs -o noclean /cache3

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
cfsadmin(1M), fsck(1M), mount_cachefs(1M), vfstab(4), attributes(5)
The fsck utility audits and interactively repairs inconsistent conditions on file systems. `special` represents the character special device on which the file system resides, for example `/dev/rdiskette`. The character special device, not the block special device, should be used.

In the case of correcting serious inconsistencies, by default, fsck asks for confirmation before making a repair and waits for the operator to respond either yes or no. If the operator does not have write permission on the file system, fsck defaults to a -n (no corrections) action. See fsck(1M).

Repairing some file system inconsistencies may result in loss of data. The amount and severity of data loss may be determined from the diagnostic output.

When executed with the verify option (-o v), fsck_pcfs automatically scans the entire file system to verify that all of its allocation units are accessible. If it finds any units inaccessible, it updates the file allocation table (FAT) appropriately. It also updates any effected directory entries to reflect the problem. This directory update includes truncating the file at the point in its allocation chain where the file data is no longer accessible. Any remaining accessible allocation units become orphaned.

Orphaned chains of accessible allocation units are, with the operator’s concurrence, linked back into the file system as files in the root directory. These files are assigned names of the form fileNNNN.chk, where the Ns are digits in the integral range from 0 through 9.

After successfully scanning and correcting any errors in the file system, fsck displays a summary of information about the file system. This summary includes the size of the file system in bytes, the number of bytes used in directories and individual files, and the number of available allocation units remaining in the file system.

The following generic options are supported:

- `-m` Check but do not repair. This option checks that the file system is suitable for mounting, returning the appropriate exit status. If the file system is ready for mounting, fsck displays a message such as:

  
  pcfs fsck: sanity check: /dev/rdiskette okay

- `-n | -N` Assume a no response to all questions asked by fsck; do not open the file system for writing.
Echo the expanded command line, but do not execute the command. This option may be used to verify and to validate the command line.

-\( y \) | -\( Y \) Assume a yes response to all questions asked by fsck.

Specify pcfs file system specific options in a comma-separated list, in any combination, with no intervening spaces.

\( v \) Verify all allocation units are accessible prior to correcting inconsistencies in the metadata.

\( p \) Check and fix the file system non-interactively (preen). Exit immediately if there is a problem requiring intervention.

\( w \) Check writable file systems only.

The device which contains the pcfs. The device name for a diskette is specified as /dev/rdiskette0 for the first diskette drive, or /dev/rdiskette1 for a second diskette drive. A hard disk device or high-capacity removable device name much be qualified with a suffix to indicate the proper FDISK partition.

For example, in the names: /dev/rdsk/c0t0d0p0:c and /dev/rdsk/c0t4d0s2:c, the :c suffix indicates the first partition on the disk contains the pcfs.

fsck_pcfs(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

fsck(1M), fstyp(1M), fdisk(1M), mkfs(1M), mkfs_pcfs(1M), mountall(1M), attributes(5), pcfs(7FS),

WARNINGS

The operating system buffers file system data. Running fsck on a mounted file system can cause the operating system's buffers to become out of date with respect to the disk. For this reason, the file system should be unmounted when fsck is used. If this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately after fsck is run. Quite often, however, this is not sufficient. A panic will probably occur if running fsck on a file system modifies the file system.
NAME    fsck_udfs – file system consistency check and interactive repair

SYNOPSIS    fsck -F udfs [generic_options] [special ...]
             fsck -F udfs [generic_options] [-o specific_options] [special ...]

DESCRIPTION    fsck audits and interactively repairs inconsistent conditions on file systems. A file system to be checked can be specified by giving the name of the block or character special device or by giving the name of its mount point if a matching entry exists in /etc/vfstab.

    special represents the character special device, for example, /dev/rdsk/c0t2d0s0, on which the file system resides. The character special device, not the block special device should be used. fsck does not work on a mounted block device.

    If no special device is specified, all udfs file systems specified in the vfstab file with a fsckdev entry are checked. If the -p (preen) option is specified, udfs file systems with an fsckpass number greater than 1 are checked in parallel. See fsck(1M).

    In the case of correcting serious inconsistencies, by default, fsck asks for confirmation before making a repair and waits for the operator to respond with either yes or no. If the operator does not have write permission on the file system, fsck defaults to the -n (no corrections) option. See fsck(1M).

    Repairing some file system inconsistencies can result in loss of data. The amount and severity of data loss can be determined from the diagnostic output.

    fsck automatically corrects innocuous inconsistencies. It displays a message for each corrected inconsistency that identifies the nature of the correction which took place on the file system. After successfully correcting a file system, fsck prints the number of files on that file system and the number of used and free blocks.

    Inconsistencies checked are as follows:
    ■ Blocks claimed by more than one file or the free list
    ■ Blocks claimed by a file or the free list outside the range of the file system
    ■ Incorrect link counts in file entries
    ■ Incorrect directory sizes
    ■ Bad file entry format
    ■ Blocks not accounted for anywhere
    ■ Directory checks, file pointing to unallocated file entry and absence of a parent directory entry
    ■ Descriptor checks, more blocks for files than there are in the file system
    ■ Bad free block list format
    ■ Total free block count incorrect

OPTIONS    The following options are supported:
fsck_udfs(1M)

generic_options
The following generic options are supported:

-m
Check but do not repair. This option checks to be sure that the file system is
suitable for mounting, and returns the appropriate exit status. If the file system is
ready for mounting, fsck displays a message such as:

udfs fsck: sanity check: /dev/rdsk/c0t2d0s0 okay

-n | -N
Assume a no response to all questions asked by fsck; do not open the file
system for writing.

-V
Echo the expanded command line, but do not execute the command. This option
can be used to verify and to validate the command line.

-y | -Y
Assume a yes response to all questions asked by fsck.

-specific_options
Specify udfs file system specific options in a comma-separated list with no
intervening spaces. The following specific options are available:

-f
Force checking of file systems regardless of the state of their logical volume
integrity state.

-P
Check and fix the file system non-interactively (preen). Exit immediately if
there is a problem that requires intervention. This option is required to enable
parallel file system checking.

-w
Check writable file systems only.

FILES
/etc/vtstab List of default parameters for each file system.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWudf</td>
</tr>
</tbody>
</table>

SEE ALSO
fsck(1M), fsdb_udfs(1M), fstyp(1M), mkfs(1M), mkfs_udfs(1M),
mountall(1M), reboot(1M), vfstab(4), attributes(5)

WARNINGS
The operating system buffers file system data. Running fsck on a mounted file
system can cause the operating system’s buffers to become out of date with respect to
the disk. For this reason, use fsck only when the file system is unmounted. If this is
not possible, take care that the system is quiescent and that it is rebooted immediately after running fsck. A panic will probably occur if running fsck on a file system that modifies the file system while it is mounted.

If an unmount of the file system is not done before the system is shut down, the file system might become corrupted. In this case, a file system check needs to be completed before the next mount operation.

**DIAGNOSTICS**

- **not writable**
  - You cannot write to the device.

- **Currently Mounted on**
  - The device is already mounted and cannot run fsck.

- **FILE SYSTEM WAS MODIFIED**
  - File system has been modified to bring it to a consistent state.

- **Can’t read allocation extent**
  - Cannot read the block containing allocation extent.

- **Bad tag on alloc extent**
  - Invalid tag detected when expecting an allocation extent.

- **Volume sequence tag error**
  - Invalid tag detected in the volume sequence.

- **Space bitmap tag error**
  - Invalid tag detected in the space bitmap.

- **UNEXPECTED INCONSISTENCY; RUN fsck MANUALLY**
  - Use fsck in interactive mode.
The `fsck` utility audits and interactively repairs inconsistent conditions on file systems. A file system to be checked may be specified by giving the name of the block or character special device or by giving the name of its mount point if a matching entry exists in `/etc/vfstab`.

The special parameter represents the character special device, for example, `/dev/rdsk/c1t0d0s7`, on which the file system resides. The character special device, not the block special device should be used. The fsck utility will not work on a block device if the block device is mounted, unless the file system is error-locked.

If no special device is specified, all ufs file systems specified in the vfstab with a fsckdev entry will be checked. If the -p ("preen") option is specified, ufs file systems with an fsckpass number greater than 1 are checked in parallel. See fsck(1M).

In the case of correcting serious inconsistencies, by default, fsck asks for confirmation before making a repair and waits for the operator to respond either yes or no. If the operator does not have write permission on the file system, fsck will default to a -n (no corrections) action. See fsck(1M).

Repairing some file system inconsistencies can result in loss of data. The amount and severity of data loss can be determined from the diagnostic output.

The `fsck` utility automatically corrects innocuous inconsistencies such as unreferenced inodes, too-large link counts in inodes, missing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the super block. It displays a message for each inconsistency corrected that identifies the nature of the correction on the file system which took place. After successfully correcting a file system, fsck prints the number of files on that file system, the number of used and free blocks, and the percentage of fragmentation.

Inconsistencies checked are as follows:

- Blocks claimed by more than one inode or the free list.
- Blocks claimed by an inode or the free list outside the range of the file system.
- Incorrect link counts.
- Incorrect directory sizes.
- Bad inode format.
- Blocks not accounted for anywhere.
- Directory checks, file pointing to unallocated inode, inode number out of range, and absence of `.` and `..` as the first two entries in each directory.
- Super Block checks: more blocks for inodes than there are in the file system.
BAD FREE BLOCK LIST FORMAT.

TOTAL FREE BLOCK AND/OR FREE INODE COUNT INCORRECT.

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, reconnected by placing them in the lost+found directory. The name assigned is the inode number. If the lost+found directory does not exist, it is created. If there is insufficient space in the lost+found directory, its size is increased.

An attempt to mount a ufs file system with the -onolargefiles option will fail if the file system has ever contained a large file (a file whose size is greater than or equal to 2 Gbyte). Invoking fsck resets the file system state if no large files are present in the file system. A successful mount of the file system after invoking fsck indicates the absence of large files in the file system. An unsuccessful mount attempt indicates the presence of at least one large file. See mount_ufs(1M).

OPTIONS

The generic-options consist of the following options:

-m Check but do not repair. This option checks that the file system is suitable for mounting, returning the appropriate exit status. If the file system is ready for mounting, fsck displays a message such as:

    ufs fsck: sanity check:
    /dev/rdsk/c0t3d0s1 okay

-n | N Assume a no response to all questions asked by fsck; do not open the file system for writing.

-V Echo the expanded command line, but do not execute the command. This option may be used to verify and to validate the command line.

-y | Y Assume a yes response to all questions asked by fsck.

See generic fsck(1M) for the details for specifying special.

-o specific-options Specify ufs file system specific options. These options can be any combination of the following separated by commas (with no intervening spaces).

-b=n Use block n as the super block for the file system. Block 32 is always one of the alternate super blocks. Determine the location of other super blocks by running newfs(1M) with the -Nv options specified.

-c If the file system is in the old (static table) format, convert it to the new (dynamic table) format. If the file system is in the new format, convert it to the old format provided the old format can support the file system configuration. In interactive mode, fsck will
list the direction the conversion is to be made and ask whether the conversion should be done. If a negative answer is given, no further operations are done on the file system. In preen mode, the direction of the conversion is listed and done if possible without user interaction. Conversion in preen mode is best used when all the file systems are being converted at once. The format of a file system can be determined from the first line of output from `fstyp(1M)`.

Note: the `c` option is seldom used and is included only for compatibility with pre-4.1 releases. There is no guarantee that this option will be included in future releases.

- `f` Force checking of file systems regardless of the state of their super block clean flag.
- `p` Check and fix the file system non-interactively (“preen”). Exit immediately if there is a problem requiring intervention. This option is required to enable parallel file system checking.
- `w` Check writable file systems only.

**FILES**

/etc/vfstab list of default parameters for each file system

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`clri(1M), fsck(1M), fsdb_ufs(1M), fsirand(1M), fstyp(1M), mkfs(1M), mkfs_ufs(1M), mount_ufs(1M), mountall(1M), newfs(1M), reboot(1M), vfstab(4), attributes(5), largefile(5), ufs(7FS)`

**WARNINGS**

The operating system buffers file system data. Running `fsck` on a mounted file system can cause the operating system’s buffers to become out of date with respect to the disk. For this reason, the file system should be unmounted when `fsck` is used. If this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately after `fsck` is run. Quite often, however, this will not be sufficient. A panic will probably occur if running `fsck` on a file system modifies the file system.

**NOTES**

It is usually faster to check the character special device than the block special device.
Running `fsck` on file systems larger than 2 Gb fails if the user chooses to use the block interface to the device:

`fsck /dev/dsk/c?t?d?s?`

rather than the raw (character special) device:

`fsck /dev/rdsk/c?t?d?s?`
fsdb(1M)

NAME    | fsdb – file system debugger

SYNOPSIS | fsdb [-F FSType] [-V] [-o FSType-specific_options] special

DESCRIPTION  | fsdb is a file system debugger that allows for the manual repair of a file system after a crash. special is a special device used to indicate the file system to be debugged. fsdb is intended for experienced users only. FSType is the file system type to be debugged. Since different FSTypes have different structures and hence different debugging capabilities, the manual pages for the FSType-specific fsdb should be consulted for a more detailed description of the debugging capabilities.

OPTIONS  
- F  Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table, or by consulting /etc/default/fs.

- V  Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option may be used to verify and validate the command line.

- o  Specify FSType-specific options.

USAGE  | See largefile(5) for the description of the behavior of fsdb when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

FILES  | /etc/default/fs default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs

          | LOCAL: The default partition for a command if no FSType is specified.

          | /etc/vfstab list of default parameters for each file system

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>


NOTES  | This command may not be supported for all FSTypes.
The `fsdb_udfs` command is an interactive tool that can be used to patch up a damaged udfs file system. `fsdb_udfs` has conversions to translate block and i-numbers into their corresponding disk addresses. Mnemonic offsets to access different parts of an inode are also included. Mnemonic offsets greatly simplify the process of correcting control block entries or descending the file system tree.

`fsdb` contains several error-checking routines to verify inode and block addresses. These can be disabled if necessary by invoking `fsdb` with the `-o` option or by using the `o` command.

`fsdb` reads one block at a time, and therefore works with raw as well as block I/O devices. A buffer management routine is used to retain commonly used blocks of data in order to reduce the number of read system calls. All assignment operations result in an immediate write-through of the corresponding block. In order to modify any portion of the disk, `fsdb` must be invoked with the `-w` option.

Wherever possible, adb-like syntax has been adopted to promote the use of `fsdb` through familiarity.

The following options are supported:

- `-o specific_option` Specify udfs file system specific options in a comma-separated list with no intervening spaces. The following specific options are supported:
  - `o` Override some error conditions.
  - `p=string` Set prompt to `string`.
  - `w` Open for write.
  - `?` Display usage.

Numbers are considered hexadecimal by default. The user has control over how data is to be displayed or accepted. The `base` command displays or sets the input and output base. Once set, all input defaults to this base and all output displays in this base. The base can be overridden temporarily for input by preceding hexadecimal numbers by `0x`, preceding decimal numbers with a `0t`, or octal numbers with a `0`. Hexadecimal numbers beginning with `a-f` or `A-F` must be preceded with a `0x` to distinguish them from commands.

Disk addressing by `fsdb` is at the byte level. However, `fsdb` offers many commands to convert a desired inode, directory entry, block, and so forth, to a byte address. After the address has been calculated, `fsdb` records the result in the current address (dot).
Several global values are maintained by fsdb:

- Current base (referred to as base)
- Current address (referred to as dot)
- Current inode (referred to as inode)
- Current count (referred to as count)
- Current type (referred to as type)

Most commands use the preset value of dot in their execution. For example,

```plaintext
> 2:inode
```

first sets the value of dot (.) to 2, colon (:) signifies the start of a command, and the inode command sets inode to 2. A count is specified after a comma (,). Once set, count remains at this value until a new command is encountered that resets the value back to 1 (the default).

So, if

```plaintext
> 2000,400/X
```
is entered, 400 hex longs are listed from 2000, and when completed, the value of dot is \(2000 + 400 \times \text{sizeof (long)}\). If a RETURN is then entered, the output routine uses the current values of dot, count, and type and displays 400 more hex longs. An asterisk (*) causes the entire block to be displayed. An example showing several commands and the use of RETURN would be:

```plaintext
> 2:ino; 0:dir?d
```

or

```plaintext
> 2:ino; 0:db:block?d
```
The two examples are synonymous for getting to the first directory entry of the root of the file system. Once there, subsequently entering a RETURN, plus (+), or minus (-) advances to subsequent entries. Notice that

```plaintext
> 2:inode; :ls
```

or

```plaintext
> :ls /
```
is again synonymous.

---

### Expressions

The following symbols are recognized by fsdb:

- **RETURN**: Update the value of dot by the current value of type and display using the current value of count.
- **#**: Update the value of dot by specifying a numeric expression. Specify numeric expressions using addition, subtraction, multiplication, and division operators (+, -, *, and %). Numeric expressions are evaluated from left to right and can use parentheses. After evaluation, the value of dot is updated.
- **,count**: Update the count indicator. The global value of count is updated to count. The value of count remains until a
new command is run. A count specifier of * attempts to show a block's worth of information. The default for count is 1.

? f  
Display in structured style with format specifier f. See Formatted Output.

/ f  
Display in unstructured style with format specifier f. See Formatted Output.

.  
Display the value of dot.

+ e  
Increment the value of dot by the expression e. The amount actually incremented is dependent on the size of type: dot = dot + e * sizeof (type) The default for e is 1.

- e  
Decrement the value of dot by the expression e. See +.

* e  
Multiply the value of dot by the expression e.

* e  
Multiply the value of dot by the expression e. Multiplication and division don’t use type. In the above calculation of dot, consider the sizeof (type) to be 1.

% e  
Divide the value of dot by the expression e. See *.

< name  
Restore an address saved in register name. name must be a single letter or digit.

> name  
Save an address in register name. name must be a single letter or digit.

= f  
Display indicator. If f is a legitimate format specifier (see Formatted Output), then the value of dot is displayed using format specifier f. Otherwise, assignment is assumed. See = [s] [e].

= [s] [e]  
Change the value of dot using an assignment indicator. The address pointed to by dot has its contents changed to the value of the expression e or to the ASCII representation of the quoted (") string s. This can be useful for changing directory names or ASCII file information.

=+ e  
Change the value of dot using an incremental assignment. The address pointed to by dot has its contents incremented by expression e.

=- e  
Change the value of dot using a decremental assignment. Decrement the contents of the address pointed to by dot by expression e.
A command must be prefixed by a colon (:). Only enough letters of the command to uniquely distinguish it are needed. Multiple commands can be entered on one line by separating them by a SPACE, TAB, or semicolon (;).

To view a potentially unmounted disk in a reasonable manner, `fsdb` supports the `cd`, `pwd`, `ls`, and `find` commands. The functionality of each of these commands basically matches that of its UNIX counterpart. See `cd(1)`, `pwd(1)`, `ls(1)`, and `find(1)` for details. The *, , , , , ? , and - wildcard characters are also supported.

The following commands are supported:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>base[=b]</code></td>
<td>Display or set the base. All input and output is governed by the current base. Without the <code>= b</code>, displays the current base. Otherwise, sets the current base to b. Base is interpreted using the old value of base, so to ensure correctness use the 0, 0t, or 0x prefix when changing the base. The default for base is hexadecimal.</td>
</tr>
<tr>
<td><code>block</code></td>
<td>Convert the value of dot to a block address.</td>
</tr>
<tr>
<td><code>cd [dir]</code></td>
<td>Change the current directory to directory <code>dir</code>. The current values of inode and dot are also updated. If <code>dir</code> is not specified, changes directories to inode 2, root (/).</td>
</tr>
<tr>
<td><code>directory</code></td>
<td>If the current inode is a directory, converts the value of dot to a directory slot offset in that directory, and dot now points to this entry.</td>
</tr>
<tr>
<td><code>file</code></td>
<td>Set the value of dot as a relative block count from the beginning of the file. The value of dot is updated to the first byte of this block.</td>
</tr>
<tr>
<td><code>find dir [ -name n ] [ -inum i ]</code></td>
<td>Find files by name or i-number. Recursively searches directory <code>dir</code> and below for file names whose i-number matches i or whose name matches pattern n. Only one of the two options ( -name or -inum ) can be used at one time. The <code>find -print</code> is not necessary or accepted.</td>
</tr>
<tr>
<td><code>fill=p</code></td>
<td>Fill an area of disk with pattern p. The area of disk is delimited by dot and count.</td>
</tr>
</tbody>
</table>
| `inode` | Convert the value of dot to an inode address. If successful, the current value of inode is updated as well as the value of dot. As a convenient shorthand, if :inode
appears at the beginning of the line, the value of dot is set to the current inode and that inode is displayed in inode format.

```bash
ls [-R] [-l] pat1 pat2...
```

List directories or files. If no file is specified, the current directory is assumed. Either or both of the options can be used (but, if used, must be specified before the filename specifiers). Wild card characters are available and multiple arguments are acceptable. The long listing shows only the i-number and the name; use the inode command with ?i to get more information.

**override**

Toggle the value of override. Some error conditions might be overridden if override is toggled to on.

**prompt “p”**

Change the fsdb prompt to p. p must be enclosed in quotes.

**pwd**

Display the current working directory.

**quit**

Quit fsdb.

**tag**

Convert the value of dot and if this is a valid tag, print the volume structure according to the tag.

**!**

Escape to the shell.

### Inode Commands

In addition to the above commands, several other commands deal with inode fields and operate directly on the current inode (they still require the colon (:). They can be used to more easily display or change the particular fields. The value of dot is only used by the :db and :ib commands. Upon completion of the command, the value of dot is changed so that it points to that particular field. For example,

```bash
> :ln=+1
```

increments the link count of the current inode and sets the value of dot to the address of the link count field.

The following inode commands are supported:

- **at** Access time
- **bs** Block size
- **ct** Creation time
- **gid** Group id
- **ln** Link number
- **mt** Modification time
<table>
<thead>
<tr>
<th>md</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>maj</td>
<td>Major device number</td>
</tr>
<tr>
<td>min</td>
<td>Minor device number</td>
</tr>
<tr>
<td>nm</td>
<td>This command actually operates on the directory name field. Once poised at the desired directory entry (using the directory command), this command allows you to change or display the directory name. For example,</td>
</tr>
<tr>
<td></td>
<td>\texttt{&gt; 7\textasciitilde dir:nm=\textasciitilde foo\textasciitilde}</td>
</tr>
<tr>
<td></td>
<td>gets the 7th directory entry of the current inode and changes its name to \texttt{foo}. Directory names cannot be made larger than the field allows. If an attempt is made to make a directory name larger than the field allows, the string is truncated to fit and a warning message is displayed.</td>
</tr>
<tr>
<td>sz</td>
<td>File size</td>
</tr>
<tr>
<td>uid</td>
<td>User ID</td>
</tr>
<tr>
<td>uniq</td>
<td>Unique ID</td>
</tr>
</tbody>
</table>

**Formatted Output**

Formatted output comes in two styles and many format types. The two styles of formatted output are: structured and unstructured. Structured output is used to display inodes, directories, and so forth. Unstructured output displays raw data.

Format specifiers are preceded by the slash (/) or question mark (?) character. \textit{type} is updated as necessary upon completion.

The following format specifiers are preceded by the ? character:

- \texttt{i} Display as inodes in the current base.
- \texttt{d} Display as directories in the current base.

The following format specifiers are preceded by the / character:

- \texttt{b} Display as bytes in the current base.
- \texttt{c} Display as characters.
- \texttt{o | O} Display as octal shorts or longs.
- \texttt{d | D} Display as decimal shorts or longs.
- \texttt{x | X} Display as hexadecimal shorts or longs.

**EXAMPLES**

**EXAMPLE 1** Using \texttt{fsdb} as a calculator for complex arithmetic

The following command displays 2010 in decimal format, and is an example of using \texttt{fsdb} as a calculator for complex arithmetic.

\texttt{> 2000+400\% (20+20) = D}
EXAMPLE 2 Using fsdb to display an i-number in inode format
The following command displays the i-number 386 in inode format. 386 becomes the current inode.
> 386:ino?i

EXAMPLE 3 Using fsdb to change the link count
The following command changes the link count for the current inode to 4.
> :ln=4

EXAMPLE 4 Using fsdb to increment the link count
The following command increments the link count by 1.
> :ln+=1

EXAMPLE 5 Using fsdb to display the creation time as a hexadecimal long
The following command displays the creation time as a hexadecimal long.
> :ct=X

EXAMPLE 6 Using fsdb to display the modification time in time format
The following command displays the modification time in time format.
> :mt=t

EXAMPLE 7 Using fsdb to display in ASCII
The following command displays, in ASCII, block 0 of the file associated with the current inode.
> 0:file/c

EXAMPLE 8 Using fsdb to display the directory entries for the root inode
The following command displays the first block's directory entries for the root inode of this file system. This command stops prematurely if the EOF is reached.
> 2:ino,*?d

EXAMPLE 9 Using fsdb to change the current inode
The following command changes the current inode to that associated with the 5th directory entry (numbered from 0) of the current inode. The first logical block of the file is then displayed in ASCII.
EXAMPLE 9 Using fsdb to change the current inode (Continued)

> 5:dir:inode; 0:file,*/c

EXAMPLE 10 Using fsdb to change the i-number

The following command changes the i-number for the 7th directory slot in the root directory to 3.

> 2:inode; 7:dir=3

EXAMPLE 11 Using fsdb to change the name field

The following command changes the name field in the directory slot to name.

> 7:dir:nn="name"

EXAMPLE 12 Using fsdb to display the a block

The following command displays the 3rd block of the current inode as directory entries.

EXAMPLE 13 Using fsdb to set the contents of address

The following command sets the contents of address 2050 to 0xffffffff. 0xffffffff can be truncated, depending on the current type.

> 2050=0xffffffff

EXAMPLE 14 Using fsdb to place an ASCII string at an address

The following command places the ASCII string this is some text at address 1c92434.

> 1c92434="this is some text"

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWudf</td>
</tr>
</tbody>
</table>

SEE ALSO clri(1M), fsck_udfs(1M), dir(4), attributes(5)
The `fsdb_ufs` command is an interactive tool that can be used to patch up a damaged UFS file system. It has conversions to translate block and i-numbers into their corresponding disk addresses. Also included are mnemonic offsets to access different parts of an inode. These greatly simplify the process of correcting control block entries or descending the file system tree.

`fsdb` contains several error-checking routines to verify inode and block addresses. These can be disabled if necessary by invoking `fsdb` with the `-o` option or by the use of the `@` command.

`fsdb` reads a block at a time and will therefore work with raw as well as block I/O devices. A buffer management routine is used to retain commonly used blocks of data in order to reduce the number of read system calls. All assignment operations result in an immediate write-through of the corresponding block. Note that in order to modify any portion of the disk, `fsdb` must be invoked with the `w` option.

Wherever possible, `adb`-like syntax was adopted to promote the use of `fsdb` through familiarity.

### OPTIONS

The following option is supported:

- `-o` Specify UFS file system specific options. These options can be any combination of the following separated by commas (with no intervening spaces). The options available are:
  - `?` Display usage
  - `o` Override some error conditions
  - `p='string'` set prompt to string
  - `w` open for write

### USAGE

Numbers are considered hexadecimal by default. However, the user has control over how data is to be displayed or accepted. The `base` command will display or set the input/output base. Once set, all input will default to this base and all output will be shown in this base. The base can be overridden temporarily for input by preceding hexadecimal numbers with `0x`, preceding decimal numbers with `0d`, or octal numbers with `0`. Hexadecimal numbers beginning with `a-f` or `A-F` must be preceded with `0x` to distinguish them from commands.

Disk addressing by `fsdb` is at the byte level. However, `fsdb` offers many commands to convert a desired inode, directory entry, block, superblock and so forth to a byte address. Once the address has been calculated, `fsdb` will record the result in dot (.).

Several global values are maintained by `fsdb`:

- the current base (referred to as `base`),
the current address (referred to as dot),
- the current inode (referred to as inode),
- the current count (referred to as count),
- and the current type (referred to as type).

Most commands use the preset value of dot in their execution. For example,

> 2:inode

will first set the value of dot to 2, ’,’ will alert the start of a command, and the inode command will set inode to 2. A count is specified after a ’,’. Once set, count will remain at this value until a new command is encountered which will then reset the value back to 1 (the default). So, if

> 2000,400/X

is typed, 400 hex longs are listed from 2000, and when completed, the value of dot will be 2000 + 400 * sizeof (long). If a RETURN is then typed, the output routine will use the current values of dot, count, and type and display 400 more hex longs. A ’’ will cause the entire block to be displayed.

End of fragment, block and file are maintained by fsdb. When displaying data as fragments or blocks, an error message will be displayed when the end of fragment or block is reached. When displaying data using the db, ib, directory, or file commands an error message is displayed if the end of file is reached. This is mainly needed to avoid passing the end of a directory or file and getting unknown and unwanted results.

An example showing several commands and the use of RETURN would be:

> 2:ino; 0:dir?d
or
> 2:ino; 0:db:block?d

The two examples are synonymous for getting to the first directory entry of the root of the file system. Once there, any subsequent RETURN (or +, -) will advance to subsequent entries. Note that

> 2:inode; :ls
or
> :ls /

is again synonymous.

**Expressions**

The symbols recognized by fsdb are:

- **RETURN** update the value of dot by the current value of type and display using the current value of count.
numeric expressions may be composed of +, -, *, and % operators (evaluated left to right) and may use parentheses. Once evaluated, the value of \texttt{dot} is updated.

\texttt{count} indicator. The global value of \texttt{count} will be updated to \texttt{count}. The value of \texttt{count} will remain until a new command is run. A count specifier of \texttt{^\texttt{*}} will attempt to show a blocks's worth of information. The default for \texttt{count} is 1.

\texttt{? f} display in structured style with format specifier \texttt{f}. See \texttt{FormattedOutput}.

\texttt{/ f} display in unstructured style with format specifier \texttt{f} See \texttt{FormattedOutput}.

\texttt{.} the value of \texttt{dot}.

\texttt{+e} increment the value of \texttt{dot} by the expression \texttt{e}. The amount actually incremented is dependent on the size of \texttt{type}:

\begin{equation}
\texttt{dot} = \texttt{dot} + \texttt{e} \times \text{sizeof} \ (\texttt{type})
\end{equation}

The default for \texttt{e} is 1.

\texttt{-e} decrement the value of \texttt{dot} by the expression \texttt{e}. See \texttt{+}.

\texttt{*e} multiply the value of \texttt{dot} by the expression \texttt{e}. Multiplication and division don't use \texttt{type}. In the above calculation of \texttt{dot}, consider the \texttt{sizeof} (\texttt{type}) to be 1.

\texttt{%e} divide the value of \texttt{dot} by the expression \texttt{e}. See \texttt{*}.

\texttt{< name} restore an address saved in register \texttt{name}. \texttt{name} must be a single letter or digit.

\texttt{> name} save an address in register \texttt{name}. \texttt{name} must be a single letter or digit.

\texttt{= f} display indicator. If \texttt{f} is a legitimate format specifier, then the value of \texttt{dot} is displayed using the format specifier \texttt{f}. See \texttt{FormattedOutput}. Otherwise, assignment is assumed See \texttt{=}.

\texttt{= [s] [e]} assignment indicator. The address pointed to by \texttt{dot} has its contents changed to the value of the expression \texttt{e} or to the ASCII representation of the quoted ('') string \texttt{s}. This may be useful for changing directory names or ASCII file information.

\texttt{+= e} incremental assignment. The address pointed to by \texttt{dot} has its contents incremented by expression \texttt{e}.

\texttt{-= e} decremental assignment. The address pointed to by \texttt{dot} has its contents decremented by expression \texttt{e}. 
A command must be prefixed by a `:` character. Only enough letters of the command to uniquely distinguish it are needed. Multiple commands may be entered on one line by separating them by a SPACE, TAB or `;`.

In order to view a potentially unmounted disk in a reasonable manner, 

\[ \text{fsdb} \] offers the \texttt{cd}, \texttt{pwd}, \texttt{ls} and \texttt{find} commands. The functionality of these commands substantially matches those of its UNIX counterparts. See individual commands for details. The `*`, `?`, and `[-]` wild card characters are available.

### base=b
display or set base. As stated above, all input and output is governed by the current \texttt{base}. If the \texttt{=b} is omitted, the current \texttt{base} is displayed. Otherwise, the current \texttt{base} is set to \texttt{b}. Note that this is interpreted using the old value of \texttt{base}, so to ensure correctness use the `0`, `0t`, or `0x` prefix when changing the \texttt{base}. The default for \texttt{base} is hexadecimal.

### block
convert the value of \texttt{dot} to a block address.

### cd \texttt{dir}
change the current directory to directory \texttt{dir}. The current values of \texttt{inode} and \texttt{dot} are also updated. If no \texttt{dir} is specified, then change directories to inode 2 (`/`).

### cg
convert the value of \texttt{dot} to a cylinder group.

### directory
If the current \texttt{inode} is a directory, then the value of \texttt{dot} is converted to a directory slot offset in that directory and \texttt{dot} now points to this entry.

### file
the value of \texttt{dot} is taken as a relative block count from the beginning of the file. The value of \texttt{dot} is updated to the first byte of this block.

### find \texttt{dir} [-name \texttt{n}] [-inum \texttt{i}]
find files by name or i-number. \texttt{find} recursively searches directory \texttt{dir} and below for filenames whose i-number matches \texttt{i} or whose name matches pattern \texttt{n}. Note that only one of the two options (-name or -inum) may be used at one time. Also, the -print is not needed or accepted.

### fill=\texttt{p}
fill an area of disk with pattern \texttt{p}. The area of disk is delimited by \texttt{dot} and \texttt{count}.
convert the value of *dot* to a fragment address. The only difference between the `fragment` command and the `block` command is the amount that is able to be displayed.

convert the value of *dot* to an inode address. If successful, the current value of *inode* will be updated as well as the value of *dot*. As a convenient shorthand, if `:`inode` appears at the beginning of the line, the value of *dot* is set to the current *inode* and that inode is displayed in inode format.

run through the valid log entries without printing any information and verify the layout.

count the number of deltas into the log, using the value of *dot* as an offset into the log. No checking is done to make sure that offset is within the head/tail offsets.

display the header information about the file system logging. This shows the block allocation for the log and the data structures on the disk.

return the physical disk block number, using the value of *dot* as an offset into the log.

display all deltas between the beginning of the log (BOL) and the end of the log (EOL).

list directories or files. If no file is specified, the current directory is assumed. Either or both of the options may be used (but, if used, *must* be specified before the filename specifiers). Also, as stated above, wild card characters are available and multiple arguments may be given. The long listing shows only the i-number and the name; use the `inode` command with `?i` to get more information.

toggle the value of override. Some error conditions may be overridden if override is toggled on.
prompt p
change the fsdb prompt to p. p must be surrounded by (\')s.

pwd
display the current working directory.

quit
quit fsdb.

sb
the value of dot is taken as a cylinder group number and then converted to the address of the superblock in that cylinder group. As a shorthand, 'sb' at the beginning of a line will set the value of dot to the superblock and display it in superblock format.

shadow
if the current inode is a shadow inode, then the value of dot is set to the beginning of the shadow inode data.

!
escape to shell

Inode Commands
In addition to the above commands, there are several commands that deal with inode fields and operate directly on the current inode (they still require the ':'). They may be used to more easily display or change the particular fields. The value of dot is only used by the ':db' and ':ib' commands. Upon completion of the command, the value of dot is changed to point to that particular field. For example,

> :ln=+1

would increment the link count of the current inode and set the value of dot to the address of the link count field.

at
access time.

bs
block size.

c
creation time.

db
use the current value of dot as a direct block index, where direct blocks number from 0 - 11. In order to display the block itself, you need to 'pipe' this result into the block or fragment command. For example,

> 1:db:block,20/X

would get the contents of data block field 1 from the inode and convert it to a block address. 20 longs are then displayed in hexadecimal. See FormattedOutput.

gid
group id.

ib
use the current value of dot as an indirect block index where indirect blocks number from 0 - 2. This will only get the indirect block itself (the block containing the pointers to the actual blocks). Use the file command and start at block 12 to get to the actual blocks.
ln  link count.
mt  modification time.
md  mode.
maj major device number.
min minor device number.
nm although listed here, this command actually operates on the directory name field. Once poised at the desired directory entry (using the directory command), this command will allow you to change or display the directory name. For example,

```plaintext
> 7:dir:nn="foo"
```

will get the 7th directory entry of the current inode and change its name to foo. Note that names cannot be made larger than the field is set up for. If an attempt is made, the string is truncated to fit and a warning message to this effect is displayed.

si  shadow inode.

sz  file size.

uid user id.

### Formatted Output

There are two styles and many format types. The two styles are structured and unstructured. Structured output is used to display inodes, directories, superblocks and the like. Unstructured displays raw data. The following shows the different ways of displaying:

```plaintext
? c  display as cylinder groups
    i  display as inodes
    d  display as directories
    s  display as superblocks
    S  display as shadow inode data
/
    b  display as bytes
    c  display as characters
    o o  display as octal shorts or longs
    d D  display as decimal shorts or longs
    x X  display as hexadecimal shorts or longs
```

The format specifier
immediately follows the '/' or '?' character. The values displayed by '/' or '?' formats are displayed in the current base. Also, type is appropriately updated upon completion.

EXAMPLE 1 Displaying in Decimal
The following command displays 2010 in decimal (use of fsdb as a calculator for complex arithmetic):

```
> 2000+400%(20+20)=D
```

EXAMPLE 2 Displaying an i-number in Inode Format
The following command displays i-number 386 in an inode format. This now becomes the current inode:

```
> 386:ino?i
```

EXAMPLE 3 Changing the Link Count
The following command changes the link count for the current inode to 4:

```
> :ln=4
```

EXAMPLE 4 Incrementing the Link Count
The following command increments the link count by 1:

```
> :ln=+1
```

EXAMPLE 5 Displaying the Creation Time
The following command displays the creation time as a hexadecimal long:

```
> :ct=X
```

EXAMPLE 6 Displaying the Modification Time
The following command displays the modification time in time format:

```
> :mt=t
```

EXAMPLE 7 Displaying in ASCII
The following command displays in ASCII, block zero of the file associated with the current inode:

```
> 0:file/c
```
EXAMPLE 8 Displaying the First Block’s Worth of Directory Entries

The following command displays the first block’s worth of directory entries for the root inode of this file system. It will stop prematurely if the EOF is reached:

> 2:ino,*?d

EXAMPLE 9 Displaying Changes to the Current Inode

The following command displays changes the current inode to that associated with the 5th directory entry (numbered from zero) of the current inode. The first logical block of the file is then displayed in ASCII:

> 5:dir(inode); 0:file,*/c

EXAMPLE 10 Displaying the Superblock

The following command displays the superblock of this file system:

> :sb

EXAMPLE 11 Displaying the Cylinder Group

The following command displays cylinder group information and summary for cylinder group 1:

> 1:cg?c

EXAMPLE 12 Changing the i-number

The following command changes the i-number for the seventh directory slot in the root directory to 3:

> 2:inode; 7:dir=3

EXAMPLE 13 Displaying as Directory Entries

The following command displays the third block of the current inode as directory entries:

> 2:db:block,*?d

EXAMPLE 14 Changing the Name Field

The following command changes the name field in the directory slot to name:

> 7:dir:nm=*name*
EXAMPLE 15 Getting and Filling Elements

The following command gets fragment 3c3 and fill 20 type elements with 0x20:

```
> 3c3:fragment,20:fill=0x20
```

EXAMPLE 16 Setting the Contents of an Address

The following command sets the contents of address 2050 to 0xffffffff. 0xffffffff may be truncated depending on the current type:

```
> 2050=0xffffffff
```

EXAMPLE 17 Placing ASCII

The following command places the ASCII for the string at 1c92434:

```
> 1c92434="this is some text"
```

EXAMPLE 18 Displaying Shadow Inode Data

The following command displays all of the shadow inode data in the shadow inode associated with the root inode of this file system:

```
> 2:ino:si:ino;0:shadow,*?S
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

ciri(1M), fsck_ufs(1M), dir_ufs(4), attributes(5), ufs(7FS)

WARNINGS

Since fsdb reads the disk raw, extreme caution is advised in determining its availability of fsdb on the system. Suggested permissions are 600 and owned by bin.

NOTES

The old command line syntax for clearing i-nodes using the ufs-specific `-z i-number` option is still supported by the new debugger, though it is obsolete and will be removed in a future release. Use of this flag will result in correct operation, but an error message will be printed warning of the impending obsolescence of this option to the command. The equivalent functionality is available using the more flexible clri(1M) command.
fsirand(1M)

NAME
fsirand – install random inode generation numbers

SYNOPSIS
fsirand [-p] special

DESCRIPTION
fsirand installs random inode generation numbers on all the inodes on device special, and also installs a file system ID in the superblock. This helps increase the security of file systems exported by NFS.

fsirand must be used only on an unmounted file system that has been checked with fsck(1M) The only exception is that it can be used on the root file system in single-user mode, if the system is immediately re-booted afterwards.

OPTIONS
-p   Print out the generation numbers for all the inodes, but do not change the generation numbers.

USAGE
See largefile(5) for the description of the behavior of fsirand when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
fsck(1M), attributes(5), largefile(5)
The `fssnap` command creates a stable, read-only snapshot of a file system when given either an active mount point or a special device containing a mounted file system, as in the first form of the synopsis. A snapshot is a temporary image of a file system intended for backup operations.

While the snapshot file system is stable and consistent, an application updating files when the snapshot is created might leave these files in an internally inconsistent, truncated, or otherwise unusable state. In such a case, the snapshot will contain these partially written or corrupted files. It is a good idea to ensure active applications are suspended or checkpointed and their associated files are also consistent during snapshot creation.

File access times are not updated while the snapshot is being created.

A path to the virtual device that contains this snapshot is printed to standard output when a snapshot is created.

The following options are supported:

- `-d` Deletes the snapshot associated with the given file system.
- `-F FSType` Specifies the file system type to be used. The `FSType` should either be specified here or be determined by matching the block special device with an entry in the `/etc/vfstab` table, or by consulting `/etc/default/fs`.
- `-i` Displays the state of any given `FSType` snapshot. If a mount-point or device is not given, a list of all snapshots on the system is displayed. When a mount-point or device is specified, detailed information is provided for the specified file system snapshot by default. The format and meaning of this information is file-system dependent. See the `FSType-specific fssnap` man page for details.
- `-o special_options` See the `FSType-specific` man page for `fssnap`.
- `-V` Echoes the complete command line, but does not execute the command.
EXEMPLARY

See FSTYPE-specific man pages for examples.

EXIT STATUS

The following exit values are returned:

0  Successful completion.

>0  An error occurred.

FILES

/etc/vfstab  Specifies file system type.
/etc/default/fs  Specifies the default local file system type.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

fssnap_ufs(1M), attributes(5)

NOTES

This command might not be supported for all FSTypes.
fssnap_ufs(1M)

NAME  fssnap_ufs – create a temporary snapshot of a UFS file system

SYNOPSIS  

fssnap [-F] [ufs] [generic-options] -o backing-store=path, [specific-options]  
         mount-point | special

fssnap [-F ufs] [-d] [generic-options]  
         [-o specific-options] mount-point | special

fssnap [-F ufs] [-i] [generic-options] [-o specific-options]  
         mount-point | special

DESCRIPTION  The fssnap command queries, creates, or deletes a temporary snapshot of a UFS file system. A snapshot is a point-in-time image of a file system that provides a stable and unchanging device interface for backups.

When creating a file system snapshot, you must specify the file system to be captured and the backing-store file.

The backing-store file is one in which the snapshot subsystem saves old file system data before it is overwritten. The destination path must have enough free space to hold the backing-store file, whose size varies with the amount of activity on the file system. This location must be different from the file system that is being captured in a snapshot. The backing-store file can reside on any type of file system, including another UFS file system or an NFS–mounted file system.

OPTIONS  The following options are supported:

- d  Deletes the snapshot associated with the given file system.

- i  Displays the state of one or all UFS snapshots. If a mount-point or device is not specified, a list of all snapshots on the system is displayed. When a mount-point or device is specified, detailed information is provided for the specified file system snapshot by default.

Use the -o options with the -i option to specify what snapshot information is displayed. Since this feature is provided primarily for use in scripts and on the command line, no labels are displayed for the data. Sizes are all in bytes, and the output is not internationalized or localized. The information is displayed on one line per option. Unrecognized options display a single ? on the line. One line per option guarantees that there are the same number of lines as options specified and there is a one–to–one correspondence between an output line and an option.

The following -o options display specific information for a given snapshot. See the EXAMPLES section for examples of how to use these options.

   snapnumber  
         Display the snapshot number.

   blockdevname  
         Display the block device path.
 **rawdevname**
Display the raw device path.

**mountpoint**
Display the mount point of the master file system.

**state**
Display the state of the snapshot device.

**backing-store**
Display the location of the backing-store file.

**backing-store-len**
Display the size of the backing-store file.

**maxsize**
Display the max size of the backing-store file.

**createtime**
Display the time that the snapshot was created.

**chunksize**
Display the copy-on-write granularity.

**-o specific-options**
Without `-d` or `-i`, the default action is to create a snapshot. Specify the following options when creating a snapshot. All of these options are discretionary, except for the backing-store file (`bs`), which is required.

**backing-store=path**
Uses `path` as the backing-store file. `path` must not reside on the file system that is being captured in a snapshot.

`path` must exist, and must be either a directory or a regular file. If `path` is a directory, then a temporary file is created and held open. That device is then used as-is. The option can be abbreviated as `bf=path` or `bs=path`.

**unlink**
Unlinks the backing-store file after the snapshot is created. This option specifies that the backing-store file does not need to be removed manually when the snapshot is deleted. This might make administration more difficult since the file is not visible in the file system. If this option is not specified, the backing-store files should be removed manually after the snapshot is deleted.

**chunksize=n [k,m,g]**
Uses `n` for the chunk size. Chunk size is the granularity of the data that is sent to the backing store.

Specify `chunksize` in the following units: `k` for kilobytes, `m` for megabytes, or `g` for gigabytes. By default, chunk size is four times the block size of the file system (typically 32k).
maxsize=n[k,m,g]

Does not allow the size of the backing-store file to exceed $n$, where $n$ is the unit specified. The snapshot is deleted automatically when the backing-store file exceeds maxsize.

Specify maxsize in the following units: k for kilobytes, m for megabytes, or g for gigabytes.

raw

Displays to standard output the name of the raw device instead of the block device when a snapshot is created. The block device is printed by default (when raw is not specified). This option makes it easier to embed fssnap commands in the command line for commands that require the raw device instead. Both devices are always created. This option affects only the output.

OPERANDS

The following operands are supported:

mount-point

The directory where the file system resides.
special

The physical device for the file system, such as /dev/dsk/c0t0d0s7.

EXAMPLES

EXAMPLE 1 Creating a Snapshot of a File System

The following example creates a snapshot of a file system. The block special device created for the snapshot is /dev/fssnap/0.

```bash
# fssnap -F ufs -o backing-store=/var/tmp /export/home /dev/fssnap/0
```

EXAMPLE 2 Backing Up a File System Snapshot Without Having To Unmount the File System

The following example backs up a file system snapshot without having to unmount the file system. Since ufsdump requires the path to a raw device, the raw option is used. The /export/home file system snapshot is removed in the second command.

```bash
# ufsdump 0uf /dev/rmt/0
'fssnap -F ufs -o raw,bs=/export/snap /export/home'
<output from ufsdump>
# fssnap -F ufs -d /export/home
```

EXAMPLE 3 Backing Up a File System

When backing up a file system, do not let the backing-store file exceed 400 Mbytes. The second command removes the /export/home file system snapshot.

```bash
# ufsdump 0uf /dev/rmt/0
'fssnap -F ufs -o maxsize=400m,backing-store=/export/snap,raw /export/home'
# fssnap -F ufs -d /export/home
```
EXAMPLE 4  Performing an Incremental Dump of a Snapshot

The following example uses ufsdump to back up a snapshot of /dev/rdisk/c0t3d0s2. Note the use of the N option to ufsdump, which writes the name of the device being dumped, rather than the name of the snapshot device, to /etc/dumpdates file. See ufsdump(1M) for details on the N flag.

```
# ufsdump 1Nuf /dev/rmt/0 /dev/rdsk/c0t3d0s2 'fssnap -F ufs
-o raw,bs=/export/scratch,unlink /dev/rdsk/c0t3d0s2'
```

EXAMPLE 5  Finding Out What Snapshots Currently Exist

The following command displays the currently existing snapshots.

```
# fssnap -i
0  /src
1  /export/home
```

EXAMPLE 6  Mounting a File System Snapshot

The following example creates a file system snapshot. After you create a file system snapshot, mount it on /tmp/mount for temporary read-only access.

```
# fssnap -F ufs -o backing-store=/nfs/server/scratch /export/home
/dev/fssnap/1
# mkdir /tmp/mount
# mount -F ufs -o ro /dev/fssnap/1 /tmp/mount
```

EXAMPLE 7  Creating a File System Snapshot and Unlinking the Backing-store File

The following example creates a file system snapshot and unlinks the backing-store file. After creating a file system snapshot and unlinking the backing-store file, check the state of the snapshot.

```
# fssnap -o bs=/scratch,unlink /src
/dev/fssnap/0
# fssnap -i /src
Snapshot number : 0
Block Device : /dev/fssnap/0
Raw Device : /dev/rfssnap/0
Mount point : /src
Device state : active
Backing store path : /scratch/snapshot2 <UNLINKED>
Backin store size : 192 KB
Maximum backing store size : Unlimited
Snapshot create time : Sat May 06 10:55:11 2000
Copy-on-write granularity : 32 KB
```
EXAMPLE 7 Creating a File System Snapshot and Unlinking the Backing-store File
(Continued)

EXAMPLE 8 Displaying the Size and Location of the Backing-store File and the Creation Time for the Snapshot

The following example displays the size of the backing-store file in bytes, the location of the backing store, and the creation time for the snapshot of the /test file system.

```sh
# fssnap -i -o backing-store-len,backing-store,createtime /test
196608
/snapshot2
Sat May 6 10:55:11 2000
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

The script-readable output mode is a stable interface that can be added to, but will not change. All other interfaces are subject to change.

NOTES

The fssnap device files should be treated like a regular disk block or character device.

The association between a file system and the snapshot is lost when the snapshot is deleted or the system reboots. Snapshot persistence across reboots is not currently supported.

To avoid unnecessary performance impacts, perform the snapshot and system backup when the system is least active.
NAME| fstyp – determine file system type
SYNOPSIS| `fstyp [-v] special`
DESCRIPTION| `fstyp` allows the user to determine the file system type of unmounted file systems using heuristic programs.

An `fstyp` module for each file system type to be checked is executed; each of these modules applies an appropriate heuristic to determine whether the supplied `special` file is of the type for which it checks. If it is, the program prints on standard output the usual file system identifier for that type (for example, “ufs”) and exits with a return code of 0; if none of the modules succeed, the error message `unknown_fstyp (no matches)` is returned and the exit status is 1. If more than one module succeeds, the error message `unknown_fstyp (multiple matches)` is returned and the exit status is 2.

OPTIONS| `-v` Produce verbose output. This is usually information about the file systems superblock and varies across different `FSTypes`. See `ufs(7FS)`, `mkfs_ufs(1M)`, and `tunefs(1M)` for details.

USAGE| See `largefile(5)` for the description of the behavior of `fstyp` when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

ATTRIBUTES| See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO| `mkfs_ufs(1M)`, `tunefs(1M)`, `attributes(5)`, `largefile(5)`, `ufs(7FS)`, `hsfs(7FS)`, `pcfs(7FS)`

NOTES| The use of heuristics implies that the result of `fstyp` is not guaranteed to be accurate.
ftpaddhost(1M)

NAME
ftpaddhost – set up a virtual FTP host

SYNOPSIS
ftpaddhost [-c | -l [-b] [-x xferlog]] hostname root_dir

DESCRIPTION
The ftpaddhost script is executed by the super user to set up virtual FTP hosts. The ftpaddhost command configures the virtual host hostname under directory root_dir. The value of hostname can be an IP address or the name of a host.

OPTIONS
The ftpaddhost script supports the following options:

- b
Create a banner for the virtual host. This option is useful to confirm that the virtual host is working.

- c
Configure complete virtual hosting. This option allows each virtual host to have its own version of the ftpaccess, ftpconversions, ftpgroups, ftphosts, and ftpusers files. The master version of each of these configuration files is copied from the /etc/ftpd directory and placed in the /etc/ftpd/virtual-ftpd/hostname directory. If the /etc/ftpdusers file exists it is appended to the virtual ftpusers file. If a virtual host lacks its own version of a configuration file, the master version is used.

- l
Configure limited virtual hosting. This option allows a small number of parameters to be configured differently for a virtual host. See the virtual keyword on the ftpaccess(4) manual page.

- x xferlog
Create a log file entry such that the transfer logs for the virtual host are written to the specified file. An absolute path must be specified for the xferlog file.

OPERANDS
The following operands are supported:

hostname
The host name or IP address of the virtual server.

root_dir
The absolute pathname of the directory under which the virtual server is set up.

EXIT STATUS
The following exit values are returned:

0
Successful completion

1
Improper usage of the command

2
Command failed

FILES
/etc/ftpd/virtual-ftpd/hostname
The configuration files directory for the virtual host hostname.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftpui</td>
</tr>
</tbody>
</table>

SEE ALSO

ftpconfig(1M), in.ftpd(1M), ftpaccess(4), ftpconversions(4), ftpgroups(4), ftphosts(4), ftpusers(4), xferlog(4), attributes(5)
ftpconfig(1M)

NAME
ftpconfig – set up anonymous FTP

SYNOPSIS
ftpconfig [ftpdir]

ftpconfig -d ftpdir

DESCRIPTION
The ftpconfig script is executed by the super user to set up anonymous FTP.
Anonymous FTP allows users to remotely log on to the FTP server by specifying
the user name ftp or anonymous and the user’s email address as password. The
anonymous users are logged on to the FTP Server and given access to a restricted file
area with its own file system root. See chroot(2). The FTP area has its own minimal
system files.

This command will copy and set up all the components needed to operate an
anonymous FTP server, including creating the ftp user account, creating device nodes,
copying /usr/lib files, and copying timezone data. The passwd and group files set
up have been stripped down to prevent malicious users from finding login names on
the server. The anonymous file area will be placed under ftpdir. If the ftp user
account already exists, then the current FTP area is used, and the system files in it are
updated. All other files are left untouched. This command should be run to update the
anonymous FTP area’s configuration whenever a system patch is installed, or the
system is upgraded.

OPTIONS
-d Create a new or update an existing ftpdir without creating or updating the
ftp user account. Use this option when creating guest FTP user accounts.

OPERANDS
The following operands are supported:
ftpdir The absolute pathname of the directory under which the anonymous FTP
area is set up.

EXIT STATUS
The following exit values are returned:
0 Successful completion
1 Improper usage of the command
2 Command failed

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftp</td>
</tr>
</tbody>
</table>

SEE ALSO
ftpaddhost(1M), in.ftpd(1M), useradd(1M), chroot(2), attributes(5)
NAME | ftprestart – restart previously shutdown FTP Servers  
SYNOPSIS | ftprestart [-V]  
DESCRIPTION | Use the ftprestart command to restart an FTP Server previously shut down by means of ftpshut(1M). The ftprestart command reads the shutdown capability from the ftpaccess(4) file to determine the path of the shutdown message files. It then reenables the FTP Server by removing any shutdown message files in the anonymous and virtual FTP Server area, as well as the system wide shutdown message file.  
OPTIONS | The ftprestart command supports the following options:  
- V | Display program copyright and version information, then terminate.  
EXAMPLES | EXAMPLE 1 Sample Output from ftprestart  
The following example shows sample output from the ftprestart command:  
```
example% ftprestart  
ftprestart: /export/home/ftp/etc/ftpd/shutdown.msg removed.  
ftprestart: /export/home/virtual1/etc/ftpd/shutdown.msg removed.  
ftprestart: /etc/ftpd/shutdown.msg removed.
```
EXIT STATUS | The following exit values are returned:  
0 | Successful completion.  
>0 | An error occurred.  
FILES | /etc/ftpd/ftpaccess  
/ etc/ftpd/ftpservers  
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:  
| ATTRIBUTE TYPE | ATTRIBUTE VALUE |  
| Availability | SUNWftp |  
SEE ALSO | ftpshut(1M), in.ftpd(1M), ftpaccess(4), ftpservers(4), attributes(5)
**NAME**  ftpshut – close down the FTP Servers at a given time

**SYNOPSIS**  

```
ftpshut [-V] [-v] [-l min] [-d min] time [warning-message...]
```

**DESCRIPTION**  The `ftpshut` command provides an automated shutdown procedure that the superuser can use to notify FTP users when the FTP Server is shutting down.

Ten minutes before shutdown, or immediately if the value of `time` is less than ten minutes, any new FTP Server connections will be disabled. You may adjust the shutdown of new FTP Server connections by means of the `-l` option.

Five minutes before shutdown, or immediately if the value of `time` is less than five minutes, all current FTP connections will be disconnected. You may adjust the shutdown of current FTP connections by means of the `-d` option.

The `ftpshut` command creates shutdown message files that the FTP Server uses to determine when to shutdown. Separate shutdown message files are created in the anonymous and virtual host FTP Server areas, in addition to the system wide shutdown message file. Once the shutdown occurs, the server continues to refuse connections until the appropriate shutdown message file is removed. This normally is done by using the `ftprestart(1M)` command. The location of the shutdown message file is specified by the `shutdown` capability in the `ftpaccess` file.

The following magic cookies are available:

<table>
<thead>
<tr>
<th>Magic Cookie</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%s</td>
<td>The time system is going to shut down.</td>
</tr>
<tr>
<td>%r</td>
<td>The time new connections will be denied.</td>
</tr>
<tr>
<td>%d</td>
<td>The time current connections will be dropped.</td>
</tr>
<tr>
<td>%C</td>
<td>The current working directory.</td>
</tr>
<tr>
<td>%E</td>
<td>The maintainer’s email address as defined in the <code>ftpaccess</code> file.</td>
</tr>
<tr>
<td>%F</td>
<td>The free space in the partition of CWD, in kilobytes.</td>
</tr>
<tr>
<td>%L</td>
<td>The local host name.</td>
</tr>
<tr>
<td>%M</td>
<td>The maximum allowed number of users in this class.</td>
</tr>
<tr>
<td>%N</td>
<td>The current number of users in this class.</td>
</tr>
<tr>
<td>%R</td>
<td>The remote host name.</td>
</tr>
<tr>
<td>%T</td>
<td>The local time (form Thu Nov 15 17:12:42 1990).</td>
</tr>
<tr>
<td>%U</td>
<td>The username given at login time.</td>
</tr>
</tbody>
</table>

**OPTIONS**  The `ftpshut` command supports the following options:

- `-V`  Display program copyright and version information, then terminate.
- `-d min`  The time ahead of shutdown, in minutes, that existing connections will be disconnected upon completion of their current or next (if idle) FTP request.
-l min  The time ahead of shutdown, in minutes, that new connections will be refused.
-v     Verbose. Output the pathname of the shutdown message files created.

OPERANDS The ftpshut command supports the following operands:

  time  The time at which ftpshut will bring the FTP Servers down. time can have a value of now, which indicates an immediate shutdown. Alternatively, time can specify a future time in one of two formats: +number or HHMM. The first form brings the FTP Server down in number minutes. The second brings the FTP Server down at the time of day indicated, using a 24-hour clock format. When using the absolute time format, you can only specify times between now and 23:59.

  warning-message  The message to display that warns of the imminent shutdown. The warning-message will be formatted at 70 characters wide. ftpshut knows the actual string length of the magic cookies. If no warning-message is supplied, the default message “System shutdown at %s” is used.

EXIT STATUS The following exit values are returned:

  0     Successful completion.
  >0    An error occurred.

FILES
/etc/ftpd/ftpaccess
/etc/ftpd/ftpservers

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftpu</td>
</tr>
</tbody>
</table>

SEE ALSO in.ftpd(1M), ftprestart(1M), shutdown(1M), ftpaccess(4), ftpservers(4), attributes(5)
fuser(1M)

NAME  
fuser – identify processes using a file or file structure

SYNOPSIS  
/usr/sbin/fuser [-c | -f] [-nu] [-k | -s sig|files] [ [- ] [-c | -f] 
[-nu] [-k | -s sig|files] ... 

DESCRIPTION  
The fuser utility displays the process IDs of the processes that are using the files specified as arguments.

Each process ID is followed by a letter code. These letter codes are interpreted as follows. If the process is using the file as

- **c** Indicates that the process is using the file as its current directory.
- **m** Indicates that the process is using a file mapped with mmap(2). See mmap(2) for details.
- **n** Indicates that the process is holding a non-blocking mandatory lock on the file.
- **o** Indicates that the process is using the file as an open file.
- **r** Indicates that the process is using the file as its root directory.
- **t** Indicates that the process is using the file as its text file.
- **y** Indicates that the process is using the file as its controlling terminal.

For block special devices with mounted file systems, all processes using any file on that device are listed. For all types of files (text files, executables, directories, devices, and so forth), only the processes using that file are reported.

If more than one group of files are specified, the options may be respecified for each additional group of files. A lone dash cancels the options currently in force.

The process IDs are printed as a single line on the standard output, separated by spaces and terminated with a single new line. All other output is written on standard error.

Any user can run fuser, but only the superuser can terminate another user's process.

OPTIONS  
The following options are supported:

- **-c** Reports on files that are mount points for file systems, and any files within that mounted file system.
- **-f** Prints a report for the named file, not for files within a mounted file system.
- **-k** Sends the SIGKILL signal to each process. Since this option spawns kills for each process, the kill messages may not show up immediately (see kill(2)).
- **-n** Lists only processes with non-blocking mandatory locks on a file.
-s sig  Sends a signal to each process. The sig option argument specifies one of the symbolic names defined in the <signal.h> header, or a decimal integer signal number. If sig is a symbolic name, it is recognized in a case-independent fashion, without the SIG prefix. The -k option is equivalent to -s KILL or -s 9.

-u     Displays the user login name in parentheses following the process ID.

EXAMPLES

EXAMPLE 1  Reporting on the mount point and files
The following example reports on the mount point and files within the mounted file system.

`example% fuser -c /export/foo`

EXAMPLE 2  Restricting output when reporting on the mount point and files
The following example reports on the mount point and files within the mounted file system, but the output is restricted to processes that hold non-blocking mandatory locks.

`example% fuser -cn /export/foo`

EXAMPLE 3  Sending SIGTERM to processes holding a non-blocking mandatory lock
The following command sends SIGTERM to any processes that hold a non-blocking mandatory lock on file /export/foo/my_file.

`example% fuser -fn -s term /export/foo/my_file`

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of fuser: LANG, LC_ALL, LC_MESSAGES, and NLSPATH.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
ps(1), mount(1M), kill(2), mmap(2), signal(3C), attributes(5), environ(5), standards(5)

NOTES
Because fuser works with a snapshot of the system image, it may miss processes that begin using a file while fuser is running. Also, processes reported as using a file may have stopped using it while fuser was running. These factors should discourage the use of the -k option.
fwtmp(1M)

NAME fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]
/usr/lib/acct/wtmpfix [file...]

DESCRIPTION
fwtmp reads from the standard input and writes to the standard output, converting binary records of the type found in /var/adm/wtmpx to formatted ASCII records. The ASCII version is useful when it is necessary to edit bad records.

wtmpfix examines the standard input or named files in utmpx format, corrects the time/date stamps to make the entries consistent, and writes to the standard output. A hyphen (-) can be used in place of file to indicate the standard input. If time/date corrections are not performed, acctcon(1M) will fail when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /var/adm/wtmpx. The first record is the old date denoted by the string "old time" placed in the line field and the flag OLD_TIME placed in the type field of the utmpx structure. The second record specifies the new date and is denoted by the string new time placed in the line field and the flag NEW_TIME placed in the type field. wtmpfix uses these records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of the name field to ensure that it consists solely of alphanumeric characters or spaces. If it encounters a name that is considered invalid, it will change the login name to INVALID and write a diagnostic to the standard error. In this way, wtmpfix reduces the chance that acctcon will fail when processing connect accounting records.

OPTIONS
-ic Denotes that input is in ASCII form, and output is to be written in binary form.

FILES /var/adm/wtmpx history of user access and administration information

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO acctcom(1), ed(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), runacct(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

System Administration Guide: Basic Administration
getdev(1M)

NAME
getdev – lists devices based on criteria

SYNOPSIS
getdev [-ae] [criteria...] [device...]

DESCRIPTION
getdev generates a list of devices that match certain criteria. The criteria includes a
list of attributes (given in expressions) and a list of devices. If no criteria are given, all
devices are included in the list.

Devices must satisfy at least one of the criteria in the list unless the -a option is used. Then,
only those devices which match all of the criteria in a list will be included.

Devices which are defined on the command line and which match the criteria are
included in the generated list. However, if the -e option is used, the list becomes a set
of devices to be excluded from the list. See OPTIONS and OPERANDS.

OPTIONS
The following options are supported:

- a Specifies that a device must match all criteria to be included in the list
generated by this command. The option has no effect if no criteria are
defined.

- e Specifies that the list of devices which follows on the command line should
be excluded from the list generated by this command. Without the -e the
named devices are included in the generated list. The flag has no effect if no
devices are defined.

OPERANDS
The following operands are supported:

criteria Defines the criteria that a device must match to be included in the
generated list. criteria is specified by expressions.

There are four possible expression types which the criteria
specified in the criteria argument may follow:

attribute=value Selects all devices whose attribute
attribute is defined and is equal to
value.

attribute!=value Selects all devices whose attribute
attribute is defined and does not
equal value.

attribute:* Selects all devices which have the
attribute attribute defined.

attribute!: Selects all devices which do not
have the attribute attribute defined.

attribute

See the putdev(1M) manual page for a complete listing and
description of available attributes.

device Defines the devices which should be included in the generated list.
This can be the pathname of the device or the device alias.
getdev(1M)

EXIT STATUS  The following exit values are returned:
0   Successful completion.
1   Command syntax was incorrect, invalid option was used, or an internal error occurred.
2   Device table could not be opened for reading.

FILES  /etc/device.tab

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  devattr(1M), getdgrp(1M), putdev(1M), putdgrp(1M), attributes(5)
getdgrp – lists device groups which contain devices that match criteria

SYNOPSIS
/usr/sbin/getdgrp [-aeil] [criteria...] [dgroup...]

DESCRIPTION
getdgrp generates a list of device groups that contain devices matching the given criteria. The criteria is given in the form of expressions.

OPTIONS
The following options are supported:

-a Specifies that a device must match all criteria to be included in the list generated by this command. The option has no effect if no criteria are defined.

-e Specifies that the list of device groups on the command line should be excluded from the list generated by this command. Without the -e option the named device groups are included in the generated list. The flag has no effect if no devices are defined.

-l Specifies that all device groups (subject to the -e option and the dgroup list) should be listed even if they contain no valid device members. This option has no affect if criteria is specified on the command line.

OPERANDS
The following operands are supported:

criteria Defines criteria that a device must match before a device group to which it belongs can be included in the generated list. Specify criteria as an expression or a list of expressions which a device must meet for its group to be included in the list generated by getdgrp. If no criteria are given, all device groups are included in the list.

Devices must satisfy at least one of the criteria in the list. However, the -a option can be used to define that a "logical and" operation should be performed. Then, only those groups containing devices which match all of the criteria in a list will be included.

There are four possible expressions types which the criteria specified in the criteria argument may follow:

attribute=value Selects all device groups with a member whose attribute attribute is defined and is equal to value.

attribute!=value Selects all device groups with a member whose attribute attribute is defined and does not equal value.

attribute:* Selects all device groups with a member which has the attribute attribute defined.
getdgrp(1M)

attribute! : *

Selects all device groups with a member which does not have the attribute `attribute` defined.

See `putdev(1M)` for a complete listing and description of available attributes.

`dgroup`

Defines a set of device groups which should be included in or excluded from the generated list. Device groups that are defined and which contain devices matching the criteria are included.

If the `-e` option is used, this list defines a set of device groups to be excluded. When the `-e` option is used and `criteria` is also defined, the generated list will include device groups containing devices which match the criteria and are not in the command line list.

**EXIT STATUS**

The following exit values are returned:

- 0: Successful completion of the task.
- 1: Command syntax was incorrect, invalid option was used, or an internal error occurred.
- 2: Device table or device group table could not be opened for reading.

**FILES**

/etc/device.tab
/etc/dgroup.tab

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`devattr(1M), getdev(1M), putdev(1M), putdgrp(1M), attributes(5)`
NAME
getent – get entries from administrative database

SYNOPSIS
getent database [key...]

DESCRIPTION
getent gets a list of entries from the administrative database specified by database. The information generally comes from one or more of the sources that are specified for the database in /etc/nsswitch.conf.

database is the name of the database to be examined. This can be passwd, group, hosts, ipnodes, services, protocols, ethers, networks, or netmasks. For each of these databases, getent uses the appropriate library routines described in getpwnam(3C), getgrnam(3C), gethostbyaddr(3NSL), gethostbyname(3NSL), getipnodebyaddr(3SOCKET), getipnodebyname(3SOCKET), getservbyname(3SOCKET), getprotobyname(3SOCKET), ethers(3SOCKET), and getnetbyname(3SOCKET), respectively.

Each key must be in a format appropriate for searching on the respective database. For example, it can be a username or numeric-uid for passwd; hostname or IP address for hosts; or service, service/protocol, port, or port/proto for services.

getent prints out the database entries that match each of the supplied keys, one per line, in the format of the matching administrative file: passwd(4), group(4), hosts(4), ipnodes(4), services(4), protocols(4), ethers(3SOCKET), networks(4), or netmasks(4). If no key is given, all entries returned by the corresponding enumeration library routine, for example, getpwent() or gethostent(), are printed. Enumeration is not supported on ipnodes.

EXIT STATUS
The following exit values are returned:

0  Successful completion.
1  Command syntax was incorrect, an invalid option was used, or an internal error occurred.
2  At least one of the specified entry names was not found in the database.
3  There is no support for enumeration on this database.

FILES
/etc/nsswitch.conf  name service switch configuration file
/etc/passwd       password file
/etc/group         group file
/etc/inet/hosts    IPv4 host name database
/etc/inet/ipnodes  IPv4 and IPv6 host name database
/etc/services      Internet services and aliases
/etc/protocols    protocol name database
/etc/ethers       Ethernet address to hostname database or domain
/etc/networks     network name database
getent(1M)

/etc/netmasks network mask database

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO ethers(3SOCKET), getgrnam(3C), gethostbyaddr(3NSL), 
gethostbyname(3NSL), gethostent(3NSL), getipnodebyaddr(3SOCKET), 
getipnodebyname(3SOCKET), getnetbyname(3SOCKET), 
getprotobynamel(3SOCKET), getpwnam(3C), getservbyname(3SOCKET), 
group(4), hosts(4), ipnodes(4), netmasks(4), networks(4), nsswitch.conf(4), 
passwd(4), protocols(4), services(4), attributes(5)
NAME
gettable – get DoD Internet format host table from a host

SYNOPSIS
/usr/sbin/gettable host

DESCRIPTION
gettable is a simple program used to obtain the DoD Internet host table from a
“hostname” server. The specified host is queried for the table. The table is placed in the
file hosts.txt.

gettable operates by opening a TCP connection to the port indicated in the service
specification for “hostname”. A request is then made for all names and the resultant
information is placed in the output file.

gettable is best used in conjunction with the htable(1M) program which converts
the DoD Internet host table format to that used by the network library lookup
routines.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
htable(1M), attributes(5) Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler,
HOSTNAME Server, RFC 953, Network Information Center, SRI International, Menlo
Park, California, October 1985.

NOTES
Should allow requests for only part of the database.
NAME
getty – set terminal type, modes, speed, and line discipline

SYNOPSIS
/usr/lib/saf/ttymon [-h] [-t timeout] line [speed [type [linedisc]]]
/usr/lib/saf/ttymon -c file

DESCRIPTION
getty sets terminal type, modes, speed, and line discipline. getty is a symbolic link to /usr/lib/saf/ttymon. It is included for compatibility with previous releases for the few applications that still call getty directly.

getty can only be executed by the super-user, (a process with the user ID root). Initially getty prints the login prompt, waits for the user’s login name, and then invokes the login command. getty attempts to adapt the system to the terminal speed by using the options and arguments specified on the command line.

Without optional arguments, getty specifies the following: The speed of the interface is set to 300 baud, either parity is allowed, NEWLINE characters are converted to carriage return-line feed, and tab expansion is performed on the standard output. getty types the login prompt before reading the user’s name a character at a time. If a null character (or framing error) is received, it is assumed to be the result of the user pressing the BREAK key. This will cause getty to attempt the next speed in the series. The series that getty tries is determined by what it finds in /etc/ttydefs.

OPTIONS
The following options are supported:

- h
  If the -h flag is not set, a hangup will be forced by setting the speed to zero before setting the speed to the default or a specified speed.

- t timeout
  Specifies that getty should exit if the open on the line succeeds and no one types anything in timeout seconds.

- c file
  The -c option is no longer supported. Instead use /usr/sbin/sttydefs -l to list the contents of the /etc/ttydefs file and perform a validity check on the file.

OPERANDS
The following operands are supported:

line
  The name of a TTY line in /dev to which getty is to attach itself. getty uses this string as the name of a file in the /dev directory to open for reading and writing.

speed
  The speed argument is a label to a speed and TTY definition in the file /etc/ttydefs. This definition tells getty at what speed to run initially, what the initial TTY settings are, and what speed to try next, (should the user press the BREAK key to indicate that the speed is inappropriate). The default speed is 300 baud.

type and lineldisc
  These options are obsolete and will be ignored.

FILES
/etc/ttydefs
ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>

SEE ALSO  ct(1C), login(1), sttydefs(1M), ttymon(1M), ioctl(2), attributes(5), tty(7D)
NAME
getvol – verifies device accessibility

SYNOPSIS
/usr/bin/getvol -n [-l label] device
/usr/bin/getvol [-f | -F] [-ow] [-l label | -x label] device

DESCRIPTION
getvol verifies that the specified device is accessible and that a volume of
the appropriate medium has been inserted. The command is interactive and displays
instructional prompts, describes errors, and shows required label information.

OPTIONS
The following options are supported:

- n
  Runs the command in non-interactive mode. The volume is
  assumed to be inserted upon command invocation.

- l label
  Specifies that the label label must exist on the inserted volume (can
  be overridden by the -o option).

- f
  Formats the volume after insertion, using the format command
  defined for this device in the device table.

- F
  Formats the volume after insertion and places a file system on the
  device. Also uses the format command defined for this device in
  the device table.

- o
  Allows the administrator to override a label check.

- w
  Allows administrator to write a new label on the device. User is
  prompted to supply the label text. This option is ineffective if the
  -n option is enabled.

- x label
  Specifies that the label label must exist on the device. This option
  should be used in place of the -l option when the label can only
  be verified by visual means. Use of the option causes a message to
  be displayed asking the administrator to visually verify that the
  label is indeed label.

OPERANDS
The following operands are supported:

device
  Specifies the device to be verified for accessibility.

EXIT STATUS
The following exit values are returned:

0
  Successful completion.

1
  Command syntax was incorrect, invalid option was used, or an internal
  error occurred.

3
  Device table could not be opened for reading.

FILES
/etc/device.tab
### ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

### SEE ALSO
attributes(5)

### NOTES
This command uses the device table to determine the characteristics of the device when performing the volume label checking.
gkadmin is an interactive graphical user interface (GUI) that enables you to maintain Kerberos principals and policies. gkadmin provides much the same functionality as the kadmin(1M) command.

gkadmin does not support the management of keytabs. You must use kadmin for keytabs management. gkadmin uses Kerberos authentication and an encrypted RPC to operate securely from anywhere on the network.

When gkadmin is invoked, the login window is populated with default values. For the principal name, gkadmin determines your user name from the USER environment variable. It appends /admin to the name (username/admin) to create a default user instance in the same manner as kadmin. It also selects appropriate defaults for realm and master KDC (admin_server) from the /etc/krb5/krb5.conf file.

You can change these defaults on the login window. When you enter your password, a session is started with kadmind. Operations performed are subject to permissions that are granted or denied to the chosen user instance by the Kerberos ACL file. See kadm5.acl(4).

After the session is started, a tabbed folder is displayed that contains a principal list and a policy list. The functionality is mainly the same as kadmin, with addition, deletion, and modification of principal and policy data available.

In addition, gkadmin provides the following features:

- New principal or policy records can be added either from default values or from the settings of an existing principal.
- A comment field is available for principals.
- Default values are saved in $HOME/.gkadmin.
- A logout option permits you to log back in as another user instance without exiting the tool.
- Principal and policy lists and attributes can be printed or saved to a file.
- Online context-sensitive help and general help is available in the Help menu.

<table>
<thead>
<tr>
<th>NAME</th>
<th>gkadmin – Kerberos database administration GUI, SEAM Administration Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/sbin/gkadmin</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>gkadmin is an interactive graphical user interface (GUI) that enables you to maintain Kerberos principals and policies. gkadmin provides much the same functionality as the kadmin(1M) command. gkadmin does not support the management of keytabs. You must use kadmin for keytabs management. gkadmin uses Kerberos authentication and an encrypted RPC to operate securely from anywhere on the network. When gkadmin is invoked, the login window is populated with default values. For the principal name, gkadmin determines your user name from the USER environment variable. It appends /admin to the name (username/admin) to create a default user instance in the same manner as kadmin. It also selects appropriate defaults for realm and master KDC (admin_server) from the /etc/krb5/krb5.conf file. You can change these defaults on the login window. When you enter your password, a session is started with kadmind. Operations performed are subject to permissions that are granted or denied to the chosen user instance by the Kerberos ACL file. See kadm5.acl(4). After the session is started, a tabbed folder is displayed that contains a principal list and a policy list. The functionality is mainly the same as kadmin, with addition, deletion, and modification of principal and policy data available. In addition, gkadmin provides the following features: New principal or policy records can be added either from default values or from the settings of an existing principal. A comment field is available for principals. Default values are saved in $HOME/.gkadmin. A logout option permits you to log back in as another user instance without exiting the tool. Principal and policy lists and attributes can be printed or saved to a file. Online context-sensitive help and general help is available in the Help menu.</td>
</tr>
<tr>
<td>FILES</td>
<td>/etc/krb5/krb5.conf Kerberos configuration information on a Kerberos client. Used to search for default realm and master KDC (admin_server), including a port number for the master KDC. $HOME/.gkadmin Default parameters used to initialize new principals created during the session.</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkdcu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

kpasswd(1), kadmin(1M), kadmin(1M), kadmin.local(1M), kdb5_util(1M), kadm5.acl(4), kdc.conf(4), krb5.conf(4), attributes(5), SEAM(5)

DIAGNOSTICS

The gkadmin interface is currently incompatible with the MIT kadmin daemon interface, so you cannot use this interface to administer an MIT-based Kerberos database. However, SEAM-based Kerberos clients can still use an MIT-based KDC.
groupadd(1M)

NAME
   groupadd – add (create) a new group definition on the system

SYNOPSIS
   /usr/sbin/groupadd [-g gid [-o]] group

DESCRIPTION
   The groupadd command creates a new group definition on the system by adding the
   appropriate entry to the /etc/group file.

OPTIONS
   The following options are supported:

   -g gid  Assigns the group id gid for the new group. This group id must be a
            non-negative decimal integer below MAXUID as defined in
            /usr/include/sys/param.h. The group ID defaults to the next
            available (unique) number above the highest number currently assigned.
            For example, if groups 100, 105, and 200 are assigned as groups, the next
            default group number will be 201. (Group IDs from 0–99 are reserved by
            SunOS for future applications.)

   -o     Allows the gid to be duplicated (non-unique).

OPERANDS
   The following operands are supported:

   group   A string consisting of characters from the set of lower case alphabetic
            characters and numeric characters. A warning message will be written if
            the string exceeds MAXGLEN, which is usually set at eight characters. The
            group field must contain at least one character; it accepts lower case or
            numeric characters or a combination of both, and must not contain a colon
            (:) or NEWLINE.

EXIT STATUS
   The following exit values are returned:

   0  Successful completion.

   2  Invalid command syntax. A usage message for the groupadd command is
       displayed.

   3  An invalid argument was provided to an option.

   4  The gid is not unique (when -o option is not used).

   9  The group is not unique.

   10 The /etc/group file cannot be updated.

FILES
   /etc/group
   /usr/include/userdefs.h

ATTRIBUTES
   See attributes(5) for descriptions of the following attributes:

   ATTRIBUTE TYPE      ATTRIBUTE VALUE
   Availability        SUNWcsu

500  man pages section 1M: System Administration Commands • Last Revised 27 Mar 1998
groupadd(1M)

SEE ALSO  users(1B), groupdel(1M), groupmod(1M), grpck(1M), logins(1M), pwck(1M), useradd(1M), userdel(1M), usermod(1M), group(4), attributes(5)

NOTES  groupadd only adds a group definition to the local system. If a network name service such as NIS or NIS+ is being used to supplement the local /etc/group file with additional entries, groupadd cannot change information supplied by the network name service. However, groupadd will verify the uniqueness of group name and group ID against the external name service.
**NAME**
groupdel – delete a group definition from the system

**SYNOPSIS**
```
/usr/sbin/groupdel group
```

**DESCRIPTION**
The `groupdel` utility deletes a group definition from the system. It deletes the appropriate entry from the `/etc/group` file.

**OPERANDS**
group An existing group name to be deleted.

**EXIT STATUS**
The following exit values are returned:

- **0** Success.
- **2** Invalid command syntax. A usage message for the `groupdel` command is displayed.
- **6** `group` does not exist.
- **10** Cannot update the `/etc/group` file.

**FILES**
/`etc/group` system file containing group definitions

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
users(1B), groupadd(1M), groupmod(1M), logins(1M), useradd(1M), userdel(1M), usermod(1M), attributes(5)

**NOTES**
The `groupdel` utility only deletes a group definition that is in the local `/etc/group` file. If a network nameservice such as NIS or NIS+ is being used to supplement the local `/etc/group` file with additional entries, `groupdel` cannot change information supplied by the network nameservice.
The `groupmod` command modifies the definition of the specified group by modifying the appropriate entry in the `/etc/group` file.

The following options are supported:

- `-g gid` Specify the new group ID for the group. This group ID must be a non-negative decimal integer less than MAXUID, as defined in `<param.h>`. The group ID defaults to the next available (unique) number above 99. (Group IDs from 0-99 are reserved by SunOS for future applications.)

- `-n name` Specify the new name for the group. The `name` argument is a string of no more than eight bytes consisting of characters from the set of lower case alphabetic characters and numeric characters. A warning message will be written if these restrictions are not met. A future Solaris release may refuse to accept group fields that do not meet these requirements. The `name` argument must contain at least one character and must not include a colon (:) or NEWLINE (`\n`).

- `-o` Allow the `gid` to be duplicated (non-unique).

The following operands are supported:

- `group` An existing group name to be modified.

The `groupmod` utility exits with one of the following values:

- `0` Success.
- `2` Invalid command syntax. A usage message for the `groupmod` command is displayed.
- `3` An invalid argument was provided to an option.
- `4` `gid` is not unique (when the `-o` option is not used).
- `6` `group` does not exist.
- `9` `name` already exists as a group name.
- `10` Cannot update the `/etc/group` file.

The `groupmod` command modifies a group definition on the system.

**SYNOPSIS**

```
/usr/sbin/groupmod [-g gid [-o]] [-n name] group
```

**DESCRIPTION**

**OPTIONS**

**OPERANDS**

**EXIT STATUS**

**FILES**

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
The `groupmod` utility only modifies group definitions in the `/etc/group` file. If a network name service such as NIS or NIS+ is being used to supplement the local `/etc/group` file with additional entries, `groupmod` cannot change information supplied by the network name service. The `groupmod` utility will, however, verify the uniqueness of group name and group ID against the external name service.
growfs (1M)

NAME
growfs – non-destructively expand a UFS file system

SYNOPSIS
/usr/sbin/growfs [-M mount-point] [newfs-options] [raw-device]

description

growfs non-destructively expands a mounted or unmounted UNIX file system (UFS) to the size of the file system's slice(s).

Typically, disk space is expanded by first adding a slice to a metadevice, then running the growfs command. When adding space to a mirror, you expand each submirror before expanding the file system. On a trans metadevice, the master device is expanded, not the trans metadevice. Then the growfs command is run on the trans metadevice. (You can add space to a logging device, but you do not need to run the growfs command. The new space is automatically recognized.)

growfs will “write-lock” (see lockfs(1M)) a mounted file system when expanding. The length of time the file system is write-locked can be shortened by expanding the file system in stages. For instance, to expand a 1 Gbyte file system to 2 Gbytes, the file system can be grown in 16 Mbyte stages using the -s option to specify the total size of the new file system at each stage. The argument for -s is the number of sectors, and must be a multiple of the cylinder size. Note: The file system cannot be grown if a cylinder size of less than 2 is specified. Refer to the newfs(1M) man page for information on the options available when growing a file system.

growfs displays the same information as mkfs during the expansion of the file system.

If growfs is aborted, recover any lost free space by unmounting the file system and running the fsck command, or run the growfs command again.

OPTIONS

Root privileges are required for all of the following options.

-M mount-point
   The file system to be expanded is mounted on mount-point. File system locking (lockfs) will be used.

newfs-options
   The options are documented in the newfs man page.

raw-device
   Specifies the name of a raw metadevice or raw special device, residing in /dev/md/rdsk, or /dev/rdsk, respectively, including the disk slice, where you want the file system to be grown.

EXAMPLES

EXAMPLE 1 Expanding nonmetadevice slice for /export file system

The following example expands a nonmetadevice slice for the /export file system. In this example, the existing slice, /dev/dsk/c1t0d0s3, is converted to a metadevice so additional slices can be concatenated.

# metainit -f d8 2 1 c1t0d0s3 1 c2t0d0s3
# umount /export
EXAMPLE 2  Associate /export with new metadevice

Edit the /etc/vfstab file to change the entry for /export to the newly defined metadevice, d8.

```
# mount /export
# growfs -M /export /dev/md/rdsk/d8
```

The first example starts by running the metainit command with the -f option to force the creation of a new concatenated metadevice d8, which consists of the existing slice /dev/dsk/c1t0d0s3 and a new slice /dev/dsk/c2t0d0s3. Next, the file system on /export must be unmounted. The /etc/vfstab file is edited to change the entry for /export to the newly defined metadevice name, rather than the slice name. After the file system is remounted, the growfs command is run to expand the file system. The file system will span the entire metadevice when growfs completes. The -M option enables the growfs command to expand a mounted file system. During the expansion, write access for /export is suspended until growfs unlocks the file system. Read access is not affected, though access times are not kept when the lock is in effect.

EXAMPLE 3  Dynamic Expansion of /export file system

The following example picks up from the previous one. Here, the /export file system mounted on metadevice d8 is dynamically expanded.

```
# metattach d8 c0t1d0s2
# growfs -M /export /dev/md/rdsk/d8
```

This example begins by using the metattach command to dynamically concatenate a new slice, /dev/dsk/c0t1d0s2, to the end of an existing metadevice, d8. Next, the growfs command specifies that the mount-point is /export and that it is to be expanded onto the raw metadevice /dev/md/rdsk/d8. The file system will span the entire metadevice when growfs completes. During the expansion, write access for /export is suspended until growfs unlocks the file system. Read access is not affected, though access times are not kept when the lock is in effect.

EXAMPLE 4  Expanding mounted file system to existing mirror

The following example expands a mounted file system /files, to an existing mirror, d80, which contains two submirrors, d9 and d10.

```
# metattach d9 c0t2d0s5
# metattach d10 c0t3d0s5
# growfs -M /files /dev/md/rdsk/d80
```

In this example, the metattach command dynamically concatenates the new slices to each submirror. The metattach command must be run for each submirror. The mirror will automatically grow when the last submirror is dynamically concatenated. The mirror will grow to the size of the smallest submirror. The growfs command then expands the file system. The growfs command specifies that the mount-point is /files and that it is to be expanded onto the raw metadevice /dev/md/rdsk/d80.
EXAMPLE 4 Expanding mounted file system to existing mirror (Continued)

The file system will span the entire mirror when the `growfs` command completes. During the expansion, write access for the file system is suspended until `growfs` unlocks the file system. Read access is not affected, though access times are not kept when the lock is in effect.

**EXIT STATUS**

The following exit values are returned:

- **0**  Successful completion.
- **>0**  An error occurred.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`fsck(1M), lockfs(1M), mkfs(1M), metattach(1M), newfs(1M), attributes(5)`

`Solaris Volume Manager Administration Guide`

**LIMITATIONS**

Only UFS file systems (either mounted or unmounted) can be expanded using the `growfs` command. Once a file system is expanded, it cannot be decreased in size. The following conditions prevent you from expanding file systems: When `acct` is activated and the accounting file is on the target device. When C2 security is activated and the logging file is on the target file system. When there is a local swap file in the target file system. When the file system is root (`/`), `/usr`, or `swap`. 
**NAME**
gsscred – add, remove and list gsscred table entries

**SYNOPSIS**

```
gsscred [-n user [-o oid] [-u uid] [-c comment] -m mech -a

gsscred [-n user [-o oid] [-u uid] [-m mech] -r

gsscred [-n user [-o oid] [-u uid] [-m mech] -l
```

**DESCRIPTION**
The `gsscred` utility is used to create and maintain a mapping between a security principal name and a local UNIX `uid`. The format of the user name is assumed to be `GSS_C_NT_USER_NAME`. You can use the `-o` option to specify the object identifier of the `name` type. The `OID` must be specified in dot-separated notation, for example:

```
1.2.3.45464.3.1
```

The `gsscred` table is used on server machines to lookup the `uid` of incoming clients connected using `RPCSEC_GSS`.

When adding users, if no `user` name is specified, an entry is created in the table for each user from the `passwd` table. If no `comment` is specified, the `gsscred` utility inserts a comment that specifies the user name as an ASCII string and the GSS-API security mechanism that applies to it. The security mechanism will be in string representation as defined in the `/etc/gss/mech` file.

The parameters are interpreted the same way by the `gsscred` utility to delete users as they are to create users. At least one of the following options must be specified: `-n`, `-u`, or `-m`. If no security mechanism is specified, then all entries will be deleted for the user identified by either the `uid` or `user` name. If only the security mechanism is specified, then all `user` entries for that security mechanism will be deleted.

Again, the parameters are interpreted the same way by the `gsscred` utility to search for users as they are to create users. If no options are specified, then the entire table is returned. If the `user` name or `uid` is specified, then all entries for that `user` are returned. If a security mechanism is specified, then all `user` entries for that security mechanism are returned.

**OPTIONS**

- `-a` Add a table entry.
- `-c comment` Insert comment about this table entry.
- `-l` Search table for entry.
- `-m mech` Specify the mechanism for which this name is to be translated.
- `-n user` Specify the optional principal name.
- `-o oid` Specify the OID indicating the name type of the user.
- `-r` Remove the entry from the table.
- `-u uid` Specify the `uid` for the `user` if the `user` is not local.
EXAMPLE 1 Creating a gsscred Table for the Kerberos v5 Security Mechanism

The following shows how to create a gsscred table for the kerberos v5 security mechanism. gsscred obtains user names and uid's from the passwd table to populate the table.

```
example% gsscred -m kerberos_v5 -a
```

EXAMPLE 2 Adding an Entry for root/host1 for the Kerberos v5 Security Mechanism

The following shows how to add an entry for root/host1 with a specified uid of 0 for the kerberos v5 security mechanism.

```
example% gsscred -m kerberos_v5 -n root/host1 -u 0 -a
```

EXAMPLE 3 Listing All User Mappings for the Kerberos v5 Security Mechanism

The following lists all user mappings for the kerberos v5 security mechanism.

```
example% gsscred -m kerberos_v5 -l
```

EXAMPLE 4 Listing All Mappings for All Security Mechanism for a Specified User

The following lists all mappings for all security mechanisms for the user bsimpson.

```
example% gsscred -n bsimpson -l
```

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss</td>
</tr>
</tbody>
</table>

SEE ALSO

gssd(1M), attributes(5)
gssd(1M)

NAME  gssd – generates and validates GSS-API tokens for kernel RPC

SYNOPSIS  /usr/lib/gss/gssd

DESCRIPTION  gssd is the user mode daemon that operates between the kernel rpc and the Generic Security Service Application Program Interface (GSS-API) to generate and validate GSS-API security tokens. In addition, gssd maps the GSS-API principal names to the local user and group ids. By default, all groups that the requested user belongs to will be included in the grouplist credential. gssd is invoked by the Internet daemon inetd(1m) the first time that the kernel RPC requests GSS-API services.

EXIT STATUS  The following exit values are returned:

  0    Successful completion.

  >0   An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgssk</td>
</tr>
</tbody>
</table>

SEE ALSO  gsscred(1m), attributes(5)

RFC 2078
### NAME
halt, poweroff – stop the processor

### SYNOPSIS
/usr/sbin/halt [-dlnqy]
/usr/sbin/poweroff [-dlnqy]

### DESCRIPTION
The `halt` and `poweroff` utilities write any pending information to the disks and then stop the processor. The `poweroff` utility has the machine remove power, if possible.

The `halt` and `poweroff` utilities normally log the system shutdown to the system log daemon, `syslogd(1M)`, and place a shutdown record in the login accounting file `/var/adm/wtmpx`. These actions are inhibited if the `-n` or `-q` options are present.

### OPTIONS
The following options are supported:

- `-d` Force a system crash dump before rebooting. See `dumpadm(1M)` for information on configuring system crash dumps.
- `-l` Suppress sending a message to the system log daemon, `syslogd(1M)`, about who executed `halt`.
- `-n` Prevent the `sync(1M)` before stopping.
- `-q` Quick halt. No graceful shutdown is attempted.
- `-y` Halt the system, even from a dialup terminal.

### FILES
`/var/adm/wtmpx` History of user access and administration information.

### ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

### SEE ALSO
`dumpadm(1M)`, `init(1M)`, `reboot(1M)`, `shutdown(1M)`, `sync(1M)`, `syslogd(1M)`, `inittab(4)`, `attributes(5)`

### NOTES
The `halt` and `poweroff` utilities do not execute the scripts in `/etc/rc.num.d` or execute shutdown actions in `inittab(4)`. To ensure a complete shutdown of system services, use `shutdown(1M)` or `init(1M)` to reboot a Solaris system.
NAME
hostconfig – configure a system’s host parameters

SYNOPSIS

DESCRIPTION
The hostconfig program uses a network protocol to acquire a machine’s host parameters and set these parameters on the system.

The program selects which protocol to use based on the argument to the required -p flag. Different protocols may set different host parameters. Currently, only one protocol (bootparams) is defined.

OPTIONS
The following options are supported:

- `-d` Enable debug output.

- `-f hostname` Run the protocol as if this machine were named hostname.

- `-h` Echo the received hostname to stdout, rather than setting hostname using the system name directly.

- `-i interface` Use only the named network interface to run the protocol.

- `-n` Run the network protocol, but do not set the acquired parameters into the system.

- `-p protocol` Run hostconfig using protocol. Currently, only one protocol (bootparams) is available. This option is required.

Specifying the `-p bootparams` option uses the whoami call of the RPC bootparams protocol. This sets the system’s hostname, domainname, and default IP router parameters.

- `-v` Enable verbose output.

EXAMPLES
EXAMPLE 1 Configuring Host Parameters with Verbose Output
The following command configures a machine’s host parameters using the whoami call of the RPC bootparams protocol with a verbose output.

```
example# hostconfig -p bootparams -v
```

EXAMPLE 2 Displaying Host Parameters
The following command displays the parameters that would be set using the whoami call of the RPC bootparams protocol.

```
example# hostconfig -p bootparams -n -v
```
EXAMPLE 3 Configuring Host Parameters Less the System Name

The following command configures a machine’s host parameters, less the system name, using the whoami call of the RPC bootparams protocol.

```bash
example# hostconfig=`hostconfig -p bootparams -h`
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

gostname(1), domainname(1M), route(1M), attributes(5)
htable(1M)

NAME  htable – convert DoD Internet format host table

SYNOPSIS  /usr/sbin/htable filename

DESCRIPTION  htable converts a host table in the format specified by RFC 952 to the format used by the network library routines. Three files are created as a result of running htable: hosts, networks, and gateways. The hosts file is used by the gethostbyname(3NSL) routines in mapping host names to addresses. The networks file is used by the getnetbyname(3SOCKET) routines in mapping network names to numbers. The gateways file is used by the routing daemon to identify “passive” Internet gateways.

If any of the files localhosts, localnetworks, or localgateways are present in the current directory, the file’s contents is prepended to the output file without interpretation. This allows sites to maintain local aliases and entries which are not normally present in the master database.

htable is best used in conjunction with the gettable(1M) program which retrieves the DoD Internet host table from a host.

FILES  localhosts
localnetworks
localgateways

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO  gettable(1M), gethostbyname(3NSL), getnetbyname(3SOCKET), attributes(5) Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, DoD Internet Host Table Specification, RFC 952, Network Information Center, SRI International, Menlo Park, California, October 1985.

NOTES  htable does not properly calculate the gateways file.
NAME
icky – install a client key for WAN boot

SYNOPSIS
/usr/lib/inet/wanboot/icky [-d] [-o type=3des]
/usr/lib/inet/wanboot/icky [-d] [-o type=aes]
/usr/lib/inet/wanboot/icky [-d] [-o type=sha1]

DESCRIPTION
The icky command is used to install WAN boot keys on a running UNIX system so that they can be used the next time the system is installed. You can store three different types of keys: 3DES and AES for encryption and an HMAC SHA-1 key for hashed verification.

icky reads the key from standard input using getpassphrase(3C) so that it does not appear on the command line. When installing keys on a remote system, you must take proper precautions to ensure that any keying materials are kept confidential. At a minimum, use ssh(1) to prevent interception of data in transit.

Keys are expected to be presented as strings of hexadecimal digits; they can (but need not) be preceded by a 0x or 0X.

The icky command has a single option, described below. An argument of the type -o type=keytype is required.

OPTIONS
The icky command the following option.

-d
    Delete the key specified by the keytype argument.

EXIT STATUS
On success, icky exits with status 0; if a problem occurs, a diagnostic message is printed and icky exits with non-zero status.

FILES
/dev/openprom
    WAN boot key storage driver

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO
ssh(1), openprom(7D) attributes(5)
id(1M)

**NAME**

id – return user identity

**SYNOPSIS**

```
/usr/bin/id [-p] [user]
/usr/bin/id -a [-p] [user]
/usr/xpg4/bin/id [-p] [user]
/usr/xpg4/bin/id -G [-n] [user]
/usr/xpg4/bin/id -g [-nr] [user]
```

**DESCRIPTION**

If no `user` operand is provided, the `id` utility writes the user and group IDs and the corresponding user and group names of the invoking process to standard output. If the effective and real IDs do not match, both are written. If multiple groups are supported by the underlying system, `/usr/xpg4/bin/id` also writes the supplementary group affiliations of the invoking process.

If a `user` operand is provided and the process has the appropriate privileges, the user and group IDs of the selected user are written. In this case, effective IDs are assumed to be identical to real IDs. If the selected user has more than one allowable group membership listed in the group database, `/usr/xpg4/bin/id` writes them in the same manner as the supplementary groups described in the preceding paragraph.

**Formats**

The following formats are used when the `LC_MESSAGES` locale category specifies the "C" locale. In other locales, the strings `uid`, `gid`, `euid`, `egid`, and `groups` may be replaced with more appropriate strings corresponding to the locale.

```
"uid=%u(%s) gid=%u(%s)\n" <real user ID>, <user-name>,
   <real group ID>, <group-name>
```

If the effective and real user IDs do not match, the following are inserted immediately before the `\n` character in the previous format:

```
" euid=%u(%s)"
```

with the following arguments added at the end of the argument list:

```
<effective user ID>, <effective user-name>
```

If the effective and real group IDs do not match, the following is inserted directly before the `\n` character in the format string (and after any addition resulting from the effective and real user IDs not matching):

```
" egid=%u(%s)"
```

with the following arguments added at the end of the argument list:

```
<effectivegroup-ID>, <effectivegroupname>
```

If the process has supplementary group affiliations or the selected user is allowed to belong to multiple groups, the first is added directly before the `NEWLINE` character in the format string:
with the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

and the necessary number of the following added after that for any remaining supplementary group IDs:

"," %u(%s)"

and the necessary number of the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

If any of the user ID, group ID, effective user ID, effective group ID or supplementary/multiple group IDs cannot be mapped by the system into printable user or group names, the corresponding (%s) and name argument is omitted from the corresponding format string.

When any of the options are specified, the output format is as described under OPTIONS.

OPTIONS

The following option is supported by both /usr/bin/id and /usr/xpg4/bin/id. For /usr/xpg4/bin/id, -p is invalid if specified with any of the -G, -g, or -u options.

-p

Reports additionally the current project membership of the invoking process. The project is reported using the format:

"projid=%u(%s)"

which is inserted prior to the \n character of the default format described in the Formats section. The arguments

<project ID>, <project name>

are appended to the end of the argument list. If the project ID cannot be mapped by the system into a printable project name, the corresponding (%s) and name argument is omitted from the corresponding format string.

The following option is supported for /usr/bin/id only:

-a

Reports user name, user ID and all the groups to which the user belongs.

The following options are supported for /usr/xpg4/bin/id only:
id(1M)

- G  Outputs all different group IDs (effective, real and supplementary) only, using the format "%u\n". If there is more than one distinct group affiliation, output each such affiliation, using the format " %u", before the NEWLINE character is output.
- g  Outputs only the effective group ID, using the format "%u\n".
- n  Outputs the name in the format "%s" instead of the numeric ID using the format "%u".
- r  Outputs the real ID instead of the effective ID.
- u  Outputs only the effective user ID, using the format "%u\n".

OPERANDS
The following operand is supported:
user The user (login) name for which information is to be written.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of id: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/id</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td>SUNWcsu, SUNWcar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/id</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>Interface Stability</td>
<td></td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
fold(1), logname(1), who(1), getgid(2), getgroups(2), getprojid(2), getuid(2), attributes(5), environ(5), standards(5)

NOTES
Output produced by the -G option and by the default case could potentially produce very long lines on systems that support large numbers of supplementary groups.
idsconfig(1M)

NAME  idsconfig – prepare an iPlanet Directory Server (iDS) to be populated with data and serve LDAP clients

SYNOPSIS /usr/lib/ldap/idsconfig [-v] [-i input_configfile] [-o output_configfile]

DESCRIPTION Use the idsconfig tool to set up an iPlanet Directory Server (iDS). You can specify the input configuration file with the -i option on the command line. Alternatively, the tool will prompt the user for configuration information. The input configuration file is created by idsconfig with the -o option on a previous run.

The first time a server is set up, the user is prompted for all the required information. Future installations on that machine can use the configuration file previously generated by idsconfig using the -o option.

The output configuration file contains the directory administrator’s password in clear text. Thus, if you are creating an output configuration file, take appropriate security precautions.

You should back up the directory server’s configuration and data prior to running this command.

OPTIONS The following options are supported:
- `-i input_configfile` Specify the file name for idsconfig to use as a configuration file. This file will be read by idsconfig, and the values in the file will be used to configure the server. Do not manually edit `input_configfile`. The `input_configfile` is only partially validated, as idsconfig assumes that the file was created by a previous invocation of the command.
- `-o output_configfile` Create a configuration file.
- `-v` Verbose output.

OPERANDS The following operands are supported:
- `input_configfile` Name of configuration file for idsconfig to use.
- `output_configfile` Configuration file created by idsconfig.

EXAMPLES EXAMPLE 1 Prompting the User for Input

In the following example, the user is prompted for information to set up iDS.

```bash
example$ idsconfig
```

EXAMPLE 2 Creating an Output Configuration File

In the following example, the user is prompted for information to set up iDS, and an output configuration file, `config.1`, is created when completed.

```bash
example$ idsconfig -o config.1
```
idsconfig(1M)

EXAMPLE 3 Setting up iDS Using the Specified Configuration File

In the following example, iDS is set up by using the values specified in the configuration file, config.1. The verbose mode is specified, so detailed information will print to the screen.

example# idsconfig -v -i config.1

EXIT STATUS
The following exit values are returned:

  0       Successful completion.
  >0      An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(1), ldapadd(1), ldapdelete(1), ldaplist(1), ldapmodify(1),
ldapmodrdn(1), ldapsearch(1), ldap_cachemgr(1M), ldapaddent(1M),
ldapclient(1M), suninstall(1M), resolv.conf(4), attributes(5)
The command `ifconfig` is used to assign an address to a network interface and to configure network interface parameters. The `ifconfig` command must be used at boot time to define the network address of each interface present on a machine; it may also be used at a later time to redefine an interface's address or other operating parameters. If no option is specified, `ifconfig` displays the current configuration for a network interface. If an address family is specified, `ifconfig` reports only the details specific to that address family. Only the superuser may modify the configuration of a network interface. Options appearing within braces ({} ) indicate that one of the options must be specified.
The two versions of `ifconfig`, `/sbin/ifconfig` and `/usr/sbin/ifconfig`, behave differently with respect to name services. The order in which names are looked up by `/sbin/ifconfig` when the system is booting is fixed and cannot be changed. In contrast, changing `/etc/nsswitch.conf` may affect the behavior of `/usr/sbin/ifconfig`. The system administrator may configure the source and lookup order in the tables by means of the name service switch. See `nsswitch.conf(4)` for more information.

The third and fourth forms of this command are used to control the Dynamic Host Configuration Protocol ("DHCP") configuring of the interface. DHCP is only available on interfaces for which the address family is `inet`. In this mode, `ifconfig` is used to control operation of `dhcpagent(1M)`, the DHCP client daemon. Once an interface is placed under DHCP control by using the `start` operand, `ifconfig` should not, in normal operation, be used to modify the address or characteristics of the interface. If the address of an interface under DHCP is changed, `dhcpagent` will remove the interface from its control.

The following options are supported:

- **addif address**
  Create the next unused logical interface on the specified physical interface.

- **arp**
  Enable the use of the Address Resolution Protocol ("ARP") in mapping between network level addresses and link level addresses (default). This is currently implemented for mapping between IPv4 addresses and 10Mb/s Ethernet addresses.

- **-arp**
  Disable the use of the ARP.

- **auth_algs authentication algorithm**
  For a tunnel, enable IPsec AH with the authentication algorithm specified. The algorithm can be either a number or an algorithm name, including `any` to express no preference in algorithm. All IPsec tunnel properties must be specified on the same command line. To disable tunnel security, specify an `auth_algs` of `none`.

- **auto-dhcp**
  Use DHCP to automatically acquire an address for this interface. This option has a completely equivalent alias called `dhcp`.

- **primary**
  Defines the interface as the primary. The interface is defined as the preferred one for the delivery of client-wide configuration data. Only one interface can be the primary at any given time. If another interface is subsequently selected as the primary, it replaces the previous one. Nominating an interface as the primary one will not have much significance once the client work station has booted, as many applications will already have started and been configured with data read from the previous primary interface.
The `ifconfig` command will wait until the operation either completes or for the interval specified, whichever is the sooner. If no wait interval is given, and the operation is one that cannot complete immediately, `ifconfig` will wait 30 seconds for the requested operation to complete. The symbolic value `forever` may be used as well, with obvious meaning.

Remove the specified interface from DHCP control. Additionally, set the IP address to zero and mark the interface as “down”.

Attempt to extend the lease on the interface’s IPv4 address. This is not required, as the agent will automatically extend the lease well before it expires.

Obtain network configuration parameters from DHCP without obtaining a lease on an IP address. This is useful in situations where an IP address is obtained through mechanisms other than DHCP.

Check whether the interface given is under DHCP control, which means that the interface is managed by the DHCP agent and is working properly. An exit status of 0 means success. This subcommand has no meaning when the named interface represents more than one interface.

Relinquish the IPv4 address on the interface, and mark the interface as “down.”

Start DHCP on the interface.

Display the DHCP configuration status of the interface.

Use the Reverse Address Resolution Protocol (“RARP”) to automatically acquire an address for this interface.

For IPv4 only. Specify the address to use to represent broadcasts to the network. The default broadcast address is the address with a host part of all 1’s. A “+” (plus sign) given for the broadcast value causes the broadcast address to be reset to a default appropriate for the (possibly new) address and netmask. The arguments of `ifconfig` are interpreted left to right. Therefore

```
example$ ifconfig -a netmask + broadcast +
```

and

```
example$ ifconfig -a broadcast + netmask +
```

may result in different values being assigned for the broadcast addresses of the interfaces.
deprecated
Marks the address as a deprecated address. Addresses marked as deprecated will
not be used as source address for outbound packets unless either there are no other
addresses available on this interface or the application has bound to this address
explicitly. The status display shows DEPRECATED as part of flags. See INTERFACE
FLAGS for information on the flags supported by ifconfig.

-deprecated
Marks the address as not deprecated.

destination dest_address
Set the destination address for a point-to point interface.

dhcp
This option is an alias for option auto-dhcp

down
Mark an interface "down". When an interface is marked "down", the system does
not attempt to transmit messages through that interface. If possible, the interface is
reset to disable reception as well. This action does not automatically disable routes
using the interface.

encaplimit n
Set the tunnel encapsulation limit for the interface to n. This option applies to
IPv4-in-IPv6 and IPv6-in-IPv6 tunnels only. The tunnel encapsulation limit controls
how many more tunnels a packet may enter before it leaves any tunnels, that is, the
tunnel nesting level.

-encaplimit
Disable generation of the tunnel encapsulation limit. This option applies only to
IPv4-in-IPv6 and IPv6-in-IPv6 tunnels.

encr_auth_algs authentication algorithm
For a tunnel, enable IPsec ESP with the authentication algorithm specified. It can be
either a number or an algorithm name, including any or none, to indicate no
algorithm preference. If an ESP encryption algorithm is specified but the
authentication algorithm is not, the default value for the ESP authentication
algorithm will be any.

encr_algs encryption algorithm
For a tunnel, enable IPsec ESP with the encryption algorithm specified. It can be
either a number or an algorithm name. Note that all IPsec tunnel properties must
be specified on the same command line. To disable tunnel security, specify the value
of encr_alg as none. If an ESP authentication algorithm is specified, but the
encryption algorithm is not, the default value for the ESP encryption will be null.

-failover
Mark the address as a non-failover address. Addresses marked this way will not
failover when the interface fails. Status display shows "NOFAILOVER" as part of
flags.
failover
Mark the address as a failover address. This address will failover when the
interface fails. Status display does not show "NOFAILOVER" as part of flags.


group [ name | """]
Insert the interface in the multipathing group specified by name. To delete an
interface from a group, use a null string ".". When invoked on the logical interface
with id zero, the status display shows the group name.

index n
Change the interface index for the interface. The value of n must be an interface
index (if_index) that is not used on another interface. if_index will be a non-zero
positive number that uniquely identifies the network interface on the system.

metric n
Set the routing metric of the interface to n; if no value is specified, the default is 0.
The routing metric is used by the routing protocol. Higher metrics have the effect of
making a route less favorable. Metrics are counted as addition hops to the
destination network or host.

modinsert mod_name@pos
Insert a module with name mod_name to the stream of the device at position pos.
The position is relative to the stream head. Position 0 means directly under stream
head.

Based upon the example in the modlist option, use the following command to
insert a module with name ipqos under the ip module and above the firewall
module:

example% ifconfig hme0 modinsert ipqos@2

A subsequent listing of all the modules in the stream of the device follows:

example% ifconfig hme0 modlist
0 arp
1 ip
2 ipqos
3 firewall
4 hme

modlist
List all the modules in the stream of the device.

The following example lists all the modules in the stream of the device:

example% ifconfig hme0 modlist
0 arp
1 ip
2 firewall
4 hme

modremove mod_name@pos
Remove a module with name mod_name from the stream of the device at position
pos. The position is relative to the stream head.
Based upon the example in the `modinsert` option, use the following command to remove the firewall module from the stream after inserting the `ipqos` module:

```
example% ifconfig hme0 modremove firewall@3
```

A subsequent listing of all the modules in the stream of the device follows:

```
example% ifconfig hme0 modlist
0 arp
1 ip
2 ipqos
3 hme
```

Note that the core IP stack modules, for example, `ip` and `tun` modules, cannot be removed.

```
mtu n
```

Set the maximum transmission unit of the interface to `n`. For many types of networks, the `mtu` has an upper limit, for example, 1500 for Ethernet.

```
netmask mask
```

For IPv4 only. Specify how much of the address to reserve for subdividing networks into subnetworks. The mask includes the network part of the local address and the subnet part, which is taken from the host field of the address. The mask contains 1’s for the bit positions in the 32-bit address which are to be used for the network and subnet parts, and 0’s for the host part. The mask should contain at least the standard network portion, and the subnet field should be contiguous with the network portion. The mask can be specified in one of four ways:

1. with a single hexadecimal number with a leading 0x,
2. with a dot-notation address,
3. with a "+" (plus sign) address, or
4. with a pseudo host name/pseudo network name found in the network database `networks(4)`.

If a "+" (plus sign) is given for the netmask value, the mask is looked up in the `netmasks(4)` database. This lookup finds the longest matching netmask in the database by starting with the interface’s IPv4 address as the key and iteratively masking off more and more low order bits of the address. This iterative lookup ensures that the `netmasks(4)` database can be used to specify the netmasks when variable length subnetmasks are used within a network number.

If a pseudo host name/pseudo network name is supplied as the netmask value, netmask data may be located in the `hosts` or `networks` database. Names are looked up by first using `gethostbyname(3NSL)`. If not found there, the names are looked up in `getnetbyname(3SOCKET)`. These interfaces may in turn use `nsswitch.conf(4)` to determine what data store(s) to use to fetch the actual value.

For both `inet` and `inet6`, the same information conveyed by `mask` can be specified as a `prefix_length` attached to the `address` parameter.
nud
   Enables the neighbor unreachability detection mechanism on a point-to-go interface.

-nud
   Disables the neighbor unreachability detection mechanism on a point-to-go interface.

plumb
   Open the device associated with the physical interface name and set up the streams needed for IP to use the device. When used with a logical interface name, this command is used to create a specific named logical interface. An interface must be separately plumbed for use by IPv4 and IPv6. The address_family parameter controls whether the ifconfig command applies to IPv4 or IPv6.

   Before an interface has been plumbed, the interface will not show up in the output of the ifconfig -a command.

private
   Tells the in.routed routing daemon that the interface should not be advertised.

-privatel
   Specify unadvertised interfaces.

removeif address
   Remove the logical interface on the physical interface specified that matches the address specified.

set
   Set the address, prefix_length or both, for an interface.

standby
   Marks the physical interface as a standby interface. If the interface is marked STANDBY and is part of the multipathing group, the interface will not be selected to send out packets unless some other interface in the group has failed and the network access has been failed over to this standby interface.

   The status display shows “STANDBY, INACTIVE” indicating that that the interface is a standby and is also inactive. IFF_INACTIVE will be cleared when some other interface belonging to the same multipathing group fails over to this interface. Once a failback happens, the status display will return to INACTIVE.

-standby
   Turns off standby on this interface.

subnet
   Set the subnet address for an interface.

tdst  tunnel_dest_address
   Set the destination address of a tunnel. The address should not be the same as the dest_address of the tunnel, because no packets leave the system over such a tunnel.
thoplimit n
Set the hop limit for a tunnel interface. The hop limit value is used as the TTL in the
IPv4 header for the IPv6-in-IPv4 and IPv4-in-IPv4 tunnels. For IPv6-in-IPv6 and
IPv4-in-IPv6 tunnels, the hop limit value is used as the hop limit in the IPv6
header.

token address/prefix_length
Set the IPv6 token of an interface to be used for address autoconfiguration.

example: ifconfig hme0 inet6 token ::1/64

trailers
This flag previously caused a nonstandard encapsulation of inet packets on
certain link levels. Drivers supplied with this release no longer use this flag. It is
provided for compatibility, but is ignored.

-trailers
Disable the use of a "trailer" link level encapsulation.

tsrc tunnel_src_address
Set the source address of a tunnel. This is the source address on an outer
encapsulating IP header. It must be an address of another interface already
configured using ifconfig.

unplumb
Close the device associated with this physical interface name and any streams that
ifconfig set up for IP to use the device. When used with a logical interface name,
the logical interface is removed from the system. After this command is executed,
the device name will no longer appear in the output of ifconfig -a.

up
Mark an interface "up". This happens automatically when setting the first address
on an interface. The up option enables an interface after an ifconfig down, which
reinitializes the hardware.

xmit
Enable an interface to transmit packets. This is the default behavior when the
interface is up.

-xmit
Disable transmission of packets on an interface. The interface will continue to
receive packets.

OPERANDS
The interface operand, as well as address parameters that affect it, are described below.

interface
A string of one of the following forms:

  - name physical-unit, for example, le0 or ie1
  - name physical-unit:logical-unit, for example, le0:1
  - ip. tunN or ip6. tunN, for tunnels
If the interface name starts with a dash (-), it is interpreted as a set of options which specify a set of interfaces. In such a case, -a must be part of the options and any of the additional options below can be added in any order. If one of these interface names is given, the commands following it are applied to all of the interfaces that match.

- **a** Apply the command to all interfaces of the specified address family. If no address family is supplied, either on the command line or by means of /etc/default/inet_type, then all address families will be selected.

- **d** Apply the commands to all "down" interfaces in the system.

- **D** Apply the commands to all interfaces not under DHCP (Dynamic Host Configuration Protocol) control.

- **u** Apply the commands to all "up" interfaces in the system.

- **4** Apply the commands to all IPv4 interfaces.

- **6** Apply the commands to all IPv6 interfaces.

**address_family**

The address family is specified by the address_family parameter. The ifconfig command currently supports the following families: ether, inet, and inet6. If no address family is specified, the default is inet. No ether address information is provided to non-root users.

ifconfig honors the DEFAULT_IP setting in the /etc/default/inet_type file when it displays interface information. If DEFAULT_IP is set to IP_VERSION4, then ifconfig will omit information that relates to IPv6 interfaces. However, when you explicitly specify an address family (inet or inet6) on the ifconfig command line, the command line overrides the DEFAULT_IP settings.

**address**

For the IPv4 family (inet), the address is either a host name present in the host name data base (see hosts(4)) or in the Network Information Service (NIS) map hosts, or an IPv4 address expressed in the Internet standard "dot notation".
For the IPv6 family (inet6), the address is either a host name present in the host name data base (see ipnodes(4)) or in the Network Information Service (NIS) map ipnode, or an IPv6 address expressed in the Internet standard colon-separated hexadecimal format represented as x:x:x:x:x:x:x:x where x is a hexadecimal number between 0 and FFFF.

For the ether address family, the address is an Ethernet address represented as x:x:x:x:x where x is a hexadecimal number between 0 and FF.

Some, though not all, of the Ethernet interface cards have their own addresses. To use cards that do not have their own addresses, refer to section 3.2.3(4) of the IEEE 802.3 specification for a definition of the locally administered address space. The use of interface groups should be restricted to those cards with their own addresses (see INTERFACE GROUPS).

prefix_length

For the IPv4 and IPv6 families (inet and inet6), the prefix_length is a number between 0 and the number of bits in the address. For inet, the number of bits in the address is 32; for inet6, the number of bits in the address is 128. The prefix_length denotes the number of leading set bits in the netmask.

dest_address

If the dest_address parameter is supplied in addition to the address parameter, it specifies the address of the correspondent on the other end of a point-to-point link.

tunnel_dest_address

An address that is or will be reachable through an interface other than the tunnel being configured. This tells the tunnel where to send the tunneled packets. This address must not be the same as the tunnel_dest_address being configured.

tunnel_src_address

An address that is attached to an already configured interface that has been configured “up” with ifconfig.

INTERFACE FLAGS

The ifconfig command supports the following interface flags. The term “address” in this context refers to a logical interface, for example, hme0:0, while “interface” refers to the physical interface, for example, hme0.

ADDRCONF

The address is from stateless addrconf. The stateless mechanism allows a host to generate its own address using a combination of information advertised by routers and locally available information. Routers advertise prefixes that identify the subnet associated with the link, while the host generates an “interface
identifier” that uniquely identifies an interface in a subnet. In the absence of information from routers, a host can generate link-local addresses. This flag is specific to IPv6.

**ANYCAST** Indicates an anycast address. An anycast address identifies the nearest member of a group of systems that provides a particular type of service. An anycast address is assigned to a group of systems. Packets are delivered to the nearest group member identified by the anycast address instead of being delivered to all members of the group. This flag is specific to IPv6.

**BROADCAST** This broadcast address is valid. This flag and POINTTOPOINT are mutually exclusive.

**CoS** This interface supports some form of Class of Service (CoS) marking. An example is the 802.1D user priority marking supported on VLAN interfaces.

**DEPRECATED** This address is deprecated. This address will not be used as a source address for outbound packets unless there are no other addresses on this interface or an application has explicitly bound to this address. An IPv6 deprecated address will eventually be deleted when not used, whereas an IPv4 deprecated address is often used with IP network multipathing IPv4 test addresses, which are determined by the setting of the NOFAILOVER flag. Further, the DEPRECATED flag is part of the standard mechanism for renumbering in IPv6.

**DHCP** DHCP is used to manage this address.

**FAILED** The interface has failed. New addresses cannot be created on this interface. If this interface is part of an IP network multipathing group, a failover will occur to another interface in the group, if possible.

**INACTIVE** Only set on standby interfaces, this flag indicates no failover has occurred to the interface. New addresses cannot be created on this interface. This flag is cleared if a failover occurs to the interface.

**LOOPBACK** Indicates that this is the loopback interface.

**MIP** Indicates that mobile IP controls this interface.

**MULTI_BCAST** Indicates that the broadcast address is used for multicast on this interface.

**MULTICAST** The interface supports multicast. IP assumes that any interface that supports hardware broadcast, or that is a point-to-point link, will support multicast.

**NOARP** There is no address resolution protocol (ARP) for this interface that corresponds to all interfaces for a device without a broadcast address. This flag is specific to IPv4.
<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFAILOVER</td>
<td>This address will not failover if the interface fails. IP network multipathing test addresses must be marked nofailover.</td>
</tr>
<tr>
<td>NOLocal</td>
<td>The interface has no address, just an on-link subnet.</td>
</tr>
<tr>
<td>NONUD</td>
<td>NONUD is disabled on this interface. NUD (neighbor unreachability detection) is used by a node to track the reachability state of its neighbors, to which the node actively sends packets, and to perform any recovery if a neighbor is detected to be unreachable. This flag is specific to IPv6.</td>
</tr>
<tr>
<td>NOREXCH</td>
<td>The interface does not exchange routing information. For RIP-2, routing packets are not sent over this interface. Additionally, messages that appear to come over this interface receive no response. The subnet or address of this interface is not included in advertisements over other interfaces to other routers.</td>
</tr>
<tr>
<td>NOXMIT</td>
<td>Indicates that the address does not transmit packets. RIP-2 also does not advertise this address.</td>
</tr>
<tr>
<td>OFFLINE</td>
<td>Indicates that the interface has been offline. New addresses cannot be created on this interface. Interfaces in an IP network multipathing group are offline prior to removal and replacement using dynamic reconfiguration.</td>
</tr>
<tr>
<td>POINTOPOINT</td>
<td>Indicates that the address is a point-to-point link. This flag and BROADCAST are mutually exclusive.</td>
</tr>
<tr>
<td>PRIVATE</td>
<td>Indicates that this address is not advertised. For RIP-2, this interface is used to send advertisements. However, neither the subnet nor this address are included in advertisements to other routers.</td>
</tr>
<tr>
<td>RUNNING</td>
<td>Indicates that the required resources for an interface are allocated. For some interfaces this also indicates that the link is up.</td>
</tr>
<tr>
<td>STANDBY</td>
<td>Indicates that this is a standby interface to be used on failures. Only interfaces in an IP network multipathing group should be designated as standby interfaces. If this interface is part of a IP network multipathing group, the interface will not be selected to send out packets unless some other interface in the group fails over to it.</td>
</tr>
<tr>
<td>UNNUMBERED</td>
<td>This flag is set when the local IP address on the link matches the local address of some other link in the system</td>
</tr>
<tr>
<td>UP</td>
<td>Indicates that the interface is up, that is, all the routing entries and the like for this interface have been set up.</td>
</tr>
<tr>
<td>XRESOLV</td>
<td>Indicates that the interface uses an IPv6 external resolver.</td>
</tr>
</tbody>
</table>
Solaris TCP/IP allows multiple logical interfaces to be associated with a physical network interface. This allows a single machine to be assigned multiple IP addresses, even though it may have only one network interface. Physical network interfaces have names of the form driver-name physical-unit-number, while logical interfaces have names of the form driver-name physical-unit-number:logical-unit-number. A physical interface is configured into the system using the plumb command. For example:

```
example% ifconfig le0 plumb
```

Once a physical interface has been "plumbed", logical interfaces associated with the physical interface can be configured by separate plumb or addif options to the ifconfig command.

```
example% ifconfig le0:1 plumb
```

allocates a specific logical interface associated with the physical interface le0. The command

```
example% ifconfig le0 addif 192.9.200.1/24 up
```

allocates the next available logical unit number on the le0 physical interface and assigns an address and prefix_length.

A logical interface can be configured with parameters (address, prefix_length, and so on) different from the physical interface with which it is associated. Logical interfaces that are associated with the same physical interface can be given different parameters as well. Each logical interface must be associated with an existing and “up” physical interface. So, for example, the logical interface le0:1 can only be configured after the physical interface le0 has been plumbed.

To delete a logical interface, use the unplumb or removeif options. For example,

```
example% ifconfig le0:1 down unplumb
```

will delete the logical interface le0:1.

If a physical interface shares an IP prefix with another interface, these interfaces are collected into an interface group. IP uses an interface group to rotate source address selection when the source address is unspecified, and in the case of multiple physical interfaces in the same group, to scatter traffic across different IP addresses on a per-IP-destination basis. See netstat(1M) for per-IP-destination information.

This feature may be enabled by using ndd(1M).

One can also use the group keyword to form a multipathing group. When multipathing groups are used, the functionality of the interface group is subsumed into the functionality of the multipathing group. A multipathing group provides failure detection and repair detection for the interfaces in the group. See in.mpathd(1M) and System Administration Guide, Volume 3.
The interface groups formed using `ndd` will be made obsolete in the future. Accordingly, it is advisable to use form multipathing groups using the `group` keyword.

When an IPv6 physical interface is plumbed and configured “up” with `ifconfig`, it is automatically assigned an IPv6 link-local address for which the last 64 bits are calculated from the MAC address of the interface.

```bash
example$ ifconfig eri0 inet6 plumb up
```

The following example shows that the link-local address has a prefix of `fe80::/10`.

```bash
example$ ifconfig eri0 inet6
```

```bash
ce0: flags=2000841<UP,RUNNING,MULTICAST,IPv6>
    mtu 1500 index 2
    inet6 fe80::a00:20ff:fe8e:f3ad/10
```

Link-local addresses are only used for communication on the local subnet and are not visible to other subnets.

If an advertising IPv6 router exists on the link advertising prefixes, then the newly plumbed IPv6 interface will autoconfigure logical interface(s) depending on the prefix advertisements. For example, for the prefix advertisement `2001:0db8:3c4d:0:55::/64`, the autoconfigured interface will look like:

```bash
eri0:2: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6>
    mtu 1500 index 2
    inet6 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64
```

Even if there are no prefix advertisements on the link, you can still assign global addresses manually, for example:

```bash
example$ ifconfig eri0 inet6 addif 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64 up
```

To configure boot-time defaults for the interface `eri0`, place the following entry in the `/etc/hostname6.eri0` file:

```bash
addif 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64 up
```

An IPv6 over IPv4 tunnel interface can send and receive IPv6 packets encapsulated in an IPv4 packet. Create tunnels at both ends pointing to each other. IPv6 over IPv4 tunnels require the tunnel source and tunnel destination IPv4 and IPv6 addresses. Solaris 8 supports both automatic and configured tunnels. For automatic tunnels, an IPv4-compatible IPv6 address is used. The following demonstrates auto-tunnel configuration:

```bash
example$ ifconfig ip.atun0 inet6 plumb
example$ ifconfig ip.atun0 inet6 tsrc IPv4-address \ \
     ::IPv4-address/96 up
```

where `IPv4-address` is the IPv4 address of the interface through which the tunnel traffic will flow, and `IPv4-address`, `::<IPv4-address>`, is the corresponding IPv4-compatible IPv6 address.
The following is an example of a configured tunnel:

```bash
example% ifconfig ip.tun0 inet plumb ts my-ipv4-address \
    tdst peer-ipv4-address up
```

This creates a configured tunnel between `my-ipv4-address` and `peer-ipv4-address` with corresponding link-local addresses. For tunnels with global or site-local addresses, the logical tunnel interfaces need to be configured in the following form:

```bash
example% ifconfig ip.tun0 inet6 addif my-v6-address peer-v6-address up
```

For example,

```bash
example% ifconfig ip.tun0 inet6 addif 109.146.85.57 \
    fe80::1 109.146.85.212 up
example% ifconfig ip.tun0 inet6 addif 2::45 2::46 up
```

To show all IPv6 interfaces that are up and configured:

```bash
example% ifconfig -au6
ip.tun0: flags=2200851<UP,POINTOPOINT,RUNNING,MULTICAST,NONUD,IPv6> \
    mtu 1480 index 3
    inet tunnel src 109.146.85.57 tunnel dst 109.146.85.212 \
    tunnel hop limit 60
    inet6 fe80::6d92:5539/10 -- fe80::6d92:55d4
ip.tun0:1: flags=2200851<UP,POINTOPOINT,RUNNING,MULTICAST,NONUD,IPv6> \
    mtu 1480 index 3
    inet 2::45/128 -- 2::46
```

An IPv4 over IPv6 tunnel interface can send and receive IPv4 packets encapsulated in an IPv6 packet. Create tunnels at both ends pointing to each other. IPv4 over IPv6 tunnels require the tunnel source and tunnel destination IPv6 and IPv4 addresses. The following demonstrates auto-tunnel configuration:

```bash
example% ifconfig ip6.tun0 inet plumb ts my-ipv6-address \
    tdst peer-ipv6-address my-ipv4-address peer-ipv4-address up
```

This creates a configured tunnel between `my-ipv6-address` and `peer-ipv6-address` with `my-ipv4-address` and `peer-ipv4-address` as the endpoints of the point-to-point interface, for example:

```bash
example% ifconfig ip6.tun0 inet plumb ts fe80::1 tdst fe80::2 10.0.0.208 \
    10.0.0.210 up
```

To show all IPv4 interfaces that are up and configured:

```bash
example% ifconfig -au4
lo: flags=1000049<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1 \
    inet 127.0.0.1 netmask ff000000
hme0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 \
    inet 129.153.128.208 netmask ffffff00 broadcast 129.153.128.255 \
    inet6 flags=1000049<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST,IPv4> mtu \
    1460 index 3
```
EXAMPLES

EXAMPLE 1 Using the ifconfig Command

If your workstation is not attached to an Ethernet, the le0 interface should be marked “down” as follows:

```
example$ ifconfig le0 down
```

EXAMPLE 2 Printing Addressing Information

To print out the addressing information for each interface, use the following command:

```
example$ ifconfig -a
```

EXAMPLE 3 Resetting the Broadcast Address

To reset each interface’s broadcast address after the netmasks have been correctly set, use the next command:

```
example$ ifconfig -a broadcast +
```

EXAMPLE 4 Changing the Ethernet Address

To change the Ethernet address for interface le0, use the following command:

```
example$ ifconfig le0 ether aa:1:2:3:4:5
```

EXAMPLE 5 Configuring an IP-in-IP Tunnel

To configure an IP-in-IP tunnel, first plumb it with the following command:

```
example$ ifconfig ip.tun0 plumb
```

Then configure it as a point-to-point interface, supplying the tunnel source and the tunnel destination:

```
example$ ifconfig ip.tun0 myaddr mydestaddr tsrc another_myaddr \
    tdst a_dest_addr up
```

Tunnel security properties must be configured on one invocation of ifconfig:

```
example$ ifconfig ip.tun0 encr_auth_algs md5 encr_algs 3des
```
EXAMPLE 6 Requesting a Service Without Algorithm Preference

To request a service without any algorithm preferences, specify any:

```
example% ifconfig ip.tun0 encr_auth_algs any encr_algs any
```

EXAMPLE 7 Disabling All Security

To disable all security, specify any security service with none as the algorithm value:

```
example% ifconfig ip.tun0 auth_algs none
```

or

```
example% ifconfig ip.tun0 encr_algs none
```

EXAMPLE 8 Configuring 6to4 Tunnels

To configure 6to4 tunnels, use the following commands:

```
example% ifconfig ip.6to4tun0 inet6 plumb
example% ifconfig ip.6to4tun0 inet6 tsra IPv4-address 6to4-address/64 up
```

`IPv4-address` denotes the address of the encapsulating interface. `6to4-address` denotes the address of the local IPv6 address of form 2002:IPv4-address:SUBNET-ID:HOSTID.

The long form should be used to resolve any potential conflicts that might arise if the system administrator utilizes an addressing plan where the values for SUBNET-ID or HOSTID are reserved for something else.

After the interface is plumbed, a 6to4 tunnel can be configured as follows:

```
example% ifconfig ip.6to4tun0 inet6 tsra IPv4-address up
```

This short form sets the address. It uses the convention:

```
2002:IPv4-address::1
```

The SUBNET-ID is 0, and the HOSTID is 1.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability for options modlist, modinsert, and modremove</td>
<td>Evolving</td>
</tr>
</tbody>
</table>
ifconfig(1M)

/sbin

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Interface Stability for options modlist, modinsert, and modremove</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
dhcpinfo(1), dhcpcfgent(1M), in.mpathd(1M), in.routed(1M), ndd(1M), netstat(1M), ethers(3SOCKET), gethostbyname(3NSL), getnetbyname(3SOCKET), hosts(4), netmasks(4), networks(4), nsswitch.conf(4), attributes(5), arp(7P), ipsecah(7P), ipsecesp(7P), tun(7M)

System Administration Guide, Volume 3

DIAGNOSTICS

ifconfig sends messages that indicate if:
- the specified interface does not exist
- the requested address is unknown
- the user is not privileged and tried to alter an interface’s configuration

NOTES

Do not select the names broadcast, down, private, trailers, up or other possible option names when you choose host names. If you choose any one of these names as host names, it can cause unusual problems that are extremely difficult to diagnose.
if_mpadm – change operational status of interfaces within a multipathing group

**SYNOPSIS**

```
/usr/sbin/if_mpadm -d interface_name
/usr/sbin/if_mpadm -r interface_name
```

**DESCRIPTION**

Use the `if_mpadm` utility to change the operational status of interfaces that are part of an IP multipathing group. If the interface is operational, you can use `if_mpadm -d` to detach or off-line the interface. If the interface is off-lined, use `if_mpadm -r` to revert it to its original state.

When a network interface is off-lined, all network access fails over to a different interface in the IP multipathing group. Any addresses that do not failover are brought down. Network access includes unicast, broadcast, and multicast for IPv4 and unicast and multicast for IPv6. Addresses marked with `IFF_NOFAILOVER` do not failover. They are marked down. After an interface is off-lined, the system will not use the interface for any outbound or inbound traffic, and the interface can be safely removed from the system without any loss of network access.

The `if_mpadm` utility can be applied only to interfaces that are part of an IP multipathing group.

**OPTIONS**

The `if_mpadm` utility supports the following options:

- `-d interface_name`
  
  Detach or off-line the interface specified by `interface_name`.

- `-r interface_name`
  
  Reattach or undo the previous detach or off-line operation on the interface specified by `interface_name`. Unless the `-d` option was used to detach or off-line the interface, this option will fail.

**EXAMPLES**

**EXAMPLE 1 Detaching an Interface**

Use the following command to off-line or detach the interface. All network access will failover from `hme0` to other interfaces in the same IP multipathing group. If no other interfaces are in the same group, the operation will fail.

```
example% if_mpadm -d hme0
```

**EXAMPLE 2 Reattaching an Off-line Interface**

Use the following command to undo the previous operation. Network access will failback to `hme0`.

```
example% if_mpadm -r hme0
```
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO ifconfig(1M), in.mpathd(1M), attributes(5)

DIAGNOSTICS

off-line failed as there is no other functional interface available in the multipathing group for failing over the network access.

This message means that other interfaces in the group are failed over already or the multipathing configuration was not suitable for completing a failover.

diagno
tics off-line cannot be undone because multipathing configuration is not consistent across all the interfaces in the group.

This message means that some interfaces in the IP multipathing group are not configured consistently with other interfaces in the group, for example, one of the interfaces in the group does not have an IFF_NOFAILOVER address.
ifparse (1M)

NAME  ifparse — parse ifconfig command line

SYNOPSIS  /sbin/ifparse [-fs] addr_family commands

DESCRIPTION  Use the ifparse command to parse the ifconfig(1M) command line options and output substrings, one per line, as appropriate. If no options are specified, ifparse returns the entire ifconfig command line as a series of substrings, one per line.

OPTIONS  The ifparse command supports the following options:
- f lists only substrings of the ifconfig command line that are relevant to IP network multipath failover
- s lists only substrings of the ifconfig command line that are not relevant to IP network multipath failover

OPERANDS  The ifparse command does not support the interface operand of the ifconfig command.

EXAMPLES  EXAMPLE 1 Parsing Command Line Options Relevant to Failover
The following example shows the use of the ifparse command to parse the command line options relevant to IP network multipath failover:
example# ifparse -f inet 1.2.3.4 up group one addif 1.2.3.5 -failover up
set 1.2.3.4 up

EXAMPLE 2 Parsing Command Line Options That Are Not Relevant to Failover
The following example shows the use of the ifparse command to parse the command line options that are not relevant to IP network multipath failover:
example# ifparse -s inet 1.2.3.4 up group one addif 1.2.3.5 -failover up
set 1.2.3.4 up
addif 1.2.3.5 -failover up

EXAMPLE 3 Parsing the Command Line For All Options
The following example shows the use of the ifparse command to parse the command line for all ifconfig options:
example# ifparse inet 1.2.3.4 up group one addif 1.2.3.5 -failover up
set 1.2.3.4 up
addif 1.2.3.5 -failover up

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:
ifparse(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

**SEE ALSO**
ifconfig(1M), attributes(5)

**DIAGNOSTICS**

**usage:** `-fs <addr_family> <commands>`

This message indicates an invalid command line.

ifparse: Not enough space

This message indicates insufficient memory.

ifparse: dhcp not supported for inet6

DHCP operations are not supported for the inet6 address family.

ifparse: Operation <operation> not supported for <addr_family>

Most operations cannot be used with all address families. For example, the broadcast operation is not supported on the inet6 address family.

ifparse: no argument for <operation>

Some operations, for example broadcast, require an argument.

**NOTES**
The ifparse command is classified as an obsolete interface. It will likely be removed in a future release. You should not develop applications that depend upon this interface.
ikeadm(1M)

NAME
ikeadm – manipulate Internet Key Exchange (IKE) parameters and state

SYNOPSIS
ikeadm [-np]

ikeadm [-np] get [debug | priv | stats]
ikeadm [-np] set [debug | priv] [level] [file]
ikeadm [-np] [get | del] [pl | rule | preshared] [id]
ikeadm [-np] add [rule | preshared] { description }
ikeadm [-np] [read | write] [rule | preshared] file
ikeadm [-np] [dump | pls | rule | preshared]
ikeadm [-np] flush pls
ikeadm help [get | set | add | del | read | write | dump | flush]

DESCRIPTION
The ikeadm utility retrieves information from and manipulates the configuration of the Internet Key Exchange (IKE) protocol daemon, in.iked(1M).

ikeadm supports a set of operations, which may be performed on one or more of the supported object types. When invoked without arguments, ikeadm enters interactive mode which prints a prompt to the standard output and accepts commands from the standard input until the end-of-file is reached.

Because ikeadm manipulates sensitive keying information, you must be superuser to use this command. Additionally, some of the commands available require that the daemon be running in a privileged mode, which is established when the daemon is started.

For details on how to use this command securely see SECURITY.

OPTIONS
The following options are supported:

- n
  Prevent attempts to print host and network names symbolically when reporting actions. This is useful, for example, when all name servers are down or are otherwise unreachable.

- p
  Paranoid. Do not print any keying material, even if saving Security Associations. Instead of an actual hexadecimal digit, print an X when this flag is turned on.

USAGE

Commands
The following commands are supported:

add
  Add the specified object. This option can be used to add a new policy rule or a new preshared key to the current (running) in.iked configuration. When adding a new preshared key, the command cannot be invoked from the command line, as it will contain
ikeadm(1M)

keying material. The rule or key being added is specified using appropriate id-value pairs as described in the ID FORMATS section.

del  Delete a specific object from in.iked’s current configuration. This operation is available for IKE (Phase 1) SAs, policy rules, and preshared keys. The object to be deleted is specified as described in the ID FORMATS.

dump  Display all objects of the specified type known to in.iked. This option can be used to display all Phase 1 SAs, policy rules, or preshared keys. A large amount of output may be generated by this command.

flush  Remove all IKE (Phase 1) SAs from in.iked.

get  Lookup and display the specified object. May be used to view the current debug or privilege level, global statistics for the daemon, or a specific IKE (Phase 1) SA, policy rule, or preshared key. The latter three object types require that identifying information be passed in; the appropriate specification for each object type is described below.

help  Print a brief summary of commands, or, when followed by a command, prints information about that command.

read  Update the current in.iked configuration by reading the policy rules or preshared keys from either the default location or from the file specified.

set  Adjust the current debug or privilege level. If the debug level is being modified, an output file may optionally be specified; the output file must be specified if the daemon is running in the background and is not currently printing to a file. When changing the privilege level, adjustments may only be made to lower the access level; it cannot be increased using ikeadm.

write  Write the current in.iked policy rule set or preshared key set to the specified file. A destination file must be specified. This command should not be used to overwrite the existing configuration files.

Object Types

debug  Specifies the daemon’s debug level. This determines the amount and type of output provided by the daemon about its operations. The debug level is actually a bitmask, with individual bits enabling different types of information.
When specifying the debug level, either a number (decimal or hexadecimal) or a string of nicknames may be given. For example, 88, 0x58, and phase1+phase2+policy are all equivalent, and will turn on debug for phase 1 SA creation, phase 2 SA creation, and policy management. A string of nicknames may also be used to remove certain types of information; all-op has the effect of turning on all debug except for operational messages; it is equivalent to the numbers 1019 or 0x3fb.

Specifies the daemon’s access privilege level. The possible values are:

<table>
<thead>
<tr>
<th>Description</th>
<th>Level</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base level</td>
<td>0</td>
<td>base</td>
</tr>
<tr>
<td>Access to preshared key info</td>
<td>1</td>
<td>modkeys</td>
</tr>
<tr>
<td>Access to keying material</td>
<td>2</td>
<td>keymat</td>
</tr>
</tbody>
</table>

By default, in.iked is started at the base level. A command-line option can be used to start the daemon at a higher level. ikeadm can be used to lower the level, but it cannot be used to raise the level.
Either the numerical level or the nickname may be used to specify the target privilege level.

In order to get, add, delete, dump, read, or write preshared keys, the privilege level must at least give access to preshared key information. However, when viewing preshared keys (either using the get or dump command), the key itself will only be available if the privilege level gives access to keying material. This is also the case when viewing Phase 1 SAs.

stats

Global statistics from the daemon, covering both successful and failed Phase 1 SA creation.

Reported statistics include:

- Count of current P1 SAs which the local entity initiated
- Count of current P1 SAs where the local entity was the responder
- Count of all P1 SAs which the local entity initiated since boot
- Count of all P1 SAs where the local entity was the responder since boot
- Count of all attempted P1 SAs since boot, where the local entity was the initiator; includes failed attempts
- Count of all attempted P1 SAs since boot, where the local entity was the responder; includes failed attempts
- Count of all failed attempts to initiate a P1 SA, where the failure occurred because the peer did not respond
- Count of all failed attempts to initiate a P1 SA, where the peer responded
- Count of all failed P1 SAs where the peer was the initiator
- Whether a PKCS#11 library is in use, and if applicable, the PKCS#11 library that is loaded. See Example 11

p1

An IKE Phase 1 SA. A p1 object is identified by an IP address pair or a cookie pair; identification formats are described below.

rule

An IKE policy rule, defining the acceptable security characteristics for Phase 1 SAs between specified local and remote identities. A rule is identified by its label; identification formats are described below.

preshared

A preshared key, including the local and remote identification and applicable IKE mode. A preshared key is identified by an IP address pair or an identity pair; identification formats are described below.

**Id Formats**

Commands like add, del, and get: require that additional information be specified on the command line. In the case of the delete and get commands, all that is required is to minimally identify a given object; for the add command, the full object must be specified.
Minimal identification is accomplished in most cases by a pair of values. For IP addresses, the local addr and then the remote addr are specified, either in dot-notation for IPv4 addresses, colon-separated hexadecimal format for IPv6 addresses, or a host name present in the host name database. If a host name is given that expands to more than one address, the requested operation will be performed multiple times, once for each possible combination of addresses.

Identity pairs are made up of a local type-value pair, followed by the remote type-value pair. Valid types are:

- **prefix**: An address prefix.
- **fqdn**: A fully-qualified domain name.
- **domain**: Domain name, synonym for fqdn.
- **user_fqdn**: User identity of the form `user@fqdn`.
- **mailbox**: Synonym for `user_fqdn`.

A cookie pair is made up of the two cookies assigned to a Phase 1 Security Association (SA) when it is created; first is the initiator’s, followed by the responder’s. A cookie is a 64-bit number.

Finally, a label (which is used to identify a policy rule) is a character string assigned to the rule when it is created.

Formatting a rule or preshared key for the add command follows the format rules for the `in.iked` configuration files. Both are made up of a series of id-value pairs, contained in curly braces ({ and }). See `ike.config(4)` and `ike.preshared(4)` for details on the formatting of rules and preshared keys.

**SECURITY**

The `ikeadm` command allows a privileged user to enter cryptographic keying information. If an adversary gains access to such information, the security of IPsec traffic is compromised. The following issues should be taken into account when using the `ikeadm` command.

- **Is the TTY going over a network (interactive mode)?**
  
  If it is, then the security of the keying material is the security of the network path for this TTY’s traffic. Using `ikeadm` over a clear-text telnet or rlogin session is risky. Even local windows may be vulnerable to attacks where a concealed program that reads window events is present.

- **Is the file accessed over the network or readable to the world (read/write commands)?**

  A network-mounted file can be sniffed by an adversary as it is being read. A world-readable file with keying material in it is also risky.

If your source address is a host that can be looked up over the network, and your naming system itself is compromised, then any names used will no longer be trustworthy.
Security weaknesses often lie in misapplication of tools, not the tools themselves. It is recommended that administrators are cautious when using the `ikeadm` command. The safest mode of operation is probably on a console, or other hard-connected TTY.

For additional information regarding this subject, see the afterward by Matt Blaze in Bruce Schneier's *Applied Cryptography: Protocols, Algorithms, and Source Code in C*.

### EXAMPLES

**EXAMPLE 1** Emptying out all Phase 1 Security Associations

The following command empties out all Phase 1 Security Associations:

```
example# ikeadm flush p1s
```

**EXAMPLE 2** Displaying all Phase 1 Security Associations

The following command displays all Phase 1 Security Associations:

```
example# ikeadm dump p1s
```

**EXAMPLE 3** Deleting a Specific Phase 1 Security Association

The following command deletes the specified Phase 1 Security Associations:

```
example# ikeadm get pl local_ip remote_ip
```

**EXAMPLE 4** Adding a Rule From a File

The following command adds a rule from a file:

```
example# ikeadm add rule rule_file
```

**EXAMPLE 5** Adding a Preshared Key

The following command adds a preshared key:

```
example# ikeadm
ikeadm> add preshared { localidtype ip localid local_ip remotetype ip remoteid remote_ip ike_mode main key 1234567890abcdef1234567890abcdef }
```

**EXAMPLE 6** Saving All Preshared Keys to a File

The following command saves all preshared keys to a file:

```
example# ikeadm write preshared target_file
```

**EXAMPLE 7** Viewing a Particular Rule

The following command views a particular rule:

```
example# ikeadm get rule rule_label
```
EXAMPLE 8 Reading in New Rules from ike.config

The following command reads in new rules from the ike.config file:

```
example# ikeadm read rules
```

EXAMPLE 9 Lowering the Privilege Level

The following command lowers the privilege level:

```
example# ikeadm set priv base
```

EXAMPLE 10 Viewing the debug level

The following command shows the current debug level

```
example# ikeadm get debug
```

EXAMPLE 11 Using stats to Verify Hardware Accelerator

The following example shows how stats may include an optional line at the end to indicate if IKE is using a PKCS#11 library to accelerate public-key operations, if applicable.

```
example# ikeadm get stats
Phase 1 SA counts:
  Current: initiator: 0 responder: 0
  Total: initiator: 21 responder: 27
  Attempted: initiator: 21 responder: 27
  Failed: initiator: 0 responder: 0
  initiator fails include 0 time-out(s)
PKCS#11 library linked in from /opt/SUNWconn/lib/libpkcs11.so
```

EXIT STATUS

The following exit values are returned:

0 Successful completion.

non-zero An error occurred. Writes an appropriate error message to standard error.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

in.iked(1M), ike.config(4), ike.preshared(4), attributes(5), ipsec(7P)
ikeadm(1M)

ikecert – manipulates the machine’s on-filesystem public-key certificate databases

SYNOPSIS

ikecert certlocal [-a | -e | -h | -k | -l | -r] [-T PKCS#11 token identifier] [option_specific_arguments...]

ikecert certdb [-a | -e | -h | -l | -r] [-T PKCS#11 token identifier] [option_specific_arguments...]

ikecert certrldb [-a | -e | -h | -l | -r] [option_specific_arguments...]

ikecert tokens

DESCRIPTION

The ikecert command manipulates the machine’s on-filesystem public-key certificate databases. See FILES.

ikecert has three subcommands, one for each of the three major repositories, plus one for listing available hardware tokens:

- certlocal deals with the private-key repository,
- certdb deals with the public-key repository, and
- certrldb deals with the certificate revocation list (CRL) repository.
- tokens shows the available PKCS#11 tokens for a given PKCS#11 library.

The only supported PKCS#11 library and hardware is the Sun Cryptographic Accelerator 4000.

OPTIONS

Except for tokens, each subcommand requires one option, possibly followed by one or more option-specific arguments.

The tokens subcommand lists all available tokens in the PKCS#11 library specified in /etc/inet/ike/config.

The following options are supported:

-a

certlocal When specified with the certlocal subcommand, this option installs (adds) a private key into the Internet Key Exchange (IKE) local ID database. The key data is read from standard input, and is in a Solaris-only format.

This option cannot be used with PKCS#11 hardware objects.

certdb When specified with the certdb subcommand, this option reads a certificate from standard input and adds it to the IKE certificate database. The certificate must be a X.509 certificate in PEM Base64 or ASN.1 BER encoding. The certificate adopts the name of its identity.
This option can import a certificate into a PKCS#11 hardware key store one of two ways: Either a matching public key object and an existing private key object were created using the certlocal -kc option, or if a PKCS#11 token is explicitly specified using the -T option.

certrldb

When specified with the certrldb subcommand, this option installs (adds) a CRL into the IKE database. The CRL reads from standard input.

-e slot

certlocal

When specified with the certlocal subcommand, this option extracts a private key from the IKE local ID database. The key data are written to standard output. The slot specifies which private key to extract. Private keys are only extracted in binary/ber format.

Use this option with extreme caution. See SECURITY CONSIDERATIONS.

This option will not work with PKCS#11 hardware objects.

-e [-f output-format] certspec

certdb

When specified with the certdb subcommand, this option extracts a certificate from the IKE certificate database which matches the certspec and writes it to standard output. The output-format option specifies the encoding format. Valid options are PEM and BER. This extracts the first matching identity. The default output format is PEM.

certrldb

When specified with the certrldb subcommand, this option extracts a CRL from the IKE database. The key data are written to standard output. The certspec specifies which CRL that is extracted. The first one that matches in the database is extracted. See PARAMETERS for details on certspec patterns.

-ke -m keysize -t keytype -D dname -A altname[ ... ]
[-T PKCS#11 token identifier]

certlocal

When specified with the certlocal subcommand, this option generates a IKE public/private key pair and adds it into the local ID database. It also generates a certificate request and sends that to standard output. For details on the above options see PARAMETERS for details on the dname argument and see ALTERNATIVE NAMES for details on the altname argument(s) to this command.

If -T is specified, the hardware token will generate the pair of keys.
ikecert(1M)

-ks -m keysize -t keytype -D dname -A altname [ ... ]
[-f output-format] [-T PKCS#11 token identifier]

certlocal When specified with the certlocal subcommand, generates a
certification/privacy key pair and adds it into the local ID database.
This option also generates a self-signed certificate and installs it
into the certificate database. See PARAMETERS for details on the
dname and altname arguments to this command.

    If -T is specified, the hardware token will generate the pair of
    keys, and the self-signed certificate will also be stored in the
    hardware.

-l [-v] [slot]
certlocal When specified with the certlocal subcommand, this option
lists private keys in the local ID database. The -v option
switches output to a verbose mode where the entire certificate is
printed.

    Use the -v option with extreme caution. See SECURITY
    CONSIDERATIONS. The -v option will not work with
    PKCS#11 hardware objects.

-l [-v] [certspec]
certdb When specified with the certdb subcommand, this option lists
certificates in the IKE certificate database matching the certspec,
if any pattern is given. The list displays the identity string of the
certificates, as well as, the private key if in the key database.
The -v switches the output to a verbose mode where the entire
certificate is printed.

    If the matching certificate is on a hardware token, the token ID
    is also listed.

certrldb When specified with the certrldb subcommand, this option lists
CRLs in the IKE database along with any certificates
that reside in the database and match the Issuer Name.
certspec can be used to specify to list a specific CRL. The -v
option switches the output to a verbose mode where the entire
certificate is printed. See PARAMETERS for details
on certspec patterns.

-r slot
certlocal When specified with the certlocal subcommand, deletes the
local ID in the specified slot. If there is a corresponding public
key, it is not be deleted.
If this is invoked on a PKCS#11 hardware object, it will also delete the PKCS#11 public key and private key objects. If the public key object was already deleted by `certdb -r`, that is not a problem.

-r certspec

`certdb` Removes certificates from the IKE certificate database. Certificates matching the specified certificate pattern are deleted. Any private keys in the `certlocal` database corresponding to these certificates are not deleted. This removes the first matching identity.

If this is invoked on a PKCS#11 hardware object, it will also delete the certificate and the PKCS#11 public key object. If the public key object was already deleted by `certlocal -r`, that is not a problem.

`certlrd` When specified with the `certlrd` subcommand, this option deletes the CRL with the given `certspec`.

**PARAMETERS**

The following parameters are supported:

`certspec` Specifies the pattern matching of certificate specifications. Valid `certspecs` are the Subject Name, Issuer Name, and Subject Alternative Names.

These can be specified as certificates that match the given `certspec` values and that do not match other `certspec` values. To signify a `certspec` value that is not supposed to be present in a certificate, place an ! in front of the tag.

Valid `certspecs` are:

- `<Subject Names>`
- `SUBJECT=<Subject Names>`
- `ISSUER=<Issuer Names>`
- `SLOT=<Slot Number in the certificate database>`

Example: `*ISSUER=C=US, O=SUN` IP=1.2.3.4 !DNS=example.com
Example: `*C=US, O=CALIFORNIA` IP=5.4.2.1 DNS=sun.com

Valid arguments to the alternative names are as follows:

- `IP=<IPv4 address>`
- `DNS=<Domain Name Server address>`
- `EMAIL=<email (RFC 822) address>`
- `URI=<Uniform Resource Indicator value>`
- `DN=<LDAP Directory Name value>`
- `RID=<Registered Identifier value>`

Valid Slot numbers can be specified without the keyword tag. Alternative name can also be issued with keyword tags.
Subject Alternative Names the certificate. The argument that follows the -A option should be in the form of tag=value. Valid tags are IP, DNS, EMAIL, URI, DN, and RID (See example below).

X.509 distinguished name for the certificate subject. It typically has the form of: C=country, O=organization, OU=organizational unit, CN=common name. Valid tags are: C, O, OU, and CN.

Encoding output format. pem for PEM Base64 or ber for ASN.1 BER. If -f is not specified, pem is assumed.

Key size. It can be 512, 1024, 2048, 3072, or 4096.

Note – Some hardware does not support all key sizes. For example, the Sun Cryptographic Accelerator 4000’s keystore (when using the -T option, below), supports only up to 2048-bit keys for RSA and 1024-bit keys for DSA.

Key type. It can be rsa-sha1, rsa-md5, or dsa-sha1.

PKCS#11 token identifier for hardware key storage. This specifies a hardware device instance in conformance to the PKCS#11 standard. A PKCS#11 library must be specified in /etc/inet/ike/config. (See ike.config(4).)

A token identifier is a 32-character space-filled string. If the token given is less than 32 characters long, it will be automatically padded with spaces.

If there is more than one PKCS#11 library on a system, keep in mind that only one can be specified at a time in /etc/inet/ike/config. There can be multiple tokens (each with individual key storage) for a single PKCS#11 library instance.

This command can save private keys of a public-private key pair into a file. Any exposure of a private key may lead to compromise if the key is somehow obtained by an adversary.

The PKCS#11 hardware object functionality can address some of the shortcomings of on-disk private keys. Because IKE is a system service, user intervention at boot is not desireable. The token’s PIN, however, is still needed. The PIN for the PKCS#11 token, therefore, is stored where normally the on-disk cryptographic keys would reside. This design decision is deemed acceptable because, with a hardware key store, possession of the key is still unavailable, only use of the key is an issue if the host is compromised. Beyond the PIN, the security of ikecert then reduces to the security of the PKCS#11 implementation. The PKCS#11 implementation should be scrutinized also.

EXAMPLE 1  Generating a Self-Signed Certificate

The following is an example of a self-signed certificate:

```
example# ikecert certlocal -ks -m 512 -t rsa-md5 -D "C=US, O=SUN" -A
IP=1.2.3.4
Generating, please wait...
Certificate generated.
Certificate added to database.
-----BEGIN X509 CERTIFICATE-----
MIIBRDCB76ADAgECAgEBMA0GCSqGSIb3DQERBAUAMBsxCzAJBgNVBAYTAlVTMQww
CgYDVQQKEwNTVU4wHhcNMDEwMzE0MDEzMDM1WhcNMDUwMzE0MDEzMDM1MjAbMQsw
CQYDVQQGEwJVUzEMMAoGA1UEChMDU1VOMFowDQYJKoZIhvcNAQEBBQADSwQAwgjB
APDQgKjgRoRurZt6wMTtTsNNeEnPeReVer:ztspXqK6ybY1R18.7Ifq/u/CV/r
2eR/cVcTc5csSHNvA40XzcASo7jI/DAeMAs0GAI4DqQwEBAwIPODAPBgNVHREECDAG
hwQBAgMEMOA0CgSgIB3DQERBAUAA0RAPTRD23KeN5GQvPY71hwC81kLVLv8
f1txm9ZaHLJLRxHPwsqj/Aad4j4wvrriiUmGAHLTGB01LM18xsgxag==
-----END X509 CERTIFICATE-----
```

EXAMPLE 2  Generating a CA Request

Generating a CA request appears the same as the self-signed certificate. The only differences between the two is the option -c instead of -s, and the certificate data is a CA request.

```
example# ikecert certlocal -kc -m 512 -t rsa-md5 \
-D "C=US, O=SUN" -A IP=1.2.3.4
```

EXAMPLE 3  A CA Request Using a Hardware Key Store

The following example illustrates the specification of a token using the -T option.

```
example# # ikecert certlocal -kc -m 1024 -t rsa-md5 -T vca0-keystore \
-D "C=US, O=SUN" -A IP=1.2.3.4
```

EXIT STATUS

The following exit values are returned:

- 0     Successful completion.
- non-zero     An error occurred. Writes an appropriate error message to standard error.

FILES

- `/etc/inet/secret/ike.privatekeys/*`
  Private keys. A private key must have a matching public-key certificate with the same filename in `/etc/inet/ike/publickeys/`.

- `/etc/inet/ike/publickeys/*`
  Public-key certificates. The names are only important with regard to matching private key names.

- `/etc/inet/ike/crls/*`
  Public key certificate revocation lists.
/etc/inet/ike/config
Consulted for the pathname of a PKCS#11 library.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
in.iked(1M), ike.config(4), attributes(5)


RSA Labs, PKCS#11 v2.11: *Cryptographic Token Interface Standards*, November 2001.
NAME
imqadmin – launch the Message Queue administration console

SYNOPSIS
/usr/bin/imqadmin [-javahome path]
/usr/bin/imqadmin -h
/usr/bin/imqadmin -v

DESCRIPTION
imqadmin launches the graphical user interface application that performs most Message Queue (MQ) administration tasks. Message Queue administration tasks include managing broker instances and physical destinations (imqcmd) and managing MQ administered objects (imqobjmgr).

OPTIONS
The following options are supported:
- h  Display usage help. Nothing else on the command line is executed.
- javahome path  Specify a path to an alternate Java 2 compatible runtime.
- v  Display version information.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of this command:
IMQ_JAVAHOME  Specify the Java 2 compatible runtime. When this environment variable is not set it defaults to /usr/j2se.

EXIT STATUS
The following exit values are returned:
0  Successful completion.
>0  An error occurred.

FILES
$HOME/.imq/admin/brokerlist.properties
Contains user settings, a list of broker instances being managed.

$HOME/.imq/admin/objectstorelist.properties
Contains user settings, a list of object stores being managed.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiqu</td>
</tr>
</tbody>
</table>

SEE ALSO
imqbrokerd(1M), imqcmd(1M), imqdbmgr(1M), imqkeytool(1M), imqobjmgr(1M), imqusermgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
NAME
imqbrokerd – start a Message Queue broker instance

SYNOPSIS
/usr/bin/imqbrokerd [option...]
/usr/bin/imqbrokerd -h

DESCRIPTION
imqbrokerd starts an instance of the Message Queue broker. The Message Queue broker is the main component of a Message Queue message server. The broker performs reliable delivery of messages to and from Java Message Service (JMS) clients.

imqbrokerd uses command line options to specify broker configuration properties.

OPTIONS
The following options are supported:

-backup fileName
Back up a Master Broker’s configuration change record to fileName. This option only applies to broker clusters.

-cluster brokerList
Specify the list of broker instances which are connected in a cluster. This list is merged with the list in the imq.cluster.brokerlist property. This option only applies to broker clusters.

brokerList is a comma-separated list of broker instances, each specified by
hostName:port (the host on which the broker instance is running and the port number it is using) If you don’t specify a value for hostName, localhost is used. If you don’t specify a value for port, the value of 7676 is used. For example:
host1:8899,host2,:7878.

-dbpassword password
Specify the password for a plugged-in JDBC-compliant database used as an MQ data store.

-dbpassword password
Specify the password for a plugged-in JDBC-compliant database used as an MQ data store.

-dbuser userName
Specify the user name for a plugged-in JDBC-compliant data store.

-Dproperty=value
Set the specified broker configuration property to the value. The system does not validate either the configuration property or value. Therefore, spelling, formatting, and case is important. MQ can not set incorrect values passed using the -D option.

-force
Perform action without user confirmation. This option only applies when you use the -remove instance option, which normally requires confirmation.

-h
Display usage help. Execute nothing else on the command line.
Specify the path to an alternate Java 2-compatible Java Development Kit (JDK) or Java Runtime Environment (JRE) The default is to use the runtime bundled with the operating system.

-ldappassword password
Specify the password for accessing a LDAP user repository when using an LDAP server (as opposed to a built-in flat-file repository) to authenticate users of an MQ message server.

-license [name]
Specify the license to load, if different from the default for your MQ product edition. If you don’t specify a license name, this lists all licenses installed on the system. Depending on the installed MQ edition, the values for name are pe (Platform Edition-basic features), try (Platform Edition-90-day trial enterprise features), and unl (Enterprise Edition).

-loglevel level
Specify the logging level. Valid values for level are NONE, ERROR, WARNING, or INFO. The default value is INFO.

-metrics int
Report metrics at a specific interval. Specify int as the number of seconds.

-name brokerName
Specify the instance name of this broker and use the corresponding instance configuration file. If you do not specify a broker name, the name of the file is set to imqbroker. If you run more than one instance of a broker on the same host, each must have a unique name.

-passfile filename
Specify the name of the file from which to read the passwords for the SSL keystore, LDAP user repository, or JDBC-compliant database.

-password keypassword
Specify the password for the SSL certificate keystore.

-port number
Specify the broker’s Port Mapper port number. By default, this is set to 7676. To run two instances of a broker on the same server, each broker’s Port Mapper must have a different port number. JMS clients connect to the broker instance using this port number.

-remove instance
Remove the broker instance. Delete the instance configuration file, log files, data store, and other files and directories associated with the broker instance. This option requires user confirmation unless you also specify the -force option.

-reset store | messages | durables | props
Reset the data store (or a subset of the store) or resets the configuration properties of the broker instance when the broker instance is started. The action depends on the argument provided.
store
  Clear all persistent data in the data store, including messages, durable subscriptions, and transaction information store.

messages
  Clear all persistent messages durable.

durables
  Clear all durable subscriptions.

props
  Clear all configuration information in the config.props instance configuration file. All properties assume default values.

-restore filename
  Replace the Master Broker’s configuration change record with the specified backup file. This file must have been previously created using the -backup option. This option only applies to broker clusters.

-shared
  Specify that the jms connection service be implemented using the shared threadpool model, in which threads are shared among connections to increase the number of connections supported by a broker instance.

-silent
  Turn off logging to the console.

-tty
  Display all messages be to the console. WARNING and ERROR level messages are displayed on the console by default.

-version
  Display the version number of the installed product.

-vmargs are [[arg]...]
  Specify arguments to pass to the Java VM. Separate arguments with spaces. If you want to pass more than one argument or if an argument contains a space, use enclosing quotation marks. For example:

  ```
  imqbrokerd -tty -vmargs "-Xmx128m -Xincgc"
  ```

ENVIRONMENT VARIABLES

The following environment variables affect the execution of this command:

IMQ_JAVAHOME Specify the Java 2 compatible runtime. When this environment variable is not set it defaults to /usr/j2se.

EXIT STATUS

The following exit values are returned:

0     Successful completion.

>0    An error occurred.

FILES

/etc/init.d/imq
Shell script for starting imqbrokerd. This file looks at the /etc/imq/imqbrokerd.conf file.
imqbrokerd(1M)

/etc/imq/imqbrokerd.conf
   Configuration file which controls the behavior of the broker startup script.

/etc/imq/passwd
   Flat file user repository for authenticating users.

/etc/imq/accesscontrol.properties
   Controls client access to broker functionality.

/etc/imq/passfile.sample
   Sample passfile used by the -passfile option.

/var/imq/instances/brokerName/props/config.properties
   Broker instance configuration file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiq</td>
</tr>
</tbody>
</table>

SEE ALSO
imqadmin(1M), imqcmd(1M), imqdbmgr(1M), imqkeytool(1M), imqobjmgr(1M), imqusermgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
NAME
imqcmd – manage Message Queue brokers

SYNOPSIS
/usr/bin/imqcmd subcommand argument [option...]

/usr/bin/imqcmd [-h | -H]
/usr/bin/imqcmd -v

DESCRIPTION
imqcmd manages the Message Queue broker, including resources such as connection
services, physical destinations, durable subscriptions, and transactions. The utility
provides a number of subcommands for managing these resources.

imqcmd supports many subcommands. Basic connection and authentication is
required for the execution of every imqcmd subcommand. Use the -secure option to
specify secure connections. Subcommands and their corresponding arguments and
options follow the imqcmd command on the command line. See USAGE and OPTIONS.

OPTIONS
The following options are supported:

-b hostName:port
Specify the name of the host on which the broker
instance is running and the port number it is using.

The default value is localhost:7676. If you do not
specify the -b option, imqcmd uses the default.

To specify port only, use: -b:7878. This is equivalent
to -b localhost:7878

To specify name only, use: -b: somehost. This is
equivalent to -b: somehost:7676.

-c clientId
Specify the ID of the durable subscriber to a topic.

-d topicName
Specify the name of the topic.

Use this option with the list dur and destroy dur
subcommands.

-f
Perform action without user confirmation.

Use this option with any subcommand.

-h
Display usage help. Execute nothing else on the
command line.

-H
Display usage help, attribute list, and examples.
Execute nothing else on the command line.

-int interval
Specify the interval, in seconds, at which imqcmd
displays broker metrics.

Use this option with the the metrics subcommand.

-javahome
Specify an alternate Java 2 compatible runtime to use.
-m **metricType**  Specify the type of metric information to display.

Use one of the following values to specify `metricType`:

- **ttl**
  - Total of messages in and out of the broker (default)

- **rts**
  - Provides the same information as **ttl**, but specifies the number of messages per second

- **cxn**
  - Connections, virtual memory heap, threads

Use this option with the either the `metrics bkr` or `metrics svc` subcommand. The following command displays connection, VM heap, and threads metric information for the default broker instance (`localhost:7676`) every five seconds:

```
imqcmd metrics bkr -m cxn -int 5
```

- **n argumentName**  Specify the name of the subcommand argument. Depending on the subcommand, this might be the name of a service, a physical destination, a durable subscription, or a transaction ID.

- **o attribute=value**  Specify the value of an attribute. Depending on the subcommand argument, this might be the attribute of a broker, service, or destination.

- **p password**  Specify the administrator password.

If you omit this value, you are prompted for it.

- **s**  Silent mode. No output is displayed.

Use this option with any subcommand.

- **secure**  Specify a secure administration connection to the broker instance. You must first configure the broker to enable a secure connection service.

Use this option whenever you want a secure communication with the broker.

- **t destinationType**  Specify the type of a destination: **t** (topic) or **q** (queue).

- **tmp**  Include temporary destinations when listing destinations using the `list dst` subcommand.

- **u name**  Specify the administrator user name.

If you omit this value, you are prompted for it.
Display version information. Execute nothing else on the command line.

Usage

The following subcommands and associated arguments and options are supported:

committxn -ntransaction_id
Commit the specified transaction.

createdst -tdestinatontype -ndestName [-oattribute=value] [-oattribute=value]...
Create a destination of the specified type, with the specified name, and the specified
attributes. Destination names must contain only alphanumeric characters (no
spaces) and can begin with an alphabetic character or the underscore character (_).

destroystdst -tdestinatontype -ndestName
Destroy the destination of the specified type and name.

destroydur -nsubscrName -cclient_id
Destroy the specified durable subscription for the specified Client Identifier.

listdst [-tmp]
List all destinations, with option of listing temporary destinations as well.

listdur -ddestination
List all durable subscriptions for the specified destination.

listsvc
List all connection services on the broker instance.

listtxn
List all transactions, being tracked by the broker.

metricsbkr [-mmetricType] [-intinterval]
Display broker metrics for the broker instance.

Use the -ntoption to specify the type of metric to display. Use one of the following
values to specify metricType:

ttl
Total of messages in and out of the broker (default)

rts
Provides the same information as ttl, but specifies the number of messages per
second

cxn
Connections, virtual memory heap, threads

Use the -int option to specify the interval (in seconds) at which to display the
metrics. The default is 5 seconds
metrics svc -n serviceName [-m metricType] [-int interval]
    List metrics for the specified service on the broker instance. Use the -m option to specify the type of metric to display. Use one of the following values to specify metricType:

    ttl
    Total of messages in and out of the broker (default)

    rts
    Provides the same information as ttl, but specifies the number of messages per second

    cxn
    Connections, virtual memory heap, threads

    Use the -int option to specify the interval (in seconds) at which to display the metrics. The default is 5 seconds.

pause bkr
    Pause the broker instance.

pause svc -n serviceName
    Pause the specified service running on the broker instance. You cannot pause the administrative service.

purge dst -t destinationType -n destName
    Purge messages at the destination with the specified type and name.

purge dur -n subscrName -c client_id
    Purge all messages for the specified client identifier.

query bkr
    List the current settings of properties of the broker instance. Show the list of running brokers (in a multi-broker cluster) that are connected to the specified broker.

query dst -t destinationType -n destName
    List information about the destination of the specified type and name.

query svc -n serviceName
    Display information about the specified service running on the broker instance.

query txn -n transaction_id
    List information about the specified transaction.

reload cls
    Forces all the brokers in a cluster to reload the imq.cluster.brokerlist property and update cluster information. This subcommand only applies to broker clusters.
restart bkr
Shut down and restart the broker instance. This command restarts the broker using
the options specified when the broker was first started. If you want different
options to be in effect, you must shut down the broker and then start it again,
specifying the options you want.

resume bkr
Resume the broker instance.

resume svc -n serviceName
Resume the specified service running on the broker instance.

rollback txn -n transaction_id
Roll back the specified transaction.

shutdown bkr
Shut down the broker instance

update bkr -o attribute=value [-o attribute=value]...
Change the specified attributes for the broker instance.

update dst -t destinationType -n destName -o attribute=value [-o attribute=value]...
Update the value of the specified attributes at the specified destination.

update svc -n serviceName -o attribute=value [-o attribute=value]...
Update the specified attribute of the specified service running on the broker
instance.

You can specify attributes with the create and update subcommands. Applicable
attributes depend on the subcommand arguments.

The following attributes are supported:

Queue (dst):
queueDeliveryPolicy
  Value: String (f = Failover, r = Round Robin, s = Single)
  Default: s

maxTotalMsgBytes
  Value: Integer (maximum total size of messages, in bytes)
  Default: 0 (unlimited)

maxBytesPerMsg
  Value: Integer (maximum size of a single message, in bytes)
  Default: 0 (unlimited)

maxNumMsgs
  Value: Integer (maximum total number of messages)
  Default: 0 (unlimited)
imqcmd(1M)

Topic (dst):
maxBytesPerMsg
  Value: Integer (maximum size of a single message, in bytes)
  Default: 0 (unlimited)

Broker (bkr):
imq.autocreate.queue
  Value: Boolean
  Default: true

imq.autocreate.topic
  Value: Boolean
  Default: true

imq.cluster.url
  Value: String (location of cluster configuration file)
  Default: none

imq.log.file.rolloverbytes
  Value: Integer (maximum size of a log file, in bytes)
  Default: 0 (no rollover based on size)

imq.log.file.rolloversecs
  Value: Integer (maximum age of a log file, in seconds)
  Default: 0 (no rollover based on age)

imq.log.level
  Value: String (NONE, ERROR, WARNING, INFO)
  Default: INFO

imq.message.max_size
  Value: Integer (maximum size of a single message, in bytes)
  Default: 70m

imq.portmapper.port
  Value: Integer
  Default: 7676

imq.queue.deliverypolicy
  Value: String (f = Failover, r = Round Robin, s = Single)
  Default: s
imq.system.max_count
  Value: Integer (maximum total number of messages)
  Default: 0 (no limit)

imq.system.max_size
  Value: Integer (maximum total size of messages, in bytes)
  Default: 0 (no limit)

Service (svc):
maxThreads
  Value: Integer (maximum threads assigned)
  Default: Depends on service

minThreads
  Value: Integer (minimum threads assigned)
  Default: Depends on service

port
  Value: Integer
  Default: 0 (dynamically allocated)

EXAMPLES

EXAMPLE 1 Shutting Down a Broker
The following command shuts down a broker for hostname myserver on port 7676:

```
mqcmd shutdown bkr -b myserver:7676
```

EXAMPLE 2 Restarting a Broker
The following command restarts a broker for hostname myserver:

```
imqcmd restart bkr -b myserver
```

EXAMPLE 3 Pausing a Service
The following command pauses a broker for hostname localhost on port 7676, with a serviceName of jms:

```
imqcmd pause svc -n jms -b :7676
```

EXAMPLE 4 Resuming a Service
The following command resumes a service for hostname localhost on port 7676, with a serviceName of jms:

```
imqcmd resume svc -n jms -b myserver:7676
```
EXAMPLE 5 Creating a Queue Destination
The following command creates a queue destination for hostname myserver on port 7676, with a destName of myFQ, a queueDeliveryPolicy of Failover, and a maxBytesPerMsg of 10000:

```imqcmd create dst -n myFQ -t q -o "queueDeliveryPolicy=f" \ 
-o "maxBytesPerMsg=10000" -b myserver:7676```

EXAMPLE 6 Purging a Queue Destination
The following command purges a queue destination for hostname myserver on port 7676, with a destName of myFQ:

```imqcmd purge dst -n myFQ -t q -b myserver:7676```

EXAMPLE 7 Listing Destinations on a Broker
The following command lists destinations for hostname myserver on port 7676:

```imqcmd list dst -b myserver:7676```

EXAMPLE 8 Updating a Portmapper Port
The following command updates a portmapper port on hostname myserver from port 7676 to 7878:

```imqcmd update bkr -o "imq.portmapper.port=7878"```

EXAMPLE 9 Updating the Maximum Number of Messages in the Queue
The following command updates the maximum number of messages in the queue to 2000 for myserver on port 8080 with a destName of TestQueue:

```imqcmd update dst -b myserver:8080 -n TestQueue -t q -o "maxNumMsgs=2000"```

EXAMPLE 10 Updating the Maximum Threads
The following command updates the maximum threads jms connection service to 200 for hostname localhost on port 7676:

```imqcmd update svc -n jms -o "minThreads=200"```

EXAMPLE 11 Listing Durable Subscriptions
The following command lists durable subscriptions for a topic with hostname localhost on port 7676 with a destName of myTopic:

```imqcmd list dur -d myTopic```

EXAMPLE 12 Destroying Durable Subscriptions
The following command destroys subscriptions for hostname localhost on port 7676 with a dursubName of myDurSub and a client_ID of 111.222.333.444:
**EXAMPLE 12** Destroying Durable Subscriptions (Continued)

```
imqcmd destroy dur -n myDurSub -c "111.222.333.444"
```

**EXAMPLE 13** Listing All Transactions

The following command lists all transactions on a broker with hostname `localhost` on port 7676:

```
imqcmd list txn
```

**EXAMPLE 14** Displaying Information About a Transaction

The following command displays information about a transaction with hostname `localhost` on port 7676, and a `transactionID` of 1234567890

```
imqcmd query txn -n 1234567890
```

**EXAMPLE 15** Committing a Transaction

The following command commits a transaction with hostname `localhost` on port 7676, and a `transactionID` of 1234567890:

```
imqcmd commit txn -n 1234567890
```

**ENVIRONMENT VARIABLES**

The following environment variables affect the execution of this command:

- **IMQ_JAVAHOME** Specify the Java 2 compatible runtime. When this environment variable is not set it defaults to `/usr/j2se`.

**EXIT STATUS**

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiqu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`imqadmin(1M), imqbrokerd(1M), imqdbmgr(1M), imqkeytool(1M), imqobjmgr(1M), imqusermgr(1M), attributes(5)`

*Sun ONE Message Queue Administrator’s Guide*
**NAME**
imqdbmgr - manage a plugged-in JDBC-compliant Message Queue data store

**SYNOPSIS**
/usr/bin/imqdbmgr  subcommand  argument  [ [option...]]

/usr/bin/imqdbmgr -h | -help
/usr/bin/imqdbmgr -v | -version

**DESCRIPTION**
The `imqdbmgr` utility creates and manages a Java Database Connectivity (JDBC) compliant database used for MQ persistent storage.

The database can either be embedded or external. To use a JDBC-compliant database (and the `imqdbmgr` utility), you need to first set a number of JDBC-related properties in the broker instance configuration file. See the Sun ONE Message Queue Administrator’s Guide for additional information.

`imqdbmgr` supports three management subcommands. These *subcommands*, and their corresponding *arguments* and *options* follow the `imqdbmgr` command on the command line. See **USAGE** and **OPTIONS**.

The following subcommands are supported:
- **create**
  Create an MQ database schema.
- **delete**
  Delete MQ database tables in the current data store.
- **recreate**
  Delete MQ database tables and recreate MQ database schema in the current data store.

The `imqdbmgr` subcommands support the following arguments:
- **all**
  Indicates an embedded data store.
- **tbl**
  Indicates an external data store.

**OPTIONS**
The following options are supported:
- **-b [brokerName]**
  Specify the broker instance name and corresponding instance configuration properties. If `brokerName` is not specified, the default broker instance is assumed.
  Use this option with the `create`, `delete` or `recreate` subcommands.
- **-D property=value**
  Set system property `property` to `value`.
  Use this option with the `create`, `delete` or `recreate` subcommands.
-h | -help
Display usage help. Execute nothing else on the command line.

-p password
Specify the database password.

Use this option with the create, delete or recreate subcommands.

-u userName
Specify the database user name.

Use this option with the create, delete or recreate subcommands.

-v | -version
Display version information. Execute nothing else on the command line.

The following subcommands and associated arguments are supported:

create all
Create a new embedded data store and MQ database schema for a specified or default broker instance.

create tbl [-u userName] [-p password]
Create MQ database schema in an external data store for a specified or default broker instance.

delete tbl [-u userName] [-p password]
delete MQ database tables in the current data store for a specified or default broker instance.

recreate tbl [-u userName] [-p password]
delete MQ database tables and recreate MQ database schema in the current data store for a specified or default broker instance.

The following environment variables affect the execution of this command:

IMQ_JAVAHOME Specify the Java 2 compatible runtime. When this environment variable is not set it defaults to /usr/j2se.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.

/var/imq/instances/brokerName/dbstore
Recommended directory in which to create an embedded database.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWqiq</td>
</tr>
</tbody>
</table>
SEE ALSO  
imqadmin(1M), imqbrokerd(1M), imqcmd(1M), imqusermgr(1M),  
imqkeytool(1M), imqobjmgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
NAME  |  imqkeytool – generate a self-signed certificate for secure communication
SYNOPSIS |  /usr/bin/imqkeytool [-broker] [-servlet keystore_location]
           |  /usr/bin/imqkeytool -h
DESCRIPTION |  The imqkeytool utility generates a self-signed certificate for secure communication. The certificate can be used by a broker instance to establish a secure connection with a client, or by an MQ-supplied HTTPS servlet to establish a secure connection with a broker instance. An HTTPS is an SSL-enabled variant of the HyperText Transfer Protocol that establishes a secure connection with a broker instance.
           
           Without an option, imqkeytool operates a self-signed certificate for a broker instance.
           
           imqkeytool uses command line options to specify whether the certificate is used by a broker instance or by a servlet.
OPTIONS |  The following options are supported:
          |  -broker
          |    Generate a self-signed certificate for the broker and places it in the MQ keystore. All broker instances running on a system must use the same certificate.
          |  -h
          |    Display usage help. Do not execute anything else on the command line.
          |  -servlet keystore_location
          |    Generate a self-signed certificate for an HTTPS servlet and places it in keystore_location.
          |    keystore_location refers to the location of the keystore. You should move this keystore to a location where it is accessible and readable by the MQ HTTPS servlet to establish a secure connection with a broker.
ENVIRONMENT VARIABLES |  The following environment variables affect the execution of this command:
          |  IMQ_JAVAHOME  Specify the Java 2 compatible runtime. When this environment variable is not set it defaults to /usr/j2se.
EXIT STATUS |  The following exit values are returned:
          |  0  Successful completion.
          |  >0  An error occurred.
FILES  |  /etc/imq/keystore  Contains MQ keystore in which imqkeytool stores a self-signed certificate for brokers.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiqu</td>
</tr>
</tbody>
</table>

SEE ALSO

imqadmin(1M), imqbrokerd(1M), imqcmd(1M), imqdbmgr(1M), imqobjmgr(1M), imqusermgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
NAME  
imqobjmgr – manage Message Queue administered objects

SYNOPSIS  
/usr/bin/imqobjmgr subcommand [[option]...]
/usr/bin/imqobjmgr -i file
/usr/bin/imqobjmgr -h | [-H] | -help | -Help
/usr/bin/imqobjmgr -v

DESCRIPTION  
imqobjmgr manages Message Queue administered objects in an object store accessible using JNDI. Administered objects allow JMS clients to be provider-independent by insulating them from provider-specific naming and configuration formats.

imqobjmgr supports five management subcommands. These subcommands, and their corresponding options follow the imqobjmgr command on the command line. See USAGE and OPTIONS.

The following subcommands are supported:

add
  Add a new administered object

delete
  Delete an administered object

list
  Display a list of administered objects

query
  Display information about administered objects

update
  Update administered objects

You can use the -i option to specify the name of an input file that uses java property file syntax to represent all or part of any imqobjmgr subcommand clause. The -f, -s, and -pre options can be used with any imqobjmgr subcommand.

OPTIONS  
The following options are supported:

  -f  Perform action without user confirmation.
  -h | -help  Display usage help. Execute nothing else on the command line.
  -H | -Help  Display usage help, attribute list, and examples. Execute nothing else on the command line.
  -i file  Specify the name of an input file containing all or part of the subcommand clause, specifying object type, lookup name, object attributes, object store attributes, or other options. Use this option for repetitive information, such as object store attributes.
imqobjmgr(1M)

-attribute=value  Specify attributes necessary to identify and access a JNDI object store.

-javahome  Specify an alternate Java 2 compatible runtime to use. imqobjmgr uses the runtime bundled with the operating system by default.

-lookupName  Specify the JNDI lookup name of an administered object. This name must be unique in the object store’s context.

-attribute=value  Specify the attributes of an administered object.

-pre  Run command in preview mode. Preview mode indicates what will be done without performing the command.

-read-only_state  Specify if an administered object is a read-only object. A value of true indicates the administered object is a read-only object. JMS clients cannot modify the attributes of read-only administered objects. The read-only state is set to false by default.

-s  Silent mode. No output is displayed.

-type  Specify the type of an administered object:
    q = queue
    t = topic
    cf = ConnectionFactory
    qf = queueConnectionFactory
    tf = topicConnectionFactory
    xcf = XA ConnectionFactory (distributed transactions)
    xqf = XA queueConnectionFactory (distributed transactions)
    xtf = XA topicConnectionFactory (distributed transactions)
    e = SOAP endpoint (used to support SOAP messaging)

-v  Display version information. Execute nothing else on the command line.

**USAGE**

This section provides information on subcommands, options, and attribute value pairs.

**Subcommands and Options**

The following subcommands and corresponding options are supported:

**add** -t type -l lookupName [-o attribute=value]... -j attribute=value...
    Add a new administered object of the specified type, lookup name, and object attributes to an object store.

**delete** -t type -l lookupName -j attribute=value...
    Delete an administered object, of the specified type and lookup name from an object store.

**list** [-t type] -j attribute=value...
    Display a list of administered objects of a specified type, or all administered objects, in an object store.
query -l lookupName -j attribute=value...
  Display information about an administered object of a specified lookup name in an object store.

update -l lookupName [-o attribute=value]... -j attribute=value...
  Update the specified attribute values of an administered object of the specified lookup name in an object store.

The following attribute value pairs are supported for the specified administered object types:

Type = ConnectionFactories: ConnectionFactory, TopicConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XATopicConnectionFactory, and XAQueueConnectionFactory

  imqAckOnAcknowledge
    Value: String (true, false, not specified)
    Default: not specified

  imqAckOnProduce
    Value: String (true, false, not specified)
    Default: not specified

  imqAckTimeout
    Value: String (time in milliseconds)
    Default: 0 (no timeout)

  imqBrokerHostName
    Used if imqConnectionType is TCP or TLS.
    Value: String
    Default: localhost

  imqBrokerHostPort
    Used if imqConnectionType is TCP or TLS.
    Value: Integer
    Default: 7676

  imqBrokerServicePort ()
    Used if imqConnectionType is TCP or TLS.
    Value: Integer
    Default: 7676

  imqConfiguredClientID
    Value: String (ID number)
Default: no ID specified

**imqConnectionType**
Value: String (TCP, TLS, HTTP)
Default: TCP

**imqConnectionURL**
Used if **imqConnectionType** is HTTP.
Value: String
Default: http://localhost/imq/tunnel

**imqDefaultPassword**
Value: String
Default: guest

**imqDefaultUsername**
Value: String
Default: guest

**imqDisableSetClientID**
Value: Boolean
Default: false

**imqFlowControlCount**
Value: Integer
Default: 100

**imqFlowControlIsLimited**
Value: Boolean
Default: false

**imqFlowControlLimit**
Value: Integer
Default: 1000

**imqJMSDeliveryMode**
Value: Integer (1=non-persistent, 2=persistent)
Default: 2

**imqJMSExpiration**
Value: Long (time in milliseconds)
Default: 0 (does not expire)
imqJMSPriority
Value: Integer (0 to 9)
Default: 4

imqLoadMaxToServerSession
Value: Boolean
Default: true

imqOverrideJMSDeliveryMode
Value: Boolean
Default: false

imqOverrideJMSExpiration
Value: Boolean
Default: false

imqOverrideJMSHeadersToTemporaryDestinations
Value: Boolean
Default: false

imqOverrideJMSPriority
Value: Boolean
Default: false

imqQueueBrowserMaxMessagesPerRetrieve
Value: Integer
Default: 1000

imqBrowserRetrieveTimeout
Value: Long (time in milliseconds)
Default: 60,000

imqReconnect
Value: Boolean
Default: false

imqReconnectDelay
Value: Integer (time in milliseconds)
Default: 30,000

imqReconnectRetries
Value: Integer
Default: 0
imqobjmgr(1M)

imqSetJMSXAppID
  Value: Boolean
  Default: false

imqSetJMSXConsumerTXID
  Value: Boolean
  Default: false

imqSetJMSXProducerTXID
  Value: Boolean
  Default: false

imqSetJMSXRcvTimestamp
  Value: Boolean
  Default: false

imqSetJMSXUserID
  Value: Boolean
  Default: false

imqSSLIsHostTrusted
  Used if imqConnectionType is TLS.
  Value: Boolean
  Default: true

Type = Destinations: Topic and Queue

imqDestinationDescription
  Value: String
  Default: no description

imqDestinationName
  Value: String
  Default: Untitled_Destination_Object

Type = Endpoint (SOAP Endpoint)

imqEndpointDescription
  Value: String
  Default: A description for the endpoint object

imqEndpointName
  Value: String
  Default: Untitled_Endpoint_Object
EXAMPLES

EXaMPLe 1 Adding a Topic Administered Object to an Object Store

Where JNDI lookup name=myTopic and imqDestinationName=MyTestTopic, the following command adds to an LDAP server object store:

```
imqobjmgr add -t t -l "cn=myTopic" -o "imqDestinationName=MyTestTopic" -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory" -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
```

Where JNDI lookup name=myTopic and imqDestinationName=MyTestTopic, the following command adds to a file system object store:

```
imqobjmgr add -t -l "cn=myTopic" -o "imqDestinationName=MyTestTopic" -j "java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory" -j "java.naming.provider.url=file:/home/foo/imq_admin_objects"
```

Where JNDI lookup name=myTopic and imqDestinationName=MyTestTopic, the following command adds to a file system object store, using an input file:

```
imqobjmgr -i inputfile
```

The associated input file consists of the following:

```
cmdtype=add
obj.type=t
obj.lookupName=cn=myTopic
obj.attrs.imqDestinationName=MyTestTopic
objstore.attrs.java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
objstore.attrs.java.naming.provider.url=file:/home/foo/imq_admin_objects
```

EXAMPLE 2 Adding a QueueConnectionFactory Administered Object to an Object Store

Where JNDI lookup name=myQCF, read-only state=true, imqBrokerHostName=foo and imqBrokerHost Port=777, the following command adds to an LDAP server object store:

```
imqobjmgr add -t qf -l "cn=myQCF" -r true -o "imqBrokerHostName=foo" -o "imqBrokerHostPort=777" -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory" -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
```

Where JNDI lookup name=myQCF, read-only state=true, imqBrokerHostName=foo and imqBrokerHost Port=777, the following command adds to an LDAP server object store using an input file:

```
imqobjmgr -i inputfile
```
EXAMPLE 2  Adding a QueueConnectionFactory Administered Object to an Object Store  (Continued)

The associated input file consists of the following:

```
cmdtype=add
obj.type=qf
obj.lookupName=cn=myQCF
obj.readOnly=true
obj.attrs.imqBrokerHostName=foo
obj.attrs.imqBrokerHostPort=777
objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq
```

Where JNDI lookup name=myQCF, read-only state=true, imqBrokerHostName=foo and imqBrokerHost Port=777, the following command adds to an LDAP server object store, using both an input file and command options:

```
imqobjmgr add -t qf -l "cn=myQCF"
   -o "imqBrokerHostName=foo"
   -o "imqBrokerHostPort=777"
   -i inputfile
```

The associated input file consists of the following:

```
objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq
```

EXAMPLE 3  Deleting a Topic Administered Object from an Object Store

Where JNDI lookup name=myTopic and no confirmation is requested, the following command deletes from an LDAP server object store:

```
imqobjmgr delete -f -l "cn=myTopic"
   -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
   -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
```

EXAMPLE 4  Querying Information About a Topic Administered Object

Where JNDI lookup name=myTopic, the following command queries from an LDAP server object store using simple authentication scheme:

```
imqobjmgr query -l "cn=myTopic"
   -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
   -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
   -j "java.naming.security.authentication=simple"
   -j "java.naming.security.principal=uid=foo,ou=imqobjmgr,o=imq"
   -j "java.naming.security.credentials=foo"
```

EXIT STATUS  The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>&gt;0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiqu</td>
</tr>
</tbody>
</table>

SEE ALSO

imqadmin(1M), imqcmd(1M), imqbrokerd(1M), imqkeytool(1M), imqusermgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
imqusermgr(1M)

NAME  imqusermgr – command utility for managing a Message Queue user repository

SYNOPSIS /usr/bin/imqusermgr subcommand [[option] ...]
/usr/bin/imqusermgr -h
/usr/bin/imqusermgr -v

DESCRIPTION The imqusermgr utility manages a file-based user repository to authenticate and authorize users of an Message Queue (MQ) message server.

imqusermgr provides subcommands for adding, deleting, updating, and listing user entries in the repository.

imqusermgr supports four management subcommands. These subcommands, and their corresponding options follow the imqusermgr command on the command line. See USAGE and OPTIONS.

The following subcommands are supported:
add
   Add a new user and associated password to the repository.
delete
   Delete a user from the repository.
list
   Display information users in the repository.
update
   Update the password or state of a user in the repository.

OPTIONS The following options are supported:
- a active_state Specify if user’s state is active or inactive. An inactive user cannot create connections to the Message Queue message server.
   Valid values for active_state are true or false. Specify true for active or false for inactive. the default is true.
   Use this option with the update subcommand.
- f Perform action without user confirmation.
   Use this option with the delete and update subcommands.
- g group Specify the group of the user.
   Valid values for group are admin, user, and anonymous.
   Use this option with the add subcommand.
- h Display usage help. Execute nothing else on the command line.
- p password Specify user password.
Use this option with the add and update subcommands.

-s Silent mode. Display no output

Use this option with the add, delete, and update subcommands.

-u userName Specify user name.

userName cannot contain the following characters: asterisk (*), colon (:), NEWLINE, or RETURN.

Use this option with the add, delete, update, and list subcommands.

-v Display version information. Execute nothing else on the command line.

**USAGE**

The following subcommands and corresponding options are supported:

- **add** -u userName -p password [-g group] [-s]
  
  Add a new user and associated password to the repository, and optionally specify the user’s group.

- **delete** -u userName [-s] [-f]
  
  Delete a user from the repository.

- **list** [-u user_name]
  
  Display information about the specified user in the repository. If no user is specified, all users are displayed.

- **update** -u userName -p password [-a state] [-s] [-f]
  
  Update the password or state (or both) of a user.

**ENVIRONMENT VARIABLES**

The following environment variables affect the execution of this command:

- **IMQ_JAVAHOME** Specify the Java 2 compatible runtime. When this environment variable is not set, it defaults to /usr/j2se.

**EXIT STATUS**

The following exit values are returned:

- 0  Successful completion.
- >0  An error occurred.

**FILES**

- /etc/imq/passwd Flat-file user repository.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWiq</td>
</tr>
</tbody>
</table>
SEE ALSO

imqadmin(1M), imqbrokerd(1M), imqcmd(1M), imqdbmgr(1M), imqkeytool(1M),
imqobjmgr(1M), attributes(5)

Sun ONE Message Queue Administrator’s Guide
NAME
in.comsat, comsat – biff server

SYNOPSIS
/usr/sbin/in.comsat

DESCRIPTION
comsat is the server process which listens for reports of incoming mail and notifies users who have requested to be told when mail arrives. It is invoked as needed by inetd(1M), and times out if inactive for a few minutes.

comsat listens on a datagram port associated with the biff service specification (see services(4)) for one line messages of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned on (by a biffy), the offset is used as a seek offset into the appropriate mailbox file, and the first 7 lines or 560 characters of the message are printed on the user’s terminal. Lines which appear to be part of the message header other than the From, To, Date, or Subject lines are not printed when displaying the message.

FILES
/var/adm/utmpx user access and administration information

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), services(4), attributes(5)

NOTES
The message header filtering is prone to error.
in.dhcpd(1M)

NAME
in.dhcpd – Dynamic Host Configuration Protocol server

SYNOPSIS
/usr/lib/inet/in.dhcpd [-denv] [-h relay_hops] [ -i interface, ...]
    [-l syslog_local_facility] [-b automatic | manual] [-o DHCP_offer_time]
    [-t dhcptab_rescan_interval]

/usr/lib/inet/in.dhcpd [-dv] [-h relay_hops] [-i interface,...]
    [-l syslog_local_facility] -x IP_address | hostname, ...

DESCRIPTION
in.dhcpd is a daemon that responds to Dynamic Host Configuration Protocol
(DHCP) requests and optionally to BOOTP protocol requests. The daemon forks a
copy of itself that runs as a background process. It must be run as root. The daemon
has two run modes, DHCP server (with optional BOOTP compatibility mode) and
BOOTP relay agent mode.

The first line in the SYNOPSIS section illustrates the options available in the
DHCP/BOOTP server mode. The second line in the SYNOPSIS section illustrates the
options available when the daemon is run in BOOTP relay agent mode.

The DHCP and BOOTP protocols are used to provide configuration parameters to
Internet hosts. Client machines are allocated their IP addresses as well as other host
configuration parameters through this mechanism.

The DHCP/BOOTP daemon manages two types of DHCP data tables: the dhcptab
configuration table and the DHCP network tables.

See dhcptab(4) regarding the dhcptab configuration table and dhcp_network(4)
regarding the DHCP network tables.

The dhcptab contains macro definitions defined using a termcap-like syntax which
permits network administrators to define groups of DHCP configuration parameters
to be returned to clients. However, a DHCP/BOOTP server always returns hostname,
network broadcast address, network subnet mask, and IP maximum transfer unit
(MTU) if requested by a client attached to the same network as the server machine. If
those options have not been explicitly configured in the dhcptab, in.dhcpd returns
reasonable default values.

The dhcptab is read at startup, upon receipt of a SIGHUP signal, or periodically as
specified by the -t option. A SIGHUP (sent using the command pkill -HUP
in.dhcpd) causes the DHCP/BOOTP daemon to reread the dhcptab within an
interval from 0-60 seconds (depending on where the DHCP daemon is in its polling
cycle). For busy servers, users should run /etc/init.d/dhcp stop, followed by
/etc/init.d/dhcp start to force the dhcptab to be reread.

The DHCP network tables contain mappings of client identifiers to IP addresses. These
tables are named after the network they support and the datastore used to maintain
them.

The DHCP network tables are consulted during runtime. A client request received
from a network for which no DHCP network table exists is ignored.
This command may change in future releases of Solaris software. Scripts, programs, or procedures that use this command might need modification when upgrading to future Solaris software releases. The command line options provided with the `in.dhcpd` daemon are used only for the current session, and include only some of the server options you can set. The `dhcpsvc.conf(4)` contains all the server default settings, and can be modified by using the `dhcpmgr` utility. See `dhcpsvc.conf(4)` for more details.

**OPTIONS**

The following options are supported:

- **-b automatic | manual**
  This option enables BOOTP compatibility mode, allowing the DHCP server to respond to BOOTP clients. The option argument specifies whether the DHCP server should automatically allocate permanent lease IP addresses to requesting BOOTP clients if the clients are not registered in the DHCP network tables (`automatic`) or respond only to BOOTP clients who have been manually registered in the DHCP network tables (`manual`). This option only affects DHCP server mode.

- **-d**
  Debugging mode. The daemon remains as a foreground process, and displays verbose messages as it processes DHCP and/or BOOTP datagrams. Messages are displayed on the current TTY. This option can be used in both DHCP/BOOTP server mode and BOOTP relay agent mode.

- **-h relay_hops**
  Specifies the maximum number of relay agent hops that can occur before the daemon drops the DHCP/BOOTP datagram. The default number of relay agent hops is 4. This option affects both DHCP/BOOTP server mode and BOOTP relay agent mode.

- **-i interface, ...**
  Selects the network interfaces that the daemon should monitor for DHCP/BOOTP datagrams. The daemon ignores DHCP/BOOTP datagrams on network interfaces not specified in this list. This option is only useful on machines that have multiple network interfaces. If this option is not specified, then the daemon listens for DHCP/BOOTP datagrams on all network interfaces. The option argument consists of a comma-separated list of interface names. It affects both DHCP/BOOTP server and BOOTP relay agent run modes.

- **-l syslog_local_facility**
  The presence of this option turns on transaction logging for the DHCP server or BOOTP relay agent. The value specifies the syslog local facility (an integer from 0 to 7 inclusive) the DHCP daemon should use for tagging the transactions. Using a facility separate from the `LOG_DAEMON` facility allows the network administrator to capture these transactions separately from other DHCP daemon events for such purposes as generating transaction reports. See `syslog(3C)`, for details about local facilities. Transactions are logged using a record with 9 space-separated fields as follows:

  1. Protocol:
Relay mode: "BOOTP"
Server mode: "BOOTP" or "DHCP" based upon client type.

2. Type:
   Relay mode: "RELAY-CLNT", "RELAY-SRVR"
   Server mode: "ASSIGN", "EXTEND", "RELEASE",
               "DECLINE", "INFORM", "NAK", "ICMP-ECHO."

3. Transaction time: absolute time in seconds (unix time)

4. Lease time:
   Relay mode: Always 0.
   Server mode: 0 for ICMP-ECHO events, absolute time in seconds (unix time) otherwise

5. Source IP address: Dotted Internet form
   Relay mode: Relay interface IP on RELAY-CLNT,
               INADDR_ANY on RELAY-SRVR.
   Server mode: Client IP.

6. Destination IP address: Dotted Internet form
   Relay mode: Client IP on RELAY-CLNT, Server IP on RELAY-SRVR.
   Server mode: Server IP.

7. Client Identifier: Hex representation (0-9, A-F)
   Relay mode: MAC address
   Server mode: BOOTP - MAC address; DHCP - client id

8. Vendor Class identifier (white space converted to periods (\.)).
   Relay mode: Always "N/A"
   Server mode: Vendor class ID tokenized by converting white space characters to periods (\.)

9. MAC address: Hex representation (0-9, A-F)
   Relay mode: MAC address
   Server mode: MAC address

The format of this record is subject to change between releases.
Transactions are logged to the console if daemon is in debug mode (-d).
Logging transactions impact daemon performance.
It is suggested that you periodically rotate the DHCP transaction log file to keep it from growing until it fills the filesystem. This can be done in a fashion similar to that used for the general system message log /var/adm/messages and is best accomplished using the facilities provided by logadm(1M).

-n
Disable automatic duplicate IP address detection. When this option is specified, the DHCP server does not attempt to verify that an IP address it is about to offer a client is not in use. By default, the DHCP server pings an IP address before offering it to a DHCP/BOOTP client, to verify that the address is not in use by another machine.

-o DHCP_offer_time
Specifies the number of seconds the DHCP server should cache the offers it has extended to discovering DHCP clients. The default setting is 10 seconds. On slow network media, this value can be increased to compensate for slow network performance. This option affects only DHCP server mode.

-r IP_address | hostname, . . .
This option enables BOOTP relay agent mode. The option argument specifies a comma-separated list of IP addresses or hostnames of DHCP or BOOTP servers to which the relay agent is to forward BOOTP requests. When the daemon is started in this mode, any DHCP tables are ignored, and the daemon simply acts as a BOOTP relay agent.

A BOOTP relay agent listens to UDP port 68, and forwards BOOTP request packets received on this port to the destinations specified on the command line. It supports the BROADCAST flag described in RFC 1542. A BOOTP relay agent can run on any machine that has knowledge of local routers, and thus does not have to be an Internet gateway machine.

Note that the proper entries must be made to the netmasks database so that the DHCP server being served by the BOOTP relay agents can identify the subnet mask of the foreign BOOTP/DHCP client's network. See netmasks(4) for the format and use of this database.

-t dhcptab_rescan_interval
Specifies the interval in minutes that the DHCP server should use to schedule the automatic rereading of the dhcptab information. Typically, you would use this option if the changes to the dhcptab are relatively frequent. Once the contents of the dhcptab have stabilized, you can turn off this option to avoid needless reinitialization of the server.

-v
Verbose mode. The daemon displays more messages than in the default mode. Note that verbose mode can reduce daemon efficiency due to the time taken to display messages. Messages are displayed to the current TTY if the debugging option is used; otherwise, messages are logged to the syslogd facility. This option can be used in both DHCP/BOOTP server mode and BOOTP relay agent mode.
EXAMPLE 1 Starting a DHCP Server in BOOTP Compatibility Mode

The following command starts a DHCP server in BOOTP compatibility mode, permitting the server to automatically allocate permanent IP addresses to BOOTP clients which are not registered in the server’s table; limits the server’s attention to incoming datagrams on network devices le2 and tr0; drops BOOTP packets whose hop count exceeds 2; configures the DHCP server to cache extended DHCP offers for 15 seconds; and schedules dhcptab rescans to occur every 10 minutes:

```
# in.dhcpd -i le2,tr0 -h 2 -o 15 -t 10 -b automatic
```

EXAMPLE 2 Starting the Daemon in BOOTP Relay Agent Mode

The following command starts the daemon in BOOTP relay agent mode, registering the hosts bladerunner and 10.0.0.5 as relay destinations, with debugging and verbose modes enabled, and drops BOOTP packets whose hop count exceeds 5:

```
# in.dhcpd -d -v -h 5 -r bladerunner,10.0.0.5
```

FILES

/etc/inet/dhcpsvc.conf
/etc/init.d/dhcp
/etc/init/hosts
/usr/lib/inet/dhcp/nsu/rfc2136.so.1

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

cron(1M), dhcpmgr(1M), dhtadm(1M), logadm(1M), pntadm(1M), syslogd(1M), syslog(3C), dhcpsvc.conf(4), dhcp_network(4), dhcptab(4), ethers(4), hosts(4), netmasks(4), nsswitch.conf(4), attributes(5), dhcp(5)

System Administration Guide: IP Services


Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell University, October 1993.


inetd is the server process for the Internet standard services. It usually starts up at system boot time. The configuration-file lists the services that inetd is to provide. If no configuration-file is given on the command line, inetd reads the configuration information from the /etc/inetd.conf file. If /etc/inetd.conf is not present, inetd reads the configuration information from /etc/inet/inetd.conf. See inetd.conf(4) for more information on the format of this file.

inetd listens for service requests on the TCP or UDP ports associated with each of the services listed in the configuration file. When a request arrives, inetd executes the server program associated with the service.

A service can be configured to have "wait" wait-status, in which case, inetd waits for the server process to exit before starting a second server process. RPC services can also be started by inetd.

inetd provides a number of simple Internet services internally. These include echo, discard, chargen (character generator), daytime (human-readable time), and time (machine-readable time, in the form of the number of seconds since midnight, January 1, 1900).

inetd reads the configuration-file and the default settings in /etc/default/inetd once when it starts up and rereads them again whenever it receives a hangup signal, SIGHUP. New services can be activated and existing services can be deleted or modified by editing the configuration-file and then sending inetd a SIGHUP signal.

After it receives the SIGHUP signal, inetd reads the configuration-file and, for each service listed, attempts to bind() to that service’s port. The attempt might fail if another standalone server or "wait" wait-status server started by inetd is already listening on the same port. Such a server has to be killed before inetd can bind to the service’s port. inetd defers implementing a newly read configuration for a service whose port is busy and periodically attempts to start listening, after logging an error on console. The retry interval is currently 10 minutes.

If you want a "wait" wait-status server that is started by inetd to be controlled by that daemon following a kill and restart of inetd, you must do one of the following:

- Kill the server before restarting inetd.
- Restart inetd, kill the server, and wait till the retry interval elapses. After this time, inetd attempts to restart the server upon the next request for service.

The /etc/default/inetd file contains the following default parameter settings. See FILES.

ENABLE_CONNECTION_LOGGING Specifies whether incoming TCP connections are traced. The value ENABLE_CONNECTION_LOGGING=YES is equivalent to the -t command-line option.
The default value for ENABLE_CONNECTION_LOGGING is NO.

**ENABLE_TCPWRAPPERS**

Specifies the TCP wrappers facility will be used to control access to TCP services. The value YES enables checking. The default value for ENABLE_TCPWRAPPERS is NO. If the ENABLE_TCPWRAPPERS parameter is turned on, then all "streams, nowait" services will be automatically wrapped by the TCP wrappers facility. The syslog facility code daemon is used to log allowed connections (using the notice severity level) and denied traffic (using the warning severity level). See syslog.conf(4) for a description of syslog codes and severity levels. The stability level of the TCP wrappers facility and its configuration files is External. As the TCP wrappers facility is not controlled by Sun, intrarelase incompatibilities are not uncommon. See attributes(5).

For more information about configuring TCP wrappers, you can refer to the following man pages, which are delivered as part of Solaris at /usr/sfw/man:
- tcpd(1M)
- hosts_access(4)

**OPTIONS**

- **-d**
  Runs inetd in the foreground and enables debugging output.

- **-s**
  Allows you to run inetd "stand-alone" outside the Service Access Facility (SAF). If the -s option is omitted, inetd will attempt to contact the service access controller (SAC) and will exit if SAC is not already running. See sac(1M).

- **-t**
  Instructs inetd to trace the incoming connections for all of its TCP services. It does this by logging the client’s IP address and TCP port number, along with the name of the service, using the syslog(3C) facility. “Wait” wait-status services cannot be traced. When tracing is enabled, inetd uses the syslog facility code daemon and notice priority level. This logging is separate from the logging done by the TCP wrappers facility. See FILES.

- **-r**
  Allows inetd to detect and then suspend “broken” wait services servers and connectionless datagram services servers, for example, UDP and RPC/CLTS. Without this detection, a buggy server that fails before consuming the service request is continuously restarted and taxes system resources too much. The -r flag has the form:

  
  -r count interval
count and interval are decimal numbers that represent the maximum count of invocations per interval of seconds a service can be started before the service is considered "broken."

After being considered "broken," a server is suspended for ten minutes. After ten minutes, inetd again enables service, trusting the server to operate correctly.

If the -r flag is not specified, inetd considers -r 40 60 to be specified.

**OPERANDS**

configuration-file

Lists the services inetd is to provide.

**EXIT STATUS**

inetd does not return an exit status.

**FILES**

/etc/default/inetd

Contains default settings. inetd reads the configuration-file and the default settings in /etc/default/inetd once when it starts up and rereads them again whenever it receives a hangup signal, SIGHUP. You can override some of the settings by command-line options.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

in.ftpd(1M), in.rexecd(1M), in.rshd(1M), in.tftpd(1M), sac(1M), syslog(3C), inetd.conf(4), syslog.conf(4), attributes(5)


The following man pages are delivered as part of the SUNWtcpd package: tcpd(1M), hosts_access(4)
Do not configure udp services as nowait. This can cause a race condition where the inetd program selects on the socket and the server program reads from the socket. Many server programs will fork and performance will be severely compromised.

If you kill and restart inetd, be aware that any environment variables in your shell are inherited by a shell for an incoming telnet session. For example, if you have USER=root in your environment, a user who connects to your machine with telnet inherits USER=root.

For RPC services, inetd listens on all the transports, not only tcp and udp, as specified for each service in the inetd.conf(4) file.
in.fingerd(1M)

NAME
in.fingerd, fingerd – remote user information server

SYNOPSIS
/usr/sbin/in.fingerd

DESCRIPTION
fingerd implements the server side of the Name/Finger protocol, specified in RFC 742. The Name/Finger protocol provides a remote interface to programs which display information on system status and individual users. The protocol imposes little structure on the format of the exchange between client and server. The client provides a single command line to the finger server which returns a printable reply.

fingerd waits for connections on TCP port 79. Once connected, it reads a single command line terminated by RETURN-LINEFEED and passes the arguments to finger(1), prepended with -s. fingerd closes its connections as soon as the output is finished.

You must invoke fingerd from inetd. See inetd(1M) for more information.

FILES
/var/adm/utmpx User and accounting information.
/etc/passwd System password file.
/var/adm/lastlog Last login times.
$HOME/.plan User’s plans.
$HOME/.project User’s projects.

USAGE
fingerd and in.fingerd are IPv6–enabled. See ip6(7P).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO
finger(1), inetd(1M), inetd.conf(4), attributes(5), ip6(7P)


NOTES
Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program can result in meaningless attempts at option negotiation being sent to the server, which will foul up the command line interpretation. fingerd should be taught to filter out IAC’s and perhaps even respond negatively (IAC will not) to all option commands received.
infocmp(1M)

NAME
infocmp – compare or print out terminfo descriptions

SYNOPSIS
[termname...]

DESCRIPTION
infocmp compares a binary terminfo entry with other terminfo entries, rewrites a
terminfo description to take advantage of the use= terminfo field, or prints out a
terminfo description from the binary file (term) in a variety of formats. It displays
boolean fields first, then numeric fields, followed by the string fields. If no options are
specified and zero, or one termname is specified, the -I option is assumed. If more
than one termname is specified, the -d option is assumed.

OPTIONS
The -d, -c, and -n options can be used for comparisons. infocmp compares the
terminfo description of the first terminal termname with each of the descriptions
given by the entries for the other terminal’s termname. If a capability is defined for only
one of the terminals, the value returned will depend on the type of the capability: F for
boolean variables, −1 for integer variables, and NULL for string variables.

- d Produce a list of each capability that is different between two entries. This
option is useful to show the difference between two entries, created by
different people, for the same or similar terminals.

- c Produce a list of each capability that is common between two entries.
Capabilities that are not set are ignored. This option can be used as a quick
check to see if the -u option is worth using.

- n Produce a list of each capability that is in neither entry. If no termname is
given, the environment variable TERM will be used for both of the
termmes. This can be used as a quick check to see if anything was left out
of a description.

The -I, -L, and -C options will produce a source listing for each terminal named.

- I Use the terminfo names.

- L Use the long C variable name listed in < term.h >.

- C Use the termcap names. The source produced by the -C option may be
used directly as a termcap entry, but not all of the parameterized strings
may be changed to the termcap format. infocmp will attempt to convert
most of the parameterized information, but anything not converted will be
plainly marked in the output and commented out. These should be edited
by hand.

- r When using -C, put out all capabilities in termcap form.

If no termname is given, the environment variable TERM will be used for the terminal
name.
All padding information for strings will be collected together and placed at the beginning of the string where termcap expects it. Mandatory padding (padding information with a trailing '/') will become optional.

All termcap variables no longer supported by terminfo, but are derivable from other terminfo variables, will be displayed. Not all terminfo capabilities will be translated; only those variables which were part of termcap will normally be displayed. Specifying the -r option will take off this restriction, allowing all capabilities to be displayed in termcap form.

Note that because padding is collected to the beginning of the capability, not all capabilities are displayed. Mandatory padding is not supported. Because termcap strings are not as flexible, it is not always possible to convert a terminfo string capability into an equivalent termcap format. A subsequent conversion of the termcap file back into terminfo format will not necessarily reproduce the original terminfo source.

Some common terminfo parameter sequences, their termcap equivalents, and some terminal types which commonly have such sequences, are:

```
terminfo   termcap   Representative Terminals
%p1%c   %.   adm
%p1%d   %d   hp, ANSI standard, vt100
%p1'x'+%c   %+x   concept
%1   %1   ANSI standard, vt100
%p1'x'y'%;   %>xy   concept
%p2 is printed before %p1   %r   hp
```

-u Produce a terminfo source description of the first terminal `terminfo` which is relative to the sum of the descriptions given by the entries for the other terminals' `terminfo` names. It does this by analyzing the differences between the first `terminfo` and the other `terminfo` names and producing a description with use= fields for the other terminals. In this manner, it is possible to retrofit generic `terminfo` entries into a terminal's description. Or, if two similar terminals exist, but were coded at different times, or by different people so that each description is a full description, using infocmp will show what can be done to change one description to be relative to the other.

A capability is displayed with an at-sign (@) if it no longer exists in the first `terminfo`, but one of the other `terminfo` entries contains a value for it. A capability's value is displayed if the value in the first `terminfo` is not found in any of the other `terminfo` entries, or if the first of the other `terminfo` entries that has this capability gives a different value for that capability.
The order of the other `termname` entries is significant. Since the `terminfo` compiler does a left-to-right scan of the capabilities, specifying two `use=` entries that contain differing entries for the same capabilities will produce different results, depending on the order in which the entries are given. `infocmp` will flag any such inconsistencies between the other `termname` entries as they are found.

Alternatively, specifying a capability after a `use=` entry that contains it will cause the second specification to be ignored. Using `infocmp` to recreate a description can be a useful check to make sure that everything was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow down the compilation time, is specifying superfluous `use=` fields. `infocmp` will flag any superfluous `use=` fields.

- `s` Sorts the fields within each type according to the argument below:
  - `d` Leave fields in the order that they are stored in the `terminfo` database.
  - `i` Sort by `terminfo` name.
  - `l` Sort by the long C variable name.
  - `c` Sort by the `termcap` name.

  If the `-s` option is not given, the fields are sorted alphabetically by the `terminfo` name within each type, except in the case of the `-C` or the `-L` options, which cause the sorting to be done by the `termcap` name or the long C variable name, respectively.

- `-v` Print out tracing information on standard error as the program runs.

- `-V` Print out the version of the program in use on standard error and exit.

- `-1` Print the fields one to a line. Otherwise, the fields are printed several to a line to a maximum width of 60 characters.

- `-width` Changes the output to `width` characters.

The location of the compiled `terminfo` database is taken from the environment variable `TERMINFO`. If the variable is not defined, or the terminal is not found in that location, the system `terminfo` database, usually in `/usr/share/lib/terminfo`, is used. The options `-A` and `-B` may be used to override this location.

- `-A directory` Set `TERMINFO` for the first `termname`.

- `-B directory` Set `TERMINFO` for the other `termnames`. With this, it is possible to compare descriptions for a terminal with the same name located in two different databases. This is useful for comparing descriptions for the same terminal created by different people.
Compiled terminal description database.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

See also: captinfo(1M), tic(1M), curses(3CURSES), terminfo(4), attributes(5)
in.ftpd(1M)

NAME    in.ftpd, ftpd – File Transfer Protocol Server


DESCRIPTION in.ftpd is the Internet File Transfer Protocol (FTP) server process. The server may be
invoked by the Internet daemon inetd(1M) each time a connection to the FTP service
is made or run as a standalone server. See services(4).

OPTIONS in.ftpd supports the following options:

-4       When running in standalone mode, listen for connections on an
          AF_INET type socket. The default is to listen on an AF_INET6
          type socket.
-a       Enables use of the ftpaccess(4) file.
-A       Disables use of the ftpaccess(4) file. Use of ftpaccess is
disabled by default.
-C       Non-anonymous users need local credentials (for example, to
          authenticate to remote fileservers). So they should be prompted for
          a password unless they forwarded credentials as part of
          authentication.
-d       Writes debugging information to syslogd(1M).
-i       Logs the names of all files received by the FTP Server to
          xferlog(4). You can override the -i option through use of the
          ftpaccess(4) file.
-I       Disables the use of AUTH and ident to determine the username on
          the client. See RFC 931. The FTP Server is built not to use AUTH
          and ident.
-K       Connections are only allowed for users who can authenticate
          through the ftp AUTH mechanism. (Anonymous ftp may also be
          allowed if it is configured.) ftpd will ask the user for a password
          if one is required.
-l       Logs each FTP session to syslogd(1M).
-L       Logs all commands sent to in.ftpd to syslogd(1M). When the
          -L option is used, command logging will be on by default, once
          the FTP Server is invoked. Because the FTP Server includes USER
          commands in those logged, if a user accidentally enters a
          password instead of the username, the password will be logged.
          You can override the -L option through use of the ftpaccess(4)
          file.
Logs the names of all files transmitted by the FTP Server to xferlog(4). You can override the -o option through use of the ftpaccess(4) file.

-\texttt{P} dataport

The FTP Server determines the port number by looking in the services(4) file for an entry for the ftp-data service. If there is no entry, the daemon uses the port just prior to the control connection port. Use the -P option to specify the data port number.

-\texttt{p} ctrlport

When run in standalone mode, the FTP Server determines the control port number by looking in the services(4) file for an entry for the ftp service. Use the -p option to specify the control port number.

-\texttt{Q}

Disables PID files. This disables user limits. Large, busy sites that do not want to impose limits on the number of concurrent users can use this option to disable PID files.

-\texttt{q}

Uses PID files. The limit directive uses PID files to determine the number of current users in each access class. By default, PID files are used.

-\texttt{r} rootdir

chroot(2) to rootdir upon loading. Use this option to improve system security. It limits the files that can be damaged should a break in occur through the daemon. This option is similar to anonymous FTP. Additional files are needed, which vary from system to system.

-\texttt{S}

Places the daemon in standalone operation mode. The daemon runs in the background. This is useful for startup scripts that run during system initialization. See init.d(4).

-\texttt{s}

Places the daemon in standalone operation mode. The daemon runs in the foreground. This is useful when run from /etc/inittab by init(1M).

-\texttt{T} maxtimeout

Sets the maximum allowable timeout period to maxtimeout seconds. The default maximum timeout limit is 7200 second (two hours). You can override the -T option through use of the ftpaccess(4) file.

-\texttt{t} timeout

Sets the inactivity timeout period to timeout seconds. The default timeout period is 900 seconds (15 minutes). You can override the -t option through use of the ftpaccess(4) file.

-\texttt{u} umask

Sets the default umask to umask.

-\texttt{V}

Displays copyright and version information, then terminate.

-\texttt{v}

Writes debugging information to syslogd(1M).

-\texttt{W}

Does not record user login and logout in the wtmpx(4) file.
in.ftpd(1M)

- w  Records each user login and logout in the wtmpx(4) file. By default, logins and logouts are recorded.

- X  Writes the output from the -i and -o options to the syslogd(1M) file instead of xferlog(4). This allows the collection of output from several hosts on one central loghost. You can override the -X option through use of the ftpaccess(4) file.

Requests  The FTP Server currently supports the following FTP requests. Case is not distinguished.

ABOR  Abort previous command.
ADAT  Send an authentication protocol message.
ALLO  Allocate storage (vacuously).
AUTH  Specify an authentication protocol to be performed. Currently only "GSSAPI" is supported.
APPE  Append to a file.
CCC   Set the command channel protection mode to "Clear" (no protection). Not allowed if data channel is protected.
CDUP  Change to parent of current working directory.
CWD   Change working directory.
DELE  Delete a file.
ENC   Send a privacy and integrity protected command (given in argument).
EPRT  Specify extended address for the transport connection.
EPSV  Extended passive command request.
HELP  Give help information.
LIST  Give list files in a directory (ls -lA).
LPRT  Specify long address for the transport connection.
LPSV  Long passive command request.
MIC   Send an integrity protected command (given in argument).
MKD   Make a directory.
MDTM  Show last time file modified.
MODE  Specify data transfer mode.
NLST  Give name list of files in directory (ls).
NOOP  Do nothing.
PASS  Specify password.
PASV  Prepare for server-to-server transfer.
PBSZ  Specify a protection buffer size.
PROT  Specify a protection level under which to protect data transfers. Allowed
arguments:
     clear        No protection.
     safe         Integrity protection
     private      Integrity and encryption protection
PORT   Specify data connection port.
PWD    Print the current working directory.
QUIT   Terminate session.
REST   Restart incomplete transfer.
RETR   Retrieve a file.
RMD    Remove a directory.
RNFR   Specify rename-from file name.
RNTO   Specify rename-to file name.
SITE   Use nonstandard commands.
SIZE   Return size of file.
STAT   Return status of server.
STOR   Store a file.
STOU   Store a file with a unique name.
STRU   Specify data transfer structure.
SYST   Show operating system type of server system.
TYPE   Specify data transfer type.
USER   Specify user name.
XCUP   Change to parent of current working directory. This request is deprecated.
XCWD   Change working directory. This request is deprecated.
XMKD   Make a directory. This request is deprecated.
XPWD   Print the current working directory. This request is deprecated.
XRMD   Remove a directory. This request is deprecated.

The following nonstandard or UNIX specific commands are supported by the SITE
request:

ALIAS   List aliases.
in.ftpd(1M)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDPATH</td>
<td>List the search path used when changing directories.</td>
</tr>
<tr>
<td>CHECKMETHOD</td>
<td>List or set the checksum method.</td>
</tr>
<tr>
<td>CHECKSUM</td>
<td>Give the checksum of a file.</td>
</tr>
<tr>
<td>CHMOD</td>
<td>Change mode of a file. For example, SITE CHMOD 755 filename.</td>
</tr>
<tr>
<td>EXEC</td>
<td>Execute a program. For example, SITE EXEC program params</td>
</tr>
<tr>
<td>GPASS</td>
<td>Give special group access password. For example, SITE GPASS bar.</td>
</tr>
<tr>
<td>GROUP</td>
<td>Request special group access. For example, SITE GROUP foo.</td>
</tr>
<tr>
<td>GROUPS</td>
<td>List supplementary group membership.</td>
</tr>
<tr>
<td>HELP</td>
<td>Give help information. For example, SITE HELP.</td>
</tr>
<tr>
<td>IDLE</td>
<td>Set idle-timer. For example, SITE IDLE 60.</td>
</tr>
<tr>
<td>UMASK</td>
<td>Change umask. For example, SITE UMASK 002.</td>
</tr>
</tbody>
</table>

The remaining FTP requests specified in RFC 959 are recognized, but not implemented.

The FTP server will abort an active file transfer only when the ABOR command is preceded by a Telnet “Interrupt Process” (IP) signal and a Telnet “Synch” signal in the command Telnet stream, as described in RFC 959. If a STAT command is received during a data transfer that has been preceded by a Telnet IP and Synch, transfer status will be returned.

in.ftpd interprets file names according to the “globbing” conventions used by csh(1). This allows users to utilize the metacharacters: * ? [ ] { } ~

in.ftpd authenticates users according to four rules.

First, the user name must be in the password data base, /etc/passwd. The password must not be null. A password must always be provided by the client before any file operations may be performed. The PAM framework is used to verify that the correct password was entered. See SECURITY below.

Second, the user name must not appear in either the /etc/ftpusers or the /etc/ftpd/ftpusers file. Use of the /etc/ftpusers files is deprecated, although it is still supported.

Third, the users must have a standard shell returned by getusershell(3C).

Fourth, if the user name is anonymous or ftp, an anonymous ftp account must be present in the password file for user ftp. Use ftpconfig(1M) to create the anonymous ftp account and home directory tree.

The FTP Server supports virtual hosting, which can be configured by using ftpaddhost(1M).
The FTP Server does not support sublogins.

The FTP Server has certain extensions. If the user specifies a filename that does not exist with a RETR (retrieve) command, the FTP Server looks for a conversion to change a file or directory that does into the one requested. See ftpconversions(4).

By convention, anonymous users supply their email address when prompted for a password. The FTP Server attempts to validate these email addresses. A user whose FTP client hangs on a long reply, for example, a multiline response, should use a dash (-) as the first character of the user’s password, as this disables the Server’s lreply() function.

The FTP Server can also log all file transmission and reception. See xferlog(4) for details of the log file format.

The SITE EXEC command may be used to execute commands in the /bin/ftp-exec directory. Take care that you understand the security implications before copying any command into the /bin/ftp-exec directory. For example, do not copy in /bin/sh. This would enable the user to execute other commands through the use of sh -c. If you have doubts about this feature, do not create the /bin/ftp-exec directory.

in.ftpd uses PAM(3PAM) for authentication, account management, and session management. The PAM configuration policy, listed through /etc/pam.conf, specifies the module to be used for in.ftpd. Here is a partial pam.conf file with entries for the in.ftpd command using the UNIX authentication, account management, and session management module.

```
ftp auth requisite pam_authtok_get.so.1
ftp auth required pam_dhkeys.so.1
ftp auth required pam_unix_auth.so.1
ftp account required pam_unix_roles.so.1
ftp account required pam_unix_projects.so.1
ftp account required pam_unix_account.so.1
ftp session required pam_unix_session.so.1
```

If there are no entries for the ftp service, then the entries for the "other" service will be used. Unlike login, passwd, and other commands, the ftp protocol will only support a single password. Using multiple modules will prevent in.ftpd from working properly.

PAM does not support anonymous logins.

The in.ftpd command is IPv6-enabled. See ip6(7P).

FILES

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/ftpd/ftpaccess</td>
<td>FTP Server configuration file</td>
</tr>
<tr>
<td>/etc/ftpd/ftpconversions</td>
<td>FTP Server conversions database</td>
</tr>
<tr>
<td>/etc/ftpd/ftpgroups</td>
<td>FTP Server enhanced group access file</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftpu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>External</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), ftp(1), ftppcount(1), ftpwho(1), 1s(1), ftpaddhost(1M), ftpconfig(1M), ftprestart(1M), ftpshut(1M), inetd(1M), syslogd(1M), chroot(2), umask(2), getpwent(3C), getusershell(3C), syslog(3C), ftpaccess(4), ftpconversions(4), ftpgroups(4), ftphosts(4), ftpservers(4), ftpusers(4), group(4), passwd(4), services(4), xferlog(4), wtmpx(4), attributes(5), pam_AUTHTOK_CHECK(5), pam_AUTHTOK_GET(5), pam_AUTHTOK_STORE(5), pam_DHKEYS(5), pam_PASSWD_AUTH(5), pam_UNIX_ACCOUNT(5), pam_UNIX_AUTH(5), pam_UNIX_SESSION(5), ip6(7P)


The anonymous FTP account is inherently dangerous and should be avoided when possible.

PAM does not support anonymous logins.

The FTP Server must perform certain tasks as the superuser, for example, the creation of sockets with privileged port numbers. It maintains an effective user ID of the logged in user, reverting to the superuser only when necessary.

The FTP Server no longer supports the /etc/default/ftpd file. Instead of using `UMASK=nnn` to set the umask, use the `defumask` capability in the `ftpaccess` file. The banner greeting text capability is also now set through the `ftpaccess` file by using the greeting text capability instead of by using `BANNER="..."`. However, unlike the `BANNER` string, the greeting text string is not passed to the shell for evaluation. See `ftpaccess(4)`.

The `pam_unix(5)` module is no longer supported. Similar functionality is provided by `pam_authtok_check(5)`, `pam_authtok_get(5)`, `pam_authtok_store(5)`, `pam_dhkeys(5)`, `pam_passwd_auth(5)`, `pam_unix_account(5)`, `pam_unix_auth(5)`, and `pam_unix_session(5)`.

**DIAGNOSTICS**

`in.ftpd` logs various errors to `syslogd(1M)`, with a facility code of `daemon`.

**NOTES**

System Administration Commands 611
### NAME

**in.iked** – daemon for the Internet Key Exchange (IKE)

### SYNOPSIS

```
in.iked [-d] [-f filename] [-p level]
in.iked -c [-f filename]
```

### DESCRIPTION

`in.iked` performs automated key management for IPsec using the Internet Key Exchange (IKE) protocol.

`in.iked` implements the following:

- IKE authentication with either pre-shared keys, DSS signatures, RSA signatures, or RSA encryption.
- Diffie-Hellman key derivation using either 768, 1024, or 1536-bit public key moduli.
- Authentication protection with cipher choices of DES, Blowfish, or 3DES, and hash choices of either HMAC-MD5 or HMAC-SHA-1. Encryption in `in.iked` is limited to the IKE authentication and key exchange. See `ipsecesp(7P)` for information regarding IPsec protection choices.

`in.iked` starts at boot time if the `/etc/inet/ike/config` file exists. See `ike.config(4)` for the format of this file.

`in.iked` listens for incoming IKE requests from the network and for requests for outbound traffic using the PF_KEY socket. See `pf_key(7P)`.

`in.iked` has two support programs that are used for IKE administration and diagnosis: `ikeadm(1M)` and `ikecert(1M)`.

The `SIGHUP` signal causes the IKE daemon to read `/etc/inet/ike/config` and reload the certificate database. `SIGHUP` is equivalent to using `ikeadm(1M)` to read the `/etc/inet/ike/config` file as a rule, for example:

```
example# ikeadm read rule /etc/inet/ike/config
```

### OPTIONS

The following options are supported:

- `-c`
  Check the syntax of a configuration file.

- `-d`
  Use debug mode. The process stays attached to the controlling terminal and produces large amounts of debugging output.

- `-f filename`
  Use `filename` instead of `/etc/inet/ike/config`. See `ike.config(4)` for the format of this file.

- `-p level`
  Specify privilege level (`level`). This option sets how much `ikeadm(1M)` invocations can change or observe about the running `in.iked`.

Valid `levels` are:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base level</td>
</tr>
</tbody>
</table>
1 Access to pre-shared key info
2 Access to keying material

If -p is not specified, level defaults to 0.

SECURITY
This program has sensitive private keying information in its image. Care should be
taken with any core dumps or system dumps of a running in.iked daemon, as these
files contain sensitive keying information. Use the coreadm(1M) command to limit
any corefiles produced by in.iked.

FILES
/etc/inet/ike/config
/etc/inet/secret/ike.privatekeys/*
Private keys. A private key must have a matching public-key certificate with the
same filename in /etc/inet/ike/publickeys/.

/etc/inet/ike/publickeys/*
Public-key certificates. The names are only important with regard to matching
private key names.

/etc/inet/ike/crls/*
Public key certificate revocation lists.

/etc/inet/secret/ike.preshared
IKE pre-shared secrets for Phase I authentication.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
coreadm(1M), ikeadm(1M), ikecert(1M), ike.config(4), attributes(5),
ipsecesp(7P)

Harkins, Dan and Carrel, Dave. RFC 2409, Internet Key Exchange (IKE). Network

Maughan, Douglas, Schertler, M., Schneider, M., Turner, J. RFC 2408, Internet Security
November 1998.

Piper, Derrell, RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP.
init(1M)

NAME
init, telinit – process control initialization

SYNOPSIS
/sbin/init [0123456abcQqSs]
/etc/telinit [0123456abcQqSs]

DESCRIPTION
init is a general process spawner. Its primary role is to create processes from
information stored in the file /etc/inittab.

Run Level Defined
At any given time, the system is in one of eight possible run levels. A run level is a
software configuration under which only a selected group of processes exists.
Processes spawned by init for each of these run levels are defined in
/etc/inittab. init can be in one of eight run levels, 0–6 and S or s (S and s are
identical). The run level changes when a privileged user runs /sbin/init. This
sends appropriate signals to the original init spawned by the operating system at
boot time, saying which run level to invoke.

When the system is booted, init is invoked and the following occurs. First, it reads
/etc/default/init to set environment variables. This is typically where TZ (time
zone) and locale-related environments such as LANG or LC_CTYPE get set. (See the
FILES section at the end of this page.) init then looks in /etc/inittab for the
initdefault entry (see inittab(4)). If the initdefault entry:

exists
init usually uses the run level specified in that entry
as the initial run level to enter.

does not exist
/etc/inittab, init asks the user to enter a run
level from the system console.

S or s
init goes to the single-user state. In this
state, the system console device
(/dev/console) is opened for reading and
writing and the command /sbin/su, (see
su(1M)), is invoked. Use either init or
telinit to change the run level of the
system. Note that if the shell is terminated
(using an end-of-file), init only
re-initializes to the single-user state if
/etc/inittab does not exist.

0–6
init enters the corresponding run level.
Run levels 0, 5, and 6 are reserved states for
shutting the system down. Run levels 2, 3,
and 4 are available as multi-user operating
states.

If this is the first time since power up that init has entered a run level other than
single-user state, init first scans /etc/inittab for boot and bootwait entries
(see inittab(4)). These entries are performed before any other processing of
/etc/inittab takes place, providing that the run level entered matches that of the
entry. In this way any special initialization of the operating system, such as mounting 
file systems, can take place before users are allowed onto the system. init then scans
/etc/inittab and executes all other entries that are to be processed for that run 
level.

To spawn each process in /etc/inittab, init reads each entry and for each entry 
that should be respawned, it forks a child process. After it has spawned all of the 
processes specified by /etc/inittab, init waits for one of its descendant processes 
to die, a powerfail signal, or a signal from another init or telinit process to 
change the system’s run level. When one of these conditions occurs, init re-examines 
/etc/inittab.

init(1M)

init(1M)
init(1M)

If there are no entries for the \texttt{init} service, then the entries for the "other" service will be used.

\begin{tabular}{|l|p{14cm}|}
\hline
\textbf{OPTIONS} & \\
\hline
0 & Go into firmware. \\
\hline
1 & Put the system in system administrator mode. All local file systems are mounted. Only a small set of essential kernel processes are left running. This mode is for administrative tasks such as installing optional utility packages. All files are accessible and no users are logged in on the system. \\
\hline
2 & Put the system in multi-user mode. All multi-user environment terminal processes and daemons are spawned. This state is commonly referred to as the multi-user state. \\
\hline
3 & Extend multi-user mode by making local resources available over the network. \\
\hline
4 & Is available to be defined as an alternative multi-user environment configuration. It is not necessary for system operation and is usually not used. \\
\hline
5 & Shut the machine down so that it is safe to remove the power. Have the machine remove power, if possible. \\
\hline
6 & Stop the operating system and reboot to the state defined by the \texttt{initdefault} entry in /etc/inittab. \\
\hline
\texttt{a, b, c} & process only those /etc/inittab entries having the \texttt{a, b, or c} run level set. These are pseudo-states, which may be defined to run certain commands, but which do not cause the current run level to change. \\
\hline
\texttt{Q, q} & Re-examine /etc/inittab. \\
\hline
\texttt{S, s} & Enter single-user mode. This is the only run level that doesn’t require the existence of a properly formatted /etc/inittab file. If this file does not exist, then by default, the only legal run level that \texttt{init} can enter is the single-user mode. When in single-user mode, the filesystems required for basic system operation will be mounted. When the system comes down to single-user mode, these file systems will remain mounted (even if provided by a remote file server), and any other local filesystems will also be left mounted. During the transition down to single-user mode, all processes started by \texttt{init} or \texttt{init.d} scripts that should only be running in multi-user mode are killed. In addition, any process that has a \texttt{utmpx} entry will be killed. This last condition insures that all port monitors started by the SAC are killed and all services started by these port monitors, including \texttt{ttymon} login services, are killed. \\
\hline
\texttt{/dev/console} & System console device. \\
\hline
\end{tabular}
/etc/default/init contains environment variables and their default values. For example, for the timezone variable, TZ, you might specify TZ=US/Pacific. The variables are:

**TZ**
Either specifies the timezone information (see ctime(3C)) or the name of a timezone information file /usr/share/lib/zoneinfo.

Refer to the TIMEZONE(4) man page before changing this setting.

**CMASK**
The mask (see umask(1)) that init uses and that every process inherits from the init process. If not set, init uses the mask it inherits from the kernel. Note that init always attempts to apply a umask of 022 before creating a file, regardless of the setting of CMASK.

**LC_CTYPE**
Character characterization information.

**LC_MESSAGES**
Message translation.

**LC_MONETARY**
Monetary formatting information.

**LC_NUMERIC**
Numeric formatting information.

**LC_TIME**
Time formatting information.

**LC_ALL**
If set, all other LC_* environmental variables take-on this value.

**LANG**
If LC_ALL is not set, and any particular LC_* is also not set, the value of LANG is used for that particular environmental variable.

/etc/initpipe
A named pipe used for internal communication.

/etc/inittab
Controls process dispatching by init.

/etc/ioctl.syscon
ioctl states of the console, as saved by init when single-user state is entered.

/var/adm/utmpx
User access and administration information.

/var/adm/wtmpx
History of user access and administration information.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

login(1), sh(1), stty(1), who(1), shutdown(1M), su(1M), ttymon(1M), ioctl(2), kill(2), ctime(3C), pam(3PAM), init(4), pam.conf(4), TIMEZONE(4), utmpx(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5), termio(7I)

DIAGNOSTICS

If init finds that it is respawning an entry from /etc/inittab more than ten times in two minutes, assumes that there is an error in the command string in the entry, and generates an error message on the system console. It will then refuse to respawn this entry until either five minutes has elapsed or it receives a signal from a user-spawned init or telinit. This prevents init from eating up system resources when someone makes a typographical error in the init(1M) file, or a program is removed that is referenced in /etc/init(1M).

NOTES

init and telinit can be run only by a privileged user.

The S or s state must not be used indiscriminately in /etc/init(1M). When modifying this file, it is best to avoid adding this state to any line other than initdefault.

If a default state is not specified in the initdefault entry in /etc/init(1M), state 6 is entered. Consequently, the system will loop by going to firmware and rebooting continuously.

If the utmpx(4) file cannot be created when booting the system, the system will boot to state “s” regardless of the state specified in the initdefault entry in /etc/init(1M). This can occur if the /var file system is not accessible.

When a system transitions down to the S or s state, the /etc/nologin file (see nologin(4)) is created. Upon subsequent transition to run level 2, this file is removed by a script in the /etc/rc2.d directory.

init uses /etc/initpipe, a named pipe, for internal communication.

The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
init.wbem – start and stop the CIM Boot Manager

/etc/init.d/init.wbem start | stop | status

The `init.wbem` utility is run automatically during installation and each time the system is rebooted. This utility manipulates the CIM Object Manager (CIMOM) and the Solaris Management Console server, both of which run combined in a single process. `init.wbem` can be used to start, stop, or retrieve status from the server.

### CIM Object Manager

The CIM Object Manager manages CIM objects on a WBEM-enabled system. A CIM object is a computer representation, or model, of a managed resource, such as a printer, disk drive, or CPU. CIM objects are stored internally as Java classes.

When a WBEM client application accesses information about a CIM object, the CIM Object Manager contacts either the appropriate provider for that object or the CIM Object Manager Repository. Providers are classes that communicate with managed objects to access data.

When a WBEM client application requests data from a managed resource that is not available from the CIM Object Manager Repository, the CIM Object Manager forwards the request to the provider for that managed resource. The provider dynamically retrieves the information.

At startup, the CIM Object Manager performs the following functions:

- Listens for RMI connections on RMI port 5987 and for XML/HTTP connections on HTTP port 5988.
- Sets up a connection to the CIM Object Manager Repository.
- Waits for incoming requests.

During normal operations, the CIM Object Manager performs the following functions:

- Performs security checks to authenticate user login and authorization to access namespaces.
- Performs syntactical and semantic checking of CIM data operations to ensure that they comply with the latest CIM Specification.
- Routes requests to the appropriate provider or to the CIM Object Manager Repository.
- Delivers data from providers and from the CIM Object Manager Repository to WBEM client applications.

A WBEM client application contacts the CIM Object Manager to establish a connection when it needs to perform WBEM operations, such as creating a CIM class or updating a CIM instance. When a WBEM client application connects to a CIM Object Manager, it gets a reference to the CIM Object Manager, which it then uses to request services and operations.
The Solaris Management Console server is the back end to the front end console, smc(1M). It provides tools for the console to download and performs common services for the console and its tools to use, such as authentication, authorization, logging, messaging, and persistence.

The init.wbem script is installed in the /etc/init.d directory.

The following options are supported:

- **start**: Starts the CIMOM and Solaris Management Console server on the local host.
- **stop**: Stops the CIMOM and Solaris Management Console server on the local host.
- **status**: Gets the status of the CIMOM and Solaris Management Console server on the local host.

When the init.wbem script is run, it does not run the CIMOM and Solaris Management Console server directly. The server process is in Java and is too heavyweight to be run immediately at system boot time. Instead, three lightweight processes listen on three different ports that the CIMOM and the Solaris Management Console server normally use. This acts similarly to inetd(1M).

Because Java programs cannot inherit file descriptors as other programs can, there is a small time period from when the first connection is made until the server is fully operational where client connections may be dropped. WBEM clients are immune to this, as they will retry until the server comes online. Solaris Management Console clients are not immune, and it may be necessary to manually reconnect, though this should not happen in the common case.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcor</td>
</tr>
</tbody>
</table>

SEE ALSO

inetd(1M), mofcomp(1M), smc(1M), smcconf(1M), wbemadmin(1M), wbemlogviewer(1M), attributes(5)
The **inityp2l** utility assists with creation of the NISLDAPmapping and ypserf files. See NISLDAPmapping(4) and ypserf(4). inityp2l examines the NIS maps on a system. and through a dialogue with the user, determines which NIS to (and from) LDAP mappings are required. A NISLDAPmapping file is then created based on this information. The utility asks users about their LDAP server configuration and a ypserf file is created based on this information.

The **inityp2l** utility handles mappings for standard NIS maps and the auto.* series of maps. If requested, it creates default mappings for custom maps, with each map entry represented as a single DIT string. inityp2l does not handle full custom mapping, but if requested, inityp2l will insert comments into the NISLDAPmapping file that indicate where these should be added.

To write to the NISLDAPmapping or ypserf files is potentially dangerous. inityp2l warns the user and asks for confirmation before:

1. it overwrites either file
2. it writes to the default NISLDAPmapping file location, if this file did not previously exist. This is important because the existence of a file in this location causes NIS components to work NIS to LDAP (N2L) mode when next restarted, rather than to traditional NIS mode.

**inityp2l** assists with rapid creation of a simple N2L configuration files. It is not a general purpose tool for the management of these files. An advanced user who would like to maintain the files or use custom mappings should examine the output of **inityp2l** and customize it by using a standard text editor.

**inityp2l** supports the following options:

- `-c` Specify the name of the generated ypserf file. The default location is described in FILES

- `-m` Specify the name of the generated NISLDAPmapping file. The default is described in FILES

**FILES**

- `/var/yp` The directory to be searched for candidate domains (`/var/yp/*`) and NIS maps (`/var/yp/*/*`) 

- `/var/yp/NISLDAPmapping` The default location for the generated NISLDAPmapping file

- `/etc/default/ypserv` The default location for the generated ypserf file
inityp2l(1M)

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

**SEE ALSO**

NISLDAPmapping(4), ypserv(4), attributes(5)
in.lpd(1M)

NAME
in.lpd – BSD print protocol adaptor

SYNOPSIS
/usr/lib/print/in.lpd

DESCRIPTION
in.lpd implements the network listening service for the BSD print protocol specified
in RFC 1179. The BSD print protocol provides a remote interface for systems to interact
with a local spooling system. The protocol defines five standard requests from the
client to the server: starting queue processing, transferring print jobs, retrieving terse
status, retrieving verbose status, and canceling print jobs.

in.lpd is started from inetd (see inetd(1M)). inetd waits for connections on TCP
port 515. Upon receipt of a connect request, in.lpd is started to service the
connection. Once the request has been filled, in.lpd closes the connection and exits.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
non-zero An error occurred.

FILES
/etc/printers.conf
System printer configuration database.

printers.conf.byname
NIS version of /etc/printers.conf.

fns.ctx_dir.domain
NIS+ version of /etc/printers.conf.

/usr/lib/print/bsd-adaptor/bsd_*.*
Spooler translation modules.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), printers.conf(4), attributes(5)
DESCRIPTION

The **in.mpathd** daemon performs Network Interface Card (NIC) failure and repair detection. In the event of a NIC failure, it causes IP network access from the failed NIC to failover to a standby NIC, if available, or to any another operational NIC that has been configured as part of the same network multipathing group. Once the failed NIC is repaired, all network access will be restored to the repaired NIC.

**in.mpathd** needs a special test address on each NIC for the purpose of sending and receiving probes on each NIC. Use the *ifconfig* command -failover option to configure these test addresses. See *ifconfig*(1M). The test address must belong to a subnet that is known to the hosts and routers on the link.

The **in.mpathd** daemon can detect NIC failure and repair by two methods, by sending and receiving ICMP echo requests and replies on each NIC, and by monitoring the `IFF_RUNNING` flag for each NIC. The link state on some models of NIC is indicated by the `IFF_RUNNING` flag, allowing for faster failure detection when the link goes down. The **in.mpathd** daemon considers a NIC to have failed if either of the above two methods indicates failure. A NIC is considered to be repaired only if both methods indicate the NIC is repaired.

The **in.mpathd** daemon sends the ICMP echo request probes to on-link routers. If no routers are available, it sends the probes to neighboring hosts. Thus, for network failure detection and repair, there must be at least one neighbor on each link that responds to ICMP echo request probes.

**in.mpathd** works on both IPv4 and IPv6. If IPv4 is plumbed on a NIC, an IPv4 test address is configured on the NIC, and the NIC is configured as part of a network multipathing group, then **in.mpathd** will start sending ICMP probes on the NIC using IPv4.

In the case of IPv6, the link-local address must be configured as the test address. The **in.mpathd** daemon will not accept a non-link-local address as a test address. If the NIC is part of a multipathing group, and the test address has been configured, then **in.mpathd** will probe the NIC for failures using IPv6.

Even if both the IPv4 and IPv6 protocol streams are plumbed, it is sufficient to configure only one of the two, that is, either an IPv4 test address or an IPv6 test address on a NIC. If only an IPv4 test address is configured, it probes using only ICMPv4. If only an IPv6 test address is configured, it probes using only ICMPv6. If both type test addresses are configured, it probes using both ICMPv4 and ICMPv6.

The **in.mpathd** daemon accesses three variable values in `/etc/default/mpathd`:

- `FAILURE_DETECTION_TIME`
- `FAILBACK`
- `TRACK_INTERFACES_ONLY_WITH_GROUPS`
The **FAILURE_DETECTION_TIME** variable specifies the NIC failure detection time for the ICMP echo request probe method of detecting NIC failure. The shorter the failure detection time, the greater the volume of probe traffic. The default value of **FAILURE_DETECTION_TIME** is 10 seconds. This means that NIC failure will be detected by **in.mpathd** within 10 seconds. NIC failures detected by the IFF_RUNNING flag being cleared are acted on as soon as the **in.mpathd** daemon notices the change in the flag. The NIC repair detection time cannot be configured; however, it is defined as double the value of **FAILURE_DETECTION_TIME**.

By default, **in.mpathd** does failure detection only on NICs that are configured as part of a multipathing group. You can set **TRACK_INTERFACES_ONLY_WITH_GROUPS** to **no** to enable failure detection by **in.mpathd** on all NICs, even if they are not part of a multipathing group. However, **in.mpathd** cannot do failover from a failed NIC if it is not part of a multipathing group.

The **in.mpathd** daemon will restore network traffic back to the previously failed NIC, after it has detected a NIC repair. To disable this, set the value of **FAILBACK** to **no** in `/etc/default/mpathd`.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>

**SEE ALSO**

ifconfig(1M), attributes(5), icmp(7P), icmp6(7P),

*System Administration Guide, Volume 3*

**DIAGNOSTICS**

**IFF_NOFAILOVER address address** is not unique and failure detection is not possible

Every test address that is configured must be unique on the system. Otherwise, **in.mpathd** cannot do failure detection. Since the IPv6 test address is a link-local address, which in turn is derived from the ethernet address, each NIC must have a unique MAC address.

**NIC interface_name of group group_name is not plumbed for IPv[4|6] and may affect failover capability**

All NICs in a multipathing group must be homogeneously plumbed. For example, if a NIC is plumbed for IPv4, then all NICs in the group must be plumbed for IPv4. The streams modules pushed on all NICs must be identical.
Failures cannot be detected on `interface_name` as no IFF_NOFAILOVER address is available

Every NIC that is configured as part of a multipathing group must have a test address, which can be either IPv4 or IPv6, or both. Otherwise `in.mpathd` cannot probe the NIC, and this message is displayed.

Invalid failure detection time assuming default 10000
An invalid value was encountered for `FAILURE_DETECTION_TIME` in the `/etc/default/mpathd` file.

Too small failure detection time assuming minimum 100
The minimum value that can be specified for `FAILURE_DETECTION_TIME` is currently 100 milliseconds.

Invalid value for `FAILBACK` value
Valid values for the boolean variable `FAILBACK` are `yes` or `no`.

Invalid value for `TRACK_INTERFACES_ONLY_WITH_GROUPS` value
Valid values for the boolean variable `TRACK_INTERFACES_ONLY_WITH_GROUPS` are `yes` or `no`.

Cannot meet requested failure detection time of `time` ms on (inet[6] `interface_name`) new failure detection is `time` ms
The round trip time for ICMP probes is higher than the specified failure detection time. The network is probably congested or the probe targets are loaded. `in.mpathd` automatically increases the failure detection time to whatever it can achieve under these conditions.

Improved failure detection time `time` ms on (inet[6] `interface_name`) The round trip time for ICMP probes has now decreased and `in.mpathd` has lowered the failure detection time correspondingly.

NIC failure detected on `interface_name`
`in.mpathd` has detected NIC failure on `interface_name`, and has set the IFF_FAILED flag on NIC `interface_name`.

Successfully failed over from NIC `interface_name1` to NIC `interface_name2`
`in.mpathd` has caused the network traffic to failover from NIC `interface_name1` to NIC `interface_name2`, which is part of the multipathing group.

NIC repair detected on `interface_name`
`in.mpathd` has detected that NIC `interface_name` is repaired and operational. If the IFF_FAILED flag on the NIC was previously set, it will be reset.

Successfully failed back to NIC `interface_name`
`in.mpathd` has restored network traffic back to NIC `interface_name`, which is now repaired and operational.
The link has gone down on `interface_name`
in.mpathd has detected that the `IFF_RUNNING` flag for NIC `interface_name` has been cleared, indicating the link has gone down.

The link has come up on `interface_name`
in.mpathd has detected that the `IFF_RUNNING` flag for NIC `interface_name` has been set, indicating the link has come up.
**NAME**
in.named, named – Internet domain name server (DNS)

**SYNOPSIS**
```
in.named [-d debuglevel] [-p port#] [ [-b | -c] config_file] [-fqrv]
       [-u user_name] [-g group_name] [-t directory] [-w directory] [config_file]
```

**DESCRIPTION**
in.named is the Internet domain name server. For more information on the Internet name-domain system, see RFC 1033, RFC 1034, and RFC 1035.

When run without any arguments, in.named reads the default configuration file /etc/named.conf, reads any initial data, and listens for queries. If you give a `config_file` argument at the end of the command line, it will override any `config_file` that you specified by using the `-b` or `-c` options.

The named.conf(4) configuration file controls some of the options and behavior for in.named.

**OPTIONS**
in.named supports the following options:

- `-b|c config_file`
  Use an alternative configuration file. The default value for `config_file` is `/etc/named.conf`. The `config_file`, if any, specified at the end of the command line, overrides any value specified by this argument.

- `-d debuglevel`
  Print debugging information. The value of `debuglevel` determines the level of messages to print. If negative, `debuglevel` is set to 1.

  The new debugging framework is considerably more sophisticated than in previous versions of in.named. The logging statement in the configuration file allows for multiple, distinct levels of debugging for each of a large set of categories of events, for example, for queries and transfers in and out. See named.conf(4).

- `-f`
  Run this process in the foreground. The process will not `fork`(2). By default, in.named runs as a daemon in the background.

- `-g group_name`
  Specify the group the server should run as after it initializes. The value specified may be either a group name or a numeric group id.

- `-p port#`
  Use the specified remote port number. in.named will send queries to this port number. By default, the value is the standard port number, that is, the port number returned by `getservbyname`(3SOCKET) for the service domain.

  The in.named command previously supported the syntax:

  `-p port#/localport#` where `port#` was the first port used when contacting remote servers and `localport#` was the service port bound by the local instance of in.named.
The current usage is equivalent to the old usage without `localport#` specified. This functionality can be specified with the `listen-on` clause `options` statement in the configuration file.

`-q`
Trace all incoming queries. This option is deprecated in favor of the `queries` logging category of the logging statement in `named.conf`. See `named.conf(4)`.

`-r`
Turn recursion off in the server. Responses come only from local (primary or secondary) zones. You can use this option on root servers. By default, the server uses recursion. This option is deprecated and is overridden by the `recursion` clause of the `options` statement in the configuration file.

`-t directory`
Specify the directory that the server is to `chroot(2)` into when it finishes processing command line arguments.

`-u user_name`
Specify the user that the server should run as after it initializes. The value of `user_name` may be either a user name or a numeric user id. If the `-q` option is not invoked, then the group id will be the primary group of the user specified. Since `initgroups(3C)` is called, all of the user’s group will be available to the server.

`-v`
Report the version and exit.

`-w directory`
Set the working directory of the server. The `directory` clause of the `options` statement overrides any value specified on the command line. The default working directory is the current directory (".").

For compatibility with older implementations any additional argument will be interpreted as the name of the configuration file. This argument overrides any `config_file` specified by means of the `-b` or `-c` options. If no further argument is given, then the default configuration file, `/etc/named.conf` is used.

### USAGE

**Master File Format**

The master file consists of control information and a list of resources for objects in the zone. The file has the following form:

```
$INCLUDE <filename><opt_domain>
$ORIGIN <domain>
$TTL <ttl>
<domain><opt_ttl><opt_class><type><resource_record_data>
```

The fields are defined as follows:
The value of `domain` can be "." for root, "@" for the current origin, or a standard domain name. If `domain` is a standard domain name that does not end with ".", the current origin is appended to the domain. Domain names ending with "." are not modified.

This field is used to define an origin for the data in an included file. It is equivalent to placing an `$ORIGIN` statement before the first line of the included file. This field is optional. Neither the `opt_domain` field nor `$ORIGIN` statements in the included file modify the current origin for this file.

An integer number that sets the default time-to-live for future records that do not have an explicit `ttl`.

An optional integer number for the time-to-live field. If not set the `ttl` is taken from the last `$TTL` statement. If no `$TTL` statement has occurred then the SOA minimum value is used, and a warning is generated.

The object address type. Currently only one type is supported, IN, for objects connected to the DARPA Internet.

This field contains one of the following tokens. The data expected in the `resource_record_data` field is in parentheses:

- **A**: A host address (dotted-quad IP address).
- **NS**: An authoritative name server (domain).
- **MX**: A mail exchanger (domain), preceded by a preference value (0..32767), with lower numeric values representing higher logical preferences.
- **CNAME**: The canonical name for an alias (domain).
- **SOA**: Marks the start of a zone of authority (domain of originating host, domain address of maintainer, a serial number and the following parameters in seconds: refresh, retry, expire and minimum `ttl`). See RFC 883 and RFC 2308.
- **NULL**: A NULL resource record (no format or data).
- **RP**: A Responsible Person for some domain name (mailbox, TXT-referral).
- **PTR**: A domain name pointer (domain).
- **HINFO**: Host information (`cpu_type`, `os_type`).

Resource records normally end at the end of a line, but may be continued across lines between opening and closing parentheses. Comments are introduced by semicolons and continue to the end of the line.
There are other resource record types not shown here. Some resource record types may have been standardized in more recent RFCs, but they have not yet been implemented in this version of BIND.

Each master zone file should begin with an SOA record for the zone. An example SOA record is as follows:

```
@ IN SOA ucbvax.Berkeley.EDU. rwh.ucbvax.Berkeley.EDU. ( 
1989020501 ; serial 
10800 ; refresh 
3600 ; retry 
3600000 ; expire 
86400 ) ; minimum
```

The SOA specifies a serial number that should be incremented each time the master file is changed. Note that the serial number can be given as a dotted number, but this is a very unwise thing to do since the translation to normal integers is by means of concatenation rather than multiplication and addition. You can spell out the year, month, day of month, and 0..99 version number and still fit inside the unsigned 32-bit size of this field. (It’s true that we will have to rethink this strategy in the year 4294, but we’re not worried about it.)

Secondary servers check the serial number at intervals specified by the refresh time in seconds; if the serial number changes, a zone transfer will be done to load the new data. If a master server cannot be contacted when a refresh is due, the retry time specifies the interval at which refreshes should be attempted. If a master server cannot be contacted within the interval given by the expire time, all data from the zone is discarded by secondary servers. The minimum value is the cache time-to-live for negative answers. See RFC 2308.

FILES

/etc/named.conf
  default name server configuration file.
/var/run/named.pid
  the process ID.

srvcwd
  in.named’s current working directory, usually set by the “directory” options statement in named.conf.

srvcwd/named_dump.db
  dump of the name server database.

srvcwd/named.run
  debug output.

srvcwd/named.stats
  name server statistics data.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUN/Winamd</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard BIND 8.2.4</td>
</tr>
</tbody>
</table>

SEE ALSO

kill(1), named-xfer(1M), chroot(2), fork(2), getservbyname(3SOCKET), resolver(3RESOLV), signal(3C), syslog(3C), resolv.conf(4), attributes(5)


NOTES

The boot file directives domain and suffixes are now obsolete. They have been replaced by a resolver-based implementation of suffixing for partially-qualified domain names. The earlier mechanisms failed under a number of situations, for example, when the local name server did not have complete information.

The following signals have the specified effect when sent to the server process using the kill(1) command:
<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGHUP</td>
<td>Causes the server to read <code>named.conf</code> and reload the database. SIGHUP will also cause the server to check the serial number on all secondary zones.</td>
</tr>
<tr>
<td>SIGINT</td>
<td>Dumps the current database and cache to <code>named_dump.db</code>.</td>
</tr>
<tr>
<td>SIGILL</td>
<td>Dumps statistics data into <code>named.stats</code>. Statistics data is appended to the file.</td>
</tr>
<tr>
<td>SIGTERM</td>
<td>Saves any modified dynamic zones to the file system and shuts down the server.</td>
</tr>
<tr>
<td>SIGUSR1</td>
<td>Turns on debugging. Each additional SIGUSR1 signal increments the debug level.</td>
</tr>
<tr>
<td>SIGUSR2</td>
<td>Turns off debugging completely.</td>
</tr>
<tr>
<td>SIGWINCH</td>
<td>Toggles logging of all incoming queries by means of <code>syslog(3C)</code>.</td>
</tr>
</tbody>
</table>
in.ndpd(1M)

**NAME**  
in.ndpd – daemon for IPv6 autoconfiguration

**SYNOPSIS**  
/usr/lib/inet/in.ndpd [-ad] [-f config_file]

**DESCRIPTION**  
in.ndpd provides both the host and router autoconfiguration components of Neighbor Discovery for IPv6 and Stateless Address Autoconfiguration for IPv6. In particular, in.ndpd implements

- router discovery;
- prefix discovery;
- parameter discovery; and
- address autoconfiguration.

Other aspects of Neighbor Discovery are implemented by ip6(7P), including:

- address resolution;
- neighbor unreachability detection; and
- redirect.

The duplicate address detection function is implemented by ifconfig(1M).

If the /etc/inet/ndpd.conf file does not exist or does not set the variable AdvSendAdvertisements to true for a network interface, then in.ndpd will make the node a host for that interface, that is, sending router solicitation messages and then using router advertisement messages it receives to autoconfigure the node. Note that in.ndpd only autoconfigures the addresses of global or site-local scope from the prefix advertisement.

If AdvSendAdvertisements is set to true for an interface, then in.ndpd will perform router functions on that interface, that is, sending router advertisement messages to autoconfigure the attached hosts, but not use any advertisements it receives for autoconfiguration. However, when sending advertisements, in.ndpd will use the advertisements it sends itself to autoconfigure its prefixes.

**OPTIONS**

- `-a` Turn off stateless address auto configuration. When set, the daemon does not autoconfigure any addresses and does not renumber any addresses.

- `-d` Turn on large amounts of debugging output on stdout. When set, the program runs in the foreground and stays attached to the controlling terminal.

- `-f config_file` Use config_file for configuration information instead of the default /etc/inet/ndpd.conf.

- `-t` Turn on tracing (printing) of all sent and received packets to stdout. When set, the program runs in the foreground and stays attached to the controlling terminal.

**FILES**

/etc/inet/ndpd.conf  
Configuration file. This file is not necessary on a host, but it is required on a router to enable in.ndpd to advertise autoconfiguration information to the hosts.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

ifconfig(1M), ndpd.conf(4), attributes(5), icmp6(7P), ip6(7P) attributes(5)


DIAGNOSTICS

Receipt of a SIGHUP signal will make in.ndpd restart and reread /etc/inet/ndpd.conf.
in.rarpd starts a daemon that responds to Reverse Address Resolution Protocol (RARP) requests. The daemon forks a copy of itself that runs in background. It must be run as root.

RARP is used by machines at boot time to discover their Internet Protocol (IP) address. The booting machine provides its Ethernet address in a RARP request message. Using the ethers and hosts databases, in.rarpd maps this Ethernet address into the corresponding IP address which it returns to the booting machine in an RARP reply message. The booting machine must be listed in both databases for in.rarpd to locate its IP address. in.rarpd issues no reply when it fails to locate an IP address.

in.rarpd uses the STREAMS-based Data Link Provider Interface (DLPI) message set to communicate directly with the datalink device driver.

The following options are supported:

- `-a` Get the list of available network interfaces from IP using the SIOCGIFADDR ioctl and start a RARP daemon process on each interface returned.
- `-d` Print assorted debugging messages while executing.

**EXAMPLES**

**EXAMPLE 1** Starting An in.rarpd Daemon For Each Network Interface Name Returned From /dev/ip:

The following command starts an in.rarpd for each network interface name returned from /dev/ip:

```
example# /usr/sbin/in.rarpd -a
```

**EXAMPLE 2** Starting An in.rarpd Daemon On The Device /dev/le With The Device Instance Number 0

The following command starts one in.rarpd on the device /dev/le with the device instance number 0.

```
exmple# /usr/sbin/in.rarpd le 0
```

**FILES**

/etc/ethers File or other source, as specified by nsswitch.conf(4).
/etc/hosts File or other source, as specified by nsswitch.conf(4).
/tftpboot
/dev/ip
/dev/arp
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbsu</td>
</tr>
</tbody>
</table>

SEE ALSO

boot(1M), ifconfig(1M), ethers(4), hosts(4), netconfig(4),
nsswitch.conf(4), attributes(5), dlpi(7P)

in.rdisc(1M)

NAME
in.rdisc, rdisc – network router discovery daemon

SYNOPSIS
/usr/sbin/in.rdisc [-a] [-f] [-s] [send-address] [receive-address]
/usr/sbin/in.rdisc -r [-p preference] [-T interval] [send-address]

DESCRIPTION
The functionality provided by the in.rdisc daemon is now included in
in.routed(1M). in.rdisc remains part of the software distribution of the Solaris
Operating Environment. However, the system startup scripts in /etc/init.d start
in.routed and do not start in.rdisc. If you want to customize router discovery
behavior, consult gateways(4). See in.routed(1M) for information on that daemon.

in.rdisc implements the ICMP router discovery protocol. The first form of the
command is used on hosts and the second form is used on routers.

in.rdisc can be invoked in either the first form (host mode) or second form (router
mode).

On a host, in.rdisc populates the network routing tables with default routes. On a
router, advertises the router to all the hosts.

Host (First Form)
On a host, in.rdisc listens on the ALL_HOSTS (224.0.0.1) multicast address for
ROUTER_ADVERTISE messages from routers. The received messages are handled by
first ignoring those listed router addresses with which the host does not share a
network. Among the remaining addresses, the ones with the highest preference are
selected as default routers and a default route is entered in the kernel routing table for
each one of them.

Optionally, in.rdisc can avoid waiting for routers to announce themselves by
sending out a few ROUTER_SOLICITATION messages to the ALL_ROUTERS (224.0.0.2)
multicast address when it is started.

A timer is associated with each router address. The address will no longer be
considered for inclusion in the routing tables if the timer expires before a new advertise
message is received from the router. The address will also be excluded from
consideration if the host receives an advertise message with the preference being
maximally negative or with a lifetime of zero.

Router (Second Form)
When in.rdisc is started on a router, it uses the SIOCGIFCONF ioctl(2) to find the
interfaces configured into the system and it starts listening on the ALL_ROUTERS
multicast address on all the interfaces that support multicast. It sends out advertise
messages to the ALL_HOSTS multicast address advertising all its IP addresses. A few
initial advertise messages are sent out during the first 30 seconds and after that it will
transmit advertise messages approximately every 600 seconds.

When in.rdisc receives a solicitation message, it sends an advertise message to the
host that sent the solicitation message.

When in.rdisc is terminated by a signal, it sends out an advertise message with the
preference being maximally negative.
OPTIONS
- a  Accept all routers independent of the preference they have in their advertise messages. Normally, in.rdisc only accepts (and enters in the kernel routing tables) the router or routers with the highest preference.
- f  Run in.rdisc forever even if no routers are found. Normally, in.rdisc gives up if it has not received any advertise message after soliciting three times, in which case it exits with a non-zero exit code. If -f is not specified in the first form then -s must be specified.
- r  Act as a router, rather than a host.
- s  Send three solicitation messages initially to quickly discover the routers when the system is booted. When -s is specified, in.rdisc exits with a non-zero exit code if it can not find any routers. This can be overridden with the -f option.
- p preference  Set the preference transmitted in the solicitation messages. The default is zero.
- T interval  Set the interval between transmitting the advertise messages. The default time is 600 seconds.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWroute</td>
</tr>
</tbody>
</table>

SEE ALSO
in.routed(1M), ioctl(2), gateways(4), attributes(5), icmp(7P), inet(7P)

in.rexecd(1M)

NAME

in.rexecd, rexecd – remote execution server

SYNOPSIS

in.rexecd

DESCRIPTION

in.rexecd is the server for the rexec(3SOCKET) routine. The server provides remote execution facilities with authentication based on user names and passwords. It is invoked automatically as needed by inetd(1M), and then executes the following protocol:

1. The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.
2. If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client’s machine.
3. A null terminated user name of at most 16 characters is retrieved on the initial socket.
4. A null terminated password of at most 16 characters is retrieved on the initial socket.
5. A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system’s argument list.
6. rexecd then validates the user as is done at login time and, if the authentication was successful, changes to the user’s home directory, and establishes the user and group protections of the user. If any of these steps fail the connection is aborted and a diagnostic message is returned.
7. A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. The shell inherits the network connections established by rexecd.

USAGE

in.rexecd and rexecd are IPv6–enabled. See ip6(7P).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO

inetd(1M), rexec(3SOCKET), inetd.conf(4), attributes(5), ip6(7P)

DIAGNOSTICS

All diagnostic messages are returned on the connection associated with the stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to the command execution).

username too long The name is longer than 16 characters.
password too long The password is longer than 16 characters.
command too long  The command line passed exceeds the size of the argument list (as configured into the system).

Login incorrect. No password file entry for the user name existed.

Password incorrect. The wrong password was supplied.

No remote directory. The chdir command to the home directory failed.

Try again. A fork by the server failed.

/usr/bin/sh: ... The user’s login shell could not be started.
in.ripngd(1M)

NAME
in.ripngd – network routing daemon for IPv6

SYNOPSIS

DESCRIPTION
in.ripngd is the IPv6 equivalent of /usr/sbin/in.routed(1M). It is invoked at boot time to
manage the network routing tables. The routing daemon uses the Routing Information

In normal operation, in.ripngd listens on the udp(7P) socket port 521 for routing
information packets. If the host is an internetwork router, it periodically supplies
copies of its routing tables to any directly connected hosts and networks.

When in.ripngd is started, it uses the SIOCGLIFCONF ioctl(2) to find those
directly connected IPv6 interfaces configured into the system and marked "up"; the
software loopback interface is ignored. If multiple interfaces are present, it is assumed
the host will forward packets between networks. in.ripngd then multicasts a
request packet on each IPv6 interface and enters a loop, listening for request and
response packets from other hosts.

When a request packet is received, in.ripngd formulates a reply based on the
information maintained in its internal tables. The response packet contains a list
of known routes. With each route is a number specifying the number of bits in the prefix.
The prefix is the number of bits in the high order part of an address that indicate the
subnet or network that the route describes. Each route reported also has a "hop count"
metric. A count of 16 or greater is considered "infinity." The metric associated with
each route returned provides a metric relative to the sender.

The request packets received by in.ripngd are used to update the routing tables if
one of the following conditions is satisfied:

- No routing table entry exists for the destination network or host, and the metric
  indicates the destination is "reachable, that is, the hop count is not infinite.
- The source host of the packet is the same as the router in the existing routing table
  entry. That is, updated information is being received from the very internetwork
  router through which packets for the destination are being routed.
- The existing entry in the routing table has not been updated for a period of time,
  defined to be 90 seconds, and the route is at least as cost-effective as the current
  route.
- The new route describes a shorter route to the destination than the one currently
  stored in the routing tables; this is determined by comparing the metric of the new
  route against the one stored in the table.

When an update is applied, in.ripngd records the change in its internal tables and
generates a response packet to all directly connected hosts and networks. To allow
possible unstable situations to settle, in.ripngd waits a short period of time (no
more than 30 seconds) before modifying the kernel’s routing tables.
In addition to processing incoming packets, `in.ripngd` also periodically checks the routing table entries. If an entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion. Deletions are delayed an additional 60 seconds to insure the invalidation is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly connected hosts and networks.

**OPTIONS**

`in.ripngd` supports the following options:

- `-q` Do not supply routing information.
- `-s` Force `in.ripngd` to supply routing information whether it is acting as an internetwork router or not.
- `-p n` Send and receive the routing packets from other routers using the UDP port number `n`.
- `-P` Do not use poison reverse.
- `-t` Print all packets sent or received to standard output. `in.ripngd` will not divorce itself from the controlling terminal. Accordingly, interrupts from the keyboard will kill the process.
- `-v` Print all changes made to the routing tables to standard output with a timestamp.

Any other argument supplied is interpreted as the name of the file in which the actions of `in.ripngd`, as specified by this option or by `-t`, should be logged versus being sent to standard output.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWroute</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`in.routed(1M)`, `ioctl(2)`, `attributes(5)`, `udp(7P)`


**NOTES**

The kernel's routing tables may not correspond to those of `in.ripngd` for short periods of time while processes that utilize existing routes exit; the only remedy for this is to place the routing process in the kernel.

`in.ripngd` currently does not support all of the functionality of `in.routed(1M)`. Future releases may support more if appropriate.

`in.ripngd` initially obtains a routing table by examining the interfaces configured on a machine. It then sends a request on all directly connected networks for more routing information. `in.ripngd` does not recognize or use any routing information already...
established on the machine prior to startup. With the exception of interface changes,
in.ripngd does not see any routing table changes that have been done by other programs on the machine, for example, routes added, deleted or flushed by way of the route(1M) command. Therefore, these types of changes should not be done while in.ripngd is running. Rather, shut down in.ripngd, make the changes required, and then restart in.ripngd.
in.rlogind is the server for the rlogin(1) program. The server provides a remote login facility with authentication based on privileged port numbers.

- The server checks the client’s source port. If the port is not in the range 512-1023, the server aborts the connection.
- The server checks the client’s source address. If an entry for the client exists in both /etc/hosts and /etc/hosts.equiv, a user logging in from the client is not prompted for a password. If the address is associated with a host for which no corresponding entry exists in /etc/hosts, the user is prompted for a password, regardless of whether or not an entry for the client is present in /etc/hosts.equiv. See hosts(4) and hosts.equiv(4).

Once the source port and address have been checked, in.rlogind allocates a pseudo-terminal and manipulates file descriptors so that the slave half of the pseudo-terminal becomes the stdin, stdout, and stderr for a login process. The login process is an instance of the login(1) program, invoked with the -r.

The login process then proceeds with the pam(3PAM) authentication process. See SECURITY below. If automatic authentication fails, it reprompts the user to login.

The parent of the login process manipulates the master side of the pseudo-terminal, operating as an intermediary between the login process and the client instance of the rlogin program. In normal operation, a packet protocol is invoked to provide Ctrl-S and Ctrl-Q type facilities and propagate interrupt signals to the remote programs. The login process propagates the client terminal’s baud rate and terminal type, as found in the environment variable, TERM; see environ(4).

rlogind and in.rlogind are IPv6-enabled. See ip6(7P).

SECURITY

in.rlogind uses pam(3PAM) for authentication, account management, and session management. The PAM configuration policy, listed through /etc/pam.conf, specifies the modules to be used for in.rlogind. Here is a partial pam.conf file with entries for the rlogin command using the "rhosts" and UNIX authentication modules, and the UNIX account, session management, and password management modules.

```
rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1
```
With this configuration, the server checks the client’s source address. If an entry for the client exists in both /etc/hosts and /etc/hosts.equiv, a user logging in from the client is not prompted for a password. If the address is associated with a host for which no corresponding entry exists in /etc/hosts, the user is prompted for a password, regardless of whether or not an entry for the client is present in /etc/hosts.equiv. See hosts(4) and hosts.equiv(4).

If there are no entries for the rlogin service, then the entries for the “other” service will be used. If multiple authentication modules are listed, then the user may be prompted for multiple passwords. Removing the “pam_rhosts_auth.so.1” entry will disable the /etc/hosts.equiv and ~/.rhosts authentication protocol and the user would always be forced to type the password. The sufficient flag indicates that authentication through the pam_rhosts_auth.so.1 module is “sufficient” to authenticate the user. Only if this authentication fails is the next authentication module used.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

**SEE ALSO**

login(1), rlogin(1), in.rshd(1M), inetd(1M), pam(3PAM), environ(4), hosts(4), hosts.equiv(4), inetd.conf(4), pam.conf(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

**DIAGNOSTICS**

All diagnostic messages are returned on the connection associated with the stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1.

Hostname for your address unknown.

No entry in the host name database existed for the client’s machine.
Try again.
  A fork by the server failed.
/usr/bin/sh: ...
  The user’s login shell could not be started.

NOTES

The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is insecure, but it is useful in an “open” environment.

A facility to allow all data exchanges to be encrypted should be present.

The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_authok_check(5), pam_authok_get(5), pam_authok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
in.routed(1M)

NAME
in.routed, routed – network routing daemon

SYNOPSIS
/usr/sbin/in.routed [-AdghmnqsStvVz] [-T tracefile]
[-F net [/mask [,metric]]] [-P params]

DESCRIPTION
The daemon in.routed, often referred to as routed, is invoked at boot time to
manage the network routing tables. It uses Routing Information Protocol, RIPv1 (RFC
1058), RIPv2 (RFC 2453), and Internet Router Discovery Protocol (RFC 1256) to
maintain the kernel routing table. The RIPv1 protocol is based on the reference 4.3BSD
daemon.

The daemon listens on a udp socket for the route service (see services(4)) for
Routing Information Protocol packets. It also sends and receives multicast Router
Discovery ICMP messages. If the host is a router, in.routed periodically supplies
copies of its routing tables to any directly connected hosts and networks. It also
advertises or solicits default routes using Router Discovery ICMP messages.

When started (or when a network interface is later turned on), in.routed uses an
AF_ROUTE address family facility to find those directly connected interfaces
configured into the system and marked "up". It adds necessary routes for the
interfaces to the kernel routing table. Soon after being first started, and provided there
is at least one interface on which RIP has not been disabled, in.routed deletes all
pre-existing non-static routes in the kernel table. Static routes in the kernel table are
preserved and included in RIP responses if they have a valid RIP metric (see
route(1M)).

If more than one interface is present (not counting the loopback interface), it is
assumed that the host should forward packets among the connected networks. After
transmitting a RIP request and Router Discovery Advertisements or Solicitations on a
new interface, the daemon enters a loop, listening for RIP request and response and
Router Discovery packets from other hosts.

When a request packet is received, in.routed formulates a reply based on the
information maintained in its internal tables. The response packet generated contains a
list of known routes, each marked with a "hop count" metric (a count of 16 or greater
is considered "infinite"). Advertised metrics reflect the metric associated with an
interface (see ifconfig(1M)), so setting the metric on an interface is an effective way
to steer traffic.

Responses do not include routes with a first hop on the requesting network, to
implement in part split-horizon. Requests from query programs such as rtquery(1M)
are answered with the complete table.

The routing table maintained by the daemon includes space for several gateways for
each destination to speed recovery from a failing router. RIP response packets received
are used to update the routing tables, provided they are from one of the several
currently recognized gateways or advertise a better metric than at least one of the
existing gateways.
When an update is applied, `in.routed` records the change in its own tables and updates the kernel routing table if the best route to the destination changes. The change in the kernel routing table is reflected in the next batch of response packets sent. If the next response is not scheduled for a while, a flash update response containing only recently changed routes is sent.

In addition to processing incoming packets, `in.routed` also periodically checks the routing table entries. If an entry has not been updated for 3 minutes, the entry’s metric is set to infinity and marked for deletion. Deletions are delayed until the route has been advertised with an infinite metric to insure the invalidation is propagated throughout the local internet. This is a form of poison reverse.

Routes in the kernel table that are added or changed as a result of ICMP Redirect messages are deleted after a while to minimize black-holes. When a TCP connection suffers a timeout, the kernel tells `in.routed`, which deletes all redirected routes through the gateway involved, advances the age of all RIP routes through the gateway to allow an alternate to be chosen, and advances of the age of any relevant Router Discovery Protocol default routes.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly connected hosts and networks. These RIP responses are sent to the broadcast address on nets that support broadcasting, to the destination address on point-to-point links, and to the router’s own address on other networks. If RIPv2 is enabled, multicast packets are sent on interfaces that support multicasting.

If no response is received on a remote interface, if there are errors while sending responses, or if there are more errors than input or output (see `netstat(1M)`), then the cable or some other part of the interface is assumed to be disconnected or broken, and routes are adjusted appropriately.

The Internet Router Discovery Protocol is handled similarly. When the daemon is supplying RIP routes, it also listens for Router Discovery Solicitations and sends Advertisements. When it is quiet and listening to other RIP routers, it sends Solicitations and listens for Advertisements. If it receives a good Advertisement and it is not multi-homed, it stops listening for broadcast or multicast RIP responses. It tracks several advertising routers to speed recovery when the currently chosen router dies. If all discovered routers disappear, the daemon resumes listening to RIP responses. It continues listening to RIP while using Router Discovery if multi-homed to ensure all interfaces are used.

The Router Discovery standard requires that advertisements have a default "lifetime" of 30 minutes. That means should something happen, a client can be without a good route for 30 minutes. It is a good idea to reduce the default to 45 seconds using `-P rdisc_interval=45` on the command line or `rdisc_interval=45` in the `/etc/gateways` file. See `gateways(4)`.
While using Router Discovery (which happens by default when the system has a single network interface and a Router Discover Advertisement is received), there is a single default route and a variable number of redirected host routes in the kernel table. On a host with more than one network interface, this default route will be via only one of the interfaces. Thus, multi-homed hosts running with `-q` might need the `no_rdisc` argument described below.

To support "legacy" systems that can handle neither RIPv2 nor Router Discovery, you can use the `pm_rdisc` parameter in the `/etc/gateways`. See gateways(4).

By default, neither Router Discovery advertisements nor solicitations are sent over point-to-point links (for example, PPP). The Solaris OE uses a netmask of all ones (255.255.255.255) on point-to-point links.

`in.routed` supports the notion of "distant" passive or active gateways. When the daemon is started, it reads the file `/etc/gateways` to find such distant gateways that cannot be located using only information from a routing socket, to discover if some of the local gateways are passive, and to obtain other parameters. Gateways specified in this manner should be marked passive if they are not expected to exchange routing information, while gateways marked active should be willing to exchange RIP packets. Routes through passive gateways are installed in the kernel's routing tables once upon startup and are not included in transmitted RIP responses.

Distant active gateways are treated like network interfaces. RIP responses are sent to the distant active gateway. If no responses are received, the associated route is deleted from the kernel table and RIP responses are advertised via other interfaces. If the distant gateway resumes sending RIP responses, the associated route is restored.

Distant active gateways can be useful on media that do not support broadcasts or multicasts but otherwise act like classic shared media, such as some ATM networks. One can list all RIP routers reachable on the HIPPI or ATM network in `/etc/gateways` with a series of "host" lines. Note that it is usually desirable to use RIPv2 in such situations to avoid generating lists of inferred host routes.

Gateways marked external are also passive, but are not placed in the kernel routing table, nor are they included in routing updates. The function of external entries is to indicate that another routing process will install such a route if necessary, and that other routes to that destination should not be installed by `in.routed`. Such entries are required only when both routers might learn of routes to the same destination.

### OPTIONS

Listed below are available options. Any other argument supplied is interpreted as the name of a file in which the actions of `in.routed` should be logged. It is better to use `-T` (described below) instead of appending the name of the trace file to the command.

- `-A`
  Do not ignore RIPv2 authentication if we do not care about RIPv2 authentication. This option is required for conformance with RFC 2453. However, it makes no sense and breaks using RIP as a discovery protocol to ignore all RIPv2 packets that carry authentication when this machine does not care about authentication.
Do not run in the background. This option is meant for interactive use.

`-F net [mask] [, metric]`
Minimize routes in transmissions via interfaces with addresses that match net (network number)/mask (netmask), and synthesizes a default route to this machine with the metric. The intent is to reduce RIP traffic on slow, point-to-point links, such as PPP links, by replacing many large UDP packets of RIP information with a single, small packet containing a "fake" default route. If metric is absent, a value of 14 is assumed to limit the spread of the "fake" default route. This is a dangerous feature that, when used carelessly, can cause routing loops. Notice also that more than one interface can match the specified network number and mask. See also `-g`.

`-g`
Used on internetwork routers to offer a route to the "default" destination. It is equivalent to `-F 0/0, 1` and is present mostly for historical reasons. A better choice is `-P pm_rdisc` on the command line or `pm_rdisc` in the `/etc/gateways` file. A larger metric will be used with the latter alternatives, reducing the spread of the potentially dangerous default route. The `-g` (or `-f`) option is typically used on a gateway to the Internet, or on a gateway that uses another routing protocol whose routes are not reported to other local routers. Note that because a metric of 1 is used, this feature is dangerous. Its use more often creates chaos with a routing loop than solves problems.

`-h`
Causes host or point-to-point routes not to be advertised, provided there is a network route going the same direction. That is a limited kind of aggregation. This option is useful on gateways to LANs that have other gateway machines connected with point-to-point links such as SLIP.

`-m`
Cause the machine to advertise a host or point-to-point route to its primary interface. It is useful on multi-homed machines such as NFS servers. This option should not be used except when the cost of the host routes it generates is justified by the popularity of the server. It is effective only when the machine is supplying routing information, because there is more than one interface. The `-m` option overrides the `-q` option to the limited extent of advertising the host route.

`-n`
Do not install routes in kernel. By default, routes are installed in the kernel.

`-p params`
Equivalent to adding the parameter line `params` to the `/etc/gateways` file.

`-q`
Opposite of the `-s` option. This is the default when only one interface is present. With this explicit option, the daemon is always in "quiet mode" for RIP and does not supply routing information to other computers.
Force in.routed to supply routing information. This is the default if multiple network interfaces are present on which RIP or Router Discovery have not been disabled, and if the /dev/ipndd variable ip_forwarding is set to 1.

-S
If in.routed is not acting as an internetwork router, instead of entering the whole routing table in the kernel, it enters only a default route for each internetwork router. This reduces the memory requirements without losing any routing reliability. This option is provided for compatibility with the previous, RIPv1-only in.routed. Use of this option is generally discouraged.

-t
Runs in the foreground (as with -d) and logs the contents of the packets received (as with -zz). This is for compatibility with prior versions of Solaris.

-T tracefile
Increases the debugging level to at least 1 and causes debugging information to be appended to the trace file. Because of security concerns, do not to run in.routed routinely with tracing directed to a file.

-v
Enables debug. Same as -z.

-V
Displays the version of the daemon.

-z
Increase the debugging level, which causes more information to be logged on the tracefile specified with -T or stdout. The debugging level can be increased or decreased with the SIGUSR1 or SIGUSR2 signals or with the rtquery(1M) command.

FILES
/etc/defaultrouter
If this file is present and contains the address of a default router, the system startup script does not run in.routed. See defaultrouter(4).

/etc/gateways
List of distant gateways and general configuration options for in.routed. See gateways(4).

/etc/notrouter
Presence of this file sets the /dev/ip_forwarding flag to zero, preventing machine from forwarding IP packets received on one interface to any other. in.routed does not advertise reachable routes if IP forwarding is disabled.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
in.routed(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWroute</td>
</tr>
</tbody>
</table>

SEE ALSO
route(1M), rtquery(1M), ioctl(2), inet(3SOCKET), defaultrouter(4), gateways(4), attributes(5), icmp(7P), inet(7P), udp(7P)

Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard
Routing Information Protocol, v2 (RFC 2453, STD 0056, November 1998)
RIP-v2 MD5 Authentication (RFC 2082, January 1997)
Routing Information Protocol, v1 (RFC 1058, June 1988)
ICMP Router Discovery Messages (RFC 1256, September 1991)

NOTES
This daemon purposefully deviates from RFC 2453 in two notable ways:

- By default, in.routed does not discard authenticated RIPv2 messages when RIP authentication is not configured. There is little to gain from dropping authenticated packets when RIPv1 listeners will gladly process them. Using the -A option causes in.routed to conform to the RFC in this case.

- Unauthenticated RIP requests are never discarded, even when RIP authentication is configured. Forwarding tables are not secret and can be inferred through other means such as test traffic. RIP is also the most common router-discovery protocol, and hosts need to send queries that will be answered.

in.routed does not always detect unidirectional failures in network interfaces, for example, when the output side fails.
in.rshd is the server for the rsh(1) program. The server provides remote execution facilities with authentication based on privileged port numbers.

in.rshd is invoked by inetd(1M) each time a shell service is requested, and executes the following protocol:

1. The server checks the client’s source port. If the port is not in the range 512-1023, the server aborts the connection. The client’s host address (in hex) and port number (in decimal) are the arguments passed to in.rshd.

2. The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.

3. If the number received in step 2 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client’s machine. The source port of this second connection is also in the range 512-1023.

4. A null-terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as the user identity on the client’s machine.

5. A null terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as a user identity to use on the server’s machine.

6. A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system’s argument list.

7. in.rshd then validates the user according to the following steps. The remote user name is looked up in the password file and a chdir is performed to the user’s home directory. If the lookup fails, the connection is terminated. If the chdir fails, it does a chdir to / (root). If the user is not the superuser, (user ID 0), and if the pam_rhosts_auth PAM module is configured for authentication, the file /etc/hosts.equiv is consulted for a list of hosts considered “equivalent”. If the client’s host name is present in this file, the authentication is considered successful. See the SECURITY section below for a discussion of PAM authentication.

If the lookup fails, or the user is the superuser, then the file .rhosts in the home directory of the remote user is checked for the machine name and identity of the user on the client’s machine. If this lookup fails, the connection is terminated.

8. A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. (The PATH variable is set to /usr/bin.) The shell inherits the network connections established by in.rshd.

rshd and in.rshd are IPv6-enabled. See ip6(7P).
in.rshd uses pam(3PAM) for authentication, account management, and session management. The PAM configuration policy, listed through /etc/pam.conf, specifies the modules to be used for in.rshd. Here is a partial pam.conf file with entries for the rsh command using rhosts authentication, UNIX account management, and session management module.

```
rsh auth required pam_rhosts_auth.so.1
rsh account required pam_unix_roles.so.1
rsh session required pam_unix_projects.so.1
rsh session required pam_unix_account.so.1
rsh session required pam_unix_session.so.1
```

If there are no entries for the rsh service, then the entries for the "other" service are used. To maintain the authentication requirement for in.rshd, the rsh entry must always be configured with the pam_rhosts_auth.so.1 module.

**FILES**
/etc/hosts.equiv

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

**SEE ALSO**

**DIAGNOSTICS**
The following diagnostic messages are returned on the connection associated with stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1 in step 8 above (0 is returned above upon successful completion of all the steps prior to the command execution).

- **locuser too long**
  The name of the user on the client’s machine is longer than 16 characters.

- **remuser too long**
  The name of the user on the remote machine is longer than 16 characters.
command too long
    The command line passed exceeds the size of the argument list (as configured into
    the system).

Hostname for your address unknown.
    No entry in the host name database existed for the client’s machine.

Login incorrect.
    No password file entry for the user name existed.

Permission denied.
    The authentication procedure described above failed.

Can’t make pipe.
    The pipe needed for the stderr was not created.

Try again.
    A fork by the server failed.

NOTES
    The authentication procedure used here assumes the integrity of each client machine
    and the connecting medium. This is insecure, but it is useful in an “open”
    environment.

    A facility to allow all data exchanges to be encrypted should be present.

    The pam_unix(5) module might not be supported in a future release. Similar
    functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
    pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
    pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
in.rwhod, rwhod – system status server

```
/usr/sbin/in.rwhod [-m [ttl]]
```

**DESCRIPTION**

in.rwhod is the server which maintains the database used by the rwho(1) and ruptime(1) programs. Its operation is predicated on the ability to broadcast or multicast messages on a network.

in.rwhod operates as both a producer and consumer of status information. As a producer of information it periodically queries the state of the system and constructs status messages which are broadcast or multicast on a network. As a consumer of information, it listens for other in.rwhod servers’ status messages, validating them, then recording them in a collection of files located in the directory `/var/spool/rwho`.

The rwho server transmits and receives messages at the port indicated in the rwho service specification, see services(4). The messages sent and received are defined in `/usr/include/protocols/rwhod.h` and are of the form:

```c
struct outmp {
    char out_line[8]; /* tty name */
    char out_name[8]; /* user id */
    long out_time; /* time on */
};
struct whod {
    char wd_vers;
    char wd_type;
    char wd_fill[2];
    int wd_sendtime;
    int wd_recvtime;
    char wd_hostname[32];
    int wd_loadav[3];
    int wd_boottime;
    struct whoent {
        struct outmp we_utmp;
        int we_idle;
    } wd_we[1024 / sizeof (struct whoent)];
};
```

All fields are converted to network byte order prior to transmission. The load averages are as calculated by the `w(1)` program, and represent load averages over the 1, 5, and 15 minute intervals prior to a server’s transmission. The host name included is that returned by the `uname(2)` system call. The array at the end of the message contains information about the users who are logged in to the sending machine. This information includes the contents of the `utmpx(4)` entry for each non-idle terminal line and a value indicating the time since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at a rwho server’s port. In addition, if the host’s name, as specified in the message, contains any unprintable ASCII characters, the message is discarded. Valid messages received by in.rwhod are placed in files named `whod.hostname` in the directory `/var/spool/rwho`. These files contain only the most recent message, in the format described above.
Status messages are generated approximately once every 3 minutes.

**OPTIONS**
The following options are supported:

- `-m [ ttl ]`
  Use the rwho IP multicast address (224.0.1.3) when transmitting.
  Receive announcements both on this multicast address and on the
  IP broadcast address. If `ttl` is not specified `in.rwhod` multicasts on
  all interfaces but with the IP TimeToLive set to 1 (that is, packets
  are not forwarded by multicast routers.) If `ttl` is specified
  `in.rwhod` only transmits packets on one interface and setting the
  IP TimeToLive to the specified `ttl`.

**FILES**
`/var/spool/rwho/whod.*` information about other machines

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

**SEE ALSO**
runtime(1), rwho(1), w(1), uname(2), services(4), utmpx(4), attributes(5)

**WARNINGS**
This service can cause network performance problems when used by several hosts on
the network. It is not run at most sites by default. If used, include the `-m` multicast
option.

**NOTES**
This service takes up progressively more network bandwidth as the number of hosts
on the local net increases. For large networks, the cost becomes prohibitive.

`in.rwhod` should relay status information between networks. People often interpret
the server dying as a machine going down.
install(1M)

NAME
install – install commands

SYNOPSIS
/usr/sbin/install -c dira [-m mode] [-u user] [-g group] [-o] [-s] file
/usr/sbin/install -f dirb [-m mode] [-u user] [-g group] [-o] [-s] file
/usr/sbin/install -n dirc [-m mode] [-u user] [-g group] [-o] [-s] file
dirx...
/usr/sbin/install [-m mode] [-u user] [-g group] [-o] [-s] file [dirx...]

DESCRIPTION
install is most commonly used in “makefiles” (see make(1S)) to install a file in specific locations, or to create directories within a file system. Each file is installed by copying it into the appropriate directory.

install uses no special privileges to copy files from one place to another. The implications of this are:
- You must have permission to read the files to be installed.
- You must have permission to copy into the destination directory.
- You must have permission to change the modes on the final copy of the file if you want to use the -m option.
- You must be super-user if you want to specify the ownership of the installed file with the -u or -g options. If you are not the super-user, the installed file will be owned by you, regardless of who owns the original.

install prints messages telling the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install searches a set of default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file with the same name as file. When the first occurrence is found, install issues a message saying that it is overwriting that file with file, and proceeds to do so. If the file is not found, the program states this and exits.

If one or more directories (dirx ...) are specified after file, those directories are searched before the default directories.

OPTIONS
- -c dira  Install file in the directory specified by dira, if file does not yet exist. If it is found, install issues a message saying that the file already exists, and exits without overwriting it.

- -f dirb  Force file to be installed in given directory, even if the file already exists. If the file being installed does not already exist, the mode and owner of the new file will be set to 755 and bin, respectively. If the file already exists, the mode and owner will be that of the already existing file.
install(1M)

-n \
If file is not found in any of the searched directories, it is put in \
the directory specified in direc. The mode and owner of the new file \
will be set to 755 and bin, respectively.

-d \
Create a directory. Missing parent directories are created as \
required as in mkdir -p. If the directory already exists, the owner, 

-i \
Ignore default directory list, searching only through the given 

directories (dirx . . ).

-m mode \
The mode of the new file is set to mode. Set to 0755 by default.

-\n \
The owner of the new file is set to user. Only available to the 

-user \
super-user. Set to bin by default.

-g group \
The group id of the new file is set to group. Only available to the 

-group \
super-user. Set to bin by default.

-o \
If file is found, save the "found" file by copying it to OLDfile 

- in the directory in which it was found. This option is useful when 

-saving a frequently used file such as /bin/sh or 

-lib/saf/ttymon, where the existing file cannot be removed.

-s \
Suppress printing of messages other than error messages.

USAGE 
See largefile(5) for the description of the behavior of install when encountering 
files greater than or equal to 2 Gbyte (2^31 bytes).

ATTRIBUTES 
See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
--- | ---
Availability | SUNWcsu

SEE ALSO 
chgrp(1), chmod(1), chown(1), cp(1), make(1S), mkdir(1), chown(1M), 
attributes(5), largefile(5)
installboot(1M)

NAME
installboot – install bootblocks in a disk partition

SYNOPSIS
SPARC  installboot  bootblk  raw-disk-device
x86   installboot  pboot  bootblk  raw-disk-device

DESCRIPTION
The boot(1M) program, ufsboot, is loaded from disk by the bootblock program which resides in the boot area of a disk partition.

The ufs boot objects are platform-dependent, and reside in the /usr/platform/platform-name/lib/fs/ufs directory. The platform name can be found using the -i option of uname(1).

OPERANDS
bootblk                        The name of the bootblock code.
raw-disk-device                The name of the disk device onto which the bootblock code is to be installed; it must be a character device which is readable and writable. Naming conventions for a SCSI or IPI drive are c?t?d?s? and c?d?s? for an IDE drive.
pboot                          The name of the partition boot file.

EXAMPLES
SPARC  To install a ufs bootblock on slice 0 of target 0 on controller 1 of the platform where the command is being run, use:

example# installboot /usr/platform/`uname -i`/lib/fs/ufs/bootblk
                     /dev/rdsk/c1t0d0s0

x86   To use installboot to install the ufs bootblock and partition boot program on a disk in an IA machine, you must specify slice 2 and that slice must be the entire disk. For example, to install the UFS bootblock on target 0, controller 1 of the platform where the command is being run, use:

example# installboot /usr/platform/`uname -i`/lib/fs/ufs/pboot
                     /usr/platform/`uname -i`/lib/fs/ufs/bootblk /dev/rdsk/c1t0d0s2

FILES
/usr/platform/platform-name/lib/fs/ufs
directory where ufs boot objects reside.

/platform/platform-name/ufsboot
second level program to boot from a disk or CD

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
installboot(1M)

SEE ALSO
od(1), uname(1), boot(1M), init(1M), kadb(1M), kernel(1M), reboot(1M),
rpc.bootparamd(1M), init.d(4), attributes(5)

Solaris 9 12/03 Installation Guide

SPARC
monitor(1M)

x86
fdisk(1M), fmthard(1M)

WARNINGS
The installboot utility fails if the bootblk, pboot or openfirmware files do not exist or
if the raw disk device is not a character device.
**NAME**
installer – Solaris Web Start installer utility

**SYNOPSIS**
```
installer [-locales list] [-nodisplay] [-noconsole] [-debug]
```

**DESCRIPTION**
The `installer` utility invokes a Web Start install wizard sequence which will lead the user through a sequence of installation panels. This installer utility is found on many CDs that are shipped with Solaris and it will be found among the top level files of these CDs.

When the installer is on a CD being accessed from a desktop file manager, the installer can be double clicked to start the installation sequence. If the user is not currently the system’s root user, the root user password will be requested.

The installer utility can also be run from other UNIX scripts. Usually, a script is used in conjunction with the utility’s `-nodisplay` option. Add the `-noconsole` option for non-interactive scripts.

**OPTIONS**
The following options are supported:

- `locales list` Selects product translations for install, corresponding to the specified list of locales if the specified locale translations are present on the installation media. Locales are supplied in a comma-separated list following the `locales` option. An example `list` would appear as follows:

  ```
  installer -locales fr,de,it
  ```
  This would install products with translations for the French, German, and Italian locales.

- `nodisplay` Runs the install without a graphical user interface. Use the default product install unless it was modified by the `locales` options.

- `noconsole` Run the install without any interactive text console device. Useful when paired with `nodisplay` for non-interactive UNIX script use.

- `debug` Outputs extra information about what the install is doing. Mainly for install diagnostic purposes.

**FILES**
```
/var/sadm/install/logs
```
location of installation log files

**SEE ALSO**
`prodreg(1M)`
**NAME**
installf – add a file to the software installation database

**SYNOPSIS**

```
installf [-c class] [ [-M] -R root_path] [-V fs_file] pkginst pathname [ftype
[major minor] [mode owner group]]
installf [-c class] [ [-M] -R root_path] [-V fs_file] pkginst -
installf -f [-c class] [ [-M] -R root_path] [-V fs_file] pkginst
```

**DESCRIPTION**

`installf` informs the system that a pathname not listed in the `pkgmap(4)` file is being created or modified. It should be invoked before any file modifications have occurred.

When the second synopsis is used, the pathname descriptions will be read from standard input. These descriptions are the same as would be given in the first synopsis but the information is given in the form of a list. The descriptions should be in the form:

```
pathname [ftype [ major minor] [ mode owner group ]]
```

After all files have been appropriately created and/or modified, `installf` should be invoked with the `-f` synopsis to indicate that installation is final. Links will be created at this time and, if attribute information for a pathname was not specified during the original invocation of `installf`, or was not already stored on the system, the current attribute values for the pathname will be stored. Otherwise, `installf` verifies that attribute values match those given on the command line, making corrections as necessary. In all cases, the current content information is calculated and stored appropriately.

**OPTIONS**

- `-c class`  
  Class to which installed objects should be associated. Default class is `none`.

- `-f`  
  Indicates that installation is complete. This option is used with the final invocation of `installf` (for all files of a given class).

- `-M`  
  Instruct `installf` not to use the `$root_path/etc/vfstab` file for determining the client’s mount points. This option assumes the mount points are correct on the server and it behaves consistently with Solaris 2.5 and earlier releases.

- `-R root_path`  
  Define the full path name of a directory to use as the `root_path`. All files, including package system information files, are relocated to a directory tree starting in the specified `root_path`. The `root_path` may be specified when installing to a client from a server (for example, `/export/root/client1`).

- `-V fs_file`  
  Specify an alternative `fs_file` to map the client’s file systems. For example, used in situations where the `$root_path/etc/vfstab` file is non-existent or unreliable.
## OPERANDS

<table>
<thead>
<tr>
<th><strong>pkginst</strong></th>
<th>Name of package instance with which the pathname should be associated.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>pathname</strong></td>
<td>Pathname that is being created or modified.</td>
</tr>
<tr>
<td><strong>ftype</strong></td>
<td>A one-character field that indicates the file type. Possible file types include:</td>
</tr>
<tr>
<td></td>
<td>b  block special device</td>
</tr>
<tr>
<td></td>
<td>c  character special device</td>
</tr>
<tr>
<td></td>
<td>d  directory</td>
</tr>
<tr>
<td></td>
<td>e  a file to be edited upon installation or removal</td>
</tr>
<tr>
<td></td>
<td>f  a standard executable or data file</td>
</tr>
<tr>
<td></td>
<td>l  linked file</td>
</tr>
<tr>
<td></td>
<td>p  named pipe</td>
</tr>
<tr>
<td></td>
<td>s  symbolic link</td>
</tr>
<tr>
<td></td>
<td>v  volatile file (one whose contents are expected to change)</td>
</tr>
<tr>
<td></td>
<td>x  an exclusive directory</td>
</tr>
<tr>
<td><strong>major</strong></td>
<td>The major device number. The field is only specified for block or character special devices.</td>
</tr>
<tr>
<td><strong>minor</strong></td>
<td>The minor device number. The field is only specified for block or character special devices.</td>
</tr>
<tr>
<td><strong>mode</strong></td>
<td>The octal mode of the file (for example, 0664). A question mark (?) indicates that the mode will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.</td>
</tr>
<tr>
<td><strong>owner</strong></td>
<td>The owner of the file (for example, bin or root). The field is limited to 14 characters in length. A question mark (?) indicates that the owner will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.</td>
</tr>
<tr>
<td><strong>group</strong></td>
<td>The group to which the file belongs (for example, bin or sys). The field is limited to 14 characters in length. A question mark (?) indicates that the group will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.</td>
</tr>
</tbody>
</table>
installf(1M)

**EXAMPLES**

**EXAMPLE 1** The use of installf.

The following example shows the use of installf, invoked from an optional pre-install or post-install script:

```bash
# create /dev/xt directory
# (needs to be done before drvinstall)
installf $PKGINST /dev/xt d 755 root sys ||
    exit 2
majno=/usr/sbin/drivinstall -m /etc/master.d/xt
   -d $BASEDIR/data/xt.o -v1.0' ||
    exit 2
i=00
while [ $i -lt $limit ]
do
    for j in 0 1 2 3 4 5 6 7
do
        echo /dev/xt$i$j c $majno 'expr $i + 8 + $j
        644 root sys |
        echo /dev/xt$i$j=/dev/xt/$i$j
    done
    i='expr $i + 1'
    [ $i -le 9 ] && i="0$i" # add leading zero
done | installf $PKGINST || exit 2
# finalized installation, create links
installf -f $PKGINST || exit 2
```

**EXIT STATUS**

0 Successful operation.

>0 An error occurred.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), removef(1M), pkgmap(4), space(4), attributes(5)

**Application Packaging Developer’s Guide**

**NOTES**

When `ftype` is specified, all applicable fields, as shown below, must be defined:

<table>
<thead>
<tr>
<th>ftype</th>
<th>Required Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, x, d, f, v, or e</td>
<td>mode owner group</td>
</tr>
<tr>
<td>c or b</td>
<td>major minor mode owner group</td>
</tr>
</tbody>
</table>
The `installf` command will create directories, named pipes and special devices on the original invocation. Links are created when `installf` is invoked with the `-f` option to indicate installation is complete.

Links should be specified as `path1=path2`. `path1` indicates the destination and `path2` indicates the source file.

Files installed with `installf` will be placed in the class `none`, unless a class is defined with the command. Subsequently, they will be removed when the associated package is deleted. If this file should not be deleted at the same time as the package, be certain to assign it to a class which is ignored at removal time. If special action is required for the file before removal, a class must be defined with the command and an appropriate class action script delivered with the package.

When classes are used, `installf` must be used in one of the following forms:

- `installf -c class1`
- `installf -f -c class1`
- `installf -c class2`
- `installf -f -c class2`
install_scripts(1M)

NAME  install_scripts, add_install_client, add_to_install_server, modify_install_server, rm_install_client, setup_install_server, check – scripts used to install the Solaris software

SYNOPSIS  


cdrom-mnt-pt/Solaris_XX/Tools/add_install_client [-s] [-p product_image_path] install_server_path

cdrom-mnt-pt/Solaris_XX/Tools/jumpstart_sample/check [-p install_dir_path] [-r rulesfile]

cdrom-mnt-pt/modify_install_server [-p] install_dir_path installer_miniroot_path

cdrom-mnt-pt/Solaris_XX/Tools/rm_install_client host_name

cdrom-mnt-pt/Solaris_XX/Tools/setup_install_server [-b] [-t install_boot_image_path] [-w wanboot_image_path] install_dir_path

DESCRIPTION  These commands are located on slice 0 of the Solaris Software and Solaris Installer CDs. If the Solaris CD has been copied to a local disk, cdrom_mnt_pt is the path to the copied Solaris CD. They can be used for a variety of installation tasks.

The XX in Solaris_XX is the version number of the Solaris release being used.

There are three versions of the add_install_client command. See SYNOPSIS.

Use the following version of the add_install_client command to add clients for network installation (these commands update the bootparams(4) file). The add_install_client command must be run from the install server’s Solaris installation image (a mounted Solaris CD or a Solaris CD copied to disk) or the boot server’s boot directory (if a boot server is required). The Solaris installation image or the boot directory must be the same Solaris release that you want installed on the client.

Use the following version of the `add_install_client` command to add support for instances of a platform within a platform group to the install server. This group will be booted and configured using DHCP. The script will perform the necessary configuration steps on the server, and prints the data that the user needs to add to the DHCP server for the group.

```bash
cdrom-mnt-pt/Solaris_XX/Tools/add_install_client -d [-s server: path]
   [-c server: path] [-p server: path] [-t install boot image path]
   [-f boot file name] platform_name platform_group
```

Use the following version of the `add_install_client` command to add a single client to the install server. This client will be booted and configured using DHCP. The script will perform the necessary configuration steps on the server, and will print the data that the user needs to add to the DHCP server for the client. The `-f` flag used above needs to be added to the existing usage as well. `-f` allows the user to specify a boot file name to be used for a given client.

```bash
cdrom-mnt-pt/Solaris_XX/Tools/add_install_client -d
   [-s server_name: path] [-c server_name: path] [-p server_name: path]
   [-t install_boot_image_path] [-f boot_file_name] -e Ethernet_address
   [-b property=value] platform_group
```

Always use the `-d` option when registering x86 Architecture Pre-boot eXecution Environment (PXE) clients. These clients use DHCP for their configuration.

Use `add_to_install_server` to merge other Solaris CDs with an existing image on a Net Install Server. Each CD that can be merged (currently OS CD 2, and the Language CD) has its own `add_to_install_server` script. Do not use `add_to_install_server` scripts with CDs other than the ones with which they were delivered.

Use `check` to validate the rules in a `rules` file (this is only necessary if a custom JumpStart installation is being set up).

Use `modify_install_server` to replace an existing net install server’s miniserver with a Solaris Installation CD’s miniserver. This will change the net install server’s install time user interface over to the Solaris Installation CD’s Web Start user interface.

An existing install image (created using `setup_install_server`) must exist prior to using the `modify_install_server` command.

Use `rm_install_client` to remove clients for network installation (these commands update the `bootparams(4)` file).

Use `setup_install_server` to copy the Solaris CD to a disk (to set up an install server), to build a WANboot miniserver image (to set up a WANboot install server), or to copy just the boot software of the Solaris CD to a disk (to set up a boot server). An install server is required to install clients over the network. A boot server is also required for network installations if the install server and clients to be installed are on different subnets (the boot server must be located on the client’s subnet).
install_scripts(1M)

OPTIONS

The add_install_client supports the following options:

- \( b \) property=value
  Set a property value in the client specific bootenv.rc file located on the boot server's TFTP directory, /tftpboot by default. Use this option to set boot properties that are specific to this client. You can use the bootpath property to automate the selection of the boot device instead of manually using the Device Configuration Assistant. You can use the boot-args property to automatically select a jumpstart installation. See eeprom(1M).

You can only use this option to the x86 client. You should only use this option in conjunction with the \(-d\) and \(-e\) options.

- \( c \) server_name: path
  This option is required only to specify a JumpStart directory for a custom JumpStart installation. server_name is the host name of the server with a JumpStart directory. path is the absolute path to the JumpStart directory.

- \( d \)
  Specify as a DHCP client.

- \( e \) Ethernet_address
  Specify the Ethernet address of the system to be installed.

- \( f \)
  Specify the boot_file_name of the client to be installed.

- \( i \) IP_address
  Specify the IP address of the client to be installed.

- \( n \) [server]: name_service[(netmask)]
  This option specifies which name service should be used during system configuration. This sets the ns keyword in the bootparams(4) file.

  name_service
    Valid entries are nis, nisplus, and none.

  netmask
    A series of four numbers separated by periods, specifying which portion of an IP address is the network part, and which is the host part.

  server
    The name of the server or IP address of the specified name service. If the server specified is on a different subnet, then the netmask may be needed to enable the client to contact the server.

- \( p \) server_name: path
  This option is the location of the user-defined sysidcfg file for pre-configuring system or network information. server_name is either a valid host name or IP address. path is the absolute path to the Jumpstart directory.

- \( s \) server_name: path
  This option is required only when using add_install_client from a boot server. Specify the name of the server and the absolute path of the Solaris
installation image that will be used for this installation. *path* is either the path to a mounted Solaris CD or a path to a directory with a copy of the Solaris CD.

The `add_to_install_server` command supports the following options:

- **-p**
  Specifies the location of the CD (containing the supplemental products) to be copied.

- **-s**
  Allows users to select from a list only the products needing installation.

The `check` command supports the following options:

- **-p install_dir_path**
  Validates the rules file by using the `check` script from a specified Solaris installation image, instead of the `check` script from the system you are using. `install_dir_path` is the path to a Solaris installation image on a local disk or a mounted Solaris CD.

  Use this option to run the most recent version of `check` if your system is running a previous version of Solaris.

- **-r rulesfile**
  Specifies a rules file other than the one named `rules`. Using this option, the validity of a rule can be tested before integrating it into the rules file. `check` will report whether or not the rule is valid, but it will not create the `rules.ok` file necessary for a custom JumpStart installation.

The `modify_install_server` command supports the following options:

- **-p**
  This option preserves the existing images miniroot in `install_dir_path/Solaris_XX/Tools/Boot.orig`.

The `setup_install_server` command supports the following options:

- **-b**
  This option sets up the server only as a boot server.

- **-t**
  This option allows an alternate miniroot to be specified.

- **-w**
  This option builds a WANboot miniroot image.

**OPERANDS**

The `add_install_client` command supports the following options:

- **host_name**
  This is the name of the client to be installed.

- **platform_group**
  Vendor-defined grouping of hardware platforms for the purpose of distributing specific software. Examples of valid platform groups are:
install_scripts(1M)

<table>
<thead>
<tr>
<th>System</th>
<th>Platform Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>i86pc</td>
</tr>
<tr>
<td>Sun Fire 4800</td>
<td>sun4u</td>
</tr>
</tbody>
</table>

Use the `uname(1)` command (with the `-m` option) to determine a system’s platform group.

**platform_name**

Use the `uname(1)` command (with the `-i` option) to determine a system’s platform name.

The following example shows the use of the `uname` command to determine the system platform name for an Ultra 1:

```
uname -i
```

The system responds with:

```
SUNW,Ultra-1
```

Therefore, the system’s platform name is `SUNW,Ultra1`.

The following command calls `add_install_client` for Ultra 1s:

```
add_install_client -d SUNW,Ultra-1 sun4u
```

For IA32 platforms, the platform name is always `SUNW.i86pc`. The following command calls `add_install_client` for IA32 platforms:

```
add_install_client -d SUNW.i86pc i86pc
```

The `rm_install_client` command supports the following operands:

- **host_name**
  - This is the name of the client to be removed.

The `setup_install_server` command supports the following operands:

- **install_dir_path**
  - The absolute path of the directory in which the Solaris software is to be copied. The directory must be empty.

- **wanboot_image_path**
  - The absolute path of the directory in which the file containing the WANboot miniroot image is to be created.

**EXAMPLES**

**EXAMPLE 1** Using `add_install_client`

The following `add_install_client` commands add clients for network installation from a mounted Solaris CD on an install server on Solaris 9:

```
example# cd /cdrom/cdrom0/s0/Solaris_9/Tools
example# ./add_install_client system_2/sun4u
```
EXAMPLE 2 Using add_install_client

The following add_install_client commands add clients for network installation from a mounted Solaris CD on an install server. The -c option specifies a server and path to a JumpStart directory that has a rules file and a profile file for performing a custom JumpStart installation. Also, the Solaris CD has been copied to the /export/install directory on Solaris 9:

```bash
example# cd /export/install/Solaris_9/Tools
example# /add_install_client -c install_server:/jumpstart system_1 i86pc
example# ./add_install_client -c install_server:/jumpstart system_2 i86pc
```

EXAMPLE 3 Using add_install_client

The following add_install_client command adds support for a specific sun4u platform machine (8:0:20:99:88:77) using the boot file: sun4u.solaris8.

```bash
example# add_install_client -d -f sun4u.solaris8 -e 8:0:20:99:88:77 sun4u
```

EXAMPLE 4 Using add_install_client

The following add_install_client command adds x86 clients that use the PXE standard for network booting:

```bash
example# add_install_client -d -s svrname:/mnt/export/root SUNW.i86pc i86p
```

EXAMPLE 5 Using add_to_install_server

The following add_to_install_server command copies the packages in all the CD’s products directories to an existing install server on Solaris 9:

```bash
example# cd /cdrom/cdrom0/s0
example# ./add_to_install_server /export/Solaris_9
```

EXAMPLE 6 Using check

The following check command validates the syntax of the rules file used for a custom JumpStart installation:

```bash
example# cd jumpstart_dir_path
example# ./check -p /cdrom/cdrom0/s0
```

EXAMPLE 7 Using modify_install_server

The following modify_install_server command moves the miniroot created using the above setup_install_server to Boot.orig and replaces it with the miniroot on the Solaris Installer CD.

```bash
example# cd /cdrom/cdrom0/s0
example# ./modify_install_server -p /export/install /cdrom/cdrom0/s1
```

EXAMPLE 8 Using modify_install_server

The following modify_install_server command replaces the miniroot created using the above setup_install_server with the miniroot on the Solaris Installer CD.
EXAMPLE 8 Using modify_install_server  (Continued)

```
example# cd /cdrom/cdrom0/s0
example# ./modify_install_server /export/install /cdrom/cdrom0/s1
```

EXAMPLE 9 Using rm_install_client

The following `rm_install_client` commands remove clients for network installation on Solaris 9:

```
example# cd /export/install/Solaris_9/Tools
example# ./rm_install_client holmes
example# ./rm_install_client watson
```

EXAMPLE 10 Using setup_install_server

The following `setup_install_server` command copies the mounted Solaris CD to a directory named `/export/install` on the local disk on Solaris 9:

```
example# cd /cdrom/cdrom0/s0/Solaris_9/Tools
example# ./setup_install_server /export/install
```

EXAMPLE 11 Using setup_install_server

The following `setup_install_server` command copies the boot software of a mounted Solaris CD to a directory named `/boot_dir` on a system that is going to be a boot server for a subnet on Solaris 9:

```
example# cd /cdrom/cdrom0/s0/Solaris_9/Tools
example# ./setup_install_server -b /boot_dir
```

EXAMPLE 12 Using setup_install_server

By default, `setup_install_server` will look for an installation boot directory at the Solaris `../Tools/Boot` location of the mount Solaris distribution disc.

If an alternate boot directory is required, such as one saved on a network boot server by way of an earlier `./setup_install_server -b /boot_dir` command, the `-t` option can be used.

```
example# cd /cdrom/cdrom0/s0/Solaris_9/Tools
example# ./setup_install_server -t /boot_dir /export/install
```

EXAMPLE 13 Using setup_install_server with WANboot Option

The following `setup_install_server` command creates an image of the WANboot miniroot file `system`mand stores it in the file `/wanboot_dir/miniroot`.

```
example# cd /cdrom/cdrom0/s0/Solaris_9/Tools
example# ./setup_install_server -w /wanboot_dir /export/install
```

EXAMPLE 14 x86: Specifying a Serial Console to Use During a Network Installation (CDs)

The following example illustrates how to add an x86 install client to an install server and specify a serial console to use during the installation. This example sets up the install client in the following manner:
EXAMPLE 14 x86: Specifying a Serial Console to Use During a Network Installation (CDs)  

(Continued)

- The `-d` option indicates that the client is set up to use DHCP to set installation parameters.
- The `-e` option indicates that this installation occurs only on the client with the ethernet address `00:07:e9:04:4a:bf`.
- The first and second uses of the `-b` option instruct the installation program to use the serial port `ttya` as an input and an output device.

```
install server# cd /export/boot/Solaris_9/Tools
install server# ./add_install_client -d -e "00:07:e9:04:4a:bf" \\
    -b "input-device=ttya" -b "output-device=ttya" \\
    i86pc
```

For a complete description of the boot property variables and values you can use with the `-b` option, see `eeprom(1M)`.

EXAMPLE 15 Specifying a Boot Device to Use During a Network Installation (CDs)

The following example illustrates how to add an x86 install client to an install server and specify a boot device to use during the installation. If you specify the boot device when you set up the install client, you are not prompted for this information by the Device Configuration Assistant during the installation.

This example sets up the install client in the following manner:

- The `-d` option indicates that the client is set up to use DHCP to set installation parameters
- The `-e` option indicates that this installation occurs only on the client with the ethernet address `00:07:e9:04:4a:bf`.
- The first and second uses of the `-b` option instruct the installation program to use the serial port `ttya` as an input and an output device.
- The third use of the `-b` option instructs the installation program to use a specific boot device during the installation.
- The value of the boot device path varies based on your hardware.
- The `i86pc` platform name indicates that the client is an x86-based system.

```
install server# cd /export/boot/Solaris_9/Tools
install server# ./add_install_client -d -e "00:07:e9:04:4a:bf" \\
    -b "input-device=ttya" -b "output-device=ttya" \\
    -b "bootpath=/pci0,0/pci108e,16a8@8" i86pc
```

For a complete description of the boot property variables and values you can use with the `-b` option, see `eeprom(1M)`.

EXIT STATUS

The following exit values are returned:

0 Successful completion.
install_scripts(1M)

1 An error has occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Solaris CD</td>
</tr>
</tbody>
</table>

SEE ALSO

uname(1), eeprom(1M), bootparams(4), attributes(5)

Solaris Installation Guide
in.talkd, talkd – server for talk program

SYNOPSIS

in.talkd

DESCRIPTION

talkd is a server used by the talk(1) program. It listens at the UDP port indicated in the “talk” service description; see services(4). The actual conversation takes place on a TCP connection that is established by negotiation between the two machines involved.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO

talk(1), inetd(1M), services(4), attributes(5)

NOTES

The protocol is architecture dependent.
**NAME**
in.telnetd, telnetd – DARPA TELNET protocol server

**SYNOPSIS**
/usr/sbin/in.telnetd

**DESCRIPTION**
in.telnetd is a server that supports the DARPA standard TELNET virtual terminal protocol. in.telnetd is normally invoked in the internet server (see *inetd*(1M)), for requests to connect to the TELNET port as indicated by the /etc/services file (see *services*(4)).

in.telnetd operates by allocating a pseudo-terminal device for a client, then creating a login process which has the slave side of the pseudo-terminal as its standard input, output, and error. in.telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET protocol and passing characters between the remote client and the login process.

When a TELNET session starts up, in.telnetd sends TELNET options to the client side indicating a willingness to do *remote echo* of characters, and to *suppress go ahead*. The pseudo-terminal allocated to the client is configured to operate in "cooked" mode, and with XTABS, ICRNL and ONLCR enabled. See *termio*(7).

in.telnetd is willing to do: *echo*, *binary*, *suppress go ahead*, and *timing mark*.

in.telnetd is willing to have the remote client do: *binary*, *terminal type*, *terminal size*, *logout option*, and *suppress go ahead*.

in.telnetd also allows environment variables to be passed, provided that the client negotiates this during the initial option negotiation. The DISPLAY environment variable may be sent this way, either by the TELNET general environment passing methods, or by means of the XDISPLOC TELNET option. DISPLAY can be passed in the environment option during the same negotiation where XDISPLOC is used. Note that if you use both methods, use the same value for both. Otherwise, the results may be unpredictable.

These options are specified in Internet standards RFC 1096, RFC 1408, RFC 1571, and RFC 1572.

The banner printed by in.telnetd is configurable. The default is (more or less) equivalent to "uname -sr" and will be used if no banner is set in /etc/default/telnetd. To set the banner, add a line of the form

```
BANNER="..." to /etc/default/telnetd. Nonempty banner strings are fed to shells for evaluation. The default banner may be obtained by

BANNER="\r\n\r\n


\n\nuname -r\n
\n\nuname -sr\n
\r\n\r\n"
```

and no banner will be printed if /etc/default/telnetd contains

```
BANNER="" 
```

**USAGE**
telnetd and in.telnetd are IPv6-enabled. See *ip6*(7P).
SECURITY  
in.telnetd uses pam(3PAM) for authentication, account management, session management, and password management. The PAM configuration policy, listed through /etc/pam.conf, specifies the modules to be used for in.telnetd. Here is a partial pam.conf file with entries for the telnet command using the UNIX authentication, account management, session management, and password management modules.

```
telnet auth requisite pam_authtok_get.so.1

telnet auth required pam_dhkeys.so.1

telnet auth required pam_unix_auth.so.1

telnet account requisite pam_roles.so.1

telnet account required pam_projects.so.1

telnet account required pam_unix_account.so.1

telnet session required pam_unix_session.so.1

telnet password required pam_dhkeys.so.1

telnet password requisite pam_authtok_get.so.1

telnet password requisite pam_authtok_check.so.1

telnet password required pam_authtok_store.so.1
```

If there are no entries for the telnet service, then the entries for the "other" service will be used. If multiple authentication modules are listed, then the user may be prompted for multiple passwords.

FILES  
/etc/default/telnetd

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntnd</td>
</tr>
</tbody>
</table>

SEE ALSO  
telnet(1), inetd(1M), pam(3PAM), inetd.conf(4), pam.conf(4), services(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5), ip6(7P), termio(7I)


NOTES

Some TELNET commands are only partially implemented.

Binary mode has no common interpretation except between similar operating systems.

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal should be used for more intelligent flushing of input and output queues.

in.telnetd never sends TELNET go ahead commands.

The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
in.tftpd, tftpd – Internet Trivial File Transfer Protocol server

SYNOPSIS

```bash
in.tftpd [-s] [homedir]
```

DESCRIPTION

tftpd is a server that supports the Internet Trivial File Transfer Protocol (TFTP). This server is normally started by inetd(1M) and operates at the port indicated in the tftp Internet service description in the /etc/inetd.conf file. By default, the entry for in.tftpd in etc/inetd.conf is commented out. To make in.tftpd operational, the comment character(s) must be deleted from the file. See inetd.conf(4).

Before responding to a request, the server attempts to change its current directory to homedir; the default directory is /tftpboot.

The use of tftp does not require an account or password on the remote system. Due to the lack of authentication information, in.tftpd will allow only publicly readable files to be accessed. Files may be written only if they already exist and are publicly writable. Note that this extends the concept of “public” to include all users on all hosts that can be reached through the network. This may not be appropriate on all systems, and its implications should be considered before enabling this service.

in.tftpd runs with the user ID and group ID set to [GU]ID_NOBODY under the assumption that no files exist with that owner or group. However, nothing checks this assumption or enforces this restriction.

OPTIONS

- `d` Debug. When specified it sets the SO_DEBUG socket option.
- `s` Secure. When specified, the directory change to homedir must succeed. The daemon also changes its root directory to homedir.

FILES

/etc/inetd.conf

USAGE

The in.tftpd server is IPv6-enabled. See ip6(7P).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtftpd</td>
</tr>
</tbody>
</table>

SEE ALSO

tftp(1), inetd(1M), inetd.conf(4), netconfig(4), attributes(5), ip6(7P)


Malkin, G. and Harkin, A. RFC 2349, TFTP Timeout Interval and Transfer Size Options. The Internet Society. May 1998
The `tftpd` server only acknowledges the transfer size option that is sent with a `read` request when the octet transfer mode is specified.
in.tnamed is a server that supports the DARPA Name Server Protocol. The name server operates at the port indicated in the "name" service description (see services(4)), and is invoked by inetd(1M) when a request is made to the name server.

- **v** Invoke the daemon in verbose mode.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtnamd</td>
</tr>
</tbody>
</table>

The protocol implemented by this program is obsolete. Its use should be phased out in favor of the Internet Domain Name Service (DNS) protocol.
NAME
in.uucpd, uucpd – UUCP server

SYNOPSIS
/usr/sbin/in.uucpd [-n]

DESCRIPTION
in.uucpd is the server for supporting UUCP connections over networks.

in.uucpd is invoked by inetd(1M) when a UUCP connection is established (that is, a connection to the port indicated in the "uucp" service specification) and executes the following protocol. See services(4):

1. The server prompts with login:. The uucico(1M) process at the other end must supply a username.

2. Unless the username refers to an account without a password, the server then prompts with Password:. The uucico process at the other end must supply the password for that account.

If the username is not valid, or is valid but refers to an account that does not have /usr/lib/uucp/uucico as its login shell, or if the password is not the correct password for that account, the connection is dropped. Otherwise, uucico is run, with the user ID, group ID, group set, and home directory for that account, with the environment variables USER and LOGNAME set to the specified username, and with a -u flag specifying the username. Unless the -n flag is specified, entries are made in /var/adm/utmpx, /var/adm/wtmpx, and /var/adm/lastlog for the username.

in.uucpd must be invoked by a user with appropriate privilege (usually root) in order to be able to verify that the password is correct.

SECURITY
in.uucpd uses pam(3PAM) for authentication, account management, and session management. The PAM configuration policy, listed through /etc/pam.conf, specifies the modules to be used for in.uucpd. Here is a partial pam.conf file with entries for uucp using the UNIX authentication, account management, and session management module.

```
ucp auth requisite pam_authtok_get.so.1
ucp auth required pam_dhkeys.so.1
ucp auth required pam_unix_auth.so.1

ucp account requisite pam_roles.so.1
ucp account required pam_projects.so.1
ucp account required pam_unix_account.so.1

ucp session required pam_unix_session.so.1
```

If there are no entries for the uucp service, then the entries for the "other" service will be used. If multiple authentication modules are listed, then the peer may be prompted for multiple passwords.

FILES
/var/adm/utmpx accounting
/var/adm/wtmpx accounting
/var/adm/lastlog time of last login
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO

inetd(1M), uucico(1M), pam(3PAM), pam.conf(4), services(4), attributes(5),
pam_authhtok_check(5), pam_authhtok_get(5), pam_authhtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

DIAGNOSTICS

All diagnostic messages are returned on the connection, after which the connection is closed.

user read An error occurred while reading the username.

passwd read An error occurred while reading the password.

Login incorrect. The username is invalid or refers to an account with a login shell other than /usr/lib/uucp/uucico, or the password is not the correct password for the account.

NOTES

The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_authhtok_check(5), pam_authhtok_get(5),
pam_authhtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
The `iostat` utility iteratively reports terminal, disk, and tape I/O activity, as well as CPU utilization. The first line of output is for all time since boot; each subsequent line is for the prior interval only.

To compute this information, the kernel maintains a number of counters. For each disk, the kernel counts reads, writes, bytes read, and bytes written. The kernel also takes hi-res time stamps at queue entry and exit points, which allows it to keep track of the residence time and cumulative residence-length product for each queue. Using these values, `iostat` produces highly accurate measures of throughput, utilization, queue lengths, transaction rates and service time. For terminals collectively, the kernel simply counts the number of input and output characters.

During execution of this kernel status command, the “state” of the kernel can change. An example would be CPUs going online or offline. `iostat` reports this as one or more of the following messages:

- `device_name` added
- `device_name` removed
- `NFS_filesystem` mounted
- `NFS_filesystem` unmounted
- `cpu[s]` taken offline: `cpuid`
- `cpu[s]` brought online: `cpuid`

where `device_name`, `NFS_filesystem` and `cpuid` are replaced with the actual name or names of the entities formatted according to other options.

For more general system statistics, use `sar(1)`, `sar(1M)`, or `vmstat(1M)`.

The `iostat` utility’s activity class options default to `tdc` (terminal, disk, and CPU). If any activity class options are specified, the default is completely overridden. Therefore, if only `-d` is specified, neither terminal nor CPU statistics will be reported. The last disk option specified (-d, -D, or -x) is the only one that is used.

The following options are supported:

- `-c` Report the percentage of time the system has spent in user mode, in system mode, waiting for I/O, and idling.
- `-C` When the `-n` and `-x` options are also selected, report extended disk statistics aggregated by controller id.
- `-d` For each disk, report the number of kilobytes transferred per second, the number of transfers per second, and the average service time in milliseconds.
For each disk, report the reads per second, writes per second, and percentage disk utilization.

Display device error summary statistics. The total errors, hard errors, soft errors, and transport errors are displayed.

Display all device error statistics.

In -E output, display the "Device Id" instead of the "Serial No". The "Device Id" is a unique identifier registered by a driver through ddi_devid_register(9F).

Report the counts in each interval, rather than rates (where applicable).

Limit the number of disks included in the report to n; the disk limit defaults to 4 for -d and -D, and unlimited for -x. Note: disks explicitly requested (see disk below) are not subject to this disk limit.

Report file system mount points. This option is most useful if the -F or -p option is also specified.

Display data throughput in MB/sec instead of KB/sec.

Display names in descriptive format (for example, cXtYdZ, rmt/N, server:/export/path).

For each disk, report per-partition statistics in addition to per-device statistics.

For each disk, report per-partition statistics only, no per-device statistics.

Display data in a comma-separated format.

Suppress messages related to "state changes."

Report the number of characters read and written to terminals per second.

Specify u for a printed representation of the internal representation of time. See time(2). Specify d for standard date format. See ctime(3C).

For each disk, report extended disk statistics. The output is in tabular form.

For disks under scsi_vhci control, also report statistics in the form of target.controller.

Do not print lines whose underlying data values are all zeros.
The following operands are supported:

**disk**
Explicitly specify the disks to be reported; in addition to any explicit disks, any active disks up to the disk limit (see `-l` above) will also be reported.

**count**
Display only count reports.

**interval**
Report once each interval seconds.

**EXAMPLE 1** Using the `iostat` command

```
example% iostat -xtc 5 2
```

<table>
<thead>
<tr>
<th>Device</th>
<th>r/s</th>
<th>w/s</th>
<th>k/s</th>
<th>w/s</th>
<th>wait</th>
<th>actv</th>
<th>svc_t</th>
<th>%w</th>
<th>%b</th>
<th>tin</th>
<th>tout</th>
<th>us</th>
<th>sy</th>
<th>wt</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd0</td>
<td>0.4</td>
<td>0.3</td>
<td>10.4</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>36.9</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>sd1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>35.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sd6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>nfs1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>nfs2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>35.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**EXAMPLE 2** Using the `iostat` command

```
example% iostat -xnp
```

<table>
<thead>
<tr>
<th>Device</th>
<th>r/s</th>
<th>w/s</th>
<th>k/s</th>
<th>w/s</th>
<th>wait</th>
<th>actv</th>
<th>svc_t</th>
<th>%w</th>
<th>%b</th>
<th>tin</th>
<th>tout</th>
<th>us</th>
<th>sy</th>
<th>wt</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sd1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sd6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>nfs1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>nfs2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**device**
name of the disk

**r/s**
reads per second

**w/s**
writes per second

**Kr/s**
kilobytes read per second

**Kw/s**
kilobytes written per second

**wait**
average number of transactions waiting for service (queue length)

**actv**
average number of transactions actively being serviced (removed from the queue but not yet completed)

**svc_t**
average service time, in milliseconds

**%w**
percent of time there are transactions waiting for service (queue non-empty)

**%b**
percent of time the disk is busy (transactions in progress)
EXAMPLE 2 Using the iostat command (Continued)

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>10.4</td>
<td>7.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>36.9</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>9.0</td>
<td>7.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>37.2</td>
<td>0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>34.0</td>
<td>0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>35.0</td>
<td>0</td>
</tr>
</tbody>
</table>

The fields have the same meanings as in the previous example, with the following additions:

wsvc_t average service time in wait queue, in milliseconds
asvc_t average service time active transactions, in milliseconds

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO sar(1), sar(1M), vmstat(1M), time(2), ctime(3C), attributes(5), scsi_vhci(7D)

NOTES The sum of CPU utilization might vary slightly from 100 because of rounding errors in the production of a percentage figure.
NAME
ipqosconf – configure the IPQoS facility

SYNOPSIS
/usr/sbin/ipqosconf
/usr/sbin/ipqosconf -a conf_file [-vs]
/usr/sbin/ipqosconf -c
/usr/sbin/ipqosconf -f
/usr/sbin/ipqosconf -l
/usr/sbin/ipqosconf -L

DESCRIPTION
The ipqosconf utility configures the Quality of Service facility of the Internet Protocol (IP). Only superusers can use this command.

Without arguments, ipqosconf displays the actual IPQoS configuration.

Configuration is not preserved across reboot. You must apply the configuration every time that the machine reboots. To apply the configuration early in the boot phase, you can populate the /etc/inet/ipqosinit.conf file, which is then read from the inetsvc startup script.

OPTIONS
The following options are supported:

-a conf_file Apply the configuration in conf_file. If the conf_file is -, ipqosconf reads from standard input.
-c Populate the boot file with the current configuration.
-f Flush the configuration.
-l List the current applied configuration.
-L List the current configuration in verbose mode.

In addition to the information that the -l option provides, the -L option provides filters and classes configured through other means than the ipqosconf command. This option also provides the full set of filters that were created by ipqosconf by representing a multi-homed host in a configuration file.

-s Log messages to syslog during an -a operation.
-v Toggle verbose mode during an -a operation.

The -v option causes all messages to go to the console in addition to their normal destination. Messages intended to go to syslog, because the -s flag is set or because it is a log message, still go to syslog as well as the console.

CONFIGURATION FILE
The configuration file is composed of a format version and a succession of configuration (action) blocks. There are different configuration blocks for each type of action that is being configured.
**Format Version**

The first line of the configuration file specifies the format version contained in the configuration file.

The following entry specifies the format version:

```plaintext
fmt_version x.x
```

where `x.x` is the format version. 1.0 is the only supported version.

**Configuration Blocks**

Following the format version, are a succession of configuration (action) blocks that are different for each type of action being configured. A configuration block always has the following structure:

```plaintext
action {
    name action_name
    module module_name
    params_clause | ""
    cf_clauses
}
```

**Modules**

The *param_name* and the types of *param_value* are specific to a given module.
filter_name ::= string

There must be exactly one configuration block belonging to module ipgpc. The action
must be named ipgpc.classify. All other actions should be reachable from ipgpc
by way of parameters of type action or the next_action of a class.

The set of types that are used for parameters of the different modules are:

action ::= string
protocol ::= 1..255
port ::= 1..65535
uint8 ::= 0..255
uint32 ::= 0..4294967296
int32 ::= -2147483648..2147483648
address ::= see the description section>
ifname ::= <interface name recognized by SIOGLIFINDEX ioctl>
enum ::= string | { string_list }
boolean ::= TRUE | FALSE
integer_array ::= { range_value_list }
map_index ::= uint32
address ::= ip_address | ip_node_name
user ::= uid | username
uid ::= 0..65535
username ::= string
string_list ::= string s1_entries
s1_entries ::= ’,’ string s1_entries | **
ranged_value_list ::= range_value_entry ranged_value_list
range_value_entry ::= range ’::’ integer_array_value
range ::= uint32 ’-’ uint32
integer_array_value ::= string | integer_array_number
integer_array_number ::= uint8 | uint32
ranged_value_list ::= ’,’ range_value_entry ranged_value_list | **
ip_node_name ::= string
ip_address ::= v4_address | v6_address
v4_address ::= v4_ip_address / v4_cidr_mask |
v4_ip_address ::= 1-32
v4_cidr_mask ::= 1-128
v6_address ::= v6_ip_address / v6_cidr_mask |
v6_ip_address ::= 1-32
v6_cidr_mask ::= 1-128

METER module tokenmt configuration syntax :

red_action_name action
yellow_action_name action
green_action_name action
committed_rate uint32
committed_burst uint32
peak_rate uint32
<if present this signifies that this will be a two rate meter, not
a single rate meter>
peak_burst uint32
<this is the 'peak' burst size for a two rate meter, but the 'excess' burst
size for a single rate meter>
color_aware boolean
METER module tswtclmt configuration syntax:

- `red_action_name` action
- `yellow_action_name` action
- `green_action_name` action
- `committed_rate` uint32
- `peak_rate` uint32
- `window` uint32
- `global_stats` boolean

MARKER module dscpmk configuration syntax:

- `next_action` action
- `dscp_map` int_array
- `dscp_detailed_stats` boolean
- `global_stats` boolean

MARKER module dlcosmk configuration syntax:

- `next_action` action
- `cos` map_index
- `global_stats` boolean

CLASSIFIER module ipgpc configuration syntax:

- `if_grpname` string
- `user` user
- `projid` int32
- `if_name` ifname
- `direction` enum { LOCAL_IN, LOCAL_OUT, FWD_IN, FWD_OUT }
- `protocol` protocol
- `dsfield` uint8
- `dsfield_mask` uint8
- `saddr` address
- `daddr` address
- `sport` port
- `dport` port
- `priority` uint32
- `precedence` uint32
- `ip_version` enum { V4, V6 }
- `global_stats` boolean

ACCOUNTING module flowacct configuration syntax

- `next_action` action
- `timer` uint32
- `timeout` uint32
- `max_limit` uint32
### Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>A string of characters with a matching action definition. The character string can be up to twenty three characters in length. To allow for spaces the string needs to be enclosed in quotes and cannot span lines. Two special actions are pre-defined and can not have an explicit action definition. The two pre-defined actions are continue and drop. continue causes the packet that is passed to it to continue normal processing. drop causes the packet that is passed to it to be dropped.</td>
</tr>
<tr>
<td>address</td>
<td>A machine name or address recognized by getipnodebyname(3B). If a machine name is specified, and ip_version has been defined, the query is done using that address family. If a machine name is not specified and ip_version has not been defined, the query is done using the AI_DEFAULT flag to getipnodebyname(). CIDR address masks following an IP address are allowed. Specify the CIDR address masks as 1-32 (for v4) or 1-128 (for v6). CIDR addresses are disallowed for node names.</td>
</tr>
<tr>
<td>enum</td>
<td>Either one of the supported values or comma delimited list of support values, enclosed in curly braces.</td>
</tr>
<tr>
<td>ifname</td>
<td>A non-NULL, existing interface name recognized by the SIOGLIFINDEX socket ioctl.</td>
</tr>
<tr>
<td>integer_array</td>
<td>A comma delimited set of range/value pairs, enclosed in curly braces. Specify range in the format x-y, where x and y are integers that denote the range of array indexes to which the value applies. The minimum value for both x and y is 0. The maximum value for x is particular to the parameter. Any array indexes not referred to in the set of ranges are left at their previous value.</td>
</tr>
<tr>
<td>map_index</td>
<td>A non-negative integer used as an index into any maps associated with a parameter of this type. The maximum value of this type is dictated by the number of entries in the associated maps. The index starts at 0.</td>
</tr>
<tr>
<td>port</td>
<td>Either a service name recognized by getservbyname(3SOCKET) or an integer 1-65535.</td>
</tr>
<tr>
<td>protocol</td>
<td>Either a protocol name recognized by getprotobyname(3SOCKET) or an integer 1-255.</td>
</tr>
</tbody>
</table>
### Parameters

The configuration file can contain the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>string</strong></td>
<td>A character string. Enclose <em>string</em> in quotes. <em>string</em> cannot span multiple lines.</td>
</tr>
<tr>
<td><strong>user</strong></td>
<td>Either a valid user ID or username for the system that is being configured.</td>
</tr>
<tr>
<td><strong>color_aware</strong></td>
<td>A value of <strong>TRUE</strong> or <strong>FALSE</strong>, indicating whether or not the configured action takes account of the previous packet coloring when classifying.</td>
</tr>
<tr>
<td><strong>color_map</strong></td>
<td>An integer array that defines which values of the dscp field correspond with which colors for when the color_aware parameter is set to <strong>TRUE</strong>.</td>
</tr>
<tr>
<td><strong>committed_burst</strong></td>
<td>The committed burst size in bits.</td>
</tr>
<tr>
<td><strong>committed_rate</strong></td>
<td>The committed rate in bits per second.</td>
</tr>
<tr>
<td><strong>cos</strong></td>
<td>The value used to determine the underlying driver level priority applied to the packet which is defined in 802.1D.</td>
</tr>
<tr>
<td><strong>daddr</strong></td>
<td>The destination address of the datagram.</td>
</tr>
<tr>
<td><strong>direction</strong></td>
<td>The value used to build a filter matching only part of the traffic. This parameter is of type <strong>enum</strong> with valid values of <strong>LOCAL_IN</strong> (local bound traffic), <strong>LOCAL_OUT</strong> (local sourced traffic), <strong>FWD_IN</strong> (forwarded traffic entering the system), and <strong>FWD_OUT</strong> (forwarded traffic exiting the system).</td>
</tr>
<tr>
<td><strong>dport</strong></td>
<td>The destination port of the datagram.</td>
</tr>
<tr>
<td><strong>dscp_detailed_stats</strong></td>
<td>A value of <strong>TRUE</strong> or <strong>FALSE</strong> that determines whether detailed statistics are switched on for this dscp action.</td>
</tr>
<tr>
<td><strong>dscp_map</strong></td>
<td>The <strong>integer_array</strong> that supplies the values that IP packets with a given dscp value have their dscp re-marked with.</td>
</tr>
<tr>
<td><strong>dsfield</strong></td>
<td>The <strong>DS</strong> field of the <strong>IP</strong> datagram header. If you specify this parameter, you must also specify the dsfield_mask parameter.</td>
</tr>
</tbody>
</table>

The existing value is used to index into the array where the new value is taken from. The array is of size 64, meaning valid indexes are 0-63 and valid values are also 0-63.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsfield_mask</td>
<td>The mask applied to the dsfield parameter to determine the bits against which to match.</td>
</tr>
<tr>
<td>global_stats</td>
<td>A value of TRUE or FALSE to enable or disable the statistic collection for this action.</td>
</tr>
<tr>
<td>green_action_name</td>
<td>The action to be executed for packets that are deemed to be green.</td>
</tr>
<tr>
<td>if_grpname</td>
<td>The interface group name.</td>
</tr>
<tr>
<td>if_name</td>
<td>The name of an interface recognized by the SIOGLIFINDEX ioctl. This parameter is of type ifname.</td>
</tr>
<tr>
<td>ip_version</td>
<td>This parameter is of type enum and has valid values of V4 and V6. If it is set to V4 only then only ipv4 addresses are requested for a specified hostname. If it is set to V6, only ipv6 addresses are returned if there are any, otherwise v4 mapped v6 addresses are returned. If both V4 and V6 are specified, or if ip_version is not specified, then both ipv4 and ipv6 addresses are requested for a specified hostname.</td>
</tr>
<tr>
<td>max_limit</td>
<td>The maximum number of flow entries present at one time in the flowacct actions in the memory resident table.</td>
</tr>
<tr>
<td>next_action</td>
<td>The action to be executed when the current action is complete. This value can be either the name of an action defined in the configuration file, or one of the two special action types: drop and continue. See Types for additional information on special action types.</td>
</tr>
<tr>
<td>peak_burst</td>
<td>The peak burst size, for a two rate meter, or excess burst size, for a single rate meter, in bits.</td>
</tr>
<tr>
<td>peak_rate</td>
<td>The peak rate in bits per second.</td>
</tr>
<tr>
<td>precedence</td>
<td>An integer that is used to order filters. If there are two matching filters that have the same priority value, the one with the lower precedence value is the one matched. This parameter should be used because the order of the filters in a configuration file has no influence on their relative precedence.</td>
</tr>
</tbody>
</table>
| priority | An integer that represents the relative priority of a filter. If there are two matching filters, the one with the
higher priority value is the one matched. Multiple filters can have the same priority.

projid  The project ID of the process sending the data. This value is always -1 for received traffic.

protocol  The Upper Layer Protocol against which this entry is matched.

red_action_name  The action to be executed for packets that are determined to be red.

saddr  The source address of the datagram.

sport  The source port of the datagram.

timeout  The timeout in milliseconds after which flows are written to the accounting file.

timer  The period in milliseconds at which timed-out flows are checked for.

user  The user ID or username of the process sending the data. This value is always -1 for received traffic.

window  The window size in ms.

yellow_action_name  The action to be executed for packets that are determined to be yellow.

**SECURITY**

None.

**EXAMPLES**

**EXAMPLE 1** Sending All Traffic From eng to the AF 1 Class of Service

This example sends all traffic from eng to the AF 1 class of service. It is documented in four separate steps:

The following step creates a `tokenmt` action with three outcomes:

```
#meter for class 1.
action {
    name AF_CL1
    module tokenmt
    params{
        committed_rate 64
        committed_burst 75
        peak_burst 150
        global_stats TRUE
        red_action_name drop
        yellow_action_name markAF12
        green_action_name markAF11
    }
}
```

The following step creates two `dscpmk` actions:
#class 1, low drop precedence.
action {
    name markAF11
    module dscpmk
    params{
        dscp_map {0-63:28}
        dscp_detailed_stats TRUE
        global_stats TRUE
        next_action acct1
    }
}

#class 1, medium drop precedence.
action {
    name markAF12
    module dscpmk
    params {
        dscp_map {0-63:30}
        dscp_detailed_stats TRUE
        global_stats TRUE
        next_action acct1
    }
}

The following step creates an accounting action:
#billing for transmitted class 1 traffic.
action {
    name acct1
    module flowacct
    params {
        timer 10
        timeout 30
        global_stats TRUE
    max_limit 1024
    next_action continue
    }
}

The following step creates an ipgpc action:
#traffic from eng sent, traffic from ebay dropped.
action {
    name ipgpc.classify
    module ipgpc
    class {
        name from_eng
        enable_stats TRUE
        next_action AF_CL1
    }
    class {
        name from_ebay
        enable_stats TRUE
        next_action drop
    }
}
EXAMPLE 1 Sending All Traffic From eng to the AF 1 Class of Service  

(Continued)

filter {
    name from_eng
    saddr eng-subnet
    class from_eng
}

filter {
    name from_ebay
    saddr ebay-subnet
    class from_ebay
}

}  

FILES /etc/inet/ipqosinit.conf Contains the IPQoS configuration loaded at boot time. If this file exists, it is read from /etc/initd.d/inetsvc after /usr is mounted.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWqosu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO syslog(3C), getipnodebyname(3SOCKET), getprotobyname(3SOCKET), getservbyname(3SOCKET), attributes(5), dlcsmk(7IPP), dscpfnk(7IPP), flowacct(7IPP), ipgpc(7IPP), ipqos(7IPP), tokenmt(7IPP), tswtclmt(7IPP)

DIAGNOSTICS ipqosconf sends messages to syslog of facility user, severity notice when any changes are made to the IPQoS configuration.

Errors that occur during an ipqosconf operation send an error message to the console by default. For the application of a new configuration if the -s option is set then these messages are sent to syslog as facility user, severity error instead. If the -v option is present during an application then all error and change notification messages are sent to the console as well as their default destination.
NAME  ipsecconf – configure system wide IPsec policy

SYNOPSIS  
/usr/sbin/ipsecconf
/usr/sbin/ipsecconf -a file [-q]
/usr/sbin/ipsecconf -d index
/usr/sbin/ipsecconf -f
/usr/sbin/ipsecconf -l [-n]

DESCRIPTION  
The ipsecconf utility configures the IPsec policy for a host. Once the policy is configured, all outbound and inbound datagrams are subject to policy checks as they exit and enter the host. If no entry is found, no policy checks will be completed, and all the traffic will pass through. Datagrams that are being forwarded will not be subjected to policy checks that are added using this command. See ifconfig(1M) and tun(7M) for information on how to protect forwarded packets. Depending upon the match of the policy entry, a specific action will be taken.

This command can be run only by superuser.

Each entry can protect traffic in either one direction (requiring a pair of entries) or by a single policy entry which installs the needed symmetric sadb rules.

When the command is issued without any arguments, the list of (file policy entries) loaded are shown. To display the (spd p.e.s) use the -l option. Both will display the index number for the entry.

Note, since one file policy entry (FPE) can generate multiple SPD pol entries (SPEs), the list of FPEs may not show all the actual entries. However, it is still useful in determining what what rules have been added to get the spd into its current state.

You can use the -d option with the index to delete a given policy in the system. If the -d option removes an FPE entry that produces multiple SPEs, only then SPD with the same policy index as the FPE will be removed. This can produce a situation where there may be SPEs when there are no FPEs

With no options, the entries are displayed in the order that they were added, which is not necessarily the order that the traffic match will take place.

To view the order in which the traffic match will take place, use the -l option. The rules are ordered such that all bypass rules are checked first, then ESP rules, then AH rules. After that, they are checked in the order entered.

Policy entries are not preserved across reboot. Thus the policy needs to be added everytime the machine reboots. To configure policies early in the boot, one can setup policies in the /etc/inet/ipsecinit.conf file, which are then read from the inetinit startup script.

See SECURITY for issues in securing this file.

SECURITY

For issues in securing this file.
ipsecconf supports the following option:

- **-a file**  Add the IPsec policy to the system as specified by each entry in the file. An IPsec configuration file contains one or more entries that specify the configuration. Once the policy is added, all outbound and inbound datagrams are subject to policy checks.

Entries in the files are described in the OPERANDS section below. Examples can be found in the EXAMPLES section below.

Policy is latched for TCP/UDP sockets on which a `connect(3SOCKET)` or `accept(3SOCKET)` is issued. So, the addition of new policy entries may not affect such endpoints or sockets. However, the policy will be latched for a socket with an existing non-null policy. Thus, make sure that there are no preexisting connections that will be subject to checks by the new policy entries.

The feature of policy latching explained above may change in the future. It is not advisable to depend upon this feature.

- **-d index**  Delete the policy denoted by the index. The index is obtained by invoking ipsecconf without any arguments, or with the `-l` option. See DESCRIPTION for more information. Once the entry is deleted, all outbound and inbound datagrams affected by this policy entry will not be subjected to policy checks. Be advised that with connections for which the policy has been latched, packets will continue to go out with the same policy, even if it has been deleted. It is advisable to use the `-l` option to find the correct policy index.

- **-f**  Flush all the policies in the system. Constraints are similar to the `-d` option with respect to latching.

- **-l**  Listing of the internal system policy table. When ipsecconf is invoked without any arguments, a complete list of policy entries with indexes added by the user since boot is displayed. The current table can differ from the previous one if, for example, a multi-homed entry was added or policy reordering occurred, or if a single rule entry generates two `spd` rules. In the case of a multi-homed entry, all the addresses are listed explicitly. If a mask was not specified earlier but was instead inferred from the address, it will be explicitly listed here. This option is used to view policy entries in the correct order. The outbound and inbound policy entries are listed separately.

- **-n**  Show network addresses, ports, protocols in numbers. The `-n` option may only be used with the `-l` option.
Quiet mode. Suppresses the warning message generated when adding policies.

Each policy entry contains 3 parts specified as follows:

{pattern} action {properties}

or

{pattern} action {properties} ["or" action {properties}]*

Every policy entry begins on a new line and can span multiple lines. pattern specifies the traffic pattern that should be matched against the outbound and inbound datagrams. If there is a match, a specific action determined by the second argument will be taken, depending upon the properties of the policy entry.

If there is an or in the rule (multiple action-properties for a given pattern), a transmitter will use the first action-property pair that works, while a receiver will use any that are acceptable.

pattern and properties are name-value pairs where name and value are separated by a <space>, <tab> or <newline>. Multiple name-value pairs should be separated by <space>, <tab> or <newline>. The beginning and end of the pattern and properties are marked by { and } respectively.

Files can contain multiple policy entries. An unspecified name-value pair in the pattern will be considered as a wildcard. Wildcard entries match any corresponding entry in the datagram.

One thing to remember is that UDP port 500 is always bypassed regardless of any policy entries. This is a requirement for in.iked(1M) to work.

File can be commented by using a # as the first character. Comments may be inserted either at the beginning or the end of a line.

The complete syntax of a policy entry is:

```
policy ::= { <pattern1> } <action1> { <properties1> } |
{ <pattern2> } <action2> { <properties2> } |
[ 'or' <action2> { <properties2> } ]*

pattern1 ::= <pattern_name_value_pair1>*

pattern2 ::= <pattern_name_value_pair2>*

action1 ::= apply | permit | bypass | pass
action2 ::= bypass | pass | drop | ipsec

properties1 ::= {<prop_name_value_pair1>}
properties2 ::= {<prop_name_value_pair2>}

pattern_name_value_pair1 ::= ...
```

ipseconf(1M)

- `q` Quiet mode. Suppresses the warning message generated when adding policies.

**OPERANDS**

Each policy entry contains 3 parts specified as follows:

- `{pattern} action {properties}`
- or
- `{pattern} action {properties} ["or" action {properties}]`

Every policy entry begins on a new line and can span multiple lines. pattern specifies the traffic pattern that should be matched against the outbound and inbound datagrams. If there is a match, a specific action determined by the second argument will be taken, depending upon the properties of the policy entry.

If there is an or in the rule (multiple action-properties for a given pattern), a transmitter will use the first action-property pair that works, while a receiver will use any that are acceptable.

pattern and properties are name-value pairs where name and value are separated by a <space>, <tab> or <newline>. Multiple name-value pairs should be separated by <space>, <tab> or <newline>. The beginning and end of the pattern and properties are marked by { and } respectively.

Files can contain multiple policy entries. An unspecified name-value pair in the pattern will be considered as a wildcard. Wildcard entries match any corresponding entry in the datagram.

One thing to remember is that UDP port 500 is always bypassed regardless of any policy entries. This is a requirement for in.iked(1M) to work.

File can be commented by using a # as the first character. Comments may be inserted either at the beginning or the end of a line.

The complete syntax of a policy entry is:

```
policy ::= { <pattern1> } <action1> { <properties1> } |
{ <pattern2> } <action2> { <properties2> } |
[ 'or' <action2> { <properties2> } ]*

pattern1 ::= <pattern_name_value_pair1>*

pattern2 ::= <pattern_name_value_pair2>*

action1 ::= apply | permit | bypass | pass
action2 ::= bypass | pass | drop | ipsec

properties1 ::= {<prop_name_value_pair1>}
properties2 ::= {<prop_name_value_pair2>}

pattern_name_value_pair1 ::= ...```
ipseconfig(1M)

saddr <address>/<prefix> |
src <address>/<prefix> |
srcaddr <address>/<prefix> |
smask <mask> |
sport <port> |
daddr <address>/<prefix> |
dst <address>/<prefix> |
dstaddr <address>/<prefix> |
dmask <mask> |
dport <port> |
ulp <protocol> |
proto <protocol>

pattern_name_value_pair2 ::= addr <address>/<prefix> |
remote <address>/<prefix> |
 rport <port> |
 laddr <address>/<prefix> |
 local <address>/<prefix> |
lport <port> |
 ulp <protocol> |
proto <protocol> |
dir <dir_val2>

address ::= <IPv4 dot notation> | <IPv6 colon notation> |<String recognized by gethostbyname> | <String recognized by getnetbyname>

prefix ::= <number>

mask ::= <0xhexdigit[hexdigit]> | <0Xhexdigit[hexdigit]> |<IPv4 dot notation>

port ::= <number>| <String recognized by getservbyname>

protocol ::= <number>| <String recognized by getprotobynamessystem administration commands 703

prop_name_value_pair1 ::= 
 auth_algs <auth_alg> |
encr_algs <encr_alg> |
encr_auth_algs <auth_alg> |
sa <sa_val> |
dir <dir_val1>

prop_name_value_pair2 ::= 
 auth_algs <auth_alg> |
encr_algs <encr_alg> |
encr_auth_algs <auth_alg> |
sa <sa_val>

auth_alg ::= <auth_algname> ['(' '<keylen' ')']
auth_algname ::= any | md5 | hmac-md5 | sha | shal | hmac-sha | hmac-shal |<number>

encr_alg ::= <encr_algname> ['(' '<keylen' ')']
encr_algname ::= any | aes | aes-cbc | des | des-cbc | 3des |3des-cbc | blowfish | blowfish-cbc |<number>
Policy entries may contain the following (name value) pairs in the `pattern` field. Each (name value) pair may appear only once in given policy entry.

- **laddr/plen**
  - The value that follows is the local address of the datagram with the prefix length. Only plen leading bits of the source address of the packet will be matched. plen is optional. Local means destination on incoming and source on outgoing packets. The source address value can be a hostname as described in `getaddrinfo(3XSOCKET)` or a network name as described in `getnetbyname(3XNET)` or a host address or network address in the Internet standard dot notation. See `inet_addr(3XNET)`. If a hostname is given and `getaddrinfo(3XSOCKET)` returns multiple addresses for the host, then policy will be added for each of the addresses with other entries remaining the same.

- **raddr/plen**
  - The value that follows is the remote address of the datagram with the prefix length. Only plen leading bits of the remote address of the packet will be matched. plen is optional. Remote means source on incoming packets and destination on outgoing packets. The remote address value can be a hostname as described in `getaddrinfo(3XSOCKET)` or a network name as described in `getnetbyname(3XNET)` or a host address or network address in the Internet standard dot notation. See `inet_addr(3XNET)`. If a hostname is given and `getaddrinfo(3XSOCKET)` returns multiple addresses for the host, then policy will be added for each of the addresses with other entries remaining the same.

- **src/plen**
  - The value that follows is the source address of the datagram with the prefix length. Only plen leading bits of the source address of the packet will be matched. plen is optional.

  The source address value can be a hostname as described in `getaddrinfo(3XSOCKET)` or a network name as described in `getnetbyname(3XNET)` or a host address or network address in the Internet standard dot notation. See `inet_addr(3XNET)`.
If a hostname is given and `getaddrinfo(3SOCKET)` returns multiple addresses for the host, then policy will be added for each of the addresses with other entries remaining the same.

`daddr/plen`  
The value that follows is the destination address of the datagram with the prefix length. Only `plen` leading bits of the destination address of the packet will be matched. `plen` is optional.

See `saddr` for valid values that can be given. If multiple source and destination addresses are found, then a policy entry that covers each source address-destination address pair will be added to the system.

`smask`  
For IPv4 only. The value that follows is the source mask. If prefix length is given with `saddr`, this should not be given. This can be represented either in hexadecimal number with a leading 0x or 0X, for example, 0xffff0000, 0xffff0000 or in the Internet decimal dot notation, for example, 255.255.0.0 and 255.255.255.0. The mask should be contiguous and the behavior is not defined for non-contiguous masks.

`smask` is considered only when `saddr` is given.

For both IPv4 and IPv6 addresses, the same information can be specified as a `slen` value attached to the `saddr` parameter.

`dmask`  
Analogous to `smask`.

`lport`  
The value that follows is the local port of the datagram. This can be either a port number or a string searched with a NULL proto argument, as described in `getservbyname(3XNET)`

`rport`  
The value that follows is the remote port of the datagram. This can be either a port number or a string searched with a NULL proto argument, as described in `getservbyname(3XNET)`

`sport`  
The value that follows is the source port of the datagram. This can be either a port number or a string as described in `getservbyname(3XNET)` searched with NULL proto argument.

`dport`  
The value that follows is the destination port of the datagram. This can be either a port number or a string as described in `getservbyname(3XNET)` searched with NULL proto argument.

`proto`  
The value that follows is the Upper Layer Protocol that this entry should be matched against. It could be a number or a string as described in `getprotobyname(3XNET)`.

If no `smask` or `plen` is specified, a `plen` of 32 for IPv4 or 128 for IPv6 will be used.
If no smask or plen is specified, a plen of 32 for IPv4 or 128 for IPv6 will be used, meaning a host.

Policy entries may contain the following (name value) pairs in the properties field. Each (name value) pair may appear only once in a given policy entry.

auth_algs
An acceptable value following this implies that IPsec AH header will be present in the outbound datagram. Values following this describe the authentication algorithms that will be used while applying the IPsec AH on outbound datagrams and verified to be present on inbound datagrams. See RFC 2402.

This entry can contain either a string or a decimal number.

string
This should be either MD5 or HMAC-MD5 denoting the HMAC-MD5 algorithm as described in RFC 2403, and SHA1, or HMAC-SHA1 or SHA or HMAC-SHA denoting the HMAC-SHA algorithm described in RFC 2404. The string can also be ANY, which denotes no-preference for the algorithm. Default algorithms will be chosen based upon the SAs available at this time for manual SAs and the key negotiating daemon for automatic SAs. Strings are not case-sensitive.

decimal
A number in the range 1-255. This is useful when new algorithms can be dynamically loaded.

If auth_algs is not present, the AH header will not be present in the outbound datagram, and the same will be verified for the inbound datagram.

encr_algs
An acceptable value following this implies that IPsec ESP header will be present in the outbound datagram. The value following this describes the encryption algorithms that will be used to apply the IPsec ESP protocol to outbound datagrams and verify it to be present on inbound datagrams. See RFC 2406.

This entry can contain either a string or a decimal number. Strings are not case-sensitive.

string
Can be one of the following:

<table>
<thead>
<tr>
<th>string value</th>
<th>Algorithm Used</th>
<th>See RFC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES or DES-CBC</td>
<td>DES-CBC</td>
<td>2405</td>
</tr>
<tr>
<td>3DES or 3DES-CBC</td>
<td>3DES-CBC</td>
<td>2451</td>
</tr>
<tr>
<td>BLOWFISH or BLOWFISH-CBC</td>
<td>BLOWFISH-CBC</td>
<td>2451</td>
</tr>
<tr>
<td>AES or AES-CBC</td>
<td>AES-CBC</td>
<td>2451</td>
</tr>
</tbody>
</table>
The value can be `NULL`, which implies a `NULL` encryption, pursuant to RFC 2410. This means that the payload will not be encrypted. The string can also be `ANY`, which indicates no-preference for the algorithm. Default algorithms will be chosen depending upon the SAs available at the time for manual SAs and upon the key negotiating daemon for automatic SAs. Strings are not case-sensitive.

**number**

A decimal number in the range 1-255. This is useful when new algorithms can be dynamically loaded.

**encr_auth_algs**

An acceptable value following `encr_auth_algs` implies that the IPsec ESP header will be present in the outbound datagram. The values following `encr_auth_algs` describe the authentication algorithms that will be used while applying the IPsec ESP protocol on outbound datagrams and verified to be present on inbound datagrams. See *RFC 2406*. This entry can contain either a string or a number. Strings are case-insensitive.

**string**

Valid values are the same as the ones described for `auth_algs` above.

**number**

This should be a decimal number in the range 1-255. This is useful when new algorithms can be dynamically loaded.

If `encr_algs` is present and `encr_auth_algs` is not present in a policy entry, the system will use an ESP SA regardless of whether the SA has an authentication algorithm or not.

If `encr_algs` is not present and `encr_auth_algs` is present in a policy entry, null encryption will be provided, which is equivalent to `encr_algs` with `NULL`, for outbound and inbound datagrams.

If both `encr_algs` and `encr_auth_algs` are not present in a policy entry, ESP header will not be present for outbound datagrams and the same will be verified for inbound datagrams.

If both `encr_algs` and `encr_auth_algs` are present in a policy entry, ESP header with integrity checksum will be present on outbound datagrams and the same will be verified for inbound datagrams.

For `encr_algs`, `encr_auth_algs`, and `auth_algs` a key length specification may be present. This is either a single value specifying the only valid key length for the algorithm or a range specifying the valid minimum and/or maximum key lengths. Minimum or maximum lengths may be omitted.

**dir**

Values following this decides whether this entry is for outbound or inbound datagram. Valid values are strings that should be one of the following:

**out**

This means that this policy entry should be considered only for outbound datagrams.
This means that this policy entry should be considered only for inbound datagrams.

This means that this policy entry should be considered for both inbound and outbound datagrams.

This entry is not needed when the action is "apply", "permit" or "ipsec". But if it is given while the action is "apply" or "permit", it should be "out" or "in" respectively. This is mandatory when the action is "bypass".

Values following this decide the attribute of the security association. Value indicates whether a unique security association should be used or any existing SA can be used. If there is a policy requirement, SAs are created dynamically on the first outbound datagram using the key management daemon. Static SAs can be created using ipseckey(1M). The values used here determine whether a new SA will be used/obtained. Valid values are strings that could be one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique</td>
<td>Unique Association. A new/unused association will be obtained/used for packets matching this policy entry. If an SA that was previously used by the same 5 tuples, that is, (Source address, Destination address, Source port, Destination Port, Protocol (for example, TCP/UDP)) exists, it will be reused. Thus uniqueness is expressed by the 5 tuples given above. The security association used by the above 5 tuples will not be used by any other socket. For inbound datagrams, uniqueness will not be verified.</td>
</tr>
<tr>
<td>shared</td>
<td>Shared association. If an SA exists already for this source-destination pair, it will be used. Otherwise a new SA will be obtained. This is the default.</td>
</tr>
</tbody>
</table>

This is mandatory only for outbound policy entries and should not be given for entries whose action is "bypass". If this entry is not given for inbound entries, for example, when "dir" is in or "action" is permit, it will be assumed to be shared.

Action follows the pattern and should be given before properties. It should be one of the following and this field is mandatory.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec</td>
<td>Use IPsec for the datagram as described by the properties, if the pattern matches the datagram. If ipsec is given without a dir spec, the pattern is matched to incoming and outgoing datagrams.</td>
</tr>
<tr>
<td>apply</td>
<td>Apply IPsec to the datagram as described by the properties, if the pattern matches the datagram. If apply is given, the pattern is matched only on the outbound datagram.</td>
</tr>
<tr>
<td>permit</td>
<td>Permit the datagram if the pattern matches the incoming datagram and satisfies the constraints described by the properties. If it does not satisfy the properties, discard the datagram. If permit is given, the pattern is matched only for inbound datagrams.</td>
</tr>
</tbody>
</table>
**bypass**     Bypass any policy checks if the pattern matches the datagram. *dir* in the properties decides whether the check is done on outbound or inbound datagrams. All the *bypass* entries are checked before checking with any other policy entry in the system. This has the highest precedence over any other entries. *dir* is the only field that should be present when action is *bypass*.

**drop**     Drop any packets that match the pattern.

If the file contains multiple policy entries, for example, they are assumed to be listed in the order in which they are to be applied. In cases of multiple entries matching the outbound and inbound datagram, the first match will be taken. The system will reorder the policy entry, that is, add the new entry before the old entry, only when:

- The level of protection is "stronger" than the old level of protection. Currently, strength is defined as:

  \( \text{AH and ESP} > \text{ESP} > \text{AH} \)

  The standard uses of AH and ESP were what drove this ranking of "stronger". There are flaws with this. ESP can be used either without authentication, which will allow cut-and-paste or replay attacks, or without encryption, which makes it equivalent or slightly weaker than AH. An administrator should take care to use ESP properly. See ipsecesp(7P) for more details.

If the new entry has *bypass* as action, *bypass* has the highest precedence. It can be added in any order, and the system will still match all the *bypass* entries before matching any other entries. This is useful for key management daemons which can use this feature to bypass IPsec as it protects its own traffic.

Entries with both AH (*auth_algs* present in the policy entry) and ESP (*encr_auth_algs* or *encr_auth_algs* present in the policy entry) protection are ordered after all the entries with AH and ESP and before any AH-only and ESP-only entries. In all other cases the order specified by the user is not modified, that is, newer entries are added at the end of all the old entries. See EXAMPLES

A new entry is considered duplicate of the old entry if an old entry matches the same traffic pattern as the new entry. See EXAMPLES for information on duplicates.

**SECURITY**

If, for example, the policy file comes over the wire from an NFS mounted file system, an adversary can modify the data contained in the file, thus changing the policy configured on the machine to suit his needs. Administrators should be cautious about transmitting a copy of the policy file over a network.

Policy is latched for TCP/UDP sockets on which a connect(3SOCKET) or accept(3SOCKET) has been issued. Adding new policy entries will not have any effect on them. This feature of latching may change in the future. It is not advisable to depend upon this feature.
Make sure to set up the policies before starting any communications, as existing connections may be affected by the addition of new policy entries. Similarly, do not change policies in the middle of a communication.

Note that certain ndd tunables affect how policies configured with this tool are enforced; see ipsec(7P) for more details.

If your source address is a host that can be looked up over the network, and your naming system itself is compromised, then any names used will no longer be trustworthy.

**EXAMPLE 1** Protecting Outbound TCP Traffic With ESP and the AES Algorithm

The following example specified that any TCP packet from spiderweb to arachnid should be encrypted with AES, and the SA could be a shared one. It does not verify whether or not the inbound traffic is encrypted.

```plaintext
# Protect the outbound TCP traffic between hosts spiderweb and arachnid with ESP and use AES algorithm.
#
{ laddr spiderweb
  raddr arachnid
  ulp tcp
  dir out
} ipsec {
   encr_algs AES
}
```

**EXAMPLE 2** Verifying Whether or Not Inbound Traffic is Encrypted

Example 1 does not verify whether or not the inbound traffic is encrypted. The entry in this example protects inbound traffic:

```plaintext
# Protect the TCP traffic on inbound with ESP/DES from arachnid to spiderweb
#
{ laddr spiderweb
  raddr arachnid
  ulp tcp
  dir in
} ipsec {
   encr_algs AES
}
```

`sa` can be absent for inbound policy entries as it implies that it can be a shared one. Uniqueness is not verified on inbound. Note that in both the above entries, authentication was never specified. This can lead to cut and paste attacks. As mentioned previously, though the authentication is not specified, the system will still use an ESP SA with `encr_auth_alg` specified, if it was found in the SA tables.
EXAMPLE 3 Protecting All Traffic Between Two Hosts

The following example protects both directions at once:

```
{ 
    laddr spiderweb 
    raddr arachnid 
    ulp tcp 
} ipsec { 
    encr_algs AES 
}
```

EXAMPLE 4 Authenticating All Inbound Traffic to the Telnet Port

This entry specifies that any inbound datagram to telnet port should come in authenticated with the SHA1 algorithm. Otherwise the datagram should not be permitted. Without this entry, traffic destined to port number 23 can come in clear. sa is not specified, which implies that it is shared. This can be done only for inbound entries. You need to have an equivalent entry to protect outbound traffic so that the outbound traffic is authenticated as well, remove the dir.

```
# # All the inbound traffic to the telnet port should be # authenticated. # { 
    lport telnet 
    dir in 
} ipsec { 
    auth_algs sha1 
}
```

EXAMPLE 5 Verifying Inbound Traffic is Null-Encrypted

The first entry specifies that any packet with address host-B should not be checked against any policies. The second entry specifies that all inbound traffic from network-B should be encrypted with a NULL encryption algorithm and the MD5 authentication algorithm. NULL encryption implies that ESP header will be used without encrypting the datagram. As the first entry is bypass it need not be given first in order, as bypass entries have the highest precedence. Thus any inbound traffic will be matched against all bypass entries before any other policy entries.

```
# # Make sure that all inbound traffic from network-B is NULL # encrypted, but bypass for host-B alone from that network. # Add the bypass first. 
{ 
    raddr host-B 
    dir in 
} bypass {}

# Now add for network-B. 
{ 
```
EXAMPLE 5 Verifying Inbound Traffic is Null-Encrypted (Continued)

```bash
raddr network-B/16
dir in
} ipsec {
  encr_algs NULL
  encr_auth_algs md5
}
```

EXAMPLE 6 Entries to Bypass Traffic from IPsec

The first two entries provide that any datagram leaving the machine with source port 53 or coming into port number 53 should not be subjected to IPsec policy checks, irrespective of any other policy entry in the system. Thus the latter two entries will be considered only for ports other than port number 53.

```bash
# # Bypass traffic for port no 53
# {lport 53} bypass {} 
{rport 53} bypass {}
{raddr spiderweb } ipsec {encr_algs any sa unique}
```

EXAMPLE 7 Protecting Outbound Traffic

```bash
# # Protect the outbound traffic from all interfaces.
# {raddr spiderweb dir out} ipsec {auth_algs any sa unique}
```

If the `gethostbyname(3XNET)` call for spiderweb yields multiple addresses, multiple policy entries will be added for all the source address with the same properties.

```bash
{ 
  laddr arachnid
  raddr spiderweb
  dir in 
} ipsec {auth_algs any sa unique}
```

If the `gethostbyname(3XNET)` call for spiderweb and the `gethostbyname(3XNET)` call for arachnid yield multiple addresses, multiple policy entries will be added for each `(saddr daddr)` pair with the same properties. Use `ipsecconf -l` to view all the policy entries added.

EXAMPLE 8 Bypassing Unauthenticated Traffic

```bash
# # Protect all the outbound traffic with ESP except any traffic 
# to network-b which should be authenticated and bypass anything 
# to network-c 
# {raddr network-b/16 dir out} ipsec {auth_algs any}
```
EXAMPLE 8  Bypassing Unauthenticated Traffic  (Continued)

{dir out} ipsec {encr_algs any}
{raddr network-c/16 dir out} bypass {} # NULL properties

Note that bypass can be given anywhere and it will take precedence over all other entries. NULL pattern matches all the traffic.

EXAMPLE 9  Encrypting IPv6 Traffic with 3DES and MD5

The following entry on the host with the link local address
fe80::a00:20ff:fe21:4483 specifies that any outbound traffic between the hosts
with IPv6 link-local addresses fe80::a00:20ff:fe21:4483 and 
fe80::a00:20ff:fe1f:e346 must be encrypted with 3DES and MD5.

{ laddr fe80::a00:20ff:fe21:4483
  raddr fe80::a00:20ff:fe1f:e346
  dir out
} ipsec {
  encr_algs 3DES
  encr_auth_algs MD5
}

EXAMPLE 10  Verifying IPv6 Traffic is Authenticated with SHA1

The following two entries require that all IPv6 traffic to and from the IPv6 site-local
network fec0:abcd::0/32 be authenticated with SHA1.

{raddr fec0:abcd::0/32} ipsec { auth_algs SHA1 }

EXAMPLE 11  Key Lengths

# use aes at any key length
{raddr spiderweb} ipsec {encr_algs aes}

# use aes with a 192 bit key
{raddr spiderweb} ipsec {encr_algs aes(192)}

# use aes with any key length up to 192 bits
# i.e. 192 bits or less
{raddr spiderweb} ipsec {encr_algs aes(..192)}

# use aes with any key length of 192 or more
# i.e. 192 bits or more
{raddr spiderweb} ipsec {encr_algs aes(192..)}

# use aes with any key from 192 to 256 bits
{raddr spiderweb} ipsec {encr_algs aes(192..256)}

# use any algorithm with a key of 192 bits or longer
{raddr spiderweb} ipsec {encr_algs any(192..)}
**EXAMPLE 12** Using “or”

The following entry allows traffic using the AES or Blowfish algorithms from the remote machine spiderweb:

```
{raddr spiderweb} ipsec {encr_algs aes} or {encr_algs blowfish}
```

**FILES**

- `/var/run/ipsecpolicy.conf` Cache of IPsec policies currently configured for the system, maintained by `ipsecconf` command. Do not edit this file.
- `/etc/inet/ipsecinit.conf` File containing IPsec policies to be installed at the time the system transitions from run-level 2 or 3. If present, these policies are loaded after `/usr` is mounted but before any non-boot-time routing information is processed and before any Internet services are started, including naming services.
- `/etc/inet/ipsecinit.sample` Sample input file for `ipseconf`.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

- `in.iked(1M)`, `init(1M)`, `ifconfig(1M)`, `ipseckey(1M)`, `accept(3SOCKET)`, `connect(3SOCKET)`, `gethostbyname(3XNET)`, `getnetbyname(3XNET)`, `getprotobtname(3XNET)`, `getservbyname(3XNET)`, `getaddrinfo(3SOCKET)`, `socket(3SOCKET)`, `attributes(5)`, `ipsecah(7P)`, `ipsecesp(7P)`, `tun(7M)`


Diagnoses

Bad "string" on line N.
Duplicate "string" on line N.

string refers to one of the names in pattern or properties. A Bad string indicates that an argument is malformed; a Duplicate string indicates that there are multiple arguments of a similar type, for example, multiple Source Address arguments.

Error before or at line N.
Indicates parsing error before or at line N.

Non-existent index
Reported when the index for delete is not a valid one.

spd_msg return: File exists
Reported when there is already a policy entry that matches the traffic of this new entry.
The `ipseckey` command is used to manually manipulate the security association databases of the network security services, `ipsecah(7P)` and `ipsecesp(7P)`. You can use the `ipseckey` command to set up security associations between communicating parties when automated key management is not available.

While the `ipseckey` utility has only a limited number of general options, it supports a rich command language. The user may specify requests to be delivered by means of a programmatic interface specific for manual keying. See `pf_key(7P)`. When `ipseckey` is invoked with no arguments, it will enter an interactive mode which prints a prompt to the standard output and accepts commands from the standard input until the end-of-file is reached. Some commands require an explicit security association (“SA”) type, while others permit the SA type to be unspecified and act on all SA types.

`ipseckey` uses a `PF_KEY` socket and the message types `SADB_ADD`, `SADB_DELETE`, `SADB_GET`, `SADB_UPDATE`, `SADB_FLUSH`, and `SADB_X_PROMISC`. Thus, you must be a superuser to use this command.

`ipseckey` handles sensitive cryptographic keying information. Please read the SECURITY CONSIDERATIONS section for details on how to use this command securely.

### OPTIONS

- `-f [filename]` Read commands from an input file, `filename`. The lines of the input file are identical to the command line language. The `load` command provides similar functionality. The `-s` option or the `save` command can generate files readable by the `-f` argument.

- `-n` Prevent attempts to print host and network names symbolically when reporting actions. This is useful, for example, when all name servers are down or are otherwise unreachable.

- `-p` Paranoid. Do not print any keying material, even if saving SAs. Instead of an actual hexadecimal digit, print an `X` when this flag is turned on.
The opposite of the -f option. If '-f' is given for a filename, then the output goes to the standard output. A snapshot of all current SA tables will be output in a form readable by the -f option. The output will be a series of add commands, but with some names not used. This occurs because a single name may often indicate multiple addresses.

-verbose

Verbose. Print the messages being sent into the PF_KEY socket, and print raw seconds values for lifetimes.

COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Add an SA. Because it involves the transfer of keying material, it cannot be invoked from the shell, lest the keys be visible in ps(1) output. It can be used either from the interactive ipseckey&gt; prompt or in a command file specified by the -f command. The add command accepts all extension-value pairs described below.</td>
</tr>
<tr>
<td>update</td>
<td>Update SA lifetime, and in the cases of larval SAs (leftover from aborted automated key management), keying material and other extensions. Like add, this command cannot be invoked from the shell because keying material would be seen by the ps(1) command. It can be used either from the interactive ipseckey&gt; prompt or in a command file specified by the -f command. The update command accepts all extension-value pairs, but normally is only used for SA lifetime updates.</td>
</tr>
<tr>
<td>delete</td>
<td>Delete a specific SA from a specific SADB. This command requires the spi extension, and the dest extension for IPsec SAs. Other extension-value pairs are superfluous for a delete message.</td>
</tr>
<tr>
<td>get</td>
<td>Lookup and display a security association from a specific SADB. Like delete, this command only requires spi and dest for IPsec.</td>
</tr>
<tr>
<td>flush</td>
<td>Remove all SA for a given SA_TYPE, or all SA for all types.</td>
</tr>
<tr>
<td>monitor</td>
<td>Continuously report on any PF_KEY messages. This uses the SADB_X_PROMISC message to enable messages that a normal PF_KEY socket would not receive to be received. See pf_key(7P).</td>
</tr>
<tr>
<td>passive_monitor</td>
<td>Like monitor, except that it does not use the SADB_X_PROMISC message.</td>
</tr>
<tr>
<td>pmonitor</td>
<td>Synonym for passive_monitor.</td>
</tr>
</tbody>
</table>
### ipseckey(1M)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump</td>
<td>Will display all SAs for a given SA type, or will display all SAs. Because of the large amount of data generated by this command, there is no guarantee that all SA information will be successfully delivered, or that this command will even complete.</td>
</tr>
<tr>
<td>save</td>
<td>Is the command analog of the <code>-s</code> option. It is included as a command to provide a way to snapshot a particular SA type, for example, esp or ah.</td>
</tr>
<tr>
<td>help</td>
<td>Prints a brief summary of commands.</td>
</tr>
</tbody>
</table>

#### SECURITY ASSOCIATION TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all known SA types. This type is only used for the <code>flush</code> and <code>dump</code> commands. This is equivalent to having no SA type for these commands.</td>
</tr>
<tr>
<td>ah</td>
<td>Specifies the IPsec Authentication Header (&quot;AH&quot;) SA.</td>
</tr>
<tr>
<td>esp</td>
<td>Specifies the IPsec Encapsulating Security Payload (&quot;ESP&quot;) SA.</td>
</tr>
</tbody>
</table>

#### EXTENSION VALUE TYPES

Commands like `add`, `delete`, `get`, and `update` require that certain extensions and associated values be specified. The extensions will be listed here, followed by the commands that use them, and the commands that require them. Requirements are currently documented based upon the IPsec definitions of an SA. Required extensions may change in the future. `<number>` can be in either hex (0xnnn), decimal (nnn) or octal (0nnn). `<string>` is a text string. `<hexstr>` is a long hexadecimal number with a bit-length. Extensions are usually paired with values; however, some extensions require two values after them.

- **spi `<number>`**
  - Specifies the security parameters index of the SA. This extension is required for the `add`, `delete`, `get` and `update` commands.

- **replay `<number>`**
  - Specifies the replay window size. If not specified, the replay window size is assumed to be zero. It is not recommended that manually added SAs have a replay window. This extension is used by the `add` and `update` commands.

- **state `<string>`|<number>**
  - Specifies the SA state, either by numeric value or by the strings "larval", "mature", "dying" or "dead". If not specified, the value defaults to mature. This extension is used by the `add` and `update` commands.

- **auth_alg `<string>`|<number>**
  - Specifies the authentication algorithm for an SA, either by numeric value, or by strings indicating an algorithm name. Current authentication algorithms include: "HMAC-MD5 md5", "hmac-md5", "HMAC-SH-1 sha", "sha-1", "hmac-sha1", "hmac-sha".
Often, algorithm names will have several synonyms. This extension is required by the add command for certain SA types. It is also used by the update command.

```
encr_alg <string>|<number>
encralg <string>|<number>
```

Specifies the encryption algorithm for an SA, either by numeric value, or by strings indicating an algorithm name. Current encryption algorithms include DES ("des"), Triple-DES ("3des"), Blowfish ("blowfish"), and AES ("aes"). This extension is required by the add command for certain SA types. It is also used by the update command.

The next six extensions are lifetime extensions. There are two varieties, "hard" and "soft". If a hard lifetime expires, the SA will be deleted automatically by the system. If a soft lifetime expires, an SADB_EXPIRE message will be transmitted by the system, and its state will be downgraded to dying from mature. See pf_key(7P). The monitor command to key allows you to view SADB_EXPIRE messages.

```
soft_bytes <number>
hard_bytes <number>
```

Specifies the number of bytes that this SA can protect. If this extension is not present, the default value is zero, which means that the SA will not expire based on the number of bytes protected. This extension is used by the add and update commands.

```
soft_addtime <number>
hard_addtime <number>
```

Specifies the number of seconds that this SA can exist after being added or updated from a larval SA. An update of a mature SA does not reset the initial time that it was added. If this extension is not present, the default value is zero, which means the SA will not expire based on how long it has been since it was added. This extension is used by the add and update commands.

```
soft_usetime <number>
hard_usetime <number>
```

Specifies the number of seconds this SA can exist after first being used. If this extension is not present, the default value is zero, which means the SA will not expire based on how long it has been since it was added. This extension is used by the add and update commands.

```
saddr <address|name>
srcaddr <address|name>
saddr6 <IPv6 address>
sraddr6 <IPv6 address>
src t <address|name>
src6 <IPv6 address>
```

srcaddr <address> and src <address> are synonyms that indicate the source address of the SA. If unspecified, the source address will either remain unset, or it will be set to a wildcard address if a destination address was supplied. To not
ipseckey(1M)

specify the source address is valid for IPsec SAs. Future SA types may alter this assumption. This extension is used by the add, update, get and delete commands.

daddr <address|name>
dstaddr <address|name>
daddr6 <IPv6 address|name>
dstaddr6 <IPv6 address|name>
dst <addr|name>
dst6 <IPv6 address|name>
dstaddr <addr>
and dst <addr>
are synonyms that indicate the destination address of the SA. If unspecified, the destination address will remain unset. Because IPsec SAs require a specified destination address and spi for identification, this extension, with a specific value, is required for the add, update, get and delete commands.

If a name is given, ipseckey will attempt to invoke the command on multiple SAs with all of the destination addresses that the name can identify. This is similar to how ipsecconf handles addresses.

If dst6 or dstaddr6 is specified, only the IPv6 addresses identified by a name are used.

proxyaddr <address|name>
proxy <address|name>
proxyaddr <address> and proxy <address> are synonyms that indicate the proxy address for the SA. A proxy address is used for an SA that is protecting an inner protocol header. The proxy address is the source address of the inner protocol's header. This extension is used by the add and update commands.

authkey <hexstring>
Specifies the authentication key for this SA. The key is expressed as a string of hexadecimal digits, with an optional / at the end, for example, 123/12. Bits are counted from the most-significant bits down. For example, to express three '1' bits, the proper syntax is the string "e/3". For multi-key algorithms, the string is the concatenation of the multiple keys. This extension is used by the add and update commands.

encrkey <hexstring>
Specifies the encryption key for this SA. The syntax of the key is the same as authkey. A concrete example of a multi-key encryption algorithm is 3des, which would express itself as a 192-bit key, which is three 64-bit parity-included DES keys. This extension is used by the add and update commands.

Keying material is very sensitive and should be generated as randomly as possible. Some algorithms have known weak keys. IPsec algorithms have built-in weak key checks, so that if a weak key is in a newly added SA, the add command will fail with an invalid value.
Certificate identities are very useful in the context of automated key management, as they tie the SA to the public key certificates used in most automated key management protocols. They are less useful for manually added SAs. Unlike other extensions, srcidtype takes two values, a type, and an actual value. The type can be one of the following:

- **prefix**: An address prefix.
- **fqdn**: A fully-qualified domain name.
- **domain**: Domain name, synonym for fqdn.
- **user_fqdn**: User identity of the form user@fqdn.
- **mailbox**: Synonym for user_fqdn.

The value is an arbitrary text string, which should identify the certificate.

```
srcidtype <type, value>
```

Specifies a source certificate identity for this SA. This extension is used by the add and update commands.

```
dstidtype <type, value>
```

Specifies a destination certificate identity for this SA. This extension is used by the add and update commands.

The ipseckey command allows a privileged user to enter cryptographic keying information. If an adversary gains access to such information, the security of IPsec traffic is compromised. The following issues should be taken into account when using the ipseckey command.

1. Is the TTY going over a network (interactive mode)?
   - If it is, then the security of the keying material is the security of the network path for this TTY's traffic. Using ipseckey over a clear-text telnet or rlogin session is risky.
   - Even local windows may be vulnerable to attacks where a concealed program that reads window events is present.

2. Is the file accessed over the network or readable to the world (-f option)?
   - A network-mounted file can be sniffed by an adversary as it is being read. A world-readable file with keying material in it is also risky.

If your source address is a host that can be looked up over the network, and your naming system itself is compromised, then any names used will no longer be trustworthy.

Security weaknesses often lie in misapplication of tools, not the tools themselves. Administrators are urged to be cautious when using ipseckey. The safest mode of operation is probably on a console, or other hard-connected TTY.

For further thoughts on this subject, see the afterward by Matt Blaze in Bruce Schneier’s *Applied Cryptography: Protocols, Algorithms, and Source Code in C.*
ipseckey(1M)

EXAMPLE 1 Emptying Out All SAs
To empty out all SA:
example# ipseckey flush

EXAMPLE 2 Flushing Out IPsec AH SAs Only
To flush out only IPsec AH SAs:
example# ipseckey flush ah

EXAMPLE 3 Saving All SAs To Standard Output
To save all SAs to the standard output:
example# ipseckey save all

EXAMPLE 4 Saving ESP SAs To The File /tmp/snapshot
To save ESP SAs to the file /tmp/snapshot:
example# ipseckey save esp /tmp/snapshot

EXAMPLE 5 Deleting an IPsec SA
To delete an IPsec SA, only the SPI and the destination address are needed:
example# ipseckey delete esp spi 0x2112 dst 224.0.0.1

EXAMPLE 6 Getting Information on an IPsec SA
Likewise, getting information on a SA only requires the destination address and SPI:
example# ipseckey get ah spi 0x5150 dst mypeer

EXAMPLE 7 Adding or Updating IPsec SAs
Adding or updating SAs requires entering interactive mode:
example# ipseckey
ipseckey> add ah spi 0x90125 src me.domain.com dst you.domain.com \ authalg md5 authkey 1234567890abcdef1234567890abcdef
ipseckey> update ah spi 0x90125 dst you.domain.com hard_bytes \ 16000000 ipseckey> exit

EXAMPLE 8 Adding an SA in the Opposite Direction
In the case of IPsec, SAs are unidirectional. To communicate securely, a second SA needs to be added in the opposite direction. The peer machine also needs to add both SAs.
example# ipseckey
ipseckey> add ah spi 0x2112 src you.domain.com dst me.domain.com \ authalg md5 authkey bde359723576fdea08e56cbe876e24ad \
EXAMPLE 8 Adding an SA in the Opposite Direction  

hard_bytes 16000000
ipseckey> exit

EXAMPLE 9 Monitoring PF_KEY Messages

Monitoring for PF_KEY messages is straightforward:

eexample# ipseckey monitor

EXAMPLE 10 Using Commands in a File

Commands can be placed in a file that can be parsed with the -f option. This file may contain comment lines that begin with the "#" symbol. For example:

# This is a sample file for flushing out the ESP table and
# adding a pair of SAs.
flush esp

### Watch out! I have keying material in this file. See the
### SECURITY CONSIDERATIONS section in this manual page for why this can be
### dangerous.

add esp spi 0x2112 src me.domain.com dst you.domain.com 
  authalg md5 authkey bde359723576fdea08e56cbe876e24ad 
  encralg des encrkey be02938e7def2839 hard_usetime 28800
add esp spi 0x5150 src you.domain.com dst me.domain.com 
  authalg md5 authkey 930987dbe09743ade09d92b409749e93 
  encralg des encrkey 8bd4a52e10127deb hard_usetime 28800

## End of file - This is a gratuitous comment

EXAMPLE 11 Adding SAs for IPv6 Addresses

The following commands from the interactive-mode create an SA to protect IPv6 traffic between the site-local addresses

eexample # ipseckey
ipseckey> add esp spi 0x789 src6 fec0:bbbb::4483 dst6 fec0:bbbb::7843 
  authalg md5 authkey bde359723576fdea08e56cbe876e24ad 
  encralg des encrkey be02938e7def2839 hard_usetime 28800
ipseckey>exit

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

ipseckey(1M)
ipseckey(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ps(1), ipsecconf(1M), route(1M), attributes(5), ipsec(7P), ipsecah(7P), ipsecesp(7P), pf_key(7P)


DIAGNOSTICS

Parse error on line N.

If an interactive use of ipseckey would print usage information, this would print instead. Usually proceeded by another diagnostic.

Unexpected end of command line.

An additional argument was expected on the command line.

Unknown

A value for a specific extension was unknown.

Address type N not supported.

A name-to-address lookup returned an unsupported address family.

is not a bit specifier

bit length N is too big for

string is not a hex string

Keying material was not entered appropriately.

Can only specify single

A duplicate extension was entered.

Don’t use extension for <string> for <command>.

An extension not used by a command was used.

One of the entered values is incorrect: Diagnostic code NN: <msg>

This is a general invalid parameter error. The diagnostic code and message provides more detail about what precise value was incorrect and why.

NOTES

In spite of its IPsec-specific name, ipseckey is analogous to route(1M), in that it is a command-line interface to a socket-based administration engine, in this case, PF_KEY. PF_KEY was originally developed at the United States Naval Research Laboratory.

To have machines communicate securely with manual keying, SAs need to be added by all communicating parties. If two nodes wish to communicate securely, both nodes need the appropriate SAs added.

In the future ipseckey may be invoked under additional names as other security protocols become available to PF_KEY.
kadb – a kernel debugger

**NAME**

kadb

**SYNOPSIS**

**SPARC**

```
ok boot device_specifier kadb [-d] [boot-flags]
> b kadb [-d] [boot-flags]
```

**x86**

```
select (b)oot or (i)nterpreter: b kadb [-d] [boot-flags]
select (b)oot or (i)nterpreter: i kadb [-d] [boot-flags]
```

**DESCRIPTION**

kadb is an interactive kernel debugger with a user interface similar to adb(1), the assembly language debugger.

kadb must be loaded prior to the standalone program it is to debug. kadb runs with the same environment as the standalone program, so it shares many resources with that program. The debugger is cognizant of and able to control multiple processors, should they be present in a system.

When kadb is started, it requests the default filename from boot(1M), and if loaded non-interactively (without the -d option), it loads the default filename.

On systems which support both 32-bit and 64-bit operating system, boot(1M) chooses an appropriate default filename for that system. If loaded interactively (by specifying the -d option), kadb prompts with the default filename, which can be changed before continuing. The default filename can be specified on the boot(1M) command line. See boot(1M) for details.

Before loading the 64-bit kernel explicitly, review the information in boot(1M) for restrictions on running the 64-bit kernel on certain configurations.

Unlike adb(1), kadb runs in the same supervisor virtual address space as the program being debugged, although it maintains a separate context. The debugger runs as a co-process that cannot be killed (no :k command as in adb) or rerun (no :r command as in adb). There is no signal control (no :i, :t, or $i commands as in adb), although the keyboard facilities (CTRL-C, CTRL-S, and CTRL-Q) are simulated.

In the case of the UNIX system kernel, the keyboard abort sequence suspends kernel operations and breaks into the debugger. This behavior may be disabled by way of the kbd(1) command and may not be the current default on all systems. See kbd(7M) for more information.

As the kernel is composed of the core image file and the set of loadable modules already in memory, kadb has the capability of debugging all of these by traversing special data structures. kadb makes use of this feature to allow it to reference any kernel data structure, even if it resides in a loadable module. kadb sets the -d flag by default so the program being debugged can tell it is being watched. If this flag is not given, kadb loads and immediately runs the default kernel.
Most adb(1) commands function in kadb as they do in adb. As with adb -k, $p works when debugging kernels. The verbs ? and / are equivalent in kadb, as there is only one address space in use.

The keyboard abort sequence is L1+A on keyboards with an L1 key, and F1+A on keyboards with no L1 key. On serial lines, the default abort sequence is a BREAK signal, but this can be changed to the sequence “carriage return, tilde, control-hyphen;B” using:

```
kbd -a alternate
```

See kbd(1).

Once aborted, kadb responds with the following:

```
kadb [cpu]:
```

where cpu is the number of the CPU on which kadb is currently executing.

**OPTIONS**
The following options are supported:

- **-d**
  Interactive startup. If specified, kadb stops after loading and displays the kadb: prompt, followed by the name of the default program to debug.

  The user may either press RETURN to debug the default program, or BACK SPACE followed by the name of another program to debug.

**OPERANDS**
The following operands are supported:

- **boot-flags**
  Specifies boot flags as arguments to kadb. The specified boot-flags are passed to the program being debugged. See boot(1M) for available boot-flags.

- **device-specifier**
  Specifies the device from which to load. See monitor(1M).

**USAGE**

**Kernel Macros**
As with adb(1), kernel macros can be used with kadb, but they cannot be read from a file at runtime. Use the kadb $M command to list all of the built-in kadb macros.

**Commands**

kadb reads commands from the standard input and displays responses on the standard output. kadb supports the majority of the adb(1) commands. kadb does not support the following adb commands: :k, :r, :i, :t, or $i. See adb(1).

Additionally, kadb supports the following commands:

```
[
  Performs the same function as :e in adb(1), but requires only one keystroke and no RETURN (ENTER on x86 based systems).
```
Performs the same function as :s in adb(1), but requires only one keystroke and no RETURN (ENTER on x86 based systems).

:a
Sets a hardware access (read or write) breakpoint using the processor hardware facilities. The syntax and action for this command is the same as the :b command in adb, with the following exceptions:

- The breakpoint triggers if any bytes from the breakpoint for length bytes are being accessed. See $l below for setting the length of a hardware breakpoint.
- Breakpoints should be aligned for the length specified. Any address is valid for length 1. Addresses divisible by 2 should be used for length 2 (short). Addresses divisible by 4 should be used for length 4 (int).
- Detection of an access breakpoint occurs after completion of the instruction that caused it.
- There are a limited number (4) of hardware breakpoint registers, and, when set, this uses one.
- As this breakpoint does not modify memory locations, this command will work on locations that are not in core at the time the breakpoint is set.

@fmt
Used in the same manner as the adb/ and ? commands. Specify @ as a physical memory address as opposed to the normal virtual address. Specify fmt as any of the formats used with the adb/ command. This command is useful for displaying memory that may not be mapped, for example, kernel page tables or buffers used for DMA by device drivers.

function:: call arg1, arg2, arg3, ...
Invokes kernel functions with 0 or more arguments. Using this command results in a response such as:

retval = function(arg1,arg2,arg3,...);

where retval is the return value of the function. This feature can be error prone, as functions may have side effects that cause failures if the kernel is continued.

:p
Sets a hardware access (read or write) breakpoint using the processor hardware facilities when an instruction at the specified address is run. The $l operation has no effect on this type of breakpoint. This breakpoint occurs before the instruction is executed.

:P
Works as :a, but this command will only breakpoint when an access is made to the address in x86 I/O space. See ::a.

:w
Sets a write hardware access breakpoint using the processor hardware facilities.
[length]$l
Sets the default data length for an access or write breakpoint. length can be set to 1 for byte, 2 for short, and 4 for int word accesses. If length is not specified, 1 byte is assumed. Once set, this value affects any newly set access or write breakpoints, but does not affect ones set before this operation.

$b
Displays two additional columns that adb does not. The first is the type column which indicates soft for a normal breakpoint, access for an access hardware breakpoint, write for a write hardware breakpoint, and inst for an instruction hardware breakpoint. The second is the len column which for access and write breakpoints indicate the length of the operation to break on.

$q
Gives control to the boot prom, from which you may reboot the system.

cpu:x
Switches the active CPU to cpu. Thereafter, commands such as $x and $c displays the registers and stack of the new CPU, cpu.

$port:i
Inputs a byte for display from port. port is an address-specified I/O port. For example, 330:i inputs from address port 330.

$port:i8
Same as the :i command. See :i.

$port:i16
Inputs two bytes for display from port. port is an address-specified I/O port.

$port:i32
Inputs four bytes for display from port. port is an address-specified I/O port.

$port,data:o
Outputs a byte to port. port is an address-specified I/O port. [address],[data]:o outputs the value data to address I/O port. For example, 330,80:o outputs 80 to address port 330.

$port,data:o8
Same as the :o command. See port,data:o.

$port,data:o16
Outputs two bytes to port. port is an address-specified I/O port.

$port,data:o32
Outputs four bytes to port. port is an address-specified I/O port.

$q
Prompts the user with:

Type ‘y’ if you really want to reboot. Responding with a y or Y causes the system to reboot. Responding with anything other than a y or Y returns control to kadb. Use this feature when you cannot press the reset switch on your machine. Because using $q may result in data loss, this command should only be used when you would press the reset switch or power off your system.

::help
Displays the formats of kadb commands and extended commands.

::?
Same as the ::help command. See ::help.
Scroll Control Feature

::morehelp Displays additional information about commonly used commands and provides an explanation of data formats.

num::more A common problem with using kadb is that scrolling is sometimes too fast and that CTRL-s and CTRL-q are inexact controls. A conditional scroll control feature similar to more(1) has been added to kadb. To enable this feature, the user specifies the number of lines to be displayed, followed by ::more. For example, the command 14::more displays 14 (current radix) lines, followed by the --More-- prompt. At this prompt, press: ENTER or RETURN to display one more line. Press c, C, or CTRL-c to interrupt the display. Press any other key to display the next num number of specified lines (14 in this example). The command ::more displays the current setting for the number of lines that kadb displays before printing the --More-- prompt. The initial scroll control value of this feature is 0, meaning that scrolling is disabled. Once enabled, the 0::more command disables the scroll control feature.

Deferred Breakpoint Feature

Since the kernel is dynamically loaded, not all modules may be loaded when a breakpoint is set kadb can set deferred breakpoints which will be dynamically inserted when the corresponding module is loaded. The module and the location must both be specified when referring to a deferred breakpoint, as follows:

module_name#location:

This syntax is implemented for kadb only and uses existing breakpoint commands (for example, ufs#ufs_open:b or ufs#ufs_open+4,5:b).

If the module has been loaded, kadb attempts to find the symbol in the module specified. If kadb finds the symbol, it sets a regular breakpoint. If it does not find the symbol, it generates an error message and returns to the command line without setting a breakpoint.

If kadb fails to find the module on the list of currently loaded modules, it does not resolve the location. Instead, it sends a message to the user and sets a deferred breakpoint.

When the specified module is loaded, kadb tries to resolve the location. If the location can be resolved, the deferred breakpoint is converted to a regular breakpoint. If kadb cannot resolve the location, a message is sent to the user, and kadb halts execution. In this case, kadb does not convert the deferred breakpoint to a regular breakpoint; it removes it from the breakpoint table. The user may then re-enter a correct breakpoint. Strict scoping is enforced, so kadb does not look at any other module than the one specified with the location.

When specifying a deferred breakpoint in which the module name contains a hyphen, you must escape the hyphen. For example, for a module named pci-ide, enter:
The output from the `$b` command indicates whether the breakpoint is of type "deferred" (defr) or is another type.

**FILES**

/platform/platform-name/kadb
- primary debugger path

/platform/hardware-class-name/kadb
- alternative debugger path for some platforms

/platform/platform-name/kernel/unix
- primary default 32-bit kernel

/platform/hardware-class-name/kernel/unix
- alternative default 32-bit kernel for some platforms

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcar</td>
</tr>
</tbody>
</table>

**SEE ALSO**
adb(1), more(1), uname(1), boot(1M), kernel(1M), attributes(5), kb(7M)

**SPARC Only**
kbd(1), monitor(1M), obpsym(1M)

**DIAGNOSTICS**
When there is no current command or format, kadb comments about syntax errors, abnormal termination of commands, and the like.

**WARNINGS**
SPARC Only
On a SPARC based system, kadb cannot reliably single-step over instructions which change the processor status register.

SPARC and IA
If a breakpoint or watchpoint is triggered while the console frame buffer is powered off, the system can crash and be left in a state from which it is difficult to recover. If one of these is triggered while the monitor is powered off, you will not be able to see the debugger output.

**NOTES**
/platform-name can be found using the `-i` option of uname(1). hardware-class-name can be found using the `-m` option of uname(1).
kadmin(1M)

NAME
kadmin, kadmin.local – Kerberos database administration program

SYNOPSIS
/usr/sbin/kadmin [-r realm] [-p principal] [-q query] [-s admin_server
[-port]] [-c credential_cache] [-k [-t keytab]] [-w password]

/usr/sbin/kadmin.local [-r realm] [-p principal] [-q query] [-d dbname]
[-e "enc:salt..."] [-m] [-D]

DESCRIPTION
kadmin and kadmin.local are interactive command-line interfaces to the Kerberos
V5 administration system. They provide for the maintenance of Kerberos principals,
policies, and service key tables (keytabs). kadmin and kadmin.local provide
identical functionality; the difference is that kadmin.local can run only on the
master KDC and does not use Kerberos authentication. Except as explicitly noted
otherwise, this man page will use kadmin to refer to both versions.

By default, both versions of kadmin attempt to determine your user name and
perform operations on behalf of your "username/admin" instance. Operations
performed are subject to privileges granted or denied to this user instance by the
Kerberos ACL file (see kadm5.acl(4)). You may perform administration as another
user instance by using the -p option.

The remote version, kadmin, uses Kerberos authentication and an encrypted RPC to
operate securely from anywhere on the network. It normally prompts for a password
and authenticates the user to the Kerberos administration server, kadmind, whose
service principal is kadmin/admin. Some options specific to the remote version permit
the password prompt to be bypassed. The -c option searches the named credentials
cache for a valid ticket for the kadmin/admin service and uses it to authenticate the user
to the Kerberos admin server without a password. The -k option searches a keytab for
a credential to authenticate to the kadmin/admin service, and again no password is
collected. If kadmin has collected a password, it requests a kadmin/admin Kerberos
service ticket from the KDC, and uses that service ticket to interact with kadmind.

The local version, kadmin.local, must be run with an effective UID of root, and
normally uses a key from the /var/krb5/.k5.realm stash file (see kdb5_util(1M))
to decrypt information from the database rather than prompting for a password. The
-m option will bypass the .k5.realm stash file and prompt for the master password.

OPTIONS
The following options are supported:

- c credentials_cache
  Search credentials_cache for a service ticket for the kadmin/admin service; it can be
  acquired with the kinit(1) program. If this option is not specified, kadmin
  requests a new service ticket from the KDC, and stores it in its own temporary
  credentials cache.

- d dbname
  Specify a non-standard database name. [Local only]

- D
  Turn on debug mode. [Local only]
Specify a different encryption type and/or key salt. [Local only]

Use the default keytab (-k) or a specific keytab (-t keytab) to decrypt the KDC response instead of prompting for a password. In this case, the default principal will be host/hostname. This is primarily used for keytab maintenance.

Accept the database master password from the keyboard rather than using the /var/krb5/.k5.realm stash file. [Local only]

Authenticate principal to the kadmin/admin service. Otherwise, kadmin will append /admin to the primary principal name of the default credentials cache, the value of the USER environment variable, or the username as obtained with getpwuid, in that order of preference.

Pass query directly to kadmin, which will perform query and then exit. This can be useful for writing scripts.

Use realm as the default database realm.

Administer the specified admin server at the specified port number (port). This can be useful in administering a realm not known to your client.

Use password instead of prompting for one. Note that placing the password for a Kerberos principal with administration access into a shell script can be dangerous if unauthorized users gain read access to the script or can read arguments of this command through ps(1).

Lists all the commands available for kadmin. Aliased by lr and ?.

Lists the current Kerberos administration privileges (ACLs) for the principal that is currently running kadmin. The privileges are based on the /etc/krb5/kadm5.acl file on the master KDC. Aliased by getprivs.

creates a new principal, newprinc, prompting twice for a password. If the -policy option is not specified and a policy named default exists, then the default policy is assigned to the principal; note that the assignment of the default policy occurs automatically only when a principal is first created, so the default policy must already exist for the assignment to occur. The automatic assignment of the default policy can be suppressed with the -clearpolicy option. This command requires the add privilege. Aliased by addprinc and ank. The options are:
-expire expdate
   Expiration date of the principal. See the Time Formats section for the valid
   absolute time formats that you can specify for expdate.

-pwexpire pwexpdate
   Password expiration date. See the Time Formats section for the valid absolute
   time formats that you can specify for pwexpdate.

-maxlife maxlife
   Maximum ticket life for the principal. See the Time Formats section for the
   valid time duration formats that you can specify for maxlife.

-maxrenewlife maxrenewlife
   Maximum renewable life of tickets for the principal. See the Time Formats
   section for the valid time duration formats that you can specify for maxrenewlife.

-kvno kuno
   Explicitly set the key version number.

-policy policy
   Policy used by the principal. If both the -policy and -clearpolicy options
   are not specified, the default policy is used if it exists; otherwise, the principal
   will have no policy. Also note that the password and principal name must be
   different when you add a new principal with a specific policy or the default
   policy.

-clearpolicy
   -clearpolicy prevents the default policy from being assigned when
   -policy is not specified. This option has no effect if the default policy does
   not exist.

[-|+]allow_postdated
   -allow_postdated prohibits the principal from obtaining postdated tickets.
   (Sets the KRB5_KDB_DISALLOW_POSTDATED flag.) +allow_postdated clears
   this flag.

[-|+]allow_forwardable
   -allow_forwardable prohibits the principal from obtaining forwardable
   tickets. (Sets the KRB5_KDB_DISALLOW_FORWARDABLE flag.)
   +allow_forwardable clears this flag.

[-|+]allow_renewable
   -allow_renewable prohibits the principal from obtaining renewable tickets.
   (Sets the KRB5_KDB_DISALLOW_RENEWABLE flag.) +allow_renewable clears
   this flag.

[-|+]allow_proxiable
   -allow_proxiable prohibits the principal from obtaining proxiable tickets.
   (Sets the KRB5_KDB_DISALLOW_PROXIABLE flag.) +allow_proxiable clears
   this flag.
allow_dup_skey
-allow_dup_skey disables user-to-user authentication for the principal by prohibiting this principal from obtaining a session key for another user. (Sets the KRB5_KDB_DISALLOW_DUP_SKEY flag.) +allow_dup_skey clears this flag.

requires_preauth
+requires_preauth requires the principal to preauthenticate before being allowed to kinit. (Sets the KRB5_KDB.Requires_PRE_AUTH flag.) -requires_preauth clears this flag.

requires_hwauth
+requires_hwauth requires the principal to preauthenticate using a hardware device before being allowed to kinit. (Sets the KRB5_KDB_REQUIRES_HW_AUTH flag.) -requires_hwauth clears this flag.

allow_svr
-allow_svr prohibits the issuance of service tickets for the principal. (Sets the KRB5_KDB_DISALLOW_SVR flag.) +allow_svr clears this flag.

allow_tgs_req
-allow_tgs_req specifies that a Ticket-Granting Service (TGS) request for a service ticket for the principal is not permitted. This option is useless for most things. +allow_tgs_req clears this flag. The default is +allow_tgs_req. In effect, -allow_tgs_req sets the KRB5_KDB_DISALLOW_TGT_BASED flag on the principal in the database.

allow_tix
-allow_tix forbids the issuance of any tickets for the principal. +allow_tix clears this flag. The default is +allow_tix. In effect, -allow_tix sets the KRB5_KDB_DISALLOW_ALL_TIX flag on the principal in the database.

needchange
+needchange sets a flag in attributes field to force a password change; -needchange clears it. The default is -needchange. In effect, +needchange sets the KRB5_KDB_REQUIRES_PWCHANGE flag on the principal in the database.

password_changing_service
+password_changing_service sets a flag in the attributes field marking this as a password change service principal (useless for most things). -password_changing_service clears the flag. This flag intentionally has a long name. The default is -password_changing_service. In effect, +password_changing_service sets the KRB5_KDB_PWCHANGE_SERVICE flag on the principal in the database.

randkey
Sets the key of the principal to a random value.

pw password
Sets the key of the principal to the specified string and does not prompt for a password. Note that using this option in a shell script can be dangerous if unauthorized users gain read access to the script.
Example:

kadmin: addprinc tlyu/admin
WARNING: no policy specified for "tlyu/admin@ACME.COM";
defaulting to no policy.
Enter password for principal tlyu/admin@ACME.COM:
Re-enter password for principal tlyu/admin@ACME.COM:
Principal "tlyu/admin@ACME.COM" created.
kadmin:

Errors:
KADM5_AUTH_ADD (requires add privilege)
KADM5_BAD_MASK (should not happen)
KADM5_DUP (principal exists already)
KADM5_UNK_POLICY (policy does not exist)
KADM5_PASS_Q_* (password quality violations)

delete_principal [-force] principal
Deletes the specified principal from the database. This command prompts for
deletion, unless the -force option is given. This command requires the delete
privilege. Aliased by delprinc.

Example:

kadmin: delprinc mwm_user
Are you sure you want to delete the principal
"mwm_user@ACME.COM"? [yes/no]: yes
Principal "mwm_user@ACME.COM" deleted.
Make sure that you have removed this principal from
all kadmind ACLs before reusing.
kadmin:

Errors:
KADM5_AUTH_DELETE (requires delete privilege)
KADM5_UNK_PRINC (principal does not exist)

modify_principal [options] principal
Modifies the specified principal, changing the fields as specified. The options are as
above for add_principal, except that password changing is forbidden by this
command. In addition, the option -clearpolicy will clear the current policy of a
principal. This command requires the modify privilege. Aliased by modprinc.

Errors:
KADM5_AUTH_MODIFY (requires modify privilege)
KADM5_UNK_PRINC (principal does not exist)
KADM5_UNK_POLICY (policy does not exist)
KADM5_BAD_MASK (should not happen)
change_password [options] principal
Changes the password of principal. Prompts for a new password if neither
-randkey or -pw is specified. Requires the changepw privilege, or that the
principal that is running the program to be the same as the one changed. Aliased by
cpw. The following options are available:

-randkey
Sets the key of the principal to a random value.

-pw password
Sets the password to the specified string. Not recommended.

Example:

kadmin: cpw systest
Enter password for principal systest@ACME.COM:
Re-enter password for principal systest@ACME.COM:
Password for systest@ACME.COM changed.
kadmin:

Errors:
KADM5_AUTH_MODIFY (requires the modify privilege)
KADM5_UNK_PRINC (principal does not exist)
KADM5_PASS_Q_* (password policy violation errors)
KADM5_PADD_REUSE (password is in principal’s password history)
KADM5_PASS_TOOSOON (current password minimum life not expired)

get_principal [-terse] principal
Gets the attributes of principal. Requires the inquire privilege, or that the
principal that is running the program to be the same as the one being listed. With
the -terse option, outputs the fields as quoted tab-separated strings. Aliased by
getprinc.

Examples:

kadmin: getprinc tlyu/admin
Principal: tlyu/admin@ACME.COM
Expiration date: [never]
Last password change: Mon Aug 12 14:16:47 EDT 1996
Password expiration date: [none]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Mon Aug 12 14:16:47 EDT 1996
(example_user/admins@ACME.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 2
Key: vno 1, DES cbc mode with CRC-32,
no salt Key: vno 1, DES cbc mode with CRC-32,
Version 4 Attributes:
Policy: [none]
kadmin: getprinc -terse systest
Errors:
  KADM5_AUTH_GET (requires the get [inquire] privilege)
  KADM5_UNK_PRINC (principal does not exist)

list_principals [expression]
Retrieves all or some principal names. expression is a shell-style glob expression that
can contain the wild-card characters ?, *, and [ ]'s. All principal names matching the
expression are printed. If no expression is provided, all principal names are printed.
If the expression does not contain an "@" character, an "@" character followed by the
local realm is appended to the expression. Requires the list privilege. Aliased by
listprincs, get_principals, and getprincs.

Examples:
  kadmin: listprincs test*
  test3@ACME.COM
  test2@ACME.COM
  test1@ACME.COM
  testuser@ACME.COM
  kadmin:

add_policy [options] policy
Adds the named policy to the policy database. Requires the add privilege. Aliased
by addpol. The following options are available:

  -maxlife maxlife
  sets the maximum lifetime of a password. See the Time Formats section for the
  valid time duration formats that you can specify for maxlife.

  -minlife minlife
  sets the minimum lifetime of a password. See the Time Formats section for the
  valid time duration formats that you can specify for minlife.

  -minlength length
  sets the minimum length of a password.

  -minclasses number
  sets the minimum number of character classes allowed in a password. The valid
  values are:

  1
      only letters (himom)

  2
      both letters and numbers (hi2mom)

  3
      letters, numbers, and punctuation (hi2mom!)
-history number
    sets the number of past keys kept for a principal.

Errors:
    KADM5_AUTH_ADD (requires the add privilege)
    KADM5_DUP (policy already exists)

delete_policy policy
    Deletes the named policy. Prompts for confirmation before deletion. The command
    will fail if the policy is in use by any principals. Requires the delete privilege.
    Aliased by delpol.

Example:
    kadmin: del_policy guests
    Are you sure you want to delete the policy "guests"? (yes/no): yes
    Policy "guests" deleted.
    kadmin:

Errors:
    KADM5_AUTH_DELETE (requires the delete privilege)
    KADM5_UNK_POLICY (policy does not exist)
    KADM5_POLICY_REF (reference count on policy is not zero)

modify_policy [options] policy
    Modifies the named policy. Options are as above for add_policy. Requires the modify privilege. Aliased by modpol.

Errors:
    KADM5_AUTH_MODIFY (requires the modify privilege)
    KADM5_UNK_POLICY (policy does not exist)

get_policy [-terse] policy
    Displays the values of the named policy. Requires the inquire privilege. With the -terse flag, outputs the fields as quoted strings separated by tabs. Aliased by getpol.

Examples:
    kadmin: get_policy admin
    Policy: admin
    Maximum password life: 180 days 00:00:00
    Minimum password life: 00:00:00
    Minimum password length: 6
    Minimum number of password character classes: 2
    Number of old keys kept: 5
    Reference count: 17
    kadmin: get_policy -terse
    admin admin 15552000 0 6 2 5 17
    kadmin:
Errors:

KADM5_AUTH_GET (requires the get privilege)
KADM5_UNK_POLICY (policy does not exist)

list_policies [expression]
Retrieves all or some policy names. expression is a shell-style glob expression that can contain the wild-card characters ?, *, and []'s. All policy names matching the expression are printed. If no expression is provided, all existing policy names are printed. Requires the list privilege. Aliased by listpols, get_policies, and getpols.

Examples:

```
  kadmin: listpols
  test-pol dict-only once-a-min test-pol-nopw
  kadmin: listpols t*
  test-pol test-pol-nopw
```

ktadd [-k keytab] [-q] [principal | -glob princ-exp] [...]
Adds a principal or all principals matching princ-exp to a keytab, randomizing each principal’s key in the process. Requires the inquire and changepw privileges. An entry for each of the principal’s unique encryption types is added, ignoring multiple keys with the same encryption type but different salt types. If the -k argument is not specified, the default keytab file, /etc/krb5/krb5.keytab, is used. If the -q option is specified, less status information is displayed. Aliased by xst. The -glob option requires the list privilege. Also, note that if you use -glob to create a keytab, you need to remove /etc/krb5/kadm5.keytab and create it again if you want to use -p */admin with kadmin.

princ-exp follows the same rules described for the list_principals command.

Example:

```
  kadmin: ktadd -k /tmp/new-keytab nfs/chicago
  Entry for principal nfs/chicago with kvno 2, encryption type DES-CBC-CRC added to keytab
  WRFILE:/tmp/new-keytab.
  kadmin:
```

ktremove [-k keytab] [-q] principal [kvno | all | old]
Removes entries for the specified principal from a keytab. Requires no privileges, since this does not require database access. If all is specified, all entries for that principal are removed; if old is specified, all entries for that principal except those with the highest kvno are removed. Otherwise, the value specified is parsed as an integer, and all entries whose kvno match that integer are removed. If the -k argument is not specified, the default keytab file, /etc/krb5/krb5.keytab, is used. If the -q option is specified, less status information is displayed. Aliased by ktrem.

Example:

```
  kadmin: ktremove -k /tmp/new-keytab nfs/chicago
  Entry for principal nfs/chicago with kvno 2
  removed from keytab
  kadmin:
```
kadmin(1M)

quit
Quits kadmin. Aliased by exit and q.

Time Formats

Various commands in kadmin can take a variety of time formats, specifying time durations or absolute times. The kadmin option variables maxrenewlife, maxlife, and minlife are time durations, whereas expdate and pwexpdate are absolute times.

Examples:

```
kadmin: modprinc -expire "12/31 7pm" jdb
kadmin: modprinc -maxrenewlife "2 fortnight" jdb
kadmin: modprinc -pwexpire "this sunday" jdb
kadmin: modprinc -expire never jdb
kadmin: modprinc -maxlife "7:00:00pm tomorrow" jdb
```

Note that times which do not have the "ago" specifier default to being absolute times, unless they appear in a field where a duration is expected. In that case, the time specifier will be interpreted as relative. Specifying "ago" in a duration can result in unexpected behavior.

The following time formats and units can be combined to specify a time. The time and date format examples are based on the date and time of July 2, 1999, 1:35:30 p.m.

<table>
<thead>
<tr>
<th>Time Format</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh[mm][ss][am/pm/a.m./p.m.]</td>
<td>1p.m., 1:35, 1:35:30pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh</td>
<td>hour (12-hour clock, leading zero permitted but not required)</td>
</tr>
<tr>
<td>mm</td>
<td>minutes</td>
</tr>
<tr>
<td>ss</td>
<td>seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Format</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/dd[yy]</td>
<td>07/02, 07/02/99</td>
</tr>
<tr>
<td>yyyy-mm-dd</td>
<td>1999-07-02</td>
</tr>
<tr>
<td>dd-month-yyyy</td>
<td>02-July-1999</td>
</tr>
<tr>
<td>month [yyyy]</td>
<td>Jul 02, July 02,1999</td>
</tr>
<tr>
<td>dd month[ yyyy]</td>
<td>02 JULY, 02 july 1999</td>
</tr>
</tbody>
</table>
### Variable Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd</td>
<td>day</td>
</tr>
<tr>
<td>mm</td>
<td>month</td>
</tr>
<tr>
<td>yy</td>
<td>year within century (00-38 is 2000 to 2038; 70-99 is 1970 to 1999)</td>
</tr>
<tr>
<td>yyyy</td>
<td>year including century</td>
</tr>
<tr>
<td>month</td>
<td>locale’s full or abbreviated month name</td>
</tr>
</tbody>
</table>

### Time Units Examples

<table>
<thead>
<tr>
<th>Time Units</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+-#] year</td>
<td>“-2 year”</td>
</tr>
<tr>
<td>[+-#] month</td>
<td>“2 months”</td>
</tr>
<tr>
<td>[+-#] fortnight</td>
<td></td>
</tr>
<tr>
<td>[+-#] week</td>
<td></td>
</tr>
<tr>
<td>[+-#] day</td>
<td></td>
</tr>
<tr>
<td>[+-#] hour</td>
<td></td>
</tr>
<tr>
<td>[+-#] minute</td>
<td></td>
</tr>
<tr>
<td>[+-#] min</td>
<td></td>
</tr>
<tr>
<td>[+-#] second</td>
<td></td>
</tr>
<tr>
<td>[+-#] sec</td>
<td></td>
</tr>
<tr>
<td>tomorrow</td>
<td></td>
</tr>
<tr>
<td>yesterday</td>
<td></td>
</tr>
<tr>
<td>today</td>
<td></td>
</tr>
<tr>
<td>now</td>
<td></td>
</tr>
<tr>
<td>this</td>
<td>“this year”</td>
</tr>
<tr>
<td>last</td>
<td>“last saturday”</td>
</tr>
<tr>
<td>next</td>
<td>“next month”</td>
</tr>
<tr>
<td>sunday</td>
<td></td>
</tr>
<tr>
<td>monday</td>
<td></td>
</tr>
<tr>
<td>tuesday</td>
<td></td>
</tr>
<tr>
<td>wednesday</td>
<td></td>
</tr>
<tr>
<td>thursday</td>
<td></td>
</tr>
</tbody>
</table>
You can also use the following time modifiers: first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, and ago.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of kadmin:

PAGER
  The command to use as a filter for paging output. This can also be used to specify options. The default is more(1).

FILES

/var/krb5/principal.db
  Kerberos principal database.

/var/krb5/principal.kadm5
  Kerberos administrative database. Contains policy information.

/var/krb5/principal.kadm5.lock
  Lock file for the Kerberos administrative database. This file works backwards from most other lock files (that is, kadmin will exit with an error if this file does not exist).

/var/krb5/kadm5.dict
  Dictionary of strings explicitly disallowed as passwords.

/etc/krb5/kadm5.acl
  List of principals and their kadmin administrative privileges.

/etc/krb5/kadm5.keytab
  Keytab for kadmin/admin principal.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkduc</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

kpasswd(1), more(1), gkadmin(1M), kadmin(1M), kdb5_util(1M), kadm5_acl(4), kdc.conf(4), krb5.conf(4), attributes(5), environ(5), SEAM(5)

HISTORY

The kadmin program was originally written by Tom Yu at MIT, as an interface to the OpenVision Kerberos administration program.
The `kadmin` command is currently incompatible with the MIT `kadmind` daemon interface, so you cannot use this command to administer an MIT-based Kerberos database. However, SEAM-based Kerberos clients can still use a MIT-based KDC.
**NAME**
kadmind – Kerberos administration daemon

**SYNOPSIS**
```
/usr/lib/kadmind [-d] [-m] [-p port-number] [-r realm]
```

**DESCRIPTION**
*kadmind* runs on the master key distribution center (KDC), which stores the principal and policy databases. *kadmind* accepts remote requests to administer the information in these databases. Remote requests are sent, for example, by *kpasswd*(1), *gkadmin*(1M), and *kadmind*(1M) commands, all of which are clients of *kadmind*. When you install a KDC, *kadmind* is set up in the *init* scripts to start automatically when the KDC is rebooted.

*kadmind* requires a number of configuration files to be set up for it to work:

```
/etc/krb5/kdc.conf
```

The KDC configuration file contains configuration information for the KDC and the Kerberos administration system. *kadmind* understands a number of configuration variables (called relations) in this file, some of which are mandatory and some of which are optional. In particular, *kadmind* uses the `acl_file`, `dict_file`, `admin_keytab`, and `kadmind_port` relations in the `[realms]` section. Refer to the *kdc.conf*(4) man page for information regarding the format of the KDC configuration file.

```
/etc/krb5/kadm5.keytab
```

*kadmind* requires a `keytab` (key table) containing correct entries for the `kadmin/admin` and `kadmin/changepw` principals for every realm that *kadmind* answers requests. The `keytab` can be created with the *kadmin.local*(1M), *kdb5_util*(1M) command. The location of the keytab is determined by the `admin_keytab` relation in the *kdc.conf*(4) file.

```
/etc/krb5/kadm5.acl
```

*kadmind* uses an ACL (access control list) to determine which principals are allowed to perform Kerberos administration actions. The path of the ACL file is determined by the `acl_file` relation in the *kdc.conf* file. See *kdc.conf*(4). For information regarding the format of the ACL file, refer to *kadm5.acl*(4).

Note that the *kadmind* daemon will need to be restarted in order to reread the *kadm5.acl* file after it has been modified. You can do this, as root, with the following commands:

```
# /etc/init.d/kdc.master stop
# /etc/init.d/kdc.master start
```

After *kadmind* begins running, it puts itself in the background and disassociates itself from its controlling terminal.

**OPTIONS**
The following options are supported:

```
-d
```

Specifies that *kadmind* does not put itself in the background and does not disassociate itself from the terminal. In normal operation, you should use the default behavior, which is to allow the daemon to put itself in the background.
Specifies that the master database password should be retrieved from the keyboard rather than from the stash file. When using `-m`, the `kadmind` daemon receives the password prior to putting itself in the background. If used in combination with the `-d` option, you must explicitly place the daemon in the background.

```
-p port-number
```

Specifies the port on which the `kadmind` daemon listens for connections. The default is controlled by the `kadmind_port` relation in the `kdc.conf` file.

```
-r realm
```

Specifies the default realm that `kadmind` serves. If `realm` is not specified, the default `realm` of the host is used. `kadmind` answers requests for any realm that exists in the local KDC database and for which the appropriate principals are in its keytab.

**FILES**

```
/var/krb5/principal.db
```
Kerberos principal database.

```
/var/krb5/principal.kadm5
```
Kerberos administrative database containing policy information.

```
/var/krb5/principal.kadm5.lock
```
Kerberos administrative database lock file. This file works backwards from most other lock files (that is, `kadmin` exits with an error if this file does not exist).

```
/var/krb5/kadm5.dict
```
Dictionary of strings explicitly disallowed as passwords.

```
/etc/krb5/kadm5.acl
```
List of principals and their `kadmin` administrative privileges.

```
/etc/krb5/kadm5.keytab
```
Keytab for `kadmin/admin` principal.

```
/etc/krb5/kdc.conf
```
KDC configuration information.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkdcu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`kpasswd(1), gkadmin(1M), kadmin(1M), kadmin.local(1M), kdb5_util(1M), kadm5.acl(4), kdc.conf(4), attributes(5), SEAM(5)`

**NOTES**

The Kerberos administration daemon (`kadmind`) is now compliant with the change-password standard mentioned in RFC 3244, which means it can now handle change-password requests from non-Solaris Kerberos clients.
kdb5_util

<table>
<thead>
<tr>
<th>NAME</th>
<th>kdb5_util – Kerberos Database maintenance utility</th>
</tr>
</thead>
</table>
| SYNOPSIS | `/usr/sbin/kdb5_util [\-d dbname] [\-f stashfile_name] [\-k mkeytype] [\-m ]
|          | [\-M mkeyname] [\-P password] [\-r realm] cmd |
| DESCRIPTION | kdb5_util enables you to create, dump, load, and destroy the Kerberos V5 database. You can also use kdb5_util to create a stash file containing the Kerberos database master key. |
| OPTIONS  | The following options are supported: |
|          | \-d dbname  Specify the database name. \.db is appended to whatever name is specified. You can specify an absolute path. If you do not specify the \-d option, the default database name is /var/krb5/principal, which becomes /var/krb5/principal.db. |
|          | \-f stashfile_name  Specify the stash file name. You can specify an absolute path. |
|          | \-k mkeytype  Specify the master key type. Valid values are des-cbc-crc, des-cbc-md5, and des-cbc-raw. |
|          | \-m  Enter the master key manually. |
|          | \-M mkeyname  Specify the master key name. |
|          | \-P password  Use the specified password instead of the stash file. |
|          | \-r realm  Use realm as the default database realm. |
| OPERANDS | The following operands are supported: |
|           | cmd  Specifies whether to create, destroy, dump, or load the database, or to create a stash file. |
|           | You can specify the following commands: |
|           | create \-s  Creates the database specified by the \-d option. You will be prompted for the database master password. If you specify \-s, a stash file is created as specified by the \-f option. If you did not specify \-f, the default stash file name is /var/krb5/.k5.realm. If you use the \-f, \-k, or \-M options when you create a database, then you must use the same options when modifying or destroying the database. |
|           | destroy  Destroys the database specified by the \-d option. |
stash
Creates a stash file. If -f was not specified, the default stash file name is /var/krb5/.k5.realm. You will be prompted for the master database password. This command is useful when you want to generate the stash file from the password.

dump [-verbose] [filename] [principals]
Dumps the Kerberos database to a flat file that can be used for loading or propagating to a slave KDC. See kprop(1M). Specify file name for a location to dump the Kerberos database. If filename is not specified, the principal data is printed to standard error. Specify -verbose to print out the principal names to standard error in addition to being dumping into the file. Use principals to specify the list of principals that should be dumped.

load [-verbose] [-update] filename
Loads the database specified by dbname (see -d option, above) with data from the file specified by filename, which must be a file created by the dump command. Use -update to specify that the existing database should be updated; otherwise, a new database is created. Specify -verbose to print out the principal names to standard error, in addition to being loaded.

EXAMPLE 1 Creating File that Contains Information about Two Principals
The following example creates a file named slavedata that contains the information about two principals, jdb@ACME.COM and pak@ACME.COM.

```bash
# /usr/krb5/bin/kdb5_util dump -verbose slavedata jdb@ACME.COM pak@ACME.COM
```

FILES
/var/krb5/principal.db
Kerberos principal database.

/var/krb5/principal.kadm5
Kerberos administrative database. Contains policy information.

/var/krb5/principal.kadm5.lock
Lock file for the Kerberos administrative database. This file works backwards from most other lock files (that is, kadmin exits with an error if this file does not exist).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkdcu</td>
</tr>
</tbody>
</table>

SEE ALSO
kpasswd(1), gkadmin(1M), kadmin(1M), kadmin(1M), kadmin.local(1M), kadm5.acl(4), kdc.conf(4), attributes(5), SEAM(5)
NAME  kdmconfig – configure or unconfigure keyboard, display, and mouse options for OpenWindows and internationalization

SYNOPSIS  

```
kdmcfg [-fv] [-s hostname] -c | -t | -u | -a filename
```

DESCRIPTION  The kdmconfig program configures or unconfigures the /etc/openwin/server/etc/OWconfig file with the keyboard, display, and mouse information relevant to a client's machine on x86 based systems for Solaris software. kdmconfig can also be used to set up the display, pointer, and keyboard entries in the bootparams(4) database on a server machine or the monitor, keyboard, display, and pointer keywords in a sysidcfg(4) file. kdmconfig can only be run by the super-user. Upon completion of device selection, kdmconfig prompts the user to test the configuration, which is done by running the window system.

The kdmconfig program is normally run during installation and upon reboot, but it can also be run from the command line after the system has been installed. When configuring a client during an initial installation or a reconfigure reboot, the sysidconfig(1M) program will invoke kdmconfig with the -c option, and when the user executes the sys-unconfig(1M) program, kdmconfig will be executed with the -u option. Similarly, when you run kdmconfig from the command line, use the -u option to unconfigure the existing OpenWindows configuration. You can then rerun kdmconfig with the -cf options to create a new OpenWindows configuration. To edit the existing configuration, run kdmconfig from the command line without options. After each reboot, kdmconfig will be invoked by the system with the -t (test mode) option to ensure autoconfiguration capability and identify possible conflicts between the current configuration and the one recorded in the OWconfig file.

OPTIONS  The valid options are:

- **-c**  Run the program in the configuration mode. This mode is used to create or update the OWconfig file. When invoked in this way, kdmconfig first looks for the relevant configuration information in the bootparams(4) databases. It also takes into account the information returned from device probes, unless the -s option is also used. The bootparams(4) databases available to the client are all of the /etc/bootparams files on servers on the same subnet as the client, provided the server machine is running the bootparamd(1M) daemon. kdmconfig is invoked with the -c option when called by sysidconfig(1M)

- **-a filename**  Set up a sysidcfg(4) file. This option displays the same screens as the -c option, but the information you specify is saved as sysidcfg(4) keywords (monitor, keyboard, display, and pointer). This enables you to use a sysidcfg(4) file to preconfigure a system's device information and bypass kdmconfig during an installation.
filename is the sysidcfg(4) file that is created, and it is created in the directory where kdmconfig is being run unless a path is specified. If filename already exists in the specified directory, the keywords are appended to the existing file.

-f Force screens mode. When this option is invoked, no network probing will be performed. This is helpful when debugging the client’s configuration environment. Note that the -s option implies the use of -f, bypassing network probing when setting up a server.

-s hostname Set up the bootparams(4) database on this machine for the specified client. This option presents the same screens as it does when run on a client, but instead writes the resulting information to the /etc/bootparams file. Also, -s implies the use of the -f option. That is, the program will always present the screens to the user when invoked this way. This option will reconfigure the nsswitch.conf(4) file to look for a bootparams(4) database on a local server. This option is only available to the super-user.

-t Run the program in test mode. In this mode, kdmconfig will use device probe information to determine whether the OWconfig file contains complete and up-to-date information about the keyboard, display, and mouse. If the information is accurate, kdmconfig will exit silently. Otherwise, kdmconfig will prompt for the super-user password and proceed to a normal editing session (as though it had been run without options).

-u Unconfigure the system, returning it to an "out-of-the-box" state. In this state, the factory default keyboard, mouse, and display are selected as a result of removing the device configuration entries from the /etc/openwin/server/etc/OWconfig file. This may result in an unusable configuration for the display server.

-v Enable verbose mode. Normally, kdmconfig will not produce any output. This option is helpful for debugging, as it records the different actions taken by kdmconfig on stderr.

No Options Run without options, kdmconfig is used to edit the current configuration. kdmconfig uses the information from the OWconfig file in addition to information obtained from the bootparams(4) file and from device probes. In other respects, it is similar to using the -c option of kdmconfig.

FILES
/etc/openwin/server/etc/OWconfig
OpenWindows configuration file

/etc/bootparams
contains list of clients that diskless clients use for booting

/etc/nsswitch.conf
name service configuration file

System Administration Commands 749
kdmconfig(1M)

**x86 Only**

/dev/openprom installed devices and properties

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWos86r</td>
</tr>
</tbody>
</table>

**SEE ALSO**

bootparamd(1M), sys-unconfig(1M), sysidconfig(1M), bootparams(4), nsswitch.conf(4), sysidcfg(4), attributes(5)
The operating system image, or kernel, is the collection of software comprising the image files (`unix` and `genunix`) and the modules loaded at any instant in time. The system will not function without a kernel to control it.

The kernel is loaded by the `boot(1M)` command in a machine-specific way. The kernel may be loaded from disk, CD-ROM, or DVD (`diskfull boot`) or over the network (`diskless boot`). In either case, the directories under `/platform` and `/kernel` must be readable and must contain executable code which is able to perform the required kernel service. If the `-a` flag is given, the user is able to supply different pathnames for the default locations of the kernel and modules. See `boot(1M)` for more information on loading a specific kernel.

If the kernel name is not explicitly specified, then on systems capable of supporting the 64-bit kernel, the boot program will attempt to load the 64-bit kernel in preference to the 32-bit kernel by default. See `boot(1M)`.

The `moddir` variable contains a colon-separated list of directories that the kernel searches for modules. `moddir` can be set in the `/etc/system` file. The minimal default is `/platform/platform-name/kernel:/kernel:/usr/kernel`, but this default can be overridden by a specific platform. It is common for many systems to override the default path with:

```
/platform/platform-name/kernel:/platform/hardware-class-name/
/kernel:/kernel:/usr/kernel
```

where `platform-name` can be found using the `-i` option of `uname(1)`, and `hardware-class-name` can be found using the `-m` option of `uname(1)`.

The kernel configuration can be controlled using the `/etc/system` file (see `system(4)`).

`genunix` is the platform-independent component of the base kernel.

### OPTIONS

The following options are supported:

- `-a` Asks the user for configuration information, such as where to find the system file, where to mount `root`, and even override the name of the kernel itself. Default responses will be contained in square brackets ([ ]), and the user may simply enter RETURN to use the default response (note that RETURN is labeled ENTER on some keyboards). To help repair a damaged `/etc/system` file, enter `/dev/null` at the prompt that asks for the pathname of the system configuration file. See `system(4)`.

- `-f` Causes Autoclient systems to flush and reinitialize the client system’s local cache. This flag is ignored for all non-Autoclient systems.

- `-r` Reconfiguration boot. The system will probe all attached hardware devices and assign nodes in the file system to represent only those devices actually
found. It will also configure the logical namespace in /dev as well as the physical namespace in /devices. See add_drv(1M) and rem_drv(1M) for additional information about maintaining device drivers.

-\texttt{\textasciitilde s}\texttt{\textasciitilde} Boots only to init level ‘s’. See init(1M).
-\texttt{\textasciitilde v}\texttt{\textasciitilde} Boots with verbose messages enabled. If this flag is not given, the messages are still printed, but the output is directed to the system logfile. See syslogd(1M).
-\texttt{\textasciitilde x}\texttt{\textasciitilde} Does not boot in clustered mode. This option only has an effect when a version of Sun Cluster software that supports this option has been installed.

**EXAMPLES**

See boot(1M) for examples and instructions on how to boot.

**FILES**

/kernel
Contains kernel components common to all platforms within a particular instruction set that are needed for booting the system. of the core image file.

/platform/platform-name/kernel
The platform-specific kernel components.

/platform/hardware-class-name/kernel
The kernel components specific to this hardware class.

/usr/kernel
Contains kernel components common to all platforms within a particular instruction set.

The directories in this section can potentially contain the following subdirectories:

drv
Loadable device drivers

exec
The modules that execute programs stored in various file formats.

fs
File system modules

misc
Miscellaneous system-related modules

sched
Operating system schedulers

strmod
System V STREAMS loadable modules

sys
Loadable system calls

SPARC

cpu
Processor specific modules

tod
Time-Of-Day hardware interface modules

Additionally, some of the subdirectories mentioned above contain sparcv9 subdirectories that contain 64-bit versions of the same module classes. For example, /kernel/drv/sparcv9 and /platform/sun4u/kernel/cpu/sparcv9.

x86

mach
x86 hardware support

752 man pages section 1M: System Administration Commands • Last Revised 12 Dec 2001
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcar, SUNWcarx</td>
</tr>
</tbody>
</table>

SEE ALSO

uname(1), isainfo(1), add_drv(1M), boot(1M), init(1M), kadb(1M), rem_drv(1M), savecore(1M), syslogd(1M), system(4), attributes(5)

SPARC Only

monitor(1M)

DIAGNOSTICS

The kernel gives various warnings and error messages. If the kernel detects an unrecoverable fault, it will panic or halt.

BUGS

Bugs in the kernel often result in kernel panics.

Reconfiguration boot does not currently remove filesystem entries for devices that have been physically removed from the system.
**NAME**

keyserv – server for storing private encryption keys

**SYNOPSIS**

`keyserv [-c] [-d | -e] [-D] [-n] [-s sizespec]`

**DESCRIPTION**

`keyserv` is a daemon that is used for storing the private encryption keys of each user logged into the system. These encryption keys are used for accessing secure network services such as secure NFS and NIS+.

Normally, root's key is read from the file `/etc/.rootkey` when the daemon is started. This is useful during power-fail reboots when no one is around to type a password.

`keyserv` will not start up if the system does not have a secure rpc domain configured. Set up the domain name by using the `/usr/bin/domainname` command. Usually the `/etc/init.d/inetinit` script reads the domain from `/etc/defaultdomain`. Invoking the `domainname` command without arguments tells you if you have a domain set up.

The `/etc/default/keyserv` file contains the following default parameter settings. See FILES.

<table>
<thead>
<tr>
<th>ENABLE_NOBODY_KEYS</th>
<th>Specifies whether default keys for nobody are used. <code>ENABLE_NOBODY_KEYS=NO</code> is equivalent to the <code>-d</code> command-line option. The default value for <code>ENABLE_NOBODY_KEYS</code> is YES.</th>
</tr>
</thead>
</table>

**OPTIONS**

- `-c`  
  Do not use disk caches. This option overrides any `-s` option.

- `-D`  
  Run in debugging mode and log all requests to `keyserv`.

- `-d`  
  Disable the use of default keys for nobody. See FILES.

- `-e`  
  Enable the use of default keys for nobody. This is the default behavior. See FILES.

- `-n`  
  Root's secret key is not read from `/etc/.rootkey`. Instead, `keyserv` prompts the user for the password to decrypt root's key stored in the publickey database and then stores the decrypted key in `/etc/.rootkey` for future use. This option is useful if the `/etc/.rootkey` file ever gets out of date or corrupted.

- `-s sizespec`  
  Specify the size of the extended Diffie-Hellman common key disk caches. The `sizespec` can be one of the following forms:

  - `mechtype=size`  
    `size` is an integer specifying the maximum number of entries in the cache, or an integer immediately followed by the letter `M`, denoting the maximum size in MB.

  - `size`  
    This form of `sizespec` applies to all caches.
See nisauthconf(1M) for mechanism types. Note that the des mechanism, AUTH_DES, does not use a disk cache.

FILES

/etc/.rootkey
/etc/default/keyserv Contains default settings. You can use command-line options to override these settings.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

keylogin(1), keylogout(1), nisauthconf(1M), publickey(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
killall(1M)

NAME
killall – kill all active processes

SYNOPSIS
/usr/sbin/killall [signal]

DESCRIPTION
killall is used by shutdown(1M) to kill all active processes not directly related to
the shutdown procedure.

killall terminates all processes with open files so that the mounted file systems will
be unbusied and can be unmounted.

killall sends signal (see kill(1)) to the active processes. If no signal is specified, a
default of 15 is used.

The killall command can be run only by the super-user.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
kill(1), ps(1), fuser(1M), shutdown(1M), signal(3C), attributes(5)
kprop – Kerberos database propagation program

SYNOPSIS

/usr/lib/kprop [-d] [-f file] [-p port-number] [-r realm] [-s keytab] [host]

DESCRIPTION

kprop is a command-line utility used for propagating a Kerberos database from a master KDC to a slave KDC. This command must be run on the master KDC. See the Solaris System Administration Guide, Vol. 6 on how to set up periodic propagation between the master KDC and slave KDCs.

To propagate a Kerberos database, the following conditions must be met:

- The slave KDCs must have an /etc/krb5/kpropd.acl file that contains the principals for the master KDC and all the slave KDCs.
- A keytab containing a host principal entry must exist on each slave KDC.
- The database to be propagated must be dumped to a file using kdb5_util(1M).

OPTIONS

The following options are supported:

- `-d` Enable debug mode. Default is debug mode disabled.
- `-f file` File to be sent to the slave KDC. Default is the /var/krb5/slave_datatrans file.
- `-p port-number` Propagate port-number. Default is port 754.
- `-r realm` Realm where propagation will occur. Default realm is the local realm.
- `-s keytab` Location of the keytab. Default location is /etc/krb5/krb5.keytab.

OPERANDS

The following operands are supported:

`host` Name of the slave KDC.

EXAMPLES

EXAMPLE 1 Propagating the Kerberos Database

The following example propagates the Kerberos database from the /tmp/slave_data file to the slave KDC `london`. The machine `london` must have a host principal keytab entry and the kpropd.acl file must contain an entry for the all the KDCs.

```
# kprop -f /tmp/slave_data london
```

FILES

/etc/krb5/kpropd.acl
List of principals of all the KDCs; resides on each slave KDC.

/etc/krb5/krb5.keytab
Keytab for Kerberos clients.

/var/krb5/slave_datatrans
Kerberos database propagated to the KDC slaves.
kprop(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkdcu</td>
</tr>
</tbody>
</table>

SEE ALSO

kpasswd(1), gkadmin(1M), kadmind(1M), kadmin.local(1M), kdb5_util(1M),
kadm5.acl(4), kdc.conf(4), attributes(5), SEAM(5)

Solaris System Administration Guide, Security Services
krb5kdc(1M)

NAME
krb5kdc – KDC daemon

SYNOPSIS
/usr/lib/krb5kdc [-d dbpath] [-r realm] [-R replaycachename] [-m]
[-k masterenctype] [-M masterkeyname] [-p port] [-n]

DESCRIPTION
krb5kdc is the daemon that runs on the master and slave KDCs to process the
Kerberos tickets. For Kerberos to function properly, krb5kdc must be running on at
least one KDC that the Kerberos clients can access. Prior to running krb5kdc, you
must initialize the Kerberos database using kdb5_util(1M). See the Solaris System
Administration Guide, Security Services or instructions on setting up KDCs and initialize
the Kerberos database.

OPTIONS
The following options are supported:

- 
-d dbpath
Specify the path to the database; default value is
/var/krb5.

- 
-r realm
Specify the realm name; default is the local realm
name.

- 
-R replaycachename
Specify the replay cache name; default value is
krb5kdc_rcache.

- 
m
Specify that the master key for the database is to be
entered manually.

- 
-k masterenctype
Specify the encryption type for encrypting the
database. The default value is des-cbc-crc.

- 
-M masterkeyname
Specify the principal to retrieve the master key for the
database.

- 
p port
Specify the port that will be used by the KDC to listen
for incoming requests.

- 
n
Specify that krb5kdc should not detach from the
terminal.

FILES
/var/krb5/principal.db
Kerberos principal database.

/var/krb5/principal.kadm5
Kerberos administrative database. This file contains policy information.

/var/krb5/principal.kadm5.lock
Kerberos administrative database lock file. This file works backwards from most
other lock files (that is, kadmin will exit with an error if this file does not exist).

/etc/krb5/kdc.conf
KDC configuration file. This file is read at startup.

/etc/krb5/kpropd.acl
File that defines the access control list for propagating the Kerberos database using
kprop.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkdcu</td>
</tr>
</tbody>
</table>

SEE ALSO

kpasswd(1), gkadmin(1M), kadmin(1M), kadmin.local(1M), kdb5_util(1M), kadm5.acl(4), kdc.conf(4), attributes(5), SEAM(5)

Solaris System Administration Guide, Security Services
kstat(1M)

NAME
kstat – display kernel statistics

SYNOPSIS
kstat [-lpq] [-T u | d ] [-c class] [-m module] [-i instance] [-n name] [-s statistic] [interval [count]]

kstat [-lpq] [-T u | d ] [-c class] [module:instance:name:statistic...]
[ interval [count] ]

DESCRIPTION
The kstat utility examines the available kernel statistics, or kstats, on the system and reports those statistics which match the criteria specified on the command line. Each matching statistic is printed with its module, instance, and name fields, as well as its actual value.

Kernel statistics may be published by various kernel subsystems, such as drivers or loadable modules; each kstat has a module field that denotes its publisher. Since each module may have countable entities (such as multiple disks associated with the sd(7D) driver) for which it wishes to report statistics, the kstat also has an instance field to index the statistics for each entity; kstat instances are numbered starting from zero. Finally, the kstat is given a name unique within its module.

Each kstat may be a special kstat type, an array of name-value pairs, or raw data. In the name-value case, each reported value is given a label, which we refer to as the statistic. Known raw and special kstats are given statistic labels for each of their values by kstat; thus, all published values can be referenced as module:instance:name:statistic.

When invoked without any module operands or options, kstat will match all defined statistics on the system. Example invocations are provided below. All times are displayed as fractional seconds since system boot.

OPTIONS
The tests specified by the following options are logically ANDed, and all matching kstats will be selected. A regular expression containing shell metacharacters must be protected from the shell by enclosing it with the appropriate quotes.

The argument for the -c, -i, -m, -n, and -s options may be specified as a shell glob pattern, or a Perl regular expression enclosed in ‘/’ characters.

- c class Displays only kstats that match the specified class.
- i instance Displays only kstats that match the specified instance.
- l Lists matching kstat names without displaying values.
- m module Displays only kstats that match the specified module.
- n name Displays only kstats that match the specified name.
- p Displays output in parseable format. All example output in this document is given in this format. If this option is not specified, kstat produces output in a human-readable, table format.
- q Displays no output, but return appropriate exit status for matches against given criteria.
- s statistic Displays only kstats that match the specified statistic.
kstat(1M)

Displays a time stamp before each statistics block, either in ctime(3C) format (‘d’) or as an alphanumerical representation of the value returned by time(2) (‘u’).

OPERANDS

The following operands are supported:

module:instance:name:statistic
Alternate method of specifying module, instance, name, and statistic as described above. Each of the module, instance, name, or statistic specifiers may be a shell glob pattern or a Perl regular expression enclosed by ‘/’ characters. It is possible to use both specifier types within a single operand. Leaving a specifier empty is equivalent to using the ‘*’ glob pattern for that specifier.

interval
The number of seconds between reports.

count
The number of reports to be printed.

EXAMPLES

In the following examples, all the command lines in a block produce the same output, as shown immediately below. The exact statistics and values will of course vary from machine to machine.

EXAMPLE 1 Using the kstat Command

```
example$ kstat -p -m unix -i 0 -n system_misc -s 'avenrun*'  
example$ kstat -p -s 'avenrun*'  
example$ kstat -p 'unix:0:system_misc:avenrun*'  
example$ kstat -p ':::avenrun*'  
example$ kstat -p ':::/^avenrun_/d+min$/  

unix:0:system_misc:avenrun_15min 3  
unix:0:system_misc:avenrun_lmin 4  
unix:0:system_misc:avenrun_5min 2
```

EXAMPLE 2 Using the kstat Command

```
example$ kstat -p -m cpu_stat -s 'intr*'  
example$ kstat -p cpu_stat:::/^intr/  

cpu_stat:0:cpu_stat0:intr  29682330  
cpu_stat:0:cpu_stat0:intrblk  87  
cpu_stat:0:cpu_stat0:intrthread  15054222  
cpu_stat:1:cpu_stat1:intr  426073  
cpu_stat:1:cpu_stat1:intrblk  51  
cpu_stat:1:cpu_stat1:intrthread  289668  
cpu_stat:2:cpu_stat2:intr  134160  
cpu_stat:2:cpu_stat2:intrblk  0  
cpu_stat:2:cpu_stat2:intrthread  131  
cpu_stat:3:cpu_stat3:intr  196566  
cpu_stat:3:cpu_stat3:intrblk  30  
cpu_stat:3:cpu_stat3:intrthread  59626
```
EXAMPLE 2 Using the kstat Command  (Continued)

EXAMPLE 3 Using the kstat Command
example$ kstat -p :::state ':::avenrun*' example$ kstat -p :::state :::/avenrun/
cpu_info:0:cpu_info0:state on-line
cpu_info:1:cpu_info1:state on-line
cpu_info:2:cpu_info2:state on-line
cpu_info:3:cpu_info3:state on-line
unix:0:system_misc:avenrun_15min 4
unix:0:system_misc:avenrun_1min 10
unix:0:system_misc:avenrun_5min 3

EXAMPLE 4 Using the kstat Command
example$ kstat -p 'unix:0:system_misc:avenrun*' 1 3 unix:0:system_misc:avenrun_15min 15 unix:0:system_misc:avenrun_1min 11 unix:0:system_misc:avenrun_5min 21
unix:0:system_misc:avenrun_15min 15 unix:0:system_misc:avenrun_1min 11 unix:0:system_misc:avenrun_5min 21
unix:0:system_misc:avenrun_15min 15 unix:0:system_misc:avenrun_1min 11 unix:0:system_misc:avenrun_5min 21

EXAMPLE 5 Using the kstat Command
example$ kstat -p -T d 'unix:0:system_misc:avenrun*' 5 2 Thu Jul 22 19:39:50 1999 unix:0:system_misc:avenrun_15min 12 unix:0:system_misc:avenrun_1min 0 unix:0:system_misc:avenrun_5min 11
Thu Jul 22 19:39:55 1999 unix:0:system_misc:avenrun_15min 12 unix:0:system_misc:avenrun_1min 0 unix:0:system_misc:avenrun_5min 11

EXAMPLE 6 Using the kstat Command
example$ kstat -p -T u 'unix:0:system_misc:avenrun*' 932668656 unix:0:system_misc:avenrun_15min 14 unix:0:system_misc:avenrun_1min 5 unix:0:system_misc:avenrun_5min 18

EXIT STATUS

The following exit values are returned:

0 One or more statistics were matched.
kstat(1M)

1  No statistics were matched.
2  Invalid command line options were specified.
3  A fatal error occurred.

FILES
/dev/kstat               kernel statistics driver

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
sh(1), time(2), ctime(3C), gmatch(3GEN), kstat(3KSTAT), attributes(5),
kstat(7D), sd(7D), kstat(9S)

NOTES
If the pattern argument contains glob or Perl RE metacharacters which are also shell metacharacters, it will be necessary to enclose the pattern with appropriate shell quotes.
**NAME**
ktkt_warnd – Kerberos warning daemon

**SYNOPSIS**
/usr/lib/krb5/ktkt_warnd

**DESCRIPTION**
ktkt_warnd is a daemon on Kerberos clients that can warn users when their Kerberos tickets are about to expire. It is invoked by inetd when a ticket-granting ticket (TGT) is obtained for the first time, such as after using the kinit command. ktkt_warnd can be configured through the /etc/krb5/warn.conf file on the client. In warn.conf, you can specify that you be supplied notice, through syslog, of ticket expiration.

**FILES**
/etc/krb5/warn.conf Kerberos warning configuration file

**SEE ALSO**
inetd(1M), warn.conf(4), SEAM(5)
labelit(1M)

NAME labelit – list or provide labels for file systems
SYNOPSIS labelit [-F FSType] [-V] [-o FSType-specific-options] special [operands]
DESCRIPTION The labelit utility is used to write or display labels on unmounted disk file systems.
OPTIONS The following options are supported:
- F FSType Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table. If no matching entry is found, the default file system type specified in /etc/default/fs will be used.
- V Echo complete command line. This option may be used to verify and validate the command line. Additional information obtained using a /etc/vfstab lookup is included in the output. The command is not executed.
- o Specify FSType-specific options. See the manual page for the labelit module specific to the file system type.
OPERANDS The following operands are supported. If no operands are specified, labelit will display the value of the labels.
special The disk partition (for example, /dev/rdsk/c0t3d0s6). The device may not be on a remote machine.
operands FSType-specific operands. Consult the manual page of the FSType-specific labelit command for detailed descriptions.
USAGE See largefile(5) for the description of the behavior of labelit when encountering files greater than or equal to 2 Gbyte (2^31 bytes).
EXIT STATUS The following exit values are returned:
0 Write or display of labels was successful.
non-zero An error occurred.
FILES /etc/vfstab List of default parameters for each file system.
/etc/default/fs Default local file system type. Default values can be set for the following flags in /etc/default/fs. For example:

LOCAL=ufs
LOCAL The default partition for a command if no FSType is specified.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  
labelit_hsfs(1M), labelit_udfs(1M), labelit_ufs(1M), volcopy(1M), vfstab(4), attributes(5), largefile(5)

NOTES  
This utility may not be supported for all FSTypes.
labelit_hsfs(1M)

NAME
labelit_hsfs – provide and print labels for hsfs file systems

SYNOPSIS
/usr/sbin/labelit -F hsfs [generic_options] [-o specific_options] special

DESCRIPTION
labelit can be used to provide labels for unmounted CD-ROM images (CD-ROMs
may not be labeled, as they are read-only media).

generic_options are options supported by the generic labelit command.

If no specific_options are specified, labelit prints the current value of all label fields.

The special name should be the physical disk section (for example,
/dev/dsk/c0d0s6).

OPTIONS
- o  Use one or more of the following name=value pairs separated by commas
(with no intervening spaces) to specify values for specific label fields.
According to the ISO 9660 specification, only certain sets of characters may
be used to fill in these labels. Thus, “d-characters” below refers to the
characters ‘A’ through ‘Z’, the digits ‘0’ through ‘9’, and the ‘_’
(underscore) character. “a-characters” below refers to ‘A’ through ‘Z’, ‘0’
through ‘9’, space, and the following characters: !"%&()*+,-./:;<=>?_

absfile=  Abstract file identifier, d-characters, 37 characters
maximum.

applid=  Application identifier, d-characters, 128 characters
maximum.

bibfile=  Bibliographic file identifier, d-characters, 37 characters
maximum.

copyfile=  Copyright file identifier, d-characters, 128 maximum.

prepid=  Data preparer identifier, d-characters, 128 maximum.

pubid=  Publisher identifier, d-characters, 128 maximum.

sysid=  System identifier, a-characters, 32 maximum.

volid=  Volume identifier, d-characters, 32 maximum.

volsetid=  Volume set identifier, d-characters, 128 maximum.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
labelit(1M), volcopy(1M), attributes(5)
The `labelit` command writes labels on an unmounted disk that contains a universal disk file (udf) system. These labels can be used to identify volumes.

The following options are supported:

- **generic_options**
  Specify `generic_options` supported by the generic `labelit` command. See `labelit(1M)` for descriptions of supported options.

- **-o specific_options**
  Specify udfs-file-system-specific options in a comma-separated list with no intervening spaces. The following `specific_options` are available:

  - `lvinfo1=string`
    Specify information to be inserted in the LVInfo1 field of the Implementation Use Volume Descriptor. Information in LVInfo1 is generally used to identify the person creating the file system. The maximum length of the string specified is 35 bytes.

  - `lvinfo2=string`
    Specify information to be inserted into the LVInfo2 field of the Implementation Use Volume Descriptor. Information in LVInfo2 is generally used to identify the organization responsible for creating the file system. The maximum length of the string specified is 35 bytes.

  - `lvinfo3=string`
    Specify information to be inserted into the LVInfo3 field of the Implementation Use Volume Descriptor. Information in LVInfo3 is generally used to identify the contact information for the medium. The maximum length of the string specified is 35 bytes.

The following operands are supported:

- **special**
  Specify `special` as the physical disk slice, for example, `/dev/rdsk/c0t0d0s6`. The device can not be on a remote machine.

- **fsname**
  Specify `fsname` as the mount point, (for example, `root`, `u1`, and so forth), of the file system.

- **volume**
  Specify `volume` as the physical volume name.

If none of the options (`fsname`, `volume`, `specific_options`) is specified, `labelit` prints the current values of `fsname`, `volume`, LVInfo1, LVInfo2 and LVInfo3.

The following exit values are returned:

- **0** Successful completion.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWudf</td>
</tr>
</tbody>
</table>

See also labelit(1M), attributes(5)
NAME  
labelit_ufs – provide and print labels for ufs file systems

SYNOPSIS  
labelit -F ufs [generic_options] special [fsname volume]

DESCRIPTION  
labelit is used to write labels on unmounted disk file systems. Such labels may be used to uniquely identify volumes and are used by volume-oriented programs such as volcopy(1M).

OPTIONS  
The following option is supported:

generic_options  
options supported by the generic labelit command.  
See labelit(1M).

OPERANDS  
The following operands are supported:

special  
name should be the physical disk section (for example, /dev/dsk/c0d0s6). The device may not be on a remote machine.

fsname  
represents the mount point (for example, root, u1, and so on) of the file system.

volume  
may be used to represent the physical volume name.

If fsname and volume are not specified, labelit prints the current values of these labels. Both fsname and volume are limited to six or fewer characters.

EXIT STATUS  
The following exit values are returned:

0  
Write or display of labels was successful.

non-zero  
An error occurred.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  
labelit(IM), volcopy(IM), attributes(5), ufs(7FS)
ldapaddent creates entries in LDAP containers from their corresponding /etc files. This operation is customized for each of the standard containers that are used in the administration of Solaris systems. The database argument specifies the type of the data being processed. Legal values for this type are one of aliases, auto_*, bootparams, ethers, group, hosts (including IPv6 addresses), netgroup, netmasks, networks, passwd, shadow, protocols, publickey, rpc, and services.

By default, ldapaddent reads from the standard input and adds this data to the LDAP container associated with the database specified on the command line. An input file from which data can be read is specified using the -f option.

The entries will be stored in the directory based on the client’s configuration, thus the client must be configured to use LDAP naming services. The location where entries are to be written can be overridden by using the -b option.

If the entry to be added exists in the directory, the command displays an error and exits, unless the -c option is used.

Although, there is a shadow database type, there is no corresponding shadow container. Both the shadow and the passwd data is stored in the people container itself. Similarly, data from networks and netmasks databases are stored in the networks container.

You must add entries from the passwd database before you attempt to add entries from the shadow database. The addition of a shadow entry that does not have a corresponding passwd entry will fail.

For better performance, the recommended order in which the databases should be loaded is as follows:

1. passwd database followed by shadow database
2. networks database followed by netmasks database
3. bootparams database followed by ethers database

Only the first entry of a given type that is encountered will be added to the LDAP server. The ldapaddent command skips any duplicate entries.

The ldapaddent command supports the following options:

- **-a authenticationMethod**
  
  Specify authentication method. The default value is what has been configured in the profile. The supported authentication methods are:
simple
sasl/CRAM-MD5
sasl/DIGEST-MD5
tls:simple
tls:sasl/CRAM-MD5
tls:sasl/DIGEST-MD5

Selecting simple causes passwords to be sent over the network in clear text. Its use is strongly discouraged. Additionally, if the client is configured with a profile which uses no authentication, that is, either the credentialLevel attribute is set to anonymous or authenticationMethod is set to none, the user must use this option to provide an authentication method.

-b baseDN
Create entries in the baseDN directory. baseDN is not relative to the client’s default search base, but rather it is the actual location where the entries will be created. If this parameter is not specified, the first search descriptor defined for the service or the default container will be used.

-c
Continue adding entries to the directory even after an error. Entries will not be added if the directory server is not responding or if there is an authentication problem.

-D bindDN
Create an entry which has write permission to the baseDN. When used with -d option, this entry only needs read permission.

-d
Dump the LDAP container to the standard output in the appropriate format for the given database.

-f filename
Indicates input file to read in an /etc/ file format.

-p
Process the password field when loading password information from a file. By default, the password field is ignored because it is usually not valid, as the actual password appears in a shadow file.

-w bind_password
Password to be used for authenticating the bindDN. If this parameter is missing, the command will prompt for a password. NULL passwords are not supported in LDAP.

When you use -w bind_password to specify the password to be used for authentication, the password is visible to other users of the system by means of the ps command, in script files or in shell history.
ldapaddent(1M)

```
-ν                      Verbose.

OPERANDS
The following operands are supported:

database          The name of the database or service name. Supported
                   values are: aliases, auto_*, bootparams, ethers,
                   group, hosts (including IPv6 addresses), netgroup,
                   netmasks, networks, passwd, shadow, protocols,
                   publickey, rpc, and services.
```

EXAMPLES

**EXAMPLE 1** Adding Password Entries to the Directory Server

The following example show how to add password entries to the directory server:

```
example# ldapaddent -D "cn=directory manager" -w secret \
                   -f /etc/passwd passwd
```

**EXAMPLE 2** Adding Group Entries

The following example shows how to add group entries to the directory server using
sasl/CRAM-MD5 as the authentication method:

```
example# ldapaddent -D "cn=directory manager" -w secret \
                   -a "sasl/CRAM-MD5" -f /etc/group group
```

**EXAMPLE 3** Adding auto_master Entries

The following example shows how to add auto_master entries to the directory server:

```
example# dlapaddent -D "cn=directory manager" -w secret \
                   -f /etc/auto_master auto_master
```

**EXAMPLE 4** Dumping password Entries from the Directory to File

The following examples shows how to dump password entries from the directory to
a file foo:

```
example# ldapaddent -d passwd > foo
```

EXIT STATUS
The following exit values are returned:
0            Successful completion.
>0           An error occurred.

FILES
/var/ldap/ldap_client_file    Files containing the LDAP configuration of
/var/ldap/ldap_client_cred    the client. These files are not to be modified
                              manually. Their content is not guaranteed to
                              be human readable. Use ldapclient(1M)
to update these files.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

ldap(1), ldaplist(1), ldapmodify(1), ldapmodrdn(1), ldapsearch(1), idsconfig(1M), ldapclient(1M), suninstall(1M), attributes(5)
ldap_cachemgr

NAME    ldap_cachemgr - LDAP daemon to manage client configuration for LDAP based Network Information Service lookups

SYNOPSIS /usr/lib/ldap/ldap_cachemgr [-l log-file] [-g]

DESCRIPTION The ldap_cachemgr daemon is a process that provides an up-to-date configuration cache for LDAP naming services. It is started during multi-user boot.

The ldap_cachemgr utility provides caching for all parameters as specified and used by the LDAP naming service clients. The ldap_cachemgr utility uses the cache files which are originally created by executing the ldapclient(1M) utility, as cold start files. Updates to the cache files take place dynamically if profiles are used to configure the client. See the init option to ldapclient(1M).

The ldap_cachemgr utility helps improve the performance of the clients that are using LDAP as the Naming service repository. In order for the LDAP naming services to function properly, the ldap_cachemgr daemon must be running.

ldap_cachemgr also improves system security by making the configuration files readable by superuser only.

The cache maintained by this daemon is shared by all the processes that access LDAP Naming information. All processes access this cache through a door call. On startup, ldap_cachemgr initializes the cache from the cache files. See ldapclient(1M).

Thus, the cache survives machine reboots.

The ldap_cachemgr daemon also acts as its own administration tool. If an instance of ldap_cachemgr is already running, commands are passed transparently to the running version.

OPTIONS The following options are supported:

- g          Print current configuration and statistics to standard output. This is the only option executable without superuser privileges.

- l log-file Cause ldap_cachemgr to use a log file other than the default /var/ldap/cachemgr.log.

EXAMPLES EXAMPLE 1 Stopping and Restarting the ldap_cachemgr Daemon

The following example shows how to stop and to restart the ldap_cachemgr daemon.

eexample# /etc/init.d/ldap-client stop
eexample# /etc/init.d/ldap-client start

EXAMPLE 2 Forcing ldap_cachemgr to Reread the /var/ldap/ldap_client_file and /var/ldap/ldap_client_cred Files

The following example shows how to force ldap_cachemgr to reread the /var/ldap/ldap_client_file and /var/ldap/ldap_client_cred files.
EXAMPLE 2 Forcing ldap_cachemgr to Reread the /var/ldap/ldap_client_file and /var/ldap/ldap_client_cred Files (Continued)

```bash
example$ pkill -HUP ldap_cachemgr
```

FILES

- `/var/ldap/ldap_client_file`: Files containing the LDAP configuration of the client. These files are not to be modified manually. Their content is not guaranteed to be human readable. Use `ldapclient(1M)` to update these files.
- `/var/ldap/ldap_client_cred`: Files containing the LDAP configuration of the client. These files are not to be modified manually. Their content is not guaranteed to be human readable. Use `ldapclient(1M)` to update these files.

WARNINGS

The `ldap_cachemgr` utility is included in the Solaris 9 release on an uncommitted basis only. It is subject to change or removal in a future minor release.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

`ldap(1), ldapadd(1), ldapdelete(1), ldaplist(1), ldapmodify(1), ldapmodrdn(1), ldapsearch(1), pkill(1), idsconfig(1M), ldapaddent(1M), ldapclient(1M), suninstall(1M), signal(3HEAD), resolv.conf(4), attributes(5)`
ldapclient(1M)

NAME
ldapclient – initialize LDAP client machine or output an LDAP client profile in LDIF format

SYNOPSIS
/usr/sbin/ldapclient [-v | -q] init [-a profileName=profileName]
   [-a domainName=domain] [-a proxyDN=proxyDN]
   [-a proxyPassword=password] [-a certificatePath=path]
   LDAP_server [:port_number]

/usr/sbin/ldapclient [-v | -q] manual [-a attrName=attrVal]

/usr/sbin/ldapclient [-v | -q] mod [-a attrName=attrVal]

/usr/sbin/ldapclient [-v | -q] list

/usr/sbin/ldapclient [-v | -q] uninit

/usr/sbin/ldapclient [-v | -q] genprofile -a profileName=profileName
   [-a attrName=attrVal]

DESCRIPTION
The ldapclient utility can be used to:

- initialize LDAP client machines
- restore the network service environment on LDAP clients
- list the contents of the LDAP client cache in human readable format.

The init form of the ldapclient utility is used to initialize an LDAP client machine, using a profile stored on an LDAP server specified by LDAP_server. The LDAP client will use the attributes in the specified profile to determine the configuration of the LDAP client. Using a configuration profile allows for easy installation of LDAP client and propagation of configuration changes to LDAP clients. The ldap_cachemgr(1M) utility will update the LDAP client configuration when its cache expires by reading the profile. For more information on the configuration profile refer to IETF document A Configuration Schema for LDAP Based Directory User Agents.

The manual form of the ldapclient utility is used to initialize an LDAP client machine manually. The LDAP client will use the attributes specified on the command line. Any unspecified attributes will be assigned their default values. At least one server must be specified in the defaultServerList or the preferredServerList attributes. The domainName attribute must be specified if the client's domainName is not set.

The mod form of the ldapclient utility is used to modify the configuration of an LDAP client machine that was setup manually. This option modifies only those LDAP client configuration attributes specified on the command line. The mod option should only be used on LDAP clients that were initialized using the manual option.

Regardless of which method is used for initialization, if a client is to be configured to use a proxy credentialLevel, proxy credentials must be provided using -a proxyDN=proxyDN and -a proxyPassword=proxyPassword options. However, if -a proxyPassword=proxyPassword is not specified, ldapclient will prompt for it. Note that NULL passwords are not allowed in LDAP.
If any file is modified during installation, it will be backed up to
/var/ldap/restore. The files that are typically modified during initialization are:

- /etc/nsswitch.conf
- /etc/defaultdomain (if it exists)
- /var/yp/binding/‘domainname’ (for a NIS(YP) client)
- /var/nis/NIS_COLD_START (for a NIS+ client)
- /var/ldap/ldap_client_file (for an existing LDAP client)
- /var/ldap/ldap_client_cred (for an existing LDAP client)

ldapclient does not set up a client to resolve hostnames using DNS. It simply
copies /etc/nsswitch.ldap to /etc/nsswitch.conf. If you prefer to use DNS
for host resolution, please refer to the DNS documentation for information on setting
up DNS. See resolv.conf(4).

The list form of the ldapclient utility is used to list the LDAP client
configuration. The output will be human readable. LDAP configuration files are not
guaranteed to be human readable.

The uninit form of the ldapclient utility is used to uninitialize the network
service environment, restoring it to the state it was in prior to the last execution of
ldapclient using init or manual. The restoration will succeed only if the machine
was initialized with the init or manual form of ldapclient, as it uses the backup
files created by these options.

The genprofile option is used to write an LDIF formatted configuration profile
based on the attributes specified on the command line to standard output. This profile
can then be loaded into an LDAP server to be used as the client profile, which can be
downloaded by means of the ldapclient init command. Loading the LDIF
formatted profile to the directory server can be done through ldapadd(1), or through
any server specific import tool. Note that the attributes proxyDN, proxyPassword,
certificatePath, and domainName are not part of the configuration profile and
thus are not permitted.

You must have superuser privileges to run the ldapclient command, except with
the genprofile option.

To access the information stored in the directory, clients can either authenticate to the
directory, or use an unauthenticated connection. The LDAP client is configured to
have a credential level of either anonymous or proxy. In the first case, the client does
not authenticate to the directory. In the second case, client authenticates to the
directory using a proxy identity.

If a client is configured to use an identity, you can configure which authentication
method the client will use. The LDAP client supports the following authentication
methods:

none
simple
Note that some directory servers may not support all of these authentication methods. For `simple`, be aware that the bind password will be sent in the clear to the LDAP server. For those authentication methods using TLS (transport layer security), the entire session is encrypted. You will need to install the appropriate certificate databases to use TLS.

### Commands

The following commands are supported:

- **init**
  - Initialize client from a profile on a server.

- **manual**
  - Manually initialize client with the specified attribute values.

- **mod**
  - Modify attribute values in the configuration file after a manual initialization of the client.

- **list**
  - Write the contents of the LDAP client cache to standard output in human readable form.

- **uninit**
  - Uninitialize an LDAP client, assuming that `ldapclient` was used to initialize the client.

- **genprofile**
  - Generate a configuration profile in LDIF format that can then be stored in the directory for clients to use, with the `init` form of this command.

### Attributes

The following attributes are supported:

- **attributeMap**
  - Specify a mapping from an attribute defined by a service to an attribute in an alternative schema. This can be used to change the default schema used for a given service. The syntax of `attributeMap` is defined in the profile IETF draft. This option can be specified multiple times. The default value for all services is `NULL`. In the example,

  ```
  attributeMap: passwd:uid=employeeNumber
  ```

  the LDAP client would use the LDAP attribute `employeeNumber` rather than `uid` for the `passwd` service. This is a multivalued attribute.

- **authenticationMethod**
  - Specify the default authentication method used by all services unless overridden by the `serviceAuthenticationMethod` attribute. Multiple values can be specified by using a semicolon-separated list. The default value is `none`. For those services that use `credentialLevel` and `credentialLevel` is `anonymous`, this attribute

```
is ignored. Services such as pam_ldap will use this attribute, even if credentialLevel is anonymous. The supported authentication methods are described above.

bindTimeLimit
The maximum time in seconds that a client should spend performing a bind operation. Set this to a positive integer. The default value is 30.

certificatePath
The certificate path for the location of the certificate database. The value is the path where security database files reside. This is used for TLS support, which is specified in the authenticationMethod and serviceAuthenticationMethod attributes. The default is /var/ldap.

credentialLevel
Specify the credential level the client should use to contact the directory. The credential levels supported are either anonymous or proxy. If a proxy credential level is specified, then the authenticationMethod attribute must be specified to determine the authentication mechanism. Further, if the credential level is proxy and at least one of the authentication methods require a bind DN, the proxyDN and proxyPassword attribute values must be set.

defaultSearchBase
Specify the default search base DN. There is no default. The serviceSearchDescriptor attribute can be used to override the defaultSearchBase for given services.

defaultSearchScope=one | sub
Specify the default search scope for the client’s search operations. This default can be overridden for a given service by specifying a serviceSearchDescriptor. The default is one level search.

defaultServerList
A space separated list of server names or server addresses, either IPv4 or IPv6. If you specify server names, be sure that the LDAP client can resolve the name without the LDAP name service. You must resolve the LDAP servers’ names by using either files or dns. If the LDAP server name cannot be resolved, your naming service will fail.

The port number is optional. If not specified, the default LDAP server port number 389 is used, except when TLS is specified in the authentication method. In this case, the default LDAP server port number is 636.

The format to specify the port number for an IPv6 address is:

[ipv6_addr]:port

To specify the port number for an IPv4 address, use the following format:

ipv4_addr:port

If the host name is specified, use the format:
host_name:port

If you use TLS, the LDAP server’s hostname must match the hostname in the TLS certificate. Typically, the hostname in the TLS certificate is a fully qualified domain name. With TLS, the LDAP server host addresses must resolve to the hostnames in the TLS certificate. You must use files or dns to resolve the host address.

domainName
Specify the DNS domain name. This becomes the default domain for the machine. The default is the current domain name. This attribute is only used in client initialization.

followReferrals=true | false
Specify the referral setting. A setting of true implies that referrals will be automatically followed and false would result in referrals not being followed. The default is true.

objectclassMap
Specify a mapping from an objectclass defined by a service to an objectclass in an alternative schema. This can be used to change the default schema used for a given service. The syntax of objectclassMap is defined in the profile IETF draft. This option can be specified multiple times. The default value for all services is NULL. In the example,

objectclassMap=passwd:posixAccount=unixAccount

the LDAP client would use the LDAP objectclass of unixAccount rather than the posixAccount for the passwd service. This is a multivalued attribute.

preferredServerList
Specify the space separated list of server names or server addresses, either IPv4 or IPv6, to be contacted before servers specified by the defaultServerList attribute. If you specify server names, be sure that the LDAP client can resolve the name without the LDAP name service. You must resolve the LDAP servers’ names by using either files or dns. If the LDAP server name cannot be resolved, your naming service will fail.

The port number is optional. If not specified, the default LDAP server port number 389 is used, except when TLS is specified in the authentication method. In this case, the default LDAP server port number is 636.

The format to specify the port number for an IPv6 address is:

[ipv6_addr]:port

To specify the port number for an IPv4 address, use the following format:

ipv4_addr:port

If the host name is specified, use the format:

host_name:port
If you use TLS, the LDAP server’s hostname must match the hostname in the TLS certificate. Typically, the hostname in the TLS certificate is a fully qualified domain name. With TLS, the LDAP server host addresses must resolve to the hostnames in the TLS certificate. You must use files or dns to resolve the host address.

**profileName**
Specify the profile name. For `ldapclient init`, this attribute is the name of an existing profile which may be downloaded periodically depending on the value of the `profileTTL` attribute. For `ldapclient genprofile`, this is the name of the profile to be generated. The default value is `default`.

**profileTTL**
Specify the TTL value in seconds for the client information. This is only relevant if the machine was initialized with a client profile. If you do not want `ldap_cachemgr(1M)` to attempt to refresh the LDAP client configuration from the LDAP server, set `profileTTL` to 0 (zero). Valid values are either zero 0 (for no expiration) or a positive integer in seconds. The default value is 12 hours.

**proxyDN**
Specify the Bind Distinguished Name for the proxy identity. This option is required if the credential level is `proxy`, and at least one of the authentication methods requires a bind DN. There is no default value.

**proxyPassword**
Specify client proxy password. This option is required if the credential level is `proxy`, and at least one of the authentication methods requires a bind DN. There is no default.

**searchTimeLimit**
Specify maximum number of seconds allowed for an LDAP search operation. The default is 30 seconds. The server may have its own search time limit.

**serviceAuthenticationMethod**
Specify authentication methods to be used by a service in the form `servicename:authenticationmethod`, for example:

```
ldap:tls:simple
```

For multiple authentication methods, use a semicolon-separated list. The default value is no service authentication methods, in which case, each service would default to the `authenticationMethod` value. The supported authentications are described above.

Three services support this feature: `passwd-cmd`, `keyserv`, and `pam_ldap`. The `passwd-cmd` service is used to define the authentication method to be used by `passwd(1)` to change the user’s password and other attributes. The `keyserv` service is used to identify the authentication method to be used by `chkey(1)` and `newkey(1M)` utilities. The `pam_ldap` service defines the authentication method to be used for authenticating users when `pam_ldap(5)` is configured. If this attribute is not set for any of these services, the `authenticationMethod` attribute is used to define the authentication method. This is a multivalued attribute.
**serviceCredentialLevel**

Specify credential level to be used by a service. Multiple values can be specified in a space-separated list. The default value for all services is NULL. The supported credential levels are: anonymous or proxy. At present, no service uses this attribute. This is a multivalued attribute.

**serviceSearchDescriptor**

Override the default base DN for LDAP searches for a given service. The format of the descriptors also allow overriding the default search scope and search filter for each service. The syntax of serviceSearchDescriptor is defined in the IETF draft. The default value for all services is NULL. This is a multivalued attribute. In the example,

```
serviceSearchDescriptor=passwd:ou=people,dc=a1,dc=acme,dc=com?one
```

the LDAP client would do a one level search in ou=people,dc=a1,dc=acme,dc=com rather than ou=people, defaultSearchBase for the passwd service.

**OPTIONS**

The following options are supported:

- `-a` Specify attrName and its value.
- `-q` Quiet mode. No output is generated.
- `-v` Verbose output.

**OPERANDS**

The following operand is supported:

```
LDAP_server
```

An address or a name for the LDAP server from which the profile will be loaded. The current naming service specified in the nsswitch.conf file is used. Once the profile is loaded, the preferredServerList and defaultServerList specified in the profile are used.

**EXAMPLES**

**EXAMPLE 1** Setting Up a Client By Using the Default Profile Stored on a Specified LDAP Server

The following example shows how to set up a client using the default profile stored on the specified LDAP server. This command will only be successful if either the credential level in the profile is set to anonymous or the authentication method is set to none.

```
example# ldapclient init 129.100.100.1
```

**EXAMPLE 2** Setting Up a Client Using Only One Server

The following example shows how to set up a client using only one server. The authentication method is set to none, and the search base is dc=mycompany,dc=com.

```
example# ldapclient manual -a authenticationMethod=none \\
-a defaultSearchBase=dc=mycompany,dc=com \\
-a defaultServerList=129.100.100.1
```
EXAMPLE 3 Setting Up a Client Using Only One Server That Does Not Follow Referrals

The following example shows how to set up a client using only one server. The credential level is set to proxy. The authentication method is sasl/CRAM-MD5, with the option not to follow referrals. The domain name is xyz.mycompany.com, and the LDAP server is running on port number 386 at IP address 129.100.100.1.

```bash
example# ldapclient manual \
  -a credentialLevel=proxy \
  -a authenticationMethod=sasl/CRAM-MD5 \
  -a proxyPassword=secret \
  -a proxyDN=cn=proxyagent,ou=profile,dc=xyz,dc=mycompany,dc=com \
  -a defaultSearchBase=dc=xyz,dc=mycompany,dc=com \
  -a domainName=xyz.mycompany.com \
  -a followReferrals=false \
  -a defaultServerList=129.100.100.1:386
```

EXAMPLE 4 Using genprofile to Set Only the defaultSearchBase and the Server Addresses

The following example shows how to use the genprofile command to set the defaultSearchBase and the server addresses.

```bash
example# ldapclient genprofile -a profileName=myprofile \n  -a defaultSearchBase=dc=eng,dc=sun,dc=com \n  -a "defaultServerList=129.100.100.1 129.100.234.15:386" \n  > myprofile.ldif
```

EXAMPLE 5 Creating a Profile That Overrides Every Default Value

The following example shows a profile that overrides every default value.

```bash
example# ldapclient genprofile -a profileName=eng \n  -a credentialLevel=proxy -a authenticationMethod=sasl/DIGEST-MD5 \n  -a bindTimeLimit=20 \n  -a defaultSearchBase=dc=eng,dc=acme,dc=com \n  -a "serviceSearchDescriptor=passwd:ou=people,dc=a1,dc=acme,dc=com?one" \n  -a serviceAuthenticationMethod=pam_ldap:tls:simple \n  -a defaultSearchScope=sub \n  -a attributeMap=passwd:uid=employeeNumber \n  -a objectclassMap=passwd:posixAccount=unixAccount \n  -a followReferrals=false -a profileTTL=6000 \n  -a preferredServerList=129.100.100.30 -a searchTimeLimit=30 \n  -a "defaultServerList=29.100.200.1 129.100.100.1 204.34.5.6" > eng.ldif
```

EXIT STATUS

The following exit values are returned:

- **0**: The command successfully executed.
- **1**: An error occurred. An error message is output.
- **2**: `proxyDN` and `proxyPassword` attributes are required, but they are not provided.
FILES
/var/ldap/ldap_client_cred
/var/ldap/ldap_client_file

Contain the LDAP configuration of the client. These files are not to be modified manually. Their content is not guaranteed to be human readable. Use ldapclient to update them.

/etc/defaultdomain
System default domain name, matching the domain name of the data in the LDAP servers.

/etc/nsswitch.conf
Configuration file for the name-service switch.

/etc/nsswitch.ldap
Sample configuration file for the name-service switch configured with LDAP and files.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
chkey(1), ldap(1), ldapadd(1), ldapdelete(1), ldaplist(1), ldapmodify(1), ldapmodrdn(1), ldapsearch(1), idsconfig(1M), ldapaddent(1M), ldap_cachemgr(1M), suninstall(1M), resolv.conf(4), attributes(5)
NAME
  link, unlink – link and unlink files and directories
SYNOPSIS
  /usr/sbin/link existing-file new-file
  /usr/xpg4/bin/link existing-file new-file
  /usr/sbin/unlink file
DESCRIPTION
  The link and unlink commands link and unlink files and directories. Only super-users can use these commands on directories.

  Use link to create a new file that points to an existing file. The existing-file and new-file operands specify the existing file and newly-created files. See OPERANDS.

  link and unlink directly invoke the link(2) and unlink(2) system calls, performing exactly what they are told to do and abandoning all error checking. This differs from the ln(1) command. See ln(1).

  While linked files and directories can be removed using unlink, it is safer to use rm(1) and rmdir(1) instead. See rm(1) and rmdir(1).

/usr/xpg4/bin/link
  If the existing file being hard linked is itself a symbolic link, then the newly created file (new-file) will be a hard link to the file referenced by the symbolic link, not to the symbolic link object itself (existing-file).

OPERANDS
  The following operands are supported:

  existing-file  Specifies the name of the existing file to be linked.
  file          Specifies the name of the file to be unlinked.
  new-file      Specifies the name of newly created (linked) file.

ENVIRONMENT
  See environ(5) for descriptions of the following environment variables that affect the execution of link: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

ATTRIBUTES
  See attributes(5) for descriptions of the following attributes:

  +--------------------------------+-----------------+
  | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
  +--------------------------------+-----------------+
  | Availability    | SUNWcsu         |
  +--------------------------------+-----------------+

  +--------------------------------+-----------------+
  | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
  +--------------------------------+-----------------+
  | Availability    | SUNWxcu4        |
  | Interface Stability | Standard       |
  +--------------------------------+-----------------+

SEE ALSO
  ln(1), rm(1), link(2), unlink(2), attributes(5), environ(5), standards(5)
listdgrp(1M)

NAME
listdgrp – lists members of a device group

SYNOPSIS
/usr/bin/listdgrp dgroup...

DESCRIPTION
listdgrp displays the members of the device groups specified by the dgroup list.

EXAMPLES
EXAMPLE 1 An example of listdgrp.

The following example lists the devices that belong to group partitions:

example% listdgrp partitions
root
swap
usr

EXIT STATUS
The following exit values are returned:
0 Successful completion.
1 Command was syntax incorrect, an invalid option used, or an internal error occurred.
2 A device group table could not be opened for reading.
3 A device group dgroup could not be found in the device group table.

FILES
/etc/dgroup.tab

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
putdgrp(1M), attributes(5)
NAME
listen – network listener daemon

SYNOPSIS
/usr/lib/saf/listen [-m devstem] net_spec

DESCRIPTION
The listen process “listens” to a network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any connection-oriented network (more precisely, with any connection-oriented transport provider) that conforms to the Transport Layer Interface (TLI) Specification.

The listener internally generates a pathname for the minor device for each connection; it is this pathname that is used in the utmpx entry for a service, if one is created. By default, this pathname is the concatenation of the prefix /dev/netspec with the decimal representation of the minor device number. In either case, the representation of the minor device number will be at least two digits (for example, 05 or 27), or longer when it is necessary to accommodate minor device numbers larger than 99.

When a connection indication is received, the listener creates a new transport endpoint and accepts the connection on that endpoint. Before giving the file descriptor for this new connection to the server, any designated STREAMS modules are pushed and the configuration script is executed, (if one exists). This file descriptor is appropriate for use with either TLI (see t_sync(3NSL)) or the sockets interface library.

By default, a new instance of the server is invoked for each connection. When the server is invoked, file descriptor 0 refers to the transport endpoint, and is open for reading and writing. File descriptors 1 and 2 are copies of file descriptor 0; no other file descriptors are open. The service is invoked with the user and group IDs of the user name under which the service was registered with the listener, and with the current directory set to the HOME directory of that user.

Alternatively, a service may be registered so that the listener will pass connections to a standing server process through a FIFO or a named STREAM, instead of invoking the server anew for each connection. In this case, the connection is passed in the form of a file descriptor that refers to the new transport endpoint. Before the file descriptor is sent to the server, the listener interprets any configuration script registered for that service using doconfig(3NSL), although doconfig is invoked with both the NORUN and NOASSIGN flags. The server receives the file descriptor for the connection in a strrecvfd structure using an I_RECVFD ioctl(2).

For more details about the listener and its administration, see nlsadmin(1M).

OPTIONS
-m devstem The listener will use devstem as the prefix for the pathname.

FILES
/etc/saf/pmtag/*

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
listen(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
nlsadmin(1M), pmadm(1M), sac(1M), sacadm(1M), ioctl(2), doconfig(3NSL), nlsgetcall(3NSL), nlsprovider(3NSL), t_sync(3NSL), attributes(5), streamio(7I)

System Administration Guide: Basic Administration

NOTES
When passing a connection to a standing server, the user and group IDs contained in the strrecvfd structure will be those for the listener (that is, they will both be 0); the user name under which the service was registered with the listener is not reflected in these IDs.

When operating multiple instances of the listener on a single transport provider, there is a potential race condition in the binding of addresses during initialization of the listeners, if any of their services have dynamically assigned addresses. This condition would appear as an inability of the listener to bind a static-address service to its otherwise valid address, and would result from a dynamic-address service having been bound to that address by a different instance of the listener.
NAME
llc2_loop – loopback diagnostics to test the driver, adapter and network.

SYNOPSIS
/usr/lib/llc2/llc2_loop2 [-v] ppa
/usr/lib/llc2/llc2_loop3 ppa sap frames
/usr/lib/llc2/llc2_loop3 ppa type frames
/usr/lib/llc2/llc2_loop4 [-v] ppa

DESCRIPTION

Loop 2
The loop2 test sends a NULL XID frame to the broadcast (all 1’s) destination MAC address. The source SAP (Service Access Point) value used is 0x04 (SNA’s SAP). Therefore, if SNA is running on the system, the loop2 test will fail. The destination SAP value is the NULL SAP (0x00). This test finds out who is listening and can receive frames sent out from a node. The verbose (-v) option displays the MAC address of responding nodes. All possible responders may not be displayed, since the loop2 test only waits for responses for 2 seconds, but during this time 50-200 nodes may be displayed. The most likely error is:

Unexpected DLPI primitive x, expected y.
where x = 5 and y = 6. From /usr/include/sys/dlpi.h, the expected return value from one of the DLPI primitives is 6 (DL_OK_ACK), but instead a 5 (DL_ERROR_ACK) was received. This can occur for two reasons:

- The loop2 command was issued to a non-existent PPA (Physical Point of Attachment).
- The SAP (0x04) is already in use (for example, the SNA subsystem is up).

Loop 3
The loop3 test sends 1,495 byte Unnumbered Information (UI) frames to the NULL (all 0’s) destination MAC address. This should be used along with data capture either on the local node or another node on the same LAN to verify the transmission of data. The ppa argument specifies the adapter on which to run the test. The ppa is the relative physical position of the adapter and may be ascertained by viewing the adapter configuration (see llc2_config(1)). For Token Ring or Ethernet, specify an even sap value from 2 through 254, or, for Ethernet only, any type value from 1519 (0x5ef) through 65535 (0xffff). It is advised to pick a value that is easily recognized when the data capture output is viewed. frames is the decimal number of 1,495 bytes packets to transmit. The test will only display a message if a failure occurs.

Loop 4
The loop4 test sends a TEST frame (no information field) to the broadcast (all 1’s) destination MAC address. The source SAP value used is 0x04 (SNA’s SAP). Therefore, if SNA is running on the system, the loop4 test will fail. The destination SAP value is the NULL SAP (0x00). This test finds out who is listening and can receive frames sent out from a node. The verbose (-v) option displays the MAC address of responding nodes. All possible responders may not be displayed since the loop4 test only waits for responses for 2 seconds, but during this time 50-200 nodes may be displayed. The loop4 test displays information similar to the following example if other nodes are listening and respond (verbose mode):
llc2_loop(1M)

- Attaching
- Binding
- Sending TEST
- Responders
  1-0000c0c12449
  2-08000e142990
  3-08000e142a51
  4-0000c0450044
  5-0000c0199e46
- Unbinding
- Detaching
5 nodes responding

The errors displayed are the same as for loop2.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWllc</td>
</tr>
</tbody>
</table>

SEE ALSO llc2_config(1), llc2(4), attributes(5), llc2(7D)

NOTES For information about how to start the service, see llc2(7D)
The locator command sets or queries the state of the system locator if such a device exists.

Without options, the locator command reports the current state of the system.

The privileges required to use this command are hardware dependent. Typically, only the super user can get or set a locator.

The following options are supported:
- `-f` Turns the locator off.
- `-n` Turns the locator on.

The following operands are supported:

**EXAMPLE 1** Using the `locator` Command on a Platform Which Has a System Locator LED
When issued on a platform which has a system locator LED, the following command turns the locator on:
```
# locator -n
# locator
The 'system' locator is on
```

**EXAMPLE 2** Using the `locator` Command on a Platform Which Does Not Have a System Locator LED
When issued on a platform which does not have a system locator LED, the following command attempts to turn the locator on. The command returns an error message.
```
# locator -n
'system' locator not found
```

The following exit values are returned:
- 0 Successful completion.
- 1 Invalid command line input.
- 2 The requested operation failed.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
locator(1M)

SEE ALSO attributes(5)
lockd – network lock daemon

SYNOPSIS
/usr/lib/nfs/lockd [-g graceperiod] [-l listen_min_backlog] [-t timeout]
[nthreads]

DESCRIPTION
The lockd utility is part of the NFS lock manager, which supports record locking operations on NFS files. See fcntl(2) and lockf(3C). The lock manager provides the following two functions:

- It forwards fcntl(2) locking requests for NFS mounted file systems to the lock manager on the NFS server.
- It generates local file locking operations in response to requests forwarded from lock managers running on NFS client machines.

State information kept by the lock manager about these locking requests can be lost if the lockd is killed or the operating system is rebooted. Some of this information can be recovered as follows. When the server lock manager restarts, it waits for a grace period for all client-site lock managers to submit reclaim requests. Client-site lock managers, on the other hand, are notified by the status monitor daemon, statd(1M), of the restart and promptly resubmit previously granted lock requests. If the lock daemon fails to secure a previously granted lock at the server site, then it sends SIGLOST to a process.

Administrators wanting to change startup parameters for lockd should, as root, make changes in the /etc/default/nfs file rather than editing the /etc/init.d/nfs.client file. See nfs(4).

OPTIONS
The following options are supported:

- **-g graceperiod** Specify the number of seconds that clients have to reclaim locks after the server reboots. The default is 45 seconds. Equivalent of the LOCKD_GRACE_PERIOD parameter in the nfs file.

- **-l listen_min_backlog** Specify the listener backlog (listen_min_backlog).
  listen_min_backlog is the number connect requests that are queued and waiting to be processed before new connect requests start to get dropped.

- **-t timeout** Specify the number of seconds to wait before retransmitting a lock request to the remote server. The default value is 15 seconds. Equivalent of the LOCKD_RETRANSMIT_TIMEOUT parameter in the nfs file.

OPERANDS
**nthreads** Specify the maximum number of concurrent threads that the server can handle. This concurrency is achieved by up to nthreads threads created as needed in the kernel. nthreads should be based on the load expected on this server. If nthreads is not specified, the maximum number of concurrent threads will default to
Equivalent of the `LOCKD_SERVERS` parameter in the `nfs` file.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWniscu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`statd(1M), fcntl(2), lockf(3C), nfs(4), attributes(5)`
lockfs(1M)

NAME  
lockfs – change or report file system locks

SYNOPSIS  
/usr/sbin/lockfs [-adefhnuw] [-c string] [file-system...]

DESCRIPTION  
lockfs is used to change and report the status of file system locks. lockfs reports 
the lock status and unlocks the file systems that were improperly left locked.

Using lockfs to lock a file system is discouraged because this requires extensive 
knowledge of SunOS internals to be used effectively and correctly.

When invoked with no arguments, lockfs lists the UFS file systems that are locked. 
If file-system is not specified, and -a is specified, lockfs is run on all mounted, UFS 
type file systems.

OPTIONS  
The options are mutually exclusive: wndheuf. If you do specify more than one of 
these options on a lockfs command line, the utility does not protest and invokes 
only the last option specified. In particular, you cannot specify a flush (-f) and a lock 
(for example, -w) on the same command line. However, all locking operations 
implicitly perform a flush, so the -f is superfluous when specifying a lock.

You must be super-user to use any of the following options, with the exception of -a, 
-f and -v.

The following options are supported.

- a  
Apply command to all mounted, UFS type file systems. file-system is ignored when -a is specified.

- c string  
Accept a string that is passed as the comment field. The -c only 
takes affect when the lock is being set using the -d, -h, -n, -u, or 
-w options.

- d  
Delete-lock (dlock) the specified file-system. dlock suspends access 
that could remove directory entries.

- e  
Error-lock (elock) the specified file-system. elock blocks all local 
access to the locked file system and returns ENOBDLOCK on all 
remote access. File systems are elocked by UFS on detection of 
internal inconsistency. They may only be unlocked after successful 
repair by fsck, which is usually done automatically (see 
mount_ufs(1M)). elocked file systems can be unmounted.

- f  
Force a synchronous flush of all data that is dirty at the time 
fsflush is run to its backing store for the named file system (or 
for all file systems).

It is a more reliable method than using sync(1M) because it does 
not return until all possible data has been pushed. In the case of 
UFS filesystems with logging enabled, the log is also rolled before 
returning. Additional data can be modified by the time fsflush 
exits, so using one of the locking options is more likely to be of 
general use.
**lockfs(1M)**

- **h** Hard-lock (hlock) the specified file-system. hlock returns an error on every access to the locked file system, and cannot be unlocked. hlocked file systems can be unmounted.

- **n** Name-lock (nlock) the specified file-system. nlock suspends accesses that could change or remove existing directories entries.

- **u** Unlock (ulock) the specified file-system. ulock awakens suspended accesses.

- **v** Enable verbose output.

- **w** Write-lock (wlock) the specified file-system. wlock suspends writes that would modify the file system. Access times are not kept while a file system is write-locked.

**OPERANDS**

The following operands are supported.

- **file-system** A list of path names separated by white spaces.

**USAGE**

See largefile(5) for the description of the behavior of lockfs when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1 Using lockfs -a**

In the following examples, filesystem is the pathname of the mounted-on directory (mount point). Locktype is one of “write,” “name,” “delete,” “hard,” or “unlock”. When enclosed in parenthesis, the lock is being set. Comment is a string set by the process that last issued a lock command.

The following example shows the lockfs output when only the -a option is specified.

```
example# /usr/sbin/lockfs -a
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Locktype</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>unlock</td>
<td></td>
</tr>
<tr>
<td>/var</td>
<td>unlock</td>
<td></td>
</tr>
</tbody>
</table>

```
example#
```

**EXAMPLE 2 Using lockfs -w**

The following example shows the lockfs output when the -w option is used to write lock the /var file system and the comment string is set using the -c option. The -a option is then specified on a separate command line.

```
example# /usr/sbin/lockfs -w -c "lockfs: write lock example" /var
example# /usr/sbin/lockfs -a
```
EXAMPLE 2 Using lockfs -w (Continued)

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Locktype</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>unlock</td>
<td></td>
</tr>
<tr>
<td>/var</td>
<td>write</td>
<td>lockfs: write lock example</td>
</tr>
</tbody>
</table>

example#

EXAMPLE 3 Using lockfs -u

The following example shows the lockfs output when the -u option is used to unlock the /var file system and the comment string is set using the -c option.

example# /usr/sbin/lockfs -uc "lockfs: unlock example" /var
example# /usr/sbin/lockfs /var

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Locktype</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var</td>
<td>unlock</td>
<td>lockfs: unlock example</td>
</tr>
</tbody>
</table>

example#

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

kill(1), mount_ufs(1M), sync(1M), attributes(5), largefile(5), ufs(7FS)

System Administration Guide: Basic Administration

DIAGNOSTICS

file system: Not owner
You must be root to use this command.

file system: Deadlock condition detected/avoided
A file is enabled for accounting or swapping, on file system.

file system: Device busy
Another process is setting the lock on file system.
The lockstat utility gathers and displays kernel locking and profiling statistics. lockstat allows you to specify which events to watch (for example, "spin on adaptive mutex," "block on read access to rwlock due to waiting writers," and so forth) how much data to gather for each event, and how to display the data. By default, lockstat monitors all lock contention events, gathers frequency and timing data about those events, and displays the data in decreasing frequency order, so that the most common events appear first.

lockstat gathers data until the specified command completes. For example, to gather statistics for a fixed-time interval, use `sleep(1)` as the command, as follows:

```
example# lockstat sleep 5
```

When the `-I` option is specified, lockstat establishes a per-processor high-level periodic interrupt source to gather profiling data. The interrupt handler simply generates a lockstat event whose "caller" is the interrupted PC (program counter). The profiling event is just like any other lockstat event, so all of the normal lockstat options are applicable.

lockstat relies on the lockstat(7D) driver, an exclusive-access device that modifies the running kernel’s text to intercept events of interest. This imposes a small but measurable overhead on all system activity, so access to the lockstat(7D) driver is restricted to super-user by default. The system administrator may relax this restriction by changing the permissions on `/dev/lockstat`.

The following options are supported:

- **Event Selection**

  If no event selection options are specified, the default is `-CE`.

  - `-A` Watch all lock events. `-A` is equivalent to `-CEH`.
  - `-C` Watch contention events.
  - `-E` Watch error events.
  - `-e event_list` Only watch the specified events. `event list` is a comma-separated list of events or ranges of events such as 1,4-7,35. Run `lockstat` with no arguments to get a brief description of all events.
  - `-H` Watch hold events.
  - `-I` Watch profiling interrupt events.
  - `-i rate` Interrupt rate (per second) for `-I`. The default is 97 Hz, so that profiling doesn’t run in lockstep with the clock interrupt (which runs at 100 Hz).
### Data Gathering
(Mutually Exclusive)

- **-b**  
  Basic statistics: lock, caller, number of events.

- **-h**  
  Histogram: Timing plus time-distribution histograms.

- **-s depth**  
  Stack trace: Histogram plus stack traces up to depth frames deep.

- **-t**  
  Timing: Basic plus timing for all events [default].

### Data Filtering

- **-a duration**  
  Only watch events longer than duration.

- **-f func[size]**  
  Only watch events generated by func, which can be specified as a symbolic name or hex address. size defaults to the ELF symbol size if available, or 1 if not.

- **-l lock[size]**  
  Only watch lock, which can be specified as a symbolic name or hex address. size defaults to the ELF symbol size or 1 if the symbol size is not available.

- **-n nrecords**  
  Maximum number of data records.

- **-T**  
  Trace (rather than sample) events [off by default].

### Data Reporting

- **-c**  
  Coalesce lock data for lock arrays (for example, pse_mutex[]).

- **-D count**  
  Show total events generated by function. For example, if foo() calls bar() in a loop, the work done by bar() counts as work generated by foo() (along with any work done by foo() itself). The -g option works by counting the total number of stack frames in which each function appears. This implies two things: (1) the data reported by -g can be misleading if the stack traces are not deep enough, and (2) functions that are called recursively might show greater than 100% activity. In light of issue (1), the default data gathering mode when using -g is -s 50.

- **-k**  
  Coalesce PCs within functions.

- **-o filename**  
  Direct output to filename.

- **-p**  
  Sort data by (count * time) product.

- **-p**  
  Parsable output format.

- **-R**  
  Display rates (events per second) rather than counts.

- **-W**  
  Whichever: distinguish events only by caller, not by lock.

- **-w**  
  Wherever: distinguish events only by lock, not by caller.

### Display Formats

The following headers appear over various columns of data.

- **Count or ops/s**  
  Number of times this event occurred, or the rate (times per second) if -R was specified.

- **indv**  
  Percentage of all events represented by this individual event.
**lockstat(1M)**

<table>
<thead>
<tr>
<th>genr</th>
<th>Percentage of all events generated by this function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuml</td>
<td>Cumulative percentage; a running total of the individuals.</td>
</tr>
<tr>
<td>rcnt</td>
<td>Average reference count. This will always be 1 for exclusive locks (mutexes, spin locks, rwlocks held as writer) but may be greater than 1 for shared locks (rwlocks held as reader).</td>
</tr>
<tr>
<td>spin or nsec</td>
<td>Average number of times caller spun trying to get the lock, or average duration of the events in nanoseconds, as appropriate for the event. For the profiling event, “duration” means interrupt latency.</td>
</tr>
<tr>
<td>Lock</td>
<td>Address of the lock; displayed symbolically if possible.</td>
</tr>
<tr>
<td>CPU+PIL</td>
<td>CPU plus processor interrupt level (PIL). For example, if CPU 4 is interrupted while at PIL 6, this will be reported as cpu[4]+6.</td>
</tr>
<tr>
<td>Caller</td>
<td>Address of the caller; displayed symbolically if possible.</td>
</tr>
</tbody>
</table>

**EXAMPLE 1 Measuring Kernel Lock Contention**

```
example# lockstat sleep 5
Adaptive mutex spin: 2210 events in 5.055 seconds (437 events/sec)
Count indv cuml rcnt spin Lock Caller
------------------------------------------------------------------------
 269  12%  12%  1.00  10 service_queue  background+0xdc
 249  11%  23%  1.00   8 service_queue  qenable_locked+0x64
 228  10%  34%  1.00  13 service_queue  background+0x15c
   68   3%  37%  1.00  7 0x30000024070  untimout+0x1c
   59   3%  40%  1.00  38 0x300066fa8e0  background+0xb0
   43   2%  41%  1.00  3 rqcred_lock  svc_getreq+0x3c
   42   2%  43%  1.00  34 0x30006834eb8  background+0xb0
   41   2%  45%  1.00  13 0x30000021058  untimout+0x1c
   40   2%  47%  1.00  3 rqcred_lock  svc_getreq+0x260
   37   2%  49%  1.00  237 0x300068e83d0  hmestart+0x1c4
   36   2%  50%  1.00   7 0x30000021058  timeout_common+0x4
   36   2%  52%  1.00  35 0x300066fa120  background+0xb0
   32   1%  53%  1.00   9 0x30000024070  timeout_common+0x4
   31   1%  55%  1.00  292 0x300069883d0  hmestart+0x1c4
   29   1%  56%  1.00  36 0x300066fb290  background+0xb0
   28   1%  57%  1.00  11 0x3000001e040  untimout+0x1c
   25   1%  59%  1.00   9 0x30000001e040  timeout_common+0x4
   22   1%  60%  1.00   2 0x30005161110  sync_stream_buf+0xdc
   21   1%  60%  1.00   29 0x30006834eb8  putq+0xa4
   19   1%  61%  1.00    4 0x3000515dc0  mdf_alloc+0xc
   18   1%  62%  1.00    45 0x30006834eb8  qenable+0x8
   18   1%  63%  1.00  6 service_queue  queuerun+0x168
   17   1%  64%  1.00   26 0x30005418ee8  vmem_free+0x3c
      [...]
```
EXAMPLE 1 Measuring Kernel Lock Contention  (Continued)

R/W reader blocked by writer: 76 events in 5.055 seconds (15 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>Lock Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>30%</td>
<td>30%</td>
<td>1.00</td>
<td>22590137</td>
<td>0x300099ba358 ufs_dirlook+0xd0</td>
</tr>
<tr>
<td>17</td>
<td>22%</td>
<td>53%</td>
<td>1.00</td>
<td>5820995</td>
<td>0x3000ad815e8 find_bp+0x10</td>
</tr>
<tr>
<td>13</td>
<td>17%</td>
<td>70%</td>
<td>1.00</td>
<td>2639918</td>
<td>0x300099ba360 ufs_iget+0x198</td>
</tr>
<tr>
<td>5</td>
<td>75%</td>
<td>1.00</td>
<td>3193015</td>
<td>0x300099ba360 ufs_getattr+0x54</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79%</td>
<td>1.00</td>
<td>7953418</td>
<td>0x3000ad817c0 find_bp+0x10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>83%</td>
<td>1.00</td>
<td>935211</td>
<td>0x3000ad815e8 find_read_lof+0x14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>86%</td>
<td>1.00</td>
<td>16357310</td>
<td>0x300073a4720 find_bp+0x10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>88%</td>
<td>1.00</td>
<td>2072433</td>
<td>0x300073a4720 find_read_lof+0x14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>91%</td>
<td>1.00</td>
<td>1606153</td>
<td>0x300073a470 find_bp+0x10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>92%</td>
<td>1.00</td>
<td>2656909</td>
<td>0x300107e7400 ufs_iget+0x198</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 2 Measuring Hold Times

example# lockstat -H -D 10 sleep 1
Adaptive mutex spin: 513 events

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>Lock Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>5%</td>
<td>5%</td>
<td>1.00</td>
<td>1136</td>
<td>0x3000007718e8 putnext+0x40</td>
</tr>
<tr>
<td>286</td>
<td>3%</td>
<td>9%</td>
<td>1.00</td>
<td>666</td>
<td>0x30000077b430 getf+0xd8</td>
</tr>
<tr>
<td>271</td>
<td>3%</td>
<td>12%</td>
<td>1.00</td>
<td>537</td>
<td>0x30000077b430 msgio32+0x2fc</td>
</tr>
<tr>
<td>270</td>
<td>3%</td>
<td>15%</td>
<td>1.00</td>
<td>3670</td>
<td>0x3000007718e8 strgetmsg+0x3d4</td>
</tr>
<tr>
<td>270</td>
<td>3%</td>
<td>18%</td>
<td>1.00</td>
<td>1016</td>
<td>0x30000077b38b0 getq_noenab+0x2b0</td>
</tr>
<tr>
<td>264</td>
<td>3%</td>
<td>20%</td>
<td>1.00</td>
<td>1649</td>
<td>0x3000007718e8 strgetmsg+0xa70</td>
</tr>
<tr>
<td>216</td>
<td>2%</td>
<td>23%</td>
<td>1.00</td>
<td>6251</td>
<td>tcp_mi_lock tcp_snmp_get+0x6fc</td>
</tr>
<tr>
<td>206</td>
<td>2%</td>
<td>25%</td>
<td>1.00</td>
<td>602</td>
<td>thread_free_lock clock+0x250</td>
</tr>
<tr>
<td>138</td>
<td>2%</td>
<td>27%</td>
<td>1.00</td>
<td>485</td>
<td>0x3000007c3998 putnext+0xb8</td>
</tr>
<tr>
<td>138</td>
<td>2%</td>
<td>28%</td>
<td>1.00</td>
<td>3706</td>
<td>0x3000007718e8 strput+0x5b8</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Measuring Hold Times for Stack Traces Containing a Specific Function

example# lockstat -H -f tcp_rput_data -s 50 -D 10 sleep 1
Adaptive mutex spin: 11 events in 1.023 seconds (11 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>Lock Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>82%</td>
<td>82%</td>
<td>1.00</td>
<td>2540</td>
<td>0x30000031380 tcp_rput_data+0x2b90</td>
</tr>
</tbody>
</table>

nsec ------ Time Distribution ------ count Stack
256 | @@@@@@@@@@@@@@@@@ | 5 | tcp_rput_data+0x2b90
512 | @@@@@@@@@@@@@@@@@ | 2 | putnext+0x78
1024 | @@@@@@           | 1 | ip_rput+0xsec4
2048 | @@@@@@           | 0 | _c_putnext+0x148
4096 | @@@@@@           | 0 | hmeread+0x31c
8192 | @@@@@@           | 0 | hmeintr+0x36c
16384 | @@@@@@          | 1 |
EXAMPLE 3 Measuring Hold Times for Stack Traces Containing a Specific Function
(Continued)

sbus_intr_wrapper+0x30

<table>
<thead>
<tr>
<th>Count</th>
<th>indiv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec Lock</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9%</td>
<td>91%</td>
<td>1.00</td>
<td>1036</td>
<td>freemsg+0x44</td>
</tr>
</tbody>
</table>

nsec ------ Time Distribution ------ count Stack
1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1 freemsg+0x44
tcp_rput_data+0x2fd0
putnext+0x78
ip_rput+0xec4
_c_putnext+0x148
hmeread+0x31c
hmeintr+0x36c

sbus_intr_wrapper+0x30

[...]

EXAMPLE 4 Basic Kernel Profiling

For basic profiling, we don’t care whether the profiling interrupt sampled
foo()+0x4c or foo()+0x78; we care only that it sampled somewhere in foo(), so
we use -k.  The CPU and PIL aren’t relevant to basic profiling because we are
measuring the system as a whole, not a particular CPU or interrupt level, so we use
-W.

eexample# lockstat -kIW -D 20 ./polltest
Profilng interrupt: 82 events in 0.424 seconds (194
events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indiv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec Hottest CPU+PIL</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10%</td>
<td>10%</td>
<td>1.00</td>
<td>698 cpu[1]</td>
<td>ut10</td>
</tr>
<tr>
<td>6</td>
<td>7%</td>
<td>17%</td>
<td>1.00</td>
<td>299 cpu[0]</td>
<td>read</td>
</tr>
<tr>
<td>5</td>
<td>6%</td>
<td>23%</td>
<td>1.00</td>
<td>124 cpu[1]</td>
<td>getf</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>28%</td>
<td>1.00</td>
<td>327 cpu[0]</td>
<td>fifo_read</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>33%</td>
<td>1.00</td>
<td>112 cpu[1]</td>
<td>poll</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>38%</td>
<td>1.00</td>
<td>212 cpu[1]</td>
<td>uiomove</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>43%</td>
<td>1.00</td>
<td>361 cpu[1]</td>
<td>mutex_tryenter</td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>46%</td>
<td>1.00</td>
<td>682 cpu[0]</td>
<td>write</td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>50%</td>
<td>1.00</td>
<td>89 cpu[0]</td>
<td>pcache_poll</td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>54%</td>
<td>1.00</td>
<td>118 cpu[1]</td>
<td>set_active_fd</td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>57%</td>
<td>1.00</td>
<td>105 cpu[0]</td>
<td>syscall_trap32</td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>61%</td>
<td>1.00</td>
<td>640 cpu[1]</td>
<td>(usermode)</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>63%</td>
<td>1.00</td>
<td>127 cpu[1]</td>
<td>fifo_poll</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>66%</td>
<td>1.00</td>
<td>300 cpu[1]</td>
<td>fifo_write</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>68%</td>
<td>1.00</td>
<td>669 cpu[0]</td>
<td>releasef</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>71%</td>
<td>1.00</td>
<td>112 cpu[1]</td>
<td>bt_getlowbit</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>73%</td>
<td>1.00</td>
<td>247 cpu[1]</td>
<td>splx</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>76%</td>
<td>1.00</td>
<td>503 cpu[0]</td>
<td>mutex_enter</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>78%</td>
<td>1.00</td>
<td>467 cpu[0]+10</td>
<td>disp_lock_enter</td>
</tr>
<tr>
<td>2</td>
<td>2%</td>
<td>80%</td>
<td>1.00</td>
<td>139 cpu[1]</td>
<td>default_copyin</td>
</tr>
</tbody>
</table>
EXAMPLE 4 Basic Kernel Profiling  (Continued)

EXAMPLE 5 Generated-load Profiling

In the example above, 5% of the samples were in \texttt{poll().} This tells us how much time was spent inside \texttt{poll()} itself, but tells us nothing about how much work was \textit{generated} by \texttt{poll()}; that is, how much time we spent in functions called by \texttt{poll()}. To determine that, we use the -g option. The example below shows that although \texttt{polltest} spends only 5\% of its time in \texttt{poll()} itself, \texttt{poll()}-induced work accounts for 34\% of the load.

Note that the functions that generate the profiling interrupt (\texttt{lockstat\_intr()}, \texttt{cyclic\_fire()}, and so forth) appear in every stack trace, and therefore are considered to have generated 100\% of the load. This illustrates an important point: the generated load percentages do \textit{not} add up to 100\% because they are not independent.

If 72\% of all stack traces contain both \texttt{foo()} and \texttt{bar()}, then both \texttt{foo()} and \texttt{bar()} are 72\% load generators.

```
example# lockstat -kgIW -D 20 ./polltest
Profiling interrupt: 80 events in 0.412 seconds (194 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>gen</th>
<th>cum</th>
<th>rcnt</th>
<th>nsec</th>
<th>Hottest CPU+PIL</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>100</td>
<td>----</td>
<td>1.00</td>
<td>310</td>
<td>cpu[1]</td>
<td>lockstat_intr</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>----</td>
<td>1.00</td>
<td>310</td>
<td>cpu[1]</td>
<td>cyclic_fire</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>----</td>
<td>1.00</td>
<td>310</td>
<td>cpu[1]</td>
<td>cbe_level14</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>----</td>
<td>1.00</td>
<td>310</td>
<td>cpu[1]</td>
<td>current_thread</td>
</tr>
<tr>
<td>27</td>
<td>34</td>
<td>----</td>
<td>1.00</td>
<td>176</td>
<td>cpu[1]</td>
<td>poll</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>----</td>
<td>1.00</td>
<td>221</td>
<td>cpu[0]</td>
<td>write</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>----</td>
<td>1.00</td>
<td>249</td>
<td>cpu[1]</td>
<td>read</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>----</td>
<td>1.00</td>
<td>232</td>
<td>cpu[0]</td>
<td>write32</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>----</td>
<td>1.00</td>
<td>207</td>
<td>cpu[1]</td>
<td>pcache_poll</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>----</td>
<td>1.00</td>
<td>319</td>
<td>cpu[0]</td>
<td>fifo_write</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>----</td>
<td>1.00</td>
<td>214</td>
<td>cpu[1]</td>
<td>read32</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>----</td>
<td>1.00</td>
<td>208</td>
<td>cpu[1]</td>
<td>fifo_read</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>----</td>
<td>1.00</td>
<td>787</td>
<td>cpu[1]</td>
<td>ut10</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>----</td>
<td>1.00</td>
<td>178</td>
<td>cpu[0]</td>
<td>pcacheset_resolve</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>----</td>
<td>1.00</td>
<td>262</td>
<td>cpu[0]</td>
<td>uiomove</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>----</td>
<td>1.00</td>
<td>506</td>
<td>cpu[1]</td>
<td>(usermode)</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>----</td>
<td>1.00</td>
<td>195</td>
<td>cpu[1]</td>
<td>fifo_poll</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>----</td>
<td>1.00</td>
<td>136</td>
<td>cpu[1]</td>
<td>syscall_trap32</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>----</td>
<td>1.00</td>
<td>139</td>
<td>cpu[0]</td>
<td>releasef</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>----</td>
<td>1.00</td>
<td>277</td>
<td>cpu[1]</td>
<td>polllock</td>
</tr>
</tbody>
</table>
```

\ldots
**EXAMPLE 6** Gathering Lock Contention and Profiling Data for a Specific Module

In this example we use the `-f` option not to specify a single function, but rather to specify the entire text space of the `sbus` module. We gather both lock contention and profiling statistics so that contention can be correlated with overall load on the module.

```bash
eexample# modinfo | grep sbus
24 102a8b6f b8b4 59 1 sbus (SBus (sysio) nexus driver)
```

```bash
eexample# lockstat -kICE -f 0x102a8b6f,0xb8b4 sleep 10
```

Adaptive mutex spin: 39 events in 10.042 seconds (4 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>spin</th>
<th>Lock</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>38%</td>
<td>38%</td>
<td>1.00</td>
<td>0x30005160528</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>7</td>
<td>18%</td>
<td>56%</td>
<td>1.00</td>
<td>0x30005160d18</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>6</td>
<td>15%</td>
<td>72%</td>
<td>1.00</td>
<td>0x300060c3118</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>5</td>
<td>13%</td>
<td>85%</td>
<td>1.00</td>
<td>0x300060c3510</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>2</td>
<td>5%</td>
<td>90%</td>
<td>1.00</td>
<td>0x300060c2d20</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>1</td>
<td>3%</td>
<td>97%</td>
<td>1.00</td>
<td>0x300060c1cf8</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>1</td>
<td>3%</td>
<td>100%</td>
<td>1.00</td>
<td>0x300060c1110</td>
<td>sync_stream_buf</td>
</tr>
</tbody>
</table>

Adaptive mutex block: 9 events in 10.042 seconds (1 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>Lock</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>44%</td>
<td>44%</td>
<td>1.00</td>
<td>156539</td>
<td>0x30005160528</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>2</td>
<td>22%</td>
<td>67%</td>
<td>1.00</td>
<td>763516</td>
<td>0x30005160d18</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>1</td>
<td>11%</td>
<td>78%</td>
<td>1.00</td>
<td>462130</td>
<td>0x300060c3510</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>1</td>
<td>11%</td>
<td>89%</td>
<td>1.00</td>
<td>288749</td>
<td>0x300060c1110</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>1</td>
<td>11%</td>
<td>100%</td>
<td>1.00</td>
<td>1015374</td>
<td>0x300060c10130</td>
<td>sync_stream_buf</td>
</tr>
</tbody>
</table>

Profiling interrupt: 229 events in 10.042 seconds (23 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>Hottest CPU+PIL</th>
<th>Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>39%</td>
<td>39%</td>
<td>1.00</td>
<td>426</td>
<td>cpu[0]+6</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>64</td>
<td>28%</td>
<td>67%</td>
<td>1.00</td>
<td>398</td>
<td>cpu[0]+6</td>
<td>sbus_intr_wrapper</td>
</tr>
<tr>
<td>23</td>
<td>10%</td>
<td>77%</td>
<td>1.00</td>
<td>324</td>
<td>cpu[0]+6</td>
<td>iommu_dma_kaddr_load</td>
</tr>
<tr>
<td>21</td>
<td>9%</td>
<td>86%</td>
<td>1.00</td>
<td>512</td>
<td>cpu[0]+6</td>
<td>iommu_tlb_flush</td>
</tr>
<tr>
<td>14</td>
<td>6%</td>
<td>92%</td>
<td>1.00</td>
<td>342</td>
<td>cpu[0]+6</td>
<td>iommu_dma_unload</td>
</tr>
<tr>
<td>13</td>
<td>6%</td>
<td>98%</td>
<td>1.00</td>
<td>306</td>
<td>cpu[1]</td>
<td>iommu_dma_sync</td>
</tr>
<tr>
<td>5</td>
<td>2%</td>
<td>100%</td>
<td>1.00</td>
<td>389</td>
<td>cpu[1]</td>
<td>iommu_dma_bindhdl</td>
</tr>
</tbody>
</table>

**EXAMPLE 7** Determining the Average PIL (processor interrupt level) for a CPU

```bash
eexample# lockstat -Iw -l cpu[3] ./testprog
```

Profiling interrupt: 14791 events in 152.463 seconds (97 events/sec)

<table>
<thead>
<tr>
<th>Count</th>
<th>indv</th>
<th>cuml</th>
<th>rcnt</th>
<th>nsec</th>
<th>CPU+PIL</th>
<th>Hottest Caller</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>39%</td>
<td>39%</td>
<td>1.00</td>
<td>426</td>
<td>cpu[0]+6</td>
<td>sync_stream_buf</td>
</tr>
<tr>
<td>64</td>
<td>28%</td>
<td>67%</td>
<td>1.00</td>
<td>398</td>
<td>cpu[0]+6</td>
<td>sbus_intr_wrapper</td>
</tr>
<tr>
<td>23</td>
<td>10%</td>
<td>77%</td>
<td>1.00</td>
<td>324</td>
<td>cpu[0]+6</td>
<td>iommu_dma_kaddr_load</td>
</tr>
<tr>
<td>21</td>
<td>9%</td>
<td>86%</td>
<td>1.00</td>
<td>512</td>
<td>cpu[0]+6</td>
<td>iommu_tlb_flush</td>
</tr>
<tr>
<td>14</td>
<td>6%</td>
<td>92%</td>
<td>1.00</td>
<td>342</td>
<td>cpu[0]+6</td>
<td>iommu_dma_unload</td>
</tr>
<tr>
<td>13</td>
<td>6%</td>
<td>98%</td>
<td>1.00</td>
<td>306</td>
<td>cpu[1]</td>
<td>iommu_dma_sync</td>
</tr>
<tr>
<td>5</td>
<td>2%</td>
<td>100%</td>
<td>1.00</td>
<td>389</td>
<td>cpu[1]</td>
<td>iommu_dma_bindhdl</td>
</tr>
</tbody>
</table>
EXAMPLE 7 Determining the Average PIL (processor interrupt level) for a CPU
(Continued)

```
<table>
<thead>
<tr>
<th>PID</th>
<th>PIL</th>
<th>CPU</th>
<th>PIL</th>
<th>PIL</th>
<th>PIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>13641</td>
<td>92%</td>
<td>92%</td>
<td>1.00</td>
<td>253 cpu[3] (usermode)</td>
<td></td>
</tr>
<tr>
<td>579</td>
<td>4%</td>
<td>96%</td>
<td>1.00</td>
<td>325 cpu[3]+6 ip_ocsum+0xe8</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>3%</td>
<td>99%</td>
<td>1.00</td>
<td>411 cpu[3]+10 splx</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>1%</td>
<td>100%</td>
<td>1.00</td>
<td>527 cpu[3]+4 fas_intr_svc+0x80</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0%</td>
<td>100%</td>
<td>1.00</td>
<td>293 cpu[3]+13 send_mondo+0x18</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0%</td>
<td>100%</td>
<td>1.00</td>
<td>266 cpu[3]+12 zsa_rxint+0x400</td>
<td></td>
</tr>
</tbody>
</table>
```

/dev/lockstat

Lockstat driver

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5), lockstat(7D), mutex(9F), rwlock(9F)

NOTES

The profiling support provided by lockstat -I replaces the old (and undocumented) /usr/bin/kgmon and /dev/profile.

Tail-call elimination may affect call sites. For example, if foo()+0x50 calls bar() and the last thing bar() does is call mutex_exit(), the compiler may arrange for bar() to branch to mutex_exit() with a return address of foo()+0x58. Thus, the mutex_exit() in bar() will appear as though it occurred at foo()+0x58.

The PC in the stack frame in which an interrupt occurs may be bogus because, between function calls, the compiler is free to use the return address register for local storage.

When using the -I and -s options together, the interrupted PC will usually not appear anywhere in the stack since the interrupt handler is entered asynchronously, not by a function call from that PC.

The lockstat technology is provided on an as-is basis. The format and content of lockstat output reflect the current Solaris kernel implementation and are therefore subject to change in future releases.
lofiadm(1M)

NAME
lofiadm – administer files available as block devices through lofi

SYNOPSIS
/usr/sbin/lofiadm -a file [device]
/usr/sbin/lofiadm -d file | device
/usr/sbin/lofiadm [ file | device]

DESCRIPTION
lofiadm administers lofi(7D), the loopback file driver. lofi(7D) allows a file to be associated with a block device. That file can then be accessed through the block device. This is useful when the file contains an image of some filesystem (such as a floppy or CD-ROM image), because the block device can then be used with the normal system utilities for mounting, checking or repairing filesystems. See fsck(1M) and mount(1M).

Use lofiadm to add a file as a loopback device, remove such an association, or print information about the current associations.

OPTIONS
The following options are supported:
- a file [device] Add file as a block device.

If device is not specified, an available device is picked.

If device is specified, lofiadm attempts to assign it to file. device must be available or lofiadm will fail. The ability to specify a device is provided for use in scripts that wish to re-establish a particular set of associations.

- d file | device Remove an association by file or device name, if the associated block device is not busy, and deallocates the block device.

OPERANDS
The following operands are supported:
file Print the block device associated with file.
device Print the file name associated with the block device device.

Without arguments, print a list of the current associations. Filenames must be valid absolute pathnames.

When a file is added, it is opened for reading or writing by root. Any restrictions apply (such as restricted root access over NFS). The file is held open until the association is removed. It is not actually accessed until the block device is used, so it will never be written to if the block device is only opened read-only.

EXAMPLES
EXAMPLE 1 Mounting an Existing CD-ROM Image

You should ensure that Solaris understands the image before creating the CD. lofi allows you to mount the image and see if it works.
EXAMPLE 1 Mounting an Existing CD-ROM Image (Continued)

This example mounts an existing CD-ROM image (sparc.iso), of the Red Hat 6.0 CD which was downloaded from the Internet. It was created with the mkisofs utility from the Internet.

Use lofiadm to attach a block device to it:

```
# lofiadm -a /home/mike_s/RH6.0/sparc.iso /dev/lofi/1
```

lofiadm picks the device and prints the device name to the standard output. You can run lofiadm again by issuing the following command:

```
# lofiadm
Block Device File
/dev/lofi/1 /home/mike_s/RH6.0/sparc.iso
```

Or, you can give it one name and ask for the other, by issuing the following command:

```
# lofiadm /dev/lofi/1
/home/mike_s/RH6.0/sparc.iso
```

Use the mount command to mount the image:

```
# mount -F hsfs -o ro /dev/lofi/1 /mnt
```

Check to ensure that Solaris understands the image:

```
# df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/lofi/1 512418 512418 0 100% /mnt
```

Solaris can mount the CD-ROM image, and understand the filenames. The image was created properly, and you can now create the CD-ROM with confidence.

As a final step, unmount and detach the images:

```
# umount /mnt
# lofiadm -d /dev/lofi/1
# lofiadm
Block Device File
```

EXAMPLE 2 Mounting a Floppy Image

This is similar to Example 1.
EXAMPLE 2  Mounting a Floppy Image  (Continued)

Using lofi to help you mount files that contain floppy images is helpful if a floppy disk contains a file that you need, but the machine which you’re on doesn’t have a floppy drive. It is also helpful if you don’t want to take the time to use the dd command to copy the image to a floppy.

This is an example of getting to MDB floppy for Solaris x86:

```
# lofiadm -a /export/s28/MDB_s28x_wos/latest/boot.3
/dev/lofi/1
# mount -F pcfs /dev/lofi/1 /mnt
# ls /mnt
../ COMMENT.BAT* RC.D/ SOLARIS.MAP*
./ IDENT* REPLACE.BAT* X/
APPEND.BAT* MAKEDIR.BAT* SOLARIS/
# umount /mnt
# lofiadm -d /export/s28/MDB_s28x_wos/latest/boot.3
```

EXAMPLE 3  Making a UFS Filesystem on a File

Making a UFS filesysm on a file can be useful, particularly if a test suite requires a scratch filesystem. It can be painful (or annoying) to have to re-partition a disk just for the test suite, but you don’t have to. You can newfs a file with lofi

Create the file:

```
# mkfile 35m /export/home/test
```

Attach it to a block device. You also get the character device that newfs requires, so newfs that:

```
# lofiadm -a /export/home/test
/dev/lofi/1
# newfs /dev/rlofi/1
newfs: construct a new file system /dev/rlofi/1: (y/n)? y
/dev/rlofi/1: 73638 sectors in 119 cylinders of 1 tracks, 602 sectors
35.0MB in 8 cyl groups (16 c/g, 4.70MB/g, 2240 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32, 9664, 19296, 28928, 38560, 48192, 57824, 67456,
```

Note that ufs might not be able to use the entire file. Mount and use the filesystem:

```
# mount /dev/lofi/1 /mnt
# df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/lofi/1 33455 9 30101 1% /mnt
# ls /mnt
../ lost+found/
# umount /mnt
# lofiadm -d /dev/lofi/1
```
EXAMPLE 4 Creating a PC (FAT) File System on a Unix File

The following series of commands creates a FAT file system on a Unix file. The file is associated with a block device created by lofiadm.

```
# mkfile 10M /export/test/testfs
# lofiadm -a /export/test testfs /dev/lofi/1
Note use of rlofi, not lofi, in following command.
# mkfs -F pcfs -o nofdisk,size=20480 /dev/rlofi/1
Construct a new FAT file system on /dev/rlofi/1: (y/n)? y
# mount -F pcfs /dev/lofi/1 /mnt
# cd /mnt
# df -k.
Filesystem kbytes used avail capacity Mounted on
/dev/lofi/1 10142 0 10142 0% /mnt
```

See environ(5) for descriptions of the following environment variables that affect the execution of lofiadm: LC_CTYPE, LC_MESSAGES and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

fsck(1M), mount(1M), mount_ufs(1M), attributes(5), lofi(7D), lofs(7FS)

NOTES

Just as you would not directly access a disk device that has mounted file systems, you should not access a file associated with a block device except through the lofi file driver. It might also be appropriate to ensure that the file has appropriate permissions to prevent such access.

Associations are not persistent across reboots. A script can be used to re-establish them if required.

The abilities of lofiadm, and who can use them, are controlled by the permissions of /dev/lofictl. Read-access allows query operations, such as listing all the associations. Write-access is required to do any state-changing operations, like adding an association. As shipped, /dev/lofictl is owned by root, in group sys, and mode 0644, so all users can do query operations but only root can change anything.

The administrator can give users write-access, allowing them to add or delete associations, but that is very likely a security hole and should probably only be given to a trusted group.
When mounting a filesystem image, take care to use appropriate mount options. In particular, the `nosuid` mount option might be appropriate for UFS images whose origin is unknown. Also, some options might not be useful or appropriate, like `logging` or `forcedirectio` for UFS. For compatibility purposes, a raw device is also exported along with the block device. For example, `newfs(1M)` requires one.

The output of `lofiadm` (without arguments) might change in future releases.
logadm(1M)

NAME
logadm – manage endlessly growing log files

SYNOPSIS
logadm

logadm [-options] logname...

DESCRIPTION
logadm is a general log rotation tool that is suitable for running from cron(1M).

Without arguments, logadm reads the /etc/logadm.conf file, and for every entry found in that file checks the corresponding log file to see if it should be rotated. Typically this check is done each morning by an entry in the root’s crontab.

If the logname argument is specified, logadm renames the corresponding log file by adding a suffix so that the most recent log file ends with .0 (that is, logfile.0), the next most recent ends with .1 (that is, logfile.1), and so forth. By default, ten versions of old log files are kept (that is, logfile.0 through logfile.9) and logadm automatically deletes the oldest version when appropriate to keep the count of files at ten.

logadm takes a number of options. You can specify these options on the command line or in the /etc/logadm.conf file. The logadm command searches /etc/logadm.conf for lines of the form logname options

logname
Identifies the name of the entry in
/etc/logadm.conf, but if no log file name is given in that entry it is assumed that the logname is the same as the actual log file name.

options
Identifies command line options exactly as they would be entered on the command line. This allows commonly used log rotation policies to be stored in the /etc/logadm.conf file. See EXAMPLES.

If options are specified both in /etc/logadm.conf and on the command line, those in the /etc/logadm.conf file are applied first. Therefore, the command line options override those in /etc/logadm.conf.

Log file names specified in /etc/logadm.conf may contain filename substitution characters such as * and ? that are supported by csh(1).

Two options control when a log file is rotated. They are: -s size -p period.

When using more than one of these options at a time, there is an implied and between them. This means that all conditions must be met before the log is rotated.

If neither of these two options are specified, the default conditions for rotating a log file are: -s 1b -p 1w, which means the log file is only rotated if the size is non-zero and if at least 1 week has passed since the last time it was rotated.
By specifying `-p never` as a rotation condition, any other rotation conditions are ignored and `logadm` moves on to the expiration of old log files. By specifying `-p now` as a rotation condition, a log rotation is forced.

Unless specified by the `-o`, `-g`, or `-m` options, `logadm` replaces the log file (after renaming it) by creating an empty file whose owner, group ID, and permissions match the original file.

Three options control when old log files are expired: `-A age -C count -S size`. These options expire the oldest log files until a particular condition or conditions are met. For example, the combination `-C 5` and the `-S 10m` options expires old log files until there are no more than 5 of the and their combined disk usage is no more than 10 megabytes. If none of these options are specified, the default expiration is `-C 10` which keeps ten old log files. If no files are to be expired, use `-C 0` to prevent expiration by default.

**OPTIONS**

The following options are supported:

- `-a post_command` Execute the `post_command` after renaming the log file. 
  `post_command` is passed to `sh -c`. 
  Specify `post_command` as a valid shell command. Use quotes to protect spaces or shell metacharacters in `post_command`. 

This option can be used to restart a daemon that is writing to the file. When rotating multiple logs with one `logadm` command, `post_command` is executed only once after all the logs are rotated, not once per rotated log.

- `-A age` Delete any versions that have not been modified for the amount of time specified by `age`. 
  Specify `age` as a number followed by an h (hours), d (days), w(weeks), m (months), or y (years).

- `-b pre_command` Execute `pre_command` before renaming the log file. `pre_command` is passed to `sh -c`. 
  Specify `pre_command` as a valid shell command. Use quotes to protect spaces or shell metacharacters in the `pre_command`. 

This option can be used to stop a daemon that is writing to the file. When rotating multiple logs with one `logadm` command, `pre_command` is executed only once before all the logs are rotated, not once per rotated log.

- `-c` Rotate the log file by copying it and truncating the original logfile to zero length, rather than renaming the file.

- `-C count` Delete the oldest versions until there are not more than `count` files left.
If no expire options (-A, -C, or -S) are specified, -C 10 is the default. To prevent the default expire rule from being added automatically, specify -C 0.

-e mail_addr  Send error messages by email to mail_addr.

As logadm is typically run from cron(1M), error messages are captured by cron and mailed to the owner of the crontab. This option is useful you want the mail regarding error messages to go to another address instead. If no errors are encountered, no mail message is generated.

-E cmd  Execute cmd to expire the file, rather than deleting the old log file to expire it.

cmd is passed it to sh -c. The file is considered expired after cmd completes. If the old log file is not removed or renamed by the cmd, logadm considers it for expiration the next time that it runs on the specified log file. If present, the keyword $file is expanded in the specified cmd to the name of the file being expired.

This option is useful for tasks such as mailing old log files to administrators, or copying old log files to long term storage.

-f conf_file  Use conf_file instead of /etc/logadm.conf.

This option allows non-root users to keep their own logadm configuration files.

-g group  Create a new empty file with the ID specified by group, instead of preserving the group ID of the log file.

Specify group by name or by numeric group ID, as accepted by chgrp(1).

This option requires the ability to change file group ownership using the chgrp(1) command.

-h  Print a help message that describes logadm's options.

-m mode  Create a new empty file with the mode specified by mode, instead of preserving the mode of the log file.

Specify mode in any form that is accepted by the chmod(1) command.

-n  Print the actions that the logadm command will perform without actually performing them.
This option is useful for checking arguments before making any changes to the system.

It is important to remember, however, that since log rotating actions are only printed with this option, logadm might not find files that need expiring, but if run without the -n logadm might create a file that needs expiring by performing the log rotating actions. Therefore, if you see no files being expired with the -n option, files still might be expired without it.

-N Prevent an error message if the specified logfile does not exist. Normally, logadm produces an error message if the log file is not found. With -N, if the log file doesn’t exist logadm moves on to the expire rules (if any) and then to the next log file (if any), without creating the empty replacement log file.

-o owner Create the new empty file with owner, instead of preserving the owner of the log file.

Specify owner in any form that is accepted by the chown(1) command.

-p period Rotate a log file after the specified time period (period).

Specify period as a number followed by d for days, w for weeks, m for months (really 30 days) or y for years. There are also two special values for period: now and never. -p now forces log rotation. -p never forces no log rotation.

-P timestamp Used by logadm to record the last time the log was rotated in /etc/logadm.conf.

This option uses timestamp to determine if the log rotation period has passed. The format of timestamp matches the format generated by ctime(3C), with quotes around it to protect embedded spaces.

-r Remove any entries corresponding to the specified logname from the /etc/logadm.conf.

-R cmd Run the cmd when an old log file is created by a log rotation. If the keyword $file is embedded in the specified command, it is expanded to the name of the old log file just created by log rotation.

This option is useful for processing log file contents after rotating the log. cmd is executed by passing it to sh -c. When rotating multiple logs with one logadm command, the command supplied with -R is executed once every time a log is rotated. This is useful for post-processing a log file (that is, sorting it, removing uninteresting lines, etc.). The -a option is a better choice for restarting daemons after log rotation.
-s size

Rotate the log file only if its size is greater than or equal to size.

Specify size as a number followed by the letter b for bytes, k for kilobytes, m for megabytes, or g for gigabytes.

-S size

Delete the oldest versions until the total disk space used by the old log files is less than the specified size.

Specify size as a number followed by the letter b for bytes, k for kilobytes, m for megabytes, or g for gigabytes.

-t template

Specify the template to use when renaming log files.

template can be a simple name, such as /var/adm/oldfile, or it can contain special keywords which are expanded by logadm and are in the form $word. Allowed sequences are:

$file
The full path name of the file to be rotated

$dirname
The directory of the file to be rotated

$basename
The log file name, without the directory name

$n
The version number, 0 is most recent, 1 is next most recent, and so forth

$N
The same as $n, but starts at 1 instead of zero

$secs
The number of seconds since 00:00:00 UTC, January 1, 1970

$nodename
Expands to the output of uname -n

$platform
Expands to the output of uname -i

$isa
Expands to the output of uname -p

$release
Expands to the output of uname -r

$machine
Expands to the output of uname -m

$domain
Expands to the output of domainname

To actually have the dollar sign character in the file name, use $$.
Any percent sequences allowed by strftime(3C) are also allowed, for example, %d expands to the day of the month. To actually have a percent sign character in the file name, use %%. 
Both dollar-sign keywords and percent sequences can appear anywhere in the template. If the template results in a pathname with non-existent directories, they are created as necessary when rotating the log file.

If no -t option is specified, the default template is $file.$n. Actual rotation of log files, where each version is shifted up until it expires is done using the $n keyword. If the template does not contain the $n keyword, the log file is simply renamed to the new name and then the expire rules, if any, are applied.

- T pattern

Normally logadm looks for a list of old log files by turning the template (specified with the -t option) into a pattern and finding existing files whose names match that pattern. The -T option causes the given pattern to be used instead.

This option is useful if another program fiddles with the old log file names, like a cron job to compress them over time. The pattern is in the form of a pathname with special characters such as * and ? as supported by csh(1) filename substitution.

- v

Print information about the actions being executed in verbose mode.

- V

Validate the configuration file.

This option validates that an entry for the specified logname exists in the /etc/logadm.conf file and is syntactically correct. If logname is not specified, all entries in the configuration file are validated. If a logname argument is specified, the command validates the syntax of that entry. If the entry is found, it is printed and the exit value of the command is true. Otherwise the exit value is false.

- w entryname

Write an entry into the config file (that is, /etc/logadm.conf) which corresponds to the current command line arguments. If an entry already existed for the specified entryname, it is removed first. This is the preferred method for updating /etc/logadm.conf since using it prevents syntax errors in that file. The entryname is the name of the entry in /etc/logadm.conf, and that name can be used as the "logname" argument to future calls to logadm to take advantage of that entry. The entryname can be chosen to be something that is easy to specify, or it can be the actual log file name. If no log file name is provided on the command line, the entry name is assumed to be the same as the log file name. For example, the following two lines achieve the same thing, keeping two copies of rotated log files, but the first example names the entry something easier to enter on the command line:
logadm(1M)

```
example% logadm -C2 -w mylog /my/really/long/log/file/name
example% logadm -C2 -w /my/really/long/log/file/name
```

**-z count**
Compress old log files as they are created. count of the most recent log files are left uncompressed, therefore making the count most recent files easier to peruse. Use count of zero to compress all old logs.

The compression is done with gzip(1) and the resulting log file has the suffix of .gz.

**OPERANDS**
The following operands are supported:

`logname`
Identifies the name of the entry in `/etc/logadm.conf`. If the log file name is specified in the `logname` field, it is assumed that `logname` is the same as the actual log file name.

**EXAMPLES**

**EXAMPLE 1** Rotating a File and Keeping Previous Versions

The following example rotates the `/var/adm/exacct/proc` file, keeping ten previous versions in `/var/adm/exacct/proc.0` through `/var/adm/exacct/proc.9`.

Tell logadm to copy the file and truncate it.

```
example% logadm -c /var/adm/exacct/proc
```

**EXAMPLE 2** Rotating syslog

The following example rotates syslog and keeps eight log files. Old log files are put in the directory `/var/oldlogs` instead of `/var/log`:

```
example% logadm -C8 -t '/var/oldlogs/syslog.$n' /var/log/syslog
```

**EXAMPLE 3** Rotating `/var/adm/sulog` and Expiring Based on Age

The following entry in the `/etc/logadm.conf` file rotates the `/var/adm/sulog` file and expires any copies older than 30 days.

```
/var/adm/sulog -A 30d
```

**EXAMPLE 4** Rotating Files and Expiring Based on Disk Usage

The following entry in the `/etc/logadm.conf` file rotates the `/var/adm/sulog` file and expires old log files when more than 100 megabytes are used by the sum of all the rotated log files.

```
/var/adm/sulog -S 100m
```
EXAMPLE 5 Creating an Entry that Stores the Logfile Name

This example creates an entry storing the log file name and the fact that we want to keep 20 copies in /etc/logadm.conf, but the -p never means the entry is ignored by the normal logadm run from root’s crontab every morning.

eample% logadm -w locallog /usr/local/logfile -C20 -p never

Use the following entry on the command line to override the -p never option:

eample% logadm -p now locallog

EXAMPLE 6 Rotating the apache Error and Access Logs

The following example rotates the apache error and access logs monthly to filenames based on current year and month. It keeps the 24 most recent copies and tells apache to restart after renaming the logs.

This command is run once, and since the -w option is specified, an entry is made in /etc/logadm.conf so the apache logs are rotated from now on.

eample% logadm -w apache -p 1m -C 24\ 
   -t '/var/apache/old-logs/$basename.%Y-%m'\ 
   -a '/usr/apache/bin/apachectl graceful'\ 
   '/var/apache/logs/*{access,error}_log'

This example also illustrates that the entry name supplied with the -w option doesn’t have to match the log file name. In this example, the entry name is apache and once the line has been run, the entry in /etc/logadm.conf can be forced to run by executing the following command:

eample% logadm -p now apache

Because the expression matching the apache log file names was enclosed in quotes, the expression is stored in /etc/logadm.conf, rather than the list of files that it expands to. This means that each time logadm runs from cron it expands that expression and checks all the log files in the resulting list to see if they need rotating.

The following command is an example without the quotes around the log name expression. The shell expands the last argument into a list of log files that exist at the time the command is entered, and writes an entry to /etc/logadm.conf that rotates the files.

eample% logadm -w apache /var/apache/logs/*_log

FILES
/etc/logadm.conf configuration file for logadm command
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

chgrp(1), chmod(1), chown(1), csh(1), gzip(1), cron(1M), ctime(3C), strftime(3C), logadm.conf(4), attributes(5)

NOTES

When logadm applies expire conditions (supplied by the -A, -C, and -S options), it deletes files, the oldest first, until the conditions are satisfied. If the template used for naming the old logs contained $n or $N, logadm picks the highest value of $n or $N found in the old log file names first. If the template used is something else, logadm uses the modification time to determine which files to expire first. This may not be the expected behavior if an old log file has been modified since it was rotated.
logins(1M)

NAME
logins – list user and system login information

SYNOPSIS
/usr/bin/logins [-admopstux] [-g group...] [-l login_name...]

DESCRIPTION
This command displays information on user and system logins known to the system. Contents of the output is controlled by the command options and can include the following: user or system login, user id number, passwd account field value (user name or other information), primary group name, primary group id, multiple group names, multiple group ids, home directory, login shell, and four password aging parameters. The default information is the following: login id, user id, primary group name, primary group id and the account field value. Output is sorted by user id, system logins, followed by user logins.

OPTIONS
Options may be used together. If so, any login that matches any criteria are displayed.

The following options are supported:

- a 
  Add two password expiration fields to the display. The fields show how many days a password can remain unused before it automatically becomes inactive, and the date that the password expires.

- d
  Selects logins with duplicate uids.

- g group
  Selects all users belonging to group, sorted by login. Multiple groups can be specified as a comma-separated list. When the -l and -g options are combined, a user is only listed once, even if the user belongs to more than one of the selected groups.

- l login_name...
  Selects the requested login. Multiple logins can be specified as a comma-separated list. Depending on the nameservice lookup types set in /etc/nsswitch.conf, the information can come from the /etc/passwd and /etc/shadow files and other nameservices. When the -l and -g options are combined, a user is only listed once, even if the user belongs to more than one of the selected groups.

- m
  Displays multiple group membership information.

- o
  Formats output into one line of colon-separated fields.

- p
  Selects logins with no passwords.

- s
  Selects all system logins.

- t
  Sorts output by login instead of by uid.

- u
  Selects all user logins.

- x
  Prints an extended set of information about each selected user. The extended information includes home directory, login shell and password aging information, each displayed on a separate line. The password information consists of password status (PS for password, NP for no password or LK for locked). If the login is
passworded, status is followed by the date the password was last changed, the number of days required between changes, and the number of days allowed before a change is required. The password aging information shows the time interval that the user receives a password expiration warning message (when logging on) before the password expires.

**ATTRIBUTES**  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**  attributes(5)
**NAME**
lpadmin – configure the LP print service

**SYNOPSIS**

```
ladmin -p printer options
ladmin -x dest
ladmin -d [dest]
ladmin -S print-wheel -A alert-type [-W minutes] [-Q requests]
ladmin -M -f form-name [-a [-o filebreak] [-t tray-number]]
```

**DESCRIPTION**
ladmin configures the LP print service by defining printers and devices. It is used to add and change printers, to remove printers from service, to set or change the system default destination, to define alerts for printer faults, and to mount print wheels.

**OPTIONS**

### Adding or Changing a Printer

The first form of the lpadmin command (`lpadmin -p printer options`) configures a new printer or changes the configuration of an existing printer. It also starts the print scheduler.

When creating a new printer, one of three options (`-v`, `-U`, or `-s`) must be supplied. In addition, only one of the following may be supplied: `-e`, `-i`, or `-m`; if none of these three options is supplied, the model standard is used. The `-h` and `-l` options are mutually exclusive. Printer and class names may be no longer than 14 characters and must consist entirely of the characters `A-Z`, `a-z`, `0-9`, dash (`-`) and underscore (`_`). If `-s` is specified, the following options are invalid: `-A`, `-e`, `-F`, `-h`, `-i`, `-l`, `-M`, `-m`, `-o`, `-U`, `-v`, and `-W`.

The following `printer options` may appear in any order.

**-A alert-type [-W minutes]**

The `-A` option is used to define an alert that informs the administrator when a printer fault is detected, and periodically thereafter, until the printer fault is cleared by the administrator. The `alert-types` are:

- **mail**
  - Send the alert message using `mail` (see `mail(1)`) to the administrator.

- **write**
  - Write the message to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is chosen arbitrarily.

- **quiet**
  - Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the fault has been cleared and printing resumes, messages will again be sent when another fault occurs with the printer.
showfault
Attempt to execute a fault handler on each system that has a print job in the
queue. The fault handler is /etc/lp/alerts/printer. It is invoked with
three parameters: printer_name, date, file_name. The file_name is the name of a
file containing the fault message.

none
Do not send messages; any existing alert definition for the printer will be
removed. No alert will be sent when the printer faults until a different alert-type
(except quiet) is used.

shell-command
Run the shell-command each time the alert needs to be sent. The shell command
should expect the message in standard input. If there are blank spaces
embedded in the command, enclose the command in quotes. Notice that the
mail and write values for this option are equivalent to the values mail
user-name and write user-name respectively, where user-name is the current name
for the administrator. This will be the login name of the person submitting this
command unless he or she has used the su command to change to another user
ID. If the su command has been used to change the user ID, then the user-name
for the new ID is used.

list
Display the type of the alert for the printer fault. No change is made to the alert.

The message sent appears as follows:

The printer printer has stopped printing for the reason given below.
Fix the problem and bring the printer back on line.
Printing has stopped, but will be restarted in a few minutes;
issue an enable command if you want to restart sooner.

Unless someone issues the change request:

lp -i request-id -P ...to change the page list to print, the current request will be
reprinted from the beginning. The reason(s) it stopped (multiple reasons indicate
reprinted attempts):reason

The LP print service can detect printer faults only through an adequate fast filter
and only when the standard interface program or a suitable customized interface
program is used. Furthermore, the level of recovery after a fault depends on the
capabilities of the filter.

If the printer is all, the alerting defined in this command applies to all existing
printers.

If the -W option is not used to arrange fault alerting for printer, the default
procedure is to mail one message to the administrator of printer per fault. This is
equivalent to specifying -W once or -W 0. If minutes is a number greater than zero,
an alert will be sent at intervals specified by minutes.
-c class
   Insert *printer* into the specified *class*. *class* will be created if it does not already exist.

-D comment
   Save this *comment* for display whenever a user asks for a full description of *printer* (see *lpstat*(1)). The LP print service does not interpret this comment.

-e printer
   Copy the interface program of an existing *printer* to be the interface program for *printer*. (Options -i and -m may not be specified with this option.)

-f allow:form-list
-f deny:form-list
   Allow or deny the forms in *form-list* to be printed on *printer*. By default no forms are allowed on a new printer.

For each printer, the LP print service keeps two lists of forms: an “allow-list” of forms that may be used with the printer, and a “deny-list” of forms that may not be used with the printer. With the -f allow option, the forms listed are added to the allow-list and removed from the deny-list. With the -f deny option, the forms listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the forms in the list may be used on the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the forms in the deny-list may not be used with the printer. All forms can be excluded from a printer by specifying -f deny:all. All forms can be used on a printer (provided the printer can handle all the characteristics of each form) by specifying -f allow:all.

The LP print service uses this information as a set of guidelines for determining where a form can be mounted. Administrators, however, are not restricted from mounting a form on any printer. If mounting a form on a particular printer is in disagreement with the information in the allow-list or deny-list, the administrator is warned but the mount is accepted. Nonetheless, if a user attempts to issue a print or change request for a form and printer combination that is in disagreement with the information, the request is accepted only if the form is currently mounted on the printer. If the form is later unmounted before the request can print, the request is canceled and the user is notified by mail.

If the administrator tries to specify a form as acceptable for use on a printer that doesn’t have the capabilities needed by the form, the command is rejected.

Notice the other use of -f, with the -M option, below.

The -T option must be invoked first with *lpadmin* to identify the printer type before the -f option can be used.

-f fault-recovery
   This option specifies the recovery to be used for any print request that is stopped because of a printer fault, according to the value of *fault-recovery*. 
continue

Continue printing on the top of the page where printing stopped. This requires a filter to wait for the fault to clear before automatically continuing.

beginning

Start printing the request again from the beginning.

wait

Disable printing on printer and wait for the administrator or a user to enable printing again.

During the wait, the administrator or the user who submitted the stopped print request can issue a change request that specifies where printing should resume. (See the -i option of the \texttt{lp} command.) If no change request is made before printing is enabled, printing resumes at the top of the page where stopped, if the filter allows; otherwise, the request is printed from the beginning.

-h

Indicate that the device associated with the printer is hardwired. If neither of the mutually exclusive options, \texttt{-h} and \texttt{-l}, is specified, \texttt{-h} is assumed.

-i interface

Establish a new interface program for printer. \texttt{interface} is the pathname of the new program. (The \texttt{-e} and \texttt{-m} options may not be specified with this option.)

-I content-type-list

Allow printer to handle print requests with the content types listed in a content-type-list. If the list includes names of more than one type, the names must be separated by commas or blank spaces. (If they are separated by blank spaces, the entire list must be enclosed in double quotes.)

The type simple is recognized as the default content type for files in the UNIX system. A simple type of file is a data stream containing only printable ASCII characters and the following control characters:

<table>
<thead>
<tr>
<th>Control Char</th>
<th>Octal Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKSPACE</td>
<td>10</td>
<td>Move back one char, except at beginning of line</td>
</tr>
<tr>
<td>TAB</td>
<td>11</td>
<td>Move to next tab stop</td>
</tr>
<tr>
<td>LINEFEED</td>
<td>12</td>
<td>Move to beginning of next line</td>
</tr>
<tr>
<td>(newline)</td>
<td>12</td>
<td>Move to beginning of next page</td>
</tr>
<tr>
<td>FORMFEED</td>
<td>14</td>
<td>Move to beginning of next page</td>
</tr>
<tr>
<td>RETURN</td>
<td>15</td>
<td>Move to beginning of next page</td>
</tr>
</tbody>
</table>
To prevent the print service from considering simple a valid type for the printer, specify either an explicit value (such as the printer type) in the content-type-list, or an empty list. If you do want simple included along with other types, you must include simple in the content-type-list.

In addition to content types defined by the print administrator, the type PostScript is recognized and supported by the Solaris print subsystem. This includes filters to support PostScript as the printer content type.

The type any is recognized as a special content type for files. When declared as the input type for a printer, it signals the print sub-system not to do any filtering on the file before sending it to the printer.

Except for simple and any, each content-type name is freely determined by the administrator. If the printer type is specified by the -T option, then the printer type is implicitly considered to be also a valid content type.

-1
Indicate that the device associated with printer is a login terminal. The LP scheduler (1psched) disables all login terminals automatically each time it is started. (The -h option may not be specified with this option.)

--model
Select model interface program, provided with the LP print service, for the printer. (Options -e and -i may not be specified with this option.)

-M -f form-name [-a [-o filebreak]] [-t tray-number]
Mount the form form-name on printer. Print requests that need the pre-printed form form-name will be printed on printer. If more than one printer has the form mounted and the user has specified any (with the -d option of the lp command) as the printer destination, then the print request will be printed on the one printer that also meets the other needs of the request.

The page length and width, and character and line pitches needed by the form are compared with those allowed for the printer, by checking the capabilities in the terminfo database for the type of printer. If the form requires attributes that are not available with the printer, the administrator is warned but the mount is accepted. If the form lists a print wheel as mandatory, but the print wheel mounted on the printer is different, the administrator is also warned but the mount is accepted.

If the -a option is given, an alignment pattern is printed, preceded by the same initialization of the physical printer that precedes a normal print request, with one exception: no banner page is printed. Printing is assumed to start at the top of the first page of the form. After the pattern is printed, the administrator can adjust the
mounted form in the printer and press return for another alignment pattern (no
initialization this time), and can continue printing as many alignment patterns as
desired. The administrator can quit the printing of alignment patterns by typing q.

If the -o filebreak option is given, a formfeed is inserted between each copy of
the alignment pattern. By default, the alignment pattern is assumed to correctly fill
a form, so no formfeed is added.

If the -t tray-number option is specified, printer tray tray-number will used.

A form is “unmounted” either by mounting a new form in its place or by using the
-f none option. By default, a new printer has no form mounted.

Notice the other use of -f without the -M option above.

-M -S print-wheel
Mount the print-wheel on printer. Print requests that need the print-wheel will be
printed on printer. If more than one printer has print-wheel mounted and the user
has specified any (with the -d option of the lp command) as the printer
destination, then the print request will be printed on the one printer that also meets
the other needs of the request.

If the print-wheel is not listed as acceptable for the printer, the administrator is
warned but the mount is accepted. If the printer does not take print wheels, the
command is rejected.

A print wheel is “unmounted” either by mounting a new print wheel in its place or
by using the option -S none. By default, a new printer has no print wheel
mounted.

Notice the other uses of the -S option without the -M option described below.

-o option
The -o option defines default printer configuration values given to an interface
program. The default may be explicitly overwritten for individual requests by the
user (see lp(1)), or taken from a preprinted form description (see lpforms(1M)
and lp(1)).

There are several options which are pre-defined by the system. In addition, any
number of key-value pairs may be defined. Each of the predefined and undefined
options are described.

The Predefined Options

The following options are predefined: adjusting printer capabilities, adjusting
printer port characteristics, configuring network printers, and controlling the use of
banner.

Adjusting Printer Capabilities

length=scaled-decimal-number
width=scaled-decimal-number
The term *scaled-decimal-number* refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a “trailing” letter attached to the number. Three types of *scaled-decimal-numbers* can be used with the LP print service:

- numbers that show sizes in centimeters (marked with a trailing *c*);
- numbers that show sizes in inches (marked with a trailing *i*);
- numbers that show sizes in units appropriate to use (without a trailing letter), that is, lines, characters, lines per inch, or characters per inch.

The option values must agree with the capabilities of the type of physical printer, as defined in the terminfo database for the printer type. If they do not, the command is rejected.

The defaults are defined in the *terminfo* entry for the specified printer type. The defaults may be reset by:

```
lpadmin -p printername -o length=
lpadmin -p printername -o width=
lpadmin -p printername -o cpi=
lpadmin -p printername -o lpi=
```

### Adjusting Printer Port Characteristics

```
stty="'stty-option-list'
```

The *stty-option-list* is not checked for allowed values, but is passed directly to the *stty* program by the standard interface program. Any error messages produced by *stty* when a request is processed (by the standard interface program) are mailed to the user submitting the request.

The default for *stty* is:

```
stty="'9600 cs8 -cstopb -parenb ixon -ixany opost -olcuc onlcr -ocrl -onocr -onlret -ofill nl0 cr0 tab0 bs0 vt0 ff0'
```

The default may be reset by:

```
ladmin -p printername -o stty=
```

### Configuring Network Printers

```
dest=string protocol=string bsdctrl=string \
    timeout=non-negative-integer-seconds
```

These four options are provided to support network printing. Each option is passed directly to the interface program; any checking for allowed values is done there.

The value of *dest* is the name of the destination for the network printer; the semantics for value *dest* are dependent on the printer and the configuration. There is no default.
The value of option protocol sets the over-the-wire protocol to the printer. The default for option protocol is bsd. The value of option bsdctrl sets the print order of control and data files (BSD protocol only); the default for this option is control file first. The value of option timeout sets the seed value for backoff time when the printer is busy. The default value for the timeout option is 10 seconds. The defaults may be reset by:

```bash
lpadmin -p printername -o protocol=
lpadmin -p printername -o bsdctrl=
lpadmin -p printername -o timeout=
```

Controlling the Use of the Banner Page

Use the following commands to control the use of the banner page:

```bash
lpadmin -p printer -o nobanner
lpadmin -p printer -o banner
lpadmin -p printer -o banner=always
lpadmin -p printer -o banner=never
lpadmin -p printer -o banner=optional
```

The first and fifth commands (-o nobanner and -o banner=optional) are equivalent. The default is to print the banner page, unless a user specifies -o nobanner on an `lp` command line.

The second and third commands (-o banner and -o banner=always) are equivalent. Both cause a banner page to be printed always, even if a user specifies `lp -o nobanner`. The root user can override this command.

The fourth command (-o banner=never) causes a banner page never to be printed, even if a user specifies `lp -o banner`. The root user can override this command.

Undefined Options

`key=value`

Each `key=value` is passed directly to the interface program. Any checking for allowed values is done in the interface program.

Any default values for a given `key=value` option are defined in the interface program. If a default is provided, it may be reset by typing the key without any value:

```bash
lpadmin -p printername -o key=
```

`-P paper-name`

Specify a paper type list that the printer supports.

`-r class`

Remove printer from the specified class. If printer is the last member of class, then class will be removed.
-s list
Allow either the print wheels or aliases for character sets named in list to be used on the printer.

If the printer is a type that takes print wheels, then list is a comma or space separated list of print wheel names. (Enclose the list with quotes if it contains blank spaces.) These will be the only print wheels considered mountable on the printer. (You can always force a different print wheel to be mounted.) Until the option is used to specify a list, no print wheels will be considered mountable on the printer, and print requests that ask for a particular print wheel with this printer will be rejected.

If the printer is a type that has selectable character sets, then list is a comma or blank separated list of character set name “mappings” or aliases. (Enclose the list with quotes if it contains blank spaces.) Each “mapping” is of the form known-name=alias The known-name is a character set number preceded by cs (such as cs3 for character set three) or a character set name from the terminfo database entry csnm. See terminfo(4). If this option is not used to specify a list, only the names already known from the terminfo database or numbers with a prefix of cs will be acceptable for the printer. If list is the word none, any existing print wheel lists or character set aliases will be removed.

Notice the other uses of the -S with the -M option described above.

The -T option must be invoked first with lpadmin to identify the printer type before the -S option can be used.

-s system-name[!printer-name]
Make a remote printer (one that must be accessed through another system) accessible to users on your system. system-name is the name of the remote system on which the remote printer is located it. printer-name is the name used on the remote system for that printer. For example, if you want to access printer1 on system1 and you want it called printer2 on your system:

-p printer2 -s system1!printer1

-T printer-type-list
Identify the printer as being of one or more printer-types. Each printer-type is used to extract data from the terminfo database; this information is used to initialize the printer before printing each user’s request. Some filters may also use a printer-type to convert content for the printer. If this option is not used, the default printer-type will be unknown; no information will be extracted from terminfo so each user request will be printed without first initializing the printer. Also, this option must be used if the following are to work: -o cpi, -o lpi, -o width, and -o length options of the lpadmin and lp commands, and the -S and -f options of the lpadmin command.
If the printer-type-list contains more than one type, then the content-type-list of the -I option must either be specified as simple, as empty (-I ""), or not specified at all.

-t number-of-trays
Specify the number of trays when creating the printer.

-u allow:login-ID-list
-udeny:login-ID-list
Allow or deny the users in login-ID-list access to the printer. By default all users are allowed on a new printer. The login-ID-list argument may include any or all of the following constructs:

- login-ID a user on any system
- system-name!login-ID a user on system system-name
- system-name!all all users on system system-name
- all!login-ID a user on all systems
- all all users on all systems

For each printer, the LP print service keeps two lists of users: an "allow-list" of people allowed to use the printer, and a "deny-list" of people denied access to the printer. With the -u allow option, the users listed are added to the allow-list and removed from the deny-list. With the -u deny option, the users listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the users in the list may use the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the users in the deny-list may not use the printer. All users can be denied access to the printer by specifying -udeny:all. All users may use the printer by specifying -u allow:all.

-U dial-info
The -U option allows your print service to access a remote printer. (It does not enable your print service to access a remote printer service.) Specifically, -U assigns the "dialing" information dial-info to the printer. dial-info is used with the dial routine to call the printer. Any network connection supported by the Basic Networking Utilities will work. dial-info can be either a phone number for a modem connection, or a system name for other kinds of connections. Or, if -U direct is given, no dialing will take place, because the name direct is reserved for a printer that is directly connected. If a system name is given, it is used to search for connection details from the file /etc/uucp/Systems or related files. The Basic Networking Utilities are required to support this option. By default, -U direct is assumed.

-v device
Associate a device with printer. device is the path name of a file that is writable by lp. Notice that the same device can be associated with more than one printer.
The `-x dest` option removes the destination `dest` (a printer or a class), from the LP print service. If `dest` is a printer and is the only member of a class, then the class will be deleted, too. If `dest` is all, all printers and classes are removed. If there are no remaining local printers and the scheduler is still running, the scheduler is shut down.

No other options are allowed with `-x`.

The `-d [dest]` option makes `dest` (an existing printer or class) the new system default destination. If `dest` is not supplied, then there is no system default destination. No other options are allowed with `-d`.

```
-S print-wheel -A alert-type [-W minutes] [-Q requests]
```

The `-S print-wheel` option is used with the `-A alert-type` option to define an alert to mount the print wheel when there are jobs queued for it. If this command is not used to arrange alerting for a print wheel, no alert will be sent for the print wheel. Notice the other use of `-A`, with the `-p` option, above.

The `alert-types` are:

- **mail** Send the alert message using the `mail` command to the administrator.

- **write** Write the message, using the `write` command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.

- **quiet** Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the `print-wheel` has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the `-Q` option.

- **none** Do not send messages until the `-A` option is given again with a different `alert-type` (other than `quiet`).

- **shell-command** Run the `shell-command` each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blanks embedded in the command, enclose the command in quotes. Notice that the `mail` and `write` values for this option are equivalent to the values `mail user-name` and `write user-name` respectively, where `user-name` is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the `su` command to change to another user ID. If the `su` command has been used to change the user ID, then the `user-name` for the new ID is used.

- **list** Display the type of the alert for the print wheel on standard output. No change is made to the alert.
The message sent appears as follows:

The print wheel print-wheel needs to be mounted on the printer(s):
print integer1 print requests
await this print wheel.

The printers listed are those that the administrator had earlier specified were candidates for this print wheel. The number integer1 listed next to each printer is the number of requests eligible for the printer. The number integer2 shown after the printer list is the total number of requests awaiting the print wheel. It will be less than the sum of the other numbers if some requests can be handled by more than one printer.

If the print-wheel is all, the alerting defined in this command applies to all print wheels already defined to have an alert.

If the -W option is not given, the default procedure is that only one message will be sent per need to mount the print wheel. Not specifying the -W option is equivalent to specifying -W once or -W 0. If minutes is a number greater than zero, an alert will be sent at intervals specified by minutes.

If the -Q option is also given, the alert will be sent when a certain number (specified by the argument requests) of print requests that need the print wheel are waiting. If the -Q option is not given, or requests is 1 or any (which are both the default), a message is sent as soon as anyone submits a print request for the print wheel when it is not mounted.

EXAMPLES

In the following examples, prtr can be any name up to 14 characters and can be the same name as the ping(1M) name.

EXAMPLE 1 Configuring an HP Postscript Printer with a Jet Direct Network Interface

The following example configures an HP postscript printer with a jet direct network interface:

```
example# lpadmin -p prtr -v /dev/null -m netstandard -o dest=ping_name_of_prtr:9100 -o protocol=tcp -T PS -I postscript
```

```
example# enable prtr
```

```
example# accept prtr
```

EXAMPLE 2 Configuring a Standard Postscript Network Printer

The following example configures a standard postscript network printer:

```
example# lpadmin -p prtr -v /dev/null -m netstandard -o dest=ping_name_of_prtr -T PS -I postscript
```

```
example# enable prtr
```

```
example# accept prtr
```

EXIT STATUS

The following exit values are returned:
**lpadmin(1M)**

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

0      Successful completion.
non-zero An error occurred.

**FILES**
/var/spool/lp/*
/etc/lp
/etc/lp/alerts/printer fault handler for lpadmin.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

enable(1), lp(1), lpstat(1), mail(1), stty(1), accept(1M), lpforms(1M), lpsched(1M), lpsystem(1M), ping(1M), dial(3NSL), terminfo(4), attributes(5)

**SEE ALSO**

System Administration Guide: Basic Administration
The `lpfilter` command is used to add, change, delete, or list a filter used with the LP print service. These filters convert the content of a file to have a content type acceptable to a printer.

Arguments consist of the `-f filter-name` option and exactly one of the arguments appearing within braces (`{ }`) in the SYNOPSIS.

- Adds or changes a filter as specified from standard input. The format of the input is specified below. If `-f all` is specified with the – option, the specified change is made to all existing filters. This is not useful.

- `filter-name` Specifies the `filter-name` of the filter to be added, changed, reset, deleted, or listed. The filter name `all` is a special filter name defined below. The `-f` option is required.

- `pathname` Adds or changes a filter as specified by the contents of the file `pathname`. The format of the file’s contents is specified below. If `-f all` is specified with the `-F` option, the specified change is made to all existing filters. This is not useful.

- Resets a filter to its default settings. Using `-f all` with the `-i` option restores all filters for which predefined settings are available to their original settings.

- Lists a filter description. Using `-f all` with the `-l` option produces a list of all filters.

- Deletes a filter. Using `-f all` with the `-x` option results in all filters being deleted.

The filter named in the `-f` option is added to the filter table. If the filter already exists, its description is changed to reflect the new information in the input.

When – is specified, standard input supplies the filter description. When `-F` is specified, the file `pathname` supplies the filter description. One of these two options must be specified to add or change a filter.

When an existing filter is changed with the `-F` or – option, lines in the filter description that are not specified in the new information are not changed. When a new filter is added with this command, unspecified lines receive default values. See below.

Filters are used to convert the content of a request from its initial type into a type acceptable to a printer. For a given print request, the LP print service knows the following:
I The content type of the request (specified by `lp -T` or determined implicitly).
I The name of the printer (specified by `lp -d`).
I The printer type (specified by `lpadmin -T`).
   The printer type is intended to be a printer model, but some people specify it with a content type even though `lpadmin -I` is intended for this purpose.
I The content types acceptable to the printer (specified by `lpadmin -I`).
   The values specified by the `lpadmin -T` are treated as if they were specified by the `-I` option as well.
I The modes of printing asked for by the originator of the request (specified by various options to `lp`).

The system uses the above information to construct a list of one or more filters that converts the document’s content type into a content type acceptable to the printer and consumes all `lp` arguments that invoke filters (`-y` and `-P`).

The contents of the file (specified by the `-F` option) and the input stream from standard input (specified by `-`) must consist of a series of lines, such that each line conforms to the syntax specified by one of the seven lines below. All lists are comma or space separated. Each item contains a description.

Input types:  `content-type-list`
Output types:  `content-type-list`
Printer types:  `printer-type-list`
Printers:  `printer-list`
Filter type:  `filter-type`
Command:  `shell-command`
Options:  `template-list`

Input types  This gives the content types that can be accepted by the filter. The default is any. The document content type must be a member of this list for the initial filter in the sequence.

Output types  This gives the content types that the filter can produce from any of the input (content) types. The default is any. The intersection of the output types of this list and the content types acceptable to the printer (from `lpadmin -I` and `lpadmin -T`) must be non-null for the last filter in the sequence. For adjacent filters in the sequence, the intersection of output types of one and the input types of the next must be non-null.

Printer types  This gives the printer types for which this printer can be used. The LP print service will restrict the use of the filter to these printer types (from `lpadmin -T`). The default is any.

Printers  This gives the names of the printers for which the filter can be used. The LP print service will restrict the use of the filter to just the printers named. The default is any.
### Filter type

This marks the filter as a *slow* filter or a *fast* filter. Slow filters are generally those that take a long time to convert their input (that is, minutes or hours). They are run before the job is scheduled for a printer, to keep the printers from being tied up while the filter is running. If a listed printer is on a remote system, the filter type for it must have the value *slow*. That is, if a client defines a filter, it must be a slow filter. Fast filters are generally those that convert their input quickly (that is, faster than the printer can process the data), or those that must be connected to the printer when run. Fast filters will be given to the interface program to run while connected to the physical printer.

### Command

This specifies which program to run to invoke the filter. The full program pathname as well as fixed options must be included in the *shell-command*; additional options are constructed, based on the characteristics of each print request and on the *Options* field. A command must be given for each filter. The command must accept a data stream as standard input and produce the converted data stream on its standard output. This allows filter pipelines to be constructed to convert data not handled by a single filter.

### Options

This is a comma-separated list of templates used by the LP print service to construct options to the filter from the characteristics of each print request listed in the table later. The `-y` and `-P` arguments to the `lp` command cause a filter sequence to be built even if there is no need for a conversion of content types.

In general, each template is of the following form:

```
keyword pattern = replacement
```

The *keyword* names the characteristic that the template attempts to map into a filter-specific option; each valid *keyword* is listed in the table below.

A *pattern* is one of the following: a literal pattern of one of the forms listed in the table, a single asterisk (`*`), or a regular expression. If *pattern* matches the value of the characteristic, the template fits and is used to generate a filter-specific option. The *replacement* is what will be used as the option.

Regular expressions are the same as those found on the `regexp(5)` manual page. This includes the `\(...\)` and `\n` constructions, which can be used to extract portions of the *pattern* for copying into the *replacement*, and the `&`, which can be used to copy the entire *pattern* into the *replacement*.
The replacement can also contain a *; it too, is replaced with the entire pattern, just like the & of regexp(5).

The keywords are:

<table>
<thead>
<tr>
<th>lp Option</th>
<th>Characteristic</th>
<th>keyword</th>
<th>Possible patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>-T</td>
<td>Content type</td>
<td>INPUT</td>
<td>content-type</td>
</tr>
<tr>
<td></td>
<td>(input)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td>Content type</td>
<td>OUTPUT</td>
<td>content-type</td>
</tr>
<tr>
<td></td>
<td>(output)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not applicable</td>
<td>Printer type</td>
<td>TERM</td>
<td>printer-type</td>
</tr>
<tr>
<td>-d</td>
<td>Printer name</td>
<td>PRINTER</td>
<td>printer-name</td>
</tr>
<tr>
<td>-f, -o cpi=</td>
<td>Character pitch</td>
<td>CPI</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o lpi=</td>
<td>Line pitch</td>
<td>LPI</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o length=</td>
<td>Page length</td>
<td>LENGTH</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o width=</td>
<td>Page width</td>
<td>WIDTH</td>
<td>integer</td>
</tr>
<tr>
<td>-P</td>
<td>Pages to print</td>
<td>PAGES</td>
<td>page-list</td>
</tr>
<tr>
<td>-S</td>
<td>Character set</td>
<td>CHARSET</td>
<td>character-set-name</td>
</tr>
<tr>
<td></td>
<td>Print wheel</td>
<td>CHARSET</td>
<td>print-wheel-name</td>
</tr>
<tr>
<td>-f</td>
<td>Form name</td>
<td>FORM</td>
<td>form-name</td>
</tr>
<tr>
<td>-y</td>
<td>Modes</td>
<td>MODES</td>
<td>mode</td>
</tr>
<tr>
<td>-n</td>
<td>Number of copies</td>
<td>COPIES</td>
<td>integer</td>
</tr>
</tbody>
</table>

Resetting a Filter to Defaults

If the filter named is one originally delivered with the LP print service, the -i option restores the original filter description.

Deleting a Filter

The -x option is used to delete the filter specified in filter-name from the LP filter table.

Listing a Filter Description

The -l option is used to list the description of the filter named in filter-name. If the command is successful, the following message is sent to standard output:

Input types: content-type-list
Output types: content-type-list
Printer types: printer-type-list
Printers: printer-list
Filter type: filter-type
Command: shell-command
Options: template-list

If the command fails, an error message is sent to standard error.

See largefile(5) for the description of the behavior of lpfilter when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

EXAMPLE 1 Printing with the landscape option
For example, the template

```
MODES landscape = -l
```

demonstrates that if a print request is submitted with the `-y landscape` option, the filter will be given the option `-l`.

EXAMPLE 2 Selecting the printer type
As another example, the template

```
TERM* = -T*
```

demonstrates that the filter will be given the option `-T printer-type` for whichever `printer-type` is associated with a print request using the filter.

EXAMPLE 3 Using the keywords table
Consider the template

```
MODES prwidth\=\(/\.*\) = -w\1
```

Suppose a user gives the command

```
lp -y prwidth=10
```

From the table above, the LP print service determines that the `-y` option is handled by a `MODES` template. The `MODES` template here works because the pattern `prwidth=\)` matches the `prwidth=10` given by the user. The replacement `-w1` causes the LP print service to generate the filter option `-w10`. If necessary, the LP print service will construct a filter pipeline by concatenating several filters to handle the user's file and all the print options. See `sh(1)` for a description of a pipeline. If the print service constructs a filter pipeline, the `INPUT` and `OUTPUT` values used for each filter in the pipeline are the types of input and output for that filter, not for the entire pipeline.

EXIT STATUS

The following exit values are returned:

```
0           Successful completion.
```
lpfilter(1M)

non-zero          An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsu</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), sh(1), lpadmin(1M), attributes(5), largefile(5), regexp(5)

System Administration Guide: Basic Administration

NOTES
If the lp command specifies more than one document, the filtering chain is
determined by the first document. Other documents may have a different format, but
they will print correctly only if the filter chain is able to handle their format.
lpforms – administer forms used with the LP print service

SYNOPSIS

lpforms -f form-name option

lpforms -f form-name -A alert-type [-P paper-name [-d]] [-Q requests]
[-W minutes]

DESCRIPTION

The lpforms command administers the use of preprinted forms, such as company letterhead paper, with the LP print service. A form is specified by its form-name. Users may specify a form when submitting a print request (see lp(1)). The argument all can be used instead of form-name with either of the command lines shown above. The first command line allows the administrator to add, change, and delete forms, to list the attributes of an existing form, and to allow and deny users access to particular forms. The second command line is used to establish the method by which the administrator is alerted that the form form-name must be mounted on a printer.

OPTIONS

The following options are supported:

- f form-name Specify a form.

The first form of lpforms requires that one of the following options (-, -l, -F, -x) must be used:

- F pathname To add or change form form-name, as specified by the information in pathname.

- To add or change form form-name, as specified by the information from standard input.

- l To list the attributes of form form-name.

- x To delete form form-name (this option must be used separately; it may not be used with any other option).

The second form of the lpforms command requires the -A alert-type option. The other options are optional.

- A alert-type Defines an alert to mount the form when there are queued jobs which need it.

- P paper-name [-d] Specify the paper name when creating the form. If -d is specified, this paper is the default.

- Q requests An alert will be sent when a certain number of print requests that need the form are waiting.

- W minutes An alert will be sent at intervals specified by minutes.

USAGE

Adding or Changing a Form

The - F pathname option is used to add a new form, form-name, to the LP print service, or to change the attributes of an existing form. The form description is taken from pathname if the -F option is given, or from the standard input if the – option is used. One of these two options must be used to define or change a form.
pathname is the path name of a file that contains all or any subset of the following information about the form.

Page length: scaled-decimal-number
Page width: scaled-decimal-number
Number of pages: integer
Line pitch: scaled-decimal-number
Character pitch: scaled-decimal-number
Character set choice: character-set/print-wheel [mandatory]
Ribbon color: ribbon-color
Comment:
  comment
Alignment pattern: [content-type]
  content

The term “scaled-decimal-number” refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a “trailing” letter attached to the number. Three types of scaled decimal numbers can be used with the LP print service: numbers that show sizes in centimeters (marked with a trailing c); numbers that show sizes in inches (marked with a trailing i); and numbers that show sizes in units appropriate to use (without a trailing letter); lines, characters, lines per inch, or characters per inch.

Except for the last two lines, the above lines may appear in any order. The Comment: and comment items must appear in consecutive order but may appear before the other items, and the Alignment pattern: and the content items must appear in consecutive order at the end of the file. Also, the comment item may not contain a line that begins with any of the key phrases above, unless the key phrase is preceded with a > sign. Any leading > sign found in the comment will be removed when the comment is displayed. There is no case distinction among the key phrases.

When this command is issued, the form specified by form-name is added to the list of forms. If the form already exists, its description is changed to reflect the new information. Once added, a form is available for use in a print request, except where access to the form has been restricted, as described under the -u option. A form may also be allowed to be used on certain printers only.

A description of each form attribute is below:

Page length and Page Width

Before printing the content of a print request needing this form, the generic interface program provided with the LP print service will initialize the physical printer to handle pages scaled-decimal-number long, and scaled-decimal-number wide using the printer type as a key into the terminfo(4) database. The page length and page width will also be passed, if possible, to each filter used in a request needing this form.

Number of pages

Each time the alignment pattern is printed, the LP print service will attempt to truncate the content to a single form by, if possible, passing to each filter the page subset of 1-integer.
Line pitch and Character pitch

Before printing the content of a print request needing this form, the interface program provided with the LP print service will initialize the physical printer to handle these pitches, using the printer type as a key into the terminfo(4) database. Also, the pitches will be passed, if possible, to each filter used in a request needing this form.\textit{scaled-decimal-number3} is in lines-per-centimeter if a \texttt{c} is appended, and lines-per-inch otherwise; similarly, \textit{scaled-decimal-number4} is in characters-per-centimeter if a \texttt{c} is appended, and characters-per-inch otherwise.

The character pitch can also be given as \texttt{elite} (12 characters-per-inch), \texttt{pica} (10 characters-per-inch), or \texttt{compressed} (as many characters-per-inch as possible).

Character set choice

When the LP print service alerts an administrator to mount this form, it will also mention that the print wheel \texttt{print-wheel} should be used on those printers that take print wheels. If printing with this form is to be done on a printer that has selectable or loadable character sets instead of print wheels, the interface programs provided with the LP print service will automatically select or load the correct character set. If \texttt{mandatory} is appended, a user is not allowed to select a different character set for use with the form; otherwise, the character set or print wheel named is a suggestion and a default only.

Ribbon color

When the LP print service alerts an administrator to mount this form, it will also mention that the color of the ribbon should be \texttt{ribbon-color}.

Comment

The LP print service will display the \texttt{comment} unaltered when a user asks about this form (see \texttt{lpstat(1)})

Alignment pattern

When mounting this form, an administrator can ask for the \texttt{content} to be printed repeatedly, as an aid in correctly positioning the preprinted form. The optional \texttt{content-type} defines the type of printer for which \texttt{content} had been generated. If \texttt{content-type} is not given, \texttt{simple} is assumed. Note that the \texttt{content} is stored as given, and will be readable only by the user \texttt{lp}.

When an existing form is changed with this command, items missing in the new information are left as they were. When a new form is added with this command, missing items will get the following defaults:

- Page Length: 66
- Page Width: 80
- Number of Pages: 1
- Line Pitch: 6
- Character Pitch: 10
- Character Set Choice: any
- Ribbon Color: any

Deleting a Form

The \texttt{-x} option is used to delete the form \texttt{form-name} from the LP print service.
-l option is used to list the attributes of the existing form `form-name`. The attributes listed are those described under Adding and Changing a Form, above. Because of the potentially sensitive nature of the alignment pattern, only the administrator can examine the form with this command. Other people may use the `lpstat(1)` command to examine the non-sensitive part of the form description.

The `-u` option, followed by the argument `allow:login-ID-list` or `deny:login-ID-list` lets you determine which users will be allowed to specify a particular form with a print request. This option can be used with the `-F` or `−` option, each of which is described above under Adding or Changing a Form.

The `login-ID-list` argument may include any or all of the following constructs:

- `login-ID` A user on any system
- `system_name!login-ID` A user on system `system_name`
- `system_name!all` All users on system `system_name`
- `all!login-ID` A user on all systems
- `all` All users on all systems

The LP print service keeps two lists of users for each form: an “allow-list” of people allowed to use the form, and a “deny-list” of people that may not use the form. With the `-u allow` option, the users listed are added to the allow-list and removed from the deny-list. With the `-u deny` option, the users listed are added to the deny-list and removed from the allow-list. (Both forms of the `-u` option can be run together with the `-F` or the `−` option.)

If the allow-list is not empty, only the users in the list are allowed access to the form, regardless of the content of the deny-list. If the allow-list is empty but the deny-list is not, the users in the deny-list may not use the form, (but all others may use it). All users can be denied access to a form by specifying `-f deny:all`. All users can be allowed access to a form by specifying `-f allow:all`. (This is the default.)

The `-f form-name` option is used with the `-A alert-type` option to define an alert to mount the form when there are queued jobs which need it. If this option is not used to arrange alerting for a form, no alert will be sent for that form.

The method by which the alert is sent depends on the value of the `alert-type` argument specified with the `-A` option. The `alert-types` are:

- `mail` Send the alert message using the `mail` command to the administrator.
- `write` Write the message, using the `write` command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.
- `quiet` Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages.
about a known problem. Once the form form-name has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the -Q option.

**showfault**

Attempt to execute a form alert handler on each system that has a print job for that form in the queue. The fault handler is /etc/lp/alerts/form. It is invoked with three parameters: form_name, date, file_name. file_name is the name of a file containing the form alert message.

**none**

Do not send messages until the -A option is given again with a different alert-type (other than quiet).

**shell-command**

Run the shell-command each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blank spaces embedded in the command, enclose the command in quotes. Note that the mail and write values for this option are equivalent to the values mail login-ID and write login-ID respectively, where login-ID is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the su command to change to another login-ID. If the su command has been used to change the user ID, then the user-name for the new ID is used.

**list**

Display the type of the alert for the form on standard output. No change is made to the alert.

The message sent appears as follows:

The form form-name needs to be mounted
on the printer(s): printer (integer1 requests).
integer2 print requests await this form.
Use the ribbon-color ribbon.
Use the print-wheel print wheel, if appropriate.

The printers listed are those that the administrator has specified as candidates for this form. The number integer1 listed next to each printer is the number of requests eligible for the printer. The number integer2 shown after the list of printers is the total number of requests awaiting the form. It will be less than the sum of the other numbers if some requests can be handled by more than one printer. The ribbon-color and print-wheel are those specified in the form description. The last line in the message is always sent, even if none of the printers listed use print wheels, because the administrator may choose to mount the form on a printer that does use a print wheel.

Where any color ribbon or any print wheel can be used, the statements above will read:

Use any ribbon.
Use any print-wheel.
lpforms(1M)

If \textit{form-name} is any, the \textit{alert-type} defined in this command applies to any form for which an alert has not yet been defined. If \textit{form-name} is all, the \textit{alert-type} defined in this command applies to all forms.

If the \textit{-W minutes} option is not given, the default procedure is that only one message will be sent per need to mount the form. Not specifying the \textit{-W} option is equivalent to specifying \textit{-W once} or \textit{-W 0}. If \textit{minutes} is a number greater than 0, an alert will be sent at intervals specified by \textit{minutes}.

If the \textit{-Q requests} option is also given, the alert will be sent when a certain number (specified by the argument \textit{requests}) of print requests that need the form are waiting. If the \textit{-Q} option is not given, or the value of \textit{requests} is 1 or any (which are both the default), a message is sent as soon as anyone submits a print request for the form when it is not mounted.

Listing the Current Alert

The \textit{-L} option, followed by the \textit{-A} option and the argument \textit{list} is used to list the \textit{alert-type} that has been defined for the specified form \textit{form-name}. No change is made to the alert. If \textit{form-name} is recognized by the LP print service, one of the following lines is sent to the standard output, depending on the type of alert for the form.

- When requests requests are queued: alert with shell-command every minutes minutes
- When requests requests are queued: write to user-name every minutes minutes
- When requests requests are queued: mail to user-name every minutes minutes
- No alert

The phrase \textit{every minutes minutes} is replaced with \textit{once} if \textit{minutes} (\textit{-W minutes}) is 0.

Terminating an Active Alert

The \textit{-A quiet} option is used to stop messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the form has been mounted and then unmounted, messages will again be sent when the number of print requests reaches the threshold \textit{requests}.

Removing an Alert Definition

No messages will be sent after the \textit{-A none} option is used until the \textit{-A} option is given again with a different \textit{alert-type}. This can be used to permanently stop further messages from being sent as any existing alert definition for the form will be removed.

Large File Behavior

See `largefile(5)` for the description of the behavior of \textit{lpforms} when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

EXIT STATUS

The following exit values are returned:

0 Successful completion.
non-zero An error occurred.

FILES

/etc/lp/alerts/form Fault handler for \textit{lpform}. 
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsu</td>
</tr>
</tbody>
</table>

SEE ALSO lp(1), lpstat(1), lpadmin(1M), terminfo(4), attributes(5), largefile(5)

System Administration Guide: Basic Administration
The `lpget` utility reads printing configuration information from the configuration databases in `$HOME/.printers`, `/etc/printers.conf`, `printers.conf.byname`, `printers.org_dir`, and FNS printer contexts. This information, called a **configuration report**, is displayed to the standard output. See `printers(4)` and `printers.conf(4)` for information about the printer configuration databases.

`lpget` displays a configuration report for all keys for the specified destination or destinations by default. Use the `-k` option to display a configuration report for specific keys. Use the `list` operand to display a configuration report for all configured destinations.

### OPTIONS

The following option is supported:

- `-k key` Displays a configuration report for `key`. See `printers.conf(4)` for information about specifying `key`.

### OPERANDS

The following operands are supported:

- `destination` Displays a configuration report for `destination`. Destination can be either a printer of a class of printers, (see `lpadmin(1M)`). Specify `destination` using atomic, POSIX-style (`server:destination`), or Federated Naming Service (FNS) (`.../service/printer/...`) names. See `printers.conf(4)` for information regarding the naming conventions for atomic and FNS names, and `standards(5)` for information concerning POSIX.

- `list` Displays a configuration report for all configured destinations.

### EXAMPLES

#### EXAMPLE 1 Displaying a Configuration Report for the `bsdaddr` Key

The following example displays a configuration report for the `bsdaddr` key for printer `catalpa`.

```bash
example% lpget -k bsdaddr catalpa
```

#### EXAMPLE 2 A Configuration Report for all Keys for all Configured Destinations

The following example displays a configuration report for all keys for all configured destinations.

```bash
example% lpget list
```

### EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- non-zero An error occurred.
FILES

/etc/printers.conf
  System printer configuration database.

$HOME/.printers
  User-configurable printer database.

printers.conf.bname
  NIS version of /etc/printers.conf.

printers.org_dir
  NIS+ version of /etc/printers.conf.

fns.ctx_dir.domain
  FNS version of /etc/printers.conf.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(1), lp(1), lpc(1B), lpq(1B), lpr(1B), lpstat(1), lpadmin(1M), lpset(1M), printers(4), printers.conf(4), attributes(5), standards(5)

System Administration Guide: Naming and Directory Services

NOTES

Be mindful of the following if the LDAP database is used as the name service. If the ldapclient(1M) server is a replica LDAP server, LDAP printer database updates may not appear immediately, as the replica server may not have been updated by the master server and can be out of sync. For example, a printer that you deleted by using lpset(1M) may still appear in the printer list you display with lpget until the replica is updated from the master. Replica servers vary as to how often they are updated from the master. Refer to the System Administration Guide: Naming and Directory Services for more information on LDAP replication.
NAME
lpmove – move print requests

SYNOPSIS
lpmove [request-ID] destination
lpmove destination1 destination2

DESCRIPTION
The lpmove command moves print requests queued by lp(1) or lpr(1B) between
destinations.

The first form of lpmove moves specific print requests (request-ID) to a specific
destination.

The second form of the lpmove command moves all print requests from one
destination (destination1) to another (destination2). This form of lpmove also rejects
new print requests for destination1.

lpmove moves individual requests or entire queues only between local printers or
between remote printers, not between a local and a remote printer. You can move only
requests that were not previously transferred to the server.

When moving requests, lpmove does not check the acceptance status of the
destination to which the print requests are being moved (see accept(1M)). lpmove
does not move requests that have options (for example, content type or requiring a
special form) that cannot be handled by the new destination.

OPERANDS
The following operands are supported:
request-ID The specific print request to be moved. Specify request-ID as the
identifier associated with a print request as reported by lpstat(1).
See lpstat(1).

destination The name of the printer or class of printers (see lpadmin(1M)) to
which lpmove moves a specified print request. Specify destination
using atomic, POSIX-style (server:destination) syntax.

destination1 The name of the destination from which lpmove moves all print
requests. Specify destination using atomic, POSIX-style
(server:destination) syntax.

destination2 The name of the destination to which lpmove moves all print
requests. Specify destination using atomic, POSIX-style
(server:destination) syntax.

See printers.conf(4) for information regarding the naming conventions for atomic
names and standards(5) for information regarding POSIX.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/var/spool/print/* LP print queue.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO

lp(1), lpr(1B), lpstat(1), accept(1M), lpadmin(1M), lpsched(1M), printers.conf(4), attributes(5), standards(5)

System Administration Guide: Advanced Administration
lpsched(1M)

NAME lpsched – start the LP print service

SYNOPSIS lpsched [-f num_filters] [-n num_notifiers] [-p fd_limit] [-r reserved_fds]

DESCRIPTION The lpsched command starts or restarts the LP print service.

The lpshut command stops the LP print service. Printers that are restarted using lpsched reprint (in their entirety) print requests that were stopped by lpshut. See lpshut(1M).

OPTIONS The following options are supported:

- f num_filters Specifies the number of concurrent slow filters that may be run on a print server. A default value of 1 is used if none is specified. Depending on server configuration, a value of 1 may cause printers to remain idle while there are jobs queued to them.

- n num_notifiers Specifies the number of concurrent notification processes that can run on a print server. A default value of 1 is used when none is specified.

- p fd_limit Specifies the file descriptor resource limit for the lpsched process. A default value of 4096 is used if none is specified. On extremely large and active print servers, it may be necessary to increase this value.

- r reserved_fds Specifies the number of file descriptors that the scheduler reserves for internal communications under heavy load. A default value of 2 is used when none is specified. It should not be necessary to modify this value unless instructed to do so when troubleshooting problems under high load.

EXIT STATUS The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

FILES /var/spool/lp/* LP print queue.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsu</td>
</tr>
</tbody>
</table>

SEE ALSO lp(1), lpstat(1), lpadmin(1M), lpmove(1M), lpshut(1M), attributes(5)

System Administration Guide: Basic Administration
NAME
lpset – set printing configuration in /etc/printers.conf or other supported databases

SYNOPSIS
lpset [-n system | nisplus | fns | ldap] [-x] [ [-D binddn]
   [ -w passwd] [ -h ldaphost]] [-a key=value] [-d key] destination

DESCRIPTION
The lpset utility sets printing configuration information in the system configuration
databases. Use lpset to create and update printing configuration in
/etc/printers.conf, printers.org_dir (NIS+), or Federated Naming System
(FNS). See nsswitch.conf(4), printers.conf(4), and fns(5).

Only a superuser or a member of Group 14 may execute lpset.

OPTIONS
The following options are supported:

- n system | nisplus | fns | ldap
  Create or update the configuration information for the destination entry in
  /etc/printers.conf, printers.org_dir (NIS+), LDAP or FNS printer
  contexts. system specifies that the information is created or updated in
  /etc/printers.conf. nisplus specifies that the information is created or
  updated in the printers.org_dir NIS+ table. ldap specifies that the
  information is written to an LDAP server. See NOTES. fns specifies that the
  information is written using federated naming context.

If -n is not specified, system is the default.

- x
  Remove all configuration for the destination entry from the database specified by the
  -n option.

- a key=value
  Configure the specified key=value pair for the destination. See printers.conf(4)
  for information regarding the specification of key=value pairs.

- d key
  Delete the configuration option specified by key for the destination entry. See
  printers.conf(4) for information regarding the specification of key and key=value
  pairs.

- D binddn
  Use the distinguished name (DN) binddn to bind to the LDAP directory server.

- w passwd
  Use passwd as the password for authentication to the LDAP directory server.

- h ldaphost
  Specify an alternate host on which the LDAP server is running. This option is only
  used when ldap is specified as the naming service. If this option is not specified,
  the default is the current host system.

OPERANDS
The following operand is supported:

destination
  Specifies the entry in /etc/printers.conf, printers.org_dir, LDAP, or FNS, in which to create or modify
lpset(1M)

information. destination names a printer of class of printers. See lpdadmin(1M). Each entry in printers.conf describes one destination. Specify destination using atomic or Federated Naming Service (FNS) (/service/printer/...) names. POSIX-style destination names are not acceptable. See printers.conf(4) for information regarding the naming conventions for atomic and FNS names and standards(5) for information regarding POSIX.

EXAMPLES

EXAMPLE 1 Removing All Existing Printing Configuration Information

The following example removes all existing printing configuration information for destination dogs from /etc/printers.conf:

example$ lpset -x dogs

EXAMPLE 2 Setting a key=value Pair

The following example sets the user-equivalence=true key=value pair for destination tabloid in FNS context:

example$ lpset -n fns -a user-equivalence=true tabloid

EXAMPLE 3 Setting a key=value Pair in LDAP

example$ lpset -n ldap -h ldapl.xyz.com -D "cn=Directory Manager" -w passwd -a key1=value1 printer1

EXIT STATUS

The following exit values are returned:

  0      Successful completion.
  non-zero An error occurred.

FILES

/etc/printers.conf
  System configuration database.

printer.org_dir (NIS+)
  NIS+ version of /etc/printers.conf.

fns.ctx_dir.domain
  FNS version of /etc/printers.conf.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Stable</td>
</tr>
</tbody>
</table>
If the ldap database is used, the printer administrator should be mindful of the following when updating printer information.

1. Because the domain information for the printer being updated is extracted from the ldapclient(1M) configuration, the LDAP server being updated must host the same domain that is used by the current ldapclient(1M) server.

2. If the LDAP server being updated is a replica LDAP server, the updates will be referred to the master LDAP server and completed there. The updates might be out of sync and not appear immediately, as the replica server may not have been updated by the master server. For example, a printer that you deleted by using lpset may still appear in the printer list you display with lpget until the replica is updated from the master. Replica servers vary as to how often they are updated from the master. See System Administration Guide: Advanced Administration for information on LDAP server replication.

3. Although users can use the LDAP command line utilities ldapadd(1) and ldapmodify(1) to update printer entries in the directory, the preferred method is to use lpset. Otherwise, if the ldapadd and ldapmodify utilities are used, the administrator must ensure that the printer-name attribute value is unique within the ou=printers container on the LDAP server. If the value is not unique, the result of modifications done using lpset or the Solaris Print Manager, printmgr(1M) may be unpredictable.
lpshut(1M)

NAME   lpshut – stop the LP print service

SYNOPSIS  lpshut

DESCRIPTION  The lpshut command stops the LP print service.

Printers that are printing when lpshut is invoked stop printing. Start or restart printers using lpsched(1M).

EXIT STATUS  The following exit values are returned:

0   Successful completion.
non-zero   An error occurred.

FILES  /var/spool/lp/*   LP print queue.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsu</td>
</tr>
</tbody>
</table>

SEE ALSO  lp(1), lpstat(1), lpadmin(1M), lpmove(1M), lpsched(1M), attributes(5)

System Administration Guide: Basic Administration
NAME

lpsystem – register remote systems with the print service

DESCRIPTION

The lpsystem command is obsolete, and could be removed at any time. The print system no longer uses the information generated by lpsystem. See ladmin(1M), lpusers(1M) or printers.conf(4) for equivalent functionality.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Obsolete*</td>
</tr>
</tbody>
</table>

* This command could be removed at any time.

SEE ALSO

ladmin(1M), lpusers(1M), printers.conf(4), attributes(5)
The `lpusers` command sets limits to the queue priority level that can be assigned to jobs submitted by users of the LP print service.

The first form of the command (with `-d`) sets the system-wide priority default to `priority-level`, where `priority-level` is a value of 0 to 39, with 0 being the highest priority. If a user does not specify a priority level with a print request (see `lp(1)`), the default priority level is used. Initially, the default priority level is 20.

The second form of the command (with `-q` and `-u`) sets the default highest `priority-level` (0-39) that the users in `login-ID-list` can request when submitting a print request. The `login-ID-list` argument may include any or all of the following constructs:

- `login-ID` A user on any system
- `system_name:login-ID` A user on the system `system_name`
- `system_name:*` All users on system `system_name`
- `all:*` A user on all systems
- `all` All users on all systems

Users that have been given a limit cannot submit a print request with a higher priority level than the one assigned, nor can they change a request that has already been submitted to have a higher priority. Any print requests submitted with priority levels higher than allowed will be given the highest priority allowed.

The third form of the command (with `-u`) removes any explicit priority level for the specified users.

The fourth form of the command (with `-q`) sets the default highest priority level for all users not explicitly covered by the use of the second form of this command.

The last form of the command (with `-l`) lists the default priority level and the priority limits assigned to users.

### OPTIONS

The following options are supported:

- `-d priority-level`
  
  Set the system-wide priority default to `priority-level`.

- `-l`
  
  List the default priority level and the priority limits assigned to users.
-q priority-level
   Set the default highest priority level for all users not explicitly covered.

-µ priority-level -u login-ID-list
   Set the default highest priority-level that the users in login-ID-list can request when submitting a print request.

-µ login-ID-list
   Remove any explicit priority level for the specified users.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsu</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), attributes(5)
### NAME
lu – FMLI-based interface to Live Upgrade functions

### SYNOPSIS
/usr/sbin/lu

### DESCRIPTION
The `lu` program is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See `live_upgrade(5)` for a description of the Live Upgrade feature.

The `lu` program is a Forms and Menu Language Interpreter-based user interface. (See `fmi(1)` for a description of the Forms and Menu Language Interpreter.) `lu` enables you to create and upgrade boot environments (BEs) and perform other administrative tasks on BEs. The `lu` program performs a subset of the functions provided by the Live Upgrade command-line utilities.

Users of `lu` should be aware of the following:

- `lu` is a deprecated interface. It will be replaced in the future and should not be depended on for critical functionality.
- All new Live Upgrade features are being implemented in the Live Upgrade command-line utilities. No new features are being made available in `lu`.
- The `lu` command is not internationalized. It will not be internationalized in a future release.

`lu` should be used for learning or experimenting only. For any production use or to use the full capabilities of Live Upgrade, use the Live Upgrade command-line utilities.

Invocation of the `lu` command requires root privileges.

The `lu` command accepts no arguments. After invoking `lu`, you receive a display with the following options:

- **Activate**
  Activate a boot environment. This option designates that the system boot from the specified BE upon next reboot. This option is equivalent to the command-line `luactivate(1M)` utility.

- **Cancel**
  Cancel a copy job. Live Upgrade allows you to schedule the copy, upgrade, and flash functions (all described below) at a later time. The cancel function enables you to cancel a scheduled job. This function is equivalent to the command-line `lucancel(1M)` utility.

- **Compare**
  Compare the contents of BEs. Enables you to obtain a detailed comparison of two BEs. Equivalent to the command-line `lucompare(1M)` utility.

- **Copy**
  Start/schedule a copy. Copies the contents of one BE to another. Equivalent of the command-line `lumake(1M)` utility. At any time, you can have only one Live Upgrade operation scheduled.
Create
Create a boot environment. Implements a subset of the functions performed by the command-line lucreate(1M) utility.

Current
Display the name of the current boot environment. Equivalent of the command-line lucurr(1M) utility.

Delete
Delete a boot environment. Equivalent of the command-line ludelete(1M) utility.

List
List the file systems of a boot environment. Equivalent of the command-line lufslist(1M) utility.

Rename
Change the name of a boot environment. Equivalent of the command-line lurename(1M) utility.

Status
List the status of all boot environments. Equivalent of the command-line lustatus(1M) utility.

Upgrade
Upgrade a boot environment or upgrade the OS on an inactive BE. This option enables you to upgrade to a new operating system or install new packages or patches on a specified BE. Implements a subset of the functions performed by the command-line luupgrade(1M) utility. Note that if you are performing an upgrade that requires more than one CD, you must use the -i option of luupgrade.

Flash
Flash a boot environment. This option enables you to install an operating system on a BE from a flash archive. You can perform the same function with luupgrade(1M).

Help
Displays help information. There are also context-specific help screens for many of the options.

Exit
Exit lu.

Navigation
You navigate through lu’s various screens using arrow keys and function keys (usually F2 through F9 on the keyboard of a Sun desktop system). Available key functions are displayed at the base of the lu screen. You can use Ctrl-F, plus a number key, to duplicate a function key. For example, press Ctrl-F and the number key 2 to duplicate the F2 key.

In a screen for a given option, you can press Esc to obtain context-specific help.

Display Issues
When viewing the FMLI interface remotely, such as over a tip line, you might need to set the TERM environment variable to VT220. When using the FMLI interface in a CDE environment use dtterm, rather than xterm, as the value of the TERM variable.
The `lu` command supports only single-byte environments. Most of the options listed above offer the following functions. These functions are accessible through function keys indicated at the base of the screen.

**Choice**
Available to you whenever you have a field that can be filled in. Pressing the Choice function key gives you a popup screen displaying a list of alternatives. For example, for options involving copying or upgrading BEs, you receive a list of available BEs. You can then use arrow and function keys to make a selection from this popup. The choice function is useful because it prevents you from selecting an invalid alternative. In our example, it prevents you from choosing a BE that is not available for a copy or upgrade operation. Such non-availability might occur when a BE is in the midst of an upgrade.

**Cancel**
Cancel an operation.

**Save**
Proceed with an operation.

The “Create” option, described above, offers the following functions:

**Split**
Split a file system. For example, you can split a `/` file system into `/`, `/usr`, and `/var`. To split a file system, you must have disk slices available on which to mount the separated file system(s). If you do not, `lu` invokes the `format(1M)` utility, in which you can use the `partition` option to create a new disk slice.

**Merge**
Join one or more file systems with its (or their) parent file system. For example, using a source BE that has separate `/`, `/usr`, and `/var` file systems, you can merge these file systems under `/` on a target BE.

**FILES**
/`etc/lutab`
list of BEs on the system

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
luactivate(1M), lucancel(1M), lucompare(1M), lcreate(1M), lcur(1M), ldelete(1M), ldesc(1M), lfslist(1M), lmake(1M), lmount(1M), lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5), live_upgrade(5)

**Solaris Installation Guide**

**WARNINGS**
The `lu` command is a deprecated interface. See `DESCRIPTION`. 

864 man pages section 1M: System Administration Commands • Last Revised 10 Sep 2003
luactivate – activate a boot environment

SYNOPSIS
/usr/sbin/luactivate [-l error_log] [-o outfile] [-s] [BE_name] [-X]

DESCRIPTION
The luactivate command is part of a suite of commands that make up the Live
Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a
description of the Live Upgrade feature.

The luactivate command, with no arguments, displays the name of the boot
environment (BE) that will be active upon the next reboot of the system. When an
argument (a BE) is specified, luactivate activates the specified BE.

luactivate activates a BE by making the BE’s root partition bootable. On an x86
machine, this might require that you take steps following the completion of
luactivate. If so, luactivate displays the correct steps to take.

To successfully activate a BE, that BE must meet the following conditions:

- The BE must have a status of “complete,” as reported by lustatus(1M).
- If the BE is not the current BE, you cannot have mounted the partitions of that BE
  (using lumount(1M) or mount(1M)).
- The BE you want to activate cannot be involved in an lucompare(1M) operation.

After activating a specified BE, luactivate displays the steps to be taken for fallback
in case of any problem on the next reboot. Make note of these instructions and follow
them exactly, if necessary.

The first time you boot from a newly created BE, Live Upgrade software synchronizes
this BE with the BE that was last active. (This is not necessarily the BE that was the
source for the newly created BE.) “Synchronize” here means that certain system files
and directories are copied from the last-active BE to the BE being booted. Live
Upgrade software does not perform this synchronization after a BE’s initial boot,
unless you use the -s option, described below.

If luactivate detects conflicts between files that are subject to synchronization, it
issues a warning and does not perform the synchronization for those files. Activation
can complete successfully, in spite of such a conflict. A conflict can occur if you
upgrade one BE or another to a new operating system version or if you modify system
files (for example, /etc/passwd) on one of the BEs.

The luactivate command requires root privileges.

OPTIONS
The luactivate command has the following options:

-1 error_log
  Error and status messages are sent to error_log, in addition to where they are sent in
  your current environment.

-o outfile
  All command output is sent to outfile, in addition to where it is sent in your current
  environment.
luactivate(1M)

-s
Causes synchronization to occur (see DESCRIPTION) even if next boot of a specified BE is not the first boot of that BE. Use this option with great caution, because you might not be aware or in control of changes that might have occurred in the last-active BE.

If using -s, take special care when booting to an earlier release of Solaris than what is installed on the last-active BE. For example, consider that the last-active BE contains Solaris 9 and you want to activate a BE that contains Solaris 2.6. If you forced synchronization with the -s option, the BE containing Solaris 2.6 might be synchronized with files that, while compatible with Solaris 9, might not work under Solaris 2.6.

-X
Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

OPERANDS
BE_name
Name of the BE to be activated.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/etc/lutab
list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluuu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), lucancel(1M), lucompare(1M), lucreate(1M), lucurr(1M), ludelete(1M), ludescc(1M), luflags(1M), lumake(1M), lumount(1M), lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5), live_upgrade(5)
NAME
lucancel – cancel a scheduled Live Upgrade copy/create procedure

SYNOPSIS
/usr/sbin/lucancel [-l error_log] [-o outfile] [-X]

DESCRIPTION
The lucancel command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The lucancel command cancels a boot environment (BE) creation or upgrade that was scheduled in the FMLI-based interface, lu(1M), or the repopulation of a BE, scheduled with lumake(1M). lucancel does not cancel a job that is active (that is, is in the process of creation or repopulation).

The lucancel command requires root privileges.

OPTIONS
The lucancel command has the following options:

- \(l\) error_log
  Error and status messages are sent to error_log, in addition to where they are sent in your current environment.

- \(o\) outfile
  All command output is sent to outfile, in addition to where it is sent in your current environment.

- \(X\)
  Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

EXIT STATUS
The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

FILES
/etc/lutab
list of BEs on the system

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), luchange(1M), luchange(1M), luchange(1M), ludelete(1M), ludelete(1M), ludelete(1M), lumake(1M), lumake(1M), ludelete(1M), ludelete(1M), ludelete(1M), lumake(1M), lumak
The \texttt{lucompare} command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See \texttt{live_upgrade(5)} for a description of the Live Upgrade feature.

The \texttt{lucompare} command compares the contents of the current boot environment (BE) with the contents of another BE. With the -C option, \texttt{lucompare} compares file statistics so that you can determine which files have changed on a BE since a specified time, such as the creation time of a BE. A specified BE must be inactive and in the complete state, as reported by the \texttt{lustatus(1M)} command. Also, a BE cannot have a copy job scheduled, which is also reported by \texttt{lustatus(1M)}. A specified BE cannot have any partitions mounted with \texttt{lumount(1M)} or \texttt{mount(1M)}.

For each file system defined for a specified BE, \texttt{lucompare} compares all files with the files with the same pathnames in the current BE. The files present in the active BE, but not in the specified BE, and vice-versa, are reported. You also have the option to specify a list of files to be compared.

If you specify the -C option, instead of doing an absolute comparison of the current BE with a target BE, \texttt{lucompare} compares the files in a specified BE with the list of files recorded in a file. When a BE is created, \texttt{lucreate(1M)} creates a file named $<$\texttt{BE name}$>$ in \texttt{/etc/lu/compare}. You can use the -C option to compare the files in a specified BE to this snapshot in \texttt{/etc/lu/compare} or you can compare the BE to a file previously created with the -o option. Comparing a BE to its own snapshot in \texttt{/etc/lu/compare} enables you to determine which files have changed on the BE since its creation.

By default, the output of \texttt{lucompare} is written to stdout. With the -C option, you must use the -o option to specify an output file. The output for \texttt{lucompare} is a list of files that differ in permissions, owner, group, or sum, along with the reason for difference. The output format is shown below:

\begin{verbatim}
> active BE
< BE_name
reason
> file_name:owner:group:number_of_links:mode:type: size
or major_minor number:checksum
< file_name:owner:group:number_of_links:mode:type: size
or major_minor number:checksum
\end{verbatim}

The above fields are obtained from the \texttt{stat(2)} structure of the file.

The type field can be one of the following:

\begin{itemize}
  \item \texttt{SYMLINK} symbolic link
  \item \texttt{FIFO} FIFO file
\end{itemize}
lucompare computes checksums only if the file on the specified BE matches its counterpart on the active BE in all of the fields described above. If the checksums differ, lucompare appends the differing checksums to the entries for the compared files.

The lucompare command requires root privileges.

The lucompare command has the following options:

- **-C file**  
  Compare file statistics of BE with those recorded in file.  
  file can be the snapshot created at BE creation time,  
  /etc/lu/compare/:<BE_name>, or a file previously  
  created with the -o option. You must use the -o option  
  with this option.

- **-i infile**  
  Compare files listed in infile. The files to be compared  
  should be an absolute filename. If the entry in the file is  
  a directory, then comparison is recursive with respect  
  to the directory. Mutually exclusive of -t.

- **-o outfile**  
  Send output of differences to outfile. You must use this  
  option if you use -C.

- **-t**  
  Compare only nonbinary files. This is achieved by  
  performing a file(1) command on each file in the tree  
  walk and only comparing text files. Mutually exclusive  
  of -i.

- **-X**  
  Enable XML output. Characteristics of XML are defined  
  in DTD, in  
  /usr/share/lib/xml/dtd/lu_cli.dtd.<num>,  
  where <num> is the version number of the DTD file.

**OPERANDS**

BE_name  
Name of the BE to which the active BE will be compared. You cannot specify a BE  
that is involved in another Live Upgrade operation, or specify a BE for which you  
have mounted partitions (using lumount(1M) or mount(1M)).

**EXAMPLES**

**EXAMPLE 1** Checking Differences Since BE Creation  
The following command lists the differences in the BE s8u5 between its creation time  
and the present.

```
# lucompare -C /etc/lu/compare/:s8u5 -o /var/tmp/compare.out s8u5
```

---

**CHRSPC**  
character special

**BLKSPC**  
block special

**DIR**  
directory

**REGFIL**  
regular file

**UNKNOW**  
unknown file type

---

System Administration Commands 869
EXAMPLE 1 Checking Differences Since BE Creation  (Continued)

Note that /etc/lu/compare/:s8u5 is the file created by lucreate upon creation of a BE. The list of differences is sent to /var/tmp/compare.out.

EXIT STATUS

The following exit values are returned:

- 0  Successful completion.
- >0  An error occurred.

FILES

/etc/lutab
  list of BEs on the system

/usr/share/lib/xml/dtd/lu_cli.dtd.<num>  
  Live Upgrade DTD (see -X option)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO

lu(1M), luactivate(1M), lucancel(1M), lucreate(1M), lucurr(1M), ludelete(1M), ludesc(1M), lufslist(1M), lumake(1M), lumount(1M), lurename(1M), lustatus(1M), luupgrade(1M), lumount(1M), attributes(5), live_upgrade(5)

NOTES

The lucompare command makes no attempt to reconcile any differences it detects between BEs.
NAME | lucreate – create a new boot environment
SYNOPSIS | /usr/sbin/lucreate [-A BE_description] [-c BE_name] [-C ( boot_device | - )] -n BE_name [-f exclude_list_file] [-I] [-l error_log] [-o outfile] [-s ( - | source_BE_name )] [-M slice_list_file [-M...]] [-m mount_point:device [ , volume] :fs_options [-m...]] [-x exclude [-x...]] [-X] [-y include [-y...]] [-Y include_list_file] [-z filter_list]
DESCRIPTION | The lucreate command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature and its associated terminology.

The lucreate command offers a set of command line options that enable you to perform the following functions:

- Create a new boot environment (BE), based on the current BE.
- Create a new BE, based on a BE other than the current BE.
- Join or separate the file systems of a BE onto a new BE. For example, join /var and /opt under /, or separate these directories to be mounted under different disk slices.
- Create the file systems for a BE, but leave those file systems unpopulated.

You can perform the preceding functions using only lucreate command-line options or you can omit the -m and -M options (described below), which automatically invokes an FMLI-based interface that provides curses-based screens for Live Upgrade administration. Note that the FMLI-based interface does not support all of the Live Upgrade features supported by lucreate. Also, Sun is not committed to ongoing development of the FMLI-based interface.

The creation of a BE includes selecting the disk or device slices for all the mount points of the BE. Slices can be physical disks or logical devices, such as Solaris Volume Manager volumes. You can also change the mount points of the BE using the SPLIT and MERGE functions of the FMLI-based configuration screen.

Upon successful creation of a BE, you can use lustatus(1M) to view the state of that BE and lufslist(1M) to view the BE's file systems. You can use luupgrade(1M) to upgrade the OS on that BE and luactivate(1M) to make a BE active, that is, designate it as the BE to boot from at the next reboot of the system.

The lucreate command makes a distinction between the file systems that contain the OS—/ , /usr, /var, and /opt—and those that do not, such as /export, /home, and other, user-defined file systems. The file systems in the first category cannot be shared between the source BE and the BE being created; they are always copied from the source BE to the target BE. By contrast, the user-defined file systems are shared by default. For Live Upgrade purposes, the file systems that contain the OS are referred to as non-shareable (or critical) file systems; other file systems are referred to as
lucreate(1M)

A non-shareable file system listed in the source BE’s /etc/vfstab is copied to a new BE. For a shareable file system, if you specify a destination slice, the file system is copied. If you do not, the file system is shared.

The `lucreate` command supports a limited subset of Solaris Volume Manager functions. In particular, using `lucreate` with the `-m` option, you can:

- Create a mirror.
- Detach existing SVM concatenations from mirrors. Similarly, you can attach existing Solaris Volume Manager concatenations to mirrors. These can be mirrors that were created in Solaris Volume Manager or those created by `lucreate`.
- Create a single-slice concatenation and attach a single disk slice to it.
- Detach a single disk slice from a single-slice concatenation.
- Attach multiple single-slice concatenations to a mirror. `lucreate` can attach as many of these concatenations as are allowed by Solaris Volume Manager.

`lucreate` does not allow you to attach multiple disk slices or multiple storage devices to a concatenation. Similarly, it does not allow you to detach multiple slices or devices from a concatenation.

If you use Solaris Volume Manager volumes for boot environments, it is recommended that you use `lucreate` rather than Solaris Volume Manager commands to manipulate these volumes. The Solaris Volume Manager software has no knowledge of boot environments, whereas the `lucreate` command contains checks that prevent you from inadvertently destroying a boot environment by, for example, overwriting or deleting a Solaris Volume Manager volume.

If you have already used Solaris Volume Manager software to create complex Solaris Volume Manager volumes (for example, RAID-5 volumes), Live Upgrade will support the use of these. However, to create and manipulate these complex objects, you must use Solaris Volume Manager software. As described above, the use of Solaris Volume Manager software, rather than the `lucreate` command, entails the risk of destroying a boot environment. If you do use Solaris Volume Manager software, use `lufslist(1M)` to determine which devices are in use for boot environments.

Except for a special use of the `-s` option, described below, you must have a source BE for the creation of a new BE. By default, it is the current BE. You can use the `-s` option to specify a BE other than the current BE.

When creating a new BE, `lucreate` enables you to exclude and include certain files from the source BE. You perform this inclusion or exclusion with the `-f`, `-x`, `-y`, `-Y`, and `-z` options, described below. See the subsection on combining these options, following OPTIONS, below.

By default, all swap partitions on a source BE are shared between the source and target BE. You can use the `-m` option (see below) to specify an additional or new set of swap partitions on a source BE for sharing with a target BE.
The `lucreate` command allows you to assign a description to a BE. A description is an optional attribute of a BE that can be of any format or length. It might be, for example, a text string or binary data. After you create a BE, you can change a BE description with the `ludesc(1M)` utility.

The `lucreate` command requires root privileges.

**OPTIONS**

The `lucreate` command has the options listed below. Note that a BE name must not exceed 30 characters in length and must consist only of alphanumeric characters and other ASCII characters that are not special to the Unix shell. See the “Quoting” section of `sh(1)`. The BE name can contain only single-byte, 8-bit characters; it cannot contain whitespace characters.

Omission of `-m` or `-M` options (described below) in an `lucreate` command line invokes the FMLI-based interface, which allows you to select disk or device slices for a BE.

- `-m BE_description`
  Assigns the `BE_description` to a BE. `BE_description` can be a text string or other characters that can be entered on a Unix command line. See `ludesc(1M)` for additional information on BE descriptions.

- `-c BE_name`
  Assigns the name `BE_name` to the current BE. This option is not required and can be used only when the first BE is created. For the first time you run `lucreate`, if you omit `-c`, `lucreate` supplies a default name according to the following rules:

  1. If the physical boot device can be determined, the base name of that device is used to name the new boot environment. For example, if the physical boot device is `/dev/dsk/c0t0d0s0`, `lucreate` names the new boot environment `c0t0d0s0`.

  2. If the physical boot device cannot be determined, the operating system name (from `uname -s`) and operating system release level (from `uname -r`) are combined to produce the name of the new boot environment. For example, if `uname -s` returns `SunOS` and `uname -r` returns `5.9`, then `lucreate` assigns the name `SunOS5.9` to the new boot environment.

  3. If `lucreate` can determine neither boot device nor operating system name, it assigns the name `current` to the new boot environment.

If you use the `-c` option after the first boot environment is created, the option is ignored if the name specified is the same as the current boot environment name. If the name is different, `lucreate` displays an error message and exits.

- `-C (boot_device | -)`
  Provided for occasions when `lucreate` cannot figure out which physical storage device is your boot device. This might occur, for example, when you have a mirrored root device on the source BE on an x86 machine. The `-C` specifies the physical boot device from which the source BE is booted. Without this option, `lucreate` attempts to determine the physical device from which a BE boots. If the device on which the root file system is located is not a physical disk (for example, if
root is on a Solaris Volume Manager volume) and lucreate is able to make a reasonable guess as to the physical device, you receive the query:

Is the physical device devname the boot device for the logical device devname?

If you respond y, the command proceeds.

If you specify -C boot_device, lucreate skips the search for a physical device and uses the device you specify. The - (hyphen) with the -C option tells lucreate to proceed with whatever it determines is the boot device. If the command cannot find the device, you are prompted to enter it.

If you omit -C or specify -C boot_device and lucreate cannot find a boot device, you receive an error message.

Use of the -C - form is a safe choice, because lucreate either finds the correct boot device or gives you the opportunity to specify that device in response to a subsequent query.

- `f` exclude_list_file
Use the contents of exclude_list_file to exclude specific files (including directories) from the newly created BE. exclude_list_file contains a list of files and directories, one per line. If a line item is a file, only that file is excluded; if a directory, that directory and all files beneath that directory, including subdirectories, are excluded.

- `I`
Ignore integrity check. Prior to creating a new BE, lucreate performs an integrity check, to prevent you from excluding important system files from the BE. Use this option to override this integrity check. The trade-off in use of this option is faster BE creation (with -I) versus the risk of a BE that does not function as you expect.

- `l` error_log
Error messages and other status messages are sent to error_log, in addition to where they are sent in your current environment.

- `m` mount_point:device[volume]:fs_option
[-m mount_point:device:fs_option] ...
Specifies the vfstab(4) information for the new BE. The file systems specified as arguments to -m can be on the same disk or can be spread across multiple disks.

mount_point can be any valid mount point or – (hyphen), indicating a swap partition. The device field can be one of the following:

- The name of a disk slice, of the form /dev/dsk/cnnum:dnnum:snnum:snnum.
- The name of a Solaris Volume Manager volume, of the form /dev/md/dsk/dnum.
- The name of a Veritas filesystem, of the form /dev/md/vxfs/dnum.
- The keyword merged, indicating that the file system at the specified mount point is to be merged with its parent.
- The keyword shared, indicating that all of the swap partitions in the source BE are to be shared with the new BE.
lucreate(1M)

You can abbreviate the names of physical disk devices and Solaris Volume Manager volumes to the shortest name that uniquely identifies a device. For example, if a machine has only one disk controller and one disk drive, for the device /dev/dsk/c0t0d0s0, you can omit the /dev/dsk/c0t0d0 and use the name s0. If a machine has a single controller and multiple disks, you might use t0d0s0; with multiple controllers, c0t0d0s0. A Solaris Volume Manager volume can be identified by its dnum designation, so that, for example, /dev/md/dsk/d10 becomes simply d10.

The -m option enables you to attach a physical disk device to a Solaris Volume Manager single–slice concatenation or attach a Solaris Volume Manager volume to a mirror. Both operations are accomplished with the attach keyword, described below. With this option, you have the choice of specifying a concatenation or mirror or allowing lucreate to select one for you. To specify a concatenation or mirror, append a comma and the name of the Solaris Volume Manager logical device to the device name to which the logical device is being attached. If you omit this specification, lucreate selects a concatenation or mirror from a list of free devices. See EXAMPLES.

The fs_option field can be one or more of the keywords listed below. The first two keywords specify types of file systems. The remaining keywords specify actions to be taken on a file system. When you specify multiple keywords, separate these with a comma.

ufs
  Create the file system as a UFS volume.

vxfs
  Create the file system as a Veritas device.

preserve
  Preserve the file system contents of the specified physical storage device. Use of this keyword presumes that the device’s file system and its contents are appropriate for the specified mount point. For a given mount point, you can use preserve with only one device. This keyword enables you to bypass the default steps of creating a new file system on the specified storage device, then copying the file system contents from the source BE to the specified device. When you use preserve, lucreate checks that the storage device’s contents is suitable for a specified file system. This check is limited and cannot guarantee suitability.

mirror
  Create a mirror on the specified storage device. The specified storage device must be a correctly named (for example, /dev/md/dsk/d10 or d10) logical device that can serve as a mirror. In subsequent -m options, you must specify attach (see below) to attach at least one physical device to the new mirror.

attach
  Attach a physical storage device, contained by a volume, to the mirror or single-slice concatenation associated with a specified mount point. When using attach, if you want to attach a disk to a specific mirror or concatenation, you append a comma and the name of that logical device to the device name. If you
omit the comma and the concatenation name, lucreate selects a free mirror or single-slice concatenation as the container volume for the storage device. See EXAMPLES.

lucreate allows you to create only concatenations that contain a single physical drive and allows you to attach up to four such concatenations to a mirror.

detach
   Detach a physical storage device from the mirror or concatenation associated with a specified mount point.

At minimum, you must specify one disk or device slice, for root. You can do this with -m, -M (described below), or in the FMLI-based interface. You must specify an -m argument for each file system you want to create on a new BE. For example, if you have three file systems on a source BE (say, /, /usr, and /var) and want these three entities as separate file systems on a new BE, you must specify three -m arguments. If you were to specify only one, in our example, /, /usr, and /var would be merged on the new BE into a single file system, under /.

When using the -m option to specify swap partition(s), you can designate device(s) currently used for swap on any BE and any unused devices. Regarding swap assignments, you have the following choices:

- Omit any specification of swap devices, in which case all swap devices associated with the source BE will be used by the new BE.
- Specify one or more swap devices, in which case the new BE will use only the specified swap devices and not automatically share the swap devices associated with the source BE.
- Specify one or more swap devices and use the syntax -m -:shared:swap, in which case the new BE will use the specified swap devices and will share swap devices with the source BE.

See EXAMPLES, below.

- M slice_list
   List of -m options, collected in the file slice_list. Specify these arguments in the format specified for -m. Comment lines, beginning with a hash mark (#), are ignored. The -M option is useful where you have a long list of file systems for a BE. Note that you can combine -m and -M options. For example, you can store swap partitions in slice_list and specify / and /usr slices with -m.

   The -m and -M options support the listing of multiple slices for a given mount point. In processing these slices, lucreate skips any unavailable slices and selects the first available slice. See EXAMPLES.

- n BE_name
   The name of the BE to be created. BE_name must be unique on a given system.
lucreate(1M)

-o outfile
All command output is sent to outfile, in addition to where it is sent in your current environment.

-s (- | BE_name)
Source for the creation of the new BE. This option enables you to use a BE other than the current BE as the source for creation of a new BE. If you specify a hyphen (-) as an argument to -s, lucreate creates the new BE, but does not populate it. You must then either populate the BE using lumake(1M) or install a flash archive on the BE using luupgrade(1M). This option is especially useful for installing a flash archive. See flare(1M).

-x exclude
Exclude the file or directory exclude from the newly created BE. If exclude is a directory, lucreate excludes that directory and all files beneath that directory, including subdirectories.

-X
Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

-y include
Include the file or directory include in the newly created BE. If include is a directory, lucreate includes that directory and all files beneath that directory, including subdirectories.

-Y include_list_file
Use the contents of include_list_file to include specific files (including directories) from the newly created BE. include_list_file contains a list of files and directories, one per line. If a line item is a file, only that file is included; if a directory, that directory and all files beneath that directory, including subdirectories, are included.

-z filter_list_file
filter_list_file contains a list of items, files and directories, one per line. Each item is preceded by either a +, indicating the item is to be included in the new BE, or -, indicating the item is to be excluded from the new BE.

Combining File Inclusion and Exclusion Options

The lucreate command allows you to include or exclude specific files and directories when creating a new BE. You can include files and directories with:

- the -y include option
- the -Y include_list_file option
- items with a leading + in the file used with the -z filter_list option

You can exclude files and directories with:

- the -x exclude option
- the -E exclude_list_file option
- items with a leading – in the file used with the -z filter_list option
If the parent directory of an excluded item is included with include options (for example, `-y include`), then only the specific file or directory specified by exclude is excluded. Conversely, if the parent directory of an included file is specified for exclusion, then only the file include is included. For example, if you specify:

```
-x /a -y /a/b
```

all of /a except for /a/b is excluded. If you specify:

```
-y /a -x /a/b
```

all of /a except for /a/b is included.

**EXAMPLES**

The lucreate command produces copious output. In the following examples, this output is not reproduced, except where it is needed for clarity.

**EXAMPLE 1 Creating a New Boot Environment for the First Time**

The following command sequence creates a new boot environment on a machine on which a BE has never been created. All non-shareable (critical) file systems are mounted under `/`.

```bash
# lucreate -c first_disk -m /:/dev/dsk/c0t4d0s0:ufs -n second_disk
many lines of output
lucreate: Creation of Boot Environment <second_disk> successful.
```

The following command, like the preceding, creates a new boot environment on a machine on which a BE has never been created. However, the following command differs in two respects: the `-c` option is omitted and the `/usr` file system is mounted on its own disk slice, separate from `/`.

```bash
# lucreate -m /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -n second_disk
many lines of output
lucreate: Please wait while your system configuration is determined.
many lines of output
lucreate: Creation of Boot Environment c0t4d0s0 successful.
```

In the absence of the `-c` option, lucreate assigns the name c0t4d0s0, the base name of the root device, to the new boot environment.

The same command is entered, with the addition of `-c`:

```bash
# lucreate -c first_disk -m /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -n second_disk
many lines of output
lucreate: Creation of Boot Environment <second_disk> successful.
```

Following creation of a BE, you use luupgrade(1M) to upgrade the OS on the new BE and luactivate(1M) to make that BE the BE you will boot from upon the next reboot of your machine. Note that the swap partition and all shareable file systems for first_disk will be available to (shared with) second_disk.

```bash
# luupgrade -u -n second_disk \
-s /net/installmachine/export/solarisX/OS_image
many lines of output
```
EXAMPLE 1 Creating a New Boot Environment for the First Time  (Continued)

luupgrade: Upgrade of Boot Environment <second_disk> successful.

# luactivate second_disk

See luupgrade(1M) and luactivate(1M) for descriptions of those commands.

EXAMPLE 2 Creating a BE using a Source Other than the Current BE

The following command uses the -s option to specify a source BE other than the current BE.

# lucreate -s third_disk -m /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -n second_disk

many lines of output

lucreate: Creation of Boot Environment <second_disk> successful.

EXAMPLE 3 Creating a BE from a Flash Archive

Performing this task involves use of lucreate with the -s – option and luupgrade.

# lucreate -s - -m /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -n second_disk

brief messages

lucreate: Creation of Boot Environment <second_disk> successful.

With the -s option, the lucreate command completes it work within seconds. At this point, you can use luupgrade to install the flash archive:

# luupgrade -f -n second_disk

-s /net/installmachine/export/solarisX/OS_image

-J "archive_location http://example.com/myflash.flar"

See luupgrade(1M) for a description of that command.

EXAMPLE 4 Sharing and Adding Swap Partitions

In the simplest case, if you do not specify any swap partitions in an lucreate command, all swap partitions in the source BE are shared with the new BE. For example, assume that the current BE uses /dev/dsk/c0t4d0s7 as its swap partition. You enter the command:

# lucreate -n second_disk -m /:/dev/dsk/c0t4d0s0:ufs

many lines of output

lucreate: Creation of Boot Environment <second_disk> successful.

Upon conclusion of the preceding command, the partition /dev/dsk/c0t4d0s7 will be used by the BE second_disk when that BE is activated and booted.

If you want a new BE to use a different swap partition from that used by the source BE, enter one or more -m options to specify a new partition or new partitions. Assume, once again, that the current BE uses /dev/dsk/c0t4d0s7 as its swap partition. You enter the command:
EXAMPLE 4 Sharing and Adding Swap Partitions  (Continued)

# lucreate -m /:/dev/dsk/c0t0d0s0:ufs -m -:/dev/dsk/c0t4d0s1:swap \
-m -:/dev/dsk/c0t4d0s2:swap -n second_disk
many lines of output
lucreate: Creation of Boot Environment <second_disk> successful.

Upon activation and boot, the new BE second_disk will use /dev/dsk/c0t4d0s1 and /dev/dsk/c0t4d0s2 and will not use /dev/dsk/c0t4d0s7, the swap partition used by the source BE.

Assume you want the new BE second_disk to share the source BE’s swap partition and have an additional swap partition. You enter:

# lucreate -m /:/dev/dsk/c0t0d0s0:ufs -m -:/dev/dsk/c0t4d0s1:swap \
-m -:shared:swap -n second_disk
many lines of output
lucreate: Creation of Boot Environment <second_disk> successful.

Upon activation and boot, the new BE second_disk will use for swapping /dev/dsk/c0t4d0s7, shared with the source BE, and, in addition, /dev/dsk/c0t4d0s1.

EXAMPLE 5 Using Swap Partitions on Multiple Disks

The command below creates a BE on a second disk and specifies swap partitions on both the first and second disks.

# lucreate -m /:/dev/dsk/c0t4d0s0:ufs -m -:/dev/dsk/c0t4d0s1:swap \
-m -:/dev/dsk/c0t4d0s2:swap -n second_disk
many lines of output
lucreate: Creation of Boot Environment <second_disk> successful.

Following completion of the preceding command, the BE second_disk will use both /dev/dsk/c0t4d0s1 and /dev/dsk/c0t4d0s2 as swap partitions. These swap assignments take effect only after booting from second_disk. If you have a long list of swap partitions, it is useful to use the -M option, as shown below.

EXAMPLE 6 Using a Combination of -m and -M Options

In this example, a list of swap partitions is collected in the file /etc/lu/swapslices. The location and name of this file is user-defined. The contents of /etc/lu/swapslices:

-:/dev/dsk/c0t3d0s2:swap
-:/dev/dsk/c0t3d0s2:swap
-:/dev/dsk/c0t4d0s2:swap
-:/dev/dsk/c0t5d0s2:swap
-:/dev/dsk/c1t3d0s2:swap
-:/dev/dsk/c1t4d0s2:swap
-:/dev/dsk/c1t5d0s2:swap

This file is specified in the following command:
EXAMPLE 6 Using a Combination of -m and -M Options  (Continued)

# lucreate -m /dev/dsk/c02t4d0s0:ufs -m /dev/dsk/c02t4d0s1:ufs -M /etc/lu/swapslices -n second_disk

Many lines of output

lucreate: Creation of Boot Environment <second_disk> successful.

The BE second_disk will swap onto the partitions specified in /etc/lu/swapslices.

EXAMPLE 7 Copying Versus Sharing

The following command copies the user file system /home (in addition to the non-shareable file systems / and /usr) from the current BE to the new BE:

# lucreate /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -m /home:/dev/dsk/c0t4d0s4:ufs -n second_disk

The following command differs from the preceding in that the -m option specifying a destination for /home is omitted. The result of this is that /home will be shared between the current BE and the BE second_disk.

# lucreate /:/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -n second_disk

EXAMPLE 8 Using Solaris Volume Manager Volumes

The command shown below does the following:

1. Creates the mirror d10 and establishes this mirror as the receptacle for the root file system.
2. Attaches c0t0d0s0 and c0t1d0s0 to single-slice concatenations d1 and d2, respectively. Note that the specification of these volumes is optional.
3. Attaches the concatenations associated with c0t0d0s0 and c0t1d0s0 to mirror d10.
4. Copies the current BE’s root file system to mirror d10, overwriting any d10 contents.

# lucreate -m /:/dev/md/dsk/d10:ufs,mirror -m /:/dev/dsk/c0t0d0s0,d1:attach -m /:/dev/dsk/c0t1d0s0,d2:attach -n newBE

The following command differs from the preceding only in that concatenations for the physical storage devices are not specified. In this example, lucreate chooses concatenation names from a list of free names and attaches these volumes to the mirror specified in the first -m option.

# lucreate -m /:/dev/md/dsk/d10:ufs,mirror -m /:/dev/dsk/c0t0d0s0:attach -m /:/dev/dsk/c0t1d0s0:attach -n newBE
EXAMPLE 8 Using Solaris Volume Manager Volumes  (Continued)

The following command differs from the preceding commands in that one of the physical disks is detached from a mirror before being attached to the mirror you create. Also, the contents of one of the physical disks is preserved. The command does the following:

1. Creates the mirror d10 and establishes this mirror as the receptacle for the root file system.
2. Detaches c0t0d0s0 from the mirror to which it is currently attached.
3. Attaches c0t0d0s0 and c0t1d0s0 to concatenations d1 and d2, respectively. Note that the specification of the these concatenations is optional.
4. Preserves the contents of c0t0d0s0, which presumes that c0t0d0s0 contains a valid copy of the current BE’s root file system.
5. Attaches the concatenations associated with c0t0d0s0 and c0t1d0s0 (d1 and d2) to mirror d10.

```bash
# lucreate -m /:/dev/md/dsk/d10:ufs,mirror \
   -m /:/dev/dsk/c0t0d0s0,d1:detach,attach,preserve \
   -m /:/dev/dsk/c0t1d0s0,d2:attach -n newBE
```

The preceding command can be abbreviated as follows:

```bash
# lucreate -m /:d10:ufs,mirror \
   -m /:c0t0d0s0:detach,attach,preserve \
   -m /:c0t1d0s0:attach -n newBE
```

In the preceding, note that the device names (both physical and logical) are shortened and that the specifiers for the concatenations (d1 and d2) are omitted.

The following command is a follow-on to the first command in this set of examples. This command detaches a concatenation (containing c0t0d0s0) from one mirror (d10, in the first command) and attaches it to another (d20), preserving its contents.

```bash
# lucreate -m /:/dev/md/dsk/d20:ufs,mirror \
   -m /:/dev/dsk/c0t0d0s0:detach,attach,preserve -n nextBE
```

The following command creates two mirrors, placing the / file system of the new BE on one mirror and the /opt file system on the other.

```bash
# lucreate -m /:/dev/md/dsk/d10:ufs,mirror \ 
   -m /:/dev/dsk/c0t0d0s0,d1:attach \ 
   -m /:/dev/dsk/c1t0d0s0,d2:attach \ 
   -m /opt:/dev/md/dsk/d11:ufs,mirror \ 
   -m /opt:/dev/dsk/c2t0d0s1,d3:attach \ 
   -m /opt:/dev/dsk/c3t1d0s1,d4:attach -n anotherBE
```

EXAMPLE 9 Invoking FMLI-based Interface

The command below, by omitting -m or -M options, invokes the FMLI-based interface for Live Upgrade operations. See `1u(1M)` for a description of this interface.
EXAMPLE 9 Invoking FMLI-based Interface (Continued)

```bash
# lucreate -n second_disk
```

The preceding command uses the current BE as the source for the target BE `second_disk`. In the FMLI interface, you can specify the target disk slices for `second_disk`. The following command is a variation on the preceding:

```bash
# lucreate -n second_disk -s third_disk
```

In the preceding command, a source for the target BE is specified. As before, the FMLI interface comes up, enabling you to specify target disk slices for the new BE.

EXAMPLE 10 Merging File Systems

The command below merges the `/usr/opt` file system into the `/usr` file system. First, here are the disk slices in the BE `first_disk`, expressed in the format used for arguments to the `-m` option:

```
/::/dev/dsk/c0t4d0s0:ufs
/usr:/dev/dsk/c0t4d0s1:ufs
/usr/opt:/dev/dsk/c0t4d0s3:ufs
```

The following command creates a BE `second_disk` and performs the merge operation, merging `/usr/opt` with its parent, `/usr`.

```bash
# lucreate -m /::/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -m /usr/opt:merged:ufs -n second_disk
```

EXAMPLE 11 Splitting a File System

Assume a source BE with ``, `/usr`, and `/var` all mounted on the same disk slice. The following command creates a BE `second_disk` that has ``, `/usr`, and `/var` all mounted on different disk slices.

```bash
# lucreate -m /::/dev/dsk/c0t4d0s0:ufs -m /usr:/dev/dsk/c0t4d0s1:ufs -m /var:/dev/dsk/c0t4d0s3:ufs -n second_disk
```

This separation of a file system’s (such as root’s) components onto different disk slices is referred to as splitting a file system.

EXAMPLE 12 Specifying Alternative Slices

The following command uses multiple `-m` options as alternative disk slices for the new BE `second_disk`.

```bash
# lucreate -m /::/dev/dsk/c0t4d0s0:ufs -m /::/dev/dsk/c0t4d0s1:ufs -m /::/dev/dsk/c0t4d0s5:ufs -n second_disk
```

Many lines of output

```
lucreate: Creation of Boot Environment <second_disk> successful.
```

The preceding command specifies three possible disk slices, `s0`, `s1`, and `s5` for the `/` file system. `lucreate` selects the first one of these slices that is not being used by another BE. Note that the `-s` option is omitted, meaning that the current BE is the source BE for the creation of the new BE.
lucreate(1M)

EXIT STATUS
The following exit values are returned:

0     Successful completion.
>0     An error occurred.

FILES
/etc/lutab
    list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
    Live Upgrade DTD (see -X option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucurr(1M),
ludelete(1M), ludesc(1M), lufalset(1M), lumake(1M), lumount(1M),
lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5),
live_upgrade(5)

NOTES
As is true for any Solaris OE upgrade (and not a feature of Live Upgrade), when
splitting a directory into multiple mount points, hard links are not maintained across
file systems. For example, if /usr/test1/buglist is hard linked to
/usr/test2/buglist, and /usr/test1 and /usr/test2 are split into separate
file systems, the link between the files will no longer exist. If lucreate encounters a
hard link across file systems, the command issues a warning message and creates a
symbolic link to replace the lost hard link.

lucreate cannot prevent you from making invalid configurations with respect to
non-shareable file systems. For example, you could enter an lucreate command that
would create separate file systems for / and /kernel—an invalid division of /.
The resulting BE would be unbootable. When creating file systems for a boot environment,
the rules are identical to the rules for creating file systems for the Solaris operating
environment.

Mindful of the principle described in the preceding paragraph, consider the following:

- In a source BE, you must have valid vfstab entries for every file system you want
to copy to or share with a new BE.
- You cannot create a new BE on a disk with overlapping partitions (that is,
  partitions that share the same physical disk space). The lucreate command that
  specifies such a disk might complete, but the resulting BE would be unbootable.

Note – As stated in the description of the -m option, if you use Solaris Volume
Manager volumes for boot environments, use lucreate rather than Solaris Volume
Manager commands to manipulate these volumes. The Solaris Volume Manager
software has no knowledge of boot environments; the `lucreate` command contains checks that prevent you from inadvertently destroying a boot environment by, for example, overwriting or deleting a Solaris Volume Manager volume.

Live Upgrade supports the release it is distributed on and up to three marketing releases back. For example, if you obtained Live Upgrade with Solaris 9 (including a Solaris 9 upgrade), that version of Live Upgrade supports Solaris versions 2.6, Solaris 7, and Solaris 8, in addition to Solaris 9. No version of Live Upgrade supports a Solaris version prior to Solaris 2.6.

Correct operation of Solaris Live Upgrade requires that a limited set of patch revisions be installed for a given OS version. Before installing or running Live Upgrade, you are required to install the limited set of patch revisions. Make sure you have the most recently updated patch list by consulting `http://sunsolve.sun.com`. Search for the infodoc 72099 on the SunSolve web site.
NAME
lucurr – display the name of the active boot environment

SYNOPSIS
/usr/sbin/lucurr [-l error_log] [-m mount_point] [-o outfile] [-X]

DESCRIPTION
The lucurr command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The lucurr command displays the name of the currently running boot environment (BE). If no BEs are configured on the system, lucurr displays the message "No Boot Environments are defined". Note that lucurr reports only the name of the current BE, not the BE that will be active upon the next reboot. Use lustatus(1M) or luactivate(1M) for this information.

The lucurr command requires root privileges.

OPTIONS
The lucurr command has the following options:

-1 error_log
Error and status messages are sent to error_log, in addition to where they are sent in your current environment.

-m mount_point
Returns the name of the BE that owns mount_point, where mount_point is the mount point of a BE’s root file system. This can be a mount point of the current BE or the mount point of a BE other than the current BE. If the latter, the file system of the BE must have been mounted with lumount(1M) or mount(1M) before entering this option.

-o outfile
All command output is sent to outfile, in addition to where it is sent in your current environment.

-X
Enable XML output. Characteristics of XML are defined in DTD, in/usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

FILES
/etc/lutab
list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option)
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO

lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M), ludelete(1M), ludesc(1M), lufslist(1M), lumake(1M), lumount(1M), lurename(1M), lusstatus(1M), luupgrade(1M), lutab(4), attributes(5), live_upgrade(5)
ludelete(1M)

NAME  ludelete – delete a boot environment

SYNOPSIS  /usr/sbin/ludelete [-l error_log] [-o outfile] BE_name [-X]

DESCRIPTION  The ludelete command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The ludelete command deletes all records associated with a boot environment (BE) on all defined complete BEs. A complete BE is one that is not participating in an lucreate(1M), luupgrade(1M), or lucompare(1M) operation. Use lustatus(1M) to determine a BE’s status. You can delete neither the current BE, nor the BE that will become current upon the next reboot. Also, you cannot delete a BE that has file systems mounted with lumount(1M) or mount(1M).

ludelete does not alter any files on the BE being deleted.

The ludelete command requires root privileges.

OPTIONS  The ludelete command has the following options:

- `-l error_log`
  Error and status messages are sent to error_log, in addition to where they are sent in your current environment.

- `-o outfile`
  All command output is sent to outfile, in addition to where it is sent in your current environment.

- `-X`
  Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

OPERANDS  BE_name
  Name of the BE to be deleted.

EXIT STATUS  The following exit values are returned:

  0  Successful completion.

  >0  An error occurred.

FILES  /etc/lutab
  list of BEs on the system

  /usr/share/lib/xml/dtd/lu_cli.dtd.<num>
  Live Upgrade DTD (see -X option)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:
ludelete(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(IM), luactivate(IM), lucancel(IM), lcompare(IM), lcreate(IM), lucurr(IM), ldesc(IM), lfslist(IM), lumake(IM), lumount(IM), lurename(IM), lustatus(IM), lupgrade(IM), luname(IM), attributes(5), live_upgrade(5)
The `ludesc` command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See `live_upgrade(5)` for a description of the Live Upgrade feature.

The `ludesc` command allows you to manipulate boot environment (BE) descriptions. A BE description is an optional attribute of a BE. It can be text or binary data. For example, it might be a string such as “S9 beta test BE” or it be a file that contains 8-bit multi-byte characters. The `ludesc` command in general and the options to manipulate binary-format descriptions in particular are suitable for use in programs.

You create a BE description using `ludesc` or `lucreate(1M)`. Only `ludesc` allows you to change a BE description or add a description following BE creation.

While a BE description is associated with a BE name, it is not interchangeable with that name. No Live Upgrade command allows you to specify a BE description instead of a BE name when performing an operation on a BE.

A shell might restrict what you enter for a BE description (in both `ludesc` and `lucreate(1M)`). In entering a description, use the following guidelines:

- Always enclose a description in single quotes ("), unless the description includes a single quote.
- If your description includes a single quote, enclose the description in double quotes ("'). You then must use an escape sequence (usually a backslash \) to enter a character that is special to the shell. See `sh(1)` for a list of special characters and a description of the escape sequence mechanism.

Descriptions that include many special characters might be more conveniently inserted in a file (`-f` option) than entered on a command line (`-A` option).

When `ludesc` outputs a BE description, it does so exactly as the description was entered. Because of this feature, a description that is a text string does not have a concluding newline, which means the system prompt immediately follows the last character of the description.

The `ludesc` command requires root privileges.

The `ludesc` command has the following options:

- `-A BE_description`
  
  Displays the BE name associated with `BE_description`. 
ludesc(1M)

- `f {filename | -}`
  Specify the BE description contained in `filename` or read from `stdin`. When used without `-n`, displays the BE name associated with the specified BE description. Used with `-n`, changes the description for the specified BE to the description specified with `-f`.

- `-l error_log`
  Error and status messages are sent to `error_log`, in addition to where they are sent in your current environment.

- `-n BE_name`
  With no other arguments, displays the BE description for the specified BE. With the `-f` option or the `BE_description` operand, changes the description for the specified BE to that specified with `-f` or `BE_description`.

- `-o outfile`
  All command output is sent to `outfile`, in addition to where it is sent in your current environment.

- `-X`
  Enable XML output. Characteristics of XML are defined in DTD, in `/usr/share/lib/xml/dtd/lu_cli.dtd.<num>`, where `<num>` is the version number of the DTD file.

**OPERANDS**

- `BE_description`
  Used only with the `-n` option. `BE_description` replaces the current BE description for the specified BE.

**EXAMPLES**

The following are examples of the use of `ludesc`.

**EXAMPLE 1 Basic Use**

The first command, below, assigns a description to a BE. The second command returns the name of the BE associated with the specified description. The last command returns the description associated with a specified BE.

```bash
# ludesc -n first_disk 'Test disk'
Setting description for boot environment <first_disk>. Propagating the change of BE description to all BEs.

# ludesc -A 'Test disk'
first_disk
#

# ludesc -n first_disk
test disk#
```

As seen above and noted in the DESCRIPTION, `ludesc` does not append a newline to the display of BE description that is a text string.
EXAMPLE 2 Using Binary Files

The following commands are analogs of the preceding examples, substituting a binary file—here, a file containing a description in Russian, using the Cyrillic alphabet—for a text string. In the third command, note the use of a file to capture output. Sending output of a binary file to the console can produce erratic results.

```
# ludesc -n first_disk -f arrayBE.ru
Setting description for boot environment <first_disk>.
Propagating the change of BE description to all BEs.

# ludesc -f arrayBE.ru
first_disk

# ludesc -n first_disk > /tmp/arrayBE.out
```

EXIT STATUS  The following exit values are returned:

0    Successful completion.

>0    An error occurred.

FILES  

/etc/lutab
list of BEs on the system

/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M), ludelete(1M), lufslist(1M), lumake(1M), lumount(1M), lurename(1M), lustatus(1M), luupgrade(1M), lutil(4), attributes(5), live_upgrade(5)
NAME
lufslist – list configuration of a boot environment

SYNOPSIS
/usr/sbin/lufslist [-l error_log] [-o outfile] BE_name [-X]

DESCRIPTION
The lufslist command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The lufslist command lists the configuration of a boot environment (BE). The output contains the disk slice (file system), file system type, and file system size for each BE mount point.

The following is an example of lufslist output.

```
# lufslist BE_name
<table>
<thead>
<tr>
<th>Filesystem</th>
<th>fstype</th>
<th>size(Mb)</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/dsk/c0t0d0s1</td>
<td>swap</td>
<td>512.11</td>
<td>-</td>
</tr>
<tr>
<td>/dev/dsk/c0t4d0s3</td>
<td>ufs</td>
<td>3738.29</td>
<td>/</td>
</tr>
<tr>
<td>/dev/dsk/c0t4d0s4</td>
<td>ufs</td>
<td>510.24</td>
<td>/opt</td>
</tr>
</tbody>
</table>
```

File system type can be ufs, swap, or vxfs, for a Veritas file system. Under the Filesystem heading can be a disk slice or a logical device, such as a disk metadevice used by volume management software.

The lufslist command requires root privileges.

OPTIONS
The lufslist command has the following options:

- `-l error_log`
  Error and status messages are sent to error_log, in addition to where they are sent in your current environment.

- `-o outfile`
  All command output is sent to outfile, in addition to where it is sent in your current environment.

- `-X`
  Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

OPERANDS
BE_name
Name of the BE for which file systems are to be reported. You cannot specify a BE that is involved in another Live Upgrade operation.

EXIT STATUS
The following exit values are returned:

- `0`
  Successful completion.

- `>0`
  An error occurred.

FILES
/etc/lutab
list of BEs on the system
Live Upgrade DTD (see -x option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluuu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M),
lucurr(1M), ludelete(1M), ludesc(1M), lumake(1M), lumount(1M),
lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5),
live_upgrade(5)
NAME
lumake – populate a boot environment

SYNOPSIS
/usr/sbin/lumake [-l error_log] [-o outfile] [-s source_BE] -n BE_name
[-X]

/usr/sbin/lumake [-l error_log] -t time [-o outfile] [-s source_BE]
-n BE_name [-m email_address] [-X]

DESCRIPTION
The lumake command is part of a suite of commands that make up the Live Upgrade
feature of the Solaris operating environment. See live_upgrade(5) for a description
of the Live Upgrade feature.

The lumake command populates (that is, copies files to) the file systems of a specified
boot environment (BE) by copying files from the corresponding file systems of the
active or a source (-s) BE. Any existing data on the target BE are destroyed. All file
systems on the target BE are re-created.

The target BE must already exist. Use lucreate(1M) to create a new BE.

The lumake command requires root privileges.

OPTIONS
The lumake command has the following options:

-n BE_name
Name of the BE to be populated.

-s source_BE
The optional name of a source BE. If you omit this
option, lumake uses the current BE as the source. A BE
must have the status "complete" before you can copy
from it. Use lustatus(1M) to determine a BE's status.

-l error_log
Error and status messages are sent to error_log, in
addition to where they are sent in your current
environment.

-o outfile
All command output is sent to outfile, in addition to
where it is sent in your current environment.

-t time
Setup a batch job to populate the specified BE at a
specified time. The time is given in the format specified
by the at(1) man page. At any time, you can have only
one Live Upgrade operation scheduled. You can use
lucancel(1M) to cancel a scheduled lumake
operation.

-m email_address
Allows you to email lumake output to a specified
address upon command completion. There is no
checking of email_address. You can use this option only
in conjunction with -t.

-X
Enable XML output. Characteristics of XML are defined
in DTD, in
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>,
where <num> is the version number of the DTD file.
The following exit values are returned:

0  Successful completion.
>0  An error occurred.

FILES
/etc/lutab
list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M),
lucurr(1M), ludelete(1M), ludesc(1M), lufslist(1M), lumount(1M),
lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5),
live_upgrade(5)
NAME
  lumount, luumount – mount or unmount all file systems in a boot environment

SYNOPSIS
  /usr/sbin/lumount [-l error_log] [-o outfile] BE_name [mount_point] [-X]
  /usr/sbin/luumount [-f] { [-n] BE_name | [-m] mount_point
  | block_device} [-l error_log] [-o outfile] [-X]

DESCRIPTION
  The lumount and luumount commands are part of a suite of commands that make
  up the Live Upgrade feature of the Solaris operating environment. See
  live_upgrade(5) for a description of the Live Upgrade feature.

  The lumount and luumount commands enable you to mount or unmount all of the
  filesystems in a boot environment (BE). This allows you to inspect or modify the files
  in a BE while that BE is not active. By default, lumount mounts the file systems on a
  mount point of the form /./alt.BE_name, where BE_name is the name of the BE
  whose file systems are being mounted. See NOTES.

  The lumount and luumount commands require root privileges.

OPTIONS
  The lumount and luumount commands have the following options:

  -f
    For luumount only, forcibly unmount a BE’s file systems after attempting (and
    failing) an unforced unmount. This option is analogous to the umount(1M) -f
    option.

  -l error_log
    Error and status messages are sent to error_log, in addition to where they are sent in
    your current environment.

  -m mount_point
    luumount unmounts the file systems of the BE that owns mount_point. See
    description of mount_point under OPERANDS, below. The use of -m is optional
    when specifying a mount point for luumount.

  -n BE_name
    Name of the BE whose file systems will be unmounted. See description of BE_name
    under OPERANDS, below. The use of -n is optional when specifying a BE name for
    luumount.

  -o outfile
    All command output is sent to outfile, in addition to where it is sent in your current
    environment.

  -X
    Enable XML output. Characteristics of XML are defined in DTD, in
    /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version
    number of the DTD file.
lumount(1M)

For lumount, if you supply an argument and specify neither -m nor -n, the command determines whether your argument is a BE name, a mount point, or a block device. If it is one of these three and the argument is associated with a BE that has mounted file systems, lumount unmounts the file systems of that BE. Otherwise, lumount returns an error.

**OPERANDS**

- **BE_name**
  Name of the BE whose file systems will be mounted or unmounted. This is a BE on the current system other than the active BE. Note that, for successful completion of an lumount or luumount command, the status of a BE must be complete, as reported by lustatus(1M). Also, none of the BE’s disk slices can be mounted (through use of mount(1M)).

- **mount_point**
  For lumount, a mount point to use instead of the default /alt.BE_name. If mount_point does not exist, lumount creates it. For luumount, the BE associated with mount_point will have its file systems unmounted. Note that default mount points are automatically deleted upon unmounting with luumount. Mount points that you specify are not deleted.

- **block_device**
  For luumount only, block_device is the root slice of a BE, such as /dev/dsk/c0t4d0s0. lumount unmounts the file systems of the BE associated with block_device.

**EXAMPLES**

**EXAMPLE 1** Specifying a Mount Point

The following command creates the mount point /test and mounts the file systems of the BE second_disk on /test.

```
# lumount second_disk /test
/test
```

You can then cd to /test to view the file systems of second_disk. If you did not specify /test as a mount point, lumount would create a default mount point named /alt.second_disk.

**EXAMPLE 2** Unmounting File Systems

The following command unmounts the file systems of the BE second_disk. In this example, we cd to / to ensure we are not in any of the file systems in second_disk.

```
# cd /
# luumount second_disk
#
```

If /dev/dsk/c0t4d0s0 were the root slice for second_disk, you could enter the following command to match the effect of the preceding command.

```
# cd /
# luumount /dev/dsk/c0t4d0s0
#`
```

**EXIT STATUS**

The following exit values are returned:
Successful completion.

>0 An error occurred.

FILES
/etc/lutab
list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M),
lucurr(1M), ludelete(1M), ludesc(1M), lufalist(1M), lumake(1M),
lurename(1M), lustatus(1M), luupgrade(1M), lutab(4), attributes(5),
live_upgrade(5)

NOTES
If a BE name contains slashes (/), lumount replaces those slashes with colons in a
default mount point name. For example:

# lumount 'first/disk'
/.alt.first:disk
lurename(1M)

NAME    lurename – change the name of a boot environment

SYNOPSIS /usr/sbin/lurename -e BE_name -n new_name [-l error_log] [-o outfile]
        [-X]

DESCRIPTION The lurename command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The lurename command renames the boot environment (BE) BE_name to new_name.

The string new_name must not exceed 30 characters in length and must consist only of alphanumeric characters and other ASCII characters that are not special to the Unix shell. See the “Quoting” section of sh(1). The BE name can contain only single-byte, 8-bit characters. It cannot contain whitespace characters. Also, new_name must be unique on the system.

A BE must have the status “complete” before you rename it. Use lustatus(1M) to determine a BE’s status. Also, you cannot rename a BE that has file systems mounted with lumount(1M) or mount(1M).

Renaming a BE is often useful when you upgrade the BE from one Solaris release to another. For example, following an operating system upgrade, you might rename the BE solaris7 to solaris8.

The lurename command requires root privileges.

OPTIONS The lurename command has the options listed below.

- e BE_name Name of the BE whose name you want to change.
- l error_log Error and status messages are sent to error_log, in addition to where they are sent in your current environment.
- n new_name New name of the BE. new_name must be unique on a given system.
- o outfile All command output is sent to outfile, in addition to where it is sent in your current environment.
- X Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

EXIT STATUS The following exit values are returned:

0 Successful completion.
>0 An error occurred.
FILES
/etc/lutab
   list of BEs on the system
/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
   Live Upgrade DTD (see -x option)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluuu</td>
</tr>
</tbody>
</table>

SEE ALSO
lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M),
lucurr(1M), ludelete(1M), ludesc(1M), luqsort(1M), lumake(1M),
lumount(1M), lustatus(1M), luupggrade(1M), lutab(4), attributes(5),
live_upgrade(5)
lustatus(1M)

NAME
lustatus – display status of boot environments

SYNOPSIS
/usr/sbin/lustatus [-l error_log] [-o outfile] [BE_name] [-X]

DESCRIPTION
The lustatus command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The lustatus command displays the status information of the boot environment (BE) BE_name. If no BE is specified, the status information for all BEs on the system is displayed.

The headings in the lustatus information display are described as follows:

Boot Environment Name
Name of the BE.

Is Complete
Indicates whether a BE is able to be booted. Any current activity or failure in an luceate() or luupgrade(1M) operation causes a BE to be incomplete. For example, if there is a copy operation proceeding on or scheduled for a BE, that BE is considered incomplete.

Active Now
Indicates whether the BE is currently active. The “active” BE is the one currently booted.

Active On Reboot
Indicates whether the BE becomes active upon next reboot of the system.

Can Delete
Indicates that no copy, compare, or upgrade operations are being performed on a BE. Also, none of that BE’s file systems are currently mounted. With all of these conditions in place, the BE can be deleted.

Copy Status
Indicates whether the creation or repopulation of a BE is scheduled or active (that is, in progress). A status of ACTIVE, COMPARING (from lucmpare(1M)), UPGRADING, or SCHEDULED prevents you performing Live Upgrade copy, rename, or upgrade operations.

The following is an example lustatus display:

<table>
<thead>
<tr>
<th>Boot Environment Name</th>
<th>Is Complete</th>
<th>Active Now</th>
<th>Active On Reboot</th>
<th>Can Delete</th>
<th>Copy Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk_a_S7</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>disk_b_S7db</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>UPGRADING</td>
</tr>
<tr>
<td>disk_b_S8</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>S9testbed</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>-</td>
</tr>
</tbody>
</table>

Note that you could not perform copy, rename, or upgrade operations on disk_b_S8, because it is not complete, nor on disk_b_S7db, because a Live Upgrade operation is pending.
The `lustatus` command requires root privileges.

**OPTIONS**
The `lustatus` command has the following options:

- `-l error_log`
  
  Error and status messages are sent to `error_log`, in addition to where they are sent in your current environment.

- `-o outfile`
  
  All command output is sent to `outfile`, in addition to where it is sent in your current environment.

- `-X`
  
  Enable XML output. Characteristics of XML are defined in DTD, in `/usr/share/lib/xml/dtd/lu_cli.dtd.<num>`, where `<num>` is the version number of the DTD file.

**OPERANDS**

- `BE_name`
  
  Name of the BE for which to obtain status. If `BE_name` is omitted, `lustatus` displays status for all BEs in the system.

**EXIT STATUS**
The following exit values are returned:

- `0`
  
  Successful completion.

- `>0`
  
  An error occurred.

**FILES**

- `/etc/lutab`
  
  list of BEs on the system

- `/usr/share/lib/xml/dtd/lu_cli.dtd.<num>`
  
  Live Upgrade DTD (see `-X` option)

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluuu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

- `lu(1M)`, `luactivate(1M)`, `lucancel(1M)`, `lucompare(1M)`, `lucreate(1M)`, `lucurr(1M)`, `ludesc(1M)`, `ludelete(1M)`, `lufslist(1M)`, `lumake(1M)`, `lumount(1M)`, `lurename(1M)`, `luupgrade(1M)`, `lutab(4)`, attributes(5), live_upgrade(5)
NAME

luupgrade – installs, upgrades, and performs other functions on software on a boot environment

SYNOPSIS

/usr/sbin/luupgrade [-iuftpTc] [options]

DESCRIPTION

The luupgrade command is part of a suite of commands that make up the Live Upgrade feature of the Solaris operating environment. See live_upgrade(5) for a description of the Live Upgrade feature.

The luupgrade command enables you to install software on a specified boot environment (BE). Specifically, luupgrade performs the following functions:

- Upgrades an operating system image on a BE (-u option). The source for the image can be any valid Solaris installation medium, including a Solaris Flash archive.
- Run an installer program to install software from an installation medium (-i option).
- Extract a Solaris Flash archive onto a BE (-f option). (See flar(1M).)
- Add a package to (-p) or remove a package from (-P) a BE.
- Add a patch to (-t) or remove a patch from (-T) a BE.
- Check (-C) or obtain information about (-I) packages.
- Check an operating system installation medium (-c).

Before using luupgrade, you must have created a BE, using either the lucreate(1M) command or lu(1M), the FMLI-based user interface. You can upgrade only BEs other than the current BE.

The functions described in the preceding list each has its own set of options, which are described separately for each function.

Note that, for successful completion of an luupgrade operation, the status of a BE must be complete, as reported by lustatus(1M). Also, the BE must not have any mounted disk slices, mounted either with lumount(1M) or mount(1M).

luupgrade allows you to install an operating system image from a different marketing release of the Solaris operating system from the release running on the machine from which you invoke luupgrade. This feature has the following conditions:

- You can install Live Upgrade packages (SUNWluu and SUNWlur) from a given release of the Solaris operating system on a machine running a previous release. You can install these packages on a machine running a version of Solaris that is up to three releases prior to the release of the Live Upgrade packages. Live Upgrade is not supported on Solaris releases prior to Solaris 2.6. Thus, you can, for example, install Solaris 2.9 packages on Solaris 2.8, 2.7, and 2.6 machines.
- You can upgrade to a release of the Solaris operating system that is the same as the release of the Live Upgrade packages installed on a machine. This feature allows you to upgrade to Solaris upgrade releases within a marketing release. For example, if have the Solaris 9 FCS Live Upgrade packages installed on a machine,
luupgrade(1M)

Options that Apply to All Uses

- You can use luupgrade to upgrade a BE to the Solaris 9 update 3 release of the Solaris operating system.

- See the Solaris Installation Guide for instructions on installing Live Upgrade packages.

- The luupgrade command requires root privileges.

The following options are available for all uses of luupgrade:

- `-l error_log`
  Error and status messages are sent to error_log, in addition to where they are sent in your current environment.

- `-o outfile`
  All command output is sent to outfile, in addition to where it is sent in your current environment.

- `-N`
  Dry-run mode. Enables you to determine whether your command arguments are correctly formed. Does not apply to the `-c` (check medium) function.

- `-X`
  Enable XML output. Characteristics of XML are defined in DTD, in /usr/share/lib/xml/dtd/lu_cli.dtd.<num>, where <num> is the version number of the DTD file.

The luupgrade command uses `-u` to upgrade an operating system image. The syntax is as follows:

```
luupgrade -u -n BE_name -s os_image_path [ -j profile_path [-D] ]
[ -l error_log ] [ -o outfile ] [-N]
```

The first option, `-u`, indicates the function to perform—to install an OS image. The remaining options for this use of luupgrade, shown above, are described as follows:

- `-n BE_name`
  Name of the BE to receive an OS upgrade.

- `-s os_image_path`
  Path name of a directory containing an OS image. This can be a directory on an installation medium such as a CD-ROM or can be an NFS or UFS directory.

- `-j profile_path`
  Path to a JumpStart profile. See the section "JumpStart Profile Keywords," below, for a list of valid keywords for use in a profile invoked by luupgrade. See pfinstall(1M) and the Solaris installation documentation for information on the JumpStart software.

- `-D`
  Tests the profile values provided with `-j` against the disk configuration of the specified BE. The upgrade is not performed. The effect of this option is a dry run to test your profile. luupgrade creates log files, specified in its output, which allow you to examine the command’s results.
Note that if you are upgrading from a medium with multiple components, such as from multiple CDs, use `luupgrade` with the `-i` option, as described in the section below, to install software from the second and any following media.

The `luupgrade` command uses `-i` to run an installer program. The syntax is as follows:

```
luupgrade -i -n BE_name -s installation_medium [ -N ]
[ -o "installer_options" ] [ -l error_log ] [ -o outfile ]
```

The first option, `-i`, indicates the function to perform—to run an installer program on the installation specified with `-s`. The remaining options for this use of `luupgrade`, shown above, are described as follows:

- `-n BE_name`
  Name of the BE on which software is to be installed.

- `-o "installer_options"`
  Options passed directly to the Solaris installer program. See `installer(1M)` for descriptions of the installer options.

- `-s installation_medium`
  Path name of an installation medium. This can be a CD, or an NFS or UFS directory.

With the `-i` option, `luupgrade` looks for an installation program on the specified medium and runs that program.

The `-i` option has a special use when you use the `-u` option, described above, to install software from a multiple-component medium, such as multiple CDs. See EXAMPLES.

The `luupgrade` command uses `-f` to install an operating system from a Solaris Flash archive. Note that installing an archive overwrites all files on the target BE. The syntax is as follows:

```
luupgrade -f -n BE_name -s os_image_path [ -a archive ] [ -j profile_path
| -J "profile" ] [ -l error_log ] [ -o outfile ] [ -D ] [ -N ]
```

The first option, `-f`, indicates the function to perform—to install an OS from a Solaris Flash archive. The remaining options for this use of `luupgrade`, shown above, are described as follows:

- `-n BE_name`
  Name of the BE to receive an OS installation.

- `-s os_image_path`
  Path name of a directory containing an OS image. This can be a directory on an installation medium, such as a CD-ROM, or can be an NFS or UFS directory.

- `-a archive`
  Path to the Solaris Flash archive when the archive is available on the local file system. You must specify one of `-a`, `-j`, or `-J`. 

Running an Installer Program

Installing from a Solaris Flash Archive
luupgrade(1M)

- `j profile_path`
  Path to a JumpStart profile that is configured for a Solaris Flash installation. See the section "JumpStart Profile Keywords," below, for a list of valid keywords for use in a profile invoked by luupgrade. See pfinstall(1M) and the Solaris installation documentation for information on the JumpStart software. You must specify one of -a, -j, or -J.

- `-J "profile"`
  Entry from a JumpStart profile that is configured for a Solaris Flash installation. The only valid keyword for this option is archive_location. See pfinstall(1M) and the Solaris installation documentation for information on the JumpStart software. You must specify one of -a, -j, or -J.

- `-D`
  Tests the profile values provided with -j or -J against the disk configuration of the specified BE. The upgrade is not performed. The effect of this option is a dry run to test your profile. luupgrade creates log files, specified in its output, which allow you to examine the command’s results.

Note that the version of the OS image specified with -s must be identical to the version of the OS contained in the Solaris Flash archive specified with the -a, -j, or -J options.

The luupgrade command uses -p to add a package and -P to remove a package. The syntax is as follows:

For adding packages:

```
luupgrade -p -n BE_name -a packages_path [ -l error_log ] [ -o logfile ]
[ -O *pkgadd_options* ] [ -a admin ] [ pkg**inst** [ pkg**inst**... ] ] [ -N ]
```

For removing packages:

```
luupgrade -P -n BE_name [ -l error_log ] [ -o logfile ]
[ -O *pkgrm_options* ] [ pkg**inst** [ pkg**inst**... ] ] [ -N ]
```

The first option, -p, to add packages, or -P to remove packages, indicates the function to perform. The remaining options for this use of luupgrade, shown above, are described as follows:

- `-n BE_name`
  Name of the BE to which packages will be added or from which packages will be removed.

- `-s packages_path`
  (For adding packages only.) Path name of a directory containing packages to add. You can substitute -d for -s. The -d support is for pkgadd(1M) compatibility.

- `-d packages_path`
  Identical to -s. Use of -s is recommended.
luupgrade(1M)

- O "pkgadd_options" or "pkgrm_options"
  Options passed directly to pkgadd (for -p) or pkgrm (for -P). See pkgadd(1M) and pkgrm(1M) for descriptions of the options for those commands.

-a admin
  (For adding packages only.) Path to an admin file. Identical to the pkgadd -a option. Use of the -a option here is identical to -O "-a admin"

pkginst [ pkginst... ]
  Zero or more packages to add or remove. For adding packages, the default is to add all of the packages specified with the -s option, above. Separate multiple package names with spaces.

It is critically important that any packages you add be compliant with the SVR4 Advanced Packaging Guidelines. See WARNINGS, below.

The luupgrade command uses -t to add a patch and -T to remove a patch. The syntax is as follows:

For adding patches:

luupgrade -t -n BE_name -s patch_path [ -l error_log ] [ -o outfile ]
[ -O "patchadd_options" ] [ patch_name [ patch_name... ] ] [ -N ]

For removing patches:

luupgrade -T -n BE_name [ -l error_log ] [ -o outfile ]
[ -O "patchrm_options" ] [ patch_name [ patch_name... ] ] [ -N ]

The first option, -t, to add patches, or -T to remove patches, indicates the function to perform. The remaining options for this use of luupgrade, shown above, are described as follows:

-n BE_name
  Name of the BE to which patches will be added or from which patches will be removed.

-s patch_path
  (For adding patches only.) Path name of a directory containing patches to add.

- O "patchadd_options" or "patchrm_options"
  Options passed directly to patchadd (for -p) or patchrm (for -P). See patchadd(1M) or patchrm(1M) for a description of these options.

patch_name [ patch_name... ]
  Zero or more patches to add or remove. For adding patches, the default is to add all of the patches specified with the -s option, above. Separate multiple patch names with spaces.

It is critically important that any patches you add be compliant with the SVR4 Advanced Packaging Guidelines. See WARNINGS, below.

Use the -C to perform a pkgchk(1M) on all or the specified packages on a BE. Use the -I option to perform a pkginfo(1).
For performing a pkgchk:

```
luupgrade -C -n BE_name [ -l error_log ] [ -o outfile ]
[ -O "pkgchk_options" ] [ pkginst [ pkginst ... ] ] [ -N ]
```

For performing a pkginfo:

```
luupgrade -I -n BE_name [ -l error_log ] [ -o outfile ]
[ -O "pkginfo_options" ] [ pkginst [ pkginst ... ] ] [ -N ]
```

The first option, -C, for pkgchk, or -I, for pkginfo, indicates the function to perform. The remaining options for this use of luupgrade, shown above, are described as follows:

- **-n BE_name**
  Name of the BE on which packages will be checked or on whose packages information will be returned.

- **-O "pkgchk_options" or "pkginfo_options"**
  Options passed directly to pkgchk (for -C) or pkginfo (for -I). See pkgchk(1M) or pkginfo(1) for a description of these options.

- **pkginst [ pkginst ... ]**
  Zero or more packages to check or for which to have information returned. If you omit package names, luupgrade returns information on all of the packages on the BE. Separate multiple package names with spaces.

With the -c option, luupgrade allows you to check that a local or remote medium, such as a CD, is a valid installation medium. The -c option returns useful information about the specified medium. The syntax for this use of luupgrade is as follows:

```
luupgrade -c -s path_to_medium [ -l error_log ] [ -o outfile ]
```

The first option, -c, indicates the function to perform—to check on an installation medium. The -s option, shown above, is described as follows:

- **-s path_to_medium**
  Path name to an installation medium such as a CD-ROM.

This section specifies the Solaris JumpStart keywords that can be used in a profile with luupgrade, using the -j option in conjunction with the -u (upgrade) or -f (flash) options. For -u, there are no required keywords. For -f, you must specify a value for install_type: flash_install for a full flash archive or flash_update for a differential flash archive. Also for the -f option with the -j option, you must specify the -a (archive location) option or specify the archive_location keyword in your profile.

The archive_location keyword is the only valid argument for the -j option.

The following optional keywords are sometimes used in profiles used with the -u and -f options:

- **cluster**
  Designates the software group to add to the system.
geo
Designates the regional locale or locales that you want to install on or add to a system. See the Solaris Installation Guide for a list of possible values.

isa_bits
Specifies whether 64-bit or 32-bit packages are to be installed. Valid values are 64 and 32.

locale
Designates the locale packages you want to install on or add to a system. See the Solaris Installation Guide for a list of possible values.

package
Specifies a package to be added to or deleted from a system.

The following keywords must not be used in a profile used with luupgrade:
- boot_device
- dontuse
- fdisk
- fileys
- layout_constraint
- noreboot
- partitioning
- root_device
- usedisk

See the Solaris Installation Guide for descriptions of all JumpStart profile keywords and instructions for creating a JumpStart profile.

EXAMPLE 1 Removing, then Adding Packages

The following example removes from then adds a set of packages to a boot environment.

```bash
# luupgrade -P -n second_disk SUNWabc SUNWdef SUNWghi
```

Now, to add the same packages:

```bash
# luupgrade -p -n second_disk -s /net/installmachine/export/packages \
SUNWabc SUNWdef SUNWghi
```

The following command adds the -O option to the preceding command. This option passes arguments directly to pkgadd.

```bash
# luupgrade -p -n second_disk -s /net/installmachine/export/packages \
-O "-r /net/testmachine/export/responses" SUNWabc SUNWdef SUNWghi
```

See pkgadd(1M) for a description of the options for that command.

EXAMPLE 2 Upgrading to a New OS from a Combined Image

The following example upgrades the operating environment on a boot environment. The source image is stored as a combined image on a remote disk or on a DVD.
EXAMPLE 2 Upgrading to a New OS from a Combined Image  
(Continued)

# luupgrade -u -n second_disk \ 
-s /net/installmachine/export/solarisX/OS_image

Following the command above you could enter the command below to activate the 
upgraded BE.

# luactivate second_disk

Then, upon the next reboot, second_disk would become the current boot 
environment. See luactivate(1M).

EXAMPLE 3 Upgrading to a New OS from Multiple CDs

The following example is a variation on the preceding. The OS upgrade resides on two 
CDs. To begin the upgrade on a SPARC machine, you enter:

# luupgrade -u -n second_disk -s /cdrom/cdrom0/s0

On x86 machines, replace the s0 in the argument to -s with s2.

When the installer is finished with the contents of the first CD, insert the next CD in 
the drive and enter the following:

# luupgrade -i -n second_disk -s /cdrom/cdrom0 \ 
-O "-nodisplay -nocconsle"

Note the use of -i rather than -u in the preceding. Were there additional CDs, you 
would enter the same command as the one immediately above. The -O options, above, 
are passed to installer(1M). If you omit these options, a graphical interface is 
invoked following the insertion and reading of the second CD. See installer(1M) 
for a description of the -O options.

Note that a multiple-CD upgrade is not complete until you have entered and 
completed luupgrade commands for all of the CDs in a set. Following installation of 
packages from a CD, you might receive a message such as:

WARNING: <num> packages must be installed on boot environment <disk_device>.

Such a message indicates the requirement that you install packages from one or more 
additional CDs, as in the example above. If you do not complete package installation, 
you will not be able to use luactivate to activate (designate for booting) the 
upgraded BE.

EXAMPLE 4 Upgrading Using a JumpStart Profile

The following example command uses the -D option to test the profile 
/home2/profiles/test.profile.

# luupgrade -u -n second_disk \ 
-s /net/installmachine/export/solarisX/OS_image \ 
-j /home2/profiles/test.profile -D

luupgrade(1M)
EXAMPLE 4 Upgrading Using a JumpStart Profile (Continued)

Assuming the results of this command were acceptable, you could omit the -D in the preceding command to perform the upgrade.

EXAMPLE 5 Installing a New OS from a Solaris Flash Archive

The following example installs the operating environment on a boot environment, using a Solaris Flash archive. The file pointed to by -J is a JumpStart profile that specifies a flash installation.

```bash
# luupgrade -f -n second_disk \
-s /net/installmachine/export/solarisX/OS_image \
-J "archive_location http://example.com/myflash.flar"
```

The following command differs from the preceding only in that -j replaces -J. You could append the -D option to either of these commands to test the profile prior to actually performing the flash installation.

```bash
# luupgrade -f -n second_disk \
-s /net/installmachine/export/solarisX/OS_image \
-j /net/example/flash_archives/flash_gordon
```

Either of the preceding commands works for a full or differential flash installation. Whether a flash installation is differential or full is determined by the value of the install_type keyword in the profile. See “JumpStart Profile Keywords,” above.

EXAMPLE 6 Obtaining Information on Packages

The following example runs a pkgchk on the packages SUNWluu and SUNWlur, passing to pkgchk the -v option.

```bash
# luupgrade -C -n second_disk -O "-v" SUNWluu SUNWlur
```

The following command runs pkginfo on the same set of packages:

```bash
# luupgrade -I -n second_disk -O "-v" SUNWluu SUNWlur
```

For both commands, if the package names were omitted, luupgrade returns package information on all of the packages in the specified BE. See pkgchk(1M) and pkginfo(1) for a description of the options for those commands.

EXIT STATUS

The following exit values are returned:

0        Successful completion.
>0       An error occurred.

FILES

/etc/lutab
list of BEs on the system

/usr/share/lib/xml/dtd/lu_cli.dtd.<num>
Live Upgrade DTD (see -X option in “Options that Apply to All Uses,” above)

912 man pages section 1M: System Administration Commands • Last Revised 24 Oct 2003
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluu</td>
</tr>
</tbody>
</table>

SEE ALSO

installer(1M), lu(1M), luactivate(1M), lucancel(1M), lucompare(1M),
lucreate(1M), lucurr(1M), ludelete(1M), ludes(1M), lufslist(1M),
lumake(1M), lumount(1M), lurename(1M), lustatus(1M), lutab(4),
attributes(5), live_upgrade(5)

WARNINGS

For adding packages or patches (-p, -P, -t, or -T), luupgrade requires packages or
patches that comply with the SVR4 Advanced Packaging Guidelines and the
guidelines spelled out in Appendix C of the Solaris 9 Installation Guide. This means that
the package or patch is compliant with the pkgadd(1M) or patchadd(1M) -R option,
described in the man pages for those utilities. While nearly all Sun packages and
patches conform to these guidelines, Sun cannot guarantee the conformance of
packages and patches from third-party vendors. Some older Sun packages and patches
might not be -R compliant. If you encounter such a package or patch, please report it
to Sun. A non-conformant package can cause the package- or patch-addition software
in luupgrade to fail or, worse, alter the current BE.

NOTES

Live Upgrade supports the release it is distributed on and up to three marketing
releases back. For example, if you obtained Live Upgrade with Solaris 9 (including a
Solaris 9 upgrade), that version of Live Upgrade supports Solaris versions 2.6, Solaris
7, and Solaris 8, in addition to Solaris 9. No version of Live Upgrade supports a Solaris
version prior to Solaris 2.6.

Correct operation of Solaris Live Upgrade requires that a limited set of patch revisions
be installed for a given OS version. Before installing or running Live Upgrade, you are
required to install the limited set of patch revisions. Make sure you have the most
recently updated patch list by consulting http://sunsolve.sun.com. Search for
the infodoc 72099 on the SunSolve web site.
luxadm(1M)

NAME
luxadm – administration program for the Sun Enterprise Network Array (SENA), RSM, SPARCstorage Array (SSA) subsystems, Sun Fire 880 internal storage subsystem, and individual Fiber Channel Arbitrated Loop (FC_AL) devices

SYNOPSIS
luxadm [options...] subcommand [options...] enclosure [, dev] | pathname...

DESCRIPTION
The luxadm program is an administrative command that manages the SENA, RSM, SPARCstorage Array subsystems, Sun Fire 880 internal storage subsystem, and individual FC_AL devices. luxadm performs a variety of control and query tasks depending on the command line arguments and options used.

The command line must contain a subcommand. The command line may also contain options, usually at least one enclosure name or pathname, and other parameters depending on the subcommand. You need specify only as many characters as are required to uniquely identify a subcommand.

Specify the device that a subcommand interacts with by entering a pathname. For the SENA subsystem, a disk device or enclosure services controller may instead be specified by entering the World Wide Name (WWN) for the device or a port to the device. The device may also be specified by entering the name of the SENA enclosure, and an optional identifier for the particular device in the enclosure. The individual FC_AL devices may be specified by entering the WWN for the device or a port to the device.

Pathname
Specify the device or controller by either a complete physical pathname or a complete logical pathname.

For SENA, a typical physical pathname for a device is:
/devices/sbus@1f,0/SUNW,socal@1,0/sf@0,0/ssd@w2200002037000f96,0:a,raw

or
/devices/io-unit@f,e0200000/sbi@0,0/SUNW,socal@2,0/sf@0,0/ssd@34,0:a,raw

For all SENA IBs (Interface Boards) and Sun Fire 880 SES device controllers on the system, a logical link to the physical paths is kept in the directory /dev/es. An example of a logical link is /dev/es.

The WWN may be used in place of the pathname to select an FC_AL device, SENA subsystem IB, or Sun Fire 880 internal storage subsystem. The WWN is a unique 16 hexadecimal digit value that specifies either the port used to access the device or the device itself. A typical WWN value is:
2200002037000f96

See NOTES for more information on the WWN formats.
For the SPARCstorage Array controller, a typical physical pathname is:

```
/devices/.../.../SUNW,soc@3,0/SUNW,pln@
axxxxxxx,xxxxxxx:ctlr
```

whereas, a typical physical pathname for an RSM controller is:

```
/devices/sbus@1f,0/QLGC,isp@1,10000:devctl
```

In order to make it easier to address the SPARCstorage Array or RSM controller, a logical pathname of the form $cN$ is supported, where $N$ is the logical controller number. luxadm uses the $cN$ name to find an entry in the /dev/rdsk directory of a disk that is attached to the SPARCstorage Array or RSM controller. The /dev/rdsk entry is then used to determine the physical name of the SPARCstorage Array or RSM controller.

For a SPARCstorage Array disk, a typical physical pathname is:

```
/devices/.../.../SUNW,soc@3,0/SUNW,
pln@axxxxxxx,xxxxxxx/ssd@0,0:c,raw
```

and a typical logical pathname is:

```
/dev/rdsk/c1t0d0s2
```

For an RSM a typical physical pathname is:

```
/devices/sbus@1f,0/QLGC,isp@1,10000/ssd@8,0:c,raw
```

and a typical logical pathname is:

```
/dev/rdsk/c2t8d0s2
```

For a disk in a Sun Fire 880 internal storage subsystem, a typical physical pathname is:

```
/devices/pci@8,6000000/SUNW,qlc@2/fp@0,0/ssd@w2100002037a6303c,0:a
```

and a typical logical pathname is:

```
/dev/rdsk/c2t8d0s2
```

For individual FC_AL devices, a typical physical pathname is:

```
/devices/sbus@3.0/SUNW,socal@d,10000/sf@0,0/ssd@w2200002037049fc3,0:a,raw
```

and a typical logical pathname is:

```
/dev/rdsk/c1t0d0s2
```
### luxadm(1M)

**Enclosure**

For SENA, a device may be identified by its enclosure name and slotname:

\[
\text{box} \_\text{name}[, f<\text{slot} \_\text{number}] \\
\text{box} \_\text{name}[, r<\text{slot} \_\text{number}]
\]

- \(\text{box} \_\text{name}\) is the name of the SENA enclosure, as specified by the `enclosure \_name` subcommand. When used without the optional `slot \_number` parameter, the `box \_name` identifies the SENA subsystem IB.
- \(f \) or \(r\) specifies the front or rear slots in the SENA enclosure.
- `slot \_number` specifies the slot number of the device in the SENA enclosure, 0-6 or 0-10.

For a Sun Fire 880 internal storage subsystem, a device may also be identified by its enclosure name and slot name. However, there is only one set of disks:

\[
\text{box} \_\text{name}[, s<\text{slot} \_\text{number}]
\]

- \(\text{box} \_\text{name}\) is the name of the Sun Fire 880 enclosure, as specified by the `enclosure \_name` subcommand. When used without the optional `slot \_number` parameter, `box \_name` identifies the Sun Fire 880 internal storage subsystem services device. Use `s` to specify the disk slot number in the Sun Fire 880 internal storage subsystem, 0-11.

See `disks(1M)` and `devlinks(1M)` for additional information on logical names for disks and subsystems.

#### OPTIONS

The following options are supported by all subcommands:

- `-e` Expert mode. This option is not recommended for the novice user.
- `-v` Verbose mode.

Options that are specific to particular subcommands are described with the subcommand in the **USAGE** section.

#### OPERANDS

The following operands are supported:

- `enclosure`
  - The \(\text{box} \_\text{name}\) of the SENA or Sun Fire 880 internal storage subsystem.

- `fibre \_channel \_HBA \_port`
  - The path to the host controller port. A typical path is:
    ```
    /devices/pci@8,600000/pci@1/SUNW,qlc@4/fp@0,0:devctl
    ```

- `pathname`
  - The logical or physical path of a SENA IB, Sun Fire 880 internal storage subsystem, SPARCstorage Array or RSM controller \((cN \text{ name})\) or disk device. `pathname` can also be the WWN of a SENA IB, SENA disk, or individual FC_AL device.

#### USAGE
Subcommands

<table>
<thead>
<tr>
<th>command</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>display enclosure[,dev]...</td>
<td>Displays enclosure or device specific data.</td>
</tr>
<tr>
<td>display -p pathname...</td>
<td>Displays performance information for the device or subsystem specified by pathname. This option only applies to subsystems that accumulate performance information.</td>
</tr>
<tr>
<td>display -r enclosure[,dev]...</td>
<td>Displays error information for the FC_AL device specified by the pathname, or, if the path is a SENA, for all devices on the loop. The -r option only applies to SENA subsystems and individual FC_AL devices.</td>
</tr>
<tr>
<td>display -v enclosure[,dev]...</td>
<td>Displays in verbose mode, including mode sense data.</td>
</tr>
</tbody>
</table>

download [-s] [-w WWN] [-f filename_path] enclosure... Download the prom image pointed to by filename_path to the SENA subsystem Interface Board unit, the Sun Fire 880 internal storage subsystem, or the SPARClstorage Array controllers specified by the enclosure or pathname. The SPARClstorage Array must be reset in order to use the downloaded code.

When the SENA’s download is complete, the SENA will be reset and the downloaded code executed. If no filename is specified, the default prom image will be used. The default prom image for the SPARClstorage Array controller is in /usr/lib/firmware/ssa/ssafirmware. The default prom image for the SENA is in the directory /usr/lib/locale/C/LC_MESSAGES and is named ibfirmware.

When the Sun Fire 880 internal storage subsystem’s download is complete, the subsystem resets and the downloaded code begins execution. The default firmware image for the Sun Fire 880 internal storage subsystem is in: /usr/platform/SUNW,Sun-Fire-880/lib/images/int_fcbpl_fw.

-s Save. The -s option is used to save the downloaded firmware in the FEPROM. If -s is not specified, the downloaded firmware will not be saved across power cycles.

The -s option does not apply to the SPARClstorage Array controller as it always writes the downloaded firmware into the FEPROM.
The -s option does not apply to the Sun Fire 880 internal storage subsystem as it always stores downloaded firmware in the flash memory.

When using the -s option, the download subcommand modifies the FEPROM on the subsystem and should be used with caution.

-w WWN
Change the SPARCstorage Array controller’s World Wide Name. WWN is a 12-digit hex number; leading zeros are required. The -w option applies only to the SPARCstorage Array. The new SPARCstorage Array controller’s image will have the least significant 6 bytes of the 8-byte World Wide Name modified to WWN.

enclosure_name new_name enclosure | pathname
Change the enclosure name of the enclosure or enclosures specified by the enclosure or pathname. The new name (new_name) must be 16 or less characters. Only alphabetic or numeric characters are acceptable. This subcommand applies only to the SENA and the Sun Fire 880 internal storage subsystem.

failover primary | secondary pathname
Select which Sun Storage T3 storage array partner group controller accesses a given logical volume. If primary is specified, the logical volume is accessed through the primary controller. If secondary is specified, the logical volume is accessed through the secondary controller specified by pathname.

fc_s_download [-F] [-f fcode-file]
Download the fcode contained in the file fcode-file into all the FC/S Sbus Cards. This command is interactive and expects user confirmation before downloading the fcode.

Use fc_s_download only in single-user mode. Using fc_s_download to update a host adapter while there is I/O activity through that adapter will cause the adapter to reset. Newly updated FCode will not be executed or visible until a system reboot.

-f fcode-file
When invoked without the -f fcode-file option, the current version of the fcode in each FC/S Sbus card is printed.

-F
Forcibly downloads the fcode, but the command still expects user confirmation before the download. The version of the FC/S Sbus Cards fcode that was released with this version of the Operating System is kept in the directory usr/lib/firmware/fc_s and is named fc_s_fcode.

fcal_s_download [-f fcode-file]
Download the fcode contained in the file fcode-file into all the FC100/S Sbus Cards. This command is interactive and expects user confirmation before downloading the fcode.
Use `fcal_s_download` only in single-user mode. Using `fcal_s_download` to update a host adapter while there is I/O activity through that adapter will cause the adapter to reset. Newly updated FCode will not be executed or visible until a system reboot.

`-f fcode-file`

When invoked without the `-f` option, the current version of the fcode in each FC100/S Sbus card is printed.

`fcode_download -p`

Locate the installed FC/S, FC100/S, FC100/P, or FC100/2P host bus adapter cards and download the FCode files in `dir-name` to the appropriate cards. The command determines the correct card for each type of file, and is interactive. User confirmation is required before downloading the FCode to each device.

Use `fcode_download` to load FCode only in single-user mode. Using `fcode_download` to update a host adapter while there is I/O activity through that adapter causes the adapter to reset. Newly updated FCode will not be executed or visible until a system reboot.

`-d dir-name`

Download the FCode files contained in the directory `dir-name` to the appropriate adapter cards.

`-p`

Prints the current version of FCode loaded on each card. No download is performed.

`inquiry enclosure[,dev ]... | pathname ...`

Display the inquiry information for the selected device specified by the enclosure or pathname.

`insert_device [ enclosure,dev ...]`

Assist the user in the hot insertion of a new device or a chain of new devices. Refer to notes for limitations on hotplug operations. This subcommand applies only to the SENA, Sun Fire 880 internal storage subsystem, RSM, and individual FC_AL drives. RSM, and individual FC_AL drives. For the SENA, if more than one enclosure has been specified, concurrent hot insertions on multiple busses can be performed. With no arguments to the subcommand, entire enclosures or individual FC_AL drives can be inserted. For the RSM, only one controller can be specified. For the SENA or the Sun Fire 880 internal storage subsystem, this subcommand guides the user interactively through the hot insertion steps of a new device or chain of devices. If a list of disks was entered it will ask the user to verify the list of devices to be inserted is correct, at which point the user can continue or quit. It then interactively asks the user to insert the disk(s) or enclosure(s) and then creates and displays the logical pathnames for the devices.

For the RSM, the following steps are taken:

- Quiesce the bus or buses which support quiescing and unquiescing.
- Inform the user that the device can be safely inserted.
Request confirmation from the user that the device has been inserted.
Unquiesce the bus or buses which support quiescing and unquiescing.
Create the logical device name for the new device.

```
led enclosure,dev ... | pathname ...
```
Display the current state of the LED associated with the disk specified by the enclosure or pathname. This subcommand only applies to subsystems that support this functionality.

```
led_blink enclosure,dev ... | pathname ...
```
Requests the subsystem to start blinking the LED associated with the disk specified by the enclosure or pathname. This subcommand only applies to subsystems that support this functionality.

```
led_off enclosure,dev ... | pathname ...
```
Requests the subsystem to disable (turn off) the LED associated with the disk specified by the enclosure or pathname. On a SENA subsystem, this may or may not cause the LED to turn off or stop blinking depending on the state of the SENA subsystem. Refer to the SENA Array Installation and Service Manual (p/n 802-7573). This subcommand only applies to subsystems that support this functionality.

```
led_on pathname ...
```
Requests the subsystem to enable (turn on) the LED associated with the disk specified by the pathname. This subcommand only applies to subsystems that support this functionality.

```
power_off [ -F ] enclosure[dev] ... | pathname ...
power_off pathname [ enclosure-port ] ... | controller tray-number
```
When a SENA is addressed, this subcommand causes the SENA subsystem to go into the power-save mode. The SENA drives are not available when in the power-save mode. When an Enclosure Services card within the SPARCstorage Array is addressed, the RSM tray is powered down. When a drive in a SENA is addressed the drive is set to the drive off/unmated state. In the drive off/unmated state, the drive is spun down (stopped) and in bypass mode. This command does not apply to the Sun Fire 880 internal storage subsystem.

```
-F
```
The force option only applies to the SENA. Instructs luxadm to attempt to power off one or more devices even if those devices are being used by this host (and are, therefore, busy).

*Warning:* Powering off a device which has data that is currently being used will cause unpredictable results. Users should attempt to power off the device normally (without -F) first, only resorting to this option when sure of the consequences of overriding normal checks.

```
power_on enclosure[dev] ...
```
Causes the SENA subsystem to go out of the power-save mode, when this subcommand is addressed to a SENA. There is no programmatic way to power on
the SPARCstorage Array RSM tray. When this subcommand is addressed to a drive
the drive is set to its normal start-up state. This command does not apply to the Sun
Fire 880 internal storage subsystem.

probe [-p]
Finds and displays information about all attached SENA subsystems, Sun Fire 880
internal storage subsystems, and individual FC_AL devices, including the logical
pathname, the WWNs, and enclosure names. This subcommand warns the user if it
finds different SENAs with the same enclosure names.

-p
Includes the physical pathname in the display.

qlgc_s_download [-f fcode-file]
Download the FCode contained in the file fcode-file into all the FC100/P, FC100/2P
PCI host adapter cards. This command is interactive and expects user confirmation
before downloading the FCode to each device. Only use qlgc_s_download in
single-user mode. Using qlgc_s_download to update a host adapter while there
is I/O activity through that adapter will cause the adapter to reset. Newly updated
FCode will not be executed or visible until a system reboot.

-f fcode-file
When invoked without the -f option, the current version of the FCode in each
FC100/P, FC100/2P PCI card is printed.

release pathname
Release a reservation held on the specified disk. The pathname should be the
physical or logical pathname for the disk. If the pathname is of the SPARCstorage
Array controller, then all of the disks in the SPARCstorage Array will be released.

This subcommand is included for historical and diagnostic purposes only.

remove_device [-F] enclosure[dev]...| pathname...
Assists the user in hot removing a device or a chain of devices. This subcommand
can also be used to remove entire enclosures. This subcommand applies to the
SENA, Sun Fire 880 internal storage subsystem, RSM, and individual FC_AL
drives. Refer to NOTES for limitations on hotplug operations. For the SENA, Sun
Fire 880 internal storage subsystem, and individual FC_AL devices, this
subcommand guides the user through the hot removal of a device or devices.
During execution it will ask the user to verify the list of devices to be removed is
correct, at which point the user can continue or quit. It then prepares the disk(s) or
enclosure(s) for removal and interactively asks the user to remove the disk(s) or
enclosure(s).

For the RSM, the steps taken are:

- Take the device offline.
- Quiesce the bus or buses which support quiescing and unquiescing.
- Inform user that the device can be safely removed.
- Request confirmation from the user that the device has been removed.
- Unquiesce the bus or buses which support quiescing and unquiescing.
- Bring the (now removed) device back online.
I Remove the logical device name for the removed device.

For Multi-Hosted disk, the steps taken are:
I Issue the `luxadm remove_device` command on the first host. When prompted to continue, wait.
I Issue the `luxadm remove_device` command on the secondary hosts. When prompted to continue, wait.
I Continue with the `remove_device` command on the first host. Remove the device when prompted to do so.
I Complete the `luxadm remove_device` command on the additional hosts.

`-F` Instructs `luxadm` to attempt to hot plug one or more devices even if those devices are being used by this host (and are, therefore, busy or reserved), to force the hotplugging operation.

**Warning**: Removal of a device which has data that is currently being used will cause unpredictable results. Users should attempt to hotplug normally (without `-F`) first, only resorting to this option when sure of the consequences of overriding normal hotplugging checks.

`replace_device [-F] pathname`

This subcommand applies only to the RSM. Refer to **NOTES** for limitations on hotplug operations. This subcommand guides the user interactively through the hot replacement of a device.

For the RSM, the steps taken are:
I Take the device offline.
I Quiesce the bus or buses which support quiescing and unquiescing.
I Inform user that the device can be safely replaced.
I Request confirmation from the user that the device has been replaced.
I Unquiesce the bus or buses which support quiescing and unquiescing.
I Bring the device back online.

`-F` Instructs `luxadm` to attempt to hot plug one or more devices even if those devices are busy or reserved, (that is, to force the hotplugging operation).

**Warning**: Removal of a device which has data that is currently being used will cause unpredictable results. Users should attempt to hotplug normally (without `-F`) first, only resorting to this option when sure of the consequences of overriding normal hotplugging checks.

`reserve pathname`

Reserve the specified disk for exclusive use by the issuing host. The pathname used should be the physical or logical pathname for the disk. If the pathname is of the SPARCstorage Array controller, then all of the disks in the SPARCstorage Array will be reserved.

This subcommand is included for historical and diagnostic purposes only.
set_boot_dev [-y] pathname
Set the boot-device variable in the system PROM to the physical device name specified by \textit{pathname}, which can be a block special device or the pathname of the directory on which the boot file system is mounted. The command normally runs interactively requesting confirmation for setting the default boot-device in the PROM. The \texttt{-y} option can be used to run it non-interactively, in which case no confirmation is requested or required.

\textbf{SPARCstorage Array Subcommands}

\begin{itemize}
\item \texttt{start [-t tray-number] pathname ...}
Spin up the specified disk(s). If \textit{pathname} specifies the SPARCstorage Array controller, this action applies to all disks in the SPARCstorage Array.
\item \texttt{-t}
Spin up all disks in the tray specified by \textit{tray-number}. \textit{pathname} must specify the SPARCstorage Array controller.
\end{itemize}

\begin{itemize}
\item \texttt{stop [-t tray-number] pathname ...}
Spin down the specified disk(s). If \textit{pathname} specifies the SPARCstorage Array controller, this action applies to all disks in the SPARCstorage Array.
\item \texttt{-t}
Spin down all disks in the tray specified by \textit{tray-number}. \textit{pathname} must specify the SPARCstorage Array controller.
\end{itemize}

\begin{itemize}
\item \texttt{fast_write [-s] -c pathname}
\item \texttt{fast_write [-s] -d pathname}
\item \texttt{fast_write [-s] -e pathname}
Enable or disable the use of the NVRAM to enhance the performance of writes in the SPARCstorage Array. \textit{pathname} refers to the SPARCstorage Array controller or to an individual disk.
\item \texttt{-s}
Cause the SPARCstorage Array to save the change so it will persist across power-cycles.
\item \texttt{-c}
Enable fast writes for synchronous writes only.
\item \texttt{-d}
Disable fast writes.
\item \texttt{-e}
Enable fast writes.
\end{itemize}

\begin{itemize}
\item \texttt{nvramp_data pathname}
Display the amount of fast write data in the NVRAM for the specified disk. This command can only be used for an individual disk.
\end{itemize}

\begin{itemize}
\item \texttt{perf_statistics -d pathname}
\item \texttt{perf_statistics -e pathname}
Enable or disable the accumulation of performance statistics for the specified SPARCstorage Array controller. The accumulation of performance statistics must be enabled before using the display \texttt{-p} subcommand. This subcommand can be issued only to the SPARCstorage Array controller.
\end{itemize}
-d  Disable the accumulation of performance statistics.

-e  Enable the accumulation of performance statistics.

purge pathname  
Purge any fast write data from NVRAM for one disk, or all disks if the controller is 
specified. This option should be used with caution, usually only when a drive has 
failed.

sync_cache pathname  
Flush all outstanding writes for the specified disk from NVRAM to the media. If 
ppathname specifies the controller, this action applies to all disks in the 
SPARCstorage Array subsystem.

The env_display and alarm* subcommands apply only to an Enclosure Services 
Card (SES) in a RSM tray in a SPARCstorage Array. The RSM tray is addressed by 
using the logical or physical path of the SES device or by specifying the controller 
followed by the tray number. The controller is addressed by cN or the physical path to 
the SSA’s controller.

alarm pathname | controller tray_number  
Display the current state of audible alarm.

alarm_off pathname | controller tray_number  
Disable the audible alarm for this RSM tray.

alarm_on pathname | controller tray_number  
Enable the audible alarm for this RSM tray.

alarm_set controller.pathname | controller tray_number [ seconds ]  
Set the audible alarm setting to seconds.

env_display pathname | controller tray_number  
Display the environmental information for the specified unit.

The following subcommands are for expert use only, and are applicable only to the 
SENA, Sun Fire 880 internal storage subsystem, and fiber channel loops. They should 
only be used by users that are knowledgeable about the SENA subsystem and fiber 
channel loops.

If you specify a disk to an expert subcommand that operates on a bus, the 
subcommand operates on the bus to which the specified disk is attached.

-e bypass [-ab] enclosure.dev  
-e bypass -f enclosure  
Request the enclosure services controller to set the LRC (Loop Redundancy Circuit) 
to the bypassed state for the port and device specified.

This subcommand supports the following options:
**Other Expert Mode Subcommands**

- **-a**
  Bypass port a of the device specified.

- **-b**
  Bypass port b of the device specified.

- **-e dump_map fibre_channel_HBA_port**
  Display WWN data for a target device or host bus adapter on the specified fibre channel port. If there are no target devices on the specified port, an error is returned.

- **-e enable [-ab] enclosure,dev**

- **-e enable -f enclosure**
  Request the enclosure services controller to set the LRC (Loop Redundancy Circuit) to the enabled state for the port and device specified.

  This subcommand supports the following options:

  - **-a**
    Enable port a of the device specified.

  - **-b**
    Enable port b of the device specified.

- **-e forcelip enclosure[,dev] ... | pathname ...**
  Force the link to reinitialize, using the Loop Initialization Primitive (LIP) sequence. The enclosure or pathname can specify any device on the loop. Use the pathname to specify a specific path for multiple loop configurations.

  This is an expert only command and should be used with caution. It will reset all ports on the loop.

- **-e rdls enclosure[,dev] ... | pathname ...**
  Read and display the link error status information for all available devices on the loop that contains the device specified by the enclosure or pathname.

  See **NOTES** for limitations of these subcommands. They should only be used by users that are knowledgeable about the systems they are managing.

  These commands do not apply to the Sun Fire 880 internal storage subsystem.

- **-e bus_getstate pathname**
  Get and display the state of the specified bus.

- **-e bus_quiesce pathname**
  Quiesce the specified bus.

- **-e bus_reset pathname**
  Reset the specified bus only.

- **-e bus_resetall pathname**
  Reset the specified bus and all devices.
-e bus_unquiesce pathname
  Unquiesce the specified bus, the specified device.

- e dev_getstate pathname
  Get and display the state of the specified device.

- e dev_reset pathname
  Reset the specified device.

- e offline pathname
  Take the specified device offline.

- e online pathname
  Put the specified device online.

EXAMPLE 1 Displaying the SENAs and Individual FC_AL Devices on a System
The following example finds and displays all of the SENAs and individual FC_AL devices on a system:

example% luxadm probe

EXAMPLE 2 Displaying an SSA
The following example displays an SSA:

example% luxadm display c1

EXAMPLE 3 Displaying a SENA or Sun Fire 880 Internal Storage Subsystem
The following example displays a SENA or Sun Fire 880 internal storage subsystem:

example% luxadm display /dev/es/ses0

EXAMPLE 4 Displaying Two Subsystems
The following example displays two subsystems using the enclosure names:

example% luxadm display BOB system1

EXAMPLE 5 Displaying Information about the First Disk
The following example displays information about the first disk in the front of the enclosure named BOB. Use f to specify the front disks. Use r to specify the rear disks.

example% luxadm display BOB,f0

EXAMPLE 6 Displaying Information on a Sun Fire 880 Internal Storage Subsystem
The Sun Fire 880 internal storage subsystem has only one set of disks. In this case, use s to specify the slot:

example% luxadm display BOB,s0
EXAMPLE 6 Displaying Information on a Sun Fire 880 Internal Storage Subsystem
(Continued)

EXAMPLE 7 Displaying Information about a SENA disk, an Enclosure, or an Individual
FC_AL Drive
The following example displays information about a SENA disk, an enclosure, or an
individual FC_AL drive with the port WWN of 2200002037001246:
exampel% luxadm display 2200002037001246

EXAMPLE 8 Using Unique Characters to Issue a Subcommand
The following example uses only as many characters as are required to uniquely
identify a subcommand:
exampel% luxadm disp BOB

EXAMPLE 9 Displaying Error Information
The following example displays error information about the loop that the enclosure
BOB is on:
exampel% luxadm display -r BOB

EXAMPLE 10 Downloading New Firmware into the Interface Board
The following example downloads new firmware into the Interface Board in the
enclosure named BOB (using the default path for the file to download):
exampel% luxadm download -s BOB

EXAMPLE 11 Displaying Information from the SCSI Inquiry Command
The following example displays information from the SCSI inquiry command from all
individual disks on the system, using only as many characters as necessary to
uniquely identify the inquiry subcommand:
exampel% luxadm inq /dev/rdsk/c?t?d?s2

EXAMPLE 12 Hotplugging
The following example hotplugs a new drive into the first slot in the front of the
enclosure named BOB:
exampel% luxadm insert_device BOB,f0

The following example hotplugs a new drive into the first slot in the Sun Fire 880
internal storage subsystem named SF880-1:
exampel% luxadm insert_device SF880-1,s0

EXAMPLE 13 Running an Expert Subcommand
The following example runs an expert subcommand. The subcommand forces a loop
initialization on the loop that the enclosure BOB is on:
EXAMPLE 13 Running an Expert Subcommand  (Continued)

example$ luxadm -e forcelip BOB

EXAMPLE 14 Using the Expert Mode Hot Plugging Subcommands

An example of using the expert mode hot plugging subcommands to hot remove a disk on a SSA follows. See NOTES for hot plugging limitations.

The first step reserves the SCSI device so that it can’t be accessed by way of its second SCSI bus:
example# luxadm reserve /dev/rdsk/c1t8d0s2

EXAMPLE 15 Taking the Disk to be Removed Offline

The next two steps take the disk to be removed offline then quiesce the bus:
example# luxadm -e offline /dev/rdsk/c1t8d0s2
example# luxadm -e bus_quiesce /dev/rdsk/c1t8d0s2

EXAMPLE 16 Unquiescing the Bus

The user then removes the disk and continues by unquiescing the bus, putting the disk back online, then unreserving it:
example# luxadm -e bus_unquiesce /dev/rdsk/c1t8d0s2
example# luxadm -e online /dev/rdsk/c1t8d0s2
example# luxadm release /dev/rdsk/c1t8d0s2

Environemnt Variables

See environ(5) for a description of the LANG environment variable that affects the execution of luxadm.

Exit Status

The following exit values are returned:

0  Successful completion.
-1  An error occurred.

Files

usr/lib/firmware/fc_s/fc_s_fcode
usr/lib/firmware/ssa/ssafirmware
usr/lib/locale/C/LC_MESSAGES/ibfirmware

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWluxop</td>
</tr>
</tbody>
</table>

See Also

devlinks(1M), disks(1M), ssaadm(1M), attributes(5), environ(5), ses(7D)

928  man pages section 1M: System Administration Commands ▪ Last Revised 25 May 2002
See the *SENA Array Installation and Service Manual* for additional information on the SENA. Refer to *Tutorial for SCSI use of IEEE Company_ID*, R. Snively, for additional information regarding the IEEE extended WWN. See *SEE ALSO*. Currently, only some device drivers support hot plugging. If hot plugging is attempted on a disk or bus where it is not supported, an error message of the form:

```
luxadm: can't acquire 'PATHNAME': No such file or directory
```

will be displayed.

You must be careful not to quiesce a bus that contains the root or the `/usr` filesystems or any swap data. If you do quiesce such a bus a deadlock can result, requiring a system reboot.
m64config(1M)

<table>
<thead>
<tr>
<th>NAME</th>
<th>m64config, SUNWm64_config – configure the M64 Graphics Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>/usr/sbin/m64config [-defaults] [-depth 8</td>
</tr>
<tr>
<td></td>
<td>[-dev device-filename] [-file machine</td>
</tr>
<tr>
<td></td>
<td>[-res video-mode [now</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>m64config configures the M64 Graphics Accelerator and some of the X11 window system defaults for M64.</td>
</tr>
</tbody>
</table>

The first form of m64config stores the specified options in the OWconfig file. These options will be used to initialize the M64 device the next time the window system is run on that device. Updating options in the OWconfig file provides persistence of these options across window system sessions and system reboots.

The second and third forms which invoke only the -prconf, -propt, -help, and -res ? options do not update the OWconfig file. Additionally, for the third form all other options are ignored.

Options may be specified for only one M64 device at a time. Specifying options for multiple M64 devices requires multiple invocations of m64config.

Only M64-specific options can be specified through m64config. The normal window system options for specifying default depth, default visual class and so forth are still specified as device modifiers on the openwin command line. See the OpenWindows Desktop Reference Manual for details.

The user can also specify the OWconfig file that is to be updated. By default, the machine-specific file in the /etc/openwin directory tree is updated. The -file option can be used to specify an alternate file to use. For example, the system-global OWconfig file in the /usr/openwin directory tree can be updated instead.

Both of these standard OWconfig files can only be written by root. Consequently, the m64config program, which is owned by the root user, always runs with setuid root permission.

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>-defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resets all option values to their default values.</td>
</tr>
<tr>
<td></td>
<td>-depth 8</td>
</tr>
<tr>
<td></td>
<td>Sets the depth (bits per pixel) on the device. Possible values are 8, 24, or 32 (where 32 uses 24 bits per pixel). Log out of the current window system session and log back in for the change to take effect. 24 or 32 enables TrueColor graphics in the window system, at the expense of screen resolution.</td>
</tr>
</tbody>
</table>
The 32 setting enables simultaneous 8- and 24-bit color windows on m64 devices that support it. With setting 32, -propt shows depth 32 and -prconf shows depth 24. To check window depth, use the xwininfo utility. The xwininfo utility is usually shipped in the package containing frame buffer software (such as SUNWxwplt).

The maximum resolution that is available with 24 bits per pixel depends on the amount of memory installed on the PGX card. For 2-MB PGX cards, the maximum available resolution is 800x600. For 4-MB cards, it is 1152x900. For 8-MB cards, it is 1920x1080. If there is not enough memory for the specified combination of resolution and depth, m64config displays an error message and exits.

-dev device-filename
Specifies the M64 special file. If not specified, m64config will try /dev/fbs/m64 through /dev/fbs/m648 until one is found.

-file machine|system
Specifies which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.

-help
Prints a list of the m64config command line options, along with a brief explanation of each.

-prconf
Prints the M64 hardware configuration. The following is a typical display using the -prconf option:

--- Hardware Configuration for /dev/fbs/m640 ---
ASIC: version 0x41004754
DAC: version 0x0
PROM: version 0x0
Card possible resolutions: 640x480x60, 800x600x75, 1024x768x60
1024x768x70, 1024x768x75, 1280x1024x75, 1280x1024x76
1280x1024x60, 1152x900x66, 1152x900x76, 1280x1024x67
960x680x112S, 960x680x108S, 640x480x601, 768x575x501, 1280x800x76
1440x900x76, 1600x1000x66, 1600x1000x76, vga, svga, 1152, 1280 stereo, ntsc, pal
Monitor possible resolutions: 720x400x70, 720x400x85, 640x480x60
640x480x67, 640x480x72, 640x480x75, 800x600x56, 800x600x60
800x600x72, 800x600x75, 832x624x75, 1024x768x85, 1024x768x60
1024x768x70, 1024x768x75, 1280x1024x75, 1280x1024x76, 1152x900x66
1152x900x76, 1280x1024x67, 960x680x112S, vga, svga, 1152, 1280 stereo
Possible depths: 8, 24
Current resolution setting: 1280x1024x76
Current depth: 8

-propt
Prints the current values of all M64 options in the OWconfig file specified by the -file option for the device specified by the -dev option. Prints the values of
options as they will be in the OWconfig file after the call to m64config completes. The following is a typical display using the -propt option:

--- OpenWindows Configuration for /dev/fbs/m640 ---
OWconfig: machine
Video Mode: not set
Depth: 8

-res video-mode [ now | try | noconfirm | nocheck ]
Specifies the video mode used to drive the monitor connected to the specified M64 device. Video modes are built-in. video-mode has the format of widthxheightxrate. width is the screen width in pixels, height is the screen height in pixels, and rate is the vertical frequency of the screen refresh. As a convenience, -res also accepts formats with @ preceding the refresh rate instead of x. For example, 1280x1024@76.

A list of valid video modes is obtained by issuing the following command:
m64config -res '?'. Note that the ? must be quoted. Not all resolutions are supported by both the video board and by the monitor. m64config will not permit you to set a resolution the board does not support, and will request confirmation before setting a resolution the monitor does not support.

Symbolic names

For convenience, some video modes have symbolic names defined for them. Instead of the form widthxheightxrate, one of these names may be supplied as the argument to -res. The meaning of the symbolic name none is that when the window system is run the screen resolution will be the video mode that is currently programmed in the device.

<table>
<thead>
<tr>
<th>Name</th>
<th>Corresponding Video Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>svga</td>
<td>1024x768x60</td>
</tr>
<tr>
<td>1152</td>
<td>1152x900x76</td>
</tr>
<tr>
<td>1280</td>
<td>1280x1024x76</td>
</tr>
<tr>
<td>none</td>
<td>(video mode currently programmed in device)</td>
</tr>
</tbody>
</table>

The -res option also accepts additional sub-options immediately following the video mode specification. Any or all of these may be present.

-nocheck
If present, the normal error checking based on the monitor sense code will be suspended. The video mode specified by the user will be accepted regardless of whether it is appropriate for the currently attached monitor. This option is useful if a different monitor is to be connected to the M64 device. Use of this option implies noconfirm as well.
noconfirm

Using the -res option, the user could potentially put the system into an unusable state, a state where there is no video output. This can happen if there is ambiguity in the monitor sense codes for the particular code read. To reduce the chance of this, the default behavior of m64config is to print a warning message to this effect and to prompt the user to find out if it is okay to continue. The noconfirm option instructs m64config to bypass this confirmation and to program the requested video mode anyway. This option is useful when m64config is being run from a shell script.

now

If present, not only will the video mode be updated in the OWconfig file, but the M64 device will be immediately programmed to display this video mode. (This is useful for changing the video mode before starting the window system).

It is inadvisable to use this sub-option with m64config while the configured device is being used (for example, while running the window system); unpredictable results may occur. To run m64config with the now sub-option, first bring the window system down. If the now sub-option is used within a window system session, the video mode will be changed immediately, but the width and height of the affected screen won’t change until the window system is exited and reentered again. Consequently, this usage is strongly discouraged.

try

If present, the specified video mode will be programmed on a trial basis. The user will be asked to confirm the video mode by typing y within 10 seconds. Or the user may terminate the trial before 10 seconds are up by typing any character. Any character other than ‘y’ or carriage return is considered a no and the previous video mode will be restored and m64config will not change the video mode in the OWconfig file (other options specified will still take effect). If a carriage return is typed, the user is prompted for a yes or no answer on whether to keep the new video mode. This option implies the now sub-option. (See the warning note on the now sub-option).

DEFAULTS

For a given invocation of m64config command line if an option does not appear on the command line, the corresponding OWconfig option is not updated; it retains its previous value.

When the window system is run, if an M64 option has never been specified by m64config, a default value is used. The option defaults are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dev</td>
<td>/dev/fbs/m640</td>
</tr>
</tbody>
</table>
The default for the -res option of none means that when the window system is run the screen resolution will be the video mode that is currently programmed in the device.

This provides compatibility for users who are used to specifying the device resolution through the PROM. On some devices (for example, GX) this is the only way of specifying the video mode. This means that the PROM ultimately determines the default M64 video mode.

EXAMPLES

EXAMPLE 1 Switching the Monitor Type

The following example switches the monitor type to the maximum resolution of 1280 x 1024 at 76 Hz:

example@ /usr/sbin/m64config -res 1280x1024x76

FILES

/dev/fbs/m64 0  
    device special file

/etc/openwin/server/etc/OWconfig  
    system config file

/usr/lib/fbconfig/SUNWm64_config  
    symbolic link to /usr/sbin/m64config

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWm64cf</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5), m64(7D)

OpenWindows Desktop Reference Manual
mail.local reads the standard input up to an end-of-file and appends it to each user’s mail file (mailbox). This program is intended to be used by sendmail(1M) as a mail delivery agent for local mail. It is not a user interface agent.

Messages are appended to the user’s mail file in the /var/mail directory. The user must be a valid user name.

Each delivered mail message in the mailbox is preceded by a “Unix From line” with the following format:

```
From sender_address time_stamp
```

The `sender_address` is extracted from the SMTP envelope address (the envelope address is specified with the `-f` option).

A trailing blank line is also added to the end of each message.

The mail files are locked with a .lock file while mail is appended.

The mail files are created with mode 660, owner is set to `recipient`, and group is set to `mail`. If the “biff” service is returned by `getservbyname(3SOCKET)`, the biff server is notified of delivered mail. This program also computes the `Content-Length:` header which will be used by the mailbox reader to mark the message boundary.

The following options are supported:

- `-f sender` Specifies the ”envelope from address” of the message. This flag is technically optional, but should be used.
- `-d` Specifies the recipient of the message. This flag is also optional and is supported here for backward compatibility. That is, `mail.local recipient` is the same as `mail.local -d recipient`.
- `-l` Turn on LMTP mode.
- `-r from` Specify the sender’s name (for backward compatibility).
- `-7` Do not advertise 8BITMIME support in LMTP mode.
- `-b` Return a permanent error instead of a temporary error if a mailbox exceeds quota.

The following operand is supported:

- `recipient` The recipient of the mail message.

The following exit values are returned:

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
Successful operation.

An error occurred.

FILES
/tmp/local.XXXXXX temporary files
/tmp/lochd.XXXXXX temporary files
/var/mail/user_name user's mail file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWandmu</td>
</tr>
</tbody>
</table>

SEE ALSO
mail(1), comsat(1M), sendmail(1M), getservbyname(3SOCKET), attributes(5)
makedbm(1M)

NAME
makedbm – make a dbm file, or get a text file from a dbm file

SYNOPSIS
    [-d yp_domain_name] [-m yp_master_name] [-S delimiter]
    [-D number_of_delimiters] infile outfile

makedbm [-u dbmfilename]

DESCRIPTION
The makedbm utility takes the infile and converts it to a pair of files in ndbm format
(see ndbm(3C)), namely outfile.pag and outfile.dir. Each line of the input file is
converted to a single dbm record. All characters up to the first TAB or SPACE form the
key, and the rest of the line is the data. If a line ends with ‘\’ (backslash), the data for
that record is continued on to the next line. makedbm does not treat ‘#’ (pound-sign) as
a special character.

Because makedbm is mainly used in generating dbm files for the NIS name service, it
generates a special entry with the key yp_last_modified, which is the date of infile (or the
current time, if infile is ‘-’). The entries that have keys with the prefix yp_ are
interpreted by NIS server utilities.

OPTIONS
The following options are supported:

-b Insert the YP_INTERDOMAIN into the output. This key
    causes ypserv(1M) to use DNS for host name and
    address lookups for hosts not found in the maps.

-d yp_domain_name Create a special entry with the key yp_domain_name.

-D number_of_delimiters Specify number_of_delimiters to skip before forming the
    key.

-E Delimiters are escaped.

-i yp_input_file Create a special entry with the key yp_input_file.

-l Lower case. Convert the keys of the given map to
    lower case, so that, for example, host name matches
    succeed independent of upper or lower case
    distinctions.

-m yp_master_name Create a special entry with the key yp_master_name. If
    no master host name is specified, yp_master_name is set
    to the local host name.

-o yp_output_name Create a special entry with the key yp_output_name.

-s Secure map. Accept connections from secure NIS
    networks only.

-S delimiter Specify the delimiter to use instead of the default
    delimiter for forming the key.

-u dbmfilename Undo a dbm file. Prints out the file in text format, one
    entry per line, with a single space separating keys from
makedbm(1M)

values.

OPERANDS
The following operands are supported:

infile  Input file for makedbm. If infile is ‘−’ (dash), the standard input is read.

outfile One of two output files in ndbm format: outfile.pag and outfile.dir.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypserv(1M), ndbm(3C), attributes(5)
makemap – create database maps for sendmail


makemap creates the database maps used by the keyed map lookups in sendmail(1M). makemap reads from the standard input and outputs to the specified mapname.

In all cases, makemap reads lines from the standard input consisting of two words separated by white space. The first is the database key, the second is the value. The value may contain %n strings to indicated parameter substitution. Literal percents should be doubled (%%). Blank lines and lines beginning with # are ignored.

makemap handles three different database formats. Database format is selected using the maptype parameter. See OPERANDS.

The following options are supported:

- **-c cachesize** Use the specified hash and B-Tree cache size (cachesize).
- **-C file** Use the specified sendmail configuration file (file) for looking up the TrustedUser option.
- **-d** Allow duplicate keys in the map. This is only allowed on B-Tree format maps. If two identical keys are read, both be inserted into the map.
- **-e** Allow empty value (right hand side).
- **-f** Normally all upper case letters in the key are folded to lower case. This flag disables that behavior. This is intended to mesh with the -f flag in the K line in sendmail.cf. The value is never case folded.
- **-l** List supported map types.
- **-N** Include the null byte that terminates strings in the map. This must match the -N flag in the K line in sendmail.cf
- **-o** Append to an old file. This allows you to augment an existing file.
- **-r** Allow replacement of existing keys. Normally makemap complains if you repeat a key, and does not do the insert.
- **-s** Ignore safety checks on maps being created. This includes checking for hard or symbolic links in world writable directories.
- **-t delim** Use the specified delimiter (delim) instead of white space.
- **-u** Dump (unmap) the content of the database to standard output.
- **-v** Verbosely print what it is doing.

The following operands are supported:
makemap(1M)

mapname
File name of the database map being created.

maptype
Specifies the database format. The following maptype parameters are available:
- dbm Specifies DBM format maps.
- btree Specifies B-Tree format maps.
- hash Specifies hash format maps.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNW_sndmu</td>
</tr>
</tbody>
</table>

SEE ALSO
editmap(1M), sendmail(1M), attributes(5)
The `makeuuid` command generates UUIDs (Universal Unique Identifiers) conforming to the OSF DCE specification for UUIDs. The specification states:

"A UUID is an identifier that is unique across both space and time, with respect to the space of all UUIDs. A UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying very persistent objects across a network.

"The generation of UUIDs does not require a registration authority for each single identifier. Instead, it requires a unique value over space for each UUID generator. This spatially unique value is [normally] specified as an IEEE 802 address, which is usually already applied to network-connected systems."

The `makeuuid` command generates one or more UUIDs on the standard output. The `makeuuid` command supports the following options:

- `-e ether`
  Supplies an alternate address to be used in the generation of the UUIDs. Normally, the system's Ethernet address is acquired and used during the generation of a UUID. However, this requires root privileges to open and read the network devices. If this is not possible, you must supply an alternate Ethernet address.

- `-n count`
  Generate multiple UUIDs. This option generates the specified number of UUIDs, one per line. Using this form is more efficient than, and functionally equivalent to, calling the `makeuuid` command multiple times. This can be used, for example, when a large number of UUIDs need to be generated for a given application.

- `-R root`
  Use `root` as the root filesystem path when updating the shared state file (see FILES). The shared state file must be writable by the user running `makeuuid`, otherwise no UUIDs will be generated and the command will return in failure.

Normally, you run the `makeuuid` command with root privileges, as the Ethernet address and state files can be easily accessed and updated. If this is not possible, you must use the `-R` and `-e` options to specify an alternate root and Ethernet address to use when calculating the UUIDs.

**EXAMPLE 1 Generating Multiple UUIDs**

The following command generates 3000 UUIDs:

```
example# makeuuid -n 3000
```

**EXAMPLE 2 Invoking Without Root Privileges**

If you cannot obtain root privileges, you must specify an alternate Ethernet address and state file location:
Examp**le 2 Invoking Without Root Privileges  (Continued)**

e**xamp**le% makeuuid -e 11:22:33:44:55:66 -R /export/root/example2

**EXIT STATUS**
The following exit values are returned:

- **0**  Successful completion.
- **1**  Out of memory.
- **-1** Invalid Ethernet address given or access denied.

**FILES**
/var/sadm/system/uuid_state  
UUID state file. Use of time values is one way that UUID generators, such as makeuuid, guarantee uniqueness. A state file is a mechanism that allows makeuuid to "remember" the last time value it used so it can increment that value for use in a new UUID. See the Internet Draft "UUIDs and GUIDs," dated February 4, 1998, for details on the state file mechanism.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwsr2</td>
</tr>
</tbody>
</table>

**SEE ALSO**
prodreg(1M), intro(3), libwsreg(3LIB), attributes(5)

**NOTES**
The formal UUID specification is in the OSF DCE specification, available at www.opengroup.org. As of the date of publication of this man page, a copy of the specification is available at:

http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

Sun has no control over the availability of documents on the www.opengroup.org web site.
mdmonitord(1M)

NAME
mdmonitord – daemon to monitor metadevices

SYNOPSIS
/usr/sbin/mdmonitord [-t time_interval]

DESCRIPTION
The mdmonitord utility is part of Solaris Volume Manager. It checks the accessibility
of the physical components of a metadevice. There are two methods for checking
metadevices:

■ At fixed time intervals.
■ When a metadevice fails. Metadevice failure generates an error event which
  triggers a check of all metadevices.

OPTIONS
The following options are supported:

-t Time interval in seconds. The default value is 0, which causes
probes to occur only upon an error. If you want to run
mdmonitord at a regular interval, a value of 1800 (seconds, every
half hour) is recommended as a starting point.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO
metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M),
metaoffline(1M), metanonline(1M), metaparam(1M), metareplace(1M),
metaroot(1M), metaset(1M), metastat(1M), metattach(1M), md.tab(4),
md.cf(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide

NOTES
Since frequent probes can affect performance, it is recommended that the intervals
between probes be limited.

This daemon is started at boot time by S95svm.sync in /etc/rc2.d.
medstat(1M)

NAME    medstat – check the status of mediator hosts for a given diskset

SYNOPSIS /usr/sbin/medstat [-q] -s setname

DESCRIPTION If a specified diskset has been configured for mediators, medstat attempts to contact these hosts to see if they are accessible and returns the results of the communication.

OPTIONS

-q             This optional argument disables the printing of informative text. When used with -q, medstat still prints error messages and returns a result code.

-s setname     Specifies the name of a diskset on which medstat will work.

EXAMPLES

EXAMPLE 1 Checking diskset

This example checks the mediator hosts for the selected diskset.

# medstat -s relo-red

The name of the diskset is relo-red. The medstat command prints the status for each mediator host. Additionally, if the mediator quorum is met, either through a “golden” mediator host or because half+1 of the mediator hosts respond, the exit code is 0. If the quorum is not met, then the exit code is 1. If no mediator hosts have been configured for the named diskset, the exit code is 2. The status field will contain one of the following values: Unreachable, Bad, Fatal, or Ok, where Unreachable indicates an RPC/communication problem, Bad indicates an error in the mediator data, Fatal indicates any other error condition, and Ok indicates no error conditions.

FILES

/etc/lvm/meddb     Contains the mediator data for a host that has been selected as a mediator host.

EXIT STATUS

The following exit values are returned:

0      Successful completion.
>0     An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metadfs(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.cf(4), md.tab(4), mddb.cf(4), mddb(4), mediator(7D)
NOTES

This command is designed for use in the high availability product.
metaclear(1M)

NAME
metaclear – delete active metadevices and hot spare pools

SYNOPSIS
/usr/sbin/metaclear -h
/usr/sbin/metaclear [-s setname] -a [-f]
/usr/sbin/metaclear component
/usr/sbin/metaclear [-s setname] [-f] metadevice... hot_spare_pool...
/usr/sbin/metaclear [-s setname] -r [-f] metadevice... hot_spare_pool...
/usr/sbin/metaclear [-s setname] -p component
/usr/sbin/metaclear [-s setname] -p metadevice

DESCRIPTION
The metaclear command deletes the specified metadevice or hot_spare_pool, or
purges all soft partitions from the designated component. Once a metadevice or hot
spare pool is deleted, it must be re-created using metainit before it can be used
again.

Any metadevice currently in use (open) cannot be deleted.

OPTIONS
Root privileges are required for all of the following options except -h.

 -a                  Deletes all metadevices and configured hot spare pools
                     in the set named by -s, or the local set by default.
 -f                  Deletes (forcibly) a metadevice that contains a
                     subcomponent in an error state.
 -h                  Displays usage message.
 -p                  Deletes (purges) all soft partitions from the specified
                     metadevice or component.
 -r                  Recursively deletes specified metadevices and hot
                     spare pools, but does not delete metadevices on which
                     others depend.
 -s setname          Specifies the name of the diskset on which metaclear
                     will work. Using the -s option causes the command to
                     perform its administrative function within the specified
                     diskset. Without this option, the command performs its
                     function on local metadevices and/or hot spare pools.

OPERANDS
metadevice ...       Specifies the name(s) of the metadevice(s) to be deleted.
component            Specifies the c*d*t*s* name(s) of the components
                      containing soft partitions to be deleted.
hot_spare_pool ...   Specifies the name(s) of the hot spare pools to be
d                      deleted in the form hspnnn, where nnn is a number in
                      the range 000-999.
EXAMPLES

EXAMPLE 1 Deleting Various Devices

The following example deletes a metadevice named d10.

```
# metaclear /dev/md/dsk/d10
```

The following example deletes all local metadevices and hot spare pools on the system.

```
# metaclear -a
```

The following example deletes a mirror, d20, with an submirror in an error state.

```
# metaclear -f d20
```

The following example deletes a hot spare pool, hsp001.

```
# metaclear hsp001
```

The following example deletes a soft partition, d23.

```
# metaclear d23
```

The following example purges all soft partitions on the slice c2t3d5s2 if those partitions are not being used by other metadevices or are not open.

```
# metaclear -p c2t3d5s2
```

The following example purges soft partitions from a metadevice.

```
# metaclear -p d2
```

```
d3: Soft Partition is cleared
d4: Soft Partition is cleared
d5: Soft Partition is cleared
```

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metamonline(1M), metaparam(1M), metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)
NAME
metadb – create and delete replicas of the metadevice state database

SYNOPSIS
/sbin/metadb -h
/sbin/metadb [-s setname]
/sbin/metadb [-s setname] -a [-f] [-k system-file] mddb nnn
/sbin/metadb [-s setname] -a [-f] [-k system-file] [-c number] [-l length]
slice...
/sbin/metadb [-s setname] -d [-f] [-k system-file] mddb nnn
/sbin/metadb [-s setname] -d [-f] [-k system-file] slice...
/sbin/metadb [-s setname] -i
/sbin/metadb [-s setname] -p [-k system-file] [mddb.cf-file]

DESCRIPTION
The metadb command creates and deletes replicas of the metadevice state database. State database replicas can be created on dedicated slices, or on slices that will later become part of a simple metadevice (concatenation or stripe), RAID5 metadevice, or trans metadevice. Do not place state database replicas on fabric-attached storage, SANs, or other storage that is not directly attached to the system and available at the same point in the boot process as traditional SCSI or IDE drives. See NOTES.

The metadevice state database contains the configuration of all metadevices and hot spare pools in the system. Additionally, the metadevice state database keeps track of the current state of metadevices and hot spare pools, and their components. Solaris Volume Manager automatically updates the metadevice state database when a configuration or state change occurs. A submirror failure is an example of a state change. Creating a new metadevice is an example of a configuration change.

The metadevice state database is actually a collection of multiple, replicated database copies. Each copy, referred to as a replica, is subject to strict consistency checking to ensure correctness.

Replicated databases have an inherent problem in determining which database has valid and correct data. To solve this problem, Volume Manager uses a majority consensus algorithm. This algorithm requires that a majority of the database replicas be available before any of them are declared valid. This algorithm strongly encourages the presence of at least three initial replicas, which you create. A consensus can then be reached as long as at least two of the three replicas are available. If there is only one replica and the system crashes, it is possible that all metadevice configuration data can be lost.

The majority consensus algorithm is conservative in the sense that it will fail if a majority consensus cannot be reached, even if one replica actually does contain the most up-to-date data. This approach guarantees that stale data will not be accidentally used, regardless of the failure scenario. The majority consensus algorithm accounts for the following: the system will stay running with exactly half or more replicas; the system will panic when less than half the replicas are available; the system will not reboot without one more than half the total replicas.
When used with no options, the `metadb` command gives a short form of the status of the metadevice state database. Use `metadb -i` for an explanation of the flags field in the output.

The initial state database is created using the `metadb` command with both the `-a` and `-f` options, followed by the slice where the replica is to reside. The `-a` option specifies that a replica (in this case, the initial) state database should be created. The `-f` option forces the creation to occur, even though a state database does not exist. (The `-a` and `-f` options should be used together only when no state databases exist.)

Additional replicas beyond those initially created can be added to the system. They contain the same information as the existing replicas, and help to prevent the loss of the configuration information. Loss of the configuration makes operation of the metadevices impossible. To create additional replicas, use the `metadb -a` command, followed by the name of the new slice(s) where the replicas will reside. All replicas that are located on the same slice must be created at the same time.

To delete all replicas that are located on the same slice, the `metadb -d` command is used, followed by the slice name.

When used with the `-i` option, `metadb` displays the status of the metadevice state databases. The status can change if a hardware failure occurs or when state databases have been added or deleted.

To fix a replica in an error state, delete the replica and add it back again.

The metadevice state database (`mddb`) also contains a list of the replica locations for this set (local or shared diskset).

The local set `mddb` can also contain host and drive information for each of the shared disksets of which this node is a member. Other than the diskset host and drive information stored in the local set `mddb`, the local and shared diskset `mddb`s are functionality identical.

The `mddbs` are written to during the resync of a mirror or during a component failure or configuration change. A configuration change or failure can also occur on a single replica (removal of a `mddb` or a failed disk) and this causes the other replicas to be updated with this failure information.

**OPTIONS**

Root privileges are required for all of the following options except `-h` and `-i`.

The following options can be used with the `metadb` command. Not all the options are compatible on the same command line. Refer to the above synopsis line to see the supported use of the options.

```
-a  Attach a new database device. The `/kernel/drv/md.conf` file is automatically updated with the new information and the `/etc/lvm/mddb.cf` file is updated as well. An alternate way to create replicas is by defining them in the `/etc/lvm/md.tab` file and specifying the assigned name at the command line in the
```

950  man pages section 1M: System Administration Commands • Last Revised 19 Jun 2003
form, `md$dbnm`, where $m$ is a two-digit number given to the replica definitions. Refer to the `md.tab(4)` man page for instructions on setting up replicas in that file.

- **-c number**
  Specifies the number of replicas to be placed on each device. The default number of replicas is 1.

- **-d**
  Deletes all replicas that are located on the specified slice. The `/kernel/drv/md.conf` file is automatically updated with the new information and the `/etc/lvm/mddb.cf` file is updated as well.

- **-f**
  The `-f` option is used to create the initial state database. It is also used to force the deletion of replicas below the minimum of one. (The `-a` and `-f` options should be used together only when no state databases exist.)

- **-h**
  Displays a usage message.

- **-i**
  Inquire about the status of the replicas. The output of the `-i` option includes characters in front of the device name that represent the status of the state database. Explanations of the characters are displayed following the replica status and are as follows:

  - **d**
    replica does not have an associated device ID.
  - **o**
    replica active prior to last `md$db` configuration change
  - **u**
    replica is up to date
  - **l**
    locator for this replica was read successfully
  - **c**
    replica’s location was in `/etc/lvm/mddb.cf`
  - **p**
    replica’s location was patched in kernel
  - **m**
    replica is master, this is replica selected as input
  - **W**
    replica has device write errors
  - **a**
    replica is active, commits are occurring to this
  - **M**
    replica had problem with master blocks
  - **D**
    replica had problem with data blocks
F  replica had format problems
S  replica is too small to hold current database
R  replica had device read errors
-k system-file  Specifies the name of the kernel file where the replica information should be written. The default system-file is /kernel/drv/md.conf. This option is for use with the local diskset only.
-l length  Specifies the size of each replica. The default length is 8192 blocks, which should be appropriate for most configurations.
-p  Specifies updating the system file (/kernel/drv/md.conf) with entries from the /etc/lvm/mddb.cf file. This option is normally used to update a newly built system before it is booted for the first time. If the system has been built on a system other than the one where it will run, the location of the mddb.cf on the local machine can be passed as an argument. The system file to be updated can be changed using the -k option. This option is for use with the local diskset only.
-s setname  Specifies the name of the diskset on which the metadb command will work. Using the -s option will cause the command to perform its administrative function within the specified diskset. Without this option, the command will perform its function on local database replicas.
slice  Specifies the logical name of the physical slice (partition), such as /dev/dsk/c0t0d0s2.

EXAMPLES

EXAMPLE 1 Creating Initial State Database Replicas
The following example creates the initial state database replicas on a new system.

```
# metadb -a -f c0t0d0s7 c0t1d0s2 c1t0d0s7 c1t1d0s2
```

The -a and -f options force the creation of the initial database and replicas. You could then create metadevices with these same slices, making efficient use of the system.

EXAMPLE 2 Adding Two Replicas on Two New Disks
This example shows how to add two replicas on two new disks that have been connected to a system currently running Volume Manager.

```
# metadb -a c0t2d0s2 c1t1d0s2
```
EXAMPLE 3 Deleting Two Replicas

This example shows how to delete two replicas from the system. Assume that replicas have been set up on /dev/dsk/c0t2d0s2 and /dev/dsk/c1t1d0s2.

```
# metadb -d c0t2d0s2 c1t1d0s2
```

Although you can delete all replicas, you should never do so while metadevices still exist. Removing all replicas causes existing metadevices to become inoperable.

FILES

/etc/lvm/mddb.cf  Contains the location of each copy of the metadevice state database.
/etc/lvm/md.tab  Workspace file for metadevice database configuration.
/kernel/drv/md.conf  Contains database replica information for all metadevices on a system. Also contains Solaris Volume Manager configuration information.

EXIT STATUS

The following exit values are returned:

0  successful completion

>0  an error occurred

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdr</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

Solaris Volume Manager Administration Guide

NOTES

Replicas cannot be stored on fabric-attached storage, SANs, or other storage that is not directly attached to the system. Replicas must be on storage that is available at the same point in the boot process as traditional SCSI or IDE drives. A replica can be stored on:

- a dedicated local disk partition
- a local partition that will be part of a volume
- a local partition that will be part of a UFS logging device
metadevadm(1M)

NAME
metadevadm – update metadevice information

SYNOPSIS

DESCRIPTION
The metadevadm command facilitates the administration of device ID entries in Solaris Volume Manager. Use this command when the pathname stored in the metadevice state database no longer correctly addresses the device or when a disk drive has had its device ID changed.

OPTIONS
Root privileges are required for all of the following options except -h.

The following options are supported.

- h
  Provide a help display.

- l
  Specify that metadevadm log to syslog(3C). metadevadm logs to the the DAEMON facility at the ERR level by default. See syslog.conf(4) for additional information on changing logging levels.

  Use this option anytime. It is most useful in startup scripts and less useful interactively.

  This option requires root privileges.

- n
  Emulate the effect of a command, without making any changes to the system.

  This option requires root privileges.

- r
  Recompute the pathname and disk specifier (including slice) associated with all devices in the metadevice state database if a device ID is present for the device. Use this option when the disk has been moved or readdressed.

  This option requires root privileges.

- u disk_specifier
  Obtain the device ID associated with the disk specifier (for example, c1t2d0) of a device and update the metadevice state database. If the device ID has not changed this option does nothing. Use this option when a disk drive has had its device ID changed during a firmware upgrade or due to changing the controller of a storage subsystem.

  This option requires root privileges.

- v
  Execute in verbose mode. This option has no effect when used with -u. Verbose is the default.

  This option requires root privileges.
EXAMPLE 1  Updating Device ID of Disk

The following example updates the device c2t3d0:

```
# metadevadm -u c2t3d0
Updating SLVM device relocation information for c2t3d0.
Old device reloc information: id19280192391293123012012010012012091398
New device reloc information: id19380192391293123012012010012012091398
```

The following example is a variation of the preceding, using the full pathname.

```
# metadevadm -u /dev/dsk/c2t3d0
```

The following example uses the -n option, which means that the command is emulated, but does not take effect. Note that when the -v option is used with -u, -v has no effect (verbose is the default).

```
# metadevadm -u -v -n c2t3d0
Updating SLVM device relocation information for c2t3d0.
Old device reloc information: id19280192391293123012012010012012091398
New device reloc information: id19380192391293123012012010012012091398
```

EXAMPLE 2  Recomputing Pathnames

In the following example, all device names are valid.

```
# metadevadm -r
Disk movement detected.
Updating device names in SLVM.
```

In the following example, once again device names are valid.

```
# metadevadm -r -v
Disk movement detected.
Updating device names in SLVM.
c0t0d0s0 changed to c0t0d1s0 from device relocation information
id12098123lkmklasdjaaasdkfjadfjakds
```

In the following example, metadevadm detects an invalid device name.

```
# metadevadm -r
Invalid device relocation information detected in SLVM.
Please check status of following disk(s):
c3t0d0
```

RETURN VALUES  The following exit values are returned:

0  Command was successful.
1  metadevadm encountered an error condition.
2  An invalid device ID was detected when using the -r option. This is for use in the rc2.d script. See init.d(4).
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaparam(1M), metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), syslog(3C), md.tab(4), md.cf(4), mddb.cf(4), syslog.conf(4), attributes(5)

Solaris Volume Manager Administration Guide
metahs – manage hot spares and hot spare pools

SYNOPSIS
/usr/sbin/metahs [-s setname] -a all component
/usr/sbin/metahs [-s setname] -a hot_spare_pool [component]
/usr/sbin/metahs [-s setname] -d hot_spare_pool [component]
/usr/sbin/metahs [-s setname] -d all component
/usr/sbin/metahs [-s setname] -e component
/usr/sbin/metahs [-s setname] -r component-old
/usr/sbin/metahs [-s setname] -r all component-old component-new
/usr/sbin/metahs [-s setname] -i [hot_spare_pool...]

DESCRIPTION

The metahs command manages existing hot spares and hot spare pools. It is used to add, delete, enable, and replace components (slices) in hot spare pools. Like the metainit command, the metahs command can also create an initial hot spare pool. The metahs command does not replace a component of a metadevice. This function is performed by the metareplace command.

Hot spares are always in one of three states: available, in-use, or broken. Available hot spares are running and ready to accept data, but are not currently being written to or read from. In-use hot spares are currently being written to and read from. Broken hot spares are out of service and should be repaired. The status of hot spares is displayed when metahs is invoked with the -i option.

Solaris Volume Manager supports storage devices and logical volumes, including hot spares, greater than 1 terabyte (TB) when Solaris is running a 64-bit kernel.

If a system with large volumes or hot spares is rebooted under a 32-bit Solaris kernel, the large volumes are visible through metastat output, but they cannot be accessed, modified or deleted, and no new large volumes can be created. Any volumes or file systems on a large volume in this situation are also unavailable. If a system with large volumes is rebooted under a version of Solaris that lacks large volume support, Solaris Volume Manager will not start. All large volumes must be removed before Solaris Volume Manager runs under another version of the Solaris Operating Environment.

OPTIONS

Root privileges are required for any of the following options except -i.

The following options are supported:

- a all component
  Add component to all hot spare pools. all is not case sensitive.

- a hot_spare_pool [component]
  Add the component to the specified hot_spare_pool. hot_spare_pool is created if it does not already exist.
The following operands are supported:

component The logical name for the physical slice (partition) on a disk drive, such as /dev/dsk/c0t0d0s2.

hot_spare_pool Hot spare pools must be of the form hspnnn, where nnn is a number in the range 000-999.

OPERANDS

EXAMPLES

EXAMPLE 1 Adding a Hot Spare to a Hot Spare Pool

The following example adds a hot spare /dev/dsk/c0t0d0s7 to a hot spare pool hsp003:

# metahs -a hsp003 c0t0d0s7

When the hot spare is added to the pool, the existing order of the hot spares already in the pool is preserved. The new hot spare is added at the end of the list of hot spares in the hot spare pool specified.
EXAMPLE 2 Adding a Hot Spare to All Currently Defined Pools

This example adds a hot spare to the hot spare pools that are currently defined:

```
# metahs -a all c0t0d0s7
```

The keyword all in this example specifies adding the hot spare, /dev/dsk/c0t0d0s7, to all the hot spare pools.

EXAMPLE 3 Deleting a Hot Spare

This example deletes a hot spare, /dev/dsk/c0t0d0s7, from a hot spare pool, hsp003:

```
# metahs -d hsp003 c0t0d0s7
```

When you delete a hot spare, the position of the remaining hot spares in the pool changes to reflect the new order. For instance, if in this example /dev/dsk/c0t0d0s7 were the second of three hot spares, after deletion the third hot spare would move to the second position.

EXAMPLE 4 Replacing a Hot Spare

This example replaces a hot spare that was previously defined:

```
# metahs -r hsp001 c0t1d0s0 c0t3d0s0
```

In this example, the hot spare /dev/dsk/c0t1d0s0 is replaced by /dev/dsk/c0t3d0s0. The order of the hot spares does not change.

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>&gt;0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide
Do not create large (>1 TB) volumes if you expect to run the Solaris Operating Environment with a 32-bit kernel or if you expect to use a version of the Solaris Operating Environment that lacks large volume support.
NAME
metainit – configure metadevices

SYNOPSIS
/sbin/metainit -h
/sbin/metainit [generic options] concat/stripe numstripes width component...
[-i interlace]
/sbin/metainit [width component... [-i interlace]] [-h hot_spare_pool]
/sbin/metainit [generic options] mirror -m submirror [read_options]
[write_options] [pass_num]
/sbin/metainit [generic options] RAID -r component... [-i interlace]
[-h hot_spare_pool] [-k] [-o original_column_count]
/sbin/metainit [generic options] trans -t master [log]
/sbin/metainit [generic options] hot_spare_pool [hotspare...]
/sbin/metainit [generic options] metadevice-name
/sbin/metainit [generic options] -a
/sbin/metainit [generic options] softpart -p [-e] component size
/sbin/metainit -r

DESCRIPTION
The metainit command configures metadevices and hot spares according to the
information specified on the command line. Alternatively, you can run metainit so
that it uses configuration entries you specify in the /etc/lvm/md.tab file (see
md.tab(4)). All metadevices must be set up by the metainit command before they
can be used.

Solaris Volume Manager supports storage devices and logical volumes greater than 1
terabyte (TB) when Solaris is running a 64-bit kernel. Support for large volumes is
automatic. If a device greater than 1 TB is created, Solaris Volume Manager configures
it appropriately and without user intervention.

If a system with large volumes is rebooted under a 32-bit Solaris kernel, the large
volumes are visible through metastat output. Large volumes cannot be accessed,
modified or deleted, and no new large volumes can be created. Any volumes or file
systems on a large volume in this situation are unavailable. If a system with large
volumes is rebooted under a version of Solaris that lacks large volume support, Solaris
Volume Manager will not start. You must remove all large volumes before Solaris
Volume Manager runs under another version of the Solaris Operating Environment.

If you edit the /etc/lvm/md.tab file to configure metadevices, specify one complete
configuration entry per line. You then run the metainit command with either the -a
option, to activate all metadevices you entered in the /etc/lvm/md.tab file, or with
the metadevice name corresponding to a specific configuration entry.
metainit does not maintain the state of the volumes that would have been created when metainit is run with both the -a and -n flags. Any volumes in md.tab that have dependencies on other volumes in md.tab are reported as errors when metainit -a -n is run, although the operations might succeed when metainit -a is run. See md.tab(4).

Volume Manager never updates the /etc/lvm/md.tab file. Complete configuration information is stored in the metadevice state database, not md.tab. The only way information appears in md.tab is through editing it by hand.

When setting up a disk mirror, the first step is to use metainit create a one-on-one concatenation for the root slice. See EXAMPLES.

The following options are supported:

**Generic Options**

Root privileges are required for all of the following options except -h.

The following generic options are supported:

- **-f** Forces the metainit command to continue even if one of the slices contains a mounted file system or is being used as swap. This option is required when configuring mirrors on root (/), swap, and /usr.

- **-h** Displays usage message.

- **-n** Checks the syntax of your command line or md.tab entry without actually setting up the metadevice. If used with -a, all devices are checked but not initialized.

- **-r** Only used in a shell script at boot time. Sets up all metadevices that were configured before the system crashed or was shut down. The information about previously configured metadevices is stored in the metadevice state database (see metadb(1M)).

- **-s setname** Specifies the name of the diskset on which metainit works. Without the -s option, the metainit command operates on your local metadevices and/or hotspares.

**CONCAT/STRIPE OPTIONS**

The following concat/stripe options are supported:

- **concat/stripe** Specifies the metadevice name of the concatenation, stripe, or concatenation of stripes being defined.

- **numstripes** Specifies the number of individual stripes in the metadevice. For a simple stripe, numstripes is always 1. For a concatenation, numstripes is equal to the number of slices. For a concatenation of stripes, numstripes varies according to the number of stripes.

- **width** Specifies the number of slices that make up a stripe. When width is greater than 1, the slices are striped.
component
The logical name for the physical slice (partition) on a disk drive, such as /dev/dsk/c0t0d0s2. For RAID level 5 metadevices, a minimum of three slices is necessary to enable striping of the parity information across slices.

-i interlace
Specifies the interlace size. This value tells Volume Manager how much data to place on a slice of a striped or RAID level 5 metadevice before moving on to the next slice. interlace is a specified value, followed by either ‘k’ for kilobytes, ‘m’ for megabytes, or ‘b’ for blocks. The characters can be either uppercase or lowercase. The interlace specified cannot be less than 16 blocks, or greater than 100 megabytes. If interlace is not specified, it defaults to 16 kilobytes.

-h hot_spares_pool
Specifies the hot_spares_pool to be associated with the metadevice. If you use the command line, the hot spare pool must have been previously created by the metainit command before it can be associated with a metadevice. The hot_spares_pool must be of the form hspnnn, where nnn is a number in the range 000-999. Use /-hhspnnn when the concat/stripe being created is to be used as a submirror.

The following mirror options are supported:

mirror -m submirror
Specifies the metadevice name of the mirror. The -m indicates that the configuration is a mirror. submirror is a metadevice (stripe or concatenation) that makes up the initial one-way mirror. Volume Manager supports a maximum of four-way mirroring. When defining mirrors, first create the mirror with the metainit command as a one-way mirror. Then attach subsequent submirrors using the metattach command. This method ensures that Volume Manager properly syncs the mirrors. (The second and any subsequent submirrors are first created using the metainit command.)

read_options
The following read options for mirrors are supported:

-g Enables the geometric read option, which results in faster performance on sequential reads.

-x Directs all reads to the first submirror. This should only be used when the devices comprising the first submirror are substantially faster than those of the second mirror. This flag cannot be used with the -g flag.

If neither the -g nor -x flags are specified, reads are made in a round-robin order from all submirrors in the mirror. This enables load balancing across the submirrors.

write_options
The following write options for mirrors are supported:
Performs serial writes to mirrors. The first submirror write completes before the second is started. This may be useful if hardware is susceptible to partial sector failures. If -S is not specified, writes are replicated and dispatched to all mirrors simultaneously.

pass_num
A number in the range 0-9 at the end of an entry defining a mirror that determines the order in which that mirror is resynced during a reboot. The default is 1. Smaller pass numbers are resynced first. Equal pass numbers are run concurrently. If 0 is used, the resync is skipped. 0 should be used only for mirrors mounted as read-only, or as swap.

The following RAID level 5 options are supported:

RAID -r
 Specifies the name of the RAID level 5 metadevice. The -r specifies that the configuration is RAID level 5.

-k
 For RAID level 5 metadevices, informs the driver that it is not to initialize (zero the disk blocks) due to existing data. Only use this option to recreate a previously created RAID level 5 device.

Use the -k option with extreme caution. This option sets the disk blocks to the OK state. If any errors exist on disk blocks within the metadevice, Volume Manager might begin fabricating data. Instead of using the -k option, you might want to initialize the device and restore data from tape.

-o original_column_count
 For RAID level 5 metadevices, used with the -k option to define the number of original slices in the event the originally defined metadevice was grown. This is necessary since the parity segments are not striped across concatenated devices.

Use the -o option with extreme caution. This option sets the disk blocks to the OK state. If any errors exist on disk blocks within the metadevice, Volume Manager might begin fabricating data. Instead of using the -o option, you might want to initialize the device and restore data from tape.

The following trans options are supported:

trans -t master [ log ]
trans specifies the name of the trans metadevice, which consists of master and log devices, or just a master device. The -t specifies that the configuration is a trans metadevice. If log is not specified when you create the trans metadevice, no logging can take place until a logging device is provided by using the metattach command. master and log can be simple, mirror, or RAID level 5 metadevices. They cannot be trans metadevices. master should be a UFS file system. You can configure an existing file system for logging by creating a trans metadevice as follows: make the existing file system into the master trans device, then create the log device on a separate, unused slice. The minimum log size is 1 Mbyte of disk space. Under heavy sustained loads, small logs detract from performance because old data must
be copied from the log to the file system before new data can be logged. The maximum log size is 1 Gbyte. Large logs might increase performance. However, logs larger than 64 Mbytes can have negligible performance benefits.

The following soft partition options are supported:

```
softpart -p [-e] component size
```

The `softpart` argument specifies the name of the soft partition. The `-p` specifies that the configuration is a soft partition.

The `-e` specifies that the entire disk specified by `component` as `c*t*d*` should be repartitioned and reserved for soft partitions. The specified component is repartitioned such that slice 7 reserves space for system (state database replica) usage and slice 0 contains all remaining space on the disk. Slice 7 is a minimum of 4MB, but can be larger, depending on the disk geometry. The newly created soft partition is placed on slice 0 of the device.

The `component` argument specifies the disk (`c*t*d*`), slice (`c*t*d*s*`), or meta device (`d*`) from which to create the soft partition. The `size` argument determines the space to use for the soft partition and can be specified in `K` or `k` for kilobytes, `M` or `m` for megabytes, `G` or `g` for gigabytes, `T` or `t` for terabyte (one terabyte is the maximum size), and `B` or `b` for blocks (sectors).

The following hot spare pool options are supported:

```
hot_spare_pool [ hotspare... ]
```

When used as arguments to the `metainit` command, `hot_spare_pool` defines the name for a hot spare pool, and `hotspare...` is the logical name for the physical slice(s) for availability in that pool. `hot_spare_pool` is a number of the form `hspnnn`, where `nnn` is a number in the range 000-999.

The following `md.tab` file options are supported:

```
metadevice-name
```

When the `metainit` command is run with a `metadevice-name` as its only argument, it searches the `/etc/lvm/md.tab` file to find that name and its corresponding entry. The order in which entries appear in the `md.tab` file is unimportant. For example, consider the following `md.tab` entry:

```
d0 2 1 c1t0d0s0 1 c2t1d0s0
```

When you run the command `metainit d0`, it configures metadevice `d0` based on the configuration information found in the `md.tab` file.

```
-a
```

Activates all metadevices defined in the `md.tab` file.

`metainit` does not maintain the state of the volumes that would have been created when `metainit` is run with both the `-a` and `-n` flags. If a device `d0` is created in the first line of the `md.tab` file, and a later line in `md.tab` assumes the existence of `d0`, the later line fails when `metainit -an` runs (even if it would succeed with `metainit -a`).
EXAMPLE 1 Creating a One-on-One Concatenation

The following command creates a one-on-one concatenation for the root slice. Such a command is the first step you take when setting up a mirror for the root slice (and any other slice that cannot be unmounted). The -f option is required to create a volume with an existing file system.

```
# metainit -f d1 1 1 c0t0d0s0
```

The preceding command makes d1 a one-on-one concatenation, using the root slice. You can then enter:

```
# metainit d0 -m d1
```

...to make a one-way mirror of the root slice.

EXAMPLE 2 Concatenation

All drives in the following examples have the same size of 525 Mbytes.

This example shows a metadevice, /dev/md/dsk/d7, consisting of a concatenation of four slices.

```
# metainit d7 4 1 c0t1d0s0 1 c0t2d0s0 1 c0t3d0s0 1 /dev/dsk/c0t4d0s0
```

The number 4 indicates there are four individual stripes in the concatenation. Each stripe is made of one slice, hence the number 1 appears in front of each slice. The first disk sector in all of the above devices contains a disk label. To preserve the labels on devices /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and /dev/dsk/c0t4d0s0, the metadisk driver must skip at least the first sector of those disks when mapping accesses across the concatenation boundaries. Because skipping only the first sector would create an irregular disk geometry, the entire first cylinder of these disks is skipped. This allows higher level file system software to optimize block allocations correctly.

EXAMPLE 3 Stripe

This example shows a metadevice, /dev/md/dsk/d15, consisting of two slices.

```
# metainit d15 1 2 c0t1d0s2 c0t2d0s2 -i 32k
```

The number 1 indicates that one stripe is being created. Because the stripe is made of two slices, the number 2 follows next. The optional -i followed by 32k specifies the interlace size as 32 Kbytes. If the interlace size were not specified, the stripe would use the default value of 16 Kbytes.

EXAMPLE 4 Concatentation of Stripes

This example shows a metadevice, /dev/md/dsk/d75, consisting of a concatenation of two stripes of three disks.

```
# metainit d75 2 3 c0t1d0s2 c0t2d0s2 \ 
  c0t3d0s2 -i 16k \ 
  c1t1d0s2 c1t2d0s2 c1t3d0s2 -i 32k
```
EXAMPLE 4 Concatenation of Stripes  (Continued)

On the first line, the -i followed by 16k specifies that the stripe interlace size is 16 Kbytes. The second set specifies the stripe interlace size as 32 Kbytes. If the second set did not specify 32 Kbytes, the set would use the default interlace value of 16 Kbytes. The blocks of each set of three disks are interlaced across three disks.

EXAMPLE 5 Mirroring

This example shows a two-way mirror, /dev/md/dsk/d50, consisting of two submirrors. This mirror does not contain any existing data.

# metainit d51 1 l c0t1d0s2
# metainit d52 1 l c0t2d0s2
# metainit d50 -m d51
# metattach d50 d52

In this example, two submirrors, d51 and d52, are created with the metainit command. These two submirrors are simple concatenations. Next, a one-way mirror, d50, is created using the -m option with d51. The second submirror is attached later using the metattach command. When creating a mirror, any combination of stripes and concatenations can be used. The default read and write options in this example are a round-robin read algorithm and parallel writes to all submirrors.

EXAMPLE 6 Logging (trans)

This example shows trans metadevice, /dev/md/dsk/d1, with mirrors for the master and logging devices. This trans does not contain any existing data.

# metainit d11 1 l c0t1d0s2
# metainit d12 1 l c0t2d0s2
# metainit d10 -m d11
# metattach d10 d12
# metattach d20 -m d21
# metattach d20 d22
# metainit d1 -t d10 d20

This example begins by defining four concatenations, d11, d12, d21, and d22. Next, mirror d10 is defined, followed by mirror d20. The mirrors are initially defined as one-way mirrors, then the second submirrors are attached later with the metattach command. Finally, the trans metadevice d1 is defined, with d10 as the master device and d20 as the logging device by using the -t option.

EXAMPLE 7 RAID Level 5

This example shows a RAID level 5 device, d80, consisting of three slices:

# metainit d80 -r c1t0d0s2 c1t1d0s2 c1t3d0s2 -i 20k

In this example, a RAID level 5 metadevice is defined using the -r option with an interlace size of 20 Kbytes. The data and parity segments are striped across the slices, c1t0d0s2, c1t2d0s2, and c1t3d0s2.
EXAMPLE 8 Soft Partition

The following example shows a soft partition device, d1, built on metadevice d100 and 100 Mbytes (indicated by 100M) in size:

```
# metainit d1 -p d100 100M
```

The preceding command creates a 100-Mbyte soft partition on the d100 metadevice. This metadevice could be a RAID level 5, stripe, concatenation, or mirror.

EXAMPLE 9 Soft Partition on Full Disk

The following example shows a soft partition device, d1, built on disk c3t4d0:

```
# metainit d1 -p -e c3t4d0 9Gb
```

In this example, the disk is repartitioned and a soft partition is defined to occupy all 9 Gbytes of disk c3t4d0s0.

EXAMPLE 10 Hot Spare

This example shows a two-way mirror, /dev/md/dsk/d10, and a hot spare pool with three hot spare components. The mirror does not contain any existing data.

```
# metainit hsp001 c2t2d0s2 c3t2d0s2 c1t2d0s2
# metainit d41 1 1 c1t0d0s2 -h hsp001
# metainit d42 1 1 c3t0d0s2 -h hsp001
# metainit d40 -m d41
# metattach d40 d42
```

In the above example, a hot spare pool, hsp001, is created with three disks used as hot spares. Next, two submirrors are created, d41 and d42. These are simple concatenations. The metainit command uses the -h option to associate the hot spare pool hsp001 with each submirror. A one-way mirror is then defined using the -m option. The second submirror is attached using the metattach command.

FILES

/etc/lvm/md.tab

Contains list of metadevice and hot spare configurations for batch-like creation.

WARNINGS

This section contains information on warnings.

Devices and Volumes Greater Than 1 TB

Do not create large (>1 TB) volumes if you expect to run the Solaris Operating Environment with a 32-bit kernel or if you expect to use a version of the Solaris Operating Environment that lacks large volume support.

Multi-Way Mirror

Do not use the metainit command to create a multi-way mirror. Rather, create a one-way mirror with metainit then attach additional submirrors with metattach. When the metattach command is not used, no resync operations occur and data could become corrupted.

If you use metainit to create a mirror with multiple submirrors, the following message is displayed:
WARNING: This form of metainit is not recommended.
The submirrors may not have the same data.
Please see ERRORS in metainit(1M) for additional information.

Write-On-Write Problem
When mirroring data in Solaris Volume Manager, transfers from memory to the disks do not all occur at exactly the same time for all sides of the mirror. If the contents of buffers are changed while the data is in-flight to the disk (called write-on-write), then different data can end up being stored on each side of a mirror.

This problem can be addressed by making a private copy of the data for mirror writes, however, doing this copy is expensive. Another approach is to detect when memory has been modified across a write by looking at the dirty-bit associated with the memory page. Volume Manager uses this dirty-bit technique when it can.
Unfortunately, this technique does not work for raw I/O or direct I/O. By default, Volume Manager is tuned for performance with the liability that mirrored data might be out of sync if an application does a "write-on-write" to buffers associated with raw I/O or direct I/O.

Without mirroring, you were not guaranteed what data would actually end up on media, but multiple reads would return the same data. With mirroring, multiple reads may return different data. The following line can be added to /etc/system to cause a stable copy of the buffers to be used for all raw I/O and direct I/O write operations.

```
set md_mirror:md_mirror_wow_flg=0x20
```

Setting this flag degrades performance.

EXIT STATUS
The following exit values are returned:
0 Successfully completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdr</td>
</tr>
</tbody>
</table>

SEE ALSO
metaclear(1M), metab(1M), metadetach(1M), metahs(1M), metaoffline(1M), metaoeline(1M), metaparam(1M), metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.cf(4), md.tab(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide

LIMITATIONS
Recursive mirroring is not allowed; that is, a mirror cannot appear in the definition of another mirror.

Recursive logging is not allowed; that is, a trans metadevice cannot appear in the definition of another metadevice.
Stripes, concatenations, and RAID level 5 metadevices must consist of slices only.
Mirroring of RAID level 5 metadevices is not allowed.
Soft partitions can be built on raw devices, or on stripes, RAID level 5, or mirrors.
RAID level 5 or stripe metadevices can be built directly on soft partitions.
The metaoffline command prevents Solaris Volume Manager from reading and writing to the submirror that has been taken offline. While the submirror is offline, all writes to the mirror will be kept track of (by region) and will be written when the submirror is brought back online. The metaoffline command can also be used to perform online backups: one submirror is taken offline and backed up while the mirror remains accessible. (However, if this is a two-way mirror, data redundancy is lost while one submirror is offline.) The metaoffline command differs from the metadetach command because it does not sever the logical association between the submirror and the mirror. To completely remove a submirror from a mirror, use the metadetach command.

A submirror that has been taken offline will only remain offline until the metaonline command is invoked or the system is rebooted.

When the metaonline command is used, reading from and writing to the submirror resumes. A resync is automatically invoked to resync the regions written while the submirror was offline. Writes are directed to the submirror during resync. Reads, however, will come from a different submirror. Once the resync operation completes, reads and writes are performed on that submirror. The metaonline command is only effective on a submirror of a mirror that has been taken offline.

Note: A submirror that has been taken offline with the metaoffline command can only be mounted as read-only.

Root privileges are required for all of the following options except -h.

- Forces offlineing of submirrors that have slices requiring maintenance.
- Displays usage message.
- Specifies the name of the diskset on which metaoffline and metaonline will work. Using the -s option will cause the command to perform its administrative function within the specified diskset. Without this option, the command will perform its function on local metadevices.
- Specifies the metadevice name of the mirror from which the submirror will be either taken offline or put online.
- Specifies the metadevice name of the submirror to be either taken offline or put online.
EXAMPLES

EXAMPLE 1 Taking submirror offline

This example takes one submirror, d9, offline from mirror d10.

# metaoffline d10 d9

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide
metaparam – modify parameters of metadevices

```
/usr/sbin/metaparam -h

/usr/sbin/metaparam [-s setname] [concat/stripe or RAID5 options]

class/stripe RAID

/usr/sbin/metaparam [-s setname] [mirror options] mirror
```

**DESCRIPTION**

The `metaparam` command is used to display or modify current parameters of metadevices.

If just the metadevice is specified as an argument to the `metaparam` command, the current settings are displayed.

The `metaparam` command enables most metadevice (volume) parameters to be changed. Only the interlace value cannot be changed by `metaparam`, because it is established when the metadevice is created and cannot be changed thereafter.

**OPTIONS**

Root privileges are required for all of the following options except `-h`.

- `-h` Displays usage message.
- `-s setname` Specifies the name of the diskset on which `metaparam` will work. Using the `-s` option will cause the command to perform its administrative function within the specified diskset. Without this option, the command will perform its function on local metadevices.

**CONCAT/STRIPE OR RAID5 OPTIONS**

- `-h hot_spare_pool` | `none` Specifies the hot spare pool to be used by a metadevice. If `none` is specified, the metadevice is disassociated with the hot spare pool assigned to it. If the metadevice is currently using a hot spare, then `metaparam` cannot replace the hot spare pool.

- `concat/stripe` | `RAID` Specifies the metadevice name of the concatenation, stripe, or concatenation of stripes, or of the RAID5 metadevice.

**MIRROR OPTIONS**

- `-r roundrobin` | `geometric` | `first` Modifies the read option for a mirror. The `-r` option must be followed by either `roundrobin`, `geometric`, or `first`. `roundrobin`, which is the default action under the `metainit` command, specifies reading the disks in a round-robin (load balancing) method. `geometric` allows for faster performance on sequential reads. `first` specifies reading only from the first submirror.

- `-w parallel` | `serial` Modifies the write option for a mirror. The `-w` option must be followed by either `parallel` or `serial`. `parallel`, the default action under the `metainit` command, specifies that all writes are parallel. `serial` specifies that all writes are serial.
metaparam(1M)

- \texttt{p pass\_number}
  A number from 0-to-9 that specifies the order in which a mirror is resynced during reboot. The default is 1. Smaller pass numbers are resynced first. Equal pass numbers are run concurrently. If 0 is used, the mirror resync is skipped. 0 should only be used for mirrors mounted as read-only, or as \texttt{swap}.

\textit{mirror}
  Specifies the metadevice name of the mirror.

**EXAMPLES**

**EXAMPLE 1** Associating Hot Spare Pool with RAID5 Metadevice

This example associates a hot spare pool, \texttt{hsp005}, with a RAID5 metadevice, \texttt{d80}.

\begin{verbatim}
    # metaparam -h hsp005 d80
\end{verbatim}

**EXAMPLE 2** Changing Read Option to Geometric

This example changes the read option on a mirror \texttt{d50} from the default of roundrobin to geometric.

\begin{verbatim}
    # metaparam -r geometric d50
\end{verbatim}

**EXIT STATUS**

The following exit values are returned:

\begin{itemize}
  \item 0 \hspace{1em} Successful completion.
  \item >0 \hspace{1em} An error occurred.
\end{itemize}

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{ATTRIBUTE TYPE} & \textbf{ATTRIBUTE VALUE} \\
\hline
Availability & SUNWmdu \\
\hline
\end{tabular}
\end{table}

**SEE ALSO**

\begin{itemize}
  \item metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), \hspace{1em}
  \item metaoffline(1M), metaonline(1M), metareplace(1M), metaroot(1M), \hspace{1em}
  \item metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), \hspace{1em}
  \item md.cf(4), md/db.cf(4)
\end{itemize}

\textit{Solaris Volume Manager Administration Guide}
The `metarecover` command scans a specified component to look for soft partition configuration information and to regenerate the configuration.

**OPTIONS**

The `metarecover` command line options are as follows:

- `-d` Recover soft partitions in the metadevice state database from the extent headers on the device. Options `-d` and `-m` are mutually exclusive.

- `-m` Regenerates the extent headers and reapplies them to the underlying device based on the soft partitions listed in the metadevice state database. Options `-d` and `-m` are mutually exclusive.

- `-n` Does not actually perform the operation, but shows the output or errors that would have resulted from the operation, had it been run.

- `-p` Regenerates soft partitions based on the metadevice state database or extent headers on the underlying device. If neither `-d` nor `-m` are specified, this option compares the soft partition information in the metadevice state database to the extent headers.

- `-s setname` Specifies the name of the diskset on which `metarecover` will work. Using the `-s` option causes the command to perform its function within the specified diskset. Without the `-s` option, the `metarecover` command operates on the metadevices and/or hot spare pools in the local diskset.

- `-v` Verbose mode, displaying the changes being made.

**OPERANDS**

The following operand is supported:

- `component` Specifies the `c*t*d*s*` number of the disk or slice containing the partitions, or the device name (for example, `d10`) of the metadevice containing the partitions.

**EXAMPLES**

**EXAMPLE 1 Update Metadevice State Database Based on Disk Extent Headers**

A disk containing soft partitions is moved from one system to another. The system administrator would like to use the existing soft partitions. `metarecover` will update the metadevice state database based on the extent headers on the disk.

```
# metarecover -v c0t3d0s2 -p -d
```

System Administration Commands  975
EXAMPLE 2 Update Metadevice State Database Based on Incomplete Soft Partition Creation
A system crashes in the middle of creating a new soft partition. The soft partition is in the creating state and the driver will not let that device be opened. `metarecover` will rewrite the extent headers for the partially created soft partition and mark it as `Okay`.

```
# metarecover -v c0t3d0s2 -p -m
```

EXAMPLE 3 Update Extent Headers Based on Metadevice State Database
Someone accidentally overwrote a portion of a disk leaving extent headers destroyed. `metarecover` will rewrite the extent headers to ensure a valid soft partition configuration, though user data will not be recovered.

```
# metarecover -v d5 -m
```

EXAMPLE 4 Validate Soft Partition Configuration
To validate the existing soft partition configuration, use `metarecover` with only the `-p` flag.

```
# metarecover c0t3d0s2 -p
```

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdr</td>
</tr>
</tbody>
</table>

SEE ALSO
`metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.cf(4), md.tab(4), mddb.cf(4), attributes(5)`

`Solaris Volume Manager Administration Guide`
metarename – rename metadevice or switch layered metadevice names

/usr/sbin/metarename [-s setname] metadevice1 metadevice2
/usr/sbin/metarename [-s setname] [-f] -x metadevice1 metadevice2
/usr/sbin/metarename -h

DESCRIPTION

There are two ways to use metarename, one with and one without the -x option. The first method (without -x) renames an existing metadevice to a new name. This makes managing the metadevice namespace easier. The metadevice being renamed cannot be mounted or open, nor can the new name already exist. For example, to rename a metadevice that contains a mounted file system, you would first need to unmount the file system.

With the second way to use metarename, using the -x option, metarename switches (exchanges) the names of an existing layered metadevice and one of its subdevices. (In Solaris Volume Manager terms, a layered metadevice can be either a mirror or a trans metadevice.) The -x option enables you to switch the metadevice names of a mirror and one of its submirrors, or a trans metadevice and its master device.

metarename -x makes it easier to mirror or unmirror an existing stripe or concatenation, and to create or remove a trans of an existing metadevice.

When used to mirror an existing stripe or concatenation, you must stop access to the device. For example, if the device contains a mounted file system, you must first unmount the file system before doing the rename.

The metarename -x command can also be used to create a trans metadevice from an existing metadevice, or to untrans the device. This applies only to the master device. A logging device cannot be created or removed with metarename. Before you can rename a trans device, you must detach the logging device. Then you must stop access to the trans metadevice itself.

You cannot rename or switch metadevices that are in an error state or that have subcomponents in an error state, or metadevices actively using a hot spare replacement.

You can only switch metadevices that have a direct child/parent relationship. You could not, for example, directly exchange a stripe in a mirror that is a master device with the trans metadevice.

You must use the -f flag when switching members of a trans metadevice.

Only metadevices can be switched, not slices.

OPTIONS

- f
  Force the switching of trans metadevice members.

- h
  Display a help message.
metarename(1M)

-\textit{s} setname
  Specifies the name of the diskset on which \texttt{metarename} will work. Using the \textit{-s}
  option will cause the command to perform its administrative function within the
  specified diskset. Without this option, the command will perform its function on
  the local metadevices.

-\textit{x}
  Exchange the metadevice names \texttt{metadevice1} and \texttt{metadevice2}.

\texttt{metadevice1}
  Specifies the metadevice to be renamed or switched.

\texttt{metadevice2}
  Specifies the target metadevice name for the rename or switch operation.

EXAMPLES

\textbf{EXAMPLE 1 Renaming a Metadevice}

This example renames a metadevice named \texttt{d10} to \texttt{d100}. Note that \texttt{d100} must not
exist for the rename to succeed.

\texttt{# metarename d10 d100}

\textbf{EXAMPLE 2 Creating a Two-Way Mirror}

This example creates a two-way mirror from an existing stripe named \texttt{d1} with a
mounted file system, /home2.

\texttt{# metainit d2 1 1 c13d0s1}
\texttt{# metainit -f d20 -m d1}
\texttt{# umount /home2}
\texttt{# metarename -x d20 d1}
\texttt{# metattach d1 d2}
\texttt{# mount /home2}

First, a second concatenation \texttt{d2}, is created. (\texttt{d1} already exists.) The \texttt{metainit}
command creates a one-way mirror, \texttt{d20}, from \texttt{d1}. Next, you umount the file system
and switch \texttt{d1} for \texttt{d20}, making \texttt{d1} the top-level device (mirror). You attach the second
submirror, \texttt{d2}, to create a two-way mirror. Lastly, you remount the file system.

\textbf{EXAMPLE 3 Mounting Mirrored File System on Stripe}

This example takes an existing mirror named \texttt{d1} with a mounted file system, and ends
up with the file system mounted on a stripe \texttt{d1}.

\texttt{# umount /fs2}
\texttt{# metarename -x d1 d20}
\texttt{# metadetach d20 d1}
\texttt{# metaclear -r d20}
\texttt{# mount /fs2}

First, you unmount the file system, then switch the mirror \texttt{d1} and its submirror \texttt{d20}.
This makes the mirror into \texttt{d20}. Next, you detach \texttt{d1} from \texttt{d20}, then delete the mirror
\texttt{d20} and its other submirror. You then remount the file system.
EXAMPLE 4 Creating Trans Metadevice from Existing RAID Level 5 Metadevice

This example creates a trans metadevice from an existing RAID level 5 metadevice named d1 which contains the file system /myhome.

```
# umount /myhome
# metainit d21 -t d1
# metarename -f -x d21 d1
# metattach d1 d0
# mount /myhome
```

You umount the file system before using the metainit command to create the trans metadevice d21, with d1 as the master device. You then switch d21 and d1, making d1 the top-level metadevice (trans metadevice). A logging device d0 is attached with the metattach command. You then remount the file system.

EXAMPLE 5 Deleting Trans Metadevice

This example deletes a trans metadevice named d10 while its mount point is /myhome. The master device, which is a stripe, is named d2. The logging device, also a stripe, is named d5.

```
# umount /myhome
# metadetach d10
# metarename -f -x d10 d2
# metaclear d2
# metaclear d5
# fsck /dev/md/dsk/d10
# mount /myhome
```

You umount the file system first, then detach the trans metadevice’s logging device. The trans metadevice is switched with the master device, making the trans metadevice d2 and the underlying stripe d10. You clear the trans metadevice d2 and the logging device d5. d10 must be fsck’d, and then the file system is remounted.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
ATTRIBUTE TYPE | ATTRIBUTE VALUE
--------------- | ------------------
Availability    | SUNWmdu
```

SEE ALSO

metaclear(1M), metainit(1M), metastat(1M), attributes(5)

Solaris Volume Manager Administration Guide
Renaming and exchanging metadevice names can only be used for metadevices. A physical slice cannot be renamed to a metadevice, nor can a metadevice be exchanged with a physical slice name.

Metadevice names are strings of the pattern $d<xyz>$ where $xyz$ is a value between 0 and 8192. You cannot use logical names for metadevices.
metareplace(1M)

NAME
metareplace – enable or replace components of submirrors or RAID5 metadevices

SYNOPSIS
/usr/sbin/metareplace -h
/usr/sbin/metareplace [-s setname] -e mirror component
/usr/sbin/metareplace [-s setname] mirror component-old component-new
/usr/sbin/metareplace [-s setname] -e RAID component
/usr/sbin/metareplace [-s setname] [-f] RAID component-old component-new

DESCRIPTION
The metareplace command is used to enable or replace components (slices) within a submirror or a RAID5 metadevice.

When you replace a component, the metareplace command automatically starts resyncing the new component with the rest of the metadevice. When the resync completes, the replaced component becomes readable and writable. If the failed component has been hot spare replaced, the hot spare is placed in the available state and made available for other hot spare replacements.

Note that the new component must be large enough to replace the old component.

A component may be in one of several states. The Last Erred and the Maintenance states require action. Always replace components in the Maintenance state first, followed by a resync and validation of data. After components requiring maintenance are fixed, validated, and resynced, components in the Last Erred state should be replaced. To avoid data loss, it is always best to back up all data before replacing Last Erred devices.

OPTIONS
Root privileges are required for all of the following options except -h.

-e Transitions the state of component to the available state and resyncs the failed component. If the failed component has been hot spare replaced, the hot spare is placed in the available state and made available for other hot spare replacements. This command is useful when a component fails due to human error (for example, accidentally turning off a disk), or because the component was physically replaced. In this case, the replacement component must be partitioned to match the disk being replaced before running the metareplace command.

-f Forces the replacement of an errored component of a metadevice in which multiple components are in error. The component determined by the metastat display to be in the “Maintenance” state must be replaced first. This option may cause data to be fabricated since multiple components are in error.

-h Display help message.

-s setname Specifies the name of the diskset on which metareplace will work. Using the -s option will cause the command to perform its
metareplace(1M)

administrative function within the specified diskset. Without this option, the command will perform its function on local metadevices.

mirror

The metadevice name of the mirror.

component

The logical name for the physical slice (partition) on a disk drive, such as /dev/dsk/c0t0d0s2.

component-old

The physical slice that is being replaced.

component-new

The physical slice that is replacing component-old.

RAID

The metadevice name of the RAID5 device.

EXAMPLES

EXAMPLE 1 Recovering from Error Condition in RAID5 Metadevice

This example shows how to recover when a single component in a RAID5 metadevice is errored.

# metareplace d10 c3t0d0s2 c5t0d0s2

In this example, a RAID5 metadevice d10 has an errored component, c3t0d0s2, replaced by a new component, c5t0d0s2.

EXAMPLE 2 Use of -e After Physical Disk Replacement

This example shows the use of the -e option after a physical disk in a submirror (a submirror of mirror d11, in this case) has been replaced.

# metareplace -e d11 c1t4d0s2

Note: The replacement disk must be partitioned to match the disk it is replacing before running the metareplace command.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metazoo(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)
NAME

metaroot – setup system files for root (/) metadevice

SYNOPSIS

/usr/sbin/metaroot -h

/usr/sbin/metaroot [-n] [-k system-name] [-v vfstab-name]
[-c mddb.cf-name] [-m md.conf-name] [-R root-path] device

DESCRIPTION

The metaroot command edits the /etc/vfstab and /etc/system files so that
the system can be booted with the root file system (/) on an appropriate
metadevice. The only metadevices that support the root file system are a
stripe with only a single slice or a mirror on a single-slice stripe.

If necessary, the metaroot command can reset a system that has been
configured to boot the root file system (/) on a metadevice so that it uses
a physical slice.

OPTIONS

Root privileges are required for all of the following options except -h.

The following options are supported:

- c mddb.cf-name    Uses mddb.cf-name instead of the default
                     /etc/lvm/mddb.cf file as a source of metadevice
                     database locations.

- h                   Displays a usage message.

- k system-name     Edits a user-supplied system-name instead of the default
                     /etc/system system configuration information file.

- m md.conf-name    Edit the configuration file specified by md.conf-name
                     rather than the default, /kernel/drv/md.conf.

- n                   Print what would be done without actually doing it.

- R root-path      When metaroot modifies system files, it accesses them
                     in their relative location under root-path.

                     The -R option cannot be used in combination with the
                     -c, -k, -m, or -v options.

- v vfstab-name     Edits vfstab-name instead of the default /etc/vfstab
                     table of file system defaults.

OPERANDS

The following operands are supported:

device               Specifies either the metadevice or the conventional disk
                     device (slice) used for the root file system (/).

EXAMPLES

EXAMPLE 1  Specifying Root File System on Metadevice

The following command edits /etc/system and /etc/vfstab to specify that the
root file system is now on metadevice d0.

# metaroot d0
EXAMPLE 2 Specifying Root File System on SCSI Disk

The following command edits /etc/system and /etc/vfstab to specify that the root file system is now on the SCSI disk device /dev/dsk/c0t3d0s0.

# metaroot /dev/dsk/c0t3d0s0

FILES
/etc/system System configuration information file. See system(4).
/etc/vfstab File system defaults.
/etc/lvm/mddb.cf Metadevice state database locations.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO
metadb(1M), metainit(1M), metastat(1M), mddb.cf(4), system(4), vfstab(4), attributes(5)

Solaris Volume Manager Administration Guide

NOTES
Soft partitions cannot be boot devices.

You can safely ignore the following messages. Their display is an artifact of the way drivers are loaded during the boot process.

WARNING: forceload of misc/md_hotspares failed might appear during boot if root is on a metadevice and no hot spares are specified. This can be eliminated by defining an empty hot spare pool.

WARNING: forceload of misc/md_trans failed might appear if no trans devices have been configured.

WARNING: forceload of misc/md_raid failed might appear if no RAID5 devices have been configured.
metaset(1M)

NAME
metaset – configure shared disksets

SYNOPSIS
/usr/sbin/metaset -s setname -A{enable | disable}
/usr/sbin/metaset -s setname [-A{enable | disable}] -a -h hostname...
/usr/sbin/metaset -s setname -a -h hostname...
/usr/sbin/metaset -s setname -d [-f] -h hostname...
/usr/sbin/metaset -s setname -d [-f] drivename...
/usr/sbin/metaset -s setname -r
/usr/sbin/metaset -s setname -t [-f]
/usr/sbin/metaset -s setname -b
/usr/sbin/metaset -s setname -P
/usr/sbin/metaset -s setname -o [-h hostname]
/usr/sbin/metaset [-s setname]
/usr/sbin/metaset [-s setname] -a | -d [ [m] mediator_host_list]

DESCRIPTION
In a diskset configuration, multiple hosts are physically connected to the same set of
 disks. When one host fails, the other host has exclusive access to the disks. The
 metaset command administers sets of disks shared for exclusive (but not concurrent)
 access among such hosts. While disksets enable a high-availability configuration,
 Solaris Volume Manager itself does not actually provide a high-availability
 environment.

Shared metadevices/hot spare pools can be created only from drives which are in the
diskset created by metaset. To create a set, one or more hosts must be added to the
set. To create metadevices within the set, one or more devices must be added to the
set. The drivename specified must be in the form cxtx with no slice specified.

When you add a new disk to a disk set, Solaris Volume Manager checks the disk
format. If necessary, it repartitions the disk to ensure that the disk has an
appropriately configured reserved slice (slice 7 on a VTOC labelled device or slice 6 on
an EFI labelled device), with adequate space for a state database replica. The precise
size of slice 7 (or slice 6 on an EFI labelled device), depends on the disk geometry. The
slice will be no less than 4 Mbytes, and probably closer to 6 Mbytes, depending on
where the cylinder boundaries lie.

The minimal size for the reserved slice might change in the future. This change is
based on a variety of factors, including the size of the state database replica and
information to be stored in the state database replica.

For use in disk sets, disks must have a slice seven that meets specific criteria:

■ Reserved slice must start at sector 0
Reserved slice must include enough space for disk label
Reserved slice cannot be mounted
Reserved slice does not overlap with any other slices, including slice 2

If the existing partition table does not meet these criteria, Solaris Volume Manager repartitions the disk. A small portion of each drive is reserved in slice 7 (or slice 6 on an EFI labelled device), for use by Solaris Volume Manager. The remainder of the space on each drive is placed into slice 0. Any existing data on the disks is lost by repartitioning.

After you add a drive to a disk set, it might be repartitioned as necessary, with the exception that slice 7 (or slice 6 on an EFI labelled device), is not altered in any way. The minimum size for slice seven is variable, based on disk geometry, but is always equal to or greater than 4MB.

After a diskset is created and metadevices are set up within the set, the metadevice name is in the following form:

/\dev/m\a/setname/[dsk,r\ask]/d\number

where setname is the name of the diskset, and number is the number of the metadevice (0-127).

Hot spare pools within local disksets use standard Solaris Volume Manager naming conventions. Hot spare pools with shared disksets use the following convention:

setname/hsp\number

where setname is the name of the diskset, and number is the number of the hot spare pool (0-999).

SVM provides support for a low-end HA solution consisting of two hosts that share only two strings of drives. The hosts in this type of configuration, referred to as mediators or mediator hosts, run a special daemon, rpc.metamedd(1M). The mediator hosts take on additional responsibilities to ensure that data is available in the case of host or drive failures.

A mediator configuration can survive the failure of a single host or a single string of drives, without administrative intervention. If both a host and a string of drives fail (multiple failures), the integrity of the data cannot be guaranteed. At this point, administrative intervention is required to make the data accessible. See mediator(7D) for further details.

Use the -m option, described below, to add or delete a mediator host.

The following options are supported:

-a
Adds drives or hosts to the named set. For a drive to be accepted into a set, the drive must not be in use within another metadevice or diskset, mounted on, or swapped on. When the drive is accepted into the set, it is repartitioned and the
metaset(1M)

metadevice state database replica (for the set) can be placed on it. However, if a slice 7 (or slice 6 on an EFI labelled device), starts at cylinder 0, and is large enough to hold a state database replica, then the disk is not repartitioned. Also, a drive is not accepted if it cannot be found on all hosts specified as part of the set. This means that if a host within the specified set is unreachable due to network problems, or is administratively down, the add fails.

-A {enable | disable}
Specify auto-take status for a disk set. If auto-take is enabled for a set, the disk set is automatically taken at boot, and file systems on volumes within the disk set can be mounted through /etc/vfstab entries. Only a single host can be associated with an auto-take set, so attempts to add a second host to an auto-take set or attempts to configure a disk set with multiple hosts as auto-take fails with an error message. Disabling auto-take status for a specific disk set causes the disk set to revert to normal behavior. That is, the disk set is potentially shared (non-concurrently) among hosts, and unavailable for mounting through /etc/vfstab.

-b
Insures that the replicas are distributed according to the replica layout algorithm. This can be invoked at any time, and does nothing if the replicas are correctly distributed. In cases where the user has used the metadb command to manually remove or add replicas, this command can be used to insure that the distribution of replicas matches the replica layout algorithm.

d
Deletes drives or hosts from the named diskset. For a drive to be deleted, it must not be in use within the set. The last host cannot be deleted unless all of the drives within the set are deleted. Note that deleting the last host in a diskset destroys the diskset.

-f
Forces one of three actions to occur: takes ownership of a diskset when used with -t; deletes the last disk drive from the diskset; or deletes the last host from the diskset. (Deleting the last drive or host from a diskset requires the -d option.) When used to forcibly take ownership of the diskset, this causes the diskset to be grabbed whether or not another host owns the set. All of the disks within the set are taken over (reserved) and fail fast is enabled, causing the other host to panic if it had diskset ownership. The metadevice state database is read in by the host performing the take, and the shared metadevices contained in the set are accessible. The -f option is also used to delete the last drive in the diskset, because this drive would implicitly contain the last state database replica. The -f option is also used for deleting hosts from a set. When specified with a partial list of hosts, it can be used for one-host administration. One-host administration could be useful when a host is known to be non-functional, thus avoiding timeouts and failed commands. When specified with a complete list of hosts, the set is completely deleted. It is generally specified with a complete list of hosts to clean up after one-host administration has been performed.
-h hostname...
   Specifies one or more host names to be added to or deleted from a diskset. Adding
   the first host creates the set. The last host cannot be deleted unless all of the drives
   within the set have been deleted. The host name is not accepted if all of the drives
   within the set cannot be found on the specified host. The host name is the same
   name found in /etc/nodename.

-1 length
   Sets the size (in blocks) for the metadevice state database replica. The length can
   only be set when adding a new drive; it cannot be changed on an existing drive.
   The default (and maximum) size is 8192 blocks, which should be appropriate for
   most configurations. The minimum size of the length is 64 blocks.

-a | -d -m mediator_host_list
   Adds (-a) or deletes (-d) mediator hosts to the specified diskset. A
   mediator_host_list is the nodename(4) of the mediator host to be added and (for
   adding) up to two other aliases for the mediator host. The nodename and aliases for
   each mediator host are separated only by commas. Up to two mediator hosts can be
   specified for the named diskset. For deleting a mediator host, specify only the
   nodename of that host as the argument to -m.

   In a single metaset command you can add or delete two mediator hosts. See
   EXAMPLES.

-o
   Returns an exit status of 0 if the local host or the host specified with the -h option is
   the owner of the diskset.

-P
   Purge the named diskset from the node on which the metaset command is run.
   The diskset must not be owned by the node that runs this command. If the node
   does own the diskset the command fails.

   If you need to delete a disk set but cannot take ownership of the set, use the -P
   option.

-r
   Releases ownership of a diskset. All of the disks within the set are released. The
   metadevices set up within the set are no longer accessible.

-s setname
   Specifies the name of a diskset on which metaset works. If no setname is specified,
   all disksets are returned.

-t
   Takes ownership of a diskset safely. If metaset finds that another host owns the
   set, this host is not allowed to take ownership of the set. If the set is not owned by
   any other host, all the disks within the set are owned by the host on which
   metaset was executed. The metadevice state database is read in, and the shared
   metadevices contained in the set become accessible. The -t option takes a diskset
   that has stale databases. When the databases are stale, metaset exits with code 66,
   and prints a message. At that point, the only operations permitted are the addition
   of new drives.
and deletion of replicas. Once the addition or deletion of the replicas has been completed, the diskset should be released and retaken to gain full access to the data.

**EXAMPLE 1** Defining a Diskset

This example defines a diskset.

```bash
# metaset -s relo-red -a -h red blue
```

The name of the diskset is *relo-red*. The names of the first and second hosts added to the set are *red* and *blue*, respectively. (The hostname is found in `/etc/nodename`.) Adding the first host creates the diskset. A diskset can be created with just one host, with the second added later. The last host cannot be deleted until all of the drives within the set have been deleted.

**EXAMPLE 2** Adding Drives to a Diskset

This example adds drives to a diskset.

```bash
# metaset -s relo-red -a c2t0d0 c2t1d0 c2t2d0 c2t3d0 c2t4d0 c2t5d0
```

The name of the previously created diskset is *relo-red*. The names of the drives are *c2t0d0*, *c2t1d0*, *c2t2d0*, *c2t3d0*, *c2t4d0*, and *c2t5d0*. Note that there is no slice identifier ("sx") at the end of the drive names.

**EXAMPLE 3** Adding Multiple Mediator Hosts

The following command adds two mediator hosts to the specified diskset.

```bash
# metaset -s mydiskset -a -m myhost1,alias1 myhost2,alias2
```

**EXAMPLE 4** Purging a Diskset from the Node

The following command purges the diskset *relo-red* from the node:

```bash
# metaset -s relo-red -P
```

**FILES**

`/etc/lvm/md.tab` Contains list of metadevice configurations.

**EXIT STATUS**

The following exit values are returned:

- **0**: Successful completion.
- **>0**: An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO
metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M),
metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M),
metaroot(1M), metastat(1M), metasync(1M), metattach(1M), md.cf(4),
md.tab(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide

NOTES
Diskset administration, including the addition and deletion of hosts and drives,
requires all hosts in the set to be accessible from the network.
metassist(1M)

NAME
metassist – automated volume creation utility to support Solaris Volume Manager

SYNOPSIS
metassist -V
metassist -?

metassist create [-v n] [-c] -F config_file
metassist create [-v n] [-c | -d ] -F request_file
metassist create [-v n] [-c | -d ] [-f] [-n name] [-p datapaths]
    [-r redundancy] [-a available [, available, ...]]
    [-u unavailable [, unavailable, ...]] -s setname -S size
metassist create -?

DESCRIPTION
The metassist command provides assistance, through automation, with common Solaris Volume Manager tasks.

SUBCOMMANDS
The following subcommands are supported:

create
The create subcommand creates one or more Solaris Volume Manager volumes. You can specify this request on the command line or in a file specified on the command line.

If you create a volume using the command line, you can specify the characteristics of the volume in terms of the desired quality of service it will provide - its size, the number of redundant copies of the data it contains, the number of data paths by which it is accessible, and whether faulty components are replaced automatically. The diskset in which the volume will reside and the volume’s size must be specified on the command line in this form of the command.

If you create a volume using a request in a file, you can specify the characteristics of the volume in terms of the quality of service they provide, as on the command line. Alternatively, the file can specify the types and component parts of the volume, (for example, mirrors, stripes, concatenations, and their component slices). The file may also specify volumes partly in terms of their types and partly in terms of their component parts, and may specify the characteristics of more than one volume. All volumes specified in a file must reside in the same diskset, whose name must be specified in the file.

If you specify the -c or -d option on the command line, the command runs without creating an actual volume or volumes. Instead, it outputs either a Bourne shell command script (-c option) or a volume configuration (-d option). The command script, when run, creates the specified volume or volumes. The volume configuration specifies the volume or volumes in complete detail, naming all their components.
The input file given on the command line can take one of the following forms:

- a volume request, which specifies a request for a volume with explicit attributes and components, or matching a given quality of service
- a volume configuration, produced by a previous execution of the command

The following option is mandatory if you specify a volume request or volume configuration in a file:

```
-F config_file \ request_file
```

Specify the volume request or volume configuration file to process. If `config_file` or `request_file` is `-`, it is read from standard input.

The `-d` option cannot be specified when `inputfile` is a volume configuration file.

The following options are mandatory if you specify a volume request on the command line:

```
-s set
```

Specify the disk set to use when creating volumes. All the volumes and hot spare pools are created in this disk set. If necessary, disks are moved into the diskset for use in the volumes and hot spare pools. If the diskset doesn't exist the command creates it. This option is required. `metassist` works entirely within a named disk set. Use of the local, or unnamed disk set, is not allowed.

```
-S size
```

Specify the size of the volume to be created. The size argument consists of a numeric value (a decimal can be specified) followed by KB, MB, GB, or TB, indicating kilobytes, megabytes, gigabytes, or terabytes, respectively. Case is ignored when interpreting this option. This option is required.

The following options are optional command line parameters:

```
-a device1, device2, ...
```

Explicitly specify the devices that can be used in the creation of this volume. Named devices may be controllers or disks. Only used when specifying a volume on the command line.

```
-c
```

Output the command script that would implement the specified or generated volume configuration. The command script is not run, and processing stops at this stage.

```
-d
```

Output the volume configuration that satisfies the specified or generated volume request. No command script is generated or executed, and processing stops at this stage.
Specify whether the volume should support automatic component replacement after a fault. If this option is specified, a mirror is created and its submirrors are associated with a HSP.

Specify the name of the new volume. See *metainit*(1M) for naming guidelines.

Specify the number of required paths to the storage volume. The value of \( n \) cannot be greater than the number of different physical paths and logical paths to attached storage. Only used when specifying a volume on the command line.

Specify the redundancy level (0-4) of the data. The default is 0. Only used when specifying a volume on the command line. If redundancy is 0, a stripe is created. If redundancy is 1 or greater, a mirror with this number of submirrors is created. In this case, the volume can suffer a disk failure on \( n-1 \) copies without data loss. With the use of HSPs (see the \(-f\) option), a volume can suffer a disk failure on \( n+hsp-1 \) volumes without data loss, assuming non-concurrent failures.

Explicitly specify devices to exclude in the creation of this volume. Named devices can be controllers or disks. You can use this option alone, or to exclude some of the devices listed as available with the \(-a\) option, Only used when specifying a volume on the command line.

Specify the level of verbosity. Values from 0 to 2 are available, with higher numbers specifying more verbose output when the command is run. \(-v 0\) indicates silent output, except for errors or other critical messages. The default level is 1.

Display program version information.

Display help information. This option can follow a subcommand for subcommand-specific help.

**EXAMPLES**

**EXAMPLE 1 Creating a Mirror**

The following example creates a two-way, 36Gb mirror on available devices from controller 1 and controller 2. It places the volume in diskset *mirrorset*.

```
# metassist create -r 2 -a c1,c2 -s mirrorset -S 36G
```

**EXAMPLE 2 Creating a Mirror with Additional Fault Tolerance**

The following example creates a two-way, 36Gb mirror on available devices from controller 1 and controller 2. It provides additional fault tolerance in the form of a hot spare. It places the volume in diskset *mirrorset*.

```
# metassist create -r 2 -a c1,c2 -f -s mirrorset -S 36G
```
EXAMPLE 3 Creating a Three-way Mirror and Excluding Devices

The following example creates a three-way, 180Gb mirror from storage devices on controller 1 or controller 2. It excludes the disks c1t2d0 and c2t2d1 from the volume. It places the volume in diskset mirrorset.

# metassist create -r 3 -a c1,c2 -u c1t2d0,c2t2d1 -s mirrorset -S 180Gb

EXAMPLE 4 Determining and Implementing a Configuration

The following example determines and implements a configuration satisfying the request specified in a request file:

# metassist create -F request.xml

EXAMPLE 5 Determining a Configuration and Saving It in a volume-config File

The following example determines a configuration which satisfies the given request. It saves the configuration in a volume-config file without implementing it:

# metassist create -d -F request.xml > volume-config

EXAMPLE 6 Determining a Configuration and Saving It in a Shell Script

The following example determines a configuration which satisfies the given request. It saves the configuration in a shell script without implementing it:

# metassist create -c -F request.xml > setupvols.sh

EXAMPLE 7 Implementing the Given volume-config

The following example implements the given volume-config:

# metassist create -F config.xml

EXAMPLE 8 Converting the Given volume-config to a Shell Script

The following example converts the given volume-config to a shell script that you can run later:

# metassist create -c -F config.xml > setupvols.sh

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/usr/share/lib/xml/dtd/volume-request.dtd
/usr/share/lib/xml/dtd/volume-defaults.dtd
/usr/share/lib/xml/dtd/volume-config.dtd
ATRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdr</td>
</tr>
</tbody>
</table>

SEE ALSO
mdmonitord(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metarecover(1M), metarename(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), md.tab(4), volume-config(4), volume-request(4), attributes(5), md(7D)

NOTES
The quality of service arguments are mutually exclusive with the -F inputfile argument.

When specifying a request file or quality of service arguments on the command line, the /etc/default/metassist.xml file is read for global and per-disk set defaults.

Characteristics of this file are specified in the DTD, in /usr/share/lib/xml/dtd/volume-defaults.dtd.

Characteristics of the XML request file are specified in the DTD, in /usr/share/lib/xml/dtd/volume-request.dtd.

Characteristics of the XML configuration file are specified in the DTD, in /usr/share/lib/xml/dtd/volume-config.dtd.

This command must be run as root.

This command requires a functional Solaris Volume Manager configuration before it runs.
The `metastat` command displays the current status for each metadevice (including stripes, concatenations, concatenations of stripes, mirrors, RAID5, soft partitions, and trans devices) or hot spare pool, or of specified metadevices, components, or hot spare pools.

It is helpful to run the `metastat` command after using the `metattach` command to view the status of the metadevice.

`metastat` displays the state of each Solaris Volume Manager volume on the system. The possible states include:

- **Okay**: The device reports no errors.
- **Needs maintenance**: A problem has been detected. This requires that the system administrator replace the failed physical device. Volumes displaying Needs maintenance have incurred no data loss, although additional failures could risk data loss. Take action as quickly as possible.
- **Last erred**: A problem has been detected. Data loss is a possibility. This might occur if a component of a submirror fails and is not replaced by a hot spare, therefore going into Needs maintenance state. If the corresponding component also fails, it would go into Last erred state and, as there is no remaining valid data source, data loss could be a possibility.
- **Unavailable**: A device cannot be accessed, but has not incurred errors. This might occur if a physical device has been removed with Solaris Dynamic Reconfiguration (DR) features, thus leaving the Solaris Volume Manager volume unavailable. It could also occur if an array or disk is powered off at system initialization, or if a >1TB volume is present when the system is booted in 32-bit mode.

See the Solaris Volume Manager Administration Guide for instructions on replacing disks and handling volumes in Needs maintenance or Last erred states.

**OPTIONS**

The following options are supported:

- `-B` Print the current status of all of the 64-bit metadevices and hot spares.
metastat(1M)

-`h`  Display usage message.
-`i`  Check the status of all active metadevices and hot spares. The inquiry causes all components of each metadevice to be checked for accessibility, starting at the top level metadevice. When problems are discovered, the metadevice state databases are updated as if an error had occurred.
-`p`  Display the list of active metadevices and hot spare pools in the same format as `md.tab`.
-`r`  Display whether sub-devices are relocatable. At the end of the output, displays the devices and their associated device IDs.
-`s setname`  Specify the name of the diskset on which `metastat` works. Using the `-s` option causes the command to perform its administrative function within the specified diskset. Without this option, the command performs its function on metadevices and hot spare pools in the local diskset.
-`t`  Print the current status and timestamp for the specified metadevices and hot spare pools. The timestamp provides the date and time of the last state change.

**OPERANDS**
The following operands are supported:

`component`  Display the status of the component hosting a soft partition, including extents, starting blocks, and block count.

`hot_spare_pool`  Display the status of the specified hot spare pool(s).

`metadevice`  Display the status of the specified metadevice(s). If a trans metadevice is specified, the status of the master and log devices is also displayed.

**EXAMPLES**

**EXAMPLE 1** Output Showing Mirror with Two Submirrors

The following example shows the partial output of the `metastat` command after creating a mirror, `d0`, consisting of two submirrors, `d70` and `d80`.

```
# metastat d0
```

```
d0: Mirror
    Submirror 0: d80
        State: Okay
    Submirror 1: d70
        State: Resyncing
        Resync in progress: 15 % done
        Pass: 1
        Read option: roundrobin (default)
        Write option: parallel (default)
```
EXAMPLE 1 Output Showing Mirror with Two Submirrors (Continued)

Size: 2006130 blocks.

EXAMPLE 2 Soft Partition on Mirror with Submirror

The following example shows the partial output of the `metastat` command after creating a soft partition, \( d3 \), on `concat d2`, which is built on a soft partition.

```
# metastat
d2: Concat/Stripe
  Size: 204800 blocks
  Stripe 0:
    Device     Start Block  Dbase State  Hot Spare
    d0         0           No           Okay

  d0: Soft Partition
    Component: c0t3d0s0
    Status: Okay
    Size: 204800 blocks
    Extent Start Block  Block count
       0        129       204800

  d3: Soft Partition
    Component: d2
    Status: Okay
    Size: 202752 blocks
    Extent Start Block  Block count
       0        129       202752
```

WARNINGS metastat displays states as of the time the command is entered. It is unwise to use the output of the `metastat -p` command to create a `md.tab(4)` file for a number of reasons:

- The output of `metastat -p` might show hot spares being used.
- It might show mirrors with multiple submirrors. See `metainit(1M)` for instructions for creating multi-way mirrors using `metainit` and `metattach`.
- A slice may go into an error state after `metastat -p` is issued.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdr</td>
</tr>
</tbody>
</table>

SEE ALSO

cfgadm(1M), mdmonitord(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M), metasync(1M), metattach(1M), md.tab(4), md.cf(4), md.db.cf(4), attributes(5)

Solaris Volume Manager Administration Guide
**NAME**
metasync – handle metadevice resync during reboot

**SYNOPSIS**
```
/usr/sbin/metasync -h
/usr/sbin/metasync [-s setname] [buffer_size] metadevice
/usr/sbin/metasync [-s setname] -r [buffer_size]
/usr/sbin/metasync -p metadevice
```

**DESCRIPTION**
The `metasync` command starts a resync operation on the specified `metadevice`. All components that need to be resynced are resynced. If the system crashes during a RAID5 initialization, or during a RAID5 resync, either an initialization or resync restarts when the system reboots.

Applications are free to access a metadevice at the same time that it is being resynced by `metasync`. Also, `metasync` performs the copy operations from inside the kernel, which makes the utility more efficient.

Use the `-r` option in boot scripts to resync all possible submirrors.

**OPTIONS**
```
-h          Displays usage message.
-r          Specifies that the `metasync` command handle special resync requirements during a system reboot. `metasync -r` should only be invoked from `/etc/rc2.d/S95svm.sync`. The `metasync` command only resyncs those metadevices that need to be resynced. `metasync` schedules all the mirror resyncs according to their pass numbers.

As root, you can edit `S95svm.sync` to specify the `-r 2048` option to `metasync`, so that resync following a reboot occurs as quickly as possible. See the description of `buffer_size`, below.

-p metadevice  Regenerates parity information for RAID5 metadevices.
-s setname    Specifies the name of the diskset on which `metasync` will work. Using the `-s` option will cause the command to perform its administrative function within the specified diskset. Without this option, the command will perform its function on local metadevices.

`buffer_size` Specifies the size (number of 512-byte disk blocks) of the internal copy buffer for the mirror resync. The size defaults to 128 512-byte disk blocks (64 Kbytes). It can be no more than 2048 blocks. For best performance (quickest completion of the resync), 2048 blocks is the recommended size.
```

**EXIT STATUS**
The following exit values are returned:
```
0     Successful completion.
>0    An error occurred.
```
metasync(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)

Solaris Volume Manager Administration Guide
metattach(1M)

NAME
metattach, metadetach – attach or detach metadevice to or from a mirror or trans
device, or attach space (blocks) to a soft partition to grow the soft partition

SYNOPSIS
/usr/sbin/metattach [-h]
/usr/sbin/metattach [-s setname] mirror [metadevice]
/usr/sbin/metattach [-s setname] [-i size] concat/stripe component...
/usr/sbin/metattach [-s setname] RAID component...
/usr/sbin/metattach [-s setname] softpart size
/usr/sbin/metattach [-s setname] trans log
/usr/sbin/metadetach [-s setname] [-f] mirror submirror
/usr/sbin/metadetach [-s setname] [-f] trans

DESCRIPTION
metattach is used to add submirrors to a mirror, add logging devices to trans
devices, grow metadevices, or grow soft partitions. Growing metadevices can be done
without interrupting service. To grow the size of a mirror or trans, the slices must be
added to the submirrors or to the master devices.

Solaris Volume Manager supports storage devices and logical volumes greater than 1
terabyte (TB) when Solaris is running a 64-bit kernel. Support for large volumes is
automatic. If a device greater than 1 TB is created, Solaris Volume Manager configures
it appropriately and without user intervention.

If a system with large volumes is rebooted under a 32-bit Solaris kernel, the large
volumes are visible through metastat output. Large volumes cannot be accessed,
modified or deleted, and no new large volumes can be created. Any volumes or file
systems on a large volume in this situation are also be unavailable. If a system with
large volumes is rebooted under a version of Solaris that lacks large volume support,
Solaris Volume Manager will not start. You must remove all large volumes before
Solaris Volume Manager runs under another version of the Solaris Operating
Environment.

Solaris Volume Manager supports one-to-four-way mirrors. You can only attach a
metadevice to a mirror if there are three or fewer submirrors beneath the mirror. Once
a new metadevice is attached to a mirror, metattach automatically starts a resync
operation to the new submirror.

Attaching a new logging device to a busy trans metadevice is allowed, although a
trans metadevice starts using its new logging device only after the trans is idle (after it
is unmounted, for example). The busy trans is in an Attaching state (metastat) until
the logging device is actually attached. Attaching a logging device in the Hard Error or
Error state (metastat) is not allowed.

metadetach is used to detach submirrors from mirrors and to detach logging devices
from trans metadevices.
When a submirror is detached from a mirror, it is no longer part of the mirror, thus reads and writes to and from that metadevice by way of the mirror are no longer performed through the mirror. Detaching the only existing submirror is not allowed. Detaching a submirror that has slices reported as needing maintenance (by metastat) is not allowed unless the -f (force) flag is used.

metadetach also detaches the logging device from a trans. Once detached, the logging device is no longer part of the trans, thus the trans is no longer logging and all benefits of logging are lost. Any information on the logging device that pertains to the master device is written to the master device before the logging device is detached.

Detaching the logging device from a busy trans device is not allowed unless the -f (force) flag is used. Even so, the logging device is not actually detached until the trans is idle. The trans is in the Detaching state (metastat) until the logging device is detached.

OPTIONS

Root privileges are required for all of the following options except -h.

The following options are supported:

- **f**
  Force the detaching of metadevices that have components that need maintenance or are busy. You can use this option only when a mirror is in a maintenance state that can be fixed with metareplace(1M). If the mirror is in a maintenance state that can only be fixed with metasync(1M) (as shown by the output of metastat(1M)), metadetach -f has no effect, because the mirrors must be resynchronized before one of them can be detached.

- **h**
  Display a usage message.

- **i size**
  Specify the interlace value for stripes, where size is a specified value followed by either k for kilobytes, m for megabytes, or b for blocks. The units can be either uppercase or lowercase. If size is not specified, the size defaults to the interlace size of the last stripe of the metadevice. When an interlace size change is made on a stripe, it is carried forward on all stripes that follow.

- **s setname**
  Specify the name of the diskset on which the metattach command or the metadetach command works. Using the -s option causes the command to perform its administrative function within the specified diskset. Without this option, the command performs its function on local metadevices.

OPERANDS

The following operands are supported:

**component**

The logical name for the physical slice (partition) on a disk drive, such as /dev/dsk/c0t0d0s2, being added to the concatenation, stripe, concatenation of stripes, or RAID5 metadevice.
**concat/stripes**
The metadevice name of the concatenation, stripe, or concatenation of stripes.

**log**
The metadevice name of the logging device to be attached to the trans metadevice.

**metadevice**
The metadevice name to be attached to the mirror as a submirror. This metadevice must have been previously created by the `metainit` command.

**mirror**
The name of the mirror.

**RAID**
The metadevice name of the RAID5 metadevice.

**size**
The amount of space to add to the soft partition in \( K \) or \( k \) for kilobytes, \( M \) or \( m \) for megabytes, \( G \) or \( g \) for gigabytes, \( T \) or \( t \) for terabytes, and \( B \) or \( b \) for blocks (sectors).

**softpart**
The metadevice name of the existing soft partition.

**submirror**
The metadevice name of the submirror to be detached from the mirror.

**trans**
The metadevice name of the trans metadevice (not the master or logging device).

### EXAMPLES

**EXAMPLE 1** Concatenating a New Slice to a Metadevice

This example concatenates a single new slice to an existing metadevice, `d8`. Afterwards, you would use the `growfs(1M)` command to expand the file system.

```
# metattach d8 /dev/dsk/c0t1d0s2
```

**EXAMPLE 2** Detaching Logging Device from Trans Metadevice

This example detaches the logging device from a trans metadevice `d9`. Notice that you do not have to specify the logging device itself, as there can only be one.

```
# metadetach d9
```

**EXAMPLE 3** Expanding a RAID5 Metadevice

This example expands a RAID5 metadevice, `d45`, by attaching another slice.

```
# metattach d45 /dev/dsk/c3t0d0s2
```

When you add additional slices to a RAID5 metadevice, the additional space is devoted to data. No new parity blocks are allocated. The data on the added slices is, however, included in the overall parity calculations, so it is protected against single-device failure.
EXAMPLE 4 Expanding a Soft Partition

The following example expands a soft partition, d42, by attaching 150 Mbytes.

# metattach d42 150M

When you add additional space to a soft partition, the additional space is taken from any available space on the slice and might not be contiguous with the existing soft partition.

EXAMPLE 5 Adding Space to Two-Way Mirror

This example adds space to a two-way mirror by adding a slice to each submirror. Afterwards, you would use the `growfs(1M)` command to expand the file system.

# metattach d9 /dev/dsk/c0t2d0s5
# metattach d10 /dev/dsk/c0t3d0s5

EXAMPLE 6 Detaching a Submirror from a Mirror

This example detaches a submirror, d2, from a mirror, d4.

# metadetach d4 d2

EXAMPLE 7 Adding Four Slices to Metadevice

This example adds four slices to an existing metadevice, d9. Afterwards, you would use the `growfs(1M)` command to expand the file system.

# metattach d9 /dev/dsk/c0t1d0s2 /dev/dsk/c0t2d0s2 /dev/dsk/c0t3d0s2 /dev/dsk/c0t4d0s2

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO

`metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M), metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M), metastat(1M), metasync(1M), md.tab(4), md.cf(4), mddb.cf(4), attributes(5)`
### WARNINGS

This section provides information regarding warnings for devices greater than 1 TB and for multi-way mirrors.

### Devices and Volumes Greater Than 1 TB

Do not create large (>1 TB) volumes if you expect to run the Solaris Operating Environment with a 32-bit kernel or if you expect to use a version of the Solaris Operating Environment that lacks large volume support.

### Multi-Way Mirrors

When a submirror is detached from its mirror, the data on the metadevice may not be the same as the data that existed on the mirror prior to running `metadetach`. In particular, if the `-f` option was needed, the metadevice and mirror probably do not contain the same data.
mib2mof(1M)

NAME    mib2mof – generate MOF file(s) from input SNMP MIB file(s)


DESCRIPTION The mib2mof utility reads input Management Information Base (MIB) files and produces one or more Managed Object Format (MOF) files. MOF files contain a Common Information Model (CIM) class declaration that represents the MIB for the Solaris Simple Network Management Protocol (SNMP) provider. The SNMP provider allows Web-Based Enterprise Management (WBEM) applications to access SNMP device information.

SNMP scalar variables map to properties in the CIM class. Qualifiers on each property convey the following MIB information for each scalar variable:

- syntax
- read/write access
- OID (Object IDentifier)
- description (optional)
- index (if the variable is within a group [sequence] that defines a row)

The syntax of an SNMP scalar variable is represented in a CIM class by the property’s CIM datatype. All properties are marked with write access (true or false).

The following table shows how a Solaris SNMP datatype in a MIB maps to a Web-Based Enterprise Management (WBEM) CIM datatype and then to an SNMP datatype used by the WBEM SNMP API:

<table>
<thead>
<tr>
<th>SNMP SMI Datatype</th>
<th>SNMP CIM</th>
<th>SNMP API Object type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>v1 sint32</td>
<td>SnmpInt</td>
</tr>
<tr>
<td>OCTET STRING</td>
<td>v1 string</td>
<td>SnmpString</td>
</tr>
<tr>
<td>OBJECT IDENTIFIER</td>
<td>v1 string</td>
<td>SnmpOid</td>
</tr>
<tr>
<td>IpAddress</td>
<td>v1 string</td>
<td>SnmpIpAddress</td>
</tr>
<tr>
<td>Counter</td>
<td>v1 uint32</td>
<td>SnmpCounter</td>
</tr>
<tr>
<td>Gauge</td>
<td>v1 uint32</td>
<td>SnmpGauge</td>
</tr>
<tr>
<td>TimeTicks</td>
<td>v1 uint32</td>
<td>SnmpTimeticks</td>
</tr>
<tr>
<td>Opaque</td>
<td>v1 sint8[]</td>
<td>SnmpOpaque</td>
</tr>
<tr>
<td>DisplayString</td>
<td>v1</td>
<td></td>
</tr>
<tr>
<td>NetworkAddress</td>
<td>v1</td>
<td></td>
</tr>
<tr>
<td>Counter32</td>
<td>v2 uint64</td>
<td>SnmpCounter64</td>
</tr>
<tr>
<td>Integer32</td>
<td>v2 sint32</td>
<td>SnmpInt</td>
</tr>
<tr>
<td>Gauge32</td>
<td>v2 uint32</td>
<td>SnmpGauge</td>
</tr>
<tr>
<td>Unsigned32</td>
<td>v2 uint32</td>
<td>SnmpGauge</td>
</tr>
<tr>
<td>TruthValue</td>
<td>v2 sint32</td>
<td>SnmpInt</td>
</tr>
<tr>
<td>BITS</td>
<td>v2</td>
<td></td>
</tr>
</tbody>
</table>

The mib2mof utility includes its required Solaris_SNMPmib_core.txt file (containing core MIB definitions), installed in /usr/sadm/mof. The mib2mof utility looks first for mib core file in local directory. If this file is not found in the local directory, mib2mof looks in /usr/sadm/mof.
A MOF file is generated for each SNMP group and table row sequence (that is, the columns in one row) found in the supplied MIBs. (This does not include the core MIB definitions contained in the Solaris_SNMPmib_core.txt file.)

There is no MOF file or property for an SNMP table - all table access is through the rows and columns of the table, and the SNMP variable for the table is marked as inaccessible in the MIB.

The MOF file created contains a CIM class that represents an SNMP group or row and a CIM class to represent a CIM association. The output file name (and CIM class) is of the format <SNMP_> <MIB name> <Group name>.mof.

OPTIONS The following options are supported:
- a Generate MOF files for all of the input MIB files. If -a is not given, a MOF file is generated only for the last file of the input list.
- c Do not use the default Solaris_SNMPmib_core.txt definitions file shipped with the Solaris SNMP Provider for WBEM. If this option is specified, you must specify another MIB_CORE definitions file as one of the input files.
- d directory Generate output MOF files in the specified directory.
- h Show how to invoke mib2mof and list its arguments.
- n Parse the input MIB files without generating any output.
- q Include the DESCRIPTION clause of SNMP OBJECT-TYPE as a qualifier in the generated MOF file.

OPERANDS The following operands are supported:
files List of SNMP MIB files to be converted.

EXIT STATUS The mib2mof utility terminates with exit status 0.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcou</td>
</tr>
</tbody>
</table>

SEE ALSO init.wbem(1M), mofcomp(1M), wbemadmin(1M), attributes(5)
**NAME**
mibiisa – Sun SNMP Agent

**SYNOPSIS**

**DESCRIPTION**
The mibiisa utility is an RFC 1157-compliant SNMP agent. It supports MIB-II as defined in RFC 1213, with Sun extensions under Sun’s enterprise number. The MIB (Management Information Base) is both readable and writable. The mibiisa utility supports all SNMP protocol operations including GET-REQUEST, GETNEXT-REQUEST, SET-REQUEST, GET-REPLY, and TRAP.

The mibiisa utility supports the coldStart, linkUp, linkDown, and authentication traps. The authentication trap may be disabled by a command-line switch, which itself may be overridden by a management station writing to a MIB variable in the standard SNMP MIB group.

The mibiisa utility supports four distinct views of the MIB. The view used for any request is determined by the community string contained in that request.

To enhance security, mibiisa supports an option to block all writes to the MIB. You can also limit the set of management stations from which the agent will accept requests in the configuration file used when starting the mibiisa. See the SECURITY section for more information.

Unless overridden, mibiisa uses UDP port 161, the standard SNMP port. The mibiisa utility issues traps through the same port on which it receives SNMP requests.

The mibiisa utility must run with super-user privileges and is typically started at system startup via /etc/rc3.d. mibiisa may not be started using inetd(1M). When started, mibiisa detaches itself from the keyboard, disables all signals except SIGKILL, SIGILL, SIGUSR1, and SIGUSR2, and places itself in the background.

**OPTIONS**
The following options are supported:

- **-a**
  Disable the generation of authentication traps. However, an SNMP manager may write a value into snmpEnableAuthenTraps to enable or disable authentication traps.

- **-c config-dir**
  Specify a directory where it expects snmpd.conf file, on startup. The default directory is /etc/snmp/conf.

- **-d debug-level**
  Debug. A value of 0 disables all debug and is the default. Levels 1 through 3 represent increasing levels of debug output. When mibiisa receives the signal SIGUSR1, it resets the debug-level to 0. When mibiisa receives the signal SIGUSR2, it increments the debug-level by one.

  Debug output is sent to the standard output in effect at the time mibiisa is started. No matter what debug level is in effect, certain significant events are logged in the system log.
Define an alternative UDP port on which `mibiisa` listens for incoming requests. The default is UDP port 161.

Place the MIB into read-only mode.

By default, information fetched from the kernel is considered to be valid for 45 seconds from the time it is retrieved. This cache lifetime may be altered with this parameter. You cannot set `cache-timer` to any value less than 1.

The `snmpd.conf` file is used for configuration information. Each entry in the file consists of a keyword followed by a parameter string. The keyword must begin in the first position. Parameters are separated from the keyword and from one another by white space. Case in keywords is ignored. Each entry must be contained on a single line. All text following (and including) a pound sign (#) is ignored. Keywords currently supported are:

- `sysdescr` The value to be used to answer queries for `sysDescr`.
- `syscontact` The value to be used to answer queries for `sysContact`.
- `syslocation` The value to be used to answer queries for `sysLocation`.
- `trap` The parameter names one or more hosts to receive traps. Only five hosts may be listed.
- `system-group-read-community` The community name to get read access to the system group and Sun’s extended system group.
- `system-group-write-community` The community name to get write access to the system group and Sun’s extended system group.
- `read-community` The community name to get read access to the entire MIB.
- `write-community` The community name to get write access to the entire MIB (implies read access).
- `trap-community` The community name to be used in traps.
- `kernel-file` The name of the file to use for kernel symbols.
- `managers` The names of hosts that may send SNMP queries. Only five hosts may be listed on any one line. This keyword may be repeated for a total of 32 hosts.
newdevice

The additional devices which are not built in SNMPD. The format is as follows: 
newdevice type speed name where newdevice is the keyword, type is an integer which 
has to match your schema file, speed is the 
new device’s speed, and name is this new 
device’s name.

An example snmpd.conf file is shown below:

```
sysdescr Sun SNMP Agent, SPARCstation 10, Company
   Property Number 123456
syscontact Cliff Claven
sysLocation Stool next to Norms at Cheers
#
system-group-read-community public
system-group-write-community private
#
read-community all_public
write-community all_private
#
trap localhost
trap-community SNMP-trap
#
#kernel-file /vmunix
#
managers lvs golden
managers swap
```

**INSTALLATION**

The mibiisa utility and its configuration file, snmpd.conf, may be placed in any 
directory. However for Solaris 2.4 and subsequent releases, use /usr/lib/snmp for 
mibiisa itself and /etc/snmp/conf for the configuration file. You can modify the 
configuration file as appropriate. If you make any changes to snmpd.conf file 
keyword values, you must kill and restart mibiisa for the changes to take effect.

Your /etc/services file (or NIS equivalent) should contain the following entries:

```
<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Protocol</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>161</td>
<td>udp</td>
<td># Simple Network Mgmt Protocol</td>
</tr>
<tr>
<td>snmp-trap</td>
<td>162</td>
<td>udp</td>
<td># SNMP trap (event) messages</td>
</tr>
</tbody>
</table>
```

The following is an example for Solaris 2.x:

```
#
# Start the SNMP agent
#
if [ -f /etc/snmp/conf/snmpd.conf -a -x 
   /usr/lib/snmp/mibiisa ];
then
```
SECURITY

SNMP, as presently defined, offers relatively little security. The mibiisa utility accepts requests from other machines, which can have the effect of disabling the network capabilities of your computer. To limit the risk, the configuration file lets you specify a list of up to 32 manager stations from which mibiisa will accept requests. If you do not specify any such manager stations, mibiisa accepts requests from anywhere.

The mibiisa utility also allows you to mark the MIB as “read-only” by using the -r option.

Finally, mibiisa supports four different community strings. These strings, however, are visible in the configuration file and within the SNMP packets as they flow on the network.

The configuration file should be owned by, and readable only by super-user. In other words the mode should be:

```
-rw------- 1 root 2090 Oct 17 15:04 /etc/snmp/conf/snmpd.conf
```

MIB

This section discusses some of the differences between the mibiisa MIB and the standard MIB-II (as defined in RFC 1213).

The following variables are read-only in the mibiisa MIB:

- `sysName`
- `atIfIndex`
- `ipDefaultTTL`

These variables are read-write in the standard MIB-II.

The mibiisa MIB Address Translation tables support limited write access: only `atPhysAddress` may be written, either to change the physical address of an existing entry or to delete an entire ARP table entry.

The mibiisa MIB IP Net to Media table supports limited write access: only `ipNetToMediaPhysAddress` and `ipNetToMediaType` may be written, either to change the physical address of an existing entry or to delete an entire ARP table entry.

The following variables are read-write in the mibiisa MIB; however, these variables have fixed values. Any new values “set” to them are accepted, but have no effect:

- `ipRoutIfIndex`
- `ipRouteMetric1`
- `ipRouteMetric2`
- `ipRouteMetric3`
- `ipRouteMetric4`
- `ipRouteType`
- `ipRouteAge`
The following `mibiisa` MIB variable reflects the actual state of the related table entry. “Sets” are accepted but have no effect:

`tcpConnState`

The following `mibiisa` MIB variables are readable, but return a fixed value:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>icmpInDestUnreaches</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInTimeExcds</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInParmProbs</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInSrcQuenchs</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInRedirects</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInEchos</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInEchoReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInTimestamps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInTimestampReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInAddrMasks</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpInAddrMaskReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutDestUnreaches</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutTimeExcds</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutParmProbs</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutSrcQuenchs</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutRedirects</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutEchos</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutEchoReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutTimestamps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutTimestampReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutAddrMasks</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>icmpOutAddrMaskReps</code></td>
<td>Returns 1</td>
</tr>
<tr>
<td><code>ifInUnknownProtos</code></td>
<td>Returns 0</td>
</tr>
</tbody>
</table>
### SCHEMA

<table>
<thead>
<tr>
<th>ATTRIBUTES</th>
<th>system</th>
</tr>
</thead>
</table>

The system group reports statistics about a particular system (for example, a workstation or a printer).

- **sysDescr** – A textual description of the entity. This value should include the full name and version identification of the system’s hardware type, software operating-system, and networking software. This value must only contain printable ASCII characters. (string[255])

- **sysObjectID** – The vendor’s authoritative identification of the network management subsystem contained in the entity. This value is allocated within the SMI enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous means for determining what type of equipment is being managed. For example, if vendor “Flintstones, Inc.” was assigned the subtree 1.3.6.1.4.1.4242, it could assign the identifier 1.3.6.1.4.1.4242.1.1 to its “Fred Router.” (objectid)
sysUpTime – Time (in hundredths of a second) since the network management portion of the system was last reinitialized. (timeticks)

sysContact – The textual identification of the contact person for this managed node, together with information on how to contact this person. (string[255])

sysName – An administratively-assigned name for this managed node. By convention, this is the node’s fully-qualified domain name. (string[255])

sysLocation – The physical location of this node (for example, “telephone closet, 3rd floor” (string[255]))

sysServices – A value indicating the set of services that this entity primarily offers. (int) The value is a sum. This sum initially takes the value zero. Then, for each layer \( L \) in the range 1 through 7 for which this node performs transactions, \( 2^{(L - 1)} \) is added to the sum. For example, a node that performs primarily routing functions would have a value of 4 \( (2^{(3 - 1)}) \). In contrast, a node that is a host offering application services would have a value of 72 \( (2^{(4 - 1)} + 2^{(7 - 1)}) \). Note that in the context of the Internet suite of protocols, values should be calculated accordingly:

<table>
<thead>
<tr>
<th>layer</th>
<th>functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>physical (such as repeaters)</td>
</tr>
<tr>
<td>2</td>
<td>datalink/subnetwork (such as bridges)</td>
</tr>
<tr>
<td>3</td>
<td>internet (such as IP gateways)</td>
</tr>
<tr>
<td>4</td>
<td>end-to-end (such as IP hosts)</td>
</tr>
<tr>
<td>7</td>
<td>applications (such as mail relays)</td>
</tr>
</tbody>
</table>

For systems including OSI protocols, Layers 5 and 6 may also be counted.

interfaces

The interfaces group reports the number of interfaces handled by the agent.

ifNumber – The number of network interfaces, regardless of their current state, present on this system. (int)

ifTable

The ifTable is a table of interface entries. The number of entries is given by the value of ifNumber.

ifIndex – A unique value for each interface. Its value ranges between 1 and the value of ifNumber. The value for each interface must remain constant at least from one reinitialization of the entity’s network management system to the next reinitialization. (int)

ifDescr – A textual string containing information about the interface. This string should include the name of the manufacturer, the product name, and the version of the hardware interface. (string[255])
The type of interface, distinguished according to the physical/link protocol(s) immediately below the network layer in the protocol stack. (enum)

The size of the largest datagram that can be sent/received on the interface, specified in octets. For interfaces used for transmitting network datagrams, this is the size of the largest network datagram that can be sent on the interface. (int)

An estimate of the interface’s current bandwidth in bits-per-second. For interfaces that do not vary in bandwidth, or for those where no accurate estimation can be made, this object should contain the nominal bandwidth. (gauge)

The interface’s address at the protocol layer immediately below the network layer in the protocol stack. For interfaces without such an address (for example, a serial line), this object should contain an octet string of zero length. (octet[128])

The desired state of the interface. The testing(3) state indicates that no operational packets can be passed. (enum)

The current operational state of the interface. The testing(3) state indicates that no operational packets can be passed. (enum)

The value of sysUpTime at the time the interface entered its current operational state. If the current state was entered prior to the last reinitialization of the local network management subsystem, then this object contains a zero value. (timeticks)

The total number of octets received on the interface, including framing characters. (counter) Returns a fixed value of 0.

The number of subnetwork-unicast packets delivered to a higher-layer protocol. (counter)

The number of non-unicast (that is, subnetwork- broadcast or subnetwork-multicast) packets delivered to a higher-layer protocol. (counter) Returns a fixed value of 0.

The number of inbound packets chosen to be discarded, even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space. (counter) Returns a fixed value of 0.

The number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol. (counter)

The number of packets received via the interface that were discarded because of an unknown or unsupported protocol. (counter) Returns a fixed value of 0.

The total number of octets transmitted out of the interface, including framing characters. (counter) Returns a fixed value of 0.
ifOutUcastPkts - The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent. (counter)

ifOutNUcastPkts - The total number of packets that higher-level protocols requested be transmitted to a non-unicast (that is, a subnetwork-broadcast or subnetwork-multicast) address, including those that were discarded or not sent. (counter) Returns a fixed value of 0.

ifOutDiscards - The number of outbound packets that were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space. (counter) Returns a fixed value of 0.

ifOutErrors - The number of outbound packets that could not be transmitted because of errors. (counter)

ifOutQLen - The length of the output packet queue (in packets). (gauge)

ifSpecific - A reference to MIB definitions specific to the particular media being used to realize the interface. For example, if the interface is realized by an Ethernet, then the value of this object refers to a document defining objects specific to Ethernet. If this information is not present, its value should be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntactically valid object identifier. Any conformant implementation of ASN.1 and BER must be able to generate and recognize this value. (objectid)

atTable - Address Translation tables contain the NetworkAddress to physical address equivalences. Some interfaces do not use translation tables for determining address equivalences (for example, DDN-X.25 has an algorithmic method). If all interfaces are of this type, then the Address Translation table is empty, that is, has zero entries.

atIfIndex - The interface on which this entry’s equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex. (int)

atPhysAddress - The media-dependent physical address. (octet[128]) Setting this object to a null string (one of zero length) has the effect of invaliding the corresponding entry in the atTable object. That is, it effectively dissociates the interface identified with said entry from the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant atPhysAddress object.

atNetAddress - The NetworkAddress (that is, the IP address) corresponding to the media-dependent physical address. (netaddress)

ip - The ip group reports statistics about the Internet Protocol (IP) group.
ipForwarding – The indication of whether this entity is acting as an IP gateway in respect to the forwarding of datagrams received by, but not addressed to, this entity. IP gateways forward datagrams. IP hosts do not—except those source-routed via the host. (enum)

Note that for some managed nodes, this object may take on only a subset of the values possible. Accordingly, it is appropriate for an agent to return a “badValue” response if a management station attempts to change this object to an inappropriate value.

ipDefaultTTL – The default value inserted into the Time-To-Live field of the IP header of datagrams originated at this entity, whenever a TTL value is not supplied by the transport layer protocol. (int)

ipInReceives – The total number of input datagrams received from interfaces, including those received in error. (counter)

ipInHdrErrors – The number of input datagrams discarded due to errors in their IP headers, including bad checksums, version number mismatch, other format errors, time-to-live exceeded, errors discovered in processing their IP options, and so on. (counter)

ipInAddrErrors – The number of input datagrams discarded because the IP address in their IP header’s destination field was not a valid address to be received at this entity. This count includes invalid addresses (for example, 0.0.0.0) and addresses of unsupported Classes (for example, Class E). For entities that are not IP Gateways and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address. (counter)

ipForwDatagrams – The number of input datagrams for which this entity was not their final IP destination, as a result of which an attempt was made to find a route to forward them to that final destination. In entities that do not act as IP Gateways, this counter will include only those packets that were Source-Routed via this entity, and the Source-Route option processing was successful. (counter)

ipInUnknownProtos – The number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol. (counter)

ipInDiscards – The number of input IP datagrams for which no problems were encountered to prevent their continued processing, but which were discarded, for example, for lack of buffer space. Note that this counter does not include any datagrams discarded while awaiting reassembly. (counter)

ipInDelivers – The total number of input datagrams successfully delivered to IP user-protocols (including ICMP). (counter)

ipOutRequests – The total number of IP datagrams that local IP user-protocols (including ICMP) supplied to IP in requests for transmission. Note that this counter does not include any datagrams counted in ipForwDatagrams. (counter)
ipOutDiscards – The number of output IP datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (for example, for lack of buffer space). Note that this counter would include datagrams counted in ipForwDatagrams if any such packets met this (discretionary) discard criterion. (counter)

ipOutNoRoutes – The number of IP datagrams discarded because no route could be found to transmit them to their destination. Note that this counter includes any packets counted in ipForwDatagrams which meet this “no-route” criterion. Note that this includes any datagrams that a host cannot route because all its default gateways are down. (counter)

ipReasmTimeout – The maximum number of seconds that received fragments are held while they are awaiting reassembly at this entity. (int)

ipReasmReqds – The number of IP fragments received that needed to be reassembled at this entity. (counter)

ipReasmOKs – The number of IP datagrams successfully reassembled. (counter)

ipReasmFails – The number of failures detected by the IP reassembly algorithm, for whatever reason: timed out, errors, and the like. Note that this is not necessarily a count of discarded IP fragments since some algorithms (notably the algorithm in RFC 815) can lose track of the number of fragments by combining them as they are received. (counter)

ipFragOKs – The number of IP datagrams that have been successfully fragmented at this entity. (counter)

ipFragFails – The number of IP datagrams that have been discarded because they needed to be fragmented at this entity but could not be, for example, because their “Don’t Fragment” flag was set. (counter)

ipFragCreates – The number of IP datagram fragments that have been generated as a result of fragmentation at this entity. (counter)

ipRoutingDiscards – The number of routing entries that were chosen to be discarded even though they were valid. One possible reason for discarding such an entry could be to free-up buffer space for other routing entries. (counter) Returns a fixed value of 0.

ipAddrTable – The IP address to which this entry’s addressing information pertains. (netaddress)

ipAdEntIfIndex – The index value that uniquely identifies the interface to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex. (int)
ipAdEntNetMask – The subnet mask associated with the IP address of this entry. The value of the mask is an IP address with all the network bits set to 1, and all the hosts bits set to 0. (netaddress)

ipAdEntBcastAddr – The value of the least-significant bit in the IP broadcast address used for sending datagrams on the (logical) interface associated with the IP address of this entry. For example, when the Internet standard all-ones broadcast address is used, the value will be 1. This value applies to both the subnet and network broadcasts addresses used by the entity on this (logical) interface. (int) Returns a fixed value of 1.

ipAdEntReasmMaxSize – The size of the largest IP datagram that this entity can reassemble from incoming IP fragmented datagrams received on this interface. (int) Returns a fixed value of 65535.

ipRouteTable – The ipRouteTable is this entity’s IP Routing table.

ipRouteDest – The destination IP address of this route. An entry with a value of 0.0.0.0 is considered a default route. Multiple routes to a single destination can appear in the table, but access to such multiple entries is dependent on the table-access mechanisms defined by the network management protocol in use. (netaddress)

ipRouteIfIndex – The index value that uniquely identifies the local interface through which the next hop of this route should be reached. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex. (int)

ipRouteMetric1 – The primary routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route’s ipRouteProto value. If this metric is not used, its value should be set to −1. (int) Returns a fixed value of −1.

ipRouteMetric2 – An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route’s ipRouteProto value. If this metric is not used, its value should be set to −1. (int) Returns a fixed value of −1.

ipRouteMetric3 – An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route’s ipRouteProto value. If this metric is not used, its value should be set to −1. (int) Returns a fixed value of −1.

ipRouteMetric4 – An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route’s ipRouteProto value. If this metric is not used, its value should be set to −1. (int) Returns a fixed value of −1.

ipRouteNextHop – The IP address of the next hop of this route. (In the case of a route bound to an interface that is realized via a broadcast media, the value of this field is the agent’s IP address on that interface.) (netaddress)
ipRouteType – The type of route. Note that the values direct (3) and indirect (4) refer to the notion of direct and indirect routing in the IP architecture. (enum)

Setting this object to the value invalid (2) has the effect of invalidating the corresponding entry in the ipRouteTable object. That is, it effectively dissociates the destination identified with said entry from the route identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant ipRouteType object.

ipRouteProto – The routing mechanism through which this route was learned. Inclusion of values for gateway routing protocols is not intended to imply that hosts should support those protocols. (enum)

ipRouteAge – The number of seconds since this route was last updated or otherwise determined to be correct. Note that no semantics of “too old” can be implied except through knowledge of the routing protocol by which the route was learned. (int)

Returns a fixed value of 0.

ipRouteMask – Indicate the mask to be logical-ANDed with the destination address before being compared to the value in the ipRouteDest field. For those systems that do not support arbitrary subnet masks, an agent constructs the value of the ipRouteMask by determining whether the value of the correspondent ipRouteDest field belongs to a class-A, B, or C network, and then using one of:

<table>
<thead>
<tr>
<th>mask</th>
<th>network</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.0.0.0</td>
<td>class-A</td>
</tr>
<tr>
<td>255.255.0.0</td>
<td>class-B</td>
</tr>
<tr>
<td>255.255.255.0</td>
<td>class-C</td>
</tr>
</tbody>
</table>

If the value of the ipRouteDest is 0.0.0.0 (a default route), then the mask value is also 0.0.0.0. It should be noted that all IP routing subsystems implicitly use this mechanism. (netaddress)

ipRouteMetric5 – An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route’s ipRouteProto value. If this metric is not used, its value should be set to −1. (int) Returns a fixed value of −1.

ipRouteInfo – A reference to MIB definitions specific to the particular routing protocol responsible for this route, as determined by the value specified in the route’s ipRouteProto value. If this information is not present, its value should be set to the OBJECT IDENTIFIER {0 0}, which is a syntactically valid object identifier. Any conformant implementation of ASN.1 and BER must be able to generate and recognize this value. (objectid)
The `ipNetToMediaTable` is the IP Address Translation table used for mapping from IP addresses to physical addresses.

- `ipNetToMediaIfIndex` – The interface on which this entry’s equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of `ifIndex`. (int)

- `ipNetToMediaPhysAddress` – The media-dependent physical address. (octet[128])

- `ipNetToMediaNetAddress` – The IPAddress corresponding to the media-dependent physical address. (netaddress)

- `ipNetToMediaType` – The type of mapping. (enum) Returns a fixed value of (3)`dynamic`. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the `ipNetToMediaTable`. That is, it effectively dissociates the interface identified with said entry from the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant `ipNetToMediaType` object.

The `icmp` group reports statistics about the ICMP group.

- `icmpInMsgs` – The total number of ICMP messages that the entity received. Note that this counter includes all those counted by `icmpInErrors`. (counter)

- `icmpInErrors` – The number of ICMP messages that the entity received but determined as having ICMP-specific errors (bad ICMP checksums, bad length, and the like.). (counter)

- `icmpInDestUnreachs` – The number of ICMP Destination Unreachable messages received. (counter)

- `icmpInTimeExcds` – The number of ICMP Time Exceeded messages received. (counter)

- `icmpInParmProbs` – The number of ICMP Parameter Problem messages received. (counter)

- `icmpInSrcQuenchs` – The number of ICMP Source Quench messages received. (counter)

- `icmpInRedirects` – The number of ICMP Redirect messages received. (counter)

- `icmpInEchos` – The number of ICMP Echo (request) messages received. (counter)

- `icmpInEchoReps` – The number of ICMP Echo Reply messages received. (counter)

- `icmpInTimestamps` – The number of ICMP Timestamp (request) messages received. (counter)
icmpInTimestampReps – The number of ICMP Timestamp Reply messages received. (counter)

icmpInAddrMasks – The number of ICMP Address Mask Request messages received. (counter)

icmpInAddrMaskReps – The number of ICMP Address Mask Reply messages received. (counter)

icmpOutMsgs – The total number of ICMP messages that this entity attempted to send. Note that this counter includes all those counted by icmpOutErrors. (counter)

icmpOutErrors – The number of ICMP messages that this entity did not send due to problems discovered within ICMP, such as a lack of buffers. This value should not include errors discovered outside the ICMP layer, such as the inability of IP to route the resultant datagram. In some implementations there may be no types of errors that contribute to this counter’s value. (counter)

icmpOutDestUnreachs – The number of ICMP Destination Unreachable messages sent. (counter)

icmpOutTimeExcds – The number of ICMP Time Exceeded messages sent. (counter)

icmpOutParmProbs – The number of ICMP Parameter Problem messages sent. (counter)

icmpOutSrcQuenchs – The number of ICMP Source Quench messages sent. (counter)

icmpOutRedirects – The number of ICMP Redirect messages sent. For a host, this object will always be zero, since hosts do not send redirects. (counter)

icmpOutEchos – The number of ICMP Echo (request) messages sent. (counter)

icmpOutEchoReps – The number of ICMP Echo Reply messages sent. (counter)

icmpOutTimestamps – The number of ICMP Timestamp (request) messages sent. (counter)

icmpOutTimestampReps – The number of ICMP Timestamp Reply messages sent. (counter)

icmpOutAddrMasks – The number of ICMP Address Mask Request messages sent. (counter)

icmpOutAddrMaskReps – The number of ICMP Address Mask Reply messages sent. (counter)

tcp

The tcp group reports statistics about the TCP group.
tcpRtoAlgorithm – The algorithm used to determine the timeout value used for retransmitting unacknowledged octets. (enum)

tcpRtoMin – The minimum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the LBOUND quantity described in RFC 793. (int)

tcpRtoMax – The maximum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the UBOUND quantity described in RFC 793. (int)

tcpMaxConn – The limit on the total number of TCP connections that the entity can support. In entities where the maximum number of connections is dynamic, this object should contain the value -1. (int)

tcpActiveOpens – The number of times that TCP connections have made a direct transition to the SYN-SENT state from the CLOSED state. (counter)

tcpPassiveOpens – The number of times that TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state. (counter)

tcpAttemptFails – The number of times that TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition to the LISTEN state from the SYN-RCVD state. (counter)

tcpEstabResets – The number of times TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state. (counter)

tcpCurrEstab – The number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT. (gauge)

tcpInSegs – The total number of segments received, including those received in error. This count includes segments received on currently established connections. (counter)

tcpOutSegs – The total number of segments sent, including those on current connections but excluding those containing only retransmitted octets. (counter)

tcpRetransSegs – The total number of segments retransmitted - that is, the number of TCP segments transmitted containing one or more previously transmitted octets. (counter)

tcpInErrs – The total number of segments received in error (for example, bad TCP checksums). (counter)
tcpConnTable

The tcpConnTable is a table containing TCP connection-specific information.

tcpConnState – The state of this TCP connection. (enum)

The only value that may be set by a management station is deleteTCB(12).
Accordingly, it is appropriate for an agent to return a “badValue” response if a
management station attempts to set this object to any other value.

If a management station sets this object to the value deleteTCB(12), then this has the
effect of deleting the TCB (as defined in RFC 793) of the corresponding connection on
the managed node. This results in immediate termination of the connection.

As an implementation-specific option, an RST segment may be sent from the managed
node to the other TCP endpoint. (Note, however, that RST segments are not sent
reliably.)

tcpConnLocalAddress – The local IP address for this TCP connection. For a
connection in the listen state that is willing to accept connections for any IP interface
associated with the node, the value 0.0.0.0 is used. (netaddress)

tcpConnLocalPort – The local port number for this TCP connection. (int)

tcpConnRemAddress – The remote IP address for this TCP connection. (netaddress)

tcpConnRemPort – The remote port number for this TCP connection. (int)

udp

The udp group reports statistics about the UDP group.

udpInDatagrams – The total number of UDP datagrams delivered to UDP users.
(counter) Returns a fixed value of 0.

udpNoPorts – The total number of received UDP datagrams for which there was no
application at the destination port. (counter) Returns a fixed value of 0.

udpInErrors – The number of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port. (counter)

udpOutDatagrams – The total number of UDP datagrams sent from this entity.
(counter) Returns a fixed value of 0.

udpTable

The udpTable is a table containing UDP listener information.

udpLocalAddress – The local IP address for this UDP listener. For a UDP listener
that is willing to accept datagrams for any IP interface associated with the node, the
value 0.0.0.0 is used. (netaddress)

udpLocalPort – The local port number for this UDP listener. (int)

snmp

The snmp group reports statistics about the SNMP group.
snmpInPkts  – The total number of Messages delivered to the SNMP entity from the transport service. (counter)

snmpOutPkts  – The total number of SNMP Messages passed from the SNMP protocol entity to the transport service. (counter)

snmpInBadVersions – The total number of SNMP Messages delivered to the SNMP protocol entity that were for an unsupported SNMP version. (counter)

snmpInBadCommunityNames – The total number of SNMP Messages delivered to the SNMP protocol entity that used a SNMP community name not known to said entity. (counter)

snmpInBadCommunityUses – The total number of SNMP Messages delivered to the SNMP protocol entity, which represented an SNMP operation not allowed by the SNMP community named in the Message. (counter)

snmpInASNParseErrs – The total number of ASN.1 or BER errors encountered by the SNMP protocol entity when decoding received SNMP Messages. (counter)

snmpInTooBigs – The total number of SNMP PDUs delivered to the SNMP protocol entity for which the value of the error-status field is “tooBig.” (counter)

snmpInNoSuchNames – The total number of SNMP PDUs delivered to the SNMP protocol entity for which the value of the error-status field is “noSuchName.” (counter)

snmpInBadValues – The total number of SNMP PDUs delivered to the SNMP protocol entity for which the value of the error-status field is “badValue.” (counter)

snmpInReadOnlys – The total number valid SNMP PDUs delivered to the SNMP protocol entity for which the value of the error-status field is “readOnly.” It should be noted that it is a protocol error to generate an SNMP PDU that contains the value “readOnly” in the error-status field. This object is provided as a means of detecting incorrect implementations of the SNMP. (counter)

snmpInGenErrs – The total number of SNMP PDUs delivered to the SNMP protocol entity for which the value of the error-status field is “genErr.” (counter)

snmpInTotalReqVars – The total number of MIB objects successfully retrieved by the SNMP protocol entity as the result of receiving valid SNMP Get-Request and Get-Next PDUs. (counter)

snmpInTotalSetVars – The total number of MIB objects successfully altered by the SNMP protocol entity as the result of receiving valid SNMP Set-Request PDUs. (counter)

snmpInGetRequests – The total number of SNMP Get-Request PDUs accepted and processed by the SNMP protocol entity. (counter)
**snmpInGetNexts** – The total number of SNMP Get-Next PDUs accepted and processed by the SNMP protocol entity. (counter)

**snmpInSetRequests** – The total number of SNMP Set-Request PDUs accepted and processed by the SNMP protocol entity. (counter)

**snmpInGetResponses** – The total number of SNMP Get-Response PDUs accepted and processed by the SNMP protocol entity. (counter)

**snmpInTraps** – The total number of SNMP Trap PDUs accepted and processed by the SNMP protocol entity. (counter)

**snmpOutTooBigs** – The total number of SNMP PDUs generated by the SNMP protocol entity for which the value of the error-status field is “tooBig.” (counter)

**snmpOutNoSuchNames** – The total number of SNMP PDUs generated by the SNMP protocol entity for which the value of the error-status is “noSuchName.” (counter)

**snmpOutBadValues** – The total number of SNMP PDUs generated by the SNMP protocol entity for which the value of the error-status field is “badValue.” (counter)

**snmpOutGenErrs** – The total number of SNMP PDUs generated by the SNMP protocol entity for which the value of the error-status field is “genErr.” (counter)

**snmpOutGetRequests** – The total number of SNMP Get-Request PDUs which have been generated by the SNMP protocol entity. (counter)

**snmpOutGetNexts** – The total number of SNMP Get-Next PDUs generated by the SNMP protocol entity. (counter)

**snmpOutSetRequests** – The total number of SNMP Set-Request PDUs generated by the SNMP protocol entity. (counter)

**snmpOutGetResponses** – The total number of SNMP Get-Response PDUs generated by the SNMP protocol entity. (counter)

**snmpOutTraps** – The total number of SNMP Trap PDUs generated by the SNMP protocol entity. (counter)

**snmpEnableAuthenTraps** – Indicates whether the SNMP agent process is permitted to generate authentication-failure traps. The value of this object overrides any configuration information. As such, it provides a means whereby all authentication-failure traps may be disabled. (enum)

Note that this object must be stored in non-volatile memory, so that it remains constant between reinitializations of the network management system.

The following are Sun-specific group and table definitions.

**sunSystem** 

The `sunSystem` group reports general system information.
agentDescr – The SNMP agent’s description of itself. (string[255])

hostID – The unique Sun hardware identifier. The value returned is four byte binary string. (octet[4])

motd – The first line of /etc/motd. (string[255])

unixTime – The UNIX system time. Measured in seconds since January 1, 1970 GMT. (counter)

sunProcessTable

The sunProcessTable table reports UNIX process table information.

psProcessID – The process identifier for this process. (int)

psParentProcessID – The process identifier of this process’s parent. (int)

psProcessSize – The combined size of the data and stack segments (in kilobytes.) (int)

psProcessCpuTime – The CPU time (including both user and system time) consumed so far. (int)

psProcessState – The run-state of the process. (octet[4])

| R | Runnable          |
| T | Stopped           |
| P | In page wait      |
| D | Non-interruptable wait |
| S | Sleeping (less than 20 seconds) |
| I | Idle (more than 20 seconds) |
| Z | Zombie            |

psProcessWaitChannel – Reason process is waiting. (octet[16])

psProcessTTY – Terminal, if any, controlling this process. (octet[16])

psProcessUserName – Name of the user associated with this process. (octet[16])

psProcessUserID – Numeric form of the name of the user associated with this process. (int)

psProcessName – Command name used to invoke this process. (octet[64])

psProcessStatus – Setting this variable will cause a signal of the set value to be sent to the process. (int)
sunHostPerf

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsUserProcessTime</td>
<td>Total number of timeticks used by user processes since the last system boot. (counter)</td>
</tr>
<tr>
<td>rsNiceModeTime</td>
<td>Total number of timeticks used by “nice” mode since the last system boot. (counter)</td>
</tr>
<tr>
<td>rsSystemProcessTime</td>
<td>Total number of timeticks used by system processes since the last system boot. (counter)</td>
</tr>
<tr>
<td>rsIdleModeTime</td>
<td>Total number of timeticks in idle mode since the last system boot. (counter)</td>
</tr>
<tr>
<td>rsDiskXfer1</td>
<td>Total number of disk transfers since the last boot for the first of four configured disks. (counter)</td>
</tr>
<tr>
<td>rsDiskXfer2</td>
<td>Total number of disk transfers since the last boot for the second of four configured disks. (counter)</td>
</tr>
<tr>
<td>rsDiskXfer3</td>
<td>Total number of disk transfers since the last boot for the third of four configured disks. (counter)</td>
</tr>
<tr>
<td>rsDiskXfer4</td>
<td>Total number of disk transfers since the last boot for the fourth of four configured disks. (counter)</td>
</tr>
<tr>
<td>rsVPagesIn</td>
<td>Number of pages read in from disk. (counter)</td>
</tr>
<tr>
<td>rsVPagesOut</td>
<td>Number of pages written to disk. (counter)</td>
</tr>
<tr>
<td>rsVSwapIn</td>
<td>Number of pages swapped in. (counter)</td>
</tr>
<tr>
<td>rsVSwapOut</td>
<td>Number of pages swapped out. (counter)</td>
</tr>
<tr>
<td>rsVIntr</td>
<td>Number of device interrupts. (counter)</td>
</tr>
<tr>
<td>rsIfInPackets</td>
<td>Number of input packets. (counter)</td>
</tr>
<tr>
<td>rsIfOutPackets</td>
<td>Number of output packets. (counter)</td>
</tr>
<tr>
<td>rsIfInErrors</td>
<td>Number of input errors. (counter)</td>
</tr>
<tr>
<td>rsIfOutErrors</td>
<td>Number of output errors. (counter)</td>
</tr>
<tr>
<td>rsIfCollisions</td>
<td>Number of output collisions. (counter)</td>
</tr>
</tbody>
</table>

FILES

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/snmp/conf/snmpd.conf</td>
<td>configuration information</td>
</tr>
<tr>
<td>/var/snmp/mib/sun.mib</td>
<td>standard SNMP MIBII file</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmibii</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO

inetd(1M), select(3C), recvfrom(3SOCKET), sendto(3SOCKET), attributes(5), gld(7D),

DIAGNOSTICS

cannot dispatch request

The proxy cannot dispatch the request. The rest of the message indicates the cause of the failure.

select(3C) failed

A select(3C) call failed. The rest of the message indicates the cause of the failure.

sendto(3SOCKET) failed

A sendto(3SOCKET) call failed. The rest of the message indicates the cause of the failure.

recvfrom(3SOCKET) failed

A recvfrom(3SOCKET) call failed. The rest of the message indicates the cause of the failure.

no response from system

The SNMP agent on the target system does not respond to SNMP requests. This error might indicate that the SNMP agent is not running on the target system, the target system is down, or the network containing the target system is unreachable.

response too big

The agent could not fit the results of an operation into a single SNMP message. Split large groups or tables into smaller entities.

missing attribute

An attribute is missing from the requested group.

bad attribute type

An object attribute type received from the SNMP agent that does not match the attribute type specified by the proxy agent schema. The rest of the message indicates the expected type and received type.

cannot get sysUpTime

The proxy agent cannot get the variable sysUpTime from the SNMP agent.

sysUpTime type bad

The variable sysUpTime received from the SNMP agent has the wrong data type.

unknown SNMP error

An unknown SNMP error was received.
mibiiisa(1M)

bad variable value
The requested specified an incorrect syntax or value for a set operation.

variable is read only
The SNMP agent did not perform the set request because a variable to set may not be written.

general error
A general error was received.

cannot make request PDU
An error occurred building a request PDU.

cannot make request varbind list
An error occurred building a request variable binding list.

cannot parse response PDU
An error occurred parsing a response PDU.

request ID - response ID mismatch
The response ID does not match the request ID.

string contains non-displayable characters
A displayable string contains non-displayable characters.

cannot open schema file
An error occurred opening the proxy agent schema file.

cannot parse schema file
The proxy agent couldn’t parse the proxy agent schema file.

cannot open host file
An error occurred opening the file associated with the na.snmp.hostfile keyword in /etc/snmp/conf/snmpd.conf

cannot parse host file
The proxy agent was unable to parse the file associated with the na.snmp.hostfile keyword in /etc/snmp/conf/snmpd.conf.

attribute unavailable for set operations
The set could not be completed because the attribute was not available for set operations.

BUGS
The mibiiisa utility returns the wrong interface speed for the SBUS FDDI interface (for example, “bf0”).

The mibiiisa utility does not return a MAC address for the SBUS FDDI interface (for example, “bf0”).

Process names retrieved from mibiiisa contain a leading blank space.

When you change attribute values in the system group with an SNMP set request, the change is effective only as long as mibiiisa is running. mibiiisa does not save the changes to /etc/snmp/conf/snmpd.conf.
mipagent(1M)

NAME
mipagent – Mobile IP agent

SYNOPSIS
/usr/lib/inet/mipagent

DESCRIPTION
The mipagent utility implements the Mobile IP home agent and foreign agent functionality described in RFC 2002, IP Mobility Support. The term “mobility agent” is used to refer to the home agent and foreign agent functionality collectively. mipagent responds to Mobile IP registration and deregistration requests and router discovery solicitation messages from a mobile node. Besides responding to external messages, the mipagent utility also tasks on a periodic basis, such as aging the mobility bindings and visitor entries and sending agent advertisements. The mobility agent can also handle direct delivery style reverse tunneling as specified in RFC 2344, Reverse Tunneling for Mobile IP. Limited private address support for mobile nodes is also available. In addition, separate IPsec policies for registration requests, replies, and tunnel traffic can be configured to protect the datagrams associated with these between two mobility agents.

Run the mipagent daemon as root using the start-up script, which has the following syntax:

eexample$ /etc/init.d/mipagent [start|stop]

to start and stop the daemon.

/etc/inet/mipagent.conf must be present before you start-up the mipagent daemon. See mipagent.conf(4). At start up, mipagent reads the configuration information from /etc/inet/mipagent.conf. The mipagent daemon records a continuous log of its activities by means of syslog(). See syslog(3C). You can use the LogVerbosity parameter in /etc/inet/mipagent.conf to control the verbosity level of the log.

The mipagent daemon can be terminated either by the script:

eexample$ /etc/init.d/mipagent stop

or by the kill command.

Periodically while running, or if terminated or shutdown, the mipagent daemon stores the following internal state information in /var/inet/mipagent_state:

- a list of the mobile nodes supported as home agents;
- their current care-of addresses; and
- the remaining registration lifetimes.

If the mipagent utility is terminated for maintenance and restarted, mipagent_state is used to recreate as much of the mobility agent’s internal state as possible. This minimizes service disruption for mobile nodes that may be visiting other networks. If mipagent_state exists, it is read immediately after mipagent.conf when mipagent is restarted. The format of mipagent_state is undocumented since it is likely to change and programs other than mipagent should not use it for any purpose. A separate utility program mipagentstat is provided for monitoring mipagent.
mipagent(1M)

EXIT STATUS
The following exit values are returned:
0     The daemon started successfully.
-1    The daemon failed to start.

FILES
/etc/inet/mipagent.conf
    Configuration file for Mobile IP mobility agent.
/var/inet/mipagent_state
    File where private state information from mipagent is stored.
/etc/init.d/mipagent [start|stop]
    mipagent start-up script.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmipu</td>
</tr>
</tbody>
</table>

SEE ALSO
mipagentstat(1M), mipagentconfig(1M), syslog(3C), mipagent.conf(4), attributes(5)


DIAGNOSTICS
The mipagent utility exits with an error if the configuration file, mipagent.conf, cannot be read successfully. Upon receiving a SIGTERM or SIGINT signal, mipagent cleans its internal state, including any changes to the routing and ARP tables, and exits.

NOTES
The foreign agent adds host–specific local routes to its routing table for visiting mobile nodes after they are successfully registered. If a visiting mobile node departs without sending a de-registration message through the foreign agent, these routing entries persist until the mobile node’s previous registration expires. Any packets that arrive at the foreign agent for the departed mobile node during this time, for example because the foreign agent is also a router for the foreign network, will be lost. System administrators can configure foreign agents to accept only short registration lifetimes. This will automatically restrict the maximum duration for which a departed mobile node will be temporarily unreachable.

Home and foreign agents dynamically add and delete IPsec policies configured with a mobility agent peer. Those pertaining to the tunnel are only added when the tunnel is plumbed. At this time, IPsec tunnel policies must be identical in the forward and reverse direction. IPsec policies pertaining to permitting registration requests on the home agent are added to the IPsec policy file at init time as it must be ready to receive
these at any time. Otherwise, IPsec policies pertaining to registration request and reply messages with a mobility agent peer are added as soon as they are needed, and are not removed until all mobile nodes are no longer registered with the mobility agent peer, at which point the tunnels are torn down.
The `mipagentconfig` utility is used to configure the Mobility IP Agent. It allows the user to change settings and to add and delete mobility clients, Pools, and SPIs in the mobility agent configuration file.

**OPTIONS**

The following options are supported:

- `-f configfile` Use the specified configuration file instead of the system default, `/etc/inet/mipagent.conf`.

**OPERANDS**

The `command` operand, as well as the parameters for each command are described below. See `mipagent.conf(4)` for the default values of the configuration operands described here.

`add` Depending on the destination `dest`, this command will add advertisement parameters, security parameters, SPIs, or addresses to the configuration file.

- `add Address ipAddress attr_value` Add the specified `ipAddress` with the specified SPI. To add an NAI address, you must specify the Pool.

- `add adv device` Enable home and foreign agent functionality on the specified interface.

- `add adv device AdvLifetime seconds` Add `AdvLifetime` to the specified device.

- `add adv device RegLifetime seconds` Add `RegLifetime` to the specified device.

- `add adv device AdvFrequency seconds` Add `AdvFrequency` to the specified device.

- `add adv device AdvInitCount count` Add initial unsolicited advertisement count. `count` should be a small integer.

- `add adv device AdvLimitUnsolicited yes | no` Enable limited or unlimited unsolicited advertisements for foreign agent. Accepted values are:

  - `yes` Limit unsolicited advertisement to `AdvInitCount` initial advertisements.

  - `no` Do not limit unsolicited advertisement. The advertisement should take place periodically at the frequency specified by `AdvFrequency`. 

mipagentconfig(1M)

**NAME**

`mipagentconfig` – configure Mobility IP Agent

**SYNOPSIS**

```
/sbin/mipagentconfig [-f configfile] command dest [parameters...]
```

**DESCRIPTION**

The `mipagentconfig` utility is used to configure the Mobility IP Agent. It allows the user to change settings and to add and delete mobility clients, Pools, and SPIs in the mobility agent configuration file.
mipagentconfig(1M)

add adv device HomeAgent yes | no
   Add the HomeAgent flag to the specified device.

add adv device ForeignAgent yes | no
   Add the ForeignAgent flag to the specified device.

add adv device PrefixLengthExt yes | no
   Add the PrefixLengthExt flag to the specified device.

add adv device NAIExt yes | no
   Add the NAIExt flag to the specified device.

add adv device Challenge yes | no
   Add the Challenge flag to the specified device.

add adv device ReverseTunnel no | neither fa ha yes | both
   Add the level of ReverseTunnel support indicated to the specified device. Possible values include:

   no
      Do not support ReverseTunnel as either a foreign agent or a home agent on this device. Does not advertise reverse tunneling nor accept a registration requesting reverse tunnel support on this device.

   neither
      Do not support ReverseTunnel as either a foreign agent or a home agent on this device. Do not advertise reverse tunneling nor accept a registration requesting reverse tunnel support on this device.

   fa
      When the foreign agent processes a registration request received on this device, check to see if the mobile node requests that a reverse tunnel be set up to its home agent. If so, perform the necessary encapsulation of datagrams to the mobile node’s home agent as described in RFC 2344. This means that a mobile node must see the agent advertising reverse tunnel support, so the reverse tunnel bit is advertised in the agent advertisement on this device.

   ha
      When the home agent processes a registration request received on this device, check to see if the mobile node requests that a reverse tunnel be set up from its care-of address. If so, perform the necessary decapsulation as described in RFC 2344. This does not mean the home agent is advertising support of reverse tunneling on
this device. Mobile nodes are only interested in the advertisement flags if they are going to use foreign agent services. Moreover, reverse tunnels by definition originate at the care-of address, and HA support is therefore only of interest to the owner of the care-of address.

**yes**
Whenever the mobility agent is processing a registration request received on this device, check to see if the mobile node is requesting a reverse tunnel be set up. If so, apply RFC 2344 as appropriate, either as an encapsulating foreign agent, or a decapsulating home agent, depending on how this mobility agent is servicing the specific mobile node. As a result, the mobility agent will be advertising reverse tunnel support on this device.

**both**
Whenever the mobility agent is processing a registration request received on this device, check to see if the mobile node is requesting a reverse tunnel be set up. If so, apply RFC 2344 as appropriate, either as an encapsulating foreign agent, or a decapsulating home agent, depending on how this mobility agent is servicing the specific mobile node. As a result, the mobility agent will be advertising reverse tunnel support on this device.

```
add adv device ReverseTunnelRequired no | neither fa ha yes | both yes | both
```
Add the requirement that the `ReverseTunnel` flag be set in any registration request received on the indicated device. Possible values include:

**no**
Reverse tunneling is not required by the `mipagent` on this device.

**neither**
Reverse tunneling is not required by the `mipagent` on this device.

**fa**
The `ReverseTunnel` flag is required to be set in registration requests received by the foreign agent on this device.
The ReverseTunnel flag is required to be set in registration requests received by the home agent on this device.

The ReverseTunnel flag is required to be set in all registration requests received by either home and or foreign agents on this device.

The ReverseTunnel flag is required to be set in all registration requests received by either home and or foreign agents on this device.

Add the specified Pool with the specified start addresses and length.

Add the specified SPI with the given replay type and key. The replay type can have a value of none or timestamps.

Add the HA-FAAuth flag.

Add the MN-FAAuth flag.

Add the MaxClockSkew.

Add the KeyDistribution type. The only value for KeyDistribution that is supported at this time is file.

Depending on the destination dest, this command will change advertisement parameters, security parameters, SPIs, or addresses in the configuration file. Any of the above destinations are valid.

Depending on the destination dest, this command will delete advertisement parameters, security parameters, SPIs, or addresses from the configuration file. Any destination discussed above is valid.

Display all of the parameters associated with dest. Any destination discussed above is valid.
EXAMPLE 1  Adding an SPI, a Pool, and a Mobile Node and Requiring Reverse Tunneling on a Device to the configuration

The following example adds an SPI, a Pool, a mobile node, and requires reverse tunneling for the foreign agent in the configuration. First, the SPI of 250 is added. Then, a Pool of 200 addresses starting at 192.168.168.1 is added. joe@mobile.com is added with an SPI of 250 and using Pool 1. Finally, reverse tunneling is required for the foreign agent on device le0.

```
example# mipagentconfig add SPI 250 ReplayMethod none
example# mipagentconfig add SPI 250 Key 00ff00ff00ff
example# mipagentconfig add Pool 1 192.168.168.1 200
example# mipagentconfig add Address joe@mobile.com 250 1
example# mipagentconfig add le0 reversetunnel fa
example# mipagentconfig add le0 reversetunnelrequired fa
```

EXAMPLE 2  Adding Dynamic Interface Mobility Support on PPP Interfaces

The following example adds dynamic interface mobility support on PPP interfaces. The backslash (`\`) escape character is used to type in device number `*`. The example also indicates that all the new ppp interfaces offer reverse tunnel service.

```
example# mipagentconfig add ppp* reversetunnel yes
example# mipagentconfig add ppp* AdvLimitUnsolicited yes
example# mipagentconfig add ppp* AdvInitCount 3
example# mipagentconfig add ppp* AdvFrequency 1
```

EXAMPLE 3  Adding IPsec Policies to an Agent-Peer Entry

The following example adds IPsec policies to an existing mobility agent entry, then displays the configuration for the mobility agent peer. The backslash (`\`) character denotes a line continuation for the formatting of this example.

```
example# mipagentconfig add Address 192.168.10.1 \
    IPsecRequest apply {auth_algs md5 sa shared}
example# mipagentconfig add Address 192.168.10.1 \
    IPsecReply permit {auth_algs md5}
example# mipagentconfig add Address 192.168.10.1 \
    IPsecTunnel permit {encr_auth_algs md5 encr_algs 3des}
example# mipagentconfig get Address 192.168.10.1

[Address 192.168.10.1]
Type = agent
SPI = 137
IPsecRequest = apply {auth_algs md5 sa shared}
IPsecReply = permit {auth_algs md5}
IPsecTunnel = \n    permit {encr_auth_algs md5 encr_algs 3des}
```
EXAMPLE 4 Modifying an SPI

To modify the SPI associated with joe, first, use the command `get` to verify the existing settings, then change the SPI from 250 to 257.

```bash
example# mipagentconfig get Address joe@mobile.com
Address: joe@mobile.com
SPI: 250
Pool: 1
```

```bash
example# mipagentconfig change Address joe@mobile.com 257 1
```

EXAMPLE 5 Deleting a Pool

Use the following example to delete Pool 3:

```bash
example# mipagentconfig delete Pool 3
```

EXIT STATUS 

The following exit values are returned:

- 0  Successful completion.
- non-zero  An error occurred.

FILES 

/etc/inet/mipagent.conf
   Configuration file for Mobile IP mobility agent.

/etc/inet/mipagent.conf-sample
   Sample configuration file for mobility agents.

/etc/inet/mipagent.conf.ha-sample
   Sample configuration file for home agent functionality.

/etc/inet/mipagent.conf.fa-sample
   Sample configuration file for foreign agent functionality.

ATTRIBUTES 

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmipui</td>
</tr>
</tbody>
</table>

SEE ALSO  

mipagent(1M), mipagent.conf(4), attributes(5)


mipagentstat – show Mobile IP Mobility Agent status

mipagentstat [-fhp]

Use the mipagentstat utility to display the content of various Mobile-IP related data structures.

### Visitor Table (First Form)

The visitor table display lists information for all mobile nodes registered with the foreign agent, one mobile node per line. This list consists of the mobile node’s home address or Network Access Identifier (NAI), home agent address, total registration lifetime and the number of seconds remaining before the registration expires.

The following command line shows the output from a foreign agent with two mobile nodes registered:

```
example# mipagentstat -f
Mobile Node Foreign Agent Time Granted Time Remaining Flags
    (in secs) (in secs)
foobar@xyz.com fa1@tuv.com 600 125
10.1.5.23 123.2.5.12 1000 10 R
```

An “R” in the flags column indicates a reverse tunnel is present. No reverse tunnel is configured for the mobile node foobar@xyz.com. A reverse tunnel is configured from mobile node 10.1.5.23.

### Binding Table (Second Form)

The binding table display lists information for all mobile nodes registered with the home agent, one mobile node per line. This list consists of the mobile node’s home address or NAI, foreign agent address, total registration lifetime and the number of seconds remaining before the registration expires.

Use the following command line to show the output from a home agent with two active mobile nodes:

```
example# mipagentstat -h
Mobile Node Home Agent Time Granted Time Remaining Flags
    (in secs) (in secs)
foobar@xyz.com ha1@xyz.com 600 125
10.1.5.23 10.1.5.1 1000 10 R
```

An “R” in the flags column indicates a reverse tunnel is present. No reverse tunnel is configured for the mobile node foobar@xyz.com. A reverse tunnel is configured for mobile node 10.1.5.23.

### Agent Table (Third Form)

The agent table display lists information for all current mobility agent-peers, that is all mobility agents with which mobile-nodes we are servicing are trying to obtain service.

Provided in this display are the IPsec protection mechanisms being used with registration requests, replies, and tunnels.

Use the following command line to show the output from a home agent with two (foreign) mobility agent peers:

```
example# mipagentstat -hp
```
Use the following command line to show the output from a home agent with two (foreign) mobility agent peers:

```
example# mipagentstat -fp
```

Use of the -p option without specifying the agent results in both displays described above, that is one display for each agent.

An AH in any column indicates the IPsec AH mechanism is in place for those datagrams.

An ESP in any column indicates the IPsec ESP mechanism is in place for those datagrams.

**OPTIONS**
The following options are supported:

- `-f` Display the list of active mobile nodes in the foreign agent’s visitor’s list.
- `-h` Display the list of active mobile nodes in the home agent’s binding table.
- `-p` Display the list of mobility agent peers, and the IPsec protection mechanisms currently in use for registration and tunnel traffic.

**EXIT STATUS**
The following exit values are returned:

- `0` Successful completion.
- `non-zero` An error occurred.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmipu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
mipagent(1M), mipagentconfig(1M), mipagent.conf(4), attributes(5)

mkdevalloc(1M)

NAME  mkdevalloc – Make device_allocate entries

SYNOPSIS  /usr/sbin/mkdevalloc

DESCRIPTION  The mkdevalloc command writes to standard out a set of device_allocate entries describing the system’s frame buffer, audio and removable media devices.

The mkdevalloc command is used by the init.d(4) scripts to create or update the /etc/security/device_allocate file.

Entries are generated based on the device special files found in /dev. For the different categories of devices, the mkdevalloc command checks for the following files under /dev:

- audio  /dev/audio, /dev/audioctl, /dev/sound/...
- tape   /dev/rst*, /dev/nrst*, /dev/rmt/...
- floppy /dev/diskette, /dev/fd*, /dev/rdiskette, /dev/rfd*
- removable disk /dev/sr*, /dev/nsr*, /dev/dsk/c0t?d0s?, /dev/rdsk/c0t?d0s?
- frame buffer /dev/fb

All entries set the device-minimum and device-maximum fields to the hex representations of ADMIN_LOW and ADMIN_HIGH, respectively. The device-authorization field is set to solaris.device.allocate, except for the framebuffer entry, where it is set to *. The device-name, device-type and device-clean fields are set to the following values:

<table>
<thead>
<tr>
<th>device-name</th>
<th>device-type</th>
<th>device-clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio</td>
<td>audio</td>
<td>audio_clean_wrapper</td>
</tr>
<tr>
<td>tape</td>
<td>mag_tape_0,1,...</td>
<td>st</td>
</tr>
<tr>
<td>floppy</td>
<td>floppy_0,1,...</td>
<td>fd</td>
</tr>
<tr>
<td>removable disk</td>
<td>cdrom_0,1,...</td>
<td>sr</td>
</tr>
<tr>
<td>frame buffer</td>
<td>framebuffer</td>
<td>fb</td>
</tr>
</tbody>
</table>

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO  allocate(1), bsmconv(1M), attributes(5)

NOTES  mkdevalloc might not be supported in a future release of the Solaris Operating Environment.
The `mkdevmaps` command writes to standard out a set of `device_maps(4)` entries describing the system’s frame buffer, audio, and removable media devices.

The `mkdevmaps` command is used by the `init.d(4)` scripts to create or update the `/etc/security/device_maps` file.

Entries are generated based on the device special files found in `/dev`. For the different categories of devices, the `mkdevmaps` command checks for the following files under `/dev`:

- **audio** /dev/audio, /dev/audioctl, /dev/sound/...
- **tape** /dev/rst*, /dev/nrst*, /dev/rmt/...
- **floppy** /dev/diskette, /dev/fd*, /dev/rdiskette, /dev/rfd*
- **removable disk** /dev/dsk/c0t?d0s?, /dev/rdsk/c0t?d0s?
- **frame buffer** /dev/fb

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

`mkdevmaps` might not be supported in a future release of the Solaris Operating Environment.
The `mkfifo` utility creates the FIFO special files named by its argument list. The arguments are taken sequentially, in the order specified; and each FIFO special file is either created completely or, in the case of an error or signal, not created at all.

If errors are encountered in creating one of the special files, `mkfifo` writes a diagnostic message to the standard error and continues with the remaining arguments, if any.

The `mkfifo` utility calls the library routine `mkfifo(3C)`, with the `path` argument passed as the `path` argument from the command line, and `mode` is set to the equivalent of `a=rw`, modified by the current value of the file mode creation mask `umask(1)`.

The following option is supported:

- `-m mode` Sets the file permission bits of the newly-created FIFO to the specified `mode` value. The `mode` option-argument will be the same as the `mode` operand defined for the `chmod(1)` command. In `<symbolicmode>` strings, the `op` characters `+` and `−` will be interpreted relative to an assumed initial mode of `a=rw`.

The following operand is supported:

- `file` A path name of the FIFO special file to be created.

See `largefile(5)` for the description of the behavior of `mkfifo` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

See `environ(5)` for descriptions of the following environment variables that affect the execution of `mkfifo`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The following exit values are returned:

- `0` All the specified FIFO special files were created successfully.
- `>0` An error occurred.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

`mkfifo(3C)`, `attributes(5)`, `environ(5)`, `largefile(5)`, `standards(5)`
mkfile(1M)

NAME
mkfile – create a file

SYNOPSIS
mkfile [-nv] size [g | k | b | m] filename...

DESCRIPTION
mkfile creates one or more files that are suitable for use as NFS-mounted swap areas, or as local swap areas. When a root user executes mkfile(), the sticky bit is set and the file is padded with zeros by default. When non-root users execute mkfile(), they must manually set the sticky bit using chmod(1). The default size is in bytes, but it can be flagged as gigabytes, kilobytes, blocks, or megabytes, with the g, k, b, or m suffixes, respectively.

OPTIONS
  -n  Create an empty filename. The size is noted, but disk blocks are not allocated until data is written to them. Files created with this option cannot be swapped over local UFS mounts.
  -v  Verbose. Report the names and sizes of created files.

USAGE
See largefile(5) for the description of the behavior of mkfile when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
chmod(1), swap(1M), attributes(5), largefile(5)
NAME
mkfs – construct a file system

SYNOPSIS
mkfs [-F FSType] [generic_options] [-o FSType-specific_options] raw_device_file [operands]

DESCRIPTION
The mkfs utility constructs a file system on the raw_device_file by calling the specific mkfs module indicated by -F FSType.

Note: ufs file systems are normally created with the newfs(1M) command.

generic_options are independent of file system type. FSType-specific_options is a comma-separated list of keyword=value pairs (with no intervening spaces), which are FSType-specific. raw_device_file specifies the disk partition on which to write the file system. It is required and must be the first argument following the specific_options (if any). operands are FSType-specific. See the FSType-specific manual page of mkfs (for example, mkfs_ufs (1M)) for a detailed description.

OPTIONS
The following are the generic options for mkfs:

- F Specify the FSType to be constructed. If -F is not specified, the FSType is determined from /etc/vfstab by matching the raw_device_file with a vfstab entry, or by consulting the /etc/default/fs file.

- V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided and adding to them information derived from /etc/vfstab or /etc/default/fs. This option may be used to verify and validate the command line.

- m Return the command line which was used to create the file system. The file system must already exist. This option provides a means of determining the command used in constructing the file system.

- o Specify FSType-specific options. See the manual page for the mkfs module specific to the file system type.

USAGE
See largefile(5) for the description of the behavior of mkfs when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES
/etc/default/fs Default file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs

LOCAL The default partition for a command if no FSType is specified.

/etc/vfstab List of default parameters for each file system
SEE ALSO

SEE ALSO

NOTES

You can use lofiadm to create a file that appears to a mkfs command as a raw device. You can then use a mkfs command to create a file system on that device. See lofiadm(1M) for examples of creating a UFS and a PC (FAT) file system (using mkfs_ufs(1M) and mkfs_pcfs(1M)) on a device created by lofiadm.
mkfs_pcfs(1M)

NAME  mkfs_pcfs – construct a FAT file system

SYNOPSIS  mkfs -F pcfs [generic_options] [-o FSType_specific_options] raw_device_file

DESCRIPTION  The pcfs-specific module of mkfs constructs a File Allocation Table (FAT) on removable media (diskette, JAZ disk, ZIP disk, PCMCIA card), a hard disk, or a file (see NOTES). FATs are the standard MS-DOS and Windows file system format. Note that you can use fdformat(1) to construct a FAT file system only on a diskette or PCMCIA card.

mkfs for pcfs determines an appropriate FAT size for the medium, then it installs an initial boot sector and an empty FAT. A sector size of 512 bytes is used. mkfs for pcfs can also install the initial file in the file system (see the pcfs-specific -o i option). This first file can optionally be marked as read-only, system, and/or hidden.

If you want to construct a FAT with mkfs for pcfs on a medium that is not formatted, you must first perform a low-level format on the medium with fdformat(1) or format(1M). Non-diskette media must also be partitioned with the fdisk(1M) utility. Note that all existing data on the diskette or disk partition, if any, is destroyed when a new FAT is constructed.

generic_options are supported by the generic mkfs command. See mkfs(1M) for a description of these options.

raw_device_file indicates the device on which to write unless the -o N option has been specified, or if the -V or -m generic options are passed from the generic mkfs module.

OPTIONS  See mkfs(1M) for the list of supported generic options.

The following options are supported:

-o FSType_specific_options
  Specify pcfs file system-specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored.

  b=label  Label the media with volume label. The volume label is restricted to 11 uppercase characters.

  B=filename  Install filename as the boot loader in the file system’s boot sector. If you don’t specify a boot loader, an MS-DOS boot loader is installed. The MS-DOS boot loader requires specific MS-DOS system files to make the diskette bootable. See NOTES for more information.

  fat=n  The size of a FAT entry. Currently, only 12 and 16 are valid values. The default is 12 for diskettes, 16 for larger media.

  h  Mark the first file installed as a hidden file. The -i option must also be specified.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hidden=n</code></td>
<td>Set the number of hidden sectors to <code>n</code>. This is the number of sectors on the physical disk preceding the start of the volume (which is the boot sector itself). This defaults to 0 for diskettes or a computed valued (based on the fdisk table) for disks. This option may be used only in conjunction with the <code>nofdisk</code> option.</td>
</tr>
<tr>
<td><code>i=filename</code></td>
<td>Install <code>filename</code> as the initial file in the new file system. The initial file’s contents are guaranteed to occupy consecutive clusters at the start of the files area. When creating bootable media, a boot program should be specified as the initial file.</td>
</tr>
<tr>
<td><code>nofdisk</code></td>
<td>Do not attempt to find an fdisk table on the medium. Instead rely on the <code>size</code> option for determining the partition size. By default, the created FAT is 16 bits and begins at the first sector of the device. This origination sector can be modified with the <code>hidden</code> option (<code>-h</code>).</td>
</tr>
<tr>
<td><code>nsect=n</code></td>
<td>The number of sectors per track on the disk. If not specified, the value is determined by using a <code>dkio(7I)</code> ioctl to get the disk geometry, or (for diskette) from the results of an <code>FDIOGCHAR</code> ioctl.</td>
</tr>
<tr>
<td><code>ntrack=n</code></td>
<td>The number of tracks per cylinder on the disk. If not specified, the value is determined by using a <code>dkio(7I)</code> ioctl to get the disk geometry, or (for diskette) from the results of an <code>FDIOGCHAR</code> ioctl.</td>
</tr>
<tr>
<td><code>N</code></td>
<td>No execution mode. Print normal output, but do not actually write the file system to the medium. This is most useful when used in conjunction with the <code>verbose</code> option.</td>
</tr>
<tr>
<td><code>r</code></td>
<td>Mark the first file installed as read-only. The <code>-i</code> option must also be specified.</td>
</tr>
<tr>
<td><code>reserve=n</code></td>
<td>Set the number of reserved sectors to <code>n</code>. This is the number of sectors in the volume, preceding the start of the first FAT, including the boot sector. The value should always be at least 1, and the default value is exactly 1.</td>
</tr>
<tr>
<td><code>s</code></td>
<td>Mark the first file installed as a system file. The <code>-i</code> option must also be specified.</td>
</tr>
<tr>
<td><code>size=n</code></td>
<td>The number of sectors in the file system. If not specified, the value is determined from the size of the partition given in the fdisk table or (for diskette) by way of computation using the <code>FDIOGCHAR</code> ioctl.</td>
</tr>
<tr>
<td><code>spc=n</code></td>
<td>The size of the allocation unit for space within the file system, expressed as a number of sectors. The default value depends on the FAT entry size and the size of the file system.</td>
</tr>
</tbody>
</table>
mkfs_pcfs(1M)

v  Verbose output. Describe, in detail, operations being performed.

FILES  
raw_device_file  The device on which to build the FAT. The device name  
for a diskette must be specified as /dev/rdiskette0  
for the first diskette drive, or /dev/rdiskette1 for a  
second diskette drive. For non-diskette media, a disk  
device name must be qualified with a suffix to indicate  
the proper partition. For example, in the name  
/dev/rdsk/c0t0d0p0:c, the :c suffix indicates that  
the first partition on the disk should receive the new  
FAT.  

For a file, raw_device_file is the block device name  
returned by lofiadm(1M).

EXAMPLES  
The media in these examples must be formatted before running mkfs for pcfs. See  
DESCRIPTION for more details.

EXAMPLE 1 Creating a FAT File System on a Diskette  
The following command creates a FAT file system on a diskette:  
mkfs -F pcfs /dev/rdiskette

EXAMPLE 2 Creating a FAT File System on a Disk  
The following command creates a FAT file system on the second fdisk partition of a  
disk attached to an x86 based system:  
mkfs -F pcfs /dev/rdsk/c0d0p0:d

EXAMPLE 3 Creating a FAT File System on a ZIP Disk  
The following command creates a FAT file system on a ZIP disk located on a SPARC  
based system:  
mkfs -F pcfs /dev/rdsk/c0t4d0s2:c

EXAMPLE 4 Creating a FAT File System on a JAZ Disk  
The following command creates a FAT file system on a JAZ disk located on a SPARC  
based system and overrides the sectors/track and tracks/cylinder values obtained  
from the device’s controller:  
mkfs -F pcfs -o nsect=32,ntrack=64 /dev/rdsk/c0t3d0s2:c
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

fdformat(1), fdisk(1M), format(1M), lofiadm(1M), mkfs(1M), attributes(5), fd(7D), dkio(7I), fdio(7I)

NOTES

The default MS-DOS boot loader, which is installed by default if -oB is not specified, requires specific MS-DOS system files to make the diskette bootable. These MS-DOS files are not installed when you format a diskette with mkfs for pcfs, which makes a diskette formatted this way not bootable. Trying to boot from it on an x86 based system will result in the following message:

Non-System disk or disk error
Replace and strike any key when ready

You must format a diskette with the DOS format command to install the specific MS-DOS system files required by the default boot loader.

You can use lofiadm to create a file that appears to a mkfs command (for example, mkfs_pcfs or mkfs_ufs) as a raw device. You can then use a mkfs command to create a file system on that device. See lofiadm(1M) for examples of creating a UFS and a PC (FAT) file system on a device created by lofiadm.
mkfs_udfs(1M)

NAME  mkfs_udfs – construct a udfs file system

SYNOPSIS  mkfs -F udfs [generic_options] [-o specific_options] raw_device_file [size]

DESCRIPTION  This is the universal disk format file system (udfs)-specific module of the mkfs command. mkfs constructs a udfs file system with a root directory.

OPTIONS  See mkfs(1M) for the list of supported generic_options.

The following options are supported:

-o specific_options  Specify a udfs-specific option. Specify udfs file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored.

The following specific_options are available:

N  Print the file system parameters without actually creating the file system.

label=string  Specify the label to be written into the volume header structures. Specify string as the name of the label. If string is not specified, a default string is generated in the form of *NoLabel*.

OPERANDS  The following operands are supported:

raw_device_file  Specify the disk partition on which to write.

size  Specify the number of 512-byte blocks in the file system.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWudf</td>
</tr>
</tbody>
</table>

SEE ALSO  fsck(1M), mkfs(1M), attributes(5)

DIAGNOSTICS  not currently a valid file system

The specified device does not contain a valid udfs file system.

Invalid size: larger than the partition size

Number of blocks given as parameter to create the file system is larger than the size of the device specified.
Device is in use, cannot create file system when the device is in use.

Negative size parameter provided is invalid.

Sector size must be between 512, 8192 bytes

Sector size given is not in the valid range.

Volume integrity sequence descriptors too long
File set descriptor too long.

Not enough space to create volume integrity sequence or file set descriptor.

One of the arguments is out of range.

One of the arguments is potentially a bad numeric.

You can use lofiadm to create a file that appears to a mkfs command (for example, mkfs_pcfs or mkfs_ufs) as a raw device. You can then use a mkfs command to create a file system on that device. See lofiadm(1M) for examples of creating a UFS and a PC (FAT) file system on a device created by lofiadm.
mkfs_ufs(1M)

NAME
mkfs_ufs – construct a ufs file system

SYNOPSIS
mkfs -F ufs [generic_options] [-o FSType_specific_options] raw_device_file [size]

DESCRIPTION
The ufs-specific module of mkfs builds a ufs file system with a root directory and a
lost+found directory (see fsck(1M))

The ufs-specific mkfs is rarely run directly; use the newfs(1M) command instead.

raw_device_file indicates the disk partition to write on unless the -o N option has been
specified, or either the -V or -m generic options are passed from the generic mkfs
module. size specifies the number of sectors in the file system. This argument must
follow the raw_device_file argument and is required (even with -o N), unless the -V or
-m generic options are specified.

generic_options are supported by the generic mkfs command. See mkfs(1M) for a
description of these options.

OPTIONS
The following options are supported:

-o
Use one or more of the following values separated by commas (with no
intervening spaces) to specify ufs-specific options:

apc=n
The number of alternate sectors per cylinder to reserve
for bad block replacement (SCSI devices only). The
default is 0.

bsize=n
Logical block size, either 4096 or 8192. The default is
8192. The sun4u architecture does not support the
4096 block size.

cgsizes=n
The number of cylinders per cylinder group (ranging
from 16 to 256). The default is calculated by dividing
the number of sectors in the file system by the number
of sectors in a gigabyte, and then multiplying the result
by 32. The default value will always be between 16
and 256. The per-cylinder-group meta data must fit in
a space no larger than that available in one logical file
system block. If too large a cgsizes is requested, it is
changed by the minimum amount necessary.

fragsize=n
The smallest amount of disk space in bytes to allocate to
a file. If the logical block size is 4096, legal values are
512, 1024, 2048, and 4096. When the logical block
size is 8192, legal values are 1024, 2048, 4096, and
8192. The default value is 1024.

For file systems greater than 1 terabyte or for file
systems created with the mtb=y option, fragsize is
forced to match block size (bsize).
**free=n**  
The minimum percentage of free space to maintain in the file system. This space is off-limits to normal users. Once the file system is filled to this threshold, only the superuser can continue writing to the file system. This parameter can be subsequently changed using the `tuneefs(1M)` command. The default is 10%.

**gap=n**  
Rotational delay. The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new transfer on the same disk. The value is used to decide how much rotational spacing to place between successive blocks in a file. This parameter can be subsequently changed using the `tuneefs(1M)` command. The default is zero, indicating a disk drive with track readahead buffering.

**maxcontig=n**  
The maximum number of logical blocks, belonging to one file, that will be allocated contiguously before inserting a rotational delay. For a 4K file system, the default is 14; for an 8K file system it is 7. This parameter can be subsequently changed using the `tuneefs(1M)` command. Where `maxphys` is the maximum size of physical I/O requests supported by UFS (1048576 bytes), the value for `maxcontig` must obey the relationship:

\[
\text{maxphys} \geq \text{maxcontig} \times \text{logical bsize}
\]

This parameter also controls clustering. Regardless of the value of `gap`, clustering is enabled only when `maxcontig` is greater than 1. Clustering allows higher I/O rates for sequential I/O and is described in `tuneefs(1M)`.

**mtb=y**  
Set the parameters of the file system to allow eventual growth to over a terabyte in total file system size. This option sets `fragsize` to be the same as `bsize`, and sets `nbpi` to 1 megabyte, unless the `-i` option is used to make it even larger. If you use the `-f` or `-i` options to specify a `fragsize` or `nbpi` that is incompatible with this option, the user-supplied value of `fragsize` or `nbpi` is ignored.

Logging is enabled by default on all file systems created with this option.

**N**  
Print out the file system parameters without actually creating the file system.

**nbpi=n**  
The number of bytes per inode, which specifies the density of inodes in the file system. The number is
divided into the total size of the file system to determine the fixed number of inodes to create. It should reflect the expected average size of files in the file system. If fewer inodes are desired, a larger number should be used; to create more inodes, a smaller number should be given. The default is 2048.

nrpos=n  The number of different rotational positions in which to divide a cylinder group. The default is 8.

nsect=n  The number of sectors per track on the disk. The default is 32.

ntrack=n  The number of tracks per cylinder on the disk. The default is 16.

opt=a  Space or time optimization preference; s specifies optimization for space, t specifies optimization for time. The default is t. This parameter may be subsequently changed with the tunefs(1M) command.

rps=n  The rotational speed of the disk, in revolutions per second. The default is 60.

Note that you specify rps for mkfs and rpm for newfs.

Alternatively, parameters can be entered as a list of space-separated values (without keywords) whose meaning is positional. In this case, the -o option is omitted and the list follows the size operand. This is the way newfs passes the parameters to mkfs.

OPERANDS  The following operands are supported:

raw_device_file  The disk partition on which to write.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  fsck(1M), mkfs(1M), newfs(1M), tunefs(1M), dir_ufs(4), attributes(5), ufs(7FS)

DIAGNOSTICS  The following error message occurs typically on very high density disks. On such disks, the file system structure cannot encode the proper disk layout information. However, such disks have enough onboard intelligence to make up for any layout deficiencies, so there is no actual impact on performance. The warning that performance might be impaired can be safely ignored.
Warning: insufficient space in super block for rotational layout tables with nsect sblock.fs_nsect and ntrak sblock.fs_ntrak. (File system performance may be impaired.)

The following error message occurs when the disk geometry results in a situation where the last truncated cylinder group cannot contain the correct number of data blocks. Some disk space is wasted.

Warning: inode blocks/cyl group (grp) >= data blocks (num) in last cylinder

The following error message occurs when the best calculated file system layout is unable to include the last few sectors in the last cylinder group. This is due to the interaction between how much space is used for various pieces of metadata and the total blocks available in a cylinder group. Modifying nbpi and cpg might reduce this number, but it is rarely worth the effort.

Warning: num sector(s) in last cylinder group unallocated

NOTES

You can use lofiadm to create a file that appears to a mkfs command (for example, mkfs_pcfs or mkfs_ufs) as a raw device. You can then use a mkfs command to create a file system on that device. See lofiadm(1M) for examples of creating a UFS and a PC (FAT) file system on a device created by lofiadm.
mknod(1M)

NAME  mknod – make a special file

SYNOPSIS  mknod name b major minor
          mknod name c major minor
          mknod name p

DESCRIPTION  mknod makes a directory entry for a special file.

OPTIONS  The following options are supported:
          b    Create a block-type special file.
          c    Create a character-type special file.
          p    Create a FIFO (named pipe).

OPERANDS  The following operands are supported:
          major    The major device number.
          minor    The minor device number; can be either decimal or octal. The assignment of
                     major device numbers is specific to each system. You must be the
                     super-user to use this form of the command.
          name     A special file to be created.

USAGE  See largefile(5) for the description of the behavior of mknod when encountering
files greater than or equal to 2 Gbyte (2^31 bytes).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  ftp(1), in.ftpd(1M), mknod(2), symlink(2), attributes(5), largefile(5)

NOTES  If mknod(2) is used to create a device, the major and minor device numbers are always
interpreted by the kernel running on that machine.

With the advent of physical device naming, it would be preferable to create a symbolic
link to the physical name of the device (in the /devices subtree) rather than using
mknod.
modinfo
– display information about loaded kernel modules
/usr/sbin/modinfo [-c] [-w] [-i module-id]

DESCRIPTION
The modinfo utility displays information about the loaded modules. The format of
the information is as follows:

<table>
<thead>
<tr>
<th>Id</th>
<th>Loadaddr</th>
<th>Size</th>
<th>Info</th>
<th>Rev</th>
<th>Module Name</th>
</tr>
</thead>
</table>

where Id is the module ID, Loadaddr is the starting text
address in hexadecimal, Size is the size of text, data, and bss in hexadecimal bytes, Info
is module specific information, Rev is the revision of the loadable modules system, and
Module Name is the filename and description of the module.

The module specific information is the block and character major numbers for drivers,
the system call number for system calls, or, for other module types, the index into the
appropriate kernel table:

- fmodsw for STREAMS modules
- vfssw for filesystems
- class for scheduling classes
- execsw for exec modules

OPTIONS
The following options are supported:

- -c Displays the number of instances of the module loaded and the
module’s current state.
- -i module-id Displays information about this module only.
- -w Does not truncate module information at 80 characters.

EXAMPLES
EXAMPLE 1 Using the modinfo command.

The following example displays the status of module 3:

```bash
example% modinfo -i 3
```

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
modload(1M), modunload(1M), attributes(5)
modload(1M)

NAME
modload – load a kernel module

SYNOPSIS
modload [-p] [-e exec_file] filename

DESCRIPTION
The modload command loads the loadable module filename into the running system.

filename is an object file produced by ld -r. If filename is an absolute pathname then
the file specified by that absolute path is loaded. If filename does not begin with a slash
(\), then the path to load filename is relative to the current directory unless the -p
option is specified.

The kernel’s modpath variable can be set using the /etc/system file. The default
value of the kernel’s modpath variable is set to the path where the operating system
was loaded. Typically this is /kernel /usr/kernel.

For example, the following command looks for ./drv/foo:
example# modload drv/foo

The following command looks for /kernel/drv/foo and then
/usr/kernel/drv/foo:
example# modload -p drv/foo

OPTIONS
The following options are supported:

- e exec_file Specify the name of a shell script or executable image file that is
executed after the module is successfully loaded. The first
argument passed is the module ID (in decimal). The other
argument is module specific. The module specific information is:
the block and character major numbers for drivers, the system call
number for system calls, or, for other module types, the index into
the appropriate kernel table. See modinfo(1M)

- p Use the kernel’s internal modpath variable as the search path for
the module.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
ld(1), add_drv(1M), kernel(1M), modinfo(1M), modunload(1M), system(4),
attributes(5), modldr(9S), modlinkage(9S), modlstrmod(9S),
module_info(9S)

Writing Device Drivers

NOTES
Use add_drv(1M) to add device drivers, not modload. See Writing Device Drivers for
procedures on adding device drivers.
modunload unload a module

modunload -i module_id [-e exec_file]

modunload unloads a loadable module from the running system. The *module_id* is the ID of the module as shown by modinfo(1M). If ID is 0, all modules that were autoloaded which are unloadable, are unloaded. Modules loaded by modload(1M) are not affected.

The following options are supported:

- *-e exec_file* Specify the name of a shell script or executable image file to be executed before the module is unloaded. The first argument passed is the module id (in decimal). There are two additional arguments that are module specific. For loadable drivers, the second argument is the driver major number. For loadable system calls, the second argument is the system call number. For loadable exec classes, the second argument is the index into the execsw table. For loadable filesystems, the second argument is the index into the vfssw table. For loadable streams modules, the second argument is the index into the fmodsw table. For loadable scheduling classes, the second argument is the index into the class array. Minus one is passed for an argument that does not apply.

- *-i module_id* Specify the module to be unloaded.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

modinfo(1M), modload(1M), update_drv(1M), attributes(5)

The modunload command has often been used on driver modules to force the system to reread the associated driver configuration file. While this works in Solaris 9, this behavior might break in future releases. The supported way for rereading driver configuration file is through the update_drv(1M) command.
**NAME**
mofcomp – compile MOF files into CIM classes

**SYNOPSIS**
```
/usr/sadm/bin/mofcomp [-c cimom_hostname ] [-h] [-j filename]
[-n namespace] [-o dirname] [-p password] [-CIQ] [-u username]
[-v ] [-version] [-x] file
```

**DESCRIPTION**
The mofcomp utility is executed during installation to compile managed object format (MOF) files that describe the Common Information Model (CIM) and Solaris Schemas into the CIM Object Manager Repository, a central storage area for management data. The CIM Schema is a collection of class definitions used to represent managed objects that occur in every management environment. The Solaris Schema is a collection of class definitions that extend the CIM Schema and represent managed objects in a typical Solaris operating environment.

The mofcomp utility must be run as root or as a user with write access to the namespace in which you are compiling.

MOF is a language for defining CIM classes and instances. MOF files are ASCII text files that use the MOF language to describe CIM objects. A CIM object is a computer representation or model of a managed resource, such as a printer, disk drive, or CPU.

Many sites store information about managed resources in MOF files. Because MOF can be converted to Java, Java applications that can run on any system with a Java Virtual Machine can interpret and exchange this information. You can also use the mofcomp utility to compile MOF files at any time after installation.

**OPTIONS**
The following options are supported:

- `-c cimom_hostname`
  Specify a remote system running the CIM Object Manager.

- `-C`
  Run the compiler set with the class option, which updates a class if it exists, and returns an error if the class does not exist. If you do not specify this option, the compiler adds a CIM class to the connected namespace, and returns an error if the class already exists.

- `-h`
  List the arguments to the mofcomp utility.

- `-I`
  Run the compiler set with the instance option, which updates an instance if it exists, and returns an error if the instance does not exist. If you do not specify this option, the compiler adds a CIM instance to the connected namespace, and returns an error if the instance already exists.

- `-j filename`
  Generate Java Beans and Java Interfaces to manage the CIM instances related to the CIM classes in the MOF being compiled.

The contents of `filename` are:
PACKAGE=Java package name
IMPORTS=import1:...:importN
<EXCEPTIONS=exception1:...:exceptionN

PACKAGE is a valid Java package name to include in all generated Java source. IMPORTS is an optional colon separated list of valid Java classes to be imported in all generated Java source. EXCEPTIONS is an optional colon separated list of valid Java exceptions to be thrown by the methods in all generated Java source.

-n namespace
Requests that the compiler load the MOF file into the namespace specified as namespace. The default namespace (root\cimv2) is used unless this switch is used or a #pragma namespace ("namespace") statement appears in the MOF file. If both the -n namespace switch and the #pragma namespace construct are used, all namespaces are created, but the objects are created only in the #pragma namespaces.

-o dirname
Run compiler in standalone mode, without the CIM Object Manager. Specify dirname as the directory in which the compiler output is to be stored. In this mode, the CIM Object Manager need not be running.

-p password
Specify a password for connecting to the CIM Object Manager. Use this option for compilations that require privileged access to the CIM Object Manager. If you specify both -p and -u, you must type the password on the command line, which can pose a security risk. A more secure way to specify a password is to specify -u but not -p, so that the compiler will prompt for the password.

-Q
Run the compiler set with the qualifier types option, which updates a qualifier type if it exists, and returns an error if the qualifier type does not exist. If you do not specify this option, the compiler adds a CIM qualifier type to the connected namespace, and returns an error if the qualifier type already exists.

-u username
Specify user name for connecting to the CIM Object Manager. Use this option for compilations that require privileged access to the CIM Object Manager. If you specify both -p and -u, you must type the password on the command line, which can pose a security risk. A more secure way to specify a password is to specify -u but not -p, so that the compiler will prompt for the password.

System Administration Commands 1065
mofcomp(1M)

-\(v\)          Run the compiler in verbose mode, which displays compiler messages.
-\(\text{version}\) Display the version of the MOF compiler.
-\(x\)          Generate XML documents for the CIM classes defined in the input MOF file.

OPERANDS The following operands are supported:

\(file\)       The pathname of the file to be compiled.

EXIT STATUS The mofcomp utility exits with 0 upon success and a positive integer upon failure.

FILES MOF files are installed in /usr/sadm/mof.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcor</td>
</tr>
</tbody>
</table>

SEE ALSO init.wbem(1M), mofreg(1M), wbemadmin(1M), wbemlogviewer(1M), attributes(5), wbem(5),
### NAME
mofreg – register MOF classes with WBEM services

### SYNOPSIS
```
/usr/sadm/bin/mofreg -r tag file
```
```
/usr/sadm/bin/mofreg -s
```
```
/usr/sadm/bin/mofreg -u tag [file]
```

### DESCRIPTION
The mofreg command is used by package and patch install scripts, or by any applications that wish to register managed object format (MOF) classes with Sun The Web-Based Enterprise Management (WBEM) services.

The WBEM services daemon (Common Information Model or CIM object manager) processes at start up the files that are specified by mofreg commands. Files are processed in the order that the individual mofreg commands are executed.

As an alternative to using the mofreg command, MOFs can be registered or unregistered by manipulating directories in /var/sadm/wbem/logr. Instead of running the mofreg -r tag file version fo the command you can create a directory named tag under /var/sadm/wbem/logr/preReg and copy file to the tag directory.

Similarly, instead of running the mofreg -u tag [file] command, you can create a directory named tag under /var/sadm/wbem/logr/preUnreg and copy the optional file to the tag directory.

The entries are processed in increasing order of last modification time of the tag directories. If you issue mofreg commands in rapid succession, the timestamps might be the same. If you have a situation where the timestamp order is critical, you can place appropriate sleeps between the successive registration or unregistration operations. As with the mofreg command, processing is done at next restart or by using the -s option.

This alternative mechanism is typically used in package install scripts which do not have access to /usr, and therefore do not have access to the mofreg command. This case arises when packages are installed for diskless clients.

### OPTIONS
The following options are supported:

- `r tag file`
  The `file` argument is the actual MOF registration file. Its form is identical to the MOF syntax as defined by the Distributed Management Task Force (DMTF). The only difference is the addition of the following 3 new pseudo-pragmas, which are variations of the namespace pragma. The name of file cannot end in .unreg.

```c
#pragma namespace("__create")
#pragma namespace("__delete")
#pragma namespace("__modify")
```

---

**System Administration Commands**

1067
These three pragmas are used to specify if the elements following the pragmas should be created, deleted, or modified by the CIM object manager. The `__delete` pragma can currently only be applied for a `mofreg -u` command.

The `tag` argument is a unique string that specifies the identity of the registry action. This tag can be set to the package name or the patch number if the `mofreg` script is being invoked through packages/patches, though any tag can be specified.

Errors and warnings that are encountered when the CIM object manager handles the `mofreg` script are logged. Processing of the `mofreg` script stops at the first error. Specific warnings include:

- **Element already defined** - the element already exists and cannot be created.
- **Element not found** - the element does not exist and cannot be modified.

The error conditions are:

- **Key modification** - A class cannot be modified if its keys are being changed.
- **Other mod compilation errors**.

**-s**

Forces the CIM object manager to immediately process outstanding registry requests, instead of at the next restart. This currently requires Java.

**-u tag [file]**

Undoes the operations performed during `mof reg`.

The `tag` argument must correspond to the value set during the original `mofreg` invocation. If no `mofreg` was done with the original `tag`, the command does not succeed.

If required, an `unreg` file can be specified. If no `unreg` file is specified, the CIM object manager automatically undoes the actions of the registry. Any class created by the registry process is removed and any classes modified by the registry revert to the old state.

The `mofreg` command does not take care of cases where packages and patches make conflicting changes to classes. This should be taken care of by the standard patch and package conflict resolution.

**EXIT STATUS**

The following exit values are returned:

- **0** Successful completion.
- **1** An error occurred. The reason for error is displayed.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcou</td>
</tr>
</tbody>
</table>

SEE ALSO

init.wbem(1M), mofcomp(1M), wbemadmin(1M), wbemlogviewer(1M), attributes(5), wbem(5)
### monitor(1M)

<table>
<thead>
<tr>
<th><strong>NAME</strong></th>
<th>monitor – SPARC system PROM monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SYNOPSIS</strong></td>
<td>STOP–A</td>
</tr>
<tr>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td></td>
<td>initial system power-on</td>
</tr>
<tr>
<td></td>
<td>exit from a client program, e.g., the Operating System</td>
</tr>
<tr>
<td><strong>DESCRIPTION</strong></td>
<td>The CPU board of a workstation contains one or more EPROMs or EEPROMs. The program which executes from the PROMs is referred to as “the monitor”. Among other things, the monitor performs system initialization at power-on and provides a user interface.</td>
</tr>
<tr>
<td><strong>Monitor Prompt</strong></td>
<td>The monitor of earlier workstations was known as the SunMON monitor and displayed the &gt; for its prompt. See the SunMON MONITOR USAGE section for further details.</td>
</tr>
<tr>
<td></td>
<td>Existing workstations use a monitor which is known as the OpenBoot monitor. The OpenBoot monitor typically displays ok as its prompt, but it may also display the &gt; prompt under certain circumstances.</td>
</tr>
<tr>
<td></td>
<td>If the ‘auto-boot?’ NVRAM parameter is set to ‘false’ when the workstation is powered on, the system does not attempt to boot and the monitor issues its prompt. If ‘auto-boot’ is set to ‘true’, the system initiates the boot sequence. The boot sequence can be aborted by simultaneously pressing two keys on the system’s keyboard: L1 and A (on older keyboards), or Stop and A (on newer keyboards). Either a lower case a or an upper case A works for the keyboard abort sequence. If a console has been attached by way of one of the system’s serial ports then the abort sequence can be accomplished by sending a BREAK. See tip(1).</td>
</tr>
<tr>
<td></td>
<td>When the NVRAM ‘security-mode’ parameter has been turned on, or when the value of the ‘sunmon-compat?’ parameter is true, then the OpenBoot monitor displays the message: Type b (boot), c (continue), or n (new command mode) and the &gt; prompt appears.</td>
</tr>
<tr>
<td><strong>OPENBOOT PROM USAGE</strong></td>
<td>Some of the more useful commands that can be issued from OpenBoot’s ok prompt are described here. Refer to the OpenBoot 2.x Command Reference Manual book for a complete list of commands.</td>
</tr>
<tr>
<td><strong>Help</strong></td>
<td>Help for various functional areas of the OpenBoot monitor can be obtained by typing help. The help listing provides a number of other key words which can then be used in the help command to provide further details.</td>
</tr>
<tr>
<td><strong>NVRAM Parameters</strong></td>
<td>Each workstation contains one or more NVRAM devices which contains unique system ID information, as well as a set of user-configurable parameters. The NVRAM parameters allow the user a certain level of flexibility in configuring the system to act in a given manner under a specific set of circumstances.</td>
</tr>
</tbody>
</table>
See eeprom(1M) for a description of the parameters and information regarding setting
the parameters from the OS level.

The following commands can be used at the OpenBoot monitor to access the NVRAM
parameters.

printenv | Used to list the NVRAM parameters, along with their default
values and current values.

setenv pn pv | Used to set or modify a parameter. The pn represents the
parameter name, and pv represents the parameter value.

set-default pn | Used to set an individual parameter back to its default value.

set-defaults | Used to reset all parameters to their default values. (Note that
’set-defaults’ only affects parameters that have assigned
default values.)

Newer OpenBoot monitors contain user interfaces that support the storage and listing
of keys for later use by client programs.

list-security-keys | Lists the names of keys currently stored on a machine.

set-security-key keyname [ keydata ] | Stores key data keydata in a key named keyname. Actual key data can be up to 32
bytes in length. The maximum length of keyname is 64 bytes, which allows for the
hex-formatted ASCII used to present the key data. If keydata is not present, keyname
and its corresponding data is deleted.

The following commands are available for testing or checking the system’s hardware.
If the ’diag-switch?’ NVRAM parameter is set to true when the system is
powered on, then a Power-On Self Test (POST) diagnostic is run, if present, sending its
results messages to the system’s serial port A. Not all of the commands shown are
available on all workstations.

test-all | Run the diagnostic tests on each device which has provided a
self-test.

test floppy | Run diagnostics on the system’s floppy device.

test /memory | Run the main memory tests. If the NVRAM parameter
’diag-switch?’ is set to true, then all of main memory is tested.
If the parameter is false then only the amount of memory specified
in the ’selftest-#megs’ NVRAM parameter is tested.

test net | Test the network connection for the on-board network controller.

watch-net | Monitor the network attached to the on-board net controller.

watch-net-all | Monitor the network attached to the on-board net controller, as
well as the network controllers installed in SBus slots.

watch-clock | Test the system’s clock function.
<table>
<thead>
<tr>
<th><strong>System Information</strong></th>
<th>The following commands are available for displaying information about the system. Not all commands are available on all workstations.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>banner</strong></td>
<td>Display the power-on banner.</td>
</tr>
<tr>
<td><strong>.enet-addr</strong></td>
<td>Display the system’s Ethernet address.</td>
</tr>
<tr>
<td><strong>.idprom</strong></td>
<td>Display the formatted contents of the IDPROM.</td>
</tr>
<tr>
<td><strong>module-info</strong></td>
<td>Display information about the system’s processor(s).</td>
</tr>
<tr>
<td><strong>probe-scsi</strong></td>
<td>Identify the devices attached to the on-board SCSI controller.</td>
</tr>
<tr>
<td><strong>probe-scsi-all</strong></td>
<td>Identify the devices attached to the on-board SCSI controller as well as those devices which are attached to SBus SCSI controllers.</td>
</tr>
<tr>
<td><strong>show-disks</strong></td>
<td>Display a list of the device paths for installed SCSI disk controllers.</td>
</tr>
<tr>
<td><strong>show-displays</strong></td>
<td>Display a list of the device paths for installed display devices.</td>
</tr>
<tr>
<td><strong>show-nets</strong></td>
<td>Display a list of the device paths for installed Ethernet controllers.</td>
</tr>
<tr>
<td><strong>show-sbus</strong></td>
<td>Display list of installed SBus devices.</td>
</tr>
<tr>
<td><strong>show-tapes</strong></td>
<td>Display a list of the device paths for installed SCSI tape controllers.</td>
</tr>
<tr>
<td><strong>show-ttys</strong></td>
<td>Display a list of the device paths for tty devices.</td>
</tr>
<tr>
<td><strong>.traps</strong></td>
<td>Display a list of the SPARC trap types.</td>
</tr>
<tr>
<td><strong>.version</strong></td>
<td>Display the version and date of the OpenBoot PROM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Emergency Commands</strong></th>
<th>These commands must be typed from the keyboard, they do not work from a console which is attached by way of the serial ports. With the exception of the Stop-A command, these commands are issued by pressing and holding down the indicated keys on the keyboard immediately after the system has been powered on. The keys must be held down until the monitor has checked their status. The Stop-A command can be issued at any time after the console display begins, and the keys do not need to be held down once they’ve been pressed. The Stop-D, Stop-F and Stop-N commands are not allowed when one of the security modes has been set. Not all commands are available on all workstations.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stop (L1)</strong></td>
<td>Bypass the Power-On Self Test (POST). This is only effective if the system has been placed into the diagnostic mode.</td>
</tr>
<tr>
<td><strong>Stop-A (L1-A)</strong></td>
<td>Abort the current operation and return to the monitor’s default prompt.</td>
</tr>
</tbody>
</table>
Set the system’s ‘diag-switch?’ NVRAM parameter to ‘true’, which places the system in diagnostic mode. POST diagnostics, if present, are run, and the messages are displayed by way of the system’s serial port A.

Enter the OpenBoot monitor before the monitor has probed the system for devices. Issue the ‘fexit’ command to continue with system initialization.

Causes the NVRAM parameters to be reset to their default values. Note that not all parameters have default values.

The following commands can be used while the monitor is displaying the ok prompt. Not all of these editing commands are available on all workstations.

- **CTRL-A**: Place the cursor at the start of line.
- **CTRL-B**: Move the cursor backward one character.
- **ESC-B**: Move the cursor backward one word.
- **CTRL-D**: Erase the character that the cursor is currently highlighting.
- **ESC-D**: Erase the portion of word from the cursor’s present position to the end of the word.
- **CTRL-E**: Place the cursor at the end of line.
- **CTRL-F**: Move the cursor forward one character.
- **ESC-F**: Move the cursor forward one word.
- **CTRL-H**: Erase the character preceding the cursor (also use Delete or Back Space)
- **ESC-H**: Erase the portion of the word which precedes the cursor (use also CTRL-W)
- **CTRL-K**: Erase from the cursor’s present position to the end of the line.
- **CTRL-L**: Show the command history list.
- **CTRL-N**: Recall the next command from the command history list
- **CTRL-P**: Recall a previous command from the command history list.
- **CTRL-Q**: Quote the next character (used to type a control character).
- **CTRL-R**: Retype the current line.
- **CTRL-U**: Erase from the cursor’s present position to the beginning of the line.
- **CTRL-Y**: Insert the contents of the memory buffer into the line, in front (to the left) of the cursor.
nvramrc The nvramrc is an area of the system’s NVRAM where users may store Forth programs. The programs which are stored in the nvramrc are executed each time the system is reset, provided that the ‘use-nvramrc?’ NVRAM parameter has been set to ‘true’. Refer to the OpenBoot 2.x Command Reference Manual book for information on how to edit and use the nvramrc.

Restricted Monitor The command ‘old-mode’ is used to move OpenBoot into a restricted monitor mode, causing the > prompt to be displayed. Only three commands are allowed while in the restricted monitor: the ‘go’ command (to resume a program which was interrupted with the Stop-A command), the ‘n’ command (to return to the normal OpenBoot monitor), and boot commands. The restricted monitor’s boot commands approximate the older SunMON monitor’s boot command syntax. If a ‘security-mode’ has been turned on then the restricted monitor becomes the default monitor environment. The restricted monitor may also become the default environment if the ‘sunmon-compat?’ NVRAM parameter is set to true. Not all workstations have the ‘sunmon-compat?’ parameter.

SunMON PROM USAGE The following commands are available systems with older SunMON-based PROM:

+ | Subtract or increment the current address and display the contents of the new location.

^C source destination n (caret-C) Copy, byte-by-byte, a block of length n from the source address to the destination address.

^I program (caret-I) Display the compilation date and location of program.

^T virtual_address (caret-T) Display the physical address to which virtual_address is mapped.

b [ ! ] [ device [ (c,u,p) ] ] [ pathname ] [ arguments_list ]

b?[ ]
Reset appropriate parts of the system and bootstrap a program. A ‘!’ (preceding the device argument) prevents the system reset from occurring. Programs can be loaded from various devices (such as a disk, tape, or Ethernet). ‘b’ with no arguments causes a default boot, either from a disk, or from an Ethernet controller. ‘b?’ displays all boot devices and their devices.

device one of

le Lance Ethernet
ie Intel Ethernet
sd SCSI disk, CDROM
st SCSI 1/4" or 1/2" tape
fd Diskette
IPI disk
Tape Master 9-track 1/2" tape
Xylogics 7053 disk
Xylogics 1/2" tape
Xylogics 440/450 disk

A controller number (0 if only one controller),
A unit number (0 if only one driver), and
A partition.

A pathname for a program such as /stand/diag.
A list of up to seven arguments to pass to the
program being booted.

Resume execution of a program. When given, `virtual_address` is the address at which
evaluation resumes. The default is the current PC. Registers are restored to the
values shown by the d, and x commands.

Display (dump) the state of the processor. The processor state is observable only
after:

- An unexpected trap was encountered.
- A user program dropped into the monitor (by calling `abortent`).
- The user manually entered the monitor by typing L1−A or BREAK.

The display consists of the following:

- The special registers: PSR, PC, nPC, TBR, WIM, and Y
- Eight global registers
- 24 window registers (8 `in`, 8 `local`, and 8 `out`), corresponding to one of the 7
  available windows. If a Floating-Point Unit is on board, its status register along
  with 32 floating-point registers are also shown.

Display the indicated window_number, which can be any value
between 0 and 6, inclusive. If no window is specified and the
PSR’s current window pointer contains a valid window number, registers from the window that was active just prior to
entry into the monitor are displayed. Otherwise, registers from
window 0 are displayed.

Open the 16-bit word at `virtual_address` (default zero). The address is interpreted in
the address space defined by the s command. See the a command for a description
of `action`. 
f virtual_address1 virtual_address2 pattern [size ]
Fill the bytes, words, or long words from virtual_address1 (lower) to virtual_address2 (higher) with the constant, pattern. The size argument can take one of the following values:

b byte format (the default)
w word format
l long word format

For example, the following command fills the address block from 0x1000 to 0x2000 with the word pattern, 0xABCD:

f 1000 2000 ABCD W


g [vector ] [argument ]
g [virtual_address ] [argument ]
Goto (jump to) a predetermined or default routine (first form), or to a user-specified routine (second form). The value of argument is passed to the routine. If the vector or virtual_address argument is omitted, the value in the PC is used as the address to jump to.

To set up a predetermined routine to jump to, a user program must, prior to executing the monitor’s g command, set the variable *romp->v_vector_cmd to be equal to the virtual address of the desired routine. Predetermined routines need not necessarily return control to the monitor.

The default routine, defined by the monitor, prints the user-supplied vector according to the format supplied in argument. This format can be one of:

% x hexadecimal
% d decimal

g0
Force a panic and produce a crash dump when the monitor is running as a result of the system being interrupted,

g4
(Sun-4 systems only) Force a kernel stack trace when the monitor is running as a result of the system being interrupted,

h
Display the help menu for monitor commands and their descriptions. To return to the monitor’s basic command level, press ESCAPE or q before pressing RETURN.

i [cache_data_offset] [action ]
Modify cache data RAM command. Display and/or modify one or more of the cache data addresses. See the a command for a description of action.
Modify cache tag RAM command. Display and/or modify the contents of one or more of the cache tag addresses. See the a command for a description of action.

Reset the system, where reset_level is:

- 0: Reset VMEbus, interrupt registers, video monitor (Sun-4 systems). This is the default.
- 1: Software reset.
- 2: Power-on reset. Resets and clears the memory. Runs the EPROM-based diagnostic self test, which can take several minutes, depending upon how much memory is being tested.

Display the system banner.

Open the long word (32 bit) at memory address virtual_address (default zero). The address is interpreted in the address space defined by the s command (below). See the a command for a description of action.

Open the segment map entry that maps virtual_address (default zero). The address is interpreted in the address space defined by the s command. See the a command for a description of action.

Disable, enable, or invalidate the cache, respectively.

Open the byte location specified by virtual_address (default zero). The address is interpreted in the address space defined by the s command. See the a command for a description of action.

Open the page map entry that maps virtual_address (default zero) in the address space defined by the s command. See the a command for a description of action.

Open the EEPROM eeprom_offset (default zero) in the EEPROM address space. All addresses are referenced from the beginning or base of the EEPROM in physical address space, and a limit check is performed to insure that no address beyond the EEPROM physical space is accessed. This command is used to display or modify configuration parameters, such as: the amount of memory to test during self test, whether to display a standard or custom banner, if a serial port (A or B) is to be the system console, etc. See the a command for a description of action.
Display and/or modify one or more of the IU or FPU registers. A hexadecimal register_number can be one of:

- \(0x00 - 0x0f\): window(0,i0)–window(0,i7), window(0,i0)–window(0,i7)
- \(0x16 - 0x1f\): window(1,i0)–window(1,i7), window(1,i0)–window(1,i7)
- \(0x20 - 0x2f\): window(2,i0)–window(2,i7), window(2,i0)–window(2,i7)
- \(0x30 - 0x3f\): window(3,i0)–window(3,i7), window(3,i0)–window(3,i7)
- \(0x40 - 0x4f\): window(4,i0)–window(4,i7), window(4,i0)–window(4,i7)
- \(0x50 - 0x5f\): window(5,i0)–window(5,i7), window(5,i0)–window(5,i7)
- \(0x60 - 0x6f\): window(6,i0)–window(6,i7), window(6,i0)–window(6,i7)
- \(0x70 - 0x77\): g0, g1, g2, g3, g4, g5, g6, g7
- \(0x78 - 0x7d\): PSR, PC, nPC, WIM, TBR, Y.
- \(0x7e - 0x9e\): FSR, f0–f31

Register numbers can only be displayed after an unexpected trap, a user program has entered the monitor using the abortent function, or the user has entered the monitor by manually typing L1–A or BREAK.

If a register_type is given, the first register of the indicated type is displayed. register_type can be one of:

- \(f\): floating-point
- \(g\): global
- \(s\): special

If \(w\) and a window_number (0—6) are given, the first in-register within the indicated window is displayed. If window_number is omitted, the window that was active just prior to entering the monitor is used. If the PSR’s current window pointer is invalid, window 0 is used.

\((asi)\)

Set or display the Address Space Identifier. With no argument, \(s\) displays the current Address Space Identifier. The asi value can be one of:

- \(0x2\): control space
With no arguments, display the current I/O device characteristics including: current input device, current output device, baud rates for serial ports A and B, an input-to-output echo indicator, and virtual addresses of mapped UART devices. With arguments, set or configure the current I/O device. With the u argument (uu...), set the I/O device to be the virtual_address of a UART device currently mapped.

- **echo** Can be either e to enable input to be echoed to the output device, or ne, to indicate that input is not echoed.
- **port** Assign the indicated port to be the current I/O device. port can be one of:
  - a serial port A
  - b serial port B
  - k the workstation keyboard
  - s the workstation screen
- **baud_rate** Any legal baud rate.
- **options** can be any combination of:
  - i input
  - o output
  - u UART
  - e echo input to output
  - ne do not echo input
monitor(1M)

reset indicated serial port (a and b ports only)

If either a or b is supplied, and no options are given, the serial port is assigned for both input and output. If k is supplied with no options, it is assigned for input only. If s is supplied with no options, it is assigned for output only.

\[ \text{v virtual_address1 virtual_address2 [size]} \]

Display the contents of virtual_address1 (lower) virtual_address2 (higher) in the format specified by size:

- b: byte format (the default)
- w: word format
- l: long word format

Enter return to pause for viewing; enter another return character to resume the display. To terminate the display at any time, press the space bar.

For example, the following command displays the contents of virtual address space from address 0x1000 to 0x2000 in word format:

\[ \text{v 1000 2000 W} \]

\[ \text{w [virtual_address] [argument]} \]

Set the execution vector to a predetermined or default routine. Pass virtual_address and argument to that routine.

To set up a predetermined routine to jump to, a user program must, prior to executing the monitor's w command, set the variable *romp->v_vector_cmd to be equal to the virtual address of the desired routine. Predetermined routines need not necessarily return control to the monitor.

The default routine, defined by the monitor, prints the user-supplied vector according to the format supplied in argument. This format can be one of:

- %x: hexadecimal
- %d: decimal

\[ \text{x} \]

Display a menu of extended tests. These diagnostics permit additional testing of such things as the I/O port connectors, video memory, workstation memory and keyboard, and boot device paths.

\[ \text{y c context_number} \]

\[ \text{yp|s context_number virtual_address} \]

Flush the indicated context, context page, or context segment.

\[ \text{c flush context context_number} \]
p  flush the page beginning at virtual_address within context context_number
s  flush the segment beginning at virtual_address within context context_number

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SPARC</td>
</tr>
</tbody>
</table>

SEE ALSO

tip(1), boot(1M), eeprom(1M), attributes(5)

OpenBoot 2.x Command Reference Manual
mount(1M)

NAME
mount, umount – mount or umount file systems and remote resources

SYNOPSIS
mount [-p | -v]  
mount [-F FSType] [generic_options] [-o specific_options] [-o] special
| mount_point

mount [-F FSType] [generic_options] [-o specific_options] [-o] special
| mount_point

mount -a [-F FSType] [-V] [current_options] [-o specific_options]
| [mount_point...]

umount [-f] [-V] [-o specific_options] special | mount_point

umount -a [-f] [-V] [-o specific_options] [mount_point...]

DESCRIPTION
mount attaches a file system to the file system hierarchy at the mount_point, which is
the pathname of a directory. If mount_point has any contents prior to the mount
operation, these are hidden until the file system is unmounted.

umount unmounts a currently mounted file system, which may be specified either as a
mount_point or as special, the device on which the file system resides.

The table of currently mounted file systems can be found by examining the mounted
file system information file. This is provided by a file system that is usually mounted
on /etc/mnttab. The mounted file system information is described in mnttab(4).
Mounting a file system adds an entry to the mount table; a umount removes an entry
from the table.

When invoked with both the special and mount_point arguments and the -F option,
mount validates all arguments except for special and invokes the appropriate
FSType-specific mount module. If invoked with no arguments, mount lists all the
mounted file systems recorded in the mount table, /etc/mnttab. If invoked with a
partial argument list (with only one of special or mount_point, or with both special or
mount_point specified but not FSType), mount will search /etc/vfstab for an entry
that will supply the missing arguments. If no entry is found, and the special argument
starts with "/", the default local file system type specified in /etc/default/fs will
be used. Otherwise the default remote file system type will be used. The default
remote file system type is determined by the first entry in the /etc/dfs/fstypes
file. After filling in missing arguments, mount will invoke the FSType-specific mount
module.

Only a super-user can mount or umount file systems using mount and umount.
However, any user can use mount to list mounted file systems and resources.

OPTIONS
- F FSType
  Used to specify the FSType on which to operate. The FSType must be specified or
  must be determinable from /etc/vfstab, or by consulting /etc/default/fs or
  /etc/dfs/fstypes.

- a [ mount_points... ]
  Perform mount or umount operations in parallel, when possible.
If mount points are not specified, `mount` will mount all file systems whose
/etc/vfstab "mount at boot" field is "yes". If mount points are specified, then
/etc/vfstab "mount at boot" field will be ignored.

If mount points are specified, `umount` will only `umount` those mount points. If
none is specified, then `umount` will attempt to `umount` all file systems in
/etc/mnttab, with the exception of certain system required file systems: /, /usr,
/var, /var/adm, /var/run, /proc, /dev/fd and /tmp.

-\f
   Forcibly unmount a file system.

Without this option, `umount` does not allow a file system to be unmounted if a file
on the file system is busy. Using this option can cause data loss for open files;
programs which access files after the file system has been unmounted will get an
error (EIO).

-\p
   Print the list of mounted file systems in the /etc/vfstab format. Must be the only
   option specified. See BUGS.

-\v
   Print the list of mounted file systems in verbose format. Must be the only option
   specified.

-\V
   Echo the complete command line, but do not execute the command. `umount`
genrates a command line by using the options and arguments provided by the
user and adding to them information derived from /etc/mnttab. This option
should be used to verify and validate the command line.

generic_options
   Options that are commonly supported by most FSType-specific command modules.
The following options are available:

-\m
   Mount the file system without making an entry in /etc/mnttab.

-\g
   Globally mount the file system. On a clustered system, this globally mounts the
file system on all nodes of the cluster. On a non-clustered system this has no
effect.

-\o
   Specify FSType-specific options in a comma separated (without spaces) list of
suboptions and keyword-attribute pairs for interpretation by the FSType-specific
module of the command. (See mount_ufs(1M).) When you use -o with a file
system that has an entry in /etc/vfstab, any mount options entered for that
file system in /etc/vfstab are ignored.
mount(1M)

-0
Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error "device busy".

-r
Mount the file system read-only.

USAGE
See largefile(5) for the description of the behavior of mount and umount when encountering files greater than or equal to 2 Gbyte (2\(^{31}\) bytes).

FILES
/etc/mnttab Table of mounted file systems.
/etc/default/fs Default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs
LOCATIONS: The default partition for a command if no FSType is specified.
/etc/vfstab List of default parameters for each file system.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
mount_cachefs(1M), mount hsfs(1M), mount nfs(1M), mount pcfs(1M), mount tmpfs(1M), mount ufs(1M), mountall(1M), umountall(1M), mnttab(4), vfstab(4), attributes(5), largefile(5), lofs(7FS), pcfs(7FS)

NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.

BUGS
The mount -p output is incorrect for cachefs.
mountall(1M)

NAME
mountall, umountall – mount, unmount multiple file systems

SYNOPSIS
mountall [-F FSType] [-l | -r] [file_system_table]

umountall [-k] [-s] [-F FSType] [-l | -r] [-n]

DESCRIPTION
mountall is used to mount file systems specified in a file system table. The file system table must be in vfstab(4) format. If no file_system_table is specified, /etc/vfstab is used. If - is specified as file_system_table, mountall reads the file system table from the standard input. mountall mounts only those file systems with the mount at boot field set to yes in the file_system_table.

For each file system in the file system table, the following logic is executed: if there exists a file/usr/lib/fs/FSType/fsckall, where FSType is the type of the file system, save that file system in a list to be passed later, and all at once, as arguments to the /usr/lib/fs/FSType/fsckall script. The /usr/lib/fs/FSType/fsckall script checks all of the file systems in its argument list to determine whether they can be safely mounted. If no /usr/lib/fs/FSType/fsckall script exists for the FSType of the file system, the file system is individually checked using fsck(1M). If the file system does not appear mountable, it is fixed using fsck before the mount is attempted. File systems with a – entry in the fsckdev field are mounted without first being checked.

umountall causes all mounted file systems except root, /usr, /var, /var/adm, /var/run, /proc, and /dev/fd to be unmounted. If the FSType is specified, mountall and umountall limit their actions to the FSType specified. There is no guarantee that umountall unmounts busy file systems, even if the -k option is specified.

OPTIONS
The following options are supported:

-F Specify the FSType of the file system to be mounted or unmounted.

-h host Unmount all file systems listed in /etc/mnttab that are remote-mounted from host.

-k Use the fuser -k mount-point command. See the fuser(1M) for details. The -k option sends the SIGKILL signal to each process using the file. As this option spawns kills for each process, the kill messages might not show up immediately. There is no guarantee that umountall unmounts busy file systems, even if the -k option is specified.

-l Limit the action to local file systems.

-n List the actions that would be performed for the specified options, but do not actually execute these actions. Repeating the command without the -n option executes the listed actions, assuming that the /etc/mnttab file has not changed in the interval prior to repeating the command.
mountall(1M)

- r  Limit the action to remote file system types.
- s  Do not perform the umount operation in parallel.

FILES
/etc/mnttab  Mounted file system table
/etc/vfstab  Table of file system defaults
/usr/lib/fs/FSType/fsckall  Script called by mountall to perform the file system check of all file systems of type FSType

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
fsck(1M), fuser(1M), mount(1M), mnttab(4), vfstab(4), attributes(5)

DIAGNOSTICS
No messages are printed if the file systems are mountable and clean.
Error and warning messages come from fsck(1M) and mount(1M).
NAME
mount_cachefs - mount CacheFS file systems

SYNOPSIS
mount -F cachefs [generic_options] -o backfstype=file_system_type
  [specific_options] [-O] special mount_point

DESCRIPTION
The CacheFS-specific version of the mount command mounts a cached file system; if
necessary, it NFS-mounts its back file system. It also provides a number of
CacheFS-specific options for controlling the caching process. For more information
regarding back file systems, refer to the System Administration Guide: Basic
Administration.

OPTIONS
To mount a CacheFS file system, use the generic mount command with the -F option
followed by the argument cachefs.

See mount(1M) for a list of supported generic_options.

-o specific_options
  Specify CacheFS file system specific options in a comma-separated list with no
  intervening spaces.

  acdirmax=n
    Specifies that cached attributes are held for no more than \( n \) seconds after
directory update. After \( n \) seconds, all directory information is purged from the
cache. The default value is 30 seconds.

  acdirmin=n
    Specifies that cached attributes are held for at least \( n \) seconds after directory
update. After \( n \) seconds, CacheFS checks to see if the directory modification time
on the back file system has changed. If it has, all information about the directory
is purged from the cache and new data is retrieved from the back file system.
The default value is 30 seconds.

  acregmax=n
    Specifies that cached attributes are held for no more than \( n \) seconds after file
modification. After \( n \) seconds, all file information is purged from the cache. The
default value is 30 seconds.

  acregmin=n
    Specifies that cached attributes are held for at least \( n \) seconds after file
modification. After \( n \) seconds, CacheFS checks to see if the file modification time
on the back file system has changed. If it has, all information about the file is
purged from the cache and new data is retrieved from the back file system. The
default value is 30 seconds.

  actimeo=n
    Sets acregmin, acregmax, acdirmin, and acdirmax to \( n \).

  backfstype=file_system_type
    The file system type of the back file system (can be nfs or hsfs).
backpath=path
   Specifies where the back file system is already mounted. If this argument is not supplied, CacheFS determines a mount point for the back file system. The back file system must be read-only.

cachedir=directory
   The name of the cache directory.

cacheid=ID
   ID is a string specifying a particular instance of a cache. If you do not specify a cache ID, CacheFS will construct one.

demandconst
   Verifies cache consistency only when explicitly requested, rather than the periodic checking that is done by default. A consistency check is requested by using the -s option of the cfsadmin(1M) command. This option is useful for back file systems that change infrequently, for example, /usr/openwin.
demandconst and noconst are mutually exclusive.

local-access
   Causes the front file system to interpret the mode bits used for access checking instead of having the back file system verify access permissions. Do not use this argument with secure NFS.

noconst
   Disables cache consistency checking. By default, periodic consistency checking is enabled. Specify noconst only when you know that the back file system will not be modified. Trying to perform cache consistency check using cfsadmin -s will result in error. demandconst and noconst are mutually exclusive.

ro | rw
   Read-only or read-write (default).

suid | nosuid
   Allow (default) or disallow setuid execution.

write-around | non-shared
   Write modes for CacheFS. The write-around mode (the default) handles writes the same as NFS does; that is, writes are made to the back file system, and the affected file is purged from the cache. You can use the non-shared mode when you are sure that no one else will be writing to the cached file system. In this mode, all writes are made to both the front and the back file system, and the file remains in the cache.

-O
   Overlay mount. Allows the filesystem to be mounted over an existing mount point, making the underlying filesystem inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, mount will fail with the error: mount -F cachefs: mount failed Device busy.
EXAMPLE 1 CacheFS-mounting a File System

The following example CacheFS-mounts the file system server1:/user2, which is already NFS-mounted on /usr/abc as /xyz.

```
example# mount -F cachefs -o backfstype=nfs,backpath=/usr/abc, cachedir=/cache1 server1:/user2 /xyz
```

The lines similar to the following appear in the /etc/mnttab file after the mount command is executed:

```
server1:/user2   /usr/abc   nfs
/usr/abc        /cache1/xyz cachefs backfstype=nfs
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO cfsadmin(1M), fsck_cachefs(1M), mount(1M), attributes(5) System Administration Guide: Basic Administration

BUGS The output for the generic_option -p output is incorrect for cachefs.
mountd(1M)

NAME
mountd – server for NFS mount requests and NFS access checks

SYNOPSIS
/usr/lib/nfs/mountd [-v] [-r]

DESCRIPTION
mountd is an RPC server that answers requests for NFS access information and file system mount requests. It reads the file /etc/dfs/sharetab to determine which file systems are available for mounting by which remote machines. See sharetab(4).

nfsd running on the local server will contact mountd the first time an NFS client tries to access the file system to determine whether the client should get read-write, read-only, or no access. This access can be dependent on the security mode used in the remoted procedure call from the client. See share_nfs(1M).

The command also provides information as to what file systems are mounted by which clients. This information can be printed using the showmount(1M) command.

The mountd daemon is automatically invoked in run level 3.

Only super user can run the mountd daemon.

OPTIONS
The following options are supported:

- The command in verbose mode. Each time mountd determines what access a client should get, it will log the result to the console, as well as how it got that result.

FILES
/etc/dfs/sharetab shared file system table

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfssu</td>
</tr>
</tbody>
</table>

SEE ALSO
nfsd(1M), share_nfs(1M), showmount(1M), sharetab(4), attributes(5)

NOTES
If nfsd is running, mountd must also be running in order to be assured that the NFS server can respond to requests, otherwise, the NFS service can hang.

Some routines that compare hostnames use case-sensitive string comparisons; some do not. If an incoming request fails, verify that the case of the hostname in the file to be parsed matches the case of the hostname called for, and attempt the request again.
mount_hsfs(1M)

NAME
mount_hsfs – mount hsfs file systems

SYNOPSIS
mount  -F  hsfs [generic_options]  [-o  FSType-specific_options]  [-o ]  special
        |  mount_point

mount  -F  hsfs [generic_options]  [-o  FSType-specific_options]  [-o]  special
        mount_point

DESCRIPTION
mount attaches a High Sierra file system (hsfs) to the file system hierarchy at the
mount_point, which is the pathname of a directory. If mount_point has any contents
prior to the mount operation, these are hidden until the file system is unmounted.

If mount is invoked with special or mount_point as the only arguments, mount will
search /etc/vfstab to fill in the missing arguments, including the
FSType-specific_options; see mount(1M) for more details.

If the file system being mounted contains Rock Ridge extensions, by default they
will be used, enabling support of features not normally available under High Sierra
file systems such as symbolic links, and special files.

OPTIONS
generic_options
See mount(1M) for the list of supported options.

-o
Specify hsfs file system specific options. If invalid options are specified, a warning
message is printed and the invalid options are ignored. The following options are
available:

global | noglobal
If global is specified and supported on the file system, and the system in
question is part of a cluster, the file system will be globally visible on all nodes of
the cluster. If noglobal is specified, the mount will not be globally visible. The
default behavior is noglobal.

ro
Mount the file system read-only. This option is required.

nrr
no Rock Ridge: if Rock Ridge extensions are present in the file system,
ignore them; interpret it as a regular High Sierra file system.

notraildot
File names on High Sierra file systems consist of a proper name and an extension
separated by a ‘.’ (dot) character. By default, the separating dot is always
considered part of the file’s name for all file access operations, even if there is no
extension present. Specifying notraildot makes it optional to specify the
trailing dot to access a file whose name lacks an extension.

Exceptions: This option is effective only on file systems for which Rock Ridge
extensions are not active, either because they are not present on the CD-ROM, or
they are explicitly ignored via the nrr option. If Rock Ridge extensions are
active, hsfs quietly ignores this option.
mount hsfs(1M)

nomapcase

File names on High Sierra cdroms with no Rock Ridge extensions present should be uppercase characters only. By default, hsfs maps file names read from a non-Rock Ridge disk to all lowercase characters. nomapcase turns off this mapping. The exceptions for notraildot discussed above apply to nomapcase.

nosuid

By default the file system is mounted with setuid execution allowed. Specifying nosuid causes the file system to be mounted with setuid execution disallowed.

-O

Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error device busy.

FILES

/etc/mnttab table of mounted file systems
/etc/vfstab list of default parameters for each file system

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4), attributes(5)

NOTES

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.
NAME | mount_nfs – mount remote NFS resources

SYNOPSIS | mount [-F nfs] [generic_options] [-o specific_options] [-O] resource
           mount [-F nfs] [generic_options] [-o specific_options] [-O] mount_point
           mount [-F nfs] [generic_options] [-o specific_options] [-O] resource mount_point

DESCRIPTION | The mount utility attaches a named resource to the file system hierarchy at the pathname location mount_point, which must already exist. If mount_point has any contents prior to the mount operation, the contents remain hidden until the resource is once again unmounted.

If the resource is listed in the /etc/vfstab file, the command line can specify either resource or mount_point, and mount consults /etc/vfstab for more information. If the -F option is omitted, mount takes the file system type from /etc/vfstab.

If the resource is not listed in the /etc/vfstab file, then the command line must specify both the resource and the mount_point.

host can be an IPv4 or IPv6 address string. As IPv6 addresses already contain colons, enclose host in a pair of square brackets when specifying an IPv6 address string. Otherwise the first occurrence of a colon can be interpreted as the separator between the host name and path, for example, [1080::8:800:200C:417A]:tmp/file. See inet(7P) and inet6(7P).

host:pathname
Where host is the name of the NFS server host, and pathname is the path name of the directory on the server being mounted. The path name is interpreted according to the server’s path name parsing rules and is not necessarily slash-separated, though on most servers, this is the case.

nfs://host[:port]/pathname
This is an NFS URL and follows the standard convention for NFS URLs as described in NFS URL Scheme, RFC 2224. See the discussion of URL’s and the public option under NFS FILE SYSTEMS for a more detailed discussion.

A comma-separated list of host:pathname and/or nfs://host[:port]/pathname resources
See the discussion of replicated file systems and failover under NFS FILE SYSTEMS for a more detailed discussion.

A comma-separated list of hosts followed by a :pathname suffix
See the discussion of replicated file systems and failover under NFS FILE SYSTEMS for a more detailed discussion.

The mount command maintains a table of mounted file systems in /etc/mnttab, described in mnttab(4).

OPTIONS | See mount(1M) for the list of supported generic_options.

-o specific_options
Set file system specific options according to a comma-separated list with no intervening spaces.
mount_nfs(1M)

\texttt{acdirmax=n}
Hold cached attributes for no more than \( n \) seconds after directory update. The default value is 60.

\texttt{acdirmin=n}
Hold cached attributes for at least \( n \) seconds after directory update. The default value is 30.

\texttt{acregmax=n}
Hold cached attributes for no more than \( n \) seconds after file modification. The default value is 60.

\texttt{acregmin=n}
Hold cached attributes for at least \( n \) seconds after file modification. The default value is 3.

\texttt{actimeo=n}
Set \textit{min} and \textit{max} times for regular files and directories to \( n \) seconds.

\texttt{bg | fg}
If the first attempt fails, retry in the background, or, in the foreground. The default is \texttt{fg}.

\texttt{forcedirectio | noforcedirectio}
If \texttt{forcedirectio} is specified, then for the duration of the mount, forced direct I/O is used. If the filesystem is mounted using \texttt{forcedirectio}, data is transferred directly between client and server, with no buffering on the client. If the filesystem is mounted using \texttt{noforcedirectio}, data is buffered on the client. \texttt{forcedirectio} is a performance option that is of benefit only in large sequential data transfers. The default behavior is \texttt{noforcedirectio}.

\texttt{grpid}
By default, the GID associated with a newly created file obeys the System V semantics; that is, the GID is set to the effective GID of the calling process. This behavior may be overridden on a per-directory basis by setting the set-GID bit of the parent directory; in this case, the GID of a newly created file is set to the GID of the parent directory (see \texttt{open(2)} and \texttt{mkdir(2)}). Files created on file systems that are mounted with the \texttt{grpid} option obey BSD semantics independent of whether the set-GID bit of the parent directory is set; that is, the GID is unconditionally inherited from that of the parent directory.

\texttt{hard | soft}
Continue to retry requests until the server responds (\texttt{hard}) or give up and return an error (\texttt{soft}). The default value is \texttt{hard}.

\texttt{intr | nointr}
Allow (do not allow) keyboard interrupts to kill a process that is hung while waiting for a response on a hard-mounted file system. The default is \texttt{intr}, which makes it possible for clients to interrupt applications that may be waiting for a remote mount.
noac
Suppress data and attribute caching. The data caching that is suppressed is the
write-behind. The local page cache is still maintained, but data copied into it is
immediately written to the server.

nocto
Do not perform the normal close-to-open consistency. When a file is closed, all
modified data associated with the file is flushed to the server and not held on the
client. When a file is opened the client sends a request to the server to validate
the client’s local caches. This behavior ensures a file’s consistency across multiple
NFS clients. When -nocto is in effect, the client does not perform the flush on
close and the request for validation, allowing the possiblity of differences among
copies of the same file as stored on multiple clients.

This option can be used where it can be guaranteed that accesses to a specified
file system are made from only one client and only that client. Under such a
condition, the effect of -nocto can be a slight performance gain.

port=
The server IP port number. The default is NFS_PORT. If the port option is
specified, and if the resource includes one or more NFS URLs, and if any of the
URLs include a port number, then the port number in the option and in the
URL must be the same.

posix
Request POSIX.1 semantics for the file system. Requires a mount Version 2
mountd(1M) on the server. See standards(5) for information regarding POSIX.

proto=<netid>
<netid> is a value of network_id field from entry in the /etc/netconfig file.
By default, the transport protocol used for the NFS mount is the first available
connection oriented transport supported on both the client and the server. If no
connection oriented transport is found, then the first available connectionless
transport is used. This default behavior can be overridden with the
proto=<netid> option.

public
The public option forces the use of the public file handle when connecting to
the NFS server. The resource specified may or may not have an NFS URL. See
the discussion of URL’s and the public option under NFS FILE SYSTEMS for a
more detailed discussion.

quota | noquota
Enable or prevent quota(1M) to check whether the user is over quota on this file
system; if the file system has quotas enabled on the server, quotas are still
checked for operations on this file system.

remount
Remounts a read-only file system as read-write (using the rw option). This
option cannot be used with other -o options, and this option works only on
currently mounted read-only file systems.
retrans=n
Set the number of NFS retransmissions to \( n \). The default value is 5. For connection-oriented transports, this option has no effect because it is assumed that the transport performs retransmissions on behalf of NFS.

retry=n
The number of times to retry the mount operation. The default for the mount command is 10000.

The default for the automounter is 0, in other words, do not retry. You might find it useful to increase this value on heavily loaded servers, where automounter traffic is dropped, causing unnecessary “server not responding” errors.

ro | rw
resource is mounted read-only or read-write. The default is rw.

rsize=n
Set the read buffer size to \( n \) bytes. The default value is 32768 when using Version 3 of the NFS protocol. The default can be negotiated down if the server prefers a smaller transfer size. When using Version 2, the default value is 8192.

sec=mode
Set the security mode for NFS transactions. If sec= is not specified, then the default action is to use AUTH_SYS over NFS Version 2 mounts, or to negotiate a mode over NFS Version 3 mounts. NFS Version 3 mounts negotiate a security mode when the server returns an array of security modes. The client picks the first mode in the array that is supported on the client. Only one mode can be specified with the sec= option. See nfssec(5) for the available mode options.

secure
This option has been deprecated in favor of the sec=dlh option.

suid | nosuid
Allow or disallow setuid execution. The default is suid.

timeo=n
Set the NFS timeout to \( n \) tenths of a second. The default value is 11 tenths of a second for connectionless transports, and 600 tenths of a second for connection-oriented transports.

vers=<NFS version number>
By default, the version of NFS protocol used between the client and the server is the highest one available on both systems. If the NFS server does not support NFS Version 3 protocol, then the NFS mount uses NFS Version 2 protocol.

wsize=n
Set the write buffer size to \( n \) bytes. The default value is 32768 when using Version 3 of the NFS protocol. The default can be negotiated down if the server prefers a smaller transfer size. When using Version 2, the default value is 8192.
xattr | noxattr
Allow or disallow the creation and manipulation of extended attributes. The default is xattr. See fsattr(5) for a description of extended attributes.

-O
Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount fails, producing the error “device busy.”

Background versus Foreground
File systems mounted with the bg option indicate that mount is to retry in the background if the server’s mount daemon (mountd(1M)) does not respond. mount retries the request up to the count specified in the retry=n option. (Note that the default value for retry differs between mount and automount. See the description of retry, above.) Once the file system is mounted, each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no response arrives, the time-out is multiplied by 2 and the request is retransmitted. When the number of retransmissions has reached the number specified in the retrans=n option, a file system mounted with the soft option returns an error on the request; one mounted with the hard option prints a warning message and continues to retry the request.

Hard versus Soft
File systems that are mounted read-write or that contain executable files should always be mounted with the hard option. Applications using soft mounted file systems may incur unexpected I/O errors, file corruption, and unexpected program core dumps. The soft option is not recommended.

Authenticated requests
The server may require authenticated NFS requests from the client. sec=dh authentication might be required. See nfssec(5).

URLs and the public option
If the public option is specified, or if the resource includes and NFS URL, mount attempts to connect to the server using the public file handle lookup protocol. See WebNFS Client Specification, RFC 2054. If the server supports the public file handle, the attempt is successful; mount does not need to contact the server’s rpcbind(1M), and the mountd(1M) daemons to get the port number of the mount server and the initial file handle of pathname, respectively. If the NFS client and server are separated by a firewall that allows all outbound connections through specific ports, such as NFS_PORT, then this enables NFS operations through the firewall. The public option and the NFS URL can be specified independently or together. They interact as specified in the following matrix:
A Native path is a path name that is interpreted according to conventions used on the native operating system of the NFS server. A Canonical path is a path name that is interpreted according to the URL rules. See Uniform Resource Locators (URL), RFC 1738. See EXAMPLES for uses of Native and Canonical paths.

Replicated file systems and failover

Resource can list multiple read-only file systems to be used to provide data. These file systems should contain equivalent directory structures and identical files. It is also recommended that they be created by a utility such as rdist(1). The file systems may be specified either with a comma-separated list of host/pathname entries and/or NFS URL entries, or with a comma-separated list of hosts, if all file system names are the same. If multiple file systems are named and the first server in the list is down, failover uses the next alternate server to access files. If the read-only option is not chosen, replication is disabled. File access is blocked on the original if NFS locks are active for that file.

File Attributes

To improve NFS read performance, files and file attributes are cached. File modification times get updated whenever a write occurs. However, file access times may be temporarily out-of-date until the cache gets refreshed.

The attribute cache retains file attributes on the client. Attributes for a file are assigned a time to be flushed. If the file is modified before the flush time, then the flush time is extended by the time since the last modification (under the assumption that files that changed recently are likely to change soon). There is a minimum and maximum flush time extension for regular files and for directories. Setting actimeo=n sets flush time to n seconds for both regular files and directories.

Setting actimeo=0 disables attribute caching on the client. This means that every reference to attributes is satisfied directly from the server though file data is still cached. While this guarantees that the client always has the latest file attributes from the server, it has an adverse effect on performance through additional latency, network load, and server load.
Setting the noac option also disables attribute caching, but has the further effect of disabling client write caching. While this guarantees that data written by an application is written directly to a server, where it can be viewed immediately by other clients, it has a significant adverse effect on client write performance. Data written into memory-mapped file pages (mmap(2)) are not written directly to this server.

EXAMPLE 1 Mounting an NFS File System
To mount an NFS file system:
```
example# mount serv:/usr/src /usr/src
```

EXAMPLE 2 Mounting An NFS File System Read-Only With No suid Privileges
To mount an NFS file system read-only with no suid privileges:
```
example# mount -r -o nosuid serv:/usr/src /usr/src
```

EXAMPLE 3 Mounting An NFS File System Over Version 2, with the UDP Transport
To mount an NFS file system over Version 2, with the UDP transport:
```
example# mount -o vers=2,proto=udp serv:/usr/src /usr/src
```

EXAMPLE 4 Mounting an NFS File System Using An NFS URL
To mount an NFS file system using an NFS URL (a canonical path):
```
example# mount nfs://serv/usr/man /usr/man
```

EXAMPLE 5 Mounting An NFS File System Forcing Use Of The Public File Handle
To mount an NFS file system and force the use of the public file handle and an NFS URL (a canonical path) that has a non 7–bit ASCII escape sequence:
```
example# mount -o public nfs://serv/usr/%A0abc /mnt/test
```

EXAMPLE 6 Mounting an NFS File System Using a Native Path
To mount an NFS file system using a native path (where the server uses colons (":") as the component separator) and the public file handle:
```
example# mount -o public serv:C:doc:new /usr/doc
```

EXAMPLE 7 Mounting a Replicated Set of NFS File Systems with the Same Pathnames
To mount a replicated set of NFS file systems with the same pathnames:
```
example# mount serv-a,serv-b,serv-c:/usr/man /usr/man
```

EXAMPLE 8 Mounting a Replicated Set of NFS File Systems with Different Pathnames
To mount a replicated set of NFS file systems with different pathnames:
```
example# mount serv-x:/usr/man,serv-y:/var/man,nfs://serv-z/man /usr/man
```
mount_nfs(1M)

FILES

/etc/mnttab table of mounted file systems
/etc/dfs/fstypes default distributed file system type
/etc/vfstab table of automatically mounted resources

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfsuc</td>
</tr>
</tbody>
</table>

SEE ALSO

rdist(1), mountall(1M), mountd(1M), quota(1M), mkdir(2), mmap(2), mount(2), open(2), umount(2), mnttab(4), attributes(5), fsattr(5), nfssec(5), standards(5), inet(7P), inet6(7P), lofs(7FS)


NOTES

An NFS server should not attempt to mount its own file systems. See lofs(7FS).

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

SunOS 4.x used the biod maintenance procedure to perform parallel read-ahead and write-behind on NFS clients. SunOS 5.x made biod obsolete with multi-threaded processing, which transparently performs parallel read-ahead and write-behind.

Since the root (/) file system is mounted read-only by the kernel during the boot process, only the remount option (and options that can be used in conjunction with remount) affect the root (/) entry in the /etc/vfstab file.
## NAME
mount_pcfs – mount pcfs file systems

## SYNOPSIS

```
mount -F pcfs [generic_options] [-o FSType-specific_options] special | mount_point
mount -F pcfs [generic_options] [-o FSType-specific_options] special mount_point
```

## DESCRIPTION

`mount` attaches an MS-DOS file system (pcfs) to the file system hierarchy at the `mount_point`, which is the pathname of a directory. If `mount_point` has any contents prior to the `mount` operation, these are hidden until the file system is unmounted.

If `mount` is invoked with `special` or `mount_point` as the only arguments, `mount` will search `/etc/vfstab` to fill in the missing arguments, including the `FSType-specific_options`; see `mount(1M)` for more details.

The `special` argument can be one of two special device file types:

- A floppy disk, such as `/dev/diskette0` or `/dev/diskette1`.
- A DOS logical drive on a hard disk expressed as `device-name:logical-drive`, where `device-name` specifies the special block device-file for the whole disk and `logical-drive` is either a drive letter (c through z) or a drive number (1 through 24). Examples are `/dev/dsk/c0t0d0p0:c` and `/dev/dsk/c0t0d0p0:1`.

The `special` device file type must have a formatted MS-DOS file system with either a 12-bit, 16-bit, or 32-bit File Allocation Table.

## OPTIONS
generic_options
See `mount(1M)` for the list of supported options.

```
-o
```
Specify `pcfs` file system specific options. The following options are available:

```
rw|ro
```
Mount the file system read/write or read-only. The default is `rw`.

```
foldcase|nofoldcase
```
Force uppercase characters in filenames to lowercase when reading them from the filesystem. This is for compatibility with the previous behavior of `pcfs`. The default is `nofoldcase`.

## FILES

```
/etc/mnttab table of mounted file systems
/etc/vfstab list of default parameters for each file system
```

## ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>
```

## SEE ALSO

`mount(1M)`, `mountall(1M)`, `mount(2)`, `mnttab(4)`, `vfstab(4)`, attributes(5), `pcfs(7FS)`
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.
mount_tmpfs is a memory based file system which uses kernel resources relating to the VM system and page cache as a file system.

mount attaches a tmpfs file system to the file system hierarchy at the pathname location mount_point, which must already exist. If mount_point has any contents prior to the mount operation, these remain hidden until the file system is once again unmounted. The attributes (mode, owner, and group) of the root of the tmpfs filesystem are inherited from the underlying mount_point, provided that those attributes are determinable. If not, the root's attributes are set to their default values.

The special argument is usually specified as swap but is in fact disregarded and assumed to be the virtual memory resources within the system.

OPTIONS

- **-o specific_options**  Specify tmpfs file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored. The following options are available:

  size=sz  The sz argument controls the size of this particular tmpfs file system. If the argument is has a 'k' suffix, the number will be interpreted as a number of kilobytes. An 'm' suffix will be interpreted as a number of megabytes. No suffix is interpreted as bytes. In all cases, the actual size of the file system is the number of bytes specified, rounded up to the physical pagesize of the system.

  suid | nosuid  Allow or disallow setuid execution. The default is suid.

  xattr | noxattr  Allow or disallow the creation and manipulation of extended attributes. The default is xattr. See fsattr(5) for a description of extended attributes.

- **-O**  Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error device busy.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

mount(1M), mkdir(2), mount(2), open(2), umount(2), mnttab(4), attributes(5), fsattr(5), tmpfs(7FS)

NOTES

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.
mount_udfs(1M)

NAME
mount_udfs – mount a udfs file system

SYNOPSIS
mount -F udfs [generic_options] [-o specific_options] [-O] special mount_point

mount -F udfs [generic_options] [-o specific_options] [-O] special | mount_point

DESCRIPTION
The mount utility attaches a udfs file system to the file system hierarchy at the
mount_point, which is the pathname of a directory. If mount_point has any contents
prior to the mount operation, these are hidden until the file system is unmounted.

If mount is invoked with either special or mount_point as the only arguments, mount
searches /etc/vfstab to fill in the missing arguments, including the specific_options.
See mount(1M).

If special and mount_point are specified without any specific_options, the default is rw.

If the directory on which a file system is to be mounted is a symbolic link, the file
system is mounted on the directory to which the symbolic link refers, rather than on
top of the symbolic link itself.

OPTIONS
See mount(1M) for the list of supported generic_options.

The following options are supported:

-o specific_options Specify udfs file system specific options in a
comma-separated list with no intervening spaces. The
following specific_options are available:

m
Mount the file system without making an entry in
/etc/mnttab.

nosuid
Mount the file system with setuid execution
disallowed. You can also use nosuid to disallow
setuid when mounting devices.

By default, the file system is mounted with setuid
execution allowed.

remount
Remount the file system as read-write. The option is
used in conjunction with the rw option.

A file system mounted read-only can be remounted
as read-write. This option fails if the file system is
not currently mounted.

rw | ro
Read-write (rw) or read-only (ro). rw is the default.

-O
Overlay mount. Allow the file system to be mounted
over an existing mount point, making the underlying
mount_udfs(1M)

File system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount fails, producing the error device busy.

FILES
/etc/mnttab Table of mounted file systems
/etc/vfstab List of default parameters for each file system

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWudf</td>
</tr>
</tbody>
</table>

SEE ALSO
fsck(1M), fsck_udfs(1M), mount(1M), mountall(1M), mount(2), mnttab(4), vfstab(4), attributes(5)

DIAGNOSTICS
not super user
The command is run by a non-root user. Run as root.

no such device
The device name specified does not exist.

not a directory
The specified mount point is not a directory.

is not an udfs file system
The device specified does not contain a udf 1.50 file system or the udfs file system module is not available.

is already mounted
The specified device is already in use.

not a block device
The device specified is not a block device. Use block device to mount.

write-protected
The device is read-only.

is corrupted. needs checking
The file system is in an inconsistent state. Run fsck.

NOTES
Copy-protected files can be stored on DVD-ROM media using Universal Disk Format (UDF). Reading these copy-protected files is not possible as this involves an authentication process. Unless an authentication process between the host and the drive is completed, reading these copy-protected files after mounting and before the authentication process, returns an error.
The `mount` utility attaches a ufs file system to the file system hierarchy at the `mount_point`, which is the pathname of a directory. If `mount_point` has any contents prior to the `mount` operation, these are hidden until the file system is unmounted.

If `mount` is invoked with `special` or `mount_point` as the only arguments, `mount` will search `/etc/vfstab` to fill in the missing arguments, including the `specific_options`. See `mount(1M)`.

If `special` and `mount_point` are specified without any `specific_options`, the default is `rw`.

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.

See `mount(1M)` for the list of supported `generic_options`.

The following options are supported:

- `-o specific_options`

  Specify ufs file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored. The following options are available:

  `dfratime | nodfratime`

  By default, writing access time updates to the disk may be deferred (`dfratime`) for the file system until the disk is accessed for a reason other than updating access times. `nodfratime` disables this behavior.

  If power management is enabled on the system, do not set `nodfratime` unless `noatime` is also set. If you set `nodfratime` without setting `noatime`, the disk is spun up every time a file within a file system on the disk is accessed - even if the file is not modified.

  `forcedirectio | noforcedirectio`

  If `forcedirectio` is specified and supported by the file system, then for the duration of the mount, forced direct I/O will be used. If the filesystem is mounted using `forcedirectio`, data is transferred directly between user address space and the disk. If the filesystem is mounted using `noforcedirectio`, data is buffered in kernel address space when data is transferred between user address space and the disk. `forcedirectio` is a performance option that is of benefit only in large sequential data transfers. The default behavior is `noforcedirectio`.

  `global | noglobal`

  If `global` is specified and supported on the file system, and the system in question is part of a cluster, the file system will be globally visible on all nodes of
The cluster. If noglobal is specified, the mount will not be globally visible. The default behavior is noglobal. The global option is mutually exclusive of the nbmand option, described below.

intr | nointr
Allow (do not allow) keyboard interrupts to kill a process that is waiting for an operation on a locked file system. The default is intr.

largefiles | nolargefiles
If nolargefiles is specified and supported by the file system, then for the duration of the mount it is guaranteed that all regular files in the file system have a size that will fit in the smallest object of type off_t supported by the system performing the mount. The mount will fail if there are any files in the file system not meeting this criterion. If largefiles is specified, there is no such guarantee. The default behavior is largefiles.

If nolargefiles is specified, mount will fail for ufs if the file system to be mounted has contained a large file (a file whose size is greater than or equal to 2 Gbyte) since the last invocation of fsck on the file system. The large file need not be present in the file system at the time of the mount for the mount to fail; it could have been created previously and destroyed. Invoking fsck (see fsck_ufs(1M)) on the file system will reset the file system state if no large files are present. After invoking fsck, a successful mount of the file system with nolargefiles specified indicates the absence of large files in the file system; an unsuccessful mount attempt indicates the presence of at least one large file.

logging | nologging
If logging is specified, then logging is enabled for the duration of the mounted file system. Logging is the process of storing transactions (changes that make up a complete UFS operation) in a log before the transactions are applied to the file system. Once a transaction is stored, the transaction can be applied to the file system later. This prevents file systems from becoming inconsistent, therefore eliminating the need to run fsck. And, because fsck can be bypassed, logging reduces the time required to reboot a system if it crashes, or after an unclean halt.

The default behavior is nologging for file systems less than 1 terabyte. The default behavior is logging for file systems greater than 1 terabyte and for file systems created with the -T option of the newfs command or the mtb=y option to the mkfs_ufs command.

The log is allocated from free blocks on the file system, and is sized approximately 1 Mbyte per 1 Gbyte of file system, up to a maximum of 64 Mbytes. Logging can be enabled on any UFS, including root (/). The log created by UFS logging is continually flushed as it fills up. The log is totally flushed when the file system is unmouted or as a result of the lockfs -f command.

Mount the file system without making an entry in /etc/mnttab.
nbmand | nonnbmand

This option specifies that non-blocking mandatory locking semantics should be allowed on this file system. Non-blocking mandatory locking is disallowed by default. If the file system is mounted with the nbmand option, then applications can use the fcntl(2) interface to place non-blocking mandatory locks on files and the system will enforce those semantics. Enabling this option can cause standards conformant applications to see unexpected errors.

Do not use the nbmand option with /, /var and /usr.

The remount option should not be used to change the nbmand disposition of the file system. The nbmand option is mutually exclusive of the global option, described above.

noatime

By default, the file system is mounted with normal access time (atime) recording. If noatime is specified, the file system will ignore access time updates on files, except when they coincide with updates to the ctime or mtime. See stat(2). This option reduces disk activity on file systems where access times are unimportant (for example, a Usenet news spool).

noatime turns off access time recording regardless of dfratime or nodfratime.

The POSIX standard requires that access times be marked on files. -noatime ignores them unless the file is also modified.

onerror = action

This option specifies the action that UFS should take to recover from an internal inconsistency on a file system. Specify action as panic, lock, or umount. These values cause a forced system shutdown, a file system lock to be applied to the file system, or the file system to be forcibly unmounted, respectively. The default is panic.

quota

Quotas are turned on for the file system.

remount

Remounts a file system with a new set of options. All options not explicitly set with remount revert to their default values.

rq

Read-write with quotas turned on. Equivalent to rw, quota.

ro | rw

Read-only or read-write. Default is rw.

suid | nosuid

Allow or disallow setuid/setgid execution. The default is suid. This option also allows/disallows opening any device-special entries that appear within the filesystem.
mount_ufs(1M)

This option is highly recommended whenever the file system is shared via NFS with the root= option, because, without it, NFS clients could add setuid programs to the server, or create devices that could open security holes.

-O

Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount will fail, producing the error “device busy”.

The mount_ufs command supports the xattr flag, to allow the creation and manipulation of extended attributes. See fsattr(5) for a description of extended attributes. The xattr flag is always on.

FILES

/etc/mnttab table of mounted file systems
/etc/vfstab list of default parameters for each file system

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

fsck(1M), fsck_ufs(1M), mount(1M), mountall(1M), fcntl(2), mount(2), stat(2), mnttab(4), vfstab(4), attributes(5), fsattr(5), largefile(5)

NOTES

Since the root (/) file system is mounted read-only by the kernel during the boot process, only the remount option (and options that can be used in conjunction with remount) affect the root (/) entry in the /etc/vfstab file.
mount_xmemfs is an extended memory file system which provides file system semantics to manage and access large amounts of physical memory which can exceed 4 GB in size.

mount attaches a xmemfs file system to the file system hierarchy at the pathname location mount_point, which must already exist. If mount_point has any contents prior to the mount operation, these remain hidden until the file system is once again unmounted. The attributes (mode, owner, and group) of the root of the xmemfs filesystem are inherited from the underlying mount_point, provided that those attributes are determinable. If not, the root’s attributes are set to their default values.

The special argument is not currently used by xmemfs but a placeholder, (such as xmem), needs to be specified nevertheless.

OPTIONS
See mount(1M) for the list of supported generic_options.

-ospecific_options
Specify xmemfs file system specific options in a comma-separated list with no intervening spaces. If invalid options are specified, a warning message is printed and the invalid options are ignored.

The size=sz specific option is required.

The following options are available:

size=sz
The sz argument specifies the desired size of this particular xmemfs file system. If the sz argument has a k suffix, the number is interpreted as kilobytes. An m suffix is interpreted as megabytes and g is interpreted as gigabytes. A sz specified with no suffix is interpreted as bytes.

In all cases, the actual size of the file system is the number of bytes specified, rounded up to the physical pagesize of the system or to the large page size if largebsize is specified.

This specific option is required.

largebsize
If largebsize is specified, xmemfs uses the large memory page size as the file system block
size. On IA32, the large memory page size with mmu36 which supports PAE (Physical Address Extension) is 2 MB. The large memory page size without mmu36/PAE is 4 MB. If there is no large page support, the file system block size is PAGESIZE.

-O Overlay mount. Allow the file system to be mounted over an existing mount point, making the underlying file system inaccessible. If a mount is attempted on a pre-existing mount point without setting this flag, the mount fails, producing the error device busy.

FILES
/etc/mnttab table of mounted file systems

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Architecture</td>
<td>i386</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO mount(1M), mount(2), mkdir(2), open(2), umount(2), mnttab(4), attributes(5), xmemfs(7FS)

NOTES If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.

The only file types allowed on xmemfs are directories and regular files. The execution of object files resident in xmemfs is not supported. Execution is prevented by not allowing users to set execute permissions on regular files.
NAME
mpstat - report per-processor or per-processor-set statistics

SYNOPSIS
/usr/bin/mpstat [-a] [-p | -P set] [interval [ count]]

DESCRIPTION
mpstat reports processor statistics in tabular form. Each row of the table represents
the activity of one processor. The first table summarizes all activity since boot; each
subsequent table summarizes activity for the preceding interval. All values are rates
(events per second) unless otherwise noted.

During execution of this kernel status command, the "state" of the kernel can change.
An example would be CPUs going online or offline. mpstat reports this as State
cchange.

mpstat reports the following information:

CPU or SET

Without the -a option, mpstat reports CPU, the processor ID. With the -a
option, mpstat reports SET, the processor set ID.

minf minor faults
mjf major faults
xcal inter-processor cross-calls
intr interrupts
ithr interrupts as threads (not counting clock interrupt)
csw context switches
icsw involuntary context switches
migr thread migrations (to another processor)
smtx spins on mutexes (lock not acquired on first try)
srw spins on readers/writer locks (lock not acquired on first try)
syscl system calls
usr percent user time
sys percent system time
wt percent wait time
idl percent idle time

With the -a option, mpstat also reports:
sze number of processors in the set

With the -p option, mpstat also reports:
set processor set membership of the CPU

OPTIONS
The following options are supported:
mpstat(1M)

- `a`  Aggregate output by processor set. Sort the output by set. The default output is sorted by CPU number.

- `p`  Report processor set membership of each CPU. Sort the output by set. The default output is sorted by CPU number.

- `P set`  Display only those processors in the specified set.

- `interval`  Report once each interval seconds.

- `count`  Only print count reports.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO** sar(1), iostat(1M), sar(1M), vmstat(1M), attributes(5)

**NOTES**
The sum of CPU utilization might vary slightly from 100 because of rounding errors in the production of a percentage figure.
msgid(1M)

NAME
msgid – generate message IDs

SYNOPSIS
/usr/sbin/msgid

DESCRIPTION
The msgid utility generates message IDs.

A message ID is a numeric identifier that, with a high probability, uniquely identifies a message. The probability of two distinct messages having the same ID is about one in a million. Specifically, the message ID is a hash signature on the message’s unexpanded format string, generated by STRLOG_MAKE_MSGID() as defined in <sys/strlog.h>.

syslogd(1M) is a simple filter that takes strings as input and produces those same strings, preceded by their message IDs, as output. Every message logged by syslogd(1M) includes the message ID. The message ID is intended to serve as a small, language-independent identifier.

EXAMPLES
EXAMPLE 1 Using the msgid command to generate a message ID

The following example uses the msgid command to generate a message ID for the echo command.

test# echo hello | msgid

EXAMPLE 2 Using the msgid command to generate a message catalog

The following example uses the msgid command to enumerate all of the messages in the binary ufs, to generate a message catalog.

test# strings /kernel/fs/ufs | msgid

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
syslogd(1M), attributes(5), log(7d)
mvdir(1M)

NAME mvdir – move a directory
SYNOPSIS /usr/sbin/mvdir dirname name

DESCRIPTION mvdir moves directories within a file system. dirname must be a directory. If name does not exist, it will be created as a directory. If name does exist, and is a directory, dirname will be created as name/dirname. dirname and name may not be on the same path; that is, one may not be subordinate to the other. For example:

example% mvdir x/y x/z

is legal, but

example% mvdir x/y x/y/z

is not.

OPERANDS
dirname The name of the directory that is to be moved to another directory in the filesystem.

name The name of the directory into which dirname is to be moved. If name does not exist, it will be created. It may not be on the same path as dirname.

USAGE See largefile(5) for the description of the behavior of mvdir when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

EXIT STATUS

0 Successful operation.

>0 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO mkdir(1), mv(1), attributes(5), largefile(5)
named-bootconf – convert name server configuration files

SYNOPSIS

named-bootconf

DESCRIPTION

named-bootconf converts named configuration files from BIND 4 format to BIND 8 format.

Comments from the source file will not always appear at the appropriate place in the target file.

EXAMPLES

EXAMPLE 1 Using named-bootconf

The following command shows conversion of the named.boot file:

eexample# named-bootconf < named.boot > named.conf

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard BIND 8.2.4</td>
</tr>
</tbody>
</table>

SEE ALSO

in.named(1M), named.conf(4), attributes(5)
The named-xfer program is an ancillary program executed by in.named to perform an inbound zone transfer. It is rarely executed directly, and only by system administrators who are trying to debug a zone transfer problem. See RFC’s 1033, 1034, and 1035 for more information on the Internet name-domain system.

OPTIONS
- z Specifies the name of the zone to be transferred.
- f Specifies the name of the file into which the zone should be dumped when it is received from the primary server.
- s Specifies the serial number of the current copy of this zone. If the SOA RR from the primary server does not have a serial number higher than this, the transfer will be aborted.
- d Print debugging information. A number after the “d” determines the level of messages printed.
- l Specifies a log file for debugging messages. The default is system-dependent but is usually in /var/tmp or /usr/tmp. Note that this only applies if -d is also specified.
- t Specifies a trace file which will contain a protocol trace of the zone transfer. This is probably only of interest to those debugging the name server itself.
- p Use a different port number. The default is the standard port number as returned by getservbyname(3SOCKET) for service “domain”.
- S Perform a restricted transfer of only the SOA, NS records and glue A records for the zone. The SOA record will not be loaded by named but will be used to determine when to verify the NS records. See the “stubs” directive in in.named(1M) for more information.

Additional arguments are taken as name server addresses in so-called “dotted-quad” syntax only; no host names are allowed. At least one address must be specified. If the first one fails to transfer successfully, the additional addresses will be tried in the order given.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWinamd</td>
</tr>
</tbody>
</table>

SEE ALSO
in.named(1M), resolver(3RESOLV), resolv.conf(4), hostname(1), RFC 882
ncaconfd(1M)

NAME
ncaconfd – Solaris Network Cache and Accelerator (NCA) configuration daemon

SYNOPSIS
/usr/lib/inet/ncaconfd

DESCRIPTION
Use the ncaconfd utility to set up NCA on a system. At boot time, the ncakmod initialization script reads in nca.if(4) to determine on which interface(s) NCA should run. ncaconfd then sets up the interface.

ncaconfd also operates as a daemon if the nca_active key is set to enabled in ncakmod.conf(4) file. In this case, ncaconfd will continue as a daemon after all the NCA interfaces have been set up, listening for routing changes. The changes are then passed to NCA to control which interface NCA should use to make active outgoing TCP connections.

FILES
/etc/nca/ncakmod.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWncau</td>
</tr>
</tbody>
</table>

SEE ALSO
nca(1), ncakmod(1), nca.if(4), ncakmod.conf(4), attributes(5)
ncheck – generate a list of path names versus i-numbers

**SYNOPSIS**

```
ncheck [-F FSType] [-V] [generic_options] [-o FSType-specific_options] [special...]```

**DESCRIPTION**

ncheck with no options generates a path-name versus i-number list of all files on special. If special is not specified on the command line the list is generated for all specials in /etc/vfstab which have a numeric fsckpass. special is the raw device on which the file system exists.

**OPTIONS**

- **-F**
  Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by finding an entry in the table that has a numeric fsckpass field and an fsckdev that matches special.

- **-V**
  Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option may be used to verify and validate the command line.

**generic_options**

Options that are commonly supported by most FSType-specific command modules. The following options are available:

- **-i i-list**
  Limit the report to the files on the i-list that follows. The i-list must be separated by commas with no intervening spaces.

- **-a**
  Print the names “.” and “..” which are ordinarily suppressed.

- **-s**
  Report only special files and files with set-user-ID mode. This option may be used to detect violations of security policy.

- **-o**
  Specify FSType-specific_options in a comma separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the FSType-specific module of the command.

**USAGE**

See largefile(5) for the description of the behavior of ncheck when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

**FILES**

/etc/vfstab list of default parameters for each file system
ncheck(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

vfstab(4), attributes(5), largefile(5) Manual pages for the FSType-specific modules of ncheck

NOTES

This command may not be supported for all FSTypes.
NAME  ncheck_ufs – generate pathnames versus i-numbers for ufs file systems

SYNOPSIS  ncheck -F ufs [generic_options] [-o m] [special...]

DESCRIPTION  ncheck -F ufs generates a pathname versus i-number list of files for the ufs file system residing on special. Names of directory files are followed by `/./'.

OPTIONS  See ncheck(1M) for the list of generic_options supported.

- o  Specify ufs file system specific options. The available option is:

   m  Print mode information.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  ff(1M), ncheck(1M), attributes(5)

DIAGNOSTICS  When the file system structure is improper, ‘??’ denotes the “parent” of a parentless file and a pathname beginning with ‘.’...’ denotes a loop.
ndc(1M)

NAME
ndc – name daemon control program

SYNOPSIS
ndc [-c channel] [-l localsock] [-p pidfile] [-d] [-q] [-s] [-t] [command]

DESCRIPTION
System administrators use the ndc utility to control the operation of a name server. If
the system administrator fails to list a command, ndc will prompt for one until it
reads EOF.

OPTIONS
The ndc command supports the following options:

- **-c channel**
  Specify the rendezvous point for the control channel. The default
  value for channel is /var/run/ndc, a UNIX domain socket that is
  also the server’s default control channel. If the desired control
  channel is a TCP/IP socket, then the format for the channel
  argument is ipaddr/port. For example, a value of 127.0.0.1/54
  would be TCP port 54 on the local host.

- **-d**
  Turn on debugging mode. This option is mainly of interest to
developers.

- **-l localsock**
  Bind the client side of the control channel to a specific address.
  Servers can be configured to reject connections that do not come
  from specific addresses. If the desired control channel is a TCP/IP
  socket, then the format for the localsock argument is ipaddr/port.

- **-p pidfile**
  Use for backwards compatibility with older name servers. It
  enables ndc to use UNIX signals for control communications.
  Optional with modern name servers, this capability may not be
  supported in future releases. The command set that is available is
  narrower when the signal interface is used. A likely value for the
  pidfile argument is /var/run/named.pid.

- **-q**
  Suppress prompt and result text.

- **-s**
  Suppress non-fatal error announcements.

- **-t**
  Turn on protocol and system tracing. Use this option in installation
debugging.

COMMANDS
The following commands are built into the ndc utility. The full set of commands that
the name server supports is dynamic. Use the help command for information on the
available commands.

- **/help**
  Show help information for built in commands.

- **/exit**
  Exit from ndc command interpreter.

- **/trace**
  Toggle protocol and system tracing on and off. See -t.

- **/debug**
  Toggle debugging mode on and off. See -d.

- **/quiet**
  Toggle prompt and result information on and off. See -q.
/silent

Toggle announcement of non-fatal errors on and off.
See -s.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard, BIND 8.2.4</td>
</tr>
</tbody>
</table>

SEE ALSO
in.named(1M), execvp(2), attributes(5)

NOTES
When the ndc utility is running in pidfile mode, pass any arguments to start and restart commands to the new name server on the command line. If the ndc utility is running in channel mode, there is no start command, and the restart command just tells the name server to execvp(2) itself.
ndd(1M)

NAME  ndd – get and set driver configuration parameters

SYNOPSIS  ndd [-set] driver parameter [value]

DESCRIPTION  ndd gets and sets selected configuration parameters in some kernel drivers. Currently, ndd only supports the drivers that implement the TCP/IP Internet protocol family. Each driver chooses which parameters to make visible using ndd. Since these parameters are usually tightly coupled to the implementation, they are likely to change from release to release. Some parameters may be read-only.

If the -set option is omitted, ndd queries the named driver, retrieves the value associated with the specified parameter, and prints it. If the -set option is given, ndd passes value, which must be specified, down to the named driver which assigns it to the named parameter.

By convention, drivers that support ndd also support a special read-only parameter named ”?” which can be used to list the parameters supported by the driver.

EXAMPLES  EXAMPLE 1 Getting Parameters Supported By The TCP Driver

To see which parameters are supported by the TCP driver, use the following command:

eample% ndd /dev/tcp ?

The parameter name ”?” may need to be escaped with a backslash to prevent its being interpreted as a shell meta character.

The following command sets the value of the parameter ip_forwarding in the dual stack IP driver to zero. This disables IPv4 packet forwarding.

eample% ndd -set /dev/ip ip_forwarding 0

Similarly, in order to disable IPv6 packet forwarding, the value of parameter ip6_forwarding

eample% ndd -set /dev/ip ip6_forwarding 0

To view the current IPv4 forwarding table, use the following command:

eample% ndd /dev/ip ipv4_ire_status

To view the current IPv6 forwarding table, use the following command:

eample% ndd /dev/ip ipv6_ire_status

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
The parameters supported by each driver may change from release to release. Like programs that read /dev/kmem, user programs or shell scripts that execute nedd should be prepared for parameter names to change.

The ioctl() command that nedd uses to communicate with drivers is likely to change in a future release. User programs should avoid making dependencies on it.

The meanings of many nedd parameters make sense only if you understand how the driver is implemented.
The netstat command displays the contents of certain network-related data structures in various formats, depending on the options you select.

The netstat command has the several forms shown in the SYNOPSIS section, above, listed as follows:

- The first form of the command (with no required arguments) displays a list of active sockets for each protocol.
- The second, third, and fourth forms (-g, -p, and -s options) display information from various network data structures.
- The fifth form (-m option) displays STREAMS memory statistics.
- The sixth form (-i option) shows the state of the interfaces.
- The seventh form (-r option) displays the routing table.
- The eighth form (-M option) displays the multicast routing table.
- The ninth form (-D option) displays the state of DHCP on one or all interfaces.

These forms are described in greater detail below.

With no arguments (the first form), netstat displays connected sockets for PF_INET, PF_INET6, and PF_UNIX, unless modified otherwise by the -f option.

**OPTIONS**

- **-a**
  Show the state of all sockets, all routing table entries, or all interfaces, both physical and logical. Normally, listener sockets used by server processes are not shown. Under most conditions, only interface, host, network, and default routes are shown and only the status of physical interfaces is shown.

- **-f address_family**
  Limit all displays to those of the specified address_family. The value of address_family can be one of the following:
inet For the AF_INET address family showing IPv4 information.

inet6 For the AF_INET6 address family showing IPv6 information.

unix For the AF_UNIX address family.

- f filter

With -r only, limit the display of routes to those matching the specified filter. A filter rule consists of a "keyword:value" pair. The known keywords and the value syntax are:

af: {inet | inet6 | unix | number}

Selects an address family. This is identical to -f address_family and both syntaxes are supported.

{inif | outif}: {name | ifIndex | any | none}

Selects an input or output interface. You can specify the interface by name (such as hme0) or by ifIndex number (for example, 2). If any is used, the filter matches all routes having a specified interface (anything other than null). If none is used, the filter matches all routes having a null interface. Note that you can view the index number (ifIndex) for an interface with the -a option of ifconfig(1M).

{src | dst}: {ip-address | mask} | any | none

Selects a source or destination IP address. If specified with a mask length, then any routes with matching or longer (more specific) masks are selected. If any is used, then all but addresses but 0 are selected. If none is used, then address 0 is selected.

flags: [+ | -]? [ABDGHLMSU]+

Selects routes tagged with the specified flags. By default, the flags as specified must be set in order to match. With a leading +, the flags specified must be set but others are ignored. With a leading -, the flags specified must not be set and others are permitted.

You can specify multiple instances of -f to specify multiple filters. For example:

% netstat -nr -f outif:hme0 -f outif:hme1 -f dst:10.0.0.0/8

The preceding command displays routes within network 10.0.0.0/8, with mask length 8 or greater, and an output interface of either hme0 or hme1, and excludes all other routes.
netstat(1M)

-\(g\)  Show the multicast group memberships for all interfaces. See DISPLAYS, below.

-\(i\)  Show the state of the interfaces that are used for IP traffic. Normally this shows statistics for the physical interfaces. When combined with the -a option, this will also report information for the logical interfaces. See ifconfig(1M).

-\(m\)  Show the STREAMS memory statistics.

-\(n\)  Show network addresses as numbers. netstat normally displays addresses as symbols. This option may be used with any of the display formats.

-\(p\)  Show the net to media tables. See DISPLAYS, below.

-\(r\)  Show the routing tables. Normally, only interface, host, network, and default routes are shown, but when this option is combined with the -a option, all routes will be displayed, including cache.

-\(s\)  Show per-protocol statistics. When used with the -M option, show multicast routing statistics instead. When used with the -a option, per-interface statistics will be displayed, when available, in addition to statistics global to the system. See DISPLAYS, below.

-\(v\)  Verbose. Show additional information for the sockets, STREAMS memory statistics, and the routing table.

-\(I\)  \textit{interface}  Show the state of a particular interface. \textit{interface} can be any valid interface such as hme0 or le0. Normally, the status and statistics for physical interfaces are displayed. When this option is combined with the -a option, information for the logical interfaces is also reported.

-\(M\)  Show the multicast routing tables. When used with the -s option, show multicast routing statistics instead.

-\(P\)  \textit{protocol}  Limit display of statistics or state of all sockets to those applicable to \textit{protocol}. The protocol can be one of ip, ipv6, icmp, icmpv6, igmp, udp, tcp, rawip, rawip can also be specified as raw. The command accepts protocol options only as all lowercase.

-\(D\)  Show the status of DHCP configured interfaces.

\textbf{OPERANDS}  \textit{interval}  Display interface statistics accumulated since last display every \textit{interval} seconds, repeating forever, unless \textit{count} is specified. When invoked with \textit{interval}, the first row of netstat output shows statistics accumulated since last reboot.
The display for each active socket shows the local and remote address, the send and receive queue sizes (in bytes), the send and receive windows (in bytes), and the internal state of the protocol.

The symbolic format normally used to display socket addresses is either 
hostname:port when the name of the host is specified, or 
network:port if a socket address specifies a network but no specific host.

The numeric host address or network number associated with the socket is used to look up the corresponding symbolic hostname or network name in the hosts or networks database.

If the network or hostname for an address is not known, or if the \texttt{-n} option is specified, the numerical network address is shown. Unspecified, or “wildcard”, addresses and ports appear as “*”. For more information regarding the Internet naming conventions, refer to \texttt{inet(7P)} and \texttt{inet6(7P)}.

The possible state values for TCP sockets are as follows:

- **BOUND**: Bound, ready to connect or listen.
- **CLOSED**: Closed. The socket is not being used.
- **CLOSING**: Closed, then remote shutdown; awaiting acknowledgment.
- **CLOSE_WAIT**: Remote shutdown; waiting for the socket to close.
- **ESTABLISHED**: Connection has been established.
- **FIN_WAIT_1**: Socket closed; shutting down connection.
- **FIN_WAIT_2**: Socket closed; waiting for shutdown from remote.
- **IDLE**: Idle, opened but not bound.
- **LAST_ACK**: Remote shutdown, then closed; awaiting acknowledgment.
- **LISTEN**: Listening for incoming connections.
- **SYN_RECEIVED**: Initial synchronization of the connection under way.
- **SYN_SENT**: Actively trying to establish connection.
- **TIME_WAIT**: Wait after close for remote shutdown retransmission.

The form of the display depends upon which of the \texttt{-g}, \texttt{-m}, \texttt{-p}, or \texttt{-s} options you select.
netstat(1M)

-\(g\) Displays the list of multicast group membership.
-\(m\) Displays the memory usage, for example, STREAMS mblks.
-\(p\) Displays the net to media mapping table. For IPv4, the address resolution table is displayed. See arp(1M). For IPv6, the neighbor cache is displayed.
-\(s\) Displays the statistics for the various protocol layers.

The statistics use the MIB specified variables. The defined values for ipForwarding are:

forwarding(1) Acting as a gateway.
not-forwarding(2) Not acting as a gateway.

The IPv6 and ICMPv6 protocol layers maintain per-interface statistics. If the -a option is specified with the -s option, then the per-interface statistics as well as the total sums are displayed. Otherwise, just the sum of the statistics are shown.

For the second, third, and fourth forms of the command, you must specify at least -g, -p, or -s. You can specify any combination of these options. You can also specify -m (the fifth form) with any set of the -g, -p, and -s options. If you specify more than one of these options, netstat displays the information for each one of them.

The interface status display lists information for all current interfaces, one interface per line. If an interface is specified using the -I option, it displays information for only the specified interface.

The list consists of the interface name, mtu (maximum transmission unit, or maximum packet size)(see ifconfig(1M)), the network to which the interface is attached, addresses for each interface, and counter associated with the interface. The counters show the number of input packets, input errors, output packets, output errors, and collisions, respectively. For Point-to-Point interfaces, the Net/Dest field is the name or address on the other side of the link.

If the -a option is specified with either the -i option or the -I option, then the output includes names of the physical interface(s), counts for input packets and output packets for each logical interface, plus additional information.

If the -n option is specified, the list displays the IP address instead of the interface name.

If an optional interval is specified, the output will be continually displayed in interval seconds until interrupted by the user or until count is reached. See OPERANDS.

The physical interface is specified using the -I option. When used with the interval operand, output for the -I option has the following format:

<table>
<thead>
<tr>
<th>input packets</th>
<th>input errs</th>
<th>input cols</th>
<th>output packets</th>
<th>output errs</th>
<th>output cols</th>
</tr>
</thead>
<tbody>
<tr>
<td>227681</td>
<td>0</td>
<td>1</td>
<td>502</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>659471</td>
<td>1</td>
<td>502</td>
<td>261331</td>
<td>1</td>
<td>502</td>
</tr>
</tbody>
</table>
If the input interface is not specified, the first interface of address family `inet` or `inet6` will be displayed.

The routing table display lists the available routes and the status of each. Each route consists of a destination host or network, and a gateway to use in forwarding packets. The `flags` column shows the status of the route (`U` if “up”), whether the route is to a gateway (`G`), whether it is a redundant route established with the `-multirt` option (`M`), whether the route was established using the `-setsrc` option (`S`), and whether the route was created dynamically by a redirect (`D`). If the `-a` option is specified, there will be routing entries with flags for combined routing and address resolution entries (`A`), broadcast addresses (`B`), and the local addresses for the host (`L`).

Interface routes are created for each interface attached to the local host; the gateway field for such entries shows the address of the outgoing interface.

The `use` column displays the number of packets sent using a combined routing and address resolution (`A`) or a broadcast (`B`) route. For a local (`L`) route, this count is the number of packets received, and for all other routes it is the number of times the routing entry has been used to create a new combined route and address resolution entry.

The `interface` entry indicates the network interface utilized for the route.

The multicast routing table consists of the virtual interface table and the actual routing table.

The DHCP interface information consists of the interface name, its current state, lease information, packet counts, and a list of flags.

The states correlate with the specifications set forth in RFC 2131.

Lease information includes:
- when the lease began;
- when lease renewal will begin; and
- when the lease will expire.

The flags currently defined include:

**BOOTP**
The interface has a lease obtained through **BOOTP**.

**BUSY**
The interface is busy with a DHCP transaction.

**PRIMARY**
The interface is the primary interface. See `dhcppinfo(1)`.
netstat(1M)

FAILED The interface is in failure state and must be manually restarted.

Packet counts are maintained for the number of packets sent, the number of packets received, and the number of lease offers declined by the DHCP client. All three counters are initialized to zero and then incremented while obtaining a lease. The counters are reset when the period of lease renewal begins for the interface. Thus, the counters represent either the number of packets sent, received, and declined while obtaining the current lease, or the number of packets sent, received, and declined while attempting to obtain a future lease.

FILES
/etc/default/inet_type DEFAULT_IP setting

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
arp(1M), dhcpinfo(1), dhcpagent(1M), ifconfig(1M), iostat(1M), mibiisa(1M), savecore(1M), vmstat(1M), hosts(4), inet_type(4), networks(4), protocols(4), services(4), attributes(5), inet(7P), inet6(7P)


NOTES
When displaying interface information, netstat honors the DEFAULT_IP setting in /etc/default/inet_type. If it is set to IP_VERSION4, then netstat will omit information relating to IPv6 interfaces, statistics, connections, routes and the like.

However, you can override the DEFAULT_IP setting in /etc/default/inet_type on the command-line. For example, if you have used the command-line to explicitly request IPv6 information by using the inet6 address family or one of the IPv6 protocols, it will override the DEFAULT_IP setting.

If you need to examine network status information following a kernel crash, use the mdb(1) utility on the savecore(1M) output.

The netstat utility obtains TCP statistics from the system by opening /dev/tcp and issuing queries. Because of this, netstat might display an extra, unused connection in IDLE state when reporting connection status.
newaliases – rebuild the data base for the mail aliases file

**DESCRIPTION**

newaliases rebuilds the random access data base for the mail aliases file `/etc/mail/aliases`

newaliases accepts all the flags that `sendmail(1M)` accepts. However, most of these flags have no effect, except for the `-C` option and three of the Processing Options that can be set from a configuration file with the `-o` option:

- `-C /path/to/alt/config/file` Use alternate configuration file.
- `-oAfile` Specify possible alias files.
- `-oLn` Set the default log level to `n`. Defaults to 9.
- `-on` Validate the RHS of aliases when rebuilding the `aliases(4)` database.

newaliases runs in verbose mode (`-v` option) automatically.

**EXAMPLES**

**EXAMPLE 1** Running the newaliases Command

The following command runs newaliases on an alias file different from the `/etc/mail/aliases` default in sendmail(1M):

```
example% newaliases -oA/path/to/alternate/alias/file
```

**EXIT STATUS**

newaliases returns an exit status describing what it did. The codes are defined in `/usr/include/sysexits.h`.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX_OK</td>
<td>Successful completion on all addresses.</td>
</tr>
<tr>
<td>EX_NOUSER</td>
<td>User name not recognized.</td>
</tr>
<tr>
<td>EX_UNAVAILABLE</td>
<td>Catchall. Necessary resources were not available.</td>
</tr>
<tr>
<td>EX_SYNTAX</td>
<td>Syntax error in address.</td>
</tr>
<tr>
<td>EX_SOFTWARE</td>
<td>Internal software error, including bad arguments.</td>
</tr>
<tr>
<td>EX_OSERR</td>
<td>Temporary operating system error, such as “cannot fork”.</td>
</tr>
<tr>
<td>EX_NOHOST</td>
<td>Host name not recognized.</td>
</tr>
<tr>
<td>EX_TEMPFAIL</td>
<td>Message could not be sent immediately, but was queued.</td>
</tr>
</tbody>
</table>

**FILES**

- `/etc/aliases` Symbolic link to `/etc/mail/aliases`
- `/etc/mail/aliases.pag`
- `/etc/mail/aliases.dir` `ndbm` files maintained by newaliases

System Administration Commands 1135
newaliases(1M)

/etc/mail/aliases.db  Berkeley DataBase file maintained by newaliases

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO  sendmail(1M), aliases(4), attributes(5)
newfs(1M)

NAME
newfs – construct a new UFS file system

SYNOPSIS
newfs [-NTv] [mkfs-options] raw-device

DESCRIPTION
newfs is a "friendly" front-end to the mkfs(1M) program for making UFS file systems on disk partitions. newfs calculates the appropriate parameters to use and calls mkfs.

If run interactively (that is, standard input is a tty), newfs prompts for confirmation before making the file system.

If the -N option is not specified and the inodes of the device are not randomized, newfs calls fsirand(1M).

You must be super-user to use this command, except when creating a UFS file system on a diskette. See EXAMPLES.

Creating a Multiterabyte UFS File System

Keep the following limitations in mind when creating a multiterabyte UFS file system:

- nbpi is set to 1 Mbyte unless you specifically set it higher. You cannot set nbpi lower than 1 Mbyte on a multiterabyte UFS file system.
- fragsize is set equal to bsize.
- Logging is on by default.

OPTIONS
The following options are supported:

- -N
  Print out the file system parameters that would be used in creating the file system without actually creating the file system. fsirand(1M) is not called here.

- -T
  Set the parameters of the file system to allow eventual growth to over a terabyte in total file system size. This option sets fragsize to be the same as bsize, and sets nbpi to 1 Mbyte, unless the -i option is used to make it even larger. If you use the -f or -i options to specify a fragsize or nbpi that is incompatible with this option, the user-supplied value of fragsize or nbpi is ignored.

  Logging is enabled by default on all file systems created with this option.

- -v
  Verbose. newfs prints out its actions, including the parameters passed to mkfs.

mkfs-options
Options that override the default parameters are:

- -a apc
  The number of alternate sectors per cylinder (SCSI devices only) to reserve for bad block replacement. The default is 0.

  This option is not applicable for disks with EFI labels and is ignored.
The logical block size of the file system in bytes (either 4096 or 8192). The default is 8192. The sun4u architecture does not support the 4096 block size.

The number of cylinders per cylinder group (ranging from 16 to 256). The default is calculated by dividing the number of sectors in the file system by the number of sectors in a gigabyte, and then multiplying the result by 32. The default value is always between 16 and 256. mkfs may override this value. See mkfs_ufs(1M) for details.

This option is not applicable for disks with EFI labels and is ignored.

The maximum number of logical blocks, belonging to one file, that is allocated contiguously before inserting a rotational delay. The default is determined from the disk drive’s maximum transfer rate.

UFS supports no more than 1048576 byte (1MB) runs. With a logical block size of 4096, this gives a maxcontig limit of 256. With 8192, the limit is 128.

This parameter can be subsequently changed using the tunefs(1M) command.

This parameter also controls clustering. Regardless of the value of gap, clustering is enabled only when maxcontig is greater than 1. Clustering allows higher I/O rates for sequential I/O and is described in tunefs(1M).

Rotational delay. The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new transfer on the same disk. It is used to decide how much rotational spacing to place between successive blocks in a file. This parameter can be subsequently changed using the tunefs(1M) command. The default is zero, indicating a disk drive with track readahead buffering.
-f fragsize

The smallest amount of disk space in bytes to allocate to a file. The smallest amount of disk space in bytes to allocate to a file. If the logical block size is 4096, legal values are 512, 1024, 2048, and 4096. When the logical block size is 8192, legal values are 1024, 2048, 4096, and 8192. The default value is 1024.

For file systems greater than 1 terabyte or for file systems created with the -T option, fragsize is forced to match block size (bsize).

-i nbpi

The number of bytes per inode. This specifies the density of inodes in the file system. The number is divided into the total size of the file system to determine the fixed number of inodes to create. It should reflect the expected average size of files in the file system. If fewer inodes are desired, a larger number should be used; to create more inodes a smaller number should be given. The default for nbpi is as follows:

<table>
<thead>
<tr>
<th>Disk size</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1GB</td>
<td>2048</td>
</tr>
<tr>
<td>Less than 2GB</td>
<td>4096</td>
</tr>
<tr>
<td>Less than 3GB</td>
<td>6144</td>
</tr>
<tr>
<td>3GB to 1 Tbyte</td>
<td>8192</td>
</tr>
<tr>
<td>Greater than 1 Tbyte</td>
<td></td>
</tr>
<tr>
<td>or created with -T</td>
<td>1048576</td>
</tr>
</tbody>
</table>

-m free

The minimum percentage of free space to maintain in the file system (between 1% and 99%, inclusively). This space is off-limits to normal users. Once the file system is filled to this threshold, only the super-user can continue writing to the file system. This parameter can be subsequently changed using the tuneefs(1M) command.

The default is ((64 Mbytes/partition size) * 100), rounded down to the nearest integer and limited between 1% and 10%, inclusively.

-n nrpos

The number of different rotational positions in which to divide a cylinder group. The default is 8.
This option is not applicable for disks with EFI labels and is ignored.

-o opt
  (space or time). The file system can either be instructed to try to minimize the time spent allocating blocks, or to try to minimize the space fragmentation on the disk. The default is time.

-r rpm
  The speed of the disk in revolutions per minute. The default is driver- or device-specific.

This option is not applicable for disks with EFI labels and is ignored.

Note that you specify rpm for newfs and rps for mkfs.

-s size
  The size of the file system in sectors. The default is to use the entire partition.

-t ntrack
  The number of tracks per cylinder on the disk. The default is taken from the disk label.

This option is not applicable for disks with EFI labels and is ignored.

**OPERANDS**
The following operands are supported:

*raw-device*
  The name of a raw special device residing in /dev/rdsk (for example, /dev/rdsk/c0t0d0s6) on which to create the file system.

**USAGE**
See largefile(5) for the description of the behavior of newfs when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1** Displaying the Parameters for the Raw Special Device

The following example verbosely displays the parameters for the raw special device, c0t0d0s6. It does not actually create a new file system:

eexample# newfs -Nv /dev/rdsk/c0t0d0s6
mkfs -F ufs -o N /dev/rdsk/c0t0d0s6 1112940 54 15 8192 1024 16 10 60
2048 t 0 -1 8 /dev/rdsk/c0t0d0s6: 1112940 sectors in
1374 cylinders of 15 tracks, 54 sectors
569.8MB in 86 cyl
(16 c/g, 6.64MB/g, 3072 i/g) super-block backups
(15 d/g) at:
32, 13056, 26080, 39104, 52128, 65152, 78176, 91200, 104224, . . .
EXAMPLE 2 Creating a UFS File System

The following example creates a UFS file system on a diskette that is managed by Volume Manager.

eexample% newfs /vol/dev/aliases/floppy0
newfs: construct a new file system /vol/dev/aliases/floppy0: (y/n)? y
/vol/dev/aliases/floppy0: 2880 sectors in 80 cylinders of 2 tracks,
18 sectors 1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 640, 1184, 1792, 2336, . . .

EXAMPLE 3 Creating a UFS File System That Will Eventually Be Grown to a Multiterabyte UFS File System

The following example creates a UFS file system that will eventually be grown to a multiterabyte UFS file system.

This command creates a 800-Gbyte file system on the volume, /dev/md/rdsk/d99.

# newfs -T /dev/md/rdsk/d99
newfs: construct a new file system /dev/md/rdsk/d99: (y/n)? y
/dev/md/rdsk/d99: 1677754368 sectors in 45512 cylinders of
144 tracks, 256 sectors
819216.0MB in 1821 cyl groups (25 c/g, 450.00MB/g, 448 i/g) . . .

Then, if you increase the volume size for this file system, you can use the growfs command to expand the file system. The file system is grown to 1.2 terabytes in this example:

# growfs -v /dev/md/rdsk/d99
/usr/lib/fs/ufs/mkfs -G /dev/md/rdsk/d99 2516631552 /dev/md/rdsk/d99:
2516631552 sectors in 68268 cylinders of 144 tracks, 256 sectors
1228824.0MB in 2731 cyl groups (25 c/g, 450.00MB/g, 448 i/g) . . .

EXIT STATUS

The following exit values are returned:

0 The operation was successful.
1, 10 Usage error or internal error. A message is output to STDERR explaining the error.

Other exit values may be returned by mkfs(1M), which is called by newfs.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
SEE ALSO

fsck(1M), fsck_ufs(1M), fsirand(1M), mkfs(1M), mkfs_ufs(1M), tunefs(1M),
attributes(5), largefile(5), ufs(7FS)

DIAGNOSTICS

newfs: No such file or directory
The device specified does not exist, or a disk partition was not specified.
special: cannot open
You must be super-user to use this command.
newkey – create a new Diffie-Hellman key pair in the publickey database

SYNOPSIS

newkey -h hostname [-s nisplus | nis | files | ldap]
newkey -u username [-s nisplus | nis | files | ldap]

DESCRIPTION

newkey establishes new public keys for users and machines on the network. These keys are needed when using secure RPC or secure NFS service.

newkey prompts for a password for the given username or hostname and then creates a new public/secret Diffie-Hellman 192 bit key pair for the user or host. The secret key is encrypted with the given password. The key pair can be stored in the /etc/publickey file, the NIS publickey map, or the NIS+ cred.org_dir table.

newkey consults the publickey entry in the name service switch configuration file (see nsswitch.conf(4)) to determine which naming service is used to store the secure RPC keys. If the publickey entry specifies a unique name service, newkey will add the key in the specified name service. However, if there are multiple name services listed, newkey cannot decide which source to update and will display an error message. The user is required to specify the source explicitly with the -s option.

In the case of NIS, newkey should be run by the superuser on the master NIS server for that domain. In the case of NIS+, newkey should be run by the superuser on a machine which has permission to update the cred.org_dir table of the new user/host domain.

In the case of NIS+, nisaddcred(1M) should be used to add new keys. newkey cannot be used to create keys other than 192-bit Diffie-Hellman.

OPTIONS

-h hostname Create a new public/secret key pair for the privileged user at the given hostname. Prompts for a password for the given hostname.
-u username Create a new public/secret key pair for the given username. Prompts for a password for the given username.
-s nisplus
-s nis
-s files
-s ldap Update the database in the specified source: nisplus (for NIS+), nis (for NIS), files, or ldap (LDAP). Other sources may be available in the future.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nfsd is the daemon that handles client file system requests. Only the super-user can run this daemon.

The nfsd daemon is automatically invoked in run level 3 with the -a option, described below.

By default, nfsd starts over the TCP and UDP transports. You can change this with the -p option, described below.

A previously invoked nfsd daemon started with or without options must be stopped before invoking another nfsd command.

Administrators wanting to change startup parameters for nfsd should, as root, make changes in the /etc/default/nfs file rather than editing the /etc/init.d/nfs.server file. See nfs(4).

The following options are supported:

- **-a**
  Start a NFS daemon over all available connectionless and connection-oriented transports, including UDP and TCP. Equivalent of setting the NFSD_PROTOCOL parameter to ALL in the nfs file.

- **-c #_conn**
  This sets the maximum number of connections allowed to the NFS server over connection-oriented transports. By default, the number of connections is unlimited. Equivalent of the NFSD_MAX_CONNECTIONS parameter in the nfs file.

- **-l**
  Set connection queue length for the NFS TCP over a connection-oriented transport. The default value is 32 entries. Equivalent of the NFSD_LISTEN_BACKLOG parameter in the nfs file.

- **-p protocol**
  Start a NFS daemon over the specified protocol. Equivalent of the NFSD_PROTOCOL parameter in the nfs file.

- **-t device**
  Start a NFS daemon for the transport specified by the given device. Equivalent of the NFSD_DEVICE parameter in the nfs file.

The following operands are supported:

- **nservers**
  This sets the maximum number of concurrent NFS requests that the server can handle. This concurrency is achieved by up to nservers threads created as needed in the kernel. nservers should be based on the load expected on this server. 16 is the usual number of nservers. If nservers is not specified, the maximum number of concurrent NFS requests will default to 1. Equivalent of the...
NFSD_MAX_CONNECTIONS parameter in the nfs file.

**USAGE**
If the NFS_PORTMON variable is set in `/etc/system`, then clients are required to use privileged ports (ports < IP_PORT_RESERVED) to get NFS services. This variable is equal to zero by default. This variable has been moved from the "nfs" module to the "nfssrv" module. To set the variable, edit the `/etc/system` file and add this entry:

```
set nfssrv:nfs_portmon = 1
```

**EXIT STATUS**
0    Daemon started successfully.
1    Daemon failed to start.

**FILES**
- `.nfsXXX`: client machine pointer to an open-but-unlinked file
- `/etc/default/nfs`: contains startup parameters for nfsd
- `/etc/init.d/nfs.server`: shell script for starting nfsd
- `/etc/system`: system configuration information file

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfssu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
`ps(1), mountd(1M), nfs(4), sharetab(4), system(4), attributes(5)`

*System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)*

**NOTES**
Manually starting and restarting nfsd is not recommended. If it is necessary to do so, use the NFS server start/stop script (`/etc/init.d/nfs.server`). See *System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)* for more information.
nfslogd – nfs logging daemon

The nfslogd daemon provides operational logging to the Solaris NFS server. It is the nfslogd daemon’s job to generate the activity log by analyzing the RPC operations processed by the the NFS server. The log will only be generated for file systems exported with logging enabled. This is specified at file system export time by means of the share_nfs(1M) command.

Each record in the log file includes a time stamp, the IP address (or hostname if it can be resolved) of the client system, the file or directory name the operation was performed on, and the type of operation. In the basic format, the operation can either be an input (i) or output (o) operation. The basic format of the NFS server log is compatible with the log format generated by the Washington University FTPd daemon. The log format can be extended to include directory modification operations, such as mkdir, rmdir, and remove. The extended format is not compatible with the Washington University FTPd daemon format. See nfslog.conf(4) for details.

The NFS server logging mechanism is divided in two phases. The first phase is performed by the NFS kernel module, which records raw RPC requests and their results in work buffers backed by permanent storage. The location of the work buffers is specified in the /etc/nfs/nfslog.conf file. Refer to nfslog.conf(4) for more information. The second phase involves the nfslogd user-level daemon, which periodically reads the work buffers, interprets the raw RPC information, groups related RPC operations into single transaction records, and generates the output log. The nfslogd daemon then sleeps waiting for more information to be logged to the work buffers. The amount of time that the daemon sleeps can be configured by modifying the IDLE_TIME parameter in /etc/default/nfslogd. The work buffers are intended for internal consumption of the nfslogd daemon.

NFS operations use file handles as arguments instead of path names. For this reason the nfslogd daemon needs to maintain a database of file handle to path mappings in order to log the path name associated with an operation instead of the corresponding file handle. A file handle entry is added to the database when a client performs a lookup or other NFS operation that returns a file handle to the client.

Once an NFS client obtains a file handle from a server, it can hold on to it for an indefinite time, and later use it as an argument for an NFS operation on the file or directory. The NFS client can use the file handle even after the server reboots. Because the database needs to survive server reboots, it is backed by permanent storage. The location of the database is specified by the fltable parameter in the /etc/nfs/nfslog.conf file. This database is intended for the internal use of the nfslogd daemon.

In order to keep the size of the file handle mapping database manageable, nfslogd prunes the database periodically. It removes file handle entries that have not been accessed in more than a specified amount of time. The PRUNE_TIMEOUT configurable parameter in /etc/default/nfslogd specifies the interval length between...
successive runs of the pruning process. A file handle record will be removed if it has
not been used since the last time the pruning process was executed. Pruning of the
database can effectively be disabled by setting the \texttt{PRUNE\_TIMEOUT} as high as
\texttt{INT\_MAX}.

When pruning is enabled, there is always a risk that a client may have held on to a file
handle longer than the \texttt{PRUNE\_TIMEOUT} and perform an NFS operation on the file
handle after the matching record in the mapping database had been removed. In such
case, the pathname for the file handle will not be resolved, and the log will include the
file handle instead of the pathname.

There are various configurable parameters that affect the behavior of the \texttt{nfslogd}
daemon. These parameters are found in \texttt{/etc/default/nfslogd} and are described
below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{UMASK}</td>
<td>Sets the file mode for the log files, work buffer files and file handle mapping database.</td>
</tr>
<tr>
<td>\texttt{MIN_PROCESSING_SIZE}</td>
<td>Specifies the minimum size, in bytes, that the buffer file must reach before processing the work information and writing to the log file. The value of \texttt{MIN_PROCESSING_SIZE} must be between 1 and \texttt{ulimit}.</td>
</tr>
<tr>
<td>\texttt{IDLE_TIME}</td>
<td>Specifies the amount of time, in seconds, the daemon should sleep while waiting for more information to be placed in the buffer file. \texttt{IDLE_TIME} also determines how often the configuration file will be reread. The value of \texttt{IDLE_TIME} must be between 1 and \texttt{INT_MAX}.</td>
</tr>
<tr>
<td>\texttt{MAX_LOGS_PRESERVE}</td>
<td>The \texttt{nfslogd} periodically cycles its logs. \texttt{MAX_LOGS_PRESERVE} specifies the maximum number of log files to save. When \texttt{MAX_LOGS_PRESERVE} is reached, the oldest files will be overwritten as new log files are created. These files will be saved with a numbered extension, beginning with \texttt{filename.0}. The oldest file will have the highest numbered extension up to the value configured for \texttt{MAX_LOGS_PRESERVE}. The value of \texttt{MAX_LOGS_PRESERVE} must be between 1 and \texttt{INT_MAX}.</td>
</tr>
<tr>
<td>\texttt{CYCLE_FREQUENCY}</td>
<td>Specifies how often, in hours, the log files are cycled. \texttt{CYCLE_FREQUENCY} is used to insure that the log files do not get too large.</td>
</tr>
</tbody>
</table>
The value of CYCLE_FREQUENCY must be between 1 and INT_MAX.

MAPPING_UPDATE_INTERVAL

Specifies the time interval, in seconds, between updates of the records in the file handle to path mapping tables. Instead of updating the atime of a record each time that record is accessed, it is only updated if it has aged based on this parameter. The record access time is used by the pruning routine to determine whether the record should be removed from the database. The value of this parameter must be between 1 and INT_MAX.

PRUNE_TIMEOUT

Specifies when a database record times out, in hours. If the time that elapsed since the record was last accessed is greater than PRUNE_TIMEOUT then the record can be pruned from the database. The default value for PRUNE_TIMEOUT is 168 hours (7 days). The value of PRUNE_TIMEOUT must be between 1 and INT_MAX.

EXIT STATUS

The following exit values are returned:

0 Daemon started successfully.
1 Daemon failed to start.

FILES

/etc/nfs/nfslogtab
/etc/nfs/nfslog.conf
/etc/default/nfslogd

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfsu</td>
</tr>
</tbody>
</table>

SEE ALSO

share_nfs(1M), nfslog.conf(4), attributes(5)
nfsstat displays statistical information about the NFS and RPC (Remote Procedure Call), interfaces to the kernel. It can also be used to reinitialize this information. If no options are given the default is

```
nfsstat -csnra
```

That is, display everything, but reinitialize nothing.

### OPTIONS

- `-a` Display NFS_ACL information.
- `-c` Display client information. Only the client side NFS, RPC, and NFS_ACL information is printed. Can be combined with the `-n`, `-r`, and `-a` options to print client side NFS, RPC, and NFS_ACL information only.
- `-m` Display statistics for each NFS mounted file system. This includes the server name and address, mount flags, current read and write sizes, the retransmission count, the attribute cache timeout values, failover information, and the timers used for dynamic retransmission. Note that the dynamic retransmission timers are displayed only where dynamic retransmission is in use. By default, NFS mounts over the TCP protocols and NFS Version 3 mounts over either TCP or UDP do not use dynamic retransmission.

If you specify the `-m` option, this is the only option `nfsstat` uses. Any options specified in addition to `-m` are checked for validity, then ignored.

- `-n` Display NFS information. NFS information for both the client and server side will be printed. Can be combined with the `-c` and `-s` options to print client or server NFS information only.
- `-r` Display RPC information.
- `-s` Display server information.
- `-z` Zero (reinitialize) statistics. This option is for use by the super user only, and can be combined with any of the above options to zero particular sets of statistics after printing them.

### DISPLAYS

The server RPC display includes the following fields:

- **calls**: The total number of RPC calls received.
- **badcalls**: The total number of calls rejected by the RPC layer (the sum of `badlen` and `xdr_call` as defined below).
- **nullrecv**: The number of times an RPC call was not available when it was thought to be received.
badlen  The number of RPC calls with a length shorter than a minimum-sized RPC call.

xdrcall  The number of RPC calls whose header could not be XDR decoded.

dupchecks  The number of RPC calls that looked up in the duplicate request cache.

dupreqs  The number of RPC calls that were found to be duplicates.

The server NFS display shows the number of NFS calls received (calls) and rejected (badcalls), and the counts and percentages for the various calls that were made.

The server NFS_ACL display shows the counts and percentages for the various calls that were made.

The client RPC display includes the following fields:

calls  The total number of RPC calls made.

badcalls  The total number of calls rejected by the RPC layer.

badxids  The number of times a reply from a server was received which did not correspond to any outstanding call.

timeouts  The number of times a call timed out while waiting for a reply from the server.

newcreds  The number of times authentication information had to be refreshed.

badverfs  The number of times the call failed due to a bad verifier in the response.

timers  The number of times the calculated time-out value was greater than or equal to the minimum specified time-out value for a call.

cantconn  The number of times the call failed due to a failure to make a connection to the server.

nomem  The number of times the call failed due to a failure to allocate memory.

interrupts  The number of times the call was interrupted by a signal before completing.

retrans  The number of times a call had to be retransmitted due to a timeout while waiting for a reply from the server. Applicable only to RPC over connection-less transports.

cantsend  The number of times a client was unable to send an RPC request over a connectionless transport when it tried to do so.
The client NFS display shows the number of calls sent and rejected, as well as the number of times a CLIENT handle was received (clgets), the number of times the CLIENT handle cache had no unused entries (cltoomany), as well as a count of the various calls and their respective percentages.

The client NFS_ACL display shows the counts and percentages for the various calls that were made.

The -m option includes information about mount flags set by mount options, mount flags internal to the system, and other mount information. See `mount_nfs(1M)`.

The following mount flags are set by mount options:

- **sec**  
  *sec* has one of the following values:
  - none  No authentication.
  - sys  UNIX-style authentication (UID, GID).
  - short  Short hand UNIX-style authentication.
  - dh  des-style authentication (encrypted timestamps).
  - krb5  kerberos v5-style authentication.
  - krb5i  kerberos v5-style authentication with integrity.
  - krb5p  kerberos v5-style authentication with privacy.

- **hard**  
  Hard mount.

- **soft**  
  Soft mount.

- **intr**  
  Interrupts allowed on hard mount.

- **nointr**  
  No interrupts allowed on hard mount.

- **noac**  
  Client is not caching attributes.

- **rsize**  
  Read buffer size in bytes.

- **wsize**  
  Write buffer size in bytes.

- **retrans**  
  NFS retransmissions.

- **timeo**  
  Initial NFS timeout, in tenths of a second.

- **nocto**  
  No close-to-open consistency.

- **llock**  
  Local locking being used (no lock manager).

- **grpid**  
  System V group id inheritance.

- **rpctimesync**  
  RPC time sync.

The following mount flags are internal to the system:

- **printed**  
  "Not responding" message printed.
down  Server is down.
dynamic Dynamic transfer size adjustment.
link Server supports links.
symlink Server supports symbolic links.
readdir Use readdir instead of readdirplus.
acl Server supports NFS_ACL.

The following flags relate to additional mount information:
vers NFS version.
proto Protocol.

The -m option also provides attribute cache timeout values. The following fields in -m output provide timeout values for attribute cache:
acregmin Minimum seconds to hold cached file attributes.
acregmax Maximum seconds to hold cached file attributes.
acdirmin Minimum seconds to hold cached directory attributes.
acdirmax Maximum seconds to hold cached directory attributes.

The following fields in -m output provide failover information:
noresponse How many times servers have failed to respond.
failover How many times a new server has been selected.
remap How many times files have been re-evaluated to the new server.
currserver Which server is currently providing NFS service. See the System Administration Guide: IP Services for additional details.

The fields in -m output shown below provide information on dynamic retransmissions. Note that these items are displayed only where dynamic retransmission is in use.
srtt The value for the smoothed round-trip time, in milliseconds.
dev Estimated deviation, in milliseconds.
cur Current backed-off retransmission value, in milliseconds.

**EXIT STATUS**

The following exit values are returned:
0 Successful completion.
>0 An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfscu</td>
</tr>
</tbody>
</table>

SEE ALSO

mount_nfs(1M), attributes(5)

Solaris 9 12/03 Installation Guide

System Administration Guide: IP Services
The `nisaddcred` command is used to create security credentials for NIS+ principals. NIS+ credentials serve two purposes. The first is to provide authentication information to various services; the second is to map the authentication service name into a NIS+ principal name.

When the `nisaddcred` command is run, these credentials get created and stored in a table named `cred.org_dir` in the default NIS+ domain. If `domain_name` is specified, the entries are stored in the `cred.org_dir` of the specified domain. The specified domain must either be the one to which you belong, or one in which you are authenticated and authorized to create credentials, that is, a subdomain. Note that the credentials of normal users must be stored in the same domain as their passwords.

It is simpler to add credentials using `nisclient(1M)`, because it obtains the required information itself. `nispopulate(1M)` is used for “bulk” updates and can also be used to add credentials for entries in the `hosts` and the `passwd` NIS+ tables.

NIS+ principal names are used in specifying clients that have access rights to NIS+ objects. For more details, refer to the “Principal Names” subsection of the `nis+`(1) manual page. See `nischmod(1)`, `nischown(1)`, `nis_objects(3NSL)`, and `nis_groups(3NSL)`. Various other services can also implement access control based on these principal names.

The `cred.org_dir` table is organized as follows:

<table>
<thead>
<tr>
<th>cname</th>
<th>auth_type</th>
<th>auth_name</th>
<th>public_data</th>
<th>private_data</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1.foo.com</td>
<td>LOCAL</td>
<td>2990</td>
<td>10,102,44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td><a href="mailto:unix.2990@foo.com">unix.2990@foo.com</a></td>
<td>098...819</td>
<td>3b8...ab2</td>
</tr>
<tr>
<td></td>
<td>DHmmm-n</td>
<td><a href="mailto:unix.2990@foo.com">unix.2990@foo.com</a></td>
<td>248...428</td>
<td>a42...f32</td>
</tr>
</tbody>
</table>

The `cname` column contains a canonical representation of the NIS+ principal name. By convention, this name is the login name of a user, or the host name of a machine, followed by a dot (’.’) followed by the fully qualified “home” domain of that principal. For users, the home domain is defined to be the domain where their DES credentials are kept. For hosts, their home domain is defined to be the domain name returned by the `domainname(1M)` command executed on that host.

There are two basic types of `auth_type` entries in the `cred.org_dir` table, those with authentication type `LOCAL`, and those with authentication type `DES`, `auth_type`, specified on the command line in upper or lower case, should be either `local` or `des`. 
However, the cred.org_dir table may also be used to hold data for other values of auth_type. Currently, this is limited to the mechanisms listed on the nisauthconf(1M) man page, for which the nisaddcred auth_type argument is the same as the name of the mechanism. These mechanisms use a modified form of Secure RPC, and they are similar to the DES authentication type.

If the auth_type is des, and other authentication mechanisms are configured with nisauthconf(1M), then credential entries are added or updated for each mechanism configured. To only add or update 1992-bit Diffie Hellman credentials, that is, those with the auth_type of DES, use dh192-0 on the command line. If there are no authentication mechanisms configured, using des on the command line will only add or update 192-bit Diffie Hellman credentials.

Entries of type LOCAL are used by the NIS+ service to determine the correspondence between fully qualified NIS+ principal names and users identified by UIDs in the domain containing the cred.org_dir table. This correspondence is required when associating requests made using the AUTH_SYS RPC authentication flavor (see rpc_clnt_auth(3NSL)) to a NIS+ principal name. It is also required for mapping a UID in one domain to its fully qualified NIS+ principal name whose home domain may be elsewhere. The principal’s credentials for any authentication flavor may then be sought for within the cred.org_dir table in the principal’s home domain (extracted from the principal name). The same NIS+ principal may have LOCAL credential entries in more than one domain. Only users, and not machines, have LOCAL credentials. In their home domain, users of NIS+ should have both types of credentials.

The auth_name associated with the LOCAL type entry is a UID that is valid for the principal in the domain containing the cred.org_dir table. This may differ from that in the principal’s home domain. The public information stored in public_data for this type contains a list of GIDs for groups in which the user is a member. The GIDs also apply to the domain in which the table resides. There is no private data associated with this type. Neither a UID nor a principal name should appear more than once among the LOCAL entries in any one cred.org_dir table.

The DES auth_type is used for Secure RPC authentication (see secure_rpc(3NSL)).

The authentication name associated with the DES auth_type is a Secure RPC netname. A Secure RPC netname has the form unix.id@domain.com, where domain must be the same as the domain of the principal. For principals that are users the id must be the UID of the principal in the principal’s home domain. For principals that are hosts, the id is the host’s name. In Secure RPC, processes running under effective UID 0 (root) are identified with the host principal. Unlike LOCAL, there cannot be more than one DES credential entry for one NIS+ principal in the NIS+ namespace.

The public information in an entry of authentication type DES is the public key for the principal. The private information in this entry is the private key of the principal encrypted by the principal’s network password.
User clients of NIS+ should have credentials of both types in their home domain. In addition, a principal must have a LOCAL entry in the cred.org_dir table of each domain from which the principal wishes to make authenticated requests. A client of NIS+ that makes a request from a domain in which it does not have a LOCAL entry will be unable to acquire DES credentials. A NIS+ service running at security level 2 or higher will consider such users unauthenticated and assign them the name nobody for determining access rights.

This command can only be run by those NIS+ principals who are authorized to add or delete the entries in the cred table.

If credentials are being added for the caller itself, nisaddcred automatically performs a keylogin for the caller.

You can list the cred entries for a particular principal with nismatch(1).

The cred.org_dir NIS+ table replaces the maps publickey.byname and netid.byname used in NIS (YP).

**OPTIONS**

The following options are supported:

- **-p principal**
  
  The name principal specifies the name of the principal as defined by the naming rules for that specific mechanism. For example, LOCAL credential names are supplied with this option by including a string specifying a UID. For DES credentials, the name should be a Secure RPC netname of the form unix.id@domain.com, as described earlier. If the -p option is not specified, the auth_name field is constructed from the effective UID of the current process and the name of the local domain.

- **-P nis_principal**

  Use the NIS+ principal name nis_principal. This option should be used when creating LOCAL or DES credentials for users whose home domain is different than the local machine’s default domain.

Whenever the -P option is not specified, nisaddcred constructs a principal name for the entry as follows. When it is not creating an entry of type LOCAL, nisaddcred calls nis_local_principal, which looks for an existing LOCAL entry for the effective UID of the current process in the cred.org_dir table and uses the associated principal name for the new entry. When creating an entry of authentication type LOCAL, nisaddcred constructs a default NIS+ principal name by taking the login name of the effective UID for its
own process, and appending to it a dot (\'.\') followed by
the local machine’s default domain. If the caller is a
superuser, the machine name is used instead of the
login name.

-1 login_password

Use the login_password specified as the password to
encrypt the secret key for the credential entry. This
overrides the prompting for a password from the shell.
This option is intended for administration scripts only.
Prompting guarantees not only that no one can see
your password on the command line using ps(1) but it
also checks to make sure you have not made any
mistakes. login_password does not really have to be the
user’s password but if it is, it simplifies logging in.

-r [nis_principal]

Remove all credentials associated with the principal
nis_principal from the cred.org_dir table. This
option can be used when removing a client or user
from the system. If nis_principal is not speci-

fied the default is to remove credentials for the current user. If
domain_name is not specified, the operation is executed
in the default NIS+ domain.

EXAMPLE 1 Adding the LOCAL and DES Credentials

The following examples illustrate how to add the LOCAL and DES credentials for
some user, user1, with a UID of 2990, who is an NIS+ user principal in the
some.domain.com. NIS+ domain:

example% nisaddcred -p 2990 -P user1.some.domain.com. local

Note that credentials are always added in the cred.org_dir table in the domain
where nisaddcred is run, unless domain_name is specified as the last parameter on
the command line. If credentials are being added from the domain server for its
clients, then domain_name should be specified. The caller should have adequate
permissions to create entries in the cred.org_dir table.

The system administrator can add a DES credential for the same user, using the
following example:

example% nisaddcred -p unix.2990@some.domain.com -P user1.some.domain.com. des

Please note that DES credentials can be added only after the LOCAL credentials have
been added. Also, if the system is configured to use more than one authentication
mechanism, credentials will be made for each mechanism configured. See
nisauthconf(1M).

Note that the secure RPC netname does not end with a dot (\'.\') while the NIS+
principal name, specified with the -p option, does. This command should be executed
from a machine in the same domain as is the user.
EXAMPLE 1 Adding the LOCAL and DES Credentials (Continued)

The following example shows how to add a machine’s DES credentials in the same domain:

```
example% nisaddcred -p unix.foo@some.domain.com -P foo.some.domain.com. des
```

Please note that no LOCAL credentials are needed in this case.

The following example illustrates how to add a NIS+ workstation’s principal DES credential:

```
example% nisaddcred -p unix.host1@sub.some.domain.com \
    -P newhost.sub.some.domain.com. des sub.some.domain.com.
```

This format is particularly useful if you are running this command from a server which is in a higher domain than sub.some.domain.com. Without the last option for domain name, nisaddcred would fail because it would attempt to use the default domain of some.domain.com.

The following example illustrates adding DES credentials without being prompted for the root login password:

```
example% nisaddcred -p unix.2990@some.domain.com \
    -P user1.some.domain.com. -l login_password des
```

The following example shows how to add a credential for a user using a specific authentication mechanism that was previously configured with nisauthconf(1M). See nisauthconf(1M) for a list of the valid values of auth_type:

```
example% nisaddcred -p unix.2990@some.domain.com \
    -P user.1.some.domain.com dh640-0
```

The password should be the same for all the credentials that belong to the user. Otherwise, only the credentials encrypted with the user’s password will be used at login, and the user will have to run chkey(1) using the -p option.

The following example shows how to add a DES credential when other authentication mechanisms are configured on the system:

```
example% nisaddcred -p unix.2990@some.domain.com \
    -P user.1.some.domain.com dh192-0
```

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful operation.</td>
</tr>
<tr>
<td>1</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

NISS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisadvent(1M)

NAME
nisadvent – create NIS+ tables from corresponding /etc files or NIS maps

SYNOPSIS


[enisdomain]

[-Y map] type [nisdomain]

/usr/lib/nis/nisadvent -d [-AMoq] [-t table] type [nisdomain]

DESCRIPTION

nisadvent creates entries in NIS+ tables from their corresponding /etc files and NIS maps. This operation is customized for each of the standard tables that are used in the administration of Solaris systems. The type argument specifies the type of the data being processed. Legal values for this type are one of aliases, bootparams, ethers, group, hosts, ipnodes, netid, netmasks, networks, passwd, protocols, publickey, rpc, services, shadow, or timezone for the standard tables, or key-value for a generic two-column (key, value) table. For a site specific table, which is not of key-value type, one can use nistbladm(1) to administer it.

The NIS+ tables should have already been created by nistbladm(1), nissetup(1M), or nissserver(1M).

It is easier to use nispopulate(1M) instead of nisadvent to populate the system tables.

By default, nisadvent reads from the standard input and adds this data to the NIS+ table associated with the type specified on the command line. An alternate NIS+ table may be specified with the -t option. For type key-value, a table specification is required.

Note that the data type can be different than the table name (-t). For example, the automounter tables have key-value as the table type.

Although, there is a shadow data type, there is no corresponding shadow table. Both the shadow and the passwd data is stored in the passwd table itself.

Files may be processed using the -f option, and NIS version 2 (YP) maps may be processed using the -y option. The merge option is not available when reading data from standard input.

When a ypdomain is specified, the nisadvent command takes its input from the dbm files for the appropriate NIS map (mail_aliases, bootparams, ethers_byaddr, group_byname, hosts_byname, hosts_byaddr, ipnodes_byaddr, ipnodes_byname, netid_byname, netmasks_byaddr, networks_byname, passwd_byname, protocols_byname, publickey_byname, rpc_bynumber, services_byname, or timezone_byname). An alternate NIS map may be specified with the -Y option. For type key-value, a map specification is required. The map must be in the /var/yp/ypdomain directory on the local machine. Note that ypdomain is case sensitive. ypxf(1M) can be used to get the NIS maps.
If a nisdomain is specified, nisaddent operates on the NIS+ table in that NIS+ domain, otherwise the default domain is used.

In terms of performance, loading up the tables is fastest when done through the dbm files (-y).

To accommodate other credential entries used by other authentication mechanisms stored in the cred.org_dir table, the publickey dump output has been modified to include a special algorithm type field. This format is incompatible with older versions of nisaddent. To produce dumps that can be read by older versions of nisaddent, or to load dumps created by such older versions, use the -o option.

OPTIONS

The following options are supported:

- **a**
  Add the file or map to the NIS+ table without deleting any existing entries. This option is the default. Note that this mode only propagates additions and modifications, not deletions.

- **A**
  All data. This option specifies that the data within the table and all of the data in tables in the initial table's concatenation path be returned.

- **d**
  Dump the NIS+ table to the standard output in the appropriate format for the given type. For tables of type key-value, use niscat(1) instead. To dump the cred table, dump the publickey and the netid types.

- **D defaults**
  This option specifies a different set of defaults to be used during this operation. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

  **ttl=time**
  This token sets the default time to live for objects that are created by this command. The value time is specified in the format as defined by the nischttl(1) command. The default is 12 hours.

  **owner=ownername**
  This token specifies that the NIS+ principal ownername should own the created object. The default for this value is the principal who is executing the command.

  **group=groupname**
  This token specifies that the group groupname should be the group owner for the object that is created. The default is NULL.
This token specifies the set of access rights that are to be granted for the given object. The value rights is specified in the format as defined by the nischmod(1) command. The default is

```
- - - rmcdr - - r - - -
```

`-f file` Specify that file should be used as the source of input (instead of the standard input).

`-m` Merge the file or map with the NIS+ table. This is the most efficient way to bring an NIS+ table up to date with a file or NIS map when there are only a small number of changes. This option adds entries that are not already in the database, modifies entries that already exist (if changed), and deletes any entries that are not in the source. Use the -m option whenever the database is large and replicated, and the map being loaded differs only in a few entries. This option reduces the number of update messages that have to be sent to the replicas. Also see the -r option.

`-M` Master server only. This option specifies that lookups should be sent to the master server. This guarantees that the most up-to-date information is seen at the possible expense that the master server may be busy, or that it may be made busy by this operation.

`-o` Use strictly conforming publickey files. Dumps will not add the algorithm type field used by additional authentication mechanisms that might be configured using nisauthconf(1M). 192-bit keys that are dumped using this option can be read by previous versions of nisaddent. However, the algorithm field will be lost and assumed to be '0' when read. Use the -o option when reading publickey files from previous versions of nisaddent to avoid warnings about the missing algorithm field.

`-p` Process the password field when loading password information from a file. By default, the password field is ignored because it is usually not valid (the actual password appears in a shadow file).

`-P` Follow concatenation path. This option specifies that lookups should follow the concatenation path of a table if the initial search is unsuccessful.

`-q` Dump tables in "quick" mode. The default method for dumping tables processes each entry individually. For some tables, for example, hosts, multiple entries must be combined into a single line, so extra requests to the server must be made. In "quick" mode, all of the entries for a table are retrieved in one call to the server, so the table can be dumped more quickly. However, for
nisaddent(1M)

large tables, there is a chance that the process will run out of virtual memory and the table will not be dumped.

-\r Replace the file or map in the existing NIS+ table by first deleting any existing entries, and then add the entries from the source (/etc files, or NIS+ maps). This option has the same effect as the -m option. The use of this option is strongly discouraged due to its adverse impact on performance, unless there are a large number of changes.

-t table Specify that table should be the NIS+ table for this operation. This should be a relative name as compared to your default domain or the domainname if it has been specified.

-v Verbose.

-\y yypdomain Use the dbm files for the appropriate NIS map, from the NIS domain yypdomain, as the source of input. The files are expected to be on the local machine in the /var/yp/yypdomain directory. If the machine is not an NIS server, use ypXfr(1M) to get a copy of the dbm files for the appropriate map.

-\y map Use the dbm files for map as the source of input.

**EXAMPLES**

**EXAMPLE 1 Using nisaddent**

This example adds the contents of /etc/passwd to the passwd.org_dir table:

```bash
example% cat /etc/passwd | nisaddent passwd
```

The next example adds the shadow information. Note that the table type here is "shadow", not "passwd", even though the actual information is stored in the passwd table:

```bash
example% cat /etc/shadow | nisaddent shadow
```

This example replaces the hosts.org_dir table with the contents of /etc/hosts (in verbose mode):

```bash
example% nisaddent -rv -f /etc/hosts hosts
```

This example merges the passwd map from yypdomain with the passwd.org_dir.nisdomain table (in verbose mode). The example assumes that the /var/yp/myypdomain directory contains the yppasswd map.

```bash
example% nisaddent -mv -y myypdomain passwd nisdomain
```

This example merges the auto.master map from myypdomain with the auto_master.org_dir table:

```bash
example% nisaddent -m -y myypdomain -Y auto.master \
-t auto_master.org_dir key-value
```
EXAMPLE 1 Using nisaddent (Continued)

This example dumps the hosts.org_dir table:
```
example% nisaddent -d hosts
```

This example dumps the ipnodes.org_dir table:
```
example% nisaddent -d ipnodes
```

ENVIRONMENT VARIABLES

- **NIS_DEFAULTS**: This variable contains a default string that will override the NIS+ standard defaults. If the -D switch is used, those values will then override both the NIS_DEFAULTS variable and the standard defaults. To avoid security accidents, the access rights in the NIS_DEFAULTS variable are ignored for the passwd table (but access rights specified with -D are used).
- **NIS_PATH**: If this variable is set, and neither the nisdomain nor the table are fully qualified, each directory specified in NIS_PATH will be searched until the table is found (see nisdefaults(1)).

EXIT STATUS

The following exit values are returned:

- **0**: Successful operation.
- **1**: Failure caused by an error other than parsing.
- **2**: A parsing error occurred on an entry. A parsing error does not cause termination; the invalid entries are simply skipped.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

niscat(1), nischmod(1), nischttl(1), nisdefaults(1), nistbladm(1), nisauthconf(1M), nispopulate(1M), nisserver(1M), nissetup(1M), ypxfr(1M), hosts(4), ipnodes(4), passwd(4), shadow(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisauthconf(1M)

NAME  nisauthconf – configure NIS+ security

SYNOPSIS  nisauthconf [-v] [mechanism, ...]

DESCRIPTION  nisauthconf controls which authentication flavors NIS+ should use when communicating with other NIS+ clients and servers. If the command is not executed, then NIS+ will default to the AUTH_DES authentication flavor when running security level 2. See rpc.nisd(1M).

nisauthconf takes a list of authentication mechanism's in order of preference. An authentication mechanism may use one or more authentication flavors listed below. If des is the only specified mechanism, then NIS+ only use AUTH_DES with other NIS+ clients and servers. If des is the first mechanism, then other authentication mechanism's after des will be ignored by NIS+, except for nisaddcred(1M). After changing the mechanism configuration, the keyserv(1M) daemon must be restarted. Note that doing so will remove encryption keys stored by the running keyserv process. This means that a reboot usually is the safest option when the mechanism configuration has been changed.

The following mechanisms are available:

<table>
<thead>
<tr>
<th>Authentication mechanism</th>
<th>Authentication Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>des</td>
<td>AUTH_DES</td>
</tr>
<tr>
<td>dh640-0</td>
<td>RPCSEC_GSS using 640-bit Diffie-Hellman keys</td>
</tr>
<tr>
<td>dh1024-0</td>
<td>RPCSEC_GSS using 1024-bit Diffie-Hellman keys</td>
</tr>
</tbody>
</table>

If no mechanisms are specified, then a list of currently configured mechanisms is printed.

OPTIONS  

-v  Displays a verbose table listing the currently configured authentication mechanisms.

EXAMPLES  EXAMPLE 1 Configuring a System with only RPCSEC_GSS Authentication Flavor

To configure a system to use only the RPCSEC_GSS authentication flavor with 640-bit Diffie-Hellman keys, execute the following as root:

example# /usr/lib/nis/nisauthconf dh640-0

EXAMPLE 2 Configuring a System with both RPCSEC_GSS and AUTH_DES Authentication Flavors

To configure a system to use both RPCSEC_GSS (with 640-bit Diffie-Hellman keys) and AUTH_DES authentication flavors:

example# /usr/lib/nis/nisauthconf dh640-0 des
EXAMPLE 3  Transitioning to Other Authentication Flavors

The following example can be used while adding credentials for a new mechanism before NIS+ is authenticating with the new mechanism:

```
example# /usr/lib/nis/nisauthconf des dh640-0
```

Note that except for nisaddcred(1M), NIS+ will not use mechanisms that follow 'des.'

EXIT STATUS

The following exit values are returned:

0      Successful completion.
1      An error occurred.

FILES

`/etc/rpcsec/nisplussec.conf`

NIS+ authentication configuration file. This file may change or be removed in future versions of Solaris.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), keyserv(1M), nisaddcred(1M), rpc.nisd(1M), attributes(5)

NOTES

A NIS+ client of a server that is configured for either dh640-0 or dh1024-0 must run Solaris 7 or later, even if the server is also configured with des.

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**
nisbackup – backup NIS+ directories

**SYNOPSIS**

```bash
nisbackup [-v] backup-dir directory...
nisbackup [-v] -a backup-dir
```

**DESCRIPTION**
nisbackup backs up a NIS+ directory object on a NIS+ master server. Updates to the NIS+ database will be temporarily disabled while nisbackup is running. The `backup-dir` is a UNIX directory that must exist prior to running nisbackup. The nisbackup command can be used to backup an individual NIS+ directory object or all (`-a`) of the NIS+ directory objects served by a master server. The NIS+ directory objects being backed up will be placed into subdirectories under the `backup-dir` directory. These subdirectories are named according to the NIS+ directory object they contain. nisbackup operates on individual NIS+ directory objects (for example, `org_dir.wiz.com`). This allows an administrator to selectively backup specific directories.

The `rpc.nisd(1M)` process must be running on the master server with a stable NIS+ database for nisbackup to complete. nisbackup will not attempt to correct any corruption in the NIS+ database, so it is important that backups be done regularly as part of the NIS+ administration.

The first synopsis is used to backup a single NIS+ directory object or a list of NIS+ directory objects. The objects can be partially qualified or fully qualified. The machine on which the command is executing must be the master for the NIS+ directory objects specified.

The second synopsis will backup all of the NIS+ directory objects that are served by this master. The `-a` option is the recommended method of backing up a master server, since it will backup all NIS+ directory objects that are served by this master. If this server is a master server for more than one domain, the backup will include NIS+ directories that belong to all of the domains served. Individual NIS+ directory objects can be selected for restoring from a `backup-dir` created with the `-a` option. See nisrestore(1M).

The `-a` option only includes directory objects for which this server is the master. It is possible, but not recommended, to configure a master server as a replica for other domains. The objects belonging to those replicated domains will not be backed up with the `-a` option. The backup of replicated objects must be run on the master server for those objects.

Do not use the same `backup-dir` to backup different master servers. Each master server must have its own `backup-dir`.

nisbackup will set the `rpc.nisd(1M)` to read only mode, which will disable updates to the NIS+ database. This is necessary to ensure the consistency of the backup. For this reason, nisbackup should not be run while large numbers of updates are being applied to the NIS+ database. Update utilities such as nisaddent(1M) should not be run simultaneously with nisbackup.
OPTIONS  
-a     Creates a backup of all NIS+ directory objects for which this server is a master.
-v     Verbose option. Additional output will be produced and sent to syslog(3C) upon execution of the command (see syslog.conf(4)).

OPERANDS  
backup-dir    The directory into which the subdirectories containing the backed up objects are placed. This must be created prior to running nisbackup.

directory     The NIS+ directory object(s) being backed up.

EXAMPLES  
EXAMPLE 1 Backup of the org_dir NIS+ directory object of the domain foo.com on a master server to a directory named /backup

To backup the org_dir NIS+ directory object of the domain foo.com on a master server to a directory named /backup:

master_server# nisbackup /backup org_dir.foo.com.

EXAMPLE 2 Backup of the entire NIS+ domain foo.com to a directory named /backup

To backup the entire NIS+ domain foo.com to a directory named /backup:

master_server# nisbackup /backup foo.com. \
               org_dir.foo.com. groups_dir.foo.com. \
               ctx_dir.foo.com.

EXAMPLE 3 Backup of an entire NIS+ database to a backup directory named /backup

To backup an entire NIS+ database to a backup directory named /backup:

master_server# nisbackup -a /backup

EXIT STATUS  
0     Successful completion.
1     An error occurred.

FILES  
/backup-dir/backup_list  
This ascii file contains a list of all the objects contained in this backup-dir directory.

/backup-dir/directory-object  
A subdirectory that is created in the backup-dir that contains the NIS+ directory-object backup.

/backup-dir/directory-object/data  
A subdirectory that contains the data files that are part of the NIS+ directory-object backup.

/backup-dir/directory-object/last.upd  
This data file contains timestamp information about the directory-object.
nisbackup(1M)

/backup-dir/directory-object/data.dict
A NIS+ data dictionary for all of the objects contained in the NIS+ directory-object backup.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO nis+(1), nisdefaults(1), nisrm(1), nisrestore(1M), rpc.nisd(1M), syslog(3C), xfn(3XFN), nisfiles(4), syslog.conf(4), attributes(5)

NOTES NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nis_cachemgr(1M)

NAME
nis_cachemgr – NIS+ utility to cache location information about NIS+ servers

SYNOPSIS
/usr/sbin/nis_cachemgr [-i] [-v]

DESCRIPTION
The nis_cachemgr daemon maintains a cache of NIS+ directory objects and active servers for domains. It is responsible for locating servers for a domain on behalf of client processes. This improves performance because only one process has to search for servers. The cache contains location information necessary to contact the NIS+ servers. This includes transport addresses, information needed to authenticate the server, and a time to live field which gives a hint on how long the directory object can be cached. The cache helps to improve the performance of the clients that are traversing the NIS+ name space. nis_cachemgr should be running on all the machines that are using NIS+. However, it is not required that the nis_cachemgr program be running in order for NIS+ requests to be serviced.

The cache maintained by this program is shared by all the processes that access NIS+ on a machine. The cache is maintained in a file that is memory mapped by all the processes. See mmap(2). On start up, nis_cachemgr initializes the cache from the cold start file and preserves unexpired entries that already exist in the cache file. See nisinit(1M). Thus, the cache survives machine reboots.

The nis_cachemgr program is normally started from a system startup script. nisshowcache(1M) can be used to look at the cached objects and active servers.

The nisprefadm(1M) command can be used to control which NIS+ servers the nis_cachemgr program will try to select.

The nis_cachemgr program makes NIS+ requests under the NIS+ principal name of the host on which it runs. Before running nis_cachemgr, security credentials for the host should be added to the cred.org_dir table in the host’s domain using nisaddcred(1M). Credentials of type DES will be needed if the NIS+ service is operating at security level 2 (see rpc.nisd(1M)). See the DIAGNOSTICS section, below. Additionally, a "keylogin -r" should be done on the machine.

OPTIONS
- i Force nis_cachemgr to ignore the previous cache file and reinitialize the cache from just the cold start file. By default, the cache manager initializes itself from both the cold start file and the old cache file, thereby maintaining the entries in the cache across machine reboots.

- v This flag sets verbose mode. In this mode, the nis_cachemgr program logs not only errors and warnings, but also additional status messages. The additional messages are logged using syslog(3C) with a priority of LOG_INFO.

FILES
/var/nis/NIS_SHARED_DIRCACHE the shared cache file
/var/nis/NIS_COLD_START the coldstart file
/etc/init.d/rpc initialization scripts for NIS+
nis_cachemgr(1M)

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | keylogin(1), nisaddcred(1M), nisinit(1M), nisprefadm(1M), nisshowcache(1M), rpc.nisd(1M), mmap(2), rpc(3NSL), syslog(3C), nisfiles(4), attributes(5)

DIAGNOSTICS | The nis_cachemgr daemon logs error messages and warnings using syslog(3C). Error messages are logged to the DAEMON facility with a priority of LOG_ERR. Warning messages are logged with a priority of LOGWARNING. Additional status messages can be obtained using the -v option.

NOTES | NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**
nisclient – initialize NIS+ credentials for NIS+ principals

**SYNOPSIS**
```
/usr/lib/nis/nisclient -c [-x] [-o] [-v] [-l <network_password>] [-d <NIS+_domain>] client_name...
```
```
/usr/lib/nis/nisclient -i [-x] [-v] -h <NIS+_server_host> [-a <NIS+_server_addr>] [-k <key_domain>] [-d <NIS+_domain>] [-S 0 | 2]
```
```
/usr/lib/nis/nisclient -u [-x] [-v]
```
```
/usr/lib/nis/nisclient -r [-x]
```

**DESCRIPTION**
The nisclient shell script can be used to:

- create NIS+ credentials for hosts and users
- initialize NIS+ hosts and users
- restore the network service environment

NIS+ credentials are used to provide authentication information of NIS+ clients to NIS+ service.

Use the first synopsis (-c option) to create individual NIS+ credentials for hosts or users. You must be logged in as a NIS+ principal in the domain for which you are creating the new credentials. You must also have write permission to the local "cred" table. The `client_name` argument accepts any valid host or user name in the NIS+ domain (for example, the `client_name` must exist in the hosts or passwd table). nisclient verifies each `client_name` against both the `host` and `passwd` tables, then adds the proper NIS+ credentials for hosts or users. Note that if you are creating NIS+ credentials outside of your local domain, the host or user must exist in the `host` or `passwd` tables in both the local and remote domains.

By default, nisclient will not overwrite existing entries in the credential table for the hosts and users specified. To overwrite, use the -o option. After the credentials have been created, nisclient will print the command that must be executed on the client machine to initialize the host or the user. The -c option requires a network password for the client which is used to encrypt the secret key for the client. You can either specify it on the command line with the -l option or the script will prompt you for it. You can change this network password later with `passwd(1)` or `chkey(1)`.

nisclient -c is not intended to be used to create NIS+ credentials for all users and hosts which are defined in the passwd and hosts tables. To define credentials for all users and hosts, use `nispopulate(1M)`.

Use the second synopsis (-i option) to initialize a NIS+ client machine. The -i option can be used to convert machines to use NIS+ or to change the machine’s domainname. You must be logged in as super-user on the machine that is to become a NIS+ client. Your administrator must have already created the NIS+ credential for this host by using nisclient -c or nispopulate -C. You will need the network password your administrator created. nisclient will prompt you for the network password to decrypt your secret key and then for this machine’s root login password to generate a
new set of secret/public keys. If the NIS+ credential was created by your administrator using nisclient -c, then you can simply use the initialization command that was printed by the nisclient script to initialize this host instead of typing it manually.

To initialize an unauthenticated NIS+ client machine, use the -i option with -S 0. With these options, the nisclient -i option will not ask for any passwords.

During the client initialization process, files that are being modified are backed up as files.no_nisplus. The files that are usually modified during a client initialization are: /etc/defaultdomain, /etc/nsswitch.conf, /etc/inet/hosts, and, if it exists, /var/nis/NIS_COLD_START. Notice that a file will not be saved if a backup file already exists.

The -i option does not set up a NIS+ client to resolve hostnames using DNS. Please refer to the DNS documentation for information on setting up DNS. (See resolv.conf(4)).

It is not necessary to initialize either NIS+ root master servers or machines that were installed as NIS+ clients using suninstall(1M).

Use the third synopsis (-u option) to initialize a NIS+ user. You must be logged in as the user on a NIS+ client machine in the domain where your NIS+ credentials have been created. Your administrator should have already created the NIS+ credential for your username using nisclient -c or nispopulate(1M). You will need the network password your administrator used to create the NIS+ credential for your username. nisclient will prompt you for this network password to decrypt your secret key and then for your login password to generate a new set of secret/public keys.

Use the fourth synopsis (-r option) to restore the network service environment to whatever you were using before nisclient -i was executed. You must be logged in as super-user on the machine that is to be restored. The restore will only work if the machine was initialized with nisclient -i because it uses the backup files created by the -i option.

Reboot the machine after initializing a machine or restoring the network service.

OPTIONS

The following options are supported:

- a <NIS+_server_addr> Specifies the IP address for the NIS+ server. This option is used only with the -i option.
- c Adds DES credentials for NIS+ principals.
- d <NIS+_domain> Specifies the NIS+ domain where the credential should be created when used in conjunction with the -c option. It specifies the name for the new NIS+ domain when used in conjunction with the -i option. The default is your current domainname.
nisclient(1M)

-\(h\) \(<\text{NIS\_server\_host}>\)

Specifies the NIS+ server’s hostname. This option is used only with the -i option.

-\(i\)

Initializes a NIS+ client machine.

-\(l\) \(<\text{network\_password}>\)

Specifies the network password for the clients. This option is used only with the -c option. If this option is not specified, the script will prompt you for the network password.

-\(k\) \(<\text{key\_domain}>\)

This option specifies the domain where root’s credentials are stored. If a domain is not specified, then the system default domain is assumed.

-\(o\)

Overwrites existing credential entries. The default is not to overwrite. This is used only with the -c option.

-\(r\)

Restores the network service environment.

-\(s\) \(0|2\)

Specifies the authentication level for the NIS+ client. Level 0 is for unauthenticated clients and level 2 is for authenticated (DES) clients. The default is to set up with level 2 authentication. This is used only with the -i option. nisclient always uses level 2 authentication (DES) for both -c and -u options. There is no need to run nisclient with -u and -c for level 0 authentication. To configure authentication mechanisms other than DES at security level 2, use nisauthconf(1M) before running nisclient.

-\(u\)

Initializes a NIS+ user.

-\(v\)

Runs the script in verbose mode.

-\(x\)

Turns the "echo" mode on. The script just prints the commands that it would have executed. Notice that the commands are not actually executed. The default is off.

EXAMPLES

**EXAMPLE 1** Adding the DES Credential in the Local Domain

To add the DES credential for host sunws and user fred in the local domain:

`example$ /usr/lib/nis/nisclient -c sunws fred`

**EXAMPLE 2** Adding the DES Credential in a Specified Domain

To add the DES credential for host sunws and user fred in domain xyz.sun.com:

`example$ /usr/lib/nis/nisclient -c -d xyz.sun.com sunws fred`
EXAMPLE 3 Initializing the Host in a Specific Domain

To initialize host sunws as a NIS+ client in domain xyz.sun.com, where nisplus_server is a server for the domain xyz.sun.com:

```
example# /usr/lib/nis/nisclient -i -h nisplus_server -d xyz.sun.com
```

The script will prompt you for the IP address of nisplus_server if the server is not found in the /etc/hosts file. The -d option is needed only if your current domain name is different from the new domain name.

EXAMPLE 4 Initializing the Host as an Unauthenticated Client in a Specific Domain

To initialize host sunws as an unauthenticated NIS+ client in domain xyz.sun.com, where nisplus_server is a server for the domain xyz.sun.com:

```
example# /usr/lib/nis/nisclient -i -S 0 \
    -h nisplus_server -d xyz.sun.com. -a 129.140.44.1
```

EXAMPLE 5 Initializing the User as a NIS+ principal

To initialize user fred as a NIS+ principal, log in as user fred on a NIS+ client machine.

```
example$ /usr/lib/nis/nisclient -u
```

FILES

/var/nis/NIS_COLD_START This file contains a list of servers, their transport addresses, and their Secure RPC public keys that serve the machines default domain.

/etc/defaultdomain The system default domain name.

/etc/nsswitch.conf Configuration file for the name-service switch.

/etc/inet/hosts Local host name database.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

chkey(1), keylogin(1), nis+(1), passwd(1), keyserv(1M), nisaddcred(1M), nisauthconf(1M), nisinit(1M), nispopulate(1M), suninstall(1M), niswitch.conf(4), resolv.conf(4), attributes(5)
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisinit initializes a machine to be a NIS+ client or an NIS+ root master server. It may be easier to use nisclient(1M) or nisserver(1M) to accomplish this same task.

**OPTIONS**

- `-r`
  Initialize the machine to be a NIS+ root server. This option creates the file `/var/nis/data/root.object` and initialize it to contain information about this machine. It uses the sysinfo(2) system call to retrieve the name of the default domain.

  To initialize the machine as an NIS+ root server, it is advisable to use the “-r” option of nisserver(1M), instead of using “nisinit -r”.

- `-p Y | D | N` `parent_domain host...`
  This option is used on a root server to initialize a `/var/nis/data/parent.object` to make this domain a part of the namespace above it. Only root servers can have parent objects. A parent object describes the namespace “above” the NIS+ root. If this is an isolated domain, this option should not be used. The argument to this option tells the command what type of name server is serving the domain above the NIS+ domain. When clients attempt to resolve a name that is outside of the NIS+ namespace, this object is returned with the error NIS_FOREIGNNS indicating that a name space boundary has been reached. It is up to the client to continue the name resolution process.

  The parameter `parent_domain` is the name of the parent domain in a syntax that is native to that type of domain. The list of host names that follow the domain parameter are the names of hosts that serve the parent domain. If there is more than one server for a parent domain, the first host specified should be the master server for that domain.

  Y Specifies that the parent directory is a NIS version 2 domain.

  D Specifies that the parent directory is a DNS domain.

  N Specifies that the parent directory is another NIS+ domain. This option is useful for connecting a pre-existing NIS+ subtree into the global namespace.

  Note that in the current implementation, the NIS+ clients do not take advantage of the `-p` feature. Also, since the parent object is currently not replicated on root replica servers, it is recommended that this option not be used.

- `-c`
  Initializes the machine to be a NIS+ client. There are three initialization options available: initialize by coldstart, initialize by hostname, and initialize by broadcast.
The most secure mechanism is to initialize from a trusted coldstart file. The second option is to initialize using a hostname that you specify as a trusted host. The third method is to initialize by broadcast and it is the least secure method.

-\texttt{C coldstart} Causes the file coldstart to be used as a prototype coldstart file when initializing a NIS+ client. This coldstart file can be copied from a machine that is already a client of the NIS+ namespace. For maximum security, an administrator can encrypt and encode (with uuencode(1C)) the coldstart file and mail it to an administrator bringing up a new machine. The new administrator would then decode (with uudecode), decrypt, and then use this file with the nisinit command to initialize the machine as an NIS+ client. If the coldstart file is from another client in the same domain, the nisinit command may be safely skipped and the file copied into the /var/nis directory as /var/nis/NIS_COLD_START.

-\texttt{H hostname} Specifies that the host hostname should be contacted as a trusted NIS+ server. The nisinit command will iterate over each transport in the NETPATH environment variable and attempt to contact rpcbind(1M) on that machine. This hostname must be reachable from the client without the name service running. For IP networks this means that there must be an entry in /etc/hosts for this host when nisinit is invoked.

-\texttt{B} Specifies that the nisinit command should use an IP broadcast to locate a NIS+ server on the local subnet. Any machine that is running the NIS+ service may answer. No guarantees are made that the server that answers is a server of the organization’s namespace. If this option is used, it is advisable to check with your system administrator that the server and domain served are valid. The binding information can be dumped to the standard output using the nisshowcache(1M) command.

Note that nisinit -c will just enable navigation of the NIS+ name space from this client. To make NIS+ your name service, modify the file /etc/nsswitch.conf to reflect that. See nsswitch.conf(4) for more details.

-\texttt{K <key_domain>} This option specifies the domain where root’s credentials are stored. If it is not specified, then the system default domain is assumed. This domain name is used to create the /var/nis/NIS_COLD_START file.

**RETURN VALUES**
nisinit returns 0 on success and 1 on failure.
EXAMPLE 1 Initializing the Machine as a NIS+ Client using the Host freddy as a Trusted Server
This example initializes the machine as an NIS+ client using the host freddy as a trusted server.
example# nisinit -cH freddy

EXAMPLE 2 Setting up a Client using a Trusted Coldstart File
This example sets up a client using a trusted coldstart file.
example# nisinit -cC /tmp/colddata

EXAMPLE 3 Setting up a Client Using an IP Broadcast
This example sets up a client using an IP broadcast.
example# nisinit -cB

EXAMPLE 4 Setting up a Root Server
This example sets up a root server.
example# nisinit -r

ENVIRONMENT VARIABLES
NETPATH This environment variable may be set to the transports to try when contacting the NIS+ server (see netconfig(4)). The client library will only attempt to contact the server using connection oriented transports.

FILES
/var/nis/NIS_COLD_START This file contains a list of servers, their transport addresses, and their Secure RPC public keys that serve the machine’s default domain.
/var/nis/data/root.object This file describes the root object of the NIS+ namespace. It is a standard XDR-encoded NIS+ directory object that can be modified by authorized clients using the nis_modify() interface.
/var/nis/data/parent.object This file describes the namespace that is logically above the NIS+ namespace. The most common type of parent object is a DNS object. This object contains contact information for a server of that domain.
/etc/hosts Internet host table.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), uuencode(1C), nisclient(1M), nisserver(1M), nisshowcache(1M), sysinfo (2), hosts(4), netconfig(4), nisfiles(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisldapmaptest utility to test NIS+ to LDAP mapping configuration files. See NIS+LDAPmapping(4). The nisldapmaptest utility uses much of the same internal interface as the rpc.nisd(1M) does to read, add, modify, or delete LDAP data, as specified by the column name and value operand pairs. nisldapmaptest does not read or modify any of the rpc.nisd(1M) database files.

See NOTES for details on important differences between the ways that nisldapmaptest and rpc.nisd(1M) operate on LDAP data.

The nisldapmaptest utility supports the following options:

- **-d**  Delete data in LDAP.
- **-i**  Ignore failures when obtaining information from the NIS+ server. This enables nisldapmaptest to work to some extent, even if the NIS+ server is unreachable, or if the system is not a NIS+ client. However, NIS+ lookups are still attempted, so there may be NIS+ error messages.

In this mode, nisldapmaptest also tries to guess things such as NIS+ object types and derives table column information from the mapping rules in the configuration files. Avoid using the -i option to add, modify, or delete, until you have determined that the nisldapmaptest’s guesses are adequate for your needs.

- **-l**  Parse the configuration file into internal data structures, and then print out the configuration per those structures. Note that the printed data is not in configuration file format.

Either -l or -t must be specified. If both are present, -l is ignored.

- **-m conffile**  Specify the name of the NIS+LDAPmapping(4) configuration file. The default directory is /var/nis, and the default mapping file is NIS+LDAPmapping.

- **-o**  For NIS+ tables, work on the NIS+ object itself, specified by means of the -t option, not on the table entries.

- **-r**  Replace or add data in LDAP.

- **-s**  Search for data in LDAP. This is the default.

- **-t object**  Specify the NIS+ object on which to operate. If the object name is not fully qualified, that is, it does not end in a dot, the value of the nisplusLDAPbaseDomain attribute is appended.
Set the verbose flag. This flag produces extra diagnostic information.

Specify mapping attribute and value pairs to override those obtained by means of the configuration file. Although any attributes defined on NIS+LDAPmapping(4) or rpc.nisd(4) can be specified, the ones that control rpc.nisd(1M) operation have no effect on nisldapmaptest.

The following operands are supported:

- col=val... NIS+ column and value pairs used to specify which entries should be looked up, added, modified, or deleted. For additions and modifications, use col=val to specify the new values.

EXAMPLE 1 Searching for a User

Use the following example to search for the user xyzzy in the LDAP container specified for the passwd.org_dir table.

example% nisldapmaptest -t passwd.org_dir name=xyzzy

EXAMPLE 2 Listing Table Entries

Use the following example to list all entries in the container specified for the services.org_dir table.

example% nisldapmaptest -t services.org_dir

EXAMPLE 3 Listing an Object

Use the following example to list the services.org_dir object itself, as it is stored in LDAP.

example% nisldapmaptest -o -t services.org_dir

EXAMPLE 4 Modifying a Table Entry

Use the following example to modify the membership list of the group grp, in the container specified for the group.org_dir table, to be mem1, mem2, and mem3.

example% nisldapmaptest -r -t group.org_dir name=grp

EXAMPLE 5 Deleting a Table Entry

Use the following example to delete the host called bad from the container specified for the hosts.org_dir table.

example% nisldapmaptest -d -t hosts.org_dir name=bad
The following exit values are returned:

0        The requested operation was successful.
!= 0     An error occurred.

FILES
/var/nis/NIS+LDAPmapping.template
/etc/default/rpd.nisd

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisr</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO
rpc.nisd(1M), NIS+LDAPmapping(4), rpc.nisd(4), attributes(5)

NOTES
There are several differences between the ways that nisldapmaptest and rpc.nisd operate:

1. nisldapmaptest obtains information about NIS+ by means of the NIS+ API calls, while rpc.nisd looks in its internal database. Thus, if the NIS+ server is not available, nisldapmaptest may be unable to determine NIS+ object types or table column information.

2. While nisldapmaptest can add, modify, or delete LDAP data, it does not modify any NIS+ data.

3. When operating on table entries, if nisldapmaptest is unable to obtain the entry from NIS+, it composes LDAP operations using only the supplied col=val operands. Depending on the mapping used, this can result in extra LDAP operations, for example, attempting to obtain a DN for add, modify, or delete.

4. The default value for nisplusLDAPbaseDomain is the system domain name per sysinfo(2) in nisldapmaptest, but the internal notion of the domain it serves in rpc.nisd. While the two usually are the same, this is not necessarily always the case.

5. When more than one NIS+ entry maps to a single LDAP entry, nisldapmaptest may be unable to perform a complete update, unless you make sure that the col=val specification picks up all relevant NIS+ entries. For example, if you have the services.org_dir NIS+ entries:

```
cname  name  proto  port
x      x     tcp    12345
x      y     tcp    12345
x      z     tcp    12345
```
then specifying `cname=x` will pick up all three entries and create or modify the corresponding LDAP entry to have three `CN` values: `x`, `y`, and `z`. However, specifying `name=x` will match just the first NIS+ entry, and create or modify the LDAP entry to have just one `CN`: `x`. 
nislog(1M)

NAME
nislog – display the contents of the NIS+ transaction log

SYNOPSIS
/usr/sbin/nislog [-h num | -t num] [-v] [directory...]

DESCRIPTION
nislog displays the contents of the NIS+ server transaction log on the standard output. This command can be used to track changes in the namespace. The /var/nis/trans.log file contains the transaction log maintained by the NIS+ server. When updates occur, they are logged to this file and then propagated to replicas as log transactions. When the log is checkpointed, updates that have been propagated to the replicas are removed.

The nislog command can only be run on an NIS+ server by superuser. It displays the log entries for that server only.

If directory is not specified, the entire log is searched. Otherwise, only those logs entries that correspond to the specified directories are displayed.

OPTIONS
- h num Display num transactions from the “head” of the log. If the numeric parameter is 0, only the log header is displayed.
- t num Display num transactions from the “tail” of the log. If the numeric parameter is 0, only the log header is displayed.
- v Verbose mode.

FILES
/var/nis/trans.log transaction log

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
nis+(1), rpc.nisd(1M), nisfiles(4), attributes(5)

NOTES
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisping(1M)

NAME
nisping – send ping to NIS+ servers

SYNOPSIS
/usr/lib/nis/nisping [-uf] [-H hostname] [-r | directory]
/usr/lib/nis/nisping -C [-a] [-H hostname] [directory]

DESCRIPTION
In the first SYNOPSIS line, the nisping command sends a “ping” to all replicas of a NIS+ directory. Once a replica receives a ping, it will check with the master server for the directory to get updates. Prior to pinging the replicas, this command attempts to determine the last update “seen” by a replica and the last update logged by the master. If these two timestamps are the same, the ping is not sent. The -f (force) option will override this feature.

Under normal circumstances, NIS+ replica servers get the new information from the master NIS+ server within a short time. Therefore, there should not be any need to use nisping.

In the second SYNOPSIS line, the nisping -C command sends a checkpoint request to the servers. If no directory is specified, the home domain, as returned by nisdefaults(1), is checkpointed. If all directories, served by a given server, have to be checkpointed, then use the -a option.

On receiving a checkpoint request, the servers would commit all the updates for the given directory from the table log files to the database files. This command, if sent to the master server, will also send updates to the replicas if they are out of date. This option is needed because the database log files for NIS+ are not automatically checkpointed. nisping should be used at frequent intervals (such as once a day) to checkpoint the NIS+ database log files. This command can be added to the crontab(1) file. If the database log files are not checkpointed, their sizes will continue to grow.

If the server specified by the -H option does not serve the directory, then no ping is sent.

Per-server and per-directory access restrictions may apply; see nisopaccess(1). nisping uses NIS_CPTIME and NIS_PING (resync (ping) of replicas), or NIS_CHECKPOINT (for checkpoint). Since the NIS_PING operation does not return a status, the nisping command is typically unable to indicate success or failure for resyncs.

OPTIONS
-a
Checkpoint all directories on the server.

-C
Send a request to checkpoint, rather than a ping, to each server. The servers schedule to commit all the transactions to stable storage.

-H hostname
Only the host hostname is sent the ping, checked for an update time, or checkpointed.

-f
Force a ping, even though the timestamps indicate there is no reason to do so. This option is useful for debugging.
This option can be used to update or get status about the root object from the root servers, especially when new root replicas are added or deleted from the list.

If used without -u option, -r will send a ping request to the servers serving the root domain. When the replicas receive a ping, they will update their root object if needed.

The -r option can be used with all other options except with the -C option; the root object need not be checkpointed.

Display the time of the last update; no servers are sent a ping.

No servers were contacted, or the server specified by the -H switch could not be contacted.

Success.

Some, but not all, servers were successfully contacted.

EXAMPLE 1 Using nisping

This example pings all replicas of the default domain:

eexample$ nisping

Note that this example will not ping the the org_dir and groups_dir subdirectories within this domain.

This example pings the server example which is a replica of the org_dir.foo.com directory:

eexample$ nisping -H example org_dir.foo.com.

This example checkpoints all servers of the org_dir.bar.com directory.

eexample$ nisping -C org_dir.bar.com.

If this variable is set, and the NIS+ directory name is not fully qualified, each directory specified will be searched until the directory is found.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

See also: crontab(1), nisdefaults(1), nisopaccess(1), nislog(1M), nisfiles(4), attributes(5)
### NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit [http://www.sun.com/directory/nisplus/transition.html](http://www.sun.com/directory/nisplus/transition.html).
nispopulate(1M)

NAME
nispopulate – populate the NIS+ tables in a NIS+ domain

SYNOPSIS
[-l <network_passwd>] -d <NIS+_domain> -h <NIS_server_host> [-a
<NIS_server_addr>] -y <NIS_domain> [table] ...

<NIS+_domain>] [-l <network_passwd>] [-p <directory_path>] [table] ...

<network_passwd>] [hosts | passwd]

DESCRIPTION
The nispopulate shell script can be used to populate NIS+ tables in a specified
domain from their corresponding files or NIS maps. nispopulate assumes that the
tables have been created either through nisserver(1M) or nissetup(1M).

The table argument accepts standard names that are used in the administration of
Solaris systems and non-standard key-value type tables. See nisaddent(1M) for more
information on key-value type tables. If the table argument is not specified,
nispopulate will automatically populate each of the standard tables. These standard
(default) tables are: auto_master, auto_home, ethers, group, hosts, ipnodes,
networks, passwd, protocols, services, rpc, netmasks, bootparams, netgroup, aliases and shadow. Note that the shadow table is only used when
populating from files. The non-standard tables that nispopulate accepts are those of
key-value type. These tables must first be created manually with the nistbladm(1)
command.

Use the first synopsis (-Y) to populate NIS+ tables from NIS maps. nispopulate
uses ypfr(1M) to transfer the NIS maps from the NIS servers to the
/var/yp/<NIS_domain> directory on the local machine. Then, it uses these files as the
input source. Note that <NIS_domain> is case sensitive. Make sure there is enough disk
space for that directory.

Use the second synopsis (-F) to populate NIS+ tables from local files. nispopulate
will use those files that match the table name as input sources in the current working
directory or in the specified directory.

Note that when populating the hosts, ipnodes, and passwd tables, nispopulate
will automatically create the NIS+ credentials for all users and hosts (ipnodes) that
are defined in the hosts, ipnodes, and passwd tables, respectively. A network
passwd is required to create these credentials. This network password is used to
encrypt the secret key for the new users and hosts. This password can be specified
using the -l option or it will use the default password, "nisplus". nispopulate will
not overwrite any existing credential entries in the credential table. Use
nisclient(1M) to overwrite the entries in the cred table. It creates both LOCAL and
DES credentials for users, and only DES credentials for hosts. To disable automatic
credential creation, specify the "-S 0" option.

The third synopsis (-C) is used to populate NIS+ credential table with level 2
authentication (DES) from the hosts, ipnodes and passwd tables of the specified
domain. The valid table arguments for this operation are hosts, ipnodes and
passwd. If this argument is not specified then it will use hosts, ipnodes and passwd as the input source. If other authentication mechanisms are configured using nisauthconf(1M), the NIS+ credential table will be loaded with credentials for those mechanisms.

If nispopulate was earlier used with "-S 0" option, then no credentials were added for the hosts or the users. If later the site decides to add credentials for all users and hosts, then this (-C) option can be used to add credentials.

OPTIONS

- **a <NIS_server_addr>**  
  Specifies the IP address for the NIS server. This option is only used with the -Y option.

- **C**  
  Populate the NIS+ credential table from hosts, ipnodes, and passwd tables using DES authentication (security level 2). If other authentication mechanisms are configured using nisauthconf(1M), the NIS+ credential table will be populated with credentials for those mechanisms.

- **d <NIS+_domain>**  
  Specifies the NIS+ domain. The default is the local domain.

- **F**  
  Populates NIS+ tables from files.

- **f**  
  Forces the script to populate the NIS+ tables without prompting for confirmation.

- **h <NIS_server_host>**  
  Specifies the NIS server hostname from where the NIS maps are copied from. This is only used with the -Y option. This hostname must be present in the NIS+ hosts or ipnodes table, or in the /etc/hosts or /etc/inet/ipnodes file. If the hostname is not defined, the script will prompt you for its IP address, or you can use the -a option to specify the address manually.

- **l <network_passwd>**  
  Specifies the network password for populating the NIS+ credential table. This is only used when you are populating the hosts, ipnodes, and passwd tables. The default passwd is “nisplus”.

- **n**  
  Does not overwrite local NIS maps in /var/yp/<NISdomain> directory if they already exist. The default is to overwrite the existing NIS maps in the local /var/yp/<NISdomain> directory. This is only used with the -Y option.

- **p <directory_path>**  
  Specifies the directory where the files are stored. This is only used with the -F option. The default is the current working directory.
nispopulate(1M)

Options:

-\texttt{\$0|2} \hspace{1em} \texttt{\$0|2}\hspace{1em} \texttt{\$0|2} \hspace{1em} Specifies the authentication level for the NIS+ clients. Level 0 is for unauthenticated clients and no credentials will be created for users and hosts in the specified domain. Level 2 is for authenticated (DES) clients and DES credentials will be created for users and hosts in the specified domain. The default is to set up with level 2 authentication (DES). There is no need to run \texttt{nispopulate} with \texttt{-C} for level 0 authentication. Also, if other authentication mechanisms are configured with \texttt{nisauthconf(1M)}, credentials for those mechanisms will also be populated for the NIS+ clients.

-\texttt{\$u} \hspace{1em} \texttt{\$u}\hspace{1em} \texttt{\$u}\hspace{1em} \texttt{\$u}\hspace{1em} Updates the NIS+ tables (ie., adds, deletes, modifies) from either files or NIS maps. This option should be used to bring an NIS+ table up to date when there are only a small number of changes. The default is to add to the NIS+ tables without deleting any existing entries. Also, see the \texttt{-n} option for updating NIS+ tables from existing maps in the \texttt{/var/yp} directory.

-\texttt{\$v} \hspace{1em} \texttt{\$v}\hspace{1em} Runs the script in verbose mode.

-\texttt{\$x} \hspace{1em} \texttt{\$x}\hspace{1em} \texttt{\$x}\hspace{1em} \texttt{\$x}\hspace{1em} Turns the "echo" mode on. The script just prints the commands that it would have executed. Note that the commands are not actually executed. The default is off.

-\texttt{\$Y} \hspace{1em} \texttt{\$Y}\hspace{1em} \texttt{\$Y}\hspace{1em} \texttt{\$Y}\hspace{1em} Populates the NIS+ tables from NIS maps.

-\texttt{-y <NIS\_domain>} \hspace{1em} \texttt{-y <NIS\_domain>} \hspace{1em} \texttt{-y <NIS\_domain>} \hspace{1em} \texttt{-y <NIS\_domain>} \hspace{1em} Specifies the NIS domain to copy the NIS maps from. This is only used with the \texttt{-Y} option. The default domainname is the same as the local domainname.

EXCEPTED

\textbf{EXAMPLE 1 Using nispopulate}

To populate all the NIS+ standard tables in the domain \texttt{xyz.sun.com} from NIS maps of the \texttt{yp.sun.COM} domain as input source where host \texttt{yp_host} is a YP server of \texttt{yp.sun.COM}:

\begin{verbatim}
  nis_server# /usr/lib/nis/nispopulate -Y -y yp.sun.COM \\
  -h yp_host -d xyz.sun.com.
\end{verbatim}

To update all of the NIS+ standard tables from the same NIS domain and hosts shown above:

\begin{verbatim}
  nis_server# /usr/lib/nis/nispopulate -Y -u -y yp.sun.COM -h yp_host \\
  -d xyz.sun.com.
\end{verbatim}

To populate the \texttt{hosts} table in domain \texttt{xyz.sun.com} from the \texttt{hosts} file in the \texttt{/var/nis/files} directory and using "somepasswd" as the network password for key encryption:

\begin{verbatim}
  nis_server# /usr/lib/nis/nispopulate -Y \\
  -y <NIS\_domain> -d xyz.sun.com -f /var/nis/files/hosts
\end{verbatim}
EXAMPLE 1 Using nispopulate (Continued)

    nis_server# /usr/lib/nis/nispopulate -F -p \\
    /var/nis/files -l somepasswd hosts

To populate the passwd table in domain xyz.sun.com. from the passwd file in the 
/var/nis/files directory without automatically creating the NIS+ credentials:

    nis_server# /usr/lib/nis/nispopulate -F -p /var/nis/files \\
    -d xys.sun.com. -S 0 passwd

To populate the credential table in domain xyz.sun.com. for all users defined in the 
passwd table.

    nis_server# /usr/lib/nis/nispopulate -C -d xys.sun.com. passwd

To create and populate a non-standard key-value type NIS+ table, "private", from the 
file /var/nis/files/private: (nispopulate assumes that the private.org_dirkey-
value type table has already been created).

    nis_server# /usr/bin/nistbladm -D access=og=rmc,d,nw=r \\
    -c private key=S,nogw= value=,nogw= private.org.dir \\
    nis_server# /usr/lib/nis/nispopulate -F -p /var/nis/files private

ENVIRONMENT VARIABLES

    nispopulate normally creates temporary files in the directory /tmp. You may 
specify another directory by setting the environment variable TMPDIR to your chosen 
directory. If TMPDIR is not a valid directory, then nispopulate will use /tmp.

FILES

    /etc/inet/hosts      local host name database
    /etc/inet/ipnodes    local database associating names of nodes with IP 
                          addresses
    /var/yp              NIS (YP) domain directory
    /var/nis              NIS+ domain directory
    /tmp

ATTRIBUTES

    See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

    nis+(1), nistbladm(1), nisaddcred(1M), nisaddent(1M), nisauthconf(1M), 
    nisclient(1M), nisserver(1M), nissetup(1M), rpc.nisd(1M), ypxfr(1M), 
    attributes(5)
<table>
<thead>
<tr>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit <a href="http://www.sun.com/directory/nisplus/transition.html">http://www.sun.com/directory/nisplus/transition.html</a>.</td>
</tr>
</tbody>
</table>
nisprefadm - NIS+ utility to set server preferences for NIS+ clients

```
/usr/bin/nisprefadm -a {-L | -G} [-o opt-string] [-d domain] [-C client] server...
```

```
/usr/bin/nisprefadm -m {-L | -G} [-o opt-string] [-d domain] [-C client] oldserver=newserver...
```

```
/usr/bin/nisprefadm -r {-L | -G} [-o opt-string] [-d domain] [-C client] server...
```

```
/usr/bin/nisprefadm -u {-L | -G} [-o opt-string] [-d domain] [-C client] server...
```

```
/usr/bin/nisprefadm -x {-L | -G} [-d domain] [-C client]
```

```
/usr/bin/nisprefadm -l {-L | -G} [-d domain] [-C client]
```

```
/usr/bin/nisprefadm -F
```

nisprefadm defines which servers are to be preferred by NIS+ clients. This information is used by nis_cachemgr(1M) to control the order in which it selects which server to use for a particular domain. On a client system, the cache manager first looks for a local preferred server list in /var/nis. If it doesn’t find one, it looks for an entry with its host name in the NIS+ table. Finally, if it doesn’t find it there, it looks for an entry for its subnet.

By default, nis_cachemgr puts all servers that are on the same subnet as the client system (that is, local servers) are on the preferred server list. In some cases this default preferred server list is inadequate. For example, if all of the servers for a domain are remote, but some are closer than others, the cache manager should try to select the closer one. Because the cache manager has no reliable way to determine the distance to remote servers, nisprefadm is used to provide this information.

The preferred server information is stored either globally in a NIS+ table (with the -G option) or locally in a file, /var/nis/client_info (with the -L option). It is preferable to store the information globally so that it can be used by all clients on a subnet. The nis_cachemgr process on a client machine reloads the preferred server information periodically, depending on the machine’s setup. If the local file is used, the information is reloaded every 12 hours. If the global table is used, the information is reloaded based on the TTL value of the client information table. This TTL value can be changed using nischttl(1). If you want your changes to take effect immediately, use the nisprefadm -F command. When changing local information (-L), nisprefadm automatically forces nis_cachemgr to reload the information.

The cache manager assigns weights to all of the servers on the preferred list. By default, local servers (that is, servers on the same subnet) are given a weight of 0. Other servers are given the weight, “infinite”. This can be changed by using the nisprefadm command and giving a weight in parentheses after the server name.

When selecting a server for a domain, the cache manager first tries to contact the
servers with the lowest weight. If it doesn't get a response, it tries the servers with the next lowest weight, and so on. If it fails to get a response from any of the preferred servers, it tries to contact the non-preferred servers.

The use of weights gives fine control over the server selection process, but care must be given to avoid assigning too many different weights. For example, if weights 0, 1, 2, and 3 are used, but all of the servers with weight 0, 1, and 2, are unavailable, then there will be a noticeable delay in selecting a server. This is because the cache manager waits 5 seconds for a response at each weight level before moving on to the next one. As a general rule, one or two weight levels provides a good balance of server selection control and performance.

When specifying a server name, it is not necessary to fully qualify the name. When the cache manager tries to access a domain, it compares the list of servers for the domain with the list of preferred servers. It will find a match if a preferred server name is a prefix of the name of a server for the domain. If a domain is served by two servers with the same prefix, the preferred server name must include enough of the domain name to distinguish the two.

The nis_cachemgr(1M) process automatically adds local servers (same subnet as the client) to the preferred server list with a weight of 0. Thus, it is not necessary to specify them, though it does no harm.

If you specify a weight for a server, you probably should quote the parentheses to avoid having the shell interpret them. The following command illustrates this:

```
example$ nisprefadm -G -a -C client1 "srv1(2)"
```

In general, nis_cachemgr does a fairly good job of selecting servers on its own. Therefore, the use of nisprefadm is not usually necessary. Some situations in which it is recommended are:

No local servers, many remote servers

This case, nis_cachemgr needs to choose one of the remote servers. Because it doesn't have information on which is closest, it sends a ping to all of them and then selects the one that responds fastest. This may not always select the best server. If some of the servers are closer to the client than the others, they should be listed as preferred servers so that nis_cachemgr will try them first. This reduces the amount of network traffic for selecting a server.

Very remote servers

In some networks there are NIS+ servers that are only reachable through very slow network connections. It is usually best to avoid unnecessary traffic over that connection. If the _pref_type=pref_only_ option is set along with preferred servers, then only the preferred servers are contacted for domains they serve. The non-preferred servers are not tried at all; even if all of the preferred servers are unavailable. For domains that are not served by any of the preferred servers, the _pref_only_ option is ignored.
In the SYNOPSIS, when several options are surrounded by braces (that is, by '{' and '}' one of the options must be specified.

- **a**  
  Add the specified servers to the preferred server list.

- **C client**  
  Store the preferred server information with the key, client. The client can be either a hostname or a subnet number. When a hostname is specified, the preferred server information applies to that host only. When a subnet is specified, the preferred server information applies to all clients on that subnet. The cache manager searches for host specific entries first. It only searches for subnet entries if no host entry is found. If this option is not specified, then the hostname of the machine on which the command is run is used.

- **d domain**  
  Specify the domain to which the command is to apply.

- **F**  
  Tells nis_cachemgr(1M) to refresh its preferred server information. The program periodically does this anyway, but this option forces it to do the refresh immediately. When updating the local information, nis_cachemgr automatically refreshes the preferred server information.

  This option must be executed as root.

- **l**  
  List the current preferred server information.

- **L | -G**  
  Store the preferred server information locally in the file, /var/nis/client_info (the -L option), or globally in a NIS+ table client.info.org-dir.domain (the -G option). If the information is stored locally, then it only applies to the system on which the command is run. If it is stored globally then it can apply to all systems on a subnet (depending on the value of the -C option).

  The -L option must be run as root.

- **m**  
  Modify the preferred server list. The server specified by oldserver is replaced by newserver. This is typically used to change the weight for a server.

- **o**  
  Specify additional options to control server selection. Currently the only valid option is pref_type, which can have a value of either all (the default) or pref_only. If the value is all, then the cache manager tries to contact non-preferred servers if all of the preferred servers fail to respond. If pref_only is specified, then it won't try non-preferred servers. The only exception to this is when a domain is not served by any of the preferred servers. In this case, the cache manager ignores the option. This is to avoid requiring that preferred servers be defined for every domain.

- **r**  
  Remove the specified servers from the preferred server list.
Clear the list of preferred servers and then add the specified servers to the preferred server list.

Remove the preferred server information completely.

nisprefadm returns the following values:

- **0**: On success.
- **1**: On failure.

**EXAMPLES**

**EXAMPLE 1** Using nisprefadm

This command sets the preferred server list for the system on which it is run:

```
example% nisprefadm -L -a srv1 srv2
```

The information is stored in a file, `/var/nis/client_info`, so it will only affect this one system.

The following command has the same effect, but the information is stored in a NIS+ table in the default domain.

```
example% nisprefadm -G -a srv1 srv2
```

As a system administrator, you might want to set the preferred server information for a client system other than the one you are running the command on. The following command sets the preferred server information for a client system named `client1`:

```
example% nisprefadm -G -a -C client1 srv1 srv2
```

It is common for all client systems on a subnet to use the same set of preferred servers. The following command sets a preferred server list that applies to all clients on subnet, 192.85.18.0:

```
example% nisprefadm -G -a -C 192.85.18.0 srv1 srv2
```

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`nischttl(1), nis_cachemgr(1M), attributes(5)`

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit [http://www.sun.com/directory/nisplus/transition.html](http://www.sun.com/directory/nisplus/transition.html).
nisrestore(1M)

NAME
nisrestore – restore NIS+ directory backup

SYNOPSIS
nisrestore [-fv] backup-dir directory...
nisrestore [-fv] -a backup-dir
nisrestore -t backup-dir

DESCRIPTION
nisrestore restores an existing backup of a NIS+ directory object that was created using nisbackup(1M). The backup-dir is the UNIX directory that contains the NIS+ backup on the server being restored. The nisrestore command can be used to restore a NIS+ directory object or a complete NIS+ database. It also can be used as an "out of band" fast replication for a new replica server being initialized. The rpc.nisd(1M) daemon must be stopped before running nisrestore.

The first synopsis is used to restore a single directory object or a specified list of directory objects. The directory can be partially qualified or fully qualified. The server being restored will be verified against the list of servers serving the directory. If this server is not configured to serve this object, nisrestore will exit with an error. The -f option will override this check and force the operation.

The second synopsis will restore all of the directory objects contained in the backup-dir. Again, the server will be validated against the serving list for each of the directory objects in the backup-dir. If one of the objects in the backup-dir are not served by this server, nisrestore will exit with an error. The -f option will override this check and force the operation.

The -a option will attempt to restore all NIS+ objects contained in the backup-dir. If any of these objects are not served by the server, nisrestore will exit with an error. If the backup-dir contains objects that are not served by the server, nisrestore must be executed without the -a option and the specific directory objects listed.

The -f option will disable verification of the server being configured to serve the objects being restored. This option should be used with care, as data could be inadvertently restored to a server that doesn’t serve the restored data. This option is required in the case of restoring a single server domain (master server only) or if the other NIS+ servers are unavailable for NIS+ lookups.

The combination of options -f and -a should be used with caution, as no validation of the server serving the restored objects will be done.

New replicas can be quickly added to a namespace with the nisrestore command. The steps are as follows.

Configure the new replica on the master server (see niserver(1M)):

master# niserver -R -h replica

Kill the rpc.nisd server process on the new replica server:

replica# kill rpc.nisd-pid
nisbackup(1M)

Create a backup of the NIS+ database on the master, which will include the new replica information. See nisbackup(1M). The /backup will need to be exported to the new replica. See share_nfs(1M).

master# nisbackup -a /backup

Restore the backup of the NIS+ database on the new replica. Use the -f option if nisrestore is unable to lookup the NIS+ objects being restored. The backup should be available through nfs or similar means. See share_nfs(1M).

replica# nisrestore -f -a //nfs-mnt/backup

Restart the rpc.nisd(1M) process on the new replica, and the server will immediately be available for service.

OPTIONS

- a     Restores all directory objects included in the backup-dir partition.
- f     Forces the restoration of a directory without the validation of the server in the directory object’s serving list.
- t     Lists all directory objects contained in backup-dir.
- v     Verbose option. Additional output will be produced upon execution of the command.

OPERANDS

backup-dir      The UNIX directory that contains the data files for the NIS+ directory objects to be restored.
directory       The NIS+ directory object(s) to be restored. This can be a fully or partially qualified name.

EXAMPLES

EXAMPLE 1 Restoring the Directory Object on a Replica Server from a Local UFS Partition

To restore the org_dir directory object of the domain foo.com on a replica server from a local ufs partition named /var/backup:

replica_server# nisrestore /var/backup org_dir.foo.com.

EXAMPLE 2 Forcing the Restore of a Backed up NIS+ Namespace to a Replica Server From the Backup Partition

To force the restore of an entire backed up NIS+ namespace to a replica server from the backup partition named /var/backup:

replica_server# nisrestore -f -a /var/backup

EXAMPLE 3 Restoring the Subdomain on a Master Server From a Backup that Includes Other Directory Objects

To restore the subdomain sub.foo.com on a master server, from a backup that includes other directory objects:
EXAMPLE 3 Restoring the Subdomain on a Master Server From a Backup that Includes Other Directory Objects  
(Continued)

```
master_server# nisrestore /var/backup sub.foo.com. \
```

EXIT STATUS

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

FILES

```
/backup-dir/
backup_list
```

This ASCII file contains a list of all the objects contained in this `backup-dir` directory. This information can be displayed with the `-t` option.

```
/backup-dir/directory-object
```

A subdirectory that is created in the `backup-dir` which contains the directory-object backup.

```
/backup-dir/directory-object/data
```

A subdirectory that contains the data files that are part of the directory-object backup.

```
/backup-dir/directory-object/lastupd
```

This data file contains timestamp information about the directory-object.

```
/backup-dir/directory-object/data.dict
```

A NIS+ data dictionary for all of the objects contained in this directory-object backup.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), nisdefaults(1), nisbackup(1M), nisserver(1M), rpc.nisd(1M), share_nfs(1M), nisfiles(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
## NAME
nisserver – set up NIS+ servers

## SYNOPSIS
```
   [-g NIS+_groupname] [-1 network_passwd]

   [-g NIS+_groupname] [-h NIS+_server_host]

   [-h NIS+_server_host]
```

## DESCRIPTION
The `nisserver` shell script can be used to set up a root master, non-root master, and replica NIS+ server with level 2 security (DES). If other authentication mechanisms are configured with `nisauthconf(1M)`, `nisserver` will set up a NIS+ server using those mechanisms. `nisauthconf(1M)` should be used before `nisserver`.

When setting up a new domain, this script creates the NIS+ directories (including `groups_dir` and `org_dir`) and system table objects for the domain specified. It does not populate the tables. `nispopulate(1M)` must be used to populate the tables.

## OPTIONS
- `-d NIS+_domain`
  Specifies the name for the NIS+ domain. The default is your local domain.

- `-f`
  Forces the NIS+ server setup without prompting for confirmation.

- `-g NIS+_groupname`
  Specifies the NIS+ group name for the new domain. This option is not valid with `-R` option. The default group is `admin.<domain>`.

- `-h NIS+_server_host`
  Specifies the hostname for the NIS+ server. It must be a valid host in the local domain. Use a fully qualified hostname (for example, `hostx.xyz.sun.com`) to specify a host outside of your local domain. This option is only used for setting up non-root master or replica servers. The default for non-root master server setup is to use the same list of servers as the parent domain. The default for replica server setup is the local hostname.

- `-1 network_password`
  Specifies the network password with which to create the credentials for the root master server. This option is only used for master root server setup (`-r` option). If this option is not specified, the script prompts you for the login password.

- `-M`
  Sets up the specified host as a master server. Make sure that `rpc.nisd(1M)` is running on the new master server before this command is executed.

- `-R`
  Sets up the specified host as a replica server. Make sure that `rpc.nisd` is running on the new replica server.
nisserver(1M)

- Sets up the server as a root master server. Use the -R option to set up a root replica server.

- Runs the script in verbose mode.

- Turns the echo mode on. The script just prints the commands that it would have executed. Note that the commands are not actually executed. The default is off.

- Sets up a NIS+ server with NIS-compatibility mode. The default is to set up the server without NIS-compatibility mode.

**USAGE**

Use the first synopsis of the command (-r) to set up a root master server. To run the command, you must be logged in as super-user on the server machine.

Use the second synopsis of the command (-M) to set up a non-root master server for the specified domain. To run the command, you must be logged in as a NIS+ principal on a NIS+ machine and have write permission to the parent directory of the domain that you are setting up. The new non-root master server machine must already be an NIS+ client (see nisclient(1M)) and have the rpc.nisd daemon running.

Use the third synopsis of the command (-R) to set up a replica server for both root and non-root domains. To run the command, you must be logged in as a NIS+ principal on a NIS+ machine and have write permission to the parent directory of the domain that you are replicating. The new non-root replica server machine must already be an NIS+ client and have the rpc.nisd daemon running.

**EXAMPLES**

**EXAMPLE 1 Setting up Servers**

To set up a root master server for domain sun.com:

```
root_server# /usr/lib/nis/nisserver -r -d sun.com.
```

For the following examples make sure that the new servers are NIS+ clients and that rpc.nisd is running on these hosts before executing nisserver. To set up a replica server for the sun.com. domain on host sunrep:

```
root_server# /usr/lib/nis/nisserver -R -d sun.com. -h sunrep
```

To set up a non-root master server for domain xyz.sun.com on host sunxyz with the NIS+ groupname as admin-mgr.xyz.sun.com:

```
root_server# /usr/lib/nis/nisserver -M -d xyz.sun.com. -h sunxyz \
-g admin-mgr.xyz.sun.com.
```

To set up a non-root replica server for domain xyz.sun.com on host sunabc:

```
sunxyz# /usr/lib/nis/nisserver -R -d xyz.sun.com. -h sunabc
```
nisserver(1M)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  nis+(1), nisgrpadm(1), nismkdir(1), nisaddcred(1M), nisauthconf(1M), nisclient(1M), nisinit(1M), nispopulate(1M), nisprefadm(1M), nissetup(1M), rpc.nisd(1M), attributes(5)

NOTES  NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nissetup – initialize a NIS+ domain

**SYNOPSIS**

```
/usr/lib/nis/nissetup [-Y] [domain]
```

**DESCRIPTION**

nissetup is a shell script that sets up a NIS+ domain to service clients that wish to store system administration information in a domain named `domain`. This domain should already exist prior to executing this command. See `nismkdir(1)` and `nisinit(1M)`.

A NIS+ domain consists of a NIS+ directory and its subdirectories: `org_dir` and `groups_dir`. `org_dir` stores system administration information and `groups_dir` stores information for group access control.

nissetup creates the subdirectories `org_dir` and `groups_dir` in `domain`. Both subdirectories will be replicated on the same servers as the parent domain. After the subdirectories are created, nissetup creates the default tables that NIS+ serves. These are `auto_master`, `auto_home`, `bootparams`, `cred`, `ethers`, `group`, `hosts`, `mail_aliases`, `netmasks`, `networks`, `passwd`, `protocols`, `rpc`, `services`, and `timezone`. The nissetup script uses the `nistbladm(1)` command to create these tables. The script can be easily customized to add site specific tables that are created at setup time.

This command is normally executed just once per domain.

While this command creates the default tables, it does not initialize them with data. This is accomplished with the `nisaddent(1M)` command.

It is easier to use the `nisserver(1M)` script to create subdirectories and the default tables.

**OPTIONS**

- `-Y` Specify that the domain will be served as both a NIS+ domain as well as an NIS domain using the backward compatibility flag. This will set up the domain to be less secure by making all the system tables readable by unauthenticated clients as well.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`nis+(1), nismkdir(1), nistbladm(1), nisaddent(1M), nisinit(1M), nisserver(1M), attributes(5)`

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit [http://www.sun.com/directory/nisplus/transition.html](http://www.sun.com/directory/nisplus/transition.html).
nisshowcache(1M)

NAME
nisshowcache – NIS+ utility to print out the contents of the shared cache file

SYNOPSIS
/usr/lib/nis/nisshowcache [-v]

DESCRIPTION
nisshowcache prints out the contents of the per-machine NIS+ directory cache that
is shared by all processes accessing NIS+ on the machine. By default, nisshowcache
only prints out the directory names in the cache along with the list of active servers.
The shared cache is maintained by nis_cachemgr(1M).

OPTIONS
- v    Verbose mode. Print out the contents of each directory object, including the
        information on the server name and its universal addresses.

FILES
/var/nis/NIS_SHARED_DIRCACHE

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
nis_cachemgr(1M), syslogd(1M), nisfiles(4), attributes(5)

DIAGNOSTICS
Error messages are sent to the syslogd(1M) daemon.

NOTES
NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
nisstat – report NIS+ server statistics

/usr/lib/nis/nisstat [-H host] [directory]

The nisstat command queries a NIS+ server for various statistics about its operations. These statistics may vary between implementations and from release to release. Not all statistics are available from all servers. If you request a statistic from a server that does not support that statistic, it is never a fatal error. The message “unknown statistic” is returned.

By default, statistics are fetched from the server(s) of the NIS+ directory for the default domain. If directory is specified, servers for that directory are queried.

Supported statistics for this release are as follows:

- **root server**: This reports whether the server is a root server.
- **NIS compat mode**: This reports whether the server is running in NIS compat mode.
- **DNS forwarding in NIS mode**: This reports whether the server in NIS compat mode will forward host lookup calls to DNS.
- **security level**: This reports the security level of this server.
- **serves directories**: This lists the directories served by this server.
- **Operations**: This statistic returns results in the form:
  
  \[ \text{OP=opname : C=calls : E=errors : T=micros} \]

  Where opname is replaced by the RPC procedure name or operation, calls is the number of calls to this procedure that have been made since the server started running, errors is the number of errors that have occurred while processing a call, and micros is the average time in microseconds to complete the last 16 calls.

- **Directory Cache**: This statistic reports the number of calls to the internal directory object cache, the number of hits on that cache, the number of misses, and the hit rate percentage.

- **Group Cache**: This statistic reports the number of calls to the internal NIS+ group object cache, the number of hits on that cache, the number of misses, and the hit rate percentage.
nisstat(1M)

Static Storage This statistic reports the number of bytes
the server has allocated for its static storage
buffers.

Dynamic Storage This statistic reports the amount of heap the
server process is currently using.

Uptime This statistic reports the time since the
service has been running.

Per-server and per-directory access restrictions may apply. See nisopaccess(1).
nisstat uses NIS_STATUS.

OPTIONS

- H host Normally all servers for the directory are queried. With this
option, only the machine named host is queried. If the named
machine does not serve the directory, no statistics are returned.

ENVIRONMENT

VARIABLES

NIS_PATH If this variable is set, and the NIS+ directory name is
not fully qualified, each directory specified will be
searched until the directory is found. See
nisdefaults(1).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO nisdefaults(1), nisopaccess(1), attributes(5)

NOTES NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
nisupdkeys(1M)

NAME
nisupdkeys – update the public keys in a NIS+ directory object

SYNOPSIS
/usr/lib/nis/nisupdkeys [-a | -C | -H host] [directory]
/usr/lib/nis/nisupdkeys -s [-a | -C] -H host

DESCRIPTION
This command updates the public keys in an NIS+ directory object. When the public
key(s) for a NIS+ server are changed, nisupdkeys reads a directory object and
attempts to get the public key data for each server of that directory. These keys are
placed in the directory object and the object is then modified to reflect the new keys. If
directory is present, the directory object for that directory is updated. Otherwise the
directory object for the default domain is updated. The new key must be propagated
to all directory objects that reference that server.

On the other hand, nisupdkeys -s gets a list of all the directories served by host and
updates those directory objects. This assumes that the caller has adequate permission
to change all the associated directory objects. The list of directories being served by a
given server can also be obtained by nisstat(1M). Before you do this operation,
makesure that the new address/public key has been propagated to all replicas. If
multiple authentication mechanisms are configured using nisauthconf(1M), then
the keys for those mechanisms will also be updated or cleared.

The user executing this command must have modify access to the directory object for
it to succeed. The existing directory object can be displayed with the niscat(1)
command using the -o option.

This command does not update the directory objects stored in the NIS_COLD_START
file on the NIS+ clients.

If a server is also the root master server, then nisupdkeys -s cannot be used to
update the root directory.

OPTIONS

-a
  Update the universal addresses of the NIS+ servers in the
directory object. Currently, this only works for the TCP/IP family
of transports. This option should be used when the IP address of
the server is changed. The server’s new address is resolved using
getipnodebyname(3SOCKET) on this machine. The
/etc/nsswitch.conf file must point to the correct source for
ipnodes and hosts for this resolution to work.

-C
  Specify to clear rather than set the public key(s). Communication
  with a server that has no public key(s) does not require the use of
  secure RPC.

-H host
  Limit key changes only to the server named host. If the hostname is
  not a fully qualified NIS+ name, then it is assumed to be a host in
  the default domain. If the named host does not serve the directory,
  no action is taken.

-s
  Update all the NIS+ directory objects served by the specified
  server. This assumes that the caller has adequate access rights to
change all the associated directory objects. If the NIS+ principal making this call does not have adequate permissions to update the directory objects, those particular updates will fail and the caller will be notified. If the rpc.nisd on host cannot return the list of servers it serves, the command will print an error message. The caller would then have to invoke nisupdkeys multiple times (as in the first synopsis), once per NIS+ directory that it serves.

EXAMPLES

EXAMPLE 1 Using nisupdkeys

The following example updates the keys for servers of the foo.bar. domain.

`example$ nisupdkeys foo.bar.`

This example updates the key(s) for host fred that serves the foo.bar. domain.

`example$ nisupdkeys -H fred foo.bar.`

This example clears the public key(s) for host wilma in the foo.bar. directory.

`example$ nisupdkeys -CH wilma foo.bar.`

This example updates the public key(s) in all directory objects that are served by the host wilma.

`example$ nisupdkeys -S -H wilma`

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

chkey(1), niscat(1), nisaddcred(1M), nisauthconf(1M), nisstat(1M), getipnodebyname(3SOCKET), nis_objects(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nlsadmin is the administrative command for the network listener process(es) on a machine. Each network has at least one instance of the network listener process associated with it; each instance (and thus, each network) is configured separately. The listener process “listens” to the network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any network (more precisely, with any connection-oriented transport provider) that conforms to the transport provider specification.

nlsadmin can establish a listener process for a given network, configure the specific attributes of that listener, and start and kill the listener process for that network. nlsadmin can also report on the listener processes on a machine, either individually (per network) or collectively.

net_spec represents a particular listener process. Specifically, net_spec is the relative path name of the entry under /dev for a given network (that is, a transport provider). address is a transport address on which to listen and is interpreted using a syntax that allows for a variety of address formats. By default, address is interpreted as the symbolic ASCII representation of the transport address. An address preceded by \x will let you enter an address in hexadecimal notation. Note that address must appear as a single word to the shell, thus it must be quoted if it contains any blanks.

Changes to the list of services provided by the listener or the addresses of those services are put into effect immediately.

nlsadmin may be used with the following combinations of options and arguments:

- `x` Report the status of all of the listener processes installed on this machine.

- `net_spec` Print the status of the listener process for net_spec.

- `q net_spec` Query the status of the listener process for the specified network, and reflects the result of that query in its exit code. If a listener process is active, nlsadmin will exit with a status of 0; if no process is active, the exit
code will be 1; the exit code will be greater than 1 in case of error.

-\v net_spec

Print a verbose report on the servers associated with net_spec, giving the service code, status, command, and comment for each. It also specifies the uid the server will run as and the list of modules to be pushed, if any, before the server is started.

-z service_code net_spec

Print a report on the server associated with net_spec that has service code service_code, giving the same information as in the -v option.

-q -z service_code net_spec

Query the status of the service with service code service_code on network net_spec, and exits with a status of 0 if that service is enabled, 1 if that service is disabled, and greater than 1 in case of error.

-l address net_spec

Change or set the transport address on which the listener listens (the general listener service). This address can be used by remote processes to access the servers available through this listener (see the -a option, below).

If address is just a dash ("-"), nlsadmin reports the address currently configured, instead of changing it.

A change of address takes effect immediately.

-t address net_spec

Change or set the address on which the listener listens for requests for terminal service but is otherwise similar to the -l option above. A terminal service address should not be defined unless the appropriate remote login software is available; if such software is available, it must be configured as service code 1 (see the -a option, below).

-i net_spec

Initialize an instance of the listener for the network specified by net_spec; that is, create and initialize the files required by the listener as well as starting that instance of the listener. Note that a particular instance
of the listener should be initialized only once. The listener must be initialized before assigning addresses or services.

```
-a service_code

[ -p modules ] [ -w name ] -c cmd -y
```

Add a new service to the list of services available through the indicated listener. `service_code` is the code for the service, `cmd` is the command to be invoked in response to that service code, comprised of the full path name of the server and its arguments, and `comment` is a brief (free-form) description of the service for use in various reports. Note that `cmd` must appear as a single word to the shell; if arguments are required, the `cmd` and its arguments must be enclosed in quotation marks. The `comment` must also appear as a single word to the shell. When a service is added, it is initially enabled (see the `-e` and `-d` options, below).

Service codes are alphanumeric strings, and are administered by AT&T. The numeric service codes 0 through 100 are reserved for internal use by the listener. Service code 0 is assigned to the nlps server, which is the service invoked on the general listening address. In particular, code 1 is assigned to the remote login service, which is the service automatically invoked for connections to the terminal login address.

If the `-p` option is specified, then `modules` will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order they are specified. `modules` should be a comma-separated list of modules, with no white space included.

If the `-w` option is specified, then `name` is interpreted as the user name from `/etc/passwd` that the listener should look up. From the user name, the listener obtains...
the user ID, the group ID(s), and the home directory for use by the server. If -w is not specified, the default is to use the user name listen.

A service must explicitly be added to the listener for each network on which that service is to be available. This operation will normally be performed only when the service is installed on a machine, or when populating the list of services for a new network.

- x service_code net_spec

Remove the entry for the service_code from that listener’s list of services. This is normally done only in conjunction with the de-installation of a service from a machine.

- e service_code net_spec
- d service_code net_spec

Enable or disable (respectively) the service indicated by service_code for the specified network. The service must previously have been added to the listener for that network (see the -a option, above). Disabling a service will cause subsequent service requests for that service to be denied, but the processes from any prior service requests that are still running will continue unaffected.

- s net_spec
- k net_spec

Start and kill (respectively) the listener process for the indicated network. These operations are normally performed as part of the system startup and shutdown procedures. Before a listener can be started for a particular network, it must first have been initialized (see the -i option, above). When a listener is killed, processes that are still running as a result of prior service requests will continue unaffected.

Under the Service Access Facility, it is possible to have multiple instances of the listener on a single net_spec. In any of the above commands, the option -N port_monitor_tag may be used in place of the net_spec argument. This argument specifies the tag by which an instance of the listener is identified by the Service Access Facility. If the -N option is not specified (that is, the net_spec is specified in the invocation), then it will be assumed that the last component of the net_spec represents
the tag of the listener for which the operation is destined. In other words, it is assumed that there is at least one listener on a designated net_spec, and that its tag is identical to the last component of the net_spec. This listener may be thought of as the primary, or default, listener for a particular net_spec.

**nlsadmin** is also used in conjunction with the Service Access Facility commands. In that capacity, the following combinations of options can be used:

```
-V
Write the current version number of the listener's administrative file to the standard output. It is used as part of the sacadm command line when sacadm adds a port monitor to the system.

-c cmd | -o streamname [ -p modules ] [ -A address | -D ] [ -R prognum : versnum ]
Format the port monitor-specific information to be used as an argument to pmadm(1M)
```

The -c option specifies the full path name of the server and its arguments. cmd must appear as a single word to the shell, and its arguments must therefore be surrounded by quotes.

The -o option specifies the full path name of a FIFO or named STREAM through which a standing server is actually receiving the connection.

If the -p option is specified, then modules will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order in which they are specified. modules must be a comma-separated list, with no white space included.

If the -A option is specified, then address will be interpreted as the server's private address. The listener will monitor this address on behalf of the service and will dispatch all calls arriving on this address directly to the designated service. This option may not be used in conjunction with the -D option.

If the -D option is specified, then the service is assigned a private address dynamically, that is, the listener will have the transport provider select the address each time the listener begins listening on behalf of this service. For RPC services, this option will be often be used in conjunction with the -R option to register the dynamically assigned address with the rpcbinder. This option may not be used in conjunction with the -A option.

When the -R option is specified, the service is an RPC service whose address, program number, and version number should be registered with the rpcbinder for this transport provider. This registration is performed each time the listener begins listening on behalf of the service. prognum and versnum are the program number and version number, respectively, of the RPC service.

**nlsadmin** may be invoked by any user to generate reports; all operations that affect a listener's status or configuration may only be run by a super-user.
The options specific to the Service Access Facility may not be used together with any other options.

**ERRORS**
If successful, nlsadmin exits with a status of 0. If nlsadmin fails for any reason, it exits with a status greater than or equal to 2. See -q option for a return status of 1.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
listen(1M), pmaadm(1M), rpcbind(1M), sacadm(1M), attributes(5)

*System Administration Guide: Basic Administration*

**NOTES**
Dynamically assigned addresses are not displayed in reports as statically assigned addresses are.
nscd – name service cache daemon

**SYNOPSIS**

```
/usr/sbin/nscd [-f configuration-file] [-g] [-e cachename, yes | no] [-i cachename]
```

**DESCRIPTION**

nscd is a process that provides a cache for the most common name service requests. It starts up during multi-user boot. The default `configuration-file` `/etc/nscd.conf` determines the behavior of the cache daemon. See `nscd.conf(4)`.

nscd provides caching for the `passwd(4)`, `group(4)`, `hosts(4)`, `ipnodes(4)`, `exec_attr(4)`, `prof_attr(4)`, and `user_attr(4)` databases through standard libc interfaces, such as `gethostbyname(3NSL)`, `getipnodebyname(3SOCKET)`, `gethostbyaddr(3NL)`, and others. Each cache has a separate time-to-live for its data; modifying the local database (`/etc/hosts`, `/etc/resolv.conf`, and so forth) causes that cache to become invalidated upon the next call to `nscd`. The shadow file is specifically not cached. `getspnam(3C)` calls remain uncached as a result.

nscd also acts as its own administration tool. If an instance of nscd is already running, commands are passed to the running version transparently.

In order to preserve NIS+ security, the startup script for nscd (/etc/init.d/nscd) checks the permissions on the `passwd` table if NIS+ is being used. If this table cannot be read by unauthenticated users, then nscd will make sure that any encrypted password information returned from the NIS+ server is supplied only to the owner of that password.

**OPTIONS**

Several of the options described below require a `cachename` specification. Supported values are `passwd`, `group`, `hosts`, `ipnodes`, `exec_attr`, `prof_attr`, and `user_attr`.

- `-f configuration-file` Causes nscd to read its configuration data from the specified file.
- `-g` Prints current configuration and statistics to standard output. This is the only option executable by non-root users.
- `-e cachename, yes | no` Enables or disables the specified cache.
- `-i cachename` Invalidate the specified cache.

**EXAMPLES**

**EXAMPLE 1** Stopping and restarting the nscd daemon.

```
example# /etc/init.d/nscd stop
example# /etc/init.d/nscd start
```

**FILES**

`/etc/nscd.conf` Determines the behavior of the cache daemon
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

getspsnam(3C), gethostbyname(3NSL), getipnodebyname(3SOCKET),
exec_attr(4), group(4), hosts(4), ipnodes(4), nscd.conf(4),
nsswitch.conf(4), passwd(4), prof_attr(4), user_attr(4), attributes(5)

NOTES

The output from the -g option to nscd is subject to change. Do not rely upon it as a programming interface.
nslookup(1M)

NAME
nslookup – query name servers interactively

SYNOPSIS
nslookup [- option]... host [server]
nslookup [- option]... - [server]
nslookup

DESCRIPTION
nslookup sends queries to Internet domain name servers. It has two modes:
interactive and non-interactive. Interactive mode allows the user to contact servers for
information about various hosts and domains or to display a list of hosts in a domain.
Non-interactive mode is used to display just the name and requested information for a
host or domain.

OPTIONS
- option
Set the permissible options, as shown in the following list. These are the
same options that the set command supports in interactive mode (see set
in the Commands section for more complete descriptions).

all
   List the current settings

class=classname
   Restrict search according to the specified class

d2
   Set exhaustive debug mode on

nod2
   Set exhaustive debug mode off

debug
   Set debug mode on

nodebug
   Set debug mode off

defname
   Set domain-appending mode on

nodefname
   Set domain-appending mode off

domain=string
   Establish the appendable domain

ignoretc
   Set it to ignore packet truncation errors

noignoretc
   Set it to acknowledge packet truncation errors

OPERANDS
host
   Inquires about the specified host. In this non-interactive command
   format, nslookup does not prompt for additional commands.

-   Causes nslookup to prompt for more information, such as host
   names, before sending one or more queries.

server
   Directs inquiries to the name server specified here in the command
   line rather than the one read from the /etc/resolv.conf file
   (see resolv.conf(4)). server can be either a name or an Internet
   address. If the specified host cannot be reached, nslookup resorts
to using the name server specified in /etc/resolv.conf.

USAGE
System Administration Commands 1219
Non-interactive mode is selected when the name or Internet address of the host to be looked up is given as the first argument.

Within non-interactive mode, space-separated options can be specified. They must be entered before the host name, to be queried. Each option must be prefixed with a hyphen.

For example, to request extensive host information and to set the timeout to 10 seconds when inquiring about gypsy, enter:

```
example% nslookup -query=hinfo -timeout=10 gypsy
```

To avoid repeated entry of an option that you almost always use, place a corresponding set command in a `.nslookuprc` file located inside your home directory. (See Commands for more information about set.) The `.nslookuprc` file can contain several set commands if each is followed by a RETURN.

Interactive mode is selected when

- No arguments are supplied.
- A '-' (hyphen) character is supplied as the host argument.

To exit from an interactive `nslookup` session, type `Control-d` or type the command `exit` followed by RETURN.

The commands associated with interactive mode are subject to various limitations and run-time conventions.

The maximum length of a command line is 255 characters. When the RETURN key is pressed, command-line execution begins. While a command is running, its execution can be interrupted by typing `Control-c`.

The first word entered on the command line must be the name of a `nslookup` command unless you wish to enter the name of a host to inquire about. Any unrecognized command is handled as a host name to inquire about. To force a command to be treated as a host name to be inquired about, precede it with a backslash character.

## Commands

- `exit`
  - Exit the `nslookup` program.
- `help` or `?`
  - Display a brief summary of commands.
- `host [server]`
  - Look up information for `host` using the current default server, or using `server` if it is specified.
If the host supplied is an Internet address and the query type is A or 1PTR, the name of the host is returned. If the host supplied is a name and it does not have a trailing period, the default domain name is appended to the name. (This behavior depends on the state of the set options domain, srchlist, defname, and search).

To look up a host that is not in the current domain, append a period to the name.

finger [ name ][ >> filename ]
Connect with the finger server on the current host, which is defined by the most recent successful host lookup.

If no name value is specified, a list of login account names on the current host is generated.

Similar to a shell command interpreter, output can be redirected to a file using the usual redirection symbols: > and >>.

ls [ -options ] domain [ >> filename ]
List the information available for domain, optionally creating or appending to filename. The default output contains host names and their Internet addresses.

Output can be redirected to filename using the > and >> redirection symbols. When output is directed to a file, hash marks are shown for every 50 records received from the server. The permissible values for options are:

- a Lists aliases of hosts in the domain. This is a synonym for the command ls -t CNAME.
- d Lists all records for the domain. This is a synonym for the command ls -t ANY.
- h Lists CPU and operating system information for the domain. This is a synonym for the command ls -t HINFO.
- s Lists well-known services of hosts in the domain. This is a synonym for the command ls -t WKS.
- t querytype-value lists all records of the specified type (see querytype within the discussion of the set command).

set token=value
set keyword
Establish a preferred mode of search operation. Permissible token and keyword values are:

- all Display the current values of frequently-used options. Information about the current default server and host is also displayed.
Limit the search according to the protocol group 
(classname) for which lookup information is desired. 
Permissible classname values are:

- ANY       A wildcard selecting all classes
- IN        The Internet class (the default)
- CHAOS     The Chaos class.
- HESIOD    The MIT Athena Hesiod class.

Enable or disable exhaustive debugging mode. 
Essentially all fields of every packet are displayed. 
By default, this option is disabled.

Enable or disable debugging mode. When 
debugging mode is enabled, much more information 
is produced about the packet sent to the server and 
the resulting answer. By default, this option is 
disabled.

Enable or disable appending the default domain 
name to a single-component lookup request (one 
that lacks a dot). By default, this option is enabled 
for nslookup. The default value for the domain 
name is the value given in /etc/resolv.conf, 
unless: there is an environmental value for 
LOCALDOMAIN when nslookup is run; a recent 
value has been specified through the srchlist 
command or the set domain command.

Change the default domain name to be appended to 
all lookup requests to string. For this option to have 
any effect, the defname option must also be enabled 
and the search option must be set in a compatible 
way. The domain search list contains the parents of 
the default domain if it has at least two components 
in its name. For example, if the default domain is 
CC.Berkeley.EDU, the search list is 
CC.Berkeley.EDU and Berkeley.EDU. Use the 
set srchlist command to specify a different list. 
Use the set all command to display the list.

Ignore packet truncation errors. By default, this 
option is disabled.
Change the default domain name to name1 and the domain search list to name1, name2, etc. A maximum of 6 names can be specified, along with slash characters to separate them. For example,

```bash
example$ set srchlist=lcs.MIT.EDU/ai.MIT.EDU/MIT.EDU
```
sets the domain to lcs.MIT.EDU and the search list to all three names. This command overrides the default domain name and search list of the `set domain` command. Use the `set all` command to display the list.

The `search` and `nosearch` options enable or disable having the domain names in the domain search list appended to the request, generating a series of lookup queries if necessary until an answer is received. To take effect, the lookup request must contain at least one dot (period); yet it must not contain a trailing period. By default, this option is enabled.

`port=value` specifies the default TCP/UDP name server port. By default, this value is 53.

`querytype=value` changes the type of information returned from a query to one of:

- **A**: The Internet address of the host
- **CNAME**: The canonical name for an alias
- **HINFO**: The host CPU and operating system type
- **MD**: The mail destination
- **MX**: The mail exchanger
- **MB**: The mailbox domain name
- **MG**: The mail group member
- **MINFO**: The mailbox or mail list information
- **NS**: The name server
- **PTR**: The host name if the query is in the form of an Internet address; otherwise the pointer to other information
- **SOA**: The domain’s start-of-authority information
- **TXT**: The text information
- **UINFO**: The user information
- **WKS**: The supported well-known services

(Other types specified in the RFC 1035 document are valid, but they are not as useful.)
nslookup(1M)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>recurse</td>
<td>Enable or disable having to query other name servers before abandoning a search. By default, this feature is enabled.</td>
</tr>
<tr>
<td>norecurse</td>
<td></td>
</tr>
<tr>
<td>ret[ry]=count</td>
<td>Set the maximum number of times to retry a request before abandoning a search. When a reply to a request is not received within a certain amount of time (changed with set timeout), the timeout period is doubled and the request is resent. The retry value controls how many times a request is resent before the request is aborted. The default for count is 4.</td>
</tr>
<tr>
<td>ro[ot]=host</td>
<td>Change the name of the root server to host. This affects the root command. The default root server is ns.internic.net.</td>
</tr>
<tr>
<td>t[imeout]=interval</td>
<td>Change the amount of time to wait for a reply to interval seconds. Each retry doubles the timeout period. The default interval is 5 seconds.</td>
</tr>
<tr>
<td>vc</td>
<td>Enable or disable the use of a virtual circuit when sending requests to the server. By default, this feature is disabled.</td>
</tr>
<tr>
<td>novc</td>
<td></td>
</tr>
<tr>
<td>root</td>
<td>Change the default server to the server for the root of the domain name space. Currently, the host ns.internic.net is used; this command is a synonym for server ns.internic.net. The name of the root server can be changed with the set root command.</td>
</tr>
<tr>
<td>server domain</td>
<td></td>
</tr>
<tr>
<td>lserver domain</td>
<td>Change the default server to domain. lserver uses the initial server to look up information about domain while server uses the current default server. If an authoritative answer cannot be found, the names of servers that might have the answer are returned.</td>
</tr>
</tbody>
</table>

EXAMPLES

EXAMPLE 1 Searching the Internet Domain Namespace

To effectively search the Internet domain namespace, it helps to know its structure. At present, the Internet domain name-space is tree-structured, with one top level domain for each country except the United States. There are also some traditional top level domains, not explicitly tied to any particular country. These include:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Commercial establishments</td>
</tr>
<tr>
<td>EDU</td>
<td>Educational institutions</td>
</tr>
<tr>
<td>ORG</td>
<td>Not-for-profit organizations</td>
</tr>
<tr>
<td>GOV</td>
<td>Government agencies</td>
</tr>
<tr>
<td>MIL</td>
<td>MILNET hosts</td>
</tr>
</tbody>
</table>
EXAMPLE 1 Searching the Internet Domain Namespace  

(Continued)

If you are looking for a specific host, you need to know something about the host’s organization in order to determine the top-level domain that it belongs to. For instance, if you want to find the Internet address of a machine at UCLA, do the following:

- Connect with the root server using the `root` command. The root server of the name space has knowledge of the top-level domains.

- Since UCLA is a university, its domain name is `ucla.edu`. Connect with a server for the `ucla.edu` domain with the command `server ucla.edu`. The response produces the names of hosts that act as servers for that domain. Note: the root server does not have information about `ucla.edu`, but knows the names and addresses of hosts that do. Once located by the root server, all future queries will be sent to the UCLA name server.

- To request information about a particular host in the domain (for instance, `locus`), just type the host name. To request a listing of hosts in the UCLA domain, use the `ls` command. The `ls` command requires a domain name, (in this case, `ucla.edu`, as an argument.

If you are connected with a name server that handles more than one domain, all lookups for host names must be fully specified with its domain. For instance, the domain `harvard.edu` is served by `seismo.css.gov`, which also services the `css.gov` and `cornell.edu` domains. A lookup request for the host `aiken` in the `harvard.edu` domain must be specified as `aiken.harvard.edu`. However, the `domain=name` and `set defname` commands can be used to automatically append a domain name to each request.

After a successful lookup of a host, use the `finger(1)` command to see who is on the system, or to `finger` a specific person. (`finger` requires the type to be A.)

To get other information about the host, use the `set querytype=value` command to change the type of information desired and request another lookup.

**ENVIRONMENT VARIABLES**

- `HOSTALIASES`  References the file containing host aliases
- `LOCALDOMAIN`  Overrides default domain

**EXIT STATUS**

The process returns the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On success.</td>
</tr>
<tr>
<td>1</td>
<td>On failure.</td>
</tr>
</tbody>
</table>

**FILES**

- `/etc/resolv.conf`
  Initial domain name and name server addresses
- `~/.nslookuprc`
  Initial option commands

---

System Administration Commands 1225
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard BIND 8.2.4</td>
</tr>
</tbody>
</table>

SEE ALSO

finger(1), more(1), in.named(1M), nstest(1M), resolver(3RESOLV), resolv.conf(4), attributes(5)


DIAGNOSTICS

If the lookup request is successful, an error message is produced. Possible errors are:

Timed out: The server did not respond to a request after a certain amount of time (changed with `set timeout=value`) and a certain number of retries (changed with `set retry=value`).

No response from server: No name server is running on the server machine.

No records: The server does not have resource records of the current query type for the host, although the host name is valid. The query type is specified with the `set querytype` command.

Non-existent domain: The host or domain name does not exist.

Connection refused: The connection to the name or finger server can not be made at the current time. This error commonly occurs with `ls` and `finger` requests.

Network is unreachable: The connection to the name or finger server can not be made at the current time. This error commonly occurs with `ls` and `finger` requests.

Server failure: The name server found an internal inconsistency in its database and could not return a valid answer.

Refused: The name server refused to service the request.
Format error

The name server found that the request packet was not in the proper format. This may indicate an error in nslookup.
nstest(1M)

NAME

nstest – DNS test shell

SYNOPSIS

nstest [-d] [-i] [-r] [-v] [-p port] [inet_addr [logfile]]

DESCRIPTION

nstest is an interactive DNS test program. Queries are formed and sent by user command; any reply received is printed on the standard output. inet_addr is the Internet address of the DNS resolver to which nstest should send its queries. If inet_addr is not included, nstest first tries to contact a DNS server on the local host; if that fails, it tries the servers listed in the /etc/resolv.conf file. If a logfile is supplied, nstest uses it to log the queries sent and replies received.

OPTIONS

-d  Causes nstest to create a file named ns_packet.dump (if it does not exist) and write into it a raw (binary) copy of each packet sent. If ns_packet.dump does exist, nstest will truncate it.

-i  Sets the RES_IGNTC flag on the queries it makes. See resolver(3RESOLV) for a description of the RES_IGNTC flag.

-r  Turns off the RES_RECURSE flag on the queries it makes. See resolver(3RESOLV) for a description of the RES_RECURSE flag.

-v  Turns on the RES_USEVC and RES_STAYOPEN flags on the res_send() calls made. See resolver(3RESOLV) for a description of the RES_USEVC and RES_STAYOPEN flags.

-p  Causes nstest to use the supplied port instead of the default name server port.

USAGE

When nstest starts, it prints a prompt (">") and waits for user input. DNS queries are formed by typing a key letter followed by the appropriate argument. Each key letter results in a call to res_mkquery() with op set to either IQUERY or QUERY and type set to one of the type values (defined in <arpa/nameser.h>). (Any other key letter than those listed below causes nstest to print a summary of the following table.)

<table>
<thead>
<tr>
<th>Key Letter &amp; Argument</th>
<th>Op</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ahost</td>
<td>QUERY</td>
<td>T_A</td>
</tr>
<tr>
<td>Addr</td>
<td>IQUERY</td>
<td>T_A</td>
</tr>
<tr>
<td>Buser</td>
<td>QUERY</td>
<td>T_MG</td>
</tr>
<tr>
<td>buser</td>
<td>QUERY</td>
<td>T_MB</td>
</tr>
<tr>
<td>chost</td>
<td>QUERY</td>
<td>T_CNAME</td>
</tr>
<tr>
<td>fhost</td>
<td>QUERY</td>
<td>T_UINFO</td>
</tr>
</tbody>
</table>
After the query is successfully formed, `res_send()` is called to send it and wait for a reply. `nstest` then prints the following on the standard output:

- a summary of the request and reply packets, including the HEADER structure (defined in `<arpa/nameser.h>`) used in the request
- the question being asked of the name server
- an enumeration of the name server(s) being polled
- a summary of the HEADER structure received in the reply
- the question the name server answered
- the answer itself

**EXAMPLES**

**EXAMPLE 1** Fetching the Address of a Host From the Sun Name Server

The following command fetches the address of host `playground.sun.com` from the Sun name server:

```
$ nstest 192.9.5.1 > aplayground.sun.com
```

The utility `nstest` returns the following:

```
res_mkquery(0, playground.sun.com, 1, 1)
res_send()
HEADER:
```
EXAMPLE 1 Fetching the Address of a Host From the Sun Name Server

```plaintext
opcode = QUERY, id = 1, rcode = NOERROR
header flags: rd
qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:
  playground.sun.com, type = A, class = IN

Querying server (# 1) address = 192.9.5.1

got answer:
  HEADER:
    opcode = QUERY, id = 1, rcode = NOERROR
    header flags: qr aa rd ra
    qdcount = 1, ancount = 1, nscount = 0, arcount = 0
  QUESTIONS:
    playground.sun.com, type = A, class = IN
  ANSWERS:
    playground.sun.com
type = A, class = IN, ttl = 1 day, dlen = 4
    internet address = 192.9.5.5
```

EXAMPLE 2 Looking Up a PTR record

The following command looks up a PTR record:

```plaintext
$ nstest 192.9.5.1
> p5.5.9.192.in-addr.arpa
```

The utility `nstest` would return the following:

```plaintext
res_mkquery(0, 5.5.9.192.in-addr.arpa, 1, 12)
res_send()

HEADER:
  opcode = QUERY, id = 2, rcode = NOERROR
  header flags: rd
  qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:
  5.5.9.192.in-addr.arpa, type = PTR, class = IN

Querying server (### 1) address = 192.9.5.1

got answer:
  HEADER:
    opcode = QUERY, id = 2, rcode = NOERROR
    header flags: qr aa rd ra
    qdcount = 1, ancount = 1, nscount = 0, arcount = 0
  QUESTIONS:
    5.5.9.192.in-addr.arpa, type = PTR, class = IN
  ANSWERS:
    5.5.9.192.in-addr.arpa
type = PTR, class = IN, ttl = 7 hours 47 mins 2 secs, dlen = 23
domain name = playground.sun.com
```
FILES

- /usr/include/arpa/nameser.h: Include file for implementation of DNS protocol
- /usr/include/resolv.h: Include file for the resolver daemon (in.named)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

nslookup(1M), resolver(3RESOLV), attributes(5)
**NAME**
nsupdate – update Internet name servers interactively

**SYNOPSIS**
nsupdate [-k keydir:keyname] [-d] [-v] [filename]

**DESCRIPTION**
The `nsupdate` program can be used to update Internet domain name servers that support dynamic update. `nsupdate` uses the DNS resolver library to pass messages to the DNS server requesting the addition or deletion of DNS resource records (RR’s).

`nsupdate` reads input from `filename` or from standard input.

**OPTIONS**
`nsupdate` supports the following options:
- `-d` Debug mode.
- `-k` Sign updates with Secret Key Transaction Authentication for DNS (TSIG).
- `-v` Virtual circuit. Make use of TCP to communicate with the server. The default is UDP.

**USAGE**
`nsupdate` reads input records, one per line. Each line contributes a resource record to an update request. All domain names used in a single update request must belong to the same DNS zone. Updates are sent to the master server as defined in the `SOA MNAME` field. A blank line causes the accumulated records to be formatted into a single update request and transmitted to the zone’s authoritative name servers. Additional records may follow, which are formed into additional, but completely independent, update requests. End the input with a blank line in order to transmit the last request.

Records take one of two general forms. Prerequisite records specify conditions that must be satisfied before the request will be processed. Update records specify changes to be made to the DNS database. An update request consists of zero or more prerequisites and one or more updates. Each update request is processed atomically. All prerequisites must be satisfied, then all updates will be performed.

`nsupdate` understands the following input record formats:

```
prereq nxdomain domain-name
```
This format requires that no RR of any type exist with name `domain-name`.

```
prereq yxdomain domain-name
```
This format requires that at least one RR names `domain-name` must exist.

```
prereq nxrrset domain-name [class] type
```
This format requires that no RR exist of the specified type and `domain-name`.

```
prereq yxrrset domain-name [class] type [data ...]
```
This format requires that an RR exist of the specified `type` and `domain-name`. If `data` is specified, it must match exactly.

```
update delete domain-name [class] [type [data ...]]
```
This format deletes RR's names domain-name. If type (and possibly data) are specified, only matching records will be deleted.

update add domain-name ttl [class] type data ...

This format adds a new RR of specified ttl, type and data.

EXAMPLE 1 Using nsupdate Interactively To Change an IP Address

The following example shows the interactive use of nsupdate to change an IP address. It deletes any existing A records for a domain name and then inserts a new address. Since no prerequisites are specified, the new record will be added even if there are no existing records to delete. A trailing blank line is required to process the request.

example$ nsupdate
>update delete test.example.com A
>update add test.example.com 3600 A 10.1.1.1
>

EXAMPLE 2 Using nsupdate Interactively to Add a CNAME (Alias)

In the following example, a CNAME (alias) is added to the database only if there are no existing A or CNAME records for the domain name.

example$ nsupdate
>prereq nxrrset www.example.com A
>prereq nxrrset www.example.com CNAME
>update add www.example.com 3600 CNAME test.test.com
>

EXAMPLE 3 Using nsupdate Interactively With a Key

In the following example, nsupdate is signed with the key mykey, which is located in the directory /var/named/keys.

example$ nsupdate -k /var/named/keys:mykey
>update add ftp.example.com 60 A 192.168.5.1
>

FILES
/etc/resolv.conf Initial domain name and name server addresses.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard BIND 8.2.4</td>
</tr>
</tbody>
</table>
nsupdate(1M)

SEE ALSO  in.named(1M), resolver(3RESOLV), resolv.conf(4), attributes(5)


DIAGNOSTICS

Qq send error
   This message typically indicates that authoritative name servers could not be reached.

Qq failed update packet
   This message typically indicates that the name server has rejected the update. Either the name server does not support dynamic update, or there was an authentication failure.

Qq res_mkupdate: packet size = size
   If this is the only message sent, it indicates that the update was received and authenticated by the name server. However, the prerequisites may have prevented the update from being performed. Use debug mode (the -d option) to examine the status field in the name server's reply and determine if the update was performed.
**ntpd** – set the date and time by way of NTP

**SYNOPSIS**

```
/usr/sbin/ntpdate [-bBdoqsuv] [-a key#] [-e authdelay] [-k keyfile]
               [-m] [-o version] [-p samples] [-t timeout] [-w] server...
```

**DESCRIPTION**

The `ntpdate` utility sets the local date and time. To determine the correct time, it polls the Network Time Protocol (NTP) servers on the hosts given as arguments. This utility must be run as root on the local host. It obtains a number of samples from each of the servers and applies the standard NTP clock filter and selection algorithms to select the best of these.

The reliability and precision of `ntpdate` improve dramatically with a greater number of servers. While a single server may be used, better performance and greater resistance to inaccuracy on the part of any one server can be obtained by providing at least three or four servers, if not more.

The `ntpdate` utility makes time adjustments in one of two ways. If it determines that your clock is off by more than 0.5 seconds it simply steps the time by calling `gettimeofday(3C)`. If the error is less than 0.5 seconds, by default, it slews the clock’s time with the offset, by way of a call to `adjtime(2)`. The latter technique is less disruptive and more accurate when the offset is small; it works quite well when `ntpdate` is run by `cron` every hour or two. The adjustment made in the latter case is actually 50% larger than the measured offset. This adjustment tends to keep a badly drifting clock more accurate, at some expense to stability. This tradeoff is usually advantageous. At boot time, however, it is usually better to step the time. This can be forced in all cases by specifying the `-b` option on the command line.

The `ntpdate` utility declines to set the date if an NTP server daemon like `xntpd(1M)` is running on the same host. It can be run on a regular basis from `cron(1M)` as an alternative to running a daemon. Doing so once every one to two hours results in precise enough timekeeping to avoid stepping the clock.

**OPTIONS**

The following options are supported:

- `-a key#`
  Authenticate transactions, using the key number, `key#`.

- `-b`
  Step the time by calling `gettimeofday(3C)`.

- `-B`
  Force the time to always be slewed using the `adjtime(2)` system call, even if the measured offset is greater than +128 ms. The default is to step the time using `settimeofday(3C)` if the offset is greater than +128 ms. If the offset is much greater than +128 ms in this case, that it can take a long time (hours) to slew the clock to the correct value. During this time the host should not be used to synchronize clients.

- `-d`
  Display what will be done without actually doing it. Information useful for general debugging is also printed.

- `-e authdelay`
  Specify an authentication processing delay, `authdelay` in seconds.
  See `xntpd(1M)` for details. This number is usually small enough to
be negligible for purposes of ntpdate. However, specifying a value may improve timekeeping on very slow CPU’s.

- k keyfile

Read keys from the file keyfile instead of the default file, /etc/nt.p.keys. keyfile should be in the format described in xntpd(1M).

- m

Join multicast group specified in server and synchronize to multicast NTP packets. The standard NTP group is 224.0.1.1.

- o version

Force the program to poll as a version 1 or version 2 implementation. By default ntpdate claims to be an NTP version 3 implementation in its outgoing packets. However, some older software declines to respond to version 3 queries. This option can be used in these cases.

- p samples

Set the number of samples ntpdate acquires from each server. samples can be between 1 and 8 inclusive. The default is 4.

- q

Query only. Do not set the clock.

- s

Log actions by way of the syslog(3C) facility rather than to the standard output — a useful option when running the program from cron(1M).

- t timeout

Set the time ntpdate spends, waiting for a response. timeout is rounded to a multiple of 0.2 seconds. The default is 1 second, a value suitable for polling across a LAN.

- u

Use an unprivileged port to send the packets from. This option is useful when you are behind a firewall that blocks incoming traffic to privileged ports, and you want to synchronize with hosts beyond the firewall. The - d option always uses unprivileged ports.

- v

Be verbose. This option causes ntpdate’s version identification string to be logged.

- w

Wait until able to synchronize with a server. When the - w option is used together with - m, ntpdate waits until able to join the group and synchronize.

FILES

/etc/inet/nt.p.keys Contains the encryption keys used by ntpdate.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntpu</td>
</tr>
</tbody>
</table>
The technique of compensating for clock oscillator errors to improve accuracy is inadequate. However, to further improve accuracy would require the program to save state from previous runs.
ntpq(1M)

NAME
ntpq – standard Network Time Protocol query program

SYNOPSIS
/usr/sbin/ntpq [-inp] [-c command] [host] [...]

DESCRIPTION
ntpq queries NTP servers which implement the recommended NTP mode 6 control
message format, about current state. It can also request changes in that state. The
program can be run in interactive mode; or it can be controlled using command line
arguments. Requests to read and write arbitrary variables can be assembled, with raw
and pretty-printed output options available. By sending multiple queries to the
server, ntpq can also obtain and print a list of peers in a common format.

If one or more request options are included on the command line, ntpq sends each of
the requests to NTP servers running on each of the hosts given as command line
arguments. By default, ntpq sends its requests to localhost, if hosts are not
included on the command line. If no request options are given, ntpq attempts to read
commands from the standard input and execute them on the NTP server running on
the first host given on the command line. Again, ntpq defaults to localhost if no
other host is specified.

ntpq uses NTP mode 6 packets to communicate with an NTP server. Thus, it can be
used to query any compatible server on the network that permits queries. Since NTP is
a UDP protocol, this communication will be somewhat unreliable, especially over
large distances. ntpq makes one attempt to retransmit requests; requests timeout if the
remote host is not heard from within a suitable period.

OPTIONS
Command line options are described below. Specifying a command line option other
than -i or -n causes the specified query (queries) to be sent, immediately to the
indicated host(s). Otherwise, ntpq attempts to read interactive format commands
from standard input.

- c Interpret the next argument as an interactive format command and add it
to the list of commands to be executed on the specified host(s). Multiple -c
options may be given.

- i Operate in interactive mode; write prompts to standard output and read
commands from standard input.

- n Output all host addresses in dotted-quad numeric format rather than
converting them to canonical host names.

- p Print a list of the peers known to the server as well as a summary of their
state. This is equivalent to the peers interactive command. See USAGE
below.

USAGE
Interactive format commands consist of a keyword followed by up to four arguments.
Only enough characters of the full keyword to uniquely identify the command need
be typed. Normally, the output of a command is sent to standard output; but this
output may be written to a file by appending a ‘>’, followed by a file name, to the
command line.
A number of interactive format commands are executed entirely within the `ntpq` program itself. They do not result in NTP mode 6 requests being sent to a server. If no request options are included on the command line, and if the standard input is a terminal device, `ntpq` prompts for these commands. The interactive commands are described below:

\[ \text{command_keyword} \]

A '?' by itself prints a list of all the command keywords known to the current version of `ntpq`. A '?' followed by a command keyword prints function and usage information about the command.

**timeout milliseconds**

Specifies a time out period for responses to server queries. The default is about 5000 milliseconds. Since `ntpq` retries each query once after a time out, the total waiting time for a time out is twice the time out value that is set.

**delay milliseconds**

Specifies a time interval to be added to timestamps included in requests which require authentication. This command is used to enable (unreliable) server reconfiguration over long delay network paths or between machines whose clocks are unsynchronized. Currently, the server does not require time stamps in authenticated requests. Thus, this command may be obsolete.

**host hostname**

Set the name of the host to which future queries are to be sent. *Hostname* may be either a host name or a numeric address.

**keyid #**

Specify of a key number to be used to authenticate configuration requests. This number must correspond to a key number the server has been configured to use for this purpose.

**passwd**

Prompts the user to type in a password which will be used to authenticate configuration requests. If an authenticating key has been specified (see `keyid` above), this password must correspond to this key. `ntpq` does not echo the password as it is typed.

**hostnames yes | no**

If "yes" is specified, host names are printed in information displays. If "no" is given, numeric addresses are printed instead. The default is "yes" unless modified using the command line `-n` switch.

**raw**

Print all output from query commands exactly as it is received from the remote server. The only formatting/filtering done on the data is to transform non-ASCII data into printable form.
cooked
Causes output from query commands to be “cooked”. The values of variables recognized by the server are reformatted, so that they can be more easily read. Variables which \texttt{ntp} thinks should have a decodable value, but do not, are marked with a trailing ‘?’.

\texttt{ntpversion [1 | 2 | 3]}
Sets the NTP version number which \texttt{ntp} claims in packets (defaults is 3). Note that mode 6 control messages (and modes, for that matter) did not exist in NTP version 1. There appear to be no servers left which demand version 1.

\texttt{authenticate [yes | no]}
The command \texttt{authenticate yes} instructs \texttt{ntp} to send authentication with all requests it makes. Normally \texttt{ntp} does not authenticate requests unless they are write requests. Authenticated requests cause some servers to handle requests slightly differently, and can occasionally cause a slowed response if you turn authentication on before doing a peer display. \texttt{addvars variable\_name=value [,. . .]} \texttt{rmvars variable\_name [,. . .]} \texttt{clearvars}

The data carried by NTP mode 6 messages consists of a list of items of the form \texttt{variable\_name=value} where the “=value” is ignored, and can be omitted, in requests to the server to read variables. \texttt{ntp} maintains an internal list in which data to be included in control messages can be assembled, and sent. This is accomplished with the \texttt{readlist} and \texttt{writelist} commands described below. The \texttt{addvars} command allows variables and their optional values to be added to the list. If more than one variable is to be added, the list should be comma-separated, and it should not contain white space. The \texttt{rmvars} command can be used to remove individual variables from the list; the \texttt{clearlist} command removes all variables from the list.

\texttt{debug [more | less | off]}
Turns internal query program debugging on and off.

\texttt{quit}
Exit \texttt{ntp}.

Each peer known to an NTP server has a 16 bit integer \texttt{association identifier} assigned to it. NTP control messages which carry peer variables must identify the peer that the values correspond to, by including its association ID. An association ID of 0 is special. It indicates the variables are system variables, whose names are drawn from a separate name space.

Control message commands send one or more NTP mode 6 messages to the server, and cause the data returned to be printed in some format. Most commands currently implemented send a single message and expect a single response. The current exceptions are the \texttt{peers mreadlist} and \texttt{mreadvar} commands. The \texttt{peers} command sends a preprogrammed series of messages to obtain the data it needs. The \texttt{mreadlist} and \texttt{mreadvar} commands, iterate over a range of associations.
Control message commands are described below:

**associations**
Obtains and prints a list of association identifiers and peer statuses for in-spec peers of the server being queried. The list is printed in columns. The first of these is an index that numbers the associations from 1, for internal use. The second column contains the actual association identifier returned by the server and the third the status word for the peer. This is followed by a number of columns containing data decoded from the status word. Note that the data returned by the associations command is cached internally in `ntpq`. The index is then of use when dealing with "dumb" servers which use association identifiers that are hard for humans to type. For any subsequent commands which require an association identifier as an argument, the identifier can be specified by using the form, `&index`. Here `index` is taken from the previous list.

**lassociations**
Obtains and prints a list of association identifiers and peer statuses for all associations for which the server is maintaining state. This command differs from the associations command only for servers which retain state for out-of-spec client associations. Such associations are normally omitted from the display when the associations command is used, but are included in the output of lassociations.

**passociations**
Prints association data concerning in-spec peers from the internally cached list of associations. This command performs identically to the associations command except that it displays the internally stored data rather than making a new query.

**lpassociations**
Print data for all associations, including out-of-spec client associations, from the internally cached list of associations. This command differs from passociations only when dealing with servers which retain state for out-of-spec client associations.

**pstatus assocID**
Sends a read status request to the server for the given association. The names and values of the peer variables returned will be printed. Note that the status word from the header is displayed preceding the variables, both in hexadecimal and in pigeon English.

**readvar [assoc] [ variable_name=value ] [ ... ]**
Requests that the values of the specified variables be returned by the server by sending a read variables request. If the association ID is omitted or is given as zero the variables are system variables, otherwise they are peer variables and the values returned will be those of the corresponding peer. Omitting the variable list will send a request with no data which should induce the server to return a default display.

**rv [assocID] [ variable_name=value ] [ ... ]**
An easy-to-type short form for the readvar command.
writevar assocID variable_name=value [, ...]
   Like the readvar request, except the specified variables are written instead of read.

readlist [assocID]
   Requests that the values of the variables in the internal variable list be returned by
   the server. If the association ID is omitted or is 0 the variables are assumed to be
   system variables. Otherwise they are treated as peer variables. If the internal
   variable list is empty a request is sent without data, which should induce the
   remote server to return a default display.

rl [assocID]
   An easy-to-type short form of the readlist command.

writelist [assocID]
   Like the readlist request, except the internal list variables are written instead of
   read.

mreadvar assocID assocID [ variable_name=value [, ... ]]
   Like the readvar command except the query is done for each of a range of
   (nonzero) association IDs. This range is determined from the association list cached
   by the most recent associations command.

mrv assocID assocID [ variable_name=value [, ... ]]
   An easy-to-type short form of the mreadvar command.

mreadlist assocID assocID
   Like the readlist command except the query is done for each of a range of
   (nonzero) association IDs. This range is determined from the association list cached
   by the most recent associations command.

tpl assocID assocID
   An easy-to-type short form of the mreadlist command.

clockvar [assocID] [ variable_name=value [, ... ]]
   Requests that a list of the server’s clock variables be sent. Servers which have a
   radio clock or other external synchronization respond positively to this. If the
   association identifier is omitted or zero the request is for the variables of the
   “system clock”. This request generally gets a positive response from all servers with
   a clock. Some servers may treat clocks as pseudo-peers and, hence, can possibly
   have more than one clock connected at once. For these servers, referencing the
   appropriate peer association ID shows the variables of a particular clock. Omitting
   the variable list causes the server to return a default variable display.

tcv [assocID] [ variable_name=value [, ... ]]
   An easy-to-type short form of the clockvar command.

peers
   Obtains a list of in-spec peers of the server, along with a summary of each peer’s
   state. Summary information includes:
   - The address of the remote peer
   - The reference ID (0.0.0.0 if the ref ID is unknown)
The stratum of the remote peer
- The type of the peer (local, unicast, multicast or broadcast) when the last packet was received
- The polling interval in seconds
- The reachability register, in octal
- The current estimated delay offset and dispersion of the peer, all in milliseconds.

The character in the left margin indicates the fate of this peer in the clock selection process. The codes mean:

SPACE  Discarded due to high stratum and/or failed sanity checks.
x       Designated falsticker by the intersection algorithm.
.       Culled from the end of the candidate list.
−       Discarded by the clustering algorithm.
+       Included in the final selection set.
#       Selected for synchronization; but distance exceeds maximum.
*       Selected for synchronization.
o      Selected for synchronization, pps signal in use.

Since the peers command depends on the ability to parse the values in the responses it gets, it may fail to work from time to time with servers which poorly control the data formats.

The contents of the host field may be given in one of four forms. It may be a host name, an IP address, a reference clock implementation name with its parameter or, REFCLK(implementation number, parameter). On “hostnames no” only IP-addresses will be displayed.

lpeers
Like peers, except a summary of all associations for which the server is maintaining state is printed. This can produce a much longer list of peers from inadequate servers.

opeers
An old form of the peers command with the reference ID replaced by the local interface address.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntpu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
The `peers` command is non-atomic. It may occasionally result in spurious error messages about invalid associations occurring and terminating the command.

The timeout value is a fixed constant. As a result, it often waits a long time to timeout, since the fixed value assumes sort of a worst case. The program should improve the time out estimate as it sends queries to a particular host; but it does not.
ntptrace(1M)

NAME
ntptrace – trace a chain of NTP hosts back to their master time source

SYNOPSIS
/usr/sbin/ntptrace [-vdn] [-r retries] [-t timeout] [server]

DESCRIPTION
ntptrace determines where a given Network Time Protocol (NTP) server gets its
time from, and follows the chain of NTP servers back to their master time source. If
given no arguments, it starts with localhost.

OPTIONS
The following options are supported:
  -d       Turns on some debugging output.
  -n       Turns off the printing of host names; instead, host IP addresses are
given. This may be necessary if a nameserver is down.
  -r retries  Sets the number of retransmission attempts for each host.
  -t timeout  Sets the retransmission timeout (in seconds); default = 2.
  -v       Prints verbose information about the NTP servers.

EXAMPLES
EXAMPLE 1 Sample Output From the ntptrace Command
The following example shows the output from the ntptrace command:

% ntptrace
  localhost: stratum 4, offset 0.0019529, synch distance 0.144135
  server2.boxo.com: stratum 2, offset 0.0124263, synch distance 0.115784
  usndh.edu: stratum 1, offset 0.0019298, synch distance 0.011993, refid 'WWVB'

On each line, the fields are (left to right):
- The server’s host name
- The server’s stratum
- The time offset between that server and the local host (as measured by ntptrace;
  this is why it is not always zero for localhost)
- The host’s synchronization distance
- The reference clock ID (only for stratum-1 servers)

All times are given in seconds. Synchronization distance is a measure of the goodness
of the clock’s time.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntpu</td>
</tr>
</tbody>
</table>

SEE ALSO
xntpd(1M), attributes(5)
BUGS | This program makes no attempt to improve accuracy by doing multiple samples.
obpsym is a kernel module that installs OpenBoot callback handlers that provide kernel symbol information to OpenBoot. OpenBoot firmware user interface commands use the callbacks to convert numeric addresses to kernel symbol names for display purposes, and to convert kernel symbol names to numeric literals allowing symbolic names to be used as input arguments to user interface commands.

Once obpsym is installed, kernel symbolic names may be used anywhere at the OpenBoot firmware’s user interface command prompt in place of a literal (numeric) string. For example, if obpsym is installed, the OpenBoot firmware commands ctrace and dis typically display symbolic names and offsets in the form modname:symbolname + offset. User interface Commands such as dis can be given a kernel symbolic name such as ufs:ufs_mount instead of a numeric address.

Placing the command
force load: misc/obpsym

into the system(4) file forces the kernel module misc/obpsym to be loaded and activates the kernel callbacks during the kernel startup sequence.

obpsym may be useful as a kernel debugger in situations where other kernel debuggers are not useful. For example, on SPARC machines, if obpsym is loaded, you may be able to use the OpenBoot firmware’s ctrace command to display symbolic names in the stack backtrace after a watchdog reset.

The syntax for a kernel symbolic name is:

\[ \text{module-name} : \text{symbol-name} \]

Where \text{module-name} is the name of the kernel module that the symbol \text{symbol-name} appears in. A NULL module name is taken as "all modules, in no particular order" by obpsym. The module name unix is equivalent to a NULL module name, so that conflicts with words defined in the firmware’s vocabulary can be avoided.

Typically, OpenBoot firmware reads a word from the input stream and looks the word up in its internal vocabulary before checking if the word is a literal. Thus, kernel symbols, such as reset may be given as unix:reset to avoid the unexpected side effect of the firmware finding and executing a matching word in its vocabulary.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcar</td>
</tr>
</tbody>
</table>

SEE ALSO

kadb(1M), kernel(1M), modload(1M), modunload(1M), uname(1), system(4), attributes(5)

OpenBoot 2.x Command Reference Manual

WARNINGS

Some OpenBoot firmware user interface commands may use system resources incompatibly with the way they are used by the Unix kernel. These commands and the use of this feature as a kernel debugger may cause interactions that the Unix kernel is not prepared to deal with. If this occurs, the Unix kernel and/or the OpenBoot firmware user interface commands may react unpredictably and may panic the system, or may hang or may cause other unpredictable results. For these reasons, the use of this feature is only minimally supported and recommended to be used only as a kernel debugger of "last resort".

If a breakpoint or watchpoint is triggered while the console frame buffer is powered off, the system can crash and be left in a state from which it is difficult to recover. If one of these is triggered while the monitor is powered off, you will not be able to see the debugger output.

NOTES

platform-name can be found using the -i option of uname(1)

obpsym is supported only on architectures that support OpenBoot firmware.

On some systems, OpenBoot must be completely RAM resident so the obpsym symbol callback support can be added to the firmware, if the firmware doesn’t include support for the symbol callbacks. On these systems, obpsym may complain that it requires that "you must use ramforth to use this module".

See the OpenBoot 2.x Command Reference Manual for details on how to use the ramforth command, how to place the command into nvrarnc, and how to set use-nvrarnc? to true. On systems with version 1.x OpenBoot firmware, nvrarnc doesn’t exist, and the ramforth command must be typed manually after each reset, in order to use this module.

Once installed, the symbol table callbacks can be disabled by using the following OpenBoot firmware command:

0 0 set-symbol-lookup
NAME
ocfserv – OCF server

SYNOPSIS
ocfserv [-D] [-p path]

DESCRIPTION
The OCF server, ocfserv, is a per-host daemon that acts as the central point of communications with all smartcards connected to the host. Applications that need to use a smartcard can do so by using the APIs in libsmartcard.so or smartcard.jar. The internal implementation of these APIs communicates with ocfserv to perform the requested function.

inetd(1M) automatically starts the ocfserv command when it is needed. Once started, ocfserv runs forever. If ocfserv is killed or crashes, it restarts automatically if necessary.

Because ocfserv is run automatically, there really is not a reason to run it by manually. You must have root privileges to execute this utility.

OPTIONS
The following options are supported:
-D Run ocfserv in debug mode.
-p path Specify property file name.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/etc/smartcard/opencard.properties
File where server stores properties

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWocf</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), smartcard(1M), attributes(5), smartcard(5)
parse_dynamic_clustertoc(1M)

NAME  parse_dynamic_clustertoc – parse clustertoc file based on dynamic entries

SYNOPSIS  
cdrom/export/exec/sparc.Solaris_2.x/sbin/install.d/parse_dynamic_clustertoc
cdrom/export/exec/i386.Solaris_2.x/sbin/install.d/parse_dynamic_clustertoc

DESCRIPTION  This script parses the clustertoc file before the suninstall(1M) process is run. parse_dynamic_clustertoc is called by a modified sysconfig script on the install CD. When parse_dynamic_clustertoc runs, it reads the clustertoc and when it encounters SUNW_CSRMBRIFF lines, it either checks the platform using the script’s builtin function, or calls an external script. The script exits with a 0 if the cluster entry is included, otherwise it will be ignored. If the cluster entry is to be included, the SUNW_CSRMBRIFF = (test test_arg) cluster line is converted to SUNW_CSRMEMBER = cluster.

EXAMPLES  EXAMPLE 1 Checking For an SX Framebuffer

The following is an example of a simple external test to check for an SX Framebuffer. The entry in the clustertoc file is shown and following that is the script that must be placed in the install.d/dynamic_test directory.

SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx
#! /bin/sh
# Likewise, this file is expected to live under $(TESTDIR).
# case "$1"
in
    sx) prtconf -p | grep ‘SUNW,sx’ 1> /dev/null;;
esac

FILES  cdrom/Solaris_2.x/locale/C/.*clustertoc.*dynamic
    Dynamic version of the clustertoc file

cdrom/export/exec/sparc.Solaris_2.x/sbin/install.d/dynamic_test
    Directory that contains any additional tests

cdrom/export/exec/i386.Solaris_2.x/sbin/install.d/dynamic_test
    Directory that contains any additional tests

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SHWPcdrom (Solaris CD)</td>
</tr>
</tbody>
</table>

SEE ALSO  suninstall(1M), clustertoc(4), attributes(5)
The `passmgmt` command updates information in the password files. This command works with both `/etc/passwd` and `/etc/shadow`.

`passmgmt -a` adds an entry for user `name` to the password files. This command does not create any directory for the new user and the new login remains locked (with the string `*LK*` in the password field) until the `passwd(1)` command is executed to set the password.

`passmgmt -m` modifies the entry for user `name` in the password files. The name field in the `/etc/shadow` entry and all the fields (except the password field) in the `/etc/passwd` entry can be modified by this command. Only fields entered on the command line will be modified.

`passmgmt -d` deletes the entry for user `name` from the password files. It will not remove any files that the user owns on the system; they must be removed manually.

`passmgmt` can be used only by the super-user.

**OPTIONS**

- `-c` *comment*  
  A short description of the login, enclosed in quotes. It is limited to a maximum of 128 characters and defaults to an empty field.
- `-h` *homedir*  
  Home directory of `name`. It is limited to a maximum of 256 characters and defaults to `/usr/name`.
- `-u` *uid*  
  UID of `name`. This number must range from 0 to the maximum non-negative value for the system. It defaults to the next available UID greater than 99. Without the `-o` option, it enforces the uniqueness of a UID.
- `-o`  
  This option allows a UID to be non-unique. It is used only with the `-u` option.
- `-g` *gid*  
  GID of `name`. This number must range from 0 to the maximum non-negative value for the system. The default is 1.
- `-s` *shell*  
  Login shell for `name`. It should be the full pathname of the program that will be executed when the user logs in. The maximum size of `shell` is 256 characters. The default is `for this field to be empty and to be interpreted as /usr/bin/sh`.
- `-l` *logname*  
  This option changes the `name` to logname. It is used only with the `-m` option. The total size of each login entry is limited to a maximum of 511 bytes in each of the password files.

**FILES**

- `/etc/passwd`
- `/etc/shadow`
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO passwd(1), useradd(1M), userdel(1M), usermod(1M), passwd(4), shadow(4), attributes(5)

EXIT STATUS The passmgmt command exits with one of the following values:

0  Success.
1  Permission denied.
2  Invalid command syntax. Usage message of the passmgmt command is displayed.
3  Invalid argument provided to option.
4  UID in use.
5  Inconsistent password files (for example, name is in the /etc/passwd file and not in the /etc/shadow file, or vice versa).
6  Unexpected failure. Password files unchanged.
7  Unexpected failure. Password file(s) missing.
8  Password file(s) busy. Try again later.
9  name does not exist (if -m or -d is specified), already exists (if -a is specified), or logname already exists (if -m -i is specified).

NOTES Do not use a colon (:) or RETURN as part of an argument. It is interpreted as a field separator in the password file. The passmgmt command will be removed in a future release. Its functionality has been replaced and enhanced by useradd, userdel, and usermod. These commands are currently available.

This command only modifies password definitions in the local /etc/passwd and /etc/shadow files. If a network nameservice such as NIS or NIS+ is being used to supplement the local files with additional entries, passmgmt cannot change information supplied by the network nameservice.
NAME
patchadd – apply a patch package to a system running the Solaris operating environment

SYNOPSIS

DESCRIPTION
patchadd applies a patch package to a system running the Solaris 2.x operating environment or later Solaris environments (such as Solaris 9) that are compatible with Solaris 2.x. This patch installation utility cannot be used to apply Solaris 1 patches. patchadd must be run as root.

The patchadd command has the following forms:

- The first form of patchadd installs one or more patches to a system, client, service, or to the miniroot of a Net Install Image.
- The second form of patchadd displays installed patches on the client, service, or to the miniroot of a Net Install Image.

OPTIONS
The following options are supported:

- `-B backout_dir`
  Saves backout data to a directory other than the package database. Specify backout_dir as an absolute path name.

- `-d`
  Does not back up the files to be patched. The patch cannot be removed.

- `-k keystore`
  Use keystore as the location to get trusted certificate authority certificates when verifying digital signatures found in each patch. If no keystore is specified, then the default keystore locations are searched for valid trusted certificates. See KEY STORE LOCATIONS in pkgadd(1M) for more information.

- `-n`
  Tells patchadd to ignore the signature and not to validate it. This should be used only when the content of the patch is known and trusted, and is primarily included to allow patchadd to apply a patch on systems without the ability to verify the patch signature, such as Solaris 8.

- `-p`
  In the second form, displays a list of the patches currently applied.

- `-P passwd`
  Password to use to decrypt the keystore specified with `-k`, if required. See PASS PHRASE ARGUMENTS in pkgadd(1M) for more information about the format of this option’s argument.

- `-u`
  Turns off file validation. Applies the patch even if some of the files to be patched have been modified since their original installation.
### patchadd(1M)

**-x proxy**

Specify a HTTP[S] proxy to use when downloading packages. The format of proxy is `host:port`, where `host` is the hostname of the HTTP[S] proxy, and `port` is the port number associated with the proxy. This switch overrides all other methods of specifying a proxy. See ENVIRONMENT VARIABLES in *pkgadd*(1M) for more information on alternate methods of specifying a default proxy.

### OPERANDS

The following operands are supported:

#### Sources

`patchadd` must be supplied a source for retrieving the patch. The following sources and their syntax are acceptable:

**patch**

The absolute path name to `patch_id` or a URI pointing to a signed patch. `/var/sadm/spool/patch/104945-02` is an example of a `patch`. `https://syrinx.eng:8887/patches/104945-02` is an example of a URI pointing to a signed patch.

**-M patch_dir patch_id [patch_id...]**

Specifies the patches to be installed by directory location or URL, and patch number.

To use the directory location or URL and the patch number, specify `patch_dir` as the absolute path name of the directory that contains spooled patches. Specify a URL as the server and path name that contains the spooled patches. Specify `patch_id` as the patch number of a given patch. Specifying multiple `patch_id`'s is recommended. `patch_id` is the patch number of a given patch. `104945-02` is an example of a `patch_id`.

**-M patch_dir patch_list**

Specifies the patches to be installed by directory location or URL and the name of a file containing a patch list.

To use the directory location or URL and a file containing a patch list, specify `patch_dir` as the absolute path name of the directory that contains spooled patches. Specify URL as the server and path name that contains the spooled patches. Specify `patch_list` as the name of the file containing the patches to be installed.

#### Destinations

By default, `patchadd` applies a patch to the specified destination. If no destination is specified, then the current system (the one with its root filesystem mounted at `/`) is assumed to be the destination for the patch. You can also specify a destination in the following ways:

**-C net_install_image**

Patches the files located on the miniroot on a Net Install Image created by `setup_install_server`. Specify `net_install_image` as the absolute path name to a Solaris 8 or compatible version boot directory. See EXAMPLES.

You should use the `-C` option only to install patches that are recommended for installation to the miniroot. Patches that are recommended for installation to the miniroot usually include install-related patches such as package commands, and
Sun install and patch installation tools. If you apply too many patches to the miniroot it can grow too large to fit into memory during a net installation of Solaris. Use the -B option and the -C option together so the miniroot does not get too large. See -B, above.

-\(R\) client\_root\_path
Locates all patch files generated by patchadd under the directory client\_root\_path. client\_root\_path is the directory that contains the bootable root of a client from the server's perspective. Specify client\_root\_path as the absolute path name to the beginning of the directory tree under which all patch files generated by patchadd are to be located. -R cannot be specified with the -S option. See NOTES.

-\(S\) service
Specifies an alternate service (for example, Solaris_8). This service is part of the server and client model, and can only be used from the server's console. Servers can contain shared /usr file systems that are created by Host Manager. These service areas can then be made available to the clients they serve. -S cannot be specified with the -R option. See NOTES.

See KEYSTORE LOCATIONS in pkgadd(1M) for details.
See KEYSTORE AND CERTIFICATE FORMATS in pkgadd(1M) for details.
The examples in this section are all relative to the /usr/sbin directory.

**EXAMPLE 1** Installing a Patch to a Standalone Machine

The following example installs a patch to a standalone machine:

```
example# patchadd /var/spool/patch/104945-02
```

**EXAMPLE 2** Installing a Patch to a Client From the Server’s Console

The following example installs a patch to a client from the server's console:

```
example# patchadd -R /export/root/client1 /var/spool/patch/104945-02
```

**EXAMPLE 3** Installing a Patch to a Service From the Server’s Console

The following example installs a patch to a service from the server's console:

```
example# patchadd -S Solaris_8 /var/spool/patch/104945-02
```

**EXAMPLE 4** Installing Multiple Patches in a Single Invocation

The following example installs multiple patches in a single patchadd invocation:

```
example# patchadd -M /var/spool/patch 104945-02 104946-02 102345-02
```

**EXAMPLE 5** Installing Multiple Patches Specifying List of Patches to Install

The following example installs multiple patches specifying a file with the list of patches to install:
EXAMPLE 5 Installing Multiple Patches Specifying List of Patches to Install  (Continued)

example# patchadd -M /var/spool/patch patchlist

EXAMPLE 6 Installing Multiple Patches to a Client and Saving the Backout Data

The following example installs multiple patches to a client and saves the backout data to a directory other than the default:

example# patchadd -M /var/spool/patch -R /export/root/client1 \  
-R /export/backoutrepository 104945-02 104946-02 102345-02

EXAMPLE 7 Installing a Patch to a Solaris 8 or Compatible Version Net Install Image

The following example installs a patch to a Solaris 8 or compatible version Net Install Image:

example# patchadd -C /export/Solaris_8/Tools/Boot \  
/var/spool/patch/104945-02

EXAMPLE 8 Displaying the Patches Installed on a Client

The following example displays the patches installed on a client:

example# patchadd -R /export/root/client1 -p

EXAMPLE 9 Installing a Digitally Signed Set of Patches

The following example installs multiple patches, some of which have been signed, using the supplied keystore, password, and HTTP proxy.

example# patchadd -k /etc/mycerts -p pass:abcd -x webcache.eng:8080 \  
-M http://www.sun.com/solaris/patches/latest 101223-02 102323-02

EXIT STATUS  The following exit values are returned:

0  Successful completion.

>0  An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWswmt, SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

DIAGNOSTICS  The following messages might help in determining some of the most common problems associated with installing a patch.
Message
The prepatch script exited with return code retcode.
patchadd is terminating.

Explanation and Recommended Action
The prepatch script supplied with the patch exited with a return code other than 0. Run a script trace of the prepatch script and find out why the prepatch had a bad return code. Add the -x option to the first line of the prepatch script to fix the problem and run patchadd again.

Message
The signature on patch patch_id was unable to be verified.
patchadd is terminating.

Explanation and Recommended Action
The digital signature on a patch was unable to be verified given the keystore in use and the signature on the patch. Check the keystore to make sure it has the requisite trust anchor(s) required to validate the signature on the package and that the package has not been tampered with.

Message
The postpatch script exited with return code retcode.
Backing out patch.

Explanation and Recommended Action
The postpatch script provided with the patch exited with an error code other than 0. This script is mostly used to cleanup files (that is, when a package is known to have ownership or permission problems) attributes that do not correspond to the patch package’s objects. After the user has noted all validation errors and taken the appropriate action for each one, the user should re-run patchadd using the -u (unconditional) option. This time, the patch installation will ignore validation errors and install the patch anyway.

Message
Insufficient space in /var/sadm/patch to save old files.
(For 2.4 systems and previous)

Explanation and Recommended Action
There is insufficient space in the /var/sadm/patch directory to save old files. The user has three options for handling this problem: Use the -B option while invoking patchadd. This option will direct patchadd to: save the backout data to the user specified file system, generate additional disk space by deleting unneeded files, or override the saving of the old files by using the -d (do not save) option when running patchadd.

If the user elects not to save the old versions of the files to be patched, patchrm cannot be used. One way to regain space on a system is to remove the save area for previously applied patches. Once the user has decided that it is unlikely that a patch will be backed out, the user can remove the files that were saved by patchadd. The following commands should be executed to remove the saved files for patchpatch_id:
patchadd(1M)

    cd /var/sadm/patch/patch_id
    rm -r save/*
    rm .oldfilessaved

    After these commands have been executed, patch patch_id can no longer be
carried.

Message

    Insufficient space in /var/sadm/pkg/PKG/save to save old files.
    (For 2.5 systems and later)

Explanation and Recommended Action

    There is insufficient space in the /var/sadm/pkg/PKG/save directory to save
old files. The user has three options for handling this problem: (1) Use the -B
option while invoking patchadd. This option will direct patchadd to save the
backout data to the user specified file system. (See synopsis above.) (2) Generate
additional disk space by deleting unneeded files, or (3) override the saving of the
old files by using the -d (do not save) option when running patchadd.
However, if the user elects not to save the old versions of the files to be patched,
patchrm cannot be used. One way to regain space on a system is to remove the
save area for previously applied patches. Once the user has decided that it is
unlikely that a patch will be backed out, the user can remove the files that were
saved by patchadd. The following commands should be executed to remove the
saved files for patch patch_id:

    cd /var/sadm/pkg/pkgabbrev/save
    rm -r patch_id

    After these commands have been executed, patch patch_id can no longer be
backed out.

Message

    Save of old files failed.
    (For 2.4 systems and previous)

Explanation and Recommended Action

    Before applying the patch, the patch installation script uses cpio to save the old
versions of the files to be patched. This error message means that the cpio
failed. The output of the cpio would have been preceded this message. The user
should take the appropriate action to correct the cpio failure. A common reason
for failure will be insufficient disk space to save the old versions of the files. The
user has two options for handling insufficient disk space: (1) generate additional
disk space by deleting unneeded files, or (2) override the saving of the old files
by using the -d option when running patchadd. However if the user elects not
to save the old versions of the files to be patched, the patch cannot be backed out.

Message

    Pkgadd of pkgname package failed with error code code.
    See /tmp/log/patch_id for reason for failure.
The installation of one of the patch packages failed. `patchadd` will backout the patch to leave the system in its pre-patched state. See the log file for the reason for failure. Correct the problem and reapply the patch.

**Message**

Patchadd of *pkgname* package failed with error code *code*. Will not backout patch...patch re-installation. Warning: The system may be in an unstable state! See /tmp/log.patch_id for reason for failure.

**Explanation and Recommended Action**

The installation of one of the patch packages failed. `patchadd` will not backout the patch. You may manually backout the patch using `patchrm`, then re-apply the entire patch. Look in the log file for the reason `pkgadd` failed. Correct the problem and re-apply the patch.

**Message**

Patchadd is unable to find the INST_RELEASE file. This file must be present for patchadd to function correctly.

**Explanation and Recommended Action**

The INST_RELEASE file is missing from the system. This file is created during either initial installation or during an update.

**Message**

A previous installation of patch *patch_id* was invoked that saved files that were to be patched. Since files were saved, you must run this instance of patchadd without the -d option.

**Explanation and Recommended Action**

If a patch was previously installed without using the -d option, then the re-installation attempt must also be invoked without the -d option. Execute `patchadd` without the -d option.

**Message**

A previous installation of patch *patch_id* was invoked with the -d option. (i.e. Do not save files that would be patched) Therefore, this invocation of patchadd must also be run with the -d option.

**Explanation and Recommended Action**

If a patch was previously installed using the -d option, then the re-installation attempt must also be invoked with the -d option. Execute `patchadd` with the -d option.

The patch installation messages listed below are not necessarily considered errors, as indicated in the explanations given. These messages are, however, recorded in the patch installation log for diagnostic reference.
Message
Package not patched:
PKG=SUNxxxx
Original package not installed

Explanation and Recommended Action
One of the components of the patch would have patched a package that is not
installed on your system. This is not necessarily an error. A patch may fix a
related bug for several packages.

For example, suppose a patch fixes a bug in both the online-backup and fddi
packages. If you had online-backup installed but didn’t have fddi installed, you
would get the message:

Package not patched:
PKG=SUNWbf
Original package not installed

This message only indicates an error if you thought the package was installed on
your system. If this is the case, take the necessary action to install the package,
backout the patch (if it installed other packages) and re-install the patch.

Message
Package not patched:
PKG=SUNxxx
ARCH=xxxxxxx
VERSION=xxxxxxx
Architecture mismatch

Explanation and Recommended Action
One of the components of the patch would have patched a package for an
architecture different from your system. This is not necessarily an error. Any
patch to one of the architecture-specific packages might contain one element for
each of the possible architectures. For example, assume you are running on a
sun4u. If you were to install a patch to package SUNWcar, you would see the
following (or similar) messages:

Package not patched:
PKG=SUNWcar
ARCH=sparc.sun4c
VERSION=11.5.0,REV=2.0.18
Architecture mismatch

Package not patched:
PKG=SUNWcar
ARCH=sparc.sun4u
VERSION=11.5.0,REV=2.0.18
Architecture mismatch

Package not patched:
PKG=SUNWcar
ARCH=sparc.sun4e
VERSION=11.5.0,REV=2.0.18
These messages indicate an error condition only if `patchadd` does not correctly recognize your architecture.

Message

Package not patched:
Pkg=SUNxxxx
ARCH=xxxx
VERSION=xxxxxxx
Version mismatch

Explanation and Recommended Action

The version of software to which the patch is applied is not installed on your system. For example, if you were running Solaris 8, and you tried to install a patch against Solaris 9, you would see the following (or similar) message:

Package not patched:
Pkg=SUNWcsu
ARCH=sparc
VERSION=10.0.2
Version mismatch

This message does not necessarily indicate an error. If the version mismatch was for a package you needed patched, either get the correct patch version or install the correct package version. Then backout the patch (if necessary) and re-apply.

Message

Re-installing Patch.

Explanation and Recommended Action

The patch has already been applied, but there is at least one package in the patch that could be added. For example, if you applied a patch that had both Openwindows and Answerbook components, but your system did not have Answerbook installed, the Answerbook parts of the patch would not have been applied. If, at a later time, you `pkgadd` Answerbook, you could re-apply the patch, and the Answerbook components of the patch would be applied to the system.

Message

`patchadd` Interrupted.
`patchadd` is terminating.

Explanation and Recommended Action

`patchadd` was interrupted during execution (usually through pressing `CTRL-c`). `patchadd` will clean up its working files and exit.

Message

`patchadd` Interrupted.
Back out Patch...
Explanation and Recommended Action

patchadd was interrupted during execution (usually through pressing CTRL-c).
patchadd will clean up its working files, backout the patch, and exit.

SEE ALSO

cpio(1), pkginfo(1), patchrm(1M), pkgadd(1M), pkgadm(1M), pkgchk(1M),
pkgrm(1M), smpatch(1M), showrev(1M), attributes(5)

NOTES

To successfully install a patch to a client or server, patchadd must be issued twice,
once with the -R option and once with the -S option. This guarantees that the patch is
installed to both the /usr and root partitions. This is necessary if there are both
/usr and root packages in the patch.

pkgadd is invoked by patchadd and executes the installation scripts in the
pkg/install directory. The checkinstall script is executed with its ownership set
to user install, if there is no user install then pkgadd executes the
checkinstall script as nobody. The SVR4 ABI states that the checkinstall shall
only be used as an information gathering script. If the permissions for the
checkinstall script are changed to something other than the initial settings,
pkgadd may not be able to open the file for reading, thus causing the patch
installation to abort with the following error:

pkgadd: ERROR: checkinstall script did not complete successfully.

The permission for the checkinstall script should not be changed. Contents of log
file for a successful installation: patchadd redirects pkgadd's output to the patch
installation log file. For a successful installation, pkgadd will produce the following
message that gets inserted into the log file:

This appears to be an attempt to install the same architecture
and version of a package which is already installed. This
installation will attempt to overwrite this package.
This message does not indicate a failure, it represents the
correct behavior by pkgadd when a patch installs correctly.
This message does not indicate a failure, it represents the correct behavior by pkgadd
when a patch installs correctly.

On client server machines the patch package is not applied to existing clients or to the
client root template space. Therefore, when appropriate, all client machines will need the
patch applied directly using this same patchadd method on the client. See instructions above
for applying patches to a client. A bug affecting a package utility (for example,
pkgadd, pkgrm, pkgchk) could affect the reliability of patchadd or patchrm, which
use package utilities to install and backout the patch package. It is recommended that
any patch that fixes package utility problems be reviewed and, if necessary, applied
before other patches are applied. Existing patches are:

Solaris 2.5.1 Sparc Platform Edition:
104578

Solaris 2.5.1 Intel Platform Edition:
104579
Solaris 2.6 Sparc Platform Edition:
106292
Solaris 2.6 Intel Platform Edition:
106293
**NAME**
patchrm – remove a Solaris patch package and restore previously saved files

**SYNOPSIS**
```bash
patchrm [-f] [-B backout_dir] [-C net_install_image] [-R client_root_path]
          | -S service] patch_id
```

**DESCRIPTION**
patchrm removes a patch package and restores previously saved files to a system running the Solaris 2.x operating environment or later Solaris environments (such as Solaris 8) that are compatible with Solaris 2.x. patchrm cannot be used with Solaris 1 patches. patchrm must be run as root.

**OPTIONS**
The following options are supported:

- `-B backout_dir`
  Removes a patch whose backout data has been saved to a directory other than the package database. This option is only needed if the original backout directory, supplied to the patchadd command at installation time, has been moved. Specify `backout_dir` as an absolute path name.

- `-C net_install_image`
  Removes the patched files located on the mini root on a Net Install Image created by `setup_install_server`. Specify `net_install_image` as the absolute path name to a Solaris 2.6 or compatible version boot directory. See EXAMPLES.

- `-f`
  Forces the patch removal regardless of whether the patch was superseded by another patch.

- `-R client_root_path`
  Locates all patch files generated by patchrm under the directory `client_root_path`. `client_root_path` is the directory that contains the bootable root of a client from the server’s perspective. Specify `client_root_path` as the absolute path name to the beginning of the directory tree under which all patch files generated from patchrm will be located. `-R` cannot be specified with the `-S` option.

- `-S service`
  Specifies an alternate service (for example, Solaris_2.3). This service is part of the server and client model, and can only be used from the server’s console. Servers can contain shared `/usr` file systems that are created by Host Manager. These service areas can then be made available to the clients they serve. `-S` cannot be specified with the `-R` option.

**OPERANDS**
The following operands are supported:

- `patch_id`
  The patch number of a given patch. 104945-02 is an example of a `patch_id`. 
The examples in this section assume that patch 104945-02 has been installed to the system prior to removal. All of the examples are relative to the /usr/sbin directory.

EXAMPLE 1 Removing a Patch From a Stand-alone System

The following example removes a patch from a standalone system:

eexample# patchrm 104945-02

EXAMPLE 2 Removing a Patch From a Client’s System From the Server’s Console

The following example removes a patch from a client’s system from the server’s console:

eexample# patchrm -R /export/root/client1 104945-02

EXAMPLE 3 Removing a Patch From a Server’s Service Area

The following example removes a patch from a server’s service area:

eexample# patchrm -S Solaris_2.3 104945-02

EXAMPLE 4 Removing a Patch From a Net Install Image

The following example removes a patch from a Net Install Image:

eexample# patchrm -C /export/Solaris_2.6/Tools/Boot 104945-02

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWswmt, SUNWcsu</td>
</tr>
</tbody>
</table>

The following messages may help in determining some of the most common problems associated with backing out a patch.

Message

prebackout patch exited with return code ccfr.
patchrm exiting.

Explanation and Recommended Action

The prebackout script supplied with the patch exited with a return code other than 0. Generate a script trace of the prebackout script to determine why the
prebackout script failed. Add the -x option to the first line of the prepatch script to fix the problem and run patchadd again.

Message

postbackout patch exited with return code code.
patchrm exiting.

Explanation and Recommended Action

The postbackout script supplied with the patch exited with a return code other than 0. Look at the postbackout script to determine why it failed. Add the -x option to the first line of the prepatch script to fix the problem, and, if necessary, re-execute the postbackout script only.

Message

Only one service may be defined.

Explanation and Recommended Action

You have attempted to specify more than one service from which to backout a patch. Different services must have their patches backed out with different invocations of patchrm.

Message

The -S and -R arguments are mutually exclusive.

Explanation and Recommended Action

You have specified both a non-native service and a client_root_path from which to backout a patch. These two arguments are mutually exclusive. If backing out a patch from a non-native usr partition, the -S option should be used. If backing out a patch from a client's root partition (either native or non-native), the -R option should be used.

Message

The service service cannot be found on this system

Explanation and Recommended Action

You have specified a non-native service from which to backout a patch, but the specified service is not installed on your system. Correctly specify the service when backing out the patch.

Message

Only one client_root_path may be defined.

Explanation and Recommended Action

You have specified more than one client_root_path using the -R option. The -R option may be used only once per invocation of patchrm.

Message

The dir directory cannot be found on this system.
Explanation and Recommended Action
You have specified a directory using the -R option which is either not mounted, or does not exist on your system. Verify the directory name and re-backout the patch.

Message
Patch patch_id has not been successfully installed to this system.

Explanation and Recommended Action
You have attempted to backout a patch that is not installed on this system. If you must restore previous versions of patched files, you may have to restore the original files from the initial installation CD.

Message
Patch patch_id has not been successfully applied to this system.
Will remove directory dir.

Explanation and Recommended Action
You have attempted to back out a patch that is not applied to this system. While the patch has not been applied, a residual /var/sadm/patch/patch_id (perhaps from an unsuccessful patchadd) directory still exists. The patch cannot be backed out. If you must restore old versions of the patched files, you may have to restore them from the initial installation CD.

Message
This patch was obsoleted by patch patch_id.
Patches must be backed out in the reverse order in which they were installed. Patch backout aborted.

Explanation and Recommended Action
You are attempting to backout patches out of order. Patches should never be backed-out out of sequence. This could undermine the integrity of the more current patch.

Message
Patch patch_id is required to be installed by an already installed patch_id.
It cannot be backed out until the required patch is backed out first.

Explanation and Recommended Action
Backout the patch that is required to be installed then backout the desired patch.

Message
The installation of patch patch_id was interrupted.

Explanation and Recommended Action
A previous installation was interrupted. The interrupted patch needs to be installed before backing out the desired patch.
Message

Patch patch_id was installed without backing up the original files. It cannot be backed out.

Explanation and Recommended Action

Either the -d option of patchadd was set when the patch was applied, or the save area of the patch was deleted to regain space. As a result, the original files are not saved and patchrm cannot be used. The original files can only be recovered from the original installation CD.

Message

pkgadd of pkgname package failed return code code.
See /var/sadm/patch/patch_id/log for reason for failure.

Explanation and Recommended Action

The installation of one of patch packages failed. See the log file for the reason for failure. Correct the problem and run the backout script again.

Message

Restore of old files failed.

Explanation and Recommended Action

The backout script uses the cpio command to restore the previous versions of the files that were patched. The output of the cpio command should have preceded this message. The user should take the appropriate action to correct the cpio failure. This is for Solaris 2.4 or previous versions.

SEE ALSO

cpio(1), pkginfo(1), patchadd(1M), pkgadd(1M), pkgchk(1M), pkgrm(1M), showrev(1M), attributes(5)

NOTES

On client server machines the patch package is not removed from existing clients or from client root template space. Therefore, when appropriate, all client machines will need the patch removed directly using this same patchrm method on the client. A bug affecting a package utility (for example, pkgadd, pkgrm, pkgchk) could affect the reliability of patchadd or patchrm which use package utilities to install and backout the patch package. It is recommended that any patch that fixes package utility problems be reviewed and, if necessary, applied before other patches are applied. Existing patches are:

Solaris 2.1:
   patch 100901

Solaris 2.2:
   101122

Solaris 2.3:
   10133

Solaris 2.4 Sparc Platform Edition:
   102039
| Solaris 2.4 Intel Platform Edition:     | 102041                  |
| Solaris 2.5.1 Sparc Platform Edition: | 104578                  |
| Solaris 2.51 Intel Platform Edition:  | 104579                  |
| Solaris 2.6 Sparc Platform Edition:   | 106292                  |
| Solaris 2.6 Intel Platform Edition:   | 106293                  |
**NAME**

pbind – control and query bindings of processes to processors

**SYNOPSIS**

```
pbind -b processor_id pid...
pbind -u pid...
pbind [-q] [pid...]
```

**DESCRIPTION**

pbind controls and queries bindings of processes to processors. pbind binds all the LWPs (lightweight processes) of a process to a processor, or removes or displays the bindings.

When an LWP is bound to a processor, it will be executed only by that processor except when the LWP requires a resource that is provided only by another processor. The binding is not exclusive, that is, the processor is free execute other LWPs as well.

Bindings are inherited, so new LWPs and processes created by a bound LWP will have the same binding. Binding an interactive shell to a processor, for example, binds all commands executed by the shell.

Superusers may bind or unbind any process, and other users can use pbind to bind or unbind any process for which the user has permission to signal, that is, any process that has the same effective user ID as the user.

**OPTIONS**

The following options are supported:

```
-b processor_id
```

Binds all the LWPs of the specified processes to the processor `processor_id`. Specify `processor_id` as the processor ID of the processor to be controlled or queried. `processor_id` must be present and on-line. Use the `psrinfo` command to determine whether or not `processor_id` is present and on-line. See `psrinfo(1M)`.

```
-q
```

Displays the bindings of the specified processes, or of all processes. If a process is composed of multiple LWPs, which have different bindings, the bindings of only one of the bound LWPs will be displayed.

```
-u
```

Removes the bindings of all LWPs of the specified processes, allowing them to be executed on any on-line processor.

**OPERANDS**

The following operands are supported:

```
pid
```

The process ID of the process to be controlled or queried.

**EXAMPLES**

**EXAMPLE 1 Binding Processes**

The following example binds processes 204 and 223 to processor 2:

```
example% pbind -b 2 204 223
process id 204: was 2, now 2
process id 223: was 3, now 2
```

""
EXAMPLE 2 Unbinding a Process

The following example unbinds process 204:

```
example% pbind -u 204
```

EXAMPLE 3 Querying Bindings

The following example queries bindings. It demonstrates that process 1 is bound to processor 0, process 149 has at least one LWP bound to CPU3, and process 101 has no bound LWPs.

```
example% pbind -q 1 149 101
process id 1: 0
process id 149: 3
process id 101: not bound
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

EXIT STATUS

The following exit values are returned:

- 0  Successful completion.
- >0  An error occurred.

SEE ALSO

psradm(1M), psrinfo(1M), psrset(1M), processor_bind(2), processor_info(2), sysconf(3C), attributes(5)

DIAGNOSTICS

pbind: cannot query pid 31: No such process
The process specified did not exist or has exited.

pbind: cannot bind pid 31: Not owner
The user does not have permission to bind the process.

pbind: cannot bind pid 31: Invalid argument
The specified processor is not on-line.
NAME  pcmiad – PCMCIA user daemon

SYNOPSIS  /usr/lib/pcmiad

DESCRIPTION  The PCMCIA user daemon provides user-level services for the PCMCIA nexus driver and PCMCIA card client drivers. There are no user-configurable options for this daemon.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcmceu</td>
</tr>
</tbody>
</table>

SEE ALSO  pcmcia(4), attributes(5)

DIAGNOSTICS  pcmiad: can’t open /dev/pem: No such file or directory
              The user daemon could not communicate with the PCMCIA event management driver.
pfinstall(1M)

NAME
pfinstall – tests installation profiles

SYNOPSIS
/usr/sbin/install.d/pfinstall -D | -d disk_config [-c CDpath] profile

DESCRIPTION
After you create a profile, you can use the pfinstall command to test the profile and see if it does what you want before using it to install or upgrade a system. pfinstall enables you to test a profile against:

- The system’s disk configuration where pfinstall is being run.
- Other disks by using a disk configuration file that represents a structure of a disk.

To successfully and accurately test a profile for a particular Solaris release, you must test a profile within the Solaris environment of the same release. For example, if you want to test a profile for Solaris 2.6, you have to run the pfinstall command on a system running Solaris 2.6.

So, on a system running Solaris 2.6, you can test Solaris 2.6 initial installation profiles. However, if you want to test a Solaris 2.6 upgrade profile on a system running a previous version of Solaris, or if you don’t have a Solaris 2.6 system installed yet to test Solaris 2.6 initial installation profiles, you have to boot a system from a Solaris 2.6 CD image and temporarily create a Solaris 2.6 install environment. Then, you can run pfinstall in the Solaris 2.6 install environment to test your profiles.

To create a temporary Solaris 2.6 install environment, boot a system from a Solaris 2.6 CD image (just as you would to install), answer any system identification questions, choose the Solaris Interactive Installation program, and exit out of the first screen that is presented. Then, from the shell, you can execute the pfinstall command.

OPTIONS
The following options are supported:

- `-c CDpath` The path to the Solaris 2 installation image. This is required if the image is not mounted on /cdrom. (For example, use this option if you copied the installation image to disk or mounted the CD-ROM on a directory other than /cdrom.)

- `-d disk_config` pfinstall uses a disk configuration file, disk_config, to test the profile. See NOTES on how to create a disk configuration file. You must specify either this option or the `-D` option to test the profile (see WARNINGS). This option cannot be used with an upgrade profile (install_type upgrade). You must always test an upgrade profile against a system’s disk configuration ( `-D` option).

- `-D` pfinstall uses the system’s disk configuration to test the profile. You must specify either this option or the `-d` option to test the profile (see WARNINGS).

OPERANDS
The following operands are supported:

- `profile` The file name of the profile to test. If `profile` is not in the directory where pfinstall is being run, you must specify the path.
EXAMPLE 1  Testing an Upgrade Profile

The following example tests an upgrade profile, upgrade.prof, on a system with a previous version of the Solaris software installed.

1. Boot the system to be upgraded from the Solaris image chosen for the upgrade, just as you would to install. The image can be located in the system’s local CD-ROM or on an install server.

2. Answer the system configuration questions, if prompted.

3. If you are presented with a choice of installation options, choose the Solaris Interactive Installation program.

4. Exit from the first screen of the Solaris Interactive Installation program.

   After the Solaris Interactive Installation program exits, a shell prompt is displayed.

5. Create a temporary mount point:
   
   example# mkdir /tmp/mnt

6. Mount the directory that contains the profile(s) you want to test.

   If you want to mount a remote NFS file system (for systems on the network), enter:

   mount -F nfs server_name: path /tmp/mnt

   If you want to mount a UFS-formatted diskette, enter:

   mount -F ufs /dev/diskette /tmp/mnt

   If you want to mount a PCFS-formatted diskette, enter:

   mount -F pcfs /dev/diskette /tmp/mnt

7. Change directory to /tmp/mnt where the profile resides:

   example# cd /tmp/mnt

8. Test the upgrade.prof profile:

   /usr/sbin/install.d/pfinstall -D upgrade.prof

EXAMPLE 2  Testing the basic.prof Profile

The following example tests the basic.prof profile against the disk configuration on a Solaris 2.6 system where pfinstall is being run. The path to the Solaris CD image is specified because Volume Management is being used.

example# /usr/sbin/install.d/pfinstall -D -c /cdrom/cdrom0/s0 basic.prof

EXAMPLE 3  Testing the basic.prof Profile

The following example tests the basic.prof profile against the 535_test disk configuration file. This example uses a Solaris CD image located in the /export/install directory, and pfinstall is being run on a Solaris 2.6 system.

example# /usr/sbin/install.d/pfinstall -d 535_test \
-c /export/install basic.prof
EXIT STATUS

0 Successful (system rebooted).
1 Successful (system not rebooted).
2 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWinst</td>
</tr>
</tbody>
</table>

SEE ALSO
fdisk(1M), prtvtoc(1M), attributes(5)

Solaris 9 12/03 Installation Guide

WARNINGS
If the -d or -D option is not specified, pfinstall may perform an actual installation on the system by using the specified profile, and the data on the system may be overwritten.

NOTES
You have to test a profile on a system with the same platform type for which the profile was created.

SPARC
To create a disk configuration file (-d option) for a SPARC based system:
1. Locate a SPARC based system with a disk that you want to test.
2. Create a disk configuration file by redirecting the output of the prtvtoc(1M) command to a file:
   
   example# prtvtoc /dev/rdsk/c0t3d0s2 > 535_disk

3. (Optional.) Concatenate disk configuration files into a single file to test a profile against multiple disks. The target numbers in the disk device names must be unique.

   example# cat 535_disk 1G_disk > mult_disks

x86
To create a disk configuration file (-d option) for an x86 based system:
1. Locate an x86 based system with a disk that you want to test.
2. Create part of the disk configuration file by saving the output of the fdisk(1M) command to a file:

   example# fdisk -R -W 535_disk /dev/rdsk/c0t3d0p0

3. Append the output of the prtvtoc(1M) command to the disk configuration file.

   example# prtvtoc /dev/rdsk/c0t3d0s2 >> 535_disk
pfiinstall(1M)

4. (Optional.) Concatenate disk configuration files into a single file to test a profile against multiple disks. The target numbers in the disk device names must be unique.

   example# cat 535_disk 1G_disk > mult_disks

To test a profile with a specific system memory size, set SYS_MEMSIZE to the specific memory size (in Mbytes) before running pfiinstall:

   example# SYS_MEMSIZE=memory_size
   example# export SYS_MEMSIZE
The `pgxconfig` utility configures the PGX32 (Raptor GFX) Graphics Accelerator and some of the X11 window system defaults for PGX32 (Raptor GFX). A previous version of this utility was named `GFXconfig`.

The first form of `pgxconfig` shown in the synopsis above stores the specified options in the OWconfig file. These options are used to initialize the PGX32 (Raptor GFX) device the next time the window system is run on that device. Updating options in the OWconfig file provides persistence of these options across window system sessions and system reboots.

The second, third, and fourth forms, which invoke only the `-prconf`, `-propt`, `-help`, and `-res ?` options, do not update the OWconfig file. For the third form all other options are ignored.

The `-i` option starts `pgxconfig` in interactive mode.

Options may be specified for only one PGX32 (Raptor GFX) device at a time.

Only PGX32 (Raptor GFX)-specific options can be specified through `pgxconfig`. The normal window system options for specifying default depth, default visual class and so forth are still specified as device modifiers on the `openwin` command line. See the `Xsun(1)` manual page available with the SUNWxwman package.

The user can also specify the OWconfig file that is to be updated. By default, the machine-specific file in the `/usr/openwin` directory tree is updated. The `-file` option can be used to specify an alternate file to use. For example, the system-global OWconfig file in the `/etc/openwin` directory tree can be updated instead.

Both of these standard OWconfig files can only be written by root.

The following options are supported:

- `cachedpixmap true | false`
  When set to `false`, it forces the PGX32 (Raptor GFX) device to use 24-bit only when running OpenWindows. The default value is `true.`
pgxconfig(1M)

Certain applications make use of a cached pixmap when writing to the display device. Such a technique can cause garbled output and can cause the X server to crash. If you experience such behavior, try setting the -cachedpixmap option to false.

-defaults
  Reset all option values to their default values.

-depth 8 | 24
  Sets the screen depth to 8 or 24 bits per pixel. 24 bits per pixel enables TrueColor graphics in the window system.

-dev device-filename
  Specify the PGX32 (Raptor GFX) special file. The default is /dev/fbs/gfxp0, or /dev/fbs/raptor0 if applicable.

-file machine | system
  Specify which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.

-help
  Print a list of the pgxconfig command line options, along with a brief explanation of each.

-i
  Start pgxconfig in interactive mode.

-prconf
  Print the PGX32 (Raptor GFX) hardware configuration. The following is a typical display:

  --- Hardware Configuration for /dev/fbs/gfxp0 ---
  DAC: version 0x0
  Type:
  Board:
  PROM: version 0x0
  PROM Information:
  RAM:
  EDID Data:
  Monitor Sense ID:
  Card possible resolutions: 640x480x60, 800x600x75, 1024x768x60
  1024x768x70, 1024x768x75, 1280x1024x75, 1280x1024x76
  1280x1024x60, 1152x900x66, 1152x900x76, 1280x1024x67
  960x640x112S, 960x640x108S, 640x480x60i, 768x575x50i,
  1280x800x76, 1440x900x76, 1600x1000x66, 1600x1000x76,
  vga, svga, 1152, 1280, stereo, ntsc, pal
  Monitor possible resolutions: 720x400x70, 720x400x88, 640x480x60
  640x480x67, 640x480x72, 640x480x75, 800x600x56,
  800x600x60, 800x600x72, 800x600x75, 832x624x75,
  1024x768x87, 1024x768x60, 1024x768x70, 1024x768x75,
  1280x1024x75, 1280x1024x76, 1152x900x66, 1152x900x76,
  1280x1024x67, 960x640x112S, vga, svga, 1152, 1280
  stereo
Print the current values of all PGX32 (Raptor GFX) options in the OWconfig file specified by the -file option for the device specified by the -dev option. Print the values of options as they would be in the OWconfig file after the call to pgxconfig would have completed. The following is a typical display:

```
--- OpenWindows Configuration for /dev/fbs/gfxp0 ---
OWconfig: machine
Video Mode: not set
Depth: 8+24
```

```
-res video-mode [try | noconfirm | nocheck ]
```

Specify the built-in video mode used to drive the monitor connected to the specified PGX32 (Raptor GFX) device.

The format for video-mode can be one of the following:

```
widthxheightxrate
```

The width is the screen width in pixels, height is the screen height in pixels, and rate is the vertical frequency of the screen refresh. As a convenience, -res also accepts formats with @ prepended to the refresh rate rather than x. For example: 1280x1024@76. The list can be obtained by running pgxconfig with the -res? option (the third form shown in the command synopsis above). Note that not all resolutions are supported by both the video board and by the monitor. The pgxconfig utility will not permit you to set a resolution not supported by the board unless the noconfirm or nocheck option is specified. It will also request confirmation before setting a resolution not supported by the monitor if the nocheck option is not specified.

Symbolic names

For convenience, the video modes listed below have symbolic names defined. Rather than the form widthxheightxrate, the symbolic name may be supplied as the argument to -res. If the symbolic name is none, the screen resolution will be the video mode that is currently programmed in the device when the window system is run.

```
svga 1024x768x60
1152 1152x900x76
1280 1280x1024x76
vga  640x480x60
```
The -res option also accepts additional, optional arguments immediately following the video mode specification. Any or all of these may be present.

noconfirm
Using the -res option, the user could put the system into an unusable state, a state where there is no video output. This can happen if there is ambiguity in the monitor sense codes for the particular code read. To reduce the chance of this occurring, the default behavior of pgxconfig is to print a warning message to this effect and to prompt the user to find out if it is okay to continue. The noconfirm option instructs pgxconfig to bypass this confirmation and to program the requested video mode anyway. This option is useful when pgxconfig is being run from a shell script.

cHECK
If present, normal error checking based on the monitor sense code is suspended. The video mode specified by the user will be accepted regardless of whether it is appropriate for the currently attached monitor. (This option is useful if a different monitor is to be connected to the PGX32 (Raptor GFX) device). Use of this option implies noconfirm as well.

try
This option allows the user to test the specified resolution before committing it. It displays a pattern on the screen with the specified resolution. If the test pattern appears correctly, the user may answer "y" to the query. The other permissible answer is "n".

-res?
Print the list of possible resolutions supported by the PGX32 and the monitor.

-24only
Force the PGX32 (Raptor GFX) device to use 24 bit only when running Openwindows.

For a given invocation of pgxconfig, if an option does not appear on the command line, the corresponding OWconfig option is not updated; it retains its previous value, except for -depth and -24only.

A default value is used if a PGX32 (Raptor GFX) option has not been specified with pgxconfig when the window system is run. The option defaults are as follows:

-dev /dev/fbs/gfxp0
-file system
-res none

The default of none for the -res option indicates that when the window system is run, the screen resolution will be the video mode that is currently programmed in the device.
EXAM P L E 1 Switching the Resolution on the Monitor Type

The following example switches the monitor type to the resolution of 1280 x 1024 at 76 Hz:

example# /usr/sbin/pgxconfig -res 1280x1024x76

FILES
/dev/fbs/gfxp0
  device special file
/usr/openwin/server/etc/OWconfig
  system configuration file
/etc/openwin/server/etc/OWconfig
  machine configuration file

SEE ALSO PGX32 Installation Manual
The Platform Information and Control Library (PICL) provides a mechanism to publish platform-specific information for clients to access in a platform-independent way. picld maintains and controls access to the PICL information from clients and plug-in modules. The daemon is started in both single-user and multi-user boot mode.

Upon startup, the PICL daemon loads and initializes the plug-in modules. These modules use the libpicltree(3PICLTREE) interface to create nodes and properties in the PICL tree to publish platform configuration information. After the plug-in modules are initialized, the daemon opens the PICL daemon door to service client requests to access information in the PICL tree.

The PICL tree is the repository of all the nodes and properties created by the plug-in modules to represent the platform configuration. Every node in the PICL tree is an instance of a well-defined PICL class. The name of the base PICL class is picl, which defines a basic set of properties that all nodes in the tree must possess. Two of those properties are name and _class, where name contains the name of the node, and the _class contains the PICL class name of the node. Certain nodes in the PICL tree have well-known names. For example, the name of the root node of the PICL tree is / and the name of the root node of the sub-tree containing platform device nodes is platform.

The PICL plug-in modules are shared objects that publish platform-specific data in the PICL tree. They are located in well-known directories so that the daemon can locate and load them.

Plug-in modules are located in one of the following plug-in directories depending on the platform-specific nature of the data that they collect and publish:

```
/usr/platform/’uname -i’/lib/picl/plugins
/usr/platform/’uname -m’/lib/picl/plugins
```

A plug-in module can specify its dependency on another plug-in module using the -l or -R linker option. The plug-ins are loaded by the daemon using dlopen(3DL) according to the specified dependencies. Each plug-in module must define a .init section, which is executed when the plug-in module is loaded, to register themselves with the daemon. See picld_plugin_register(3PICLTREE) for additional information on plug-in registration.

The plug-in modules use the libpicltree(3PICLTREE) interface to publish nodes and properties in the PICL tree so that clients can access them.

When the PICL daemon invokes the initialization routine of the plug-in module, the plug-in collects the platform information and creates nodes and/or properties to represent the configuration in the PICL tree. A plug-in can create additional threads to monitor the platform configuration and update the PICL tree with any changes. This enables a PICL plug-in to operate as a daemon within the PICL framework.
An environmental monitor is an example of a plug-in module that uses a thread to monitor the temperatures and fan speeds of the platform, then publishes the environmental information in the PICL tree so clients can access them.

Clients use the libpicl(3PICL) interface to send requests to picld for accessing the PICL tree.

**EXIT STATUS**
picld does not return an exit status.

**FILES**
/var/run/picld_door PICL daemon door
/usr/lib/picl/picld PICL daemon
/etc/init.d/picld Start/stop script

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpiclu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
dlopen(3DL), libpicl(3PICL), libpicltree(3PICLTREE), picld_log(3PICLTREE), picld_plugin_register(3PICLTREE), attributes(5)
### NAME
ping – send ICMP (ICMP6) ECHO_REQUEST packets to network hosts

### SYNOPSIS
```
/usr/sbin/ping host [timeout]
```
```
/usr/sbin/ping -s [-l | -U] [-adLnrRv] [-A addr_family]
 [-c traffic_class] [-g gateway [-g gateway...]] [-F flow_label]
 [-I interval] [-i interface] [-p port] [-t ttl] host [data_size]
 [npackets]
```

### DESCRIPTION
The utility `ping` utilizes the ICMP (ICMP6 in IPv6) protocol’s ECHO_REQUEST datagram to elicit an ICMP (ICMP6) ECHO_RESPONSE from the specified host or network gateway. If `host` responds, `ping` will print:

```
host is alive
```

on the standard output and exit. Otherwise, after `timeout` seconds, it will write:

```
no answer from host
```

The default value of `timeout` is 20 seconds.

When you specify the `-s` flag, sends one datagram per second (adjust with `-I`) and prints one line of output for every ECHO_RESPONSE that it receives. `ping` produces no output if there is no response. In this second form, `ping` computes round trip times and packet loss statistics; it displays a summary of this information upon termination or timeout. The default `data_size` is 56 bytes, or you can specify a size with the `data_size` command-line argument. If you specify the optional `npackets`, `ping` sends `ping` requests until it either sends `npackets` requests or receives `npackets` replies.

When using `ping` for fault isolation, first `ping` the local host to verify that the local network interface is running.

### OPTIONS
The following options are supported:

- `-A addr_family`
  Specify the address family of the target host.
  `addr_family` can be either `inet` or `inet6`. Address family determines which protocol to use. For an argument of `inet`, IPv4 is used. For `inet6`, IPv6 is used.

  By default, if the name of a host is provided, not the literal IP address, and a valid IPv6 address exists in the name service database, `ping` will use this address. Otherwise, if the name service database contains an IPv4 address, it will try the IPv4 address.

  Specify the address family `inet` or `inet6` to override the default behavior. If the argument specified is `inet`, `ping` will use the IPv4 address associated with the host.
name. If none exists, ping will state that the host is unknown and exit. It does not try to determine if an IPv6 address exists in the name service database.

If the specified argument is inet6, ping uses the IPv6 address that is associated with the host name. If none exists, ping states that the host is unknown and exits.

Specify the flow label of probe packets. The value must be an integer in the range from 0 to 1048575. This option is valid only on IPv6.

Turn on the statistics mode and specify the interval between successive transmissions. The default is one second. See the discussion of the -s option.

Turn off loopback of multicast packets. Normally, members are in the host group on the outgoing interface, a copy of the multicast packets will be delivered to the local machine.

Set the type of service (tos) in probe packets to the specified value. The default is zero. The value must be an integer in the range from 0 to 255. Gateways also in the path can route the probe packet differently, depending upon the value of tos that is set in the probe packet. This option is valid only on IPv4.

Record route. Sets the IPv4 record route option, which stores the route of the packet inside the IPv4 header. The contents of the record route are only printed if the -v and -s options are given. They are only set on return packets if the target host preserves the record route option across echos, or the -l option is given. This option is valid only on IPv4.

Send UDP packets instead of ICMP (ICMP6) packets. ping sends UDP packets to consecutive ports expecting to receive back ICMP (ICMP6) PORT_UNREACHABLE from the target host.

ping all addresses, both IPv4 and IPv6, of the multihomed destination. The output appears as if ping has been run once for each IP address of the destination. If this option is used together with -A, ping probes only the addresses that are of the specified address family. When used with the -s option and npackets is not specified, ping continuously probes the destination addresses in a round robin
If \texttt{npackets} is specified, \texttt{ping} sends \texttt{npackets} number of probes to each IP address of the destination and then exits.

\textbf{-c traffic\_class} \\
Specify the traffic class of probe packets. The value must be an integer in the range from 0 to 255. Gateways along the path can route the probe packet differently, depending upon the value of \texttt{traffic\_class} set in the probe packet. This option is valid only on IPv6.

\textbf{-d} \\
Set the \texttt{SO\_DEBUG} socket option.

\textbf{-g gateway} \\
Specify a loose source route gateway so that the probe packet goes through the specified host along the path to the target host. The maximum number of gateways is 8 for IPv4 and 127 for IPv6. Note that some factors such as the link MTU can further limit the number of gateways for IPv6.

\textbf{-i interface\_address} \\
Specify the outgoing interface address to use for multicast packets for IPv4 and both multicast and unicast packets for IPv6. The default interface address for multicast packets is determined from the (unicast) routing tables. \texttt{interface\_address} can be a literal IP address, for example, \texttt{10.123.100.99}, or an interface name, for example, \texttt{le0}, or an interface index, for example \texttt{2}.

\textbf{-l} \\
Use to send the probe packet to the given host and back again using loose source routing. Usually specified with the \texttt{-R} option. If any gateways are specified using \texttt{-g}, they are visited twice, both to and from the destination. This option is ignored if the \texttt{-U} option is used.

\textbf{-n} \\
Show network addresses as numbers. \texttt{ping} normally does a reverse name lookup on the IP addresses it extracts from the packets received. The \texttt{-n} option blocks the reverse lookup, so \texttt{ping} prints IP addresses instead of host names.

\textbf{-p port} \\
Set the base UDP port number used in probes. This option is used with the \texttt{-U} option. The default base port number is 33434. The \texttt{ping} utility starts setting the destination port number of UDP packets to this base and increments it by one at each probe.

\textbf{-r} \\
Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly attached network, an error is returned. This
ping(1M)

option can be used to ping a local host through an interface that has been dropped by the router daemon. See in.routed(1M).

-s
Send one datagram per second and collect statistics.

-t ttl
Specify the IPv4 time to live, or IPv6 hop limit, for unicast and multicast packets. The default time to live (hop limit) for unicast packets can be set with ndd(1M) using the icmp_ipv4_ttl variable for IPv4 and the icmp_ipv6_ttl variable for IPv6. The default time to live (hop limit) for multicast is one hop.

-v
Verbose output. List any ICMP (ICMP6) packets, other than replies from the target host.

OPERANDS

host
The network host

EXAMPLES

EXAMPLE 1 Using ping With IPv6

This example shows ping sending probe packets to all the IPv6 addresses of the host london, one at a time. It sends an ICMP6 ECHO_REQUEST every second until the user interrupts it.

istanbul% ping -s -A inet6 -a london
PING london: 56 data bytes
64 bytes from london (4::114:a00:20ff:ab3d:83ed): icmp_seq=0. time=2. ms
64 bytes from london (fec0::114:a00:20ff:ab3d:83ed): icmp_seq=1. time=1. ms
64 bytes from london (4::114:a00:20ff:ab3d:83ed): icmp_seq=2. time=1. ms
64 bytes from london (fec0::114:a00:20ff:ab3d:83ed): icmp_seq=3. time=1. ms
64 bytes from london (4::114:a00:20ff:ab3d:83ed): icmp_seq=4. time=1. ms
64 bytes from london (fec0::114:a00:20ff:ab3d:83ed): icmp_seq=5. time=1. ms
^C
----london PING Statistics----
6 packets transmitted, 6 packets received, 0% packet loss
round-trip (ms) min/avg/max = 1/1/2

EXIT STATUS

The following exit values are returned:

0 Successful operation; the machine is alive.
non-zero An error has occurred. Either a malformed argument has been specified, or the machine was not alive.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbip</td>
</tr>
</tbody>
</table>

System Administration Commands 1287
SEE ALSO ifconfig(1M), in.routed(1M), ndd(1M), netstat(1M), rpcinfo(1M), traceroute(1M), attributes(5), icmp(7P), icmp6(7P)
pkgadd – transfer software packages to the system

**SYNOPSIS**

cpkgadd [-nvi] [-a admin] [-d device] [-x proxy] [ -M ] -R root_path
  [-r response] [-k keystore] [-P passwd] [-V fs_file] [source] [instances]

cpkgadd -s [source] [instances]

**DESCRIPTION**

pkgadd transfers the contents of a software package from the distribution medium or directory to install it onto the system. Used without the -d option, pkgadd looks in the default spool directory for the package (var/spool/pkg). Used with the -s option, it writes the package to a spool directory instead of installing it.

The pkgadd utility requires an amount of temporary space the size of the package that is being installed. pkgadd determines which temporary directory to use by checking for the existence of the $TMPDIR environment variable. If $TMPDIR is not defined, pkgadd uses P_tmpdir from stdio.h. P_tmpdir has a default of /var/tmp/.

Certain unbundled and third-party packages are no longer entirely compatible with the latest version of pkgadd. These packages require user interaction throughout the installation and not just at the very beginning.

To install these older packages (released prior to Solaris 2.4), set the following environment variable: NONABI_SCRIPTS=TRUE

pkgadd permits keyboard interaction throughout the installation as long as this environment variable is set.

**OPTIONS**

The following options are supported:

- `-a admin` Define an installation administration file, admin, to be used in place of the default administration file. The token none overrides the use of any admin file, and thus forces interaction with the user. Unless a full path name is given, pkgadd first looks in the current working directory for the administration file. If the specified administration file is not in the current working directory, pkgadd looks in the /var/sadm/install/admin directory for the administration file.

- `-d device` Install or copy a package from device. device can be a full path name to a directory or the identifiers for tape, floppy disk, or removable disk (for example, /var/tmp or /floppy/floppy_name). It can also be a device alias (for example, /floppy/floppy0) or a datastream created by pkgtrans (see pkgtrans(1)).

- `-k keystore` Use keystore as the location from which to get trusted certificate authority certificates when verifying digital signatures found in packages. If no keystore is specified, then the default keystore locations are searched for valid trusted certificates. See KEYSTORE LOCATIONS for more information.

- `-M` Instruct pkgadd not to use the $root_path/etc/vfstab file for determining the client’s mount points. This option assumes the...
mount points are correct on the server and it behaves consistently with Solaris 2.5 and earlier releases.

-\n Installation occurs in non-interactive mode. Suppress output of the list of installed files. The default mode is interactive.

-p passwd Password to use to decrypt keystore specified with -k, if required. See PASS PHRASE ARGUMENTS for more information about the format of this option’s argument.

-r response Identify a file or directory which contains output from a previous pkgask(1M) session. This file supplies the interaction responses that would be requested by the package in interactive mode. response must be a full pathname.

-R root\_path Define the full path name of a directory to use as the root\_path. All files, including package system information files, are relocated to a directory tree starting in the specified root\_path. The root\_path may be specified when installing to a client from a server (for example, /export/root/client1).

-s spool Write the package into the directory spool instead of installing it.

-v Trace all of the scripts that get executed by pkgadd, located in the pkginst/install directory. This option is used for debugging the procedural and non-procedural scripts.

-v fs\_file Specify an alternative fs\_file to map the client’s file systems. For example, used in situations where the $root\_path/etc/vfstab file is non-existent or unreliable.

-x proxy Specify a HTTP[S] proxy to use when downloading packages. The format of proxy is host:port, where host is the hostname of the HTTP[S] proxy, and port is the port number associated with the proxy. This switch overrides all other methods of specifying a proxy. See ENVIRONMENT VARIABLES for more information on alternate methods of specifying a default proxy.

When executed without options or operands, pkgadd uses /var/spool/pkg (the default spool directory).

**OPERANDS** The following operands are supported:

**Sources** By default, pkgadd looks in the /var/spool/pkg directory when searching for instances of a package to install or spool. Optionally, the source for the package instances to be installed or spooled can be specified using:

-\d device Install or copy a package from device. device can be a full path name to a directory or the identifiers for tape, floppy disk, or removable disk (for example, /var/tmp or /floppy/floppy\_name). It can also be a device alias (for example, /floppy/floppy0) or a datastream created by pkgtrans (see pkgtrans(1)).
device can also be a URL pointing to a datastream created by pkgtrans.

By default, pkgadd searches the specified source, and presents an interactive menu allowing the user to select which package instances found on the source are to be installed. As an alternative, the package instances to be installed can be specified using:

pkginst

The package instance or list of instances to be installed. The token all may be used to refer to all packages available on the source medium. The format pkginst.* can be used to indicate all instances of a package.

The asterisk character (*) is a special character to some shells and may need to be escaped. In the C-Shell, the asterisk must be surrounded by single quotes (‘’) or preceded by a backslash (\).

-Y category[,...]

Install packages based on the value of the CATEGORY parameter stored in the package's pkginfo(4) file. All packages on the source medium whose CATEGORY matches one of the specified categories will be selected for installation or spooling.

Package and patch tools such as pkgadd or patchadd use a set of trusted certificates to perform signature validation on any signatures found within the packages or patches. If there are no signatures included in the packages or patches then signature validation is skipped. The certificates can come from a variety of locations. If -k keystore is specified, and keystore is a directory, then keystore is assumed to be the base directory of the certificates to be used. If keystore is a file, then the file itself is assumed to have all required keys and certificates. When -k is not specified, then /var/sadm/security is used as the base directory.

Within the specified base directory, the store locations to be searched are different based on the application doing the searching and the type of store being searched for. The following directories are searched in the specified order:

1. <store_dir>/<app_name>/<store_type>
2. <store_dir>/<store_type>

Where <store_dir> is the directory specified by -k, <app_name> is the name of the application doing the searching, and <store_type> is one of keystore (for private keys), certstore (for untrusted public key certificates), or truststore (for trusted certificate authority certificates).

For example, when pkgadd is run with -k /export/certs, then the following locations are successively searched to find the trust store:

1. /export/certs/pkgadd/truststore
2. /export/certs/truststore

This searching order enables administrators to have a single location for most applications, and special certificate locations for certain applications.
The packaging and patching utilities, such as pkgtrans and patchadd, require access to a set of keys and certificates in order to sign, and optionally verify, packages and patches.

The keystore files found by following the search pattern specified in KEYSTORE LOCATIONS must each be a self-contained PKCS#12-format file.

When signing a package with pkgtrans, if a certstore has more than one public key certificate, then each public key must have a friendlyName attribute in order to be identifiable and selectable with the -a option when signing packages or patches. In addition, the public key certificate selected with -a and found in the certstore must have an associated private key in the keystore.

Several browsers and utilities can be used to export and import certificates and keys into a PKCS#12 keystore. For example, a trusted certificate can be exported from Netscape, and then imported into a PKCS#12 keystore for use with pkgadd with the OpenSSL Toolkit.

pkgtrans and pkgadd accept password arguments, typically using -p to specify the password. These allow the password to be obtained from a variety of sources. Both of these options take a single argument whose format is described below. If no password argument is given and a password is required then the user is prompted to enter one: this will typically be read from the current terminal with echoing turned off.

pass:password
The actual password is password. Because the password is visible to utilities such as ps this form should only be used where security is not important.

env:var
Obtain the password from the environment variable var. Because the environment of other processes is visible on certain platforms this option should be used with caution.

file:pathname
The first line contained within pathname is the password. pathname need not refer to a regular file: it could, for example, refer to a device or named pipe. For example, to read the password from standard input, use file:/dev/stdin.

console
Read the password from /dev/tty.

EXAMPLE 1 Installing a Package from a Solaris CD-ROM

The following example installs a package from a Solaris CD-ROM. You are prompted for the name of the package you want to install.

example% pkgadd -d /cdrom/cdrom0/s0/Solaris_2.6
Successful completion

EXIT STATUS
0  Successful completion
1  Fatal error.
Warning.

Interruption.

Administration.

Administration. Interaction is required. Do not use pkgadd -n.

Reboot after installation of all packages.

Reboot after installation of this package.

ENVIRONMENT VARIABLES

HTTPPROXY
   Specifies an HTTP proxy host. Overrides administration file setting, and http_proxy environment variable.

HTTPPROXYPORT
   Specifies the port to use when contacting the host specified by HTTPPROXY. Ignored if HTTPPROXY is not set.

http_proxy
   URL format for specifying proxy host and port. Overrides administration file setting.

ATTIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpkgcmdsdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadm(1M), pkgask(1M), pkgrm(1M), removef(1M), admin(4), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide

http://www.openssl.org

NOTES

When transferring a package to a spool directory, the -r, -n, and -a options cannot be used.

The -r option can be used to indicate a directory name as well as a filename. The directory can contain numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when adding multiple interactive packages with one invocation of pkgadd. In this situation, each package would need a response file. If you create response files with the same name as the package (for example, pkinst1 and pkinst2), then name the directory in which these files reside after the -r.

The -n option causes the installation to halt if any interaction is needed to complete it.
If the default `admin` file is too restrictive, the administration file may need to be modified to allow for total non-interaction during a package installation. See `admin(4)` for details.

If a package stream is specified with `-d`, and a digital signature is found in that stream, the default behavior is to attempt to validate the certificate and signature found. This behavior can be overridden with `admin` file settings. See `admin(4)` for more information.
pkgadm(1M)

NAME
pkgadm – manage packaging and patching system

SYNOPSIS
pkgadm addcert [-ty] [-a app] [-k keystore] [-e keyfile] [-f format]

pkgadm removecert [-a app] [-k keystore] -n name [-P passarg]
[-R rootpath]

pkgadm listcert [-a app] [-f format] [-k keystore] -n name [-P passarg]
[-o outfile] [-R rootpath]

pkgadm -V
pkgadm -?

DESCRIPTION
The pkgadm utility is used for managing the packaging and patching system. It has
several subcommands that perform various operations relating to packaging. The
pkgadm command includes subcommands for managing certificates and keys used.

Managing Keys
and Certificates
pkgadm maintains the packaging-system-wide keystore in /var/sadm/security,
and individual user's certificates in ~/.pkg/security. The following subcommands
operate on the package keystore database:

addcert
Add (import) a certificate into the database, with optional trust. Once added,
trusted certificates can be used to verify signed packages and patches. Non-trusted
user certificates and their associated keys can be used to sign packages and patches.
Added user certificates are not used to build certificate chains during certificate
verification.

removecert
Removes a user certificate/private key pair, or a trusted certificate authority
certificate from the keystore. Once removed, the certificate and keys cannot be used.

listcert
Print details of one or more certificates in the keystore.

OPTIONS
The following options are supported:

-a app
If this option is used, then the command only affects the keystore associated with a
particular application. Otherwise, the global keystore is affected.

-e keyfile
When adding a non-trusted certificate/key combination, this option can be used to
specify the file that contains the private key. If this option is not used, the private
key must be in the same file as the certificate being added.

-f format
When adding certificates, this specifies the format to expect certificates and private
keys in. Possible values when adding are:

pem Certificate and any private key uses PEM encoding.
der Certificate and any private key uses DER encoding.
When printing certificates, this specifies the output format used when printing.
Acceptable values for format are:

- **pem**
  Output each certificate using PEM encoding.

- **der**
  Output each certificate using DER encoding.

- **text**
  Output each certificate in human-readable format.

- **-k keystore**
  Overrides the default location used when accessing the keystore.

- **-n name**
  Identifies the entity in the store on which you want to operate. When adding a user certificate, or removing certificates, this name is required. The name is associated with the certificate/key combination, and when adding, can be used later to reference the entity. When printing certificates, if no alias is supplied, then all keystore entities are printed.

- **-o outfile**
  Output the result of the command to *outfile*. Only used when examining (printing) certificates from the key store. Standard out is the default.

- **-P passarg**
  Password retrieval method to use to decrypt keystore specified with **-k**, if required. See PASS PHRASE ARGUMENTS in pkgadm(1M) for more information about the format of this option’s argument. console is the default.

- **-p import_passarg**
  This option’s argument is identical to **-P**, but is used for supplying the password used to decrypt the certificate and/or private key being added. console is the default.

- **-R rootpath**
  Defines the full name of a directory to use as the root (/) path. The default user location of the certificate operations is ${HOME}/.pkg. If the **-R** option is supplied, the certificates and keys will be stored under `<altroot>/var/sadm/security`. Note that this operation fails if the user does not have sufficient permissions to access this directory. The listcert command requires read permission, while addcert and removecert require both read and write permission.

- **-t**
  Indicates the certificate being added is a trusted CA certificate. The details of the certificate (including the Subject Name, Validity Dates, and Fingerprints) are printed and the user is asked to verify the data. This verification step can be skipped with **-y**. When importing a trusted certificate, a private key should not be supplied, and will be rejected if supplied. Once a certificate is trusted, it can be used as a trust anchor when verifying future untrusted certificates.

- **-V**
  Print version associated with packaging tools.
When adding a trusted certificate, the details of the certificate (Subject name, Issuer name, Validity dates, Fingerprints) are shown to the user and the user is asked to verify the correctness before proceeding. With `-y`, this additional verification step is skipped.

`-?` Print help message.

**OPERANDS**
The following operand is supported:

- `certfile`
  File containing the certificate and optional private key, used when adding a trust anchor or certificate/key combination. Certificates must be encoded using PEM or binary DER.

**KEYSTORE ALIASES**
All keystore entries (user cert/key and trusted certificate entries) are accessed via unique aliases. Aliases are case-sensitive.

An alias is specified when you add an entity to a keystore using the `addcert` or `trustcert` subcommand. If an alias is not supplied for a trust anchor, the trust anchor’s Common Name is used as the alias. An alias is required when adding a signing certificate or chain certificate. Subsequent `pkgcert` or other package tool commands must use this same alias to refer to the entity.

**KEYSTORE PASSWORDS EXAMPLES**
See `pkgadm(1M)` for a description of the passwords supplied to this utility.

**EXAMPLE 1 Adding a Trust Anchor**
The following example adds a well-known and trusted certificate to be used when verifying signatures on packages.

```
example% pkgadm addcert -t /tmp/certfile.pem
```

**EXAMPLE 2 Adding a Signing Certificate**
The following example adds a signing certificate and associated private key, each of which is in a separate file, which can then be used to sign packages.

```
example% pkgadm addcert -a pkgtrans -e /tmp/keyfile.pem \
/tmp/certfile.pem
```

**EXAMPLE 3 Printing Certificates**
The following example prints all certificates in the root keystore.

```
example% pkgadm listcert
```

**EXIT STATUS**

- 0 successful completion
- non-zero fatal error
pkgadm(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpkgcmdsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgask(1M), pkgrm(1M), removef(1M), admin(4), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide
pkgask utility

SYNOPSIS

pkgask [-d device] [-R root_path] -r response pkginst...

DESCRIPTION

pkgask allows the administrator to store answers to an interactive package (one with a request script, that is, a user-created file that must be named request). Invoking this command generates a response file that is then used as input at installation time. The use of this response file prevents any interaction from occurring during installation since the file already contains all of the information the package needs.

OPTIONS

The following options are supported:

- **-d device**
  Run the request script for a package on device. device can be a directory pathname or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp, /dev/diskette, and /dev/dsk/c1d0s0). The default device is the installation spool directory.

- **-R root_path**
  Define the full path name of a directory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.

- **-r response**
  Identify a file or directory which should be created to contain the responses to interaction with the package. The name must be a full pathname. The file, or directory of files, can later be used as input to the pkgadd(1M) command.

OPERANDS

The following operands are supported:

- **pkginst**
  Specify the package instance, or list of instances for which request scripts will be created. The token all may be used to refer to all packages available on the source medium.

EXIT STATUS

0  Successful completion.

>0  An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgchk(1M), pkgrm(1M), removef(1M), admin(4), attributes(5)

Application Packaging Developer’s Guide

NOTES

The -r option can be used to indicate a directory name as well as a filename. The directory name is used to create numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when
you will be adding multiple interactive packages with one invocation of "pkgadd(1M). Each package would need a response file. To create multiple response files with the same name as the package instance, name the directory in which the files should be created and supply multiple instance names with the "pkgask" command. When installing the packages, you will be able to identify this directory to the "pkgadd(1M)" command.

If the default "admin" file is too restrictive, the administration file may need to be modified to allow for total non-interaction during a package installation. See "admin(4)" for details.
pkgchk – check package installation accuracy

SYNOPSIS

pkgchk [-l | -acfnvx] [-i file] [-p path...] [-R root_path] [ [-m pkgmap [-e envfile]] | pkginst... | -Y category, category...]

device

pkgchk [-d device [-l | -fv]] [-i file] [-M] [-p path...] [-V fs_file] [pkginst... | -Y category[ , category...]]

DESCRIPTION

pkgchk checks the accuracy of installed files or, by using the -l option, displays information about package files. pkgchk checks the integrity of directory structures and files. Discrepancies are written to standard error along with a detailed explanation of the problem.

The first synopsis defined above is used to list or check the contents and/or attributes of objects that are currently installed on the system, or in the indicated pkgmap. Package names may be listed on the command line, or by default, the entire contents of a machine will be checked.

The second synopsis is used to list or check the contents of a package which has been spooled on the specified device, but not installed. Note that attributes cannot be checked for spooled packages.

OPTIONS

The following options are supported:

-a
Audit the file attributes only and do not check file contents. Default is to check both.

-c
Audit the file contents only and do not check file attributes. Default is to check both.

-d device
Specify the device on which a spooled package resides. device can be a directory path name or the identifiers for tape, floppy disk, or removable disk (for example, /var/tmp or /dev/diskette).

-e envfile
Request that the package information file named as envfile be used to resolve parameters noted in the specified pkgmap file.

-f
Correct file attributes if possible. If used with the -x option, this option removes hidden files. When pkgchk is invoked with this option, it creates directories, named pipes, links, and special devices if they do not already exist. If the -d option calls out an uninstalled package, the -f option will only take effect if the package is in directory (not stream) format. All file attributes will be set to agree with the entries in the pkgmap file except that setuid, setgid, and sticky bits will not be set in the mode.

-i file
Read a list of path names from file and compare this list against the installation software database or the indicated pkgmap file. Path names which are not contained in file are not checked.

-l
List information on the selected files that make up a package. This option is not compatible with the -a, -c, -f, -g, and -v options.
pkgchk(1M)

**OPERANDS**

- **pkgmap**
  Check the package against the package map file, pkgmap.

- **M**
  Instruct pkgchk not to use the $root_path/etc/vfstab file for
determining the client’s mount points. This option assumes the
mount points are correct on the server and it behaves consistently
with Solaris 2.5 and earlier releases.

- **n**
  Do not check volatile or editable files’ contents. This should be
used for most post-installation checking.

- **p path**
  Only check the accuracy of the path name or path names listed.
  path can be one or more path names separated by commas (or by
  white space, if the list is quoted).

- **q**
  Quiet mode. Do not give messages about missing files.

- **R root_path**
  Define the full name of a directory to use as the root_path. All files,
including package system information files, are relocated to a
directory tree starting in the specified root_path. The root_path may
be specified when installing to a client from a server (for example,
/export/root/client1).

- **v**
  Verbose mode. Files are listed as processed.

- **V fs_file**
  Specify an alternative fs_file to map the client’s file systems. For
  example, used in situations where the $root_path/etc/vfstab file
  is non-existent or unreliable.

- **x**
  Search exclusive directories, looking for files which exist that are
  not in the installation software database or the indicated pkgmap
  file.

- **Y category**
  Check packages based on the value of the CATEGORY parameter
  stored in the installed or spooled package’s pkginfo(4) file.

**EXIT STATUS**

- **0**
  Successful completion.

- **>0**
  An error occurred.

**EXAMPLES**

**EXAMPLE 1 Using pkgchk for Displaying Package Installation Information**

The following example displays package installation information for /usr/bin/ls:

```
example$ pkgchk -l -p /usr/bin/ls
```

**EXAMPLE 2 Using pkgchk for Checking Package Attributes**

The following example checks the attributes of the package /usr/bin/ls:

```
example$ pkgchk -a /usr/bin/ls
```
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

pkginfo(1), pkgtrans(1), pkgadd(1M), pkgask(1M), pkgrm(1M), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide
NAME

pkgrm – remove a package from the system

SYNOPSIS

pkgrm [-nv] [-a admin] [ [-A | -M] -R root_path] [-Y fs_file] [pkginst... 
| -Y category [,category,...]]

pkgrm -s spool [pkginst... | -Y category [,category,...]]

DESCRIPTION

pkgrm will remove a previously installed or partially installed package from the
system. A check is made to determine if any other packages depend on the one being
removed. If a dependency exists, the action taken is defined in the admin file.

The default state for the command is in interactive mode, meaning that prompt
messages are given during processing to allow the administrator to confirm the
actions being taken. Non-interactive mode can be requested with the -n option.

The -s option can be used to specify the directory from which spooled packages
should be removed.

Certain unbundled and third-party packages are no longer entirely compatible with
the latest version of pkgrm. These packages require user interaction throughout the
removal and not just at the very beginning.

To remove these older packages (released prior to Solaris 2.4), set the following
environment variable: NONABI_SCRIPTS=TRUE pkgrm permits keyboard interaction
throughout the removal as long as this environment variable is set.

OPTIONS

The following options are supported:

- a admin
  Use the installation administration file, admin, in place of the
default admin file. pkgrm first looks in the current working
directory for the administration file. If the specified administration
file is not in the current working directory, pkgrm looks in the
/var/sadm/install/admin directory for the administration
file.

-A
  Remove the package files from the client’s file system, absolutely.
  If a file is shared with other packages, the default behavior is to
  not remove the file from the client’s file system.

-M
  Instruct pkgrm not to use the $root_path/etc/vfstab file for
determining the client’s mount points. This option assumes the
mount points are correct on the server and it behaves consistently
with Solaris 2.5 and earlier releases.

-n
  Non-interactive mode. If there is a need for interaction, the
  command will exit.

Use of this option requires that at least one package instance be
named upon invocation of the command. Certain conditions must
exist for a package to be removed non-interactively or a
non-restrictive admin file needs to be used.
-R root_path  Defines the full path name of a directory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path.

-s spool  Remove the specified package(s) from the directory spool. The default directory for spooled packages is /var/sadm/pkg.

-v  Trace all of the scripts that get executed by pkgrm, located in the pkginst/install directory. This option is used for debugging the procedural and non-procedural scripts.

-V fs_file  Specify an alternative fs_file to map the client’s file systems. Used in situations where the $root_path/etc/vfstab file is non-existent or unreliable.

-Y category  Remove packages based on the value of the CATEGORY parameter stored in the installed or spooled package’s pkginfo(4) file. No package with the CATEGORY value of system can removed from the file system with this option.

The following operand is supported:

pkginst  Specifies the package to be removed. The format pkginst.* can be used to remove all instances of a package.

The asterisk character (*) is a special character to some shells and may need to be escaped. In the C-Shell, "*" must be surrounded by single quotes (’) or preceded by a backslash (\).

EXAMPLES  EXAMPLE 1 Removing All instances of SUNWjunk From client1

The following example removes all instances of SUNWjunk from client1:

```
example% pkgrm -R /export/root/client1 SUNWjunk* 
```

EXIT STATUS  The following exit values are returned:

0  Successful completion.
1  Fatal error.
2  Warning.
3  Interruption.
4  Administration.
10  Reboot after removal of all packages.
20  Reboot after removal of this package.
pkgrm(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1M), removef(1M), admin(4), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide
pmadm(1M)

NAME
pmadm – port monitor administration

SYNOPSIS
pmadm -a [-p pmtag | -t type] -s svctag -i id -m pmspecific -v ver [-f xu] 
[-y comment] [-z script]

pmadm -r -p pmtag -s svctag

pmadm -e -p pmtag -s svctag

pmadm -d -p pmtag -s svctag

pmadm -l [-t type | -p pmtag] [-s svctag]

pmadm -L [-t type | -p pmtag] [-s svctag]

pmadm -g -p pmtag -s svctag [-z script]

pmadm -g -s svctag -t type [-z script]

DESCRIPTION
pmadm is the administrative command for the lower level of the Service Access Facility hierarchy, that is, for service administration. A port may have only one service associated with it although the same service may be available through more than one port. In order to uniquely identify an instance of a service, the pmadm command must identify both the port monitor or port monitors through which the service is available (-p or -t) and the service (-s). See OPTIONS.

pmadm performs the following functions:

- adds or removes a service
- enables or disables a service
- installs or replaces a per-service configuration script
- prints requested service information

Any user on the system may invoke pmadm to request service status (-l or -L) or to print per-service configuration scripts (-g without the -z option). pmadm with other options may be executed only by a privileged user.

OPTIONS
The following options are supported:

-a
Add a service. pmadm adds an entry for the new service to the port monitor’s administrative file. Because of the complexity of the options and arguments that follow the -a option, it may be convenient to use a command script or the menu system to add services.

-d
Disable a service. Add x to the flag field in the entry for the service svctag in the port monitor’s administrative file. This is the entry used by port monitor pmtag. See the -f option, below, for a description of the flags available.

-e
Enable a service. Remove x from the flag field in the entry for the service svctag in the port monitor administrative file. This is the entry used by port monitor pmtag. See the -f option, below, for a description of the flags available.
The -f option specifies one or both of the following two flags which are then included in the flag field of the entry for the new service in the port monitor’s administrative file. If the -f option is not included, no flags are set and the default conditions prevail. By default, a new service is enabled and no utmpx entry is created for it. An -f option without a following argument is illegal.

- x Do not enable the service svctag available through port monitor pmtag.
- u Create a utmpx entry for service svctag available through port monitor pmtag.

- g Print, install, or replace a per-service configuration script. The -g option with a -p option and a -s option prints the per-service configuration script for service svctag available through port monitor pmtag. The -g option with a -p option, a -s option, and a -z option installs the per-service configuration script contained in the file script as the per-service configuration script for service svctag available through port monitor pmtag. The -g option with a -s option, a -t option, and a -z option installs the file script as the per-service configuration script for service svctag available through any port monitor of type type. Other combinations of options with -g are invalid.

- i id id is the identity that is to be assigned to service svctag when it is started. id must be an entry in /etc/passwd.

- l The -l option requests service information. Used by itself and with the options described below, it provides a filter for extracting information in several different groupings.

- l By itself, the -l option lists all services on the system.
- l -p pmtag Lists all services available through port monitor pmtag.
- l -s svctag Lists all services with tag svctag.
- l -p pmtag-asvctag Lists service svctag.
- l -t type Lists all services available through port monitors of type type.
- l -t type-asvctag Lists all services with tag svctag available through a port monitor of type type.

Other combinations of options with -l are invalid.

- L The -L option is identical to the -l option except that output is printed in a condensed format.
-m pmspecific  
   *pmspecific* is the port monitor-specific portion of the port monitor administrative file entry for the service.

-p pmtag  
   Specifies the tag associated with the port monitor through which a service (specified as -s svctag) is available.

-r  
   Remove a service. When *pmadm* removes a service, the entry for the service is removed from the port monitor’s administrative file.

-s svctag  
   Specifies the service tag associated with a given service. The service tag is assigned by the system administrator and is part of the entry for the service in the port monitor’s administrative file.

-t type  
   Specifies the the port monitor type.

-v ver  
   Specifies the version number of the port monitor administrative file. The version number may be given as

   -v ‘pmspec -V’  
   where *pmspec* is the special administrative command for port monitor *pmtag*. This special command is *ttyadm* for *ttymon* and *nlsadmin* for *listen*. The version stamp of the port monitor is known by the command and is returned when *pmspec* is invoked with a -V option.

-y comment  
   Associate *comment* with the service entry in the port monitor administrative file.

-z script  
   Used with the -g option to specify the name of the file that contains the per-service configuration script. Modifying a configuration script is a three-step procedure. First a copy of the existing script is made (-g alone). Then the copy is edited. Finally, the copy is put in place over the existing script (-g with -z).

Options that request information write the requested information to the standard output. A request for information using the -l option prints column headers and aligns the information under the appropriate headings. In this format, a missing field is indicated by a hyphen. A request for information in the condensed format using the -L option prints the information in colon-separated fields; missing fields are indicated by two successive colons. # is the comment character.

### EXAMPLES

#### EXAMPLE 1 Adding a Service to a Port Monitor with the Tag pmtag

The following command adds a service to a port monitor with tag *pmtag* and gives the service the tag *svctag*. The port monitor-specific information is generated by *specpm*. The service defined by *svctag* will be invoked with identity *root*.

```
  pmadm -a -p pmtag -s svctag -i root -m 'specpm -a arg1 -b arg2' -v 'specpm -V'
```
EXAMPLE 2 Adding a Service with Service Tag svctag

The following command adds a service with service tag svctag, identity guest, and port monitor-specific information generated by specpm to all port monitors of type type:

```bash
pmadm -a -s svctag -i guest -t type -m 'specpm -a arg1 -b arg2' -v 'specpm -V'
```

EXAMPLE 3 Removing a Service

The following command removes the service svctag from port monitor pmtag:

```bash
pmadm -r -p pmtag -s svctag
```

EXAMPLE 4 Enabling a Service

The following command enables the service svctag available through port monitor pmtag:

```bash
pmadm -e -p pmtag -s svctag
```

EXAMPLE 5 Disabling a Service

The following command disables the service svctag available through port monitor pmtag:

```bash
pmadm -d -p pmtag -s svctag
```

EXAMPLE 6 Listing Status Information

The following command lists status information for all services:

```bash
pmadm -l
```

EXAMPLE 7 Listing Status Information

The following command lists status information for all services available through the port monitor with tag ports:

```bash
pmadm -l -p ports
```

EXAMPLE 8 Listing Status Information in Condensed Format

The following command lists the status information for all services available through the port monitor with tag ports in condensed format:

```bash
pmadm -L -p ports
```
EXAMPLE 9 Listing Status Information for All Services

List status information for all services available through port monitors of type listen:

```
pmadm -l -t listen
```

EXAMPLE 10 Printing the per-service Configuration

The following command prints the per-service configuration script associated with the service svctag available through port monitor pmtag:

```
pmadm -g -p pmtag -s svctag
```

EXIT STATUS

The following exit values are returned:

0 Successful operation.

>0 Operation failed.

FILES

/etc/saf/pmtag/_config

/etc/saf/pmtag/svctag

/var/saf/pmtag/*

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

sac(1M), sacadm(1M), doconfig(3NSL), attributes(5)
pmconfig(1M)

NAME       pmconfig – Configure the Power Management system

SYNOPSIS   /usr/sbin/pmconfig [-r]

DESCRIPTION The pmconfig utility sets the Power Management and suspend-resume configuration. User has permission to change Power Management configuration using pmconfig only if he is allowed to do so according to PMCHANGEPERM keyword of /etc/default/power. User has permission to change the suspend-resume configuration using pmconfig only if he is allowed to do so according to the CPRCHANGEPERM keyword of /etc/default/power. See FILES section below for a description of the PMCHANGEPERM and CPRCHANGEPERM keywords of /etc/default/power.

Based on user permissions, pmconfig first resets the Power Management and/or suspend-resume state back to its default and then reads the new Power Management and/or suspend-resume configuration from /etc/power.conf and issues the commands to activate the new configuration. The pmconfig utility is run at system boot. This utility can also be run from the command line after manual changes have been made to the /etc/power.conf file. For editing changes made to the /etc/power.conf file to take effect, users must run pmconfig.

The preferred interface for changing Power Management and suspend-resume configuration is dtpower(1M).

OPTIONS The following options are supported:

-  r  Reset Power Management and suspend-resume state to default and exit.
   User must have both Power Management and suspend-resume configuration permission for this option.

EXIT STATUS The following exit values are returned:

0  Upon successful completion

>0  An error occurred

FILES /etc/power.conf  System Power Management configuration file

/etc/default/power  File that controls permissions for system’s Power Management and suspend-resume features. The PMCHANGEPERM keyboard controls the Power Management configuration permissions, while the CPRCHANGEPERM keyboard controls the suspend-resume configuration permissions.

Allowed values are:

all  Any user can change the configuration.

-  No one except super-user can change the configuration.
A user in this user list or a super-user can change the configuration. The user list is a space and/or comma (,) separated list. You must enclose the list in < and > characters.

console-owner  A user who owns the system console device node or a super-user can change the configuration.

The default values are PMCHANGEPERM=console-owner and CPRCHANGEPERM=console-owner.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpmu</td>
</tr>
<tr>
<td>Interface stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO

powerd(1M), power.conf(4), attributes(5), cpr(7), pm(7D)

Using Power Management

DIAGNOSTICS

If the program cannot open the configuration file, it prints an error message to standard error. If the program encounters a syntax error in the configuration file, it prints an error message and the line number of the error in the configuration file. It then skips the rest of the information on that line and processes the next line. Any configuration information already processed on the line containing the error is used. If user does not have permission to change Power Management and/or suspend-resume configuration, and configuration file has entries for which user doesn’t have permission, it process the entries for which user has permissions and prints error on rest.
pntadm(1M)

NAME
pntadm – DHCP network table management utility

SYNOPSIS
pntadm -C [-r resource] [-p path] [-u uninterpreted] network
pntadm -A name_IP_address [-c comment] [-e mm/dd/yyyy] [-f num
| keywords] [-h client_hostname] [-i [-a] client_ID] [-m [-y] macro]
[-s server] [-r resource] [-p path] [-u uninterpreted] network
pntadm -M name_IP_address [-c comment] [-e mm/dd/yyyy] [-f num
| keywords] [-h client_hostname] [-i [-a] client_ID] [-m [-y] macro]
[-n new_client_IP_address] [-s server] [-r resource] [-p path]
| [-u uninterpreted] network
pntadm -D name_IP_address [-y] [-r resource] [-p path]
| [-u uninterpreted] network
pntadm -R [-r resource] [-p path] [-u uninterpreted] network
pntadm -L [-r resource] [-p path] [-u uninterpreted]
pntadm -B [-v] [batchfile]

DESCRIPTION
The pntadm command is used to manage the Dynamic Host Configuration Protocol
(DHCP) network tables. It is used to add and remove networks under DHCP
management, and add, delete, or modify IP address records within network tables, or
to view tables. For a description of the format of DHCP network tables, see
dhcp_network(4).

pntadm can be run as root or by other users assigned to the DHCP Management
profile. See rbac(5) and user_attr(4).

If the networks you want to add are subnetted, you need to update the netmasks(4)
table.

One of the following options (function flags) must be specified with the pntadm

OPTIONS
The following options are supported:

-A name_IP_address
  Add a client entry with hostname or client IP address, name_IP_address, to the
  named DHCP network table.

  The following sub-options are optional:

  -c comment
    Comment text. The default is NULL.

  -e mm/dd/yyyy
    Absolute lease. The default is 0.

  -f num | keywords
    Flag value. The default is 00.

  -s server
    Server name or IP address.

  -m [-y] macro
    Macro definition.

  -i client_ID
    Client identifier.

  -a [-y] client_attr
    Client attribute.

  -n new_client_IP_address
    New client IP address.

  -r resource
    Resource identifier.

  -p path
    Path to resource.

  -u uninterpreted
    Uninterpreted network.
The flag (-f) option can be specified either as a single number denoting the intended flag value, or as a series of the following keywords, combined using the plus (+) symbol:

DYNAMIC or 00
   Server manager’s assignment.

PERMANENT or 01
   Lease on entry is permanent.

MANUAL or 02
   Administrator managed assignment.

UNUSABLE or 04
   Entry is not valid.

BOOTP or 08
   Entry reserved for BOOTP clients.

For a more detailed description of the flag values, see dhcp_network(4).

-h client_hostname
   Client hostname. The default is NULL.

   When the -h option is used in this mode, the client_hostname is added to the hosts table within the resource used for storing host names (files, NIS+ or DNS). The command will fail if this client_hostname is already present in the hosts table.

-i client_ID [-a]
   Client identifier [-a]. The default is 00.

   The -i option modified with -a specifies that the client identifier is in ASCII format, and thus needs to be converted to hexadecimal format before insertion into the table.

-m macro [-y]
   Macro name. Default is UNKNOWN.

   The -m option modified with -y verifies the existence of the named macro in the dhcptab table before adding the entry.

-s server
   Server IP or name. Default is system name (uname -n).

-B
   Activate batch mode. pntadm will read from the specified file or from standard input a series of pntadm commands and execute them within the same process. Processing many pntadm commands using this method is much faster than running an executable batchfile itself. Batch mode is recommended for using pntadm in scripts.

The following sub-option is optional:
Display commands to standard output as they are processed.

Create the DHCP network table for the network specified by network. See OPERANDS. For details, see dhcp_network(4) and networks(4).

Delete the specified client entry with hostname or client IP address, name/IP_address, in the named DHCP network table. (See dhcp_network(4).)

The following sub-option is optional:

Remove associated host table entry. The -y option requests that all hostnames associated with the IP address in the hosts table in the resource be removed.

List the DHCP network tables presently configured, one per line, on standard output. If none are found, no output is printed and an exit status of 0 is returned.

Modify the specified client entry with hostname or client IP address, name/IP_address, in the named DHCP network table. See dhcp_network(4). The default for the sub-options is what they currently are set to.

The following sub-options are optional.

- c comment
  New comment text.

- e mm/dd/yy
  New absolute lease expiration date. Time defaults to 12:00 AM of the day specified.

- f num | keyboard
  New flag value, see explanation following the description of the -A option.

- h host_name
  New client hostname.

  The -h option allows you to change the current hostname associated with the IP address or to add a new hostname to the hosts table if an entry associated with this IP address does not exist.

- i client_ID
  New client identifier [-a].

- m macro [-y]
  Macro name defined in dhcptab.

- n new_client_IP_address
  New IP address.
-s server
   New server IP or name.

For more detailed description of the sub-options and flag values, see dhcp_network(4).

-P
   Display the named DHCP network table.

The following sub-options are optional:

-v
   Display lease time in full verbose format and resolve IP addresses for the clients
   and server to hostnames.

-x
   Display lease time in raw format.

These flag codes are used with the -P sub-options:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>-x</td>
<td>Description</td>
</tr>
<tr>
<td>D</td>
<td>00</td>
<td>DYNAMIC</td>
</tr>
<tr>
<td>P</td>
<td>01</td>
<td>PERMANENT</td>
</tr>
<tr>
<td>M</td>
<td>02</td>
<td>MANUAL</td>
</tr>
<tr>
<td>U</td>
<td>04</td>
<td>UNUSABLE</td>
</tr>
<tr>
<td>B</td>
<td>08</td>
<td>BOOTP</td>
</tr>
</tbody>
</table>

See dhcp_network(4) for information on these sub-options and associated flag

codes.

-p path
   Override the dhcpsvc.conf(4) configuration value for data store resource path,
   path See dhcpsvc.conf(4)

-R
   Remove the named DHCP network table. See dhcp_network(4).

-r data_store_resource
   Override the /etc/inet/dhcpsvc.conf configuration value for RESOURCE=
   with the data_store_resource specified. See the dhcpsvc.conf(4) man page for more
details on resource type, and the Solaris DHCP Service Developer’s Guide for more
information about adding support for other data stores.

-u uninterpreted
   Data which will be ignored by pntadm, but passed to the currently configured
   public module to be interpreted by the data store. This might be used for a database
   account name or other authentication or authorization parameters required by a
particular data store.

**OPERANDS**

The following operand is supported:

`network`

The network address or network name which corresponds to the dhcp_network table. See dhcp_network(4).

**EXAMPLES**

**EXAMPLE 1** Creating a Table for the 10.0.0.0 DHCP Network

The following command creates a table for the 10.0.0.0 (subnetted to class C) DHCP network table. Note that if you have an alias for this network in your networks(4) table, you can use that value rather than the dotted Internet Address notation.

```
example# pntadm -C 10.0.0.0
```

**EXAMPLE 2** Adding an Entry to the 10.0.0.0 Table

The following command adds an entry to the 10.0.0.0 table in the files resource in the /var/mydhcp directory:

```
example# pntadm -r SUNWfiles -p /var/mydhcp -A 10.0.0.1 10.0.0.0
```

**EXAMPLE 3** Modifying the 10.0.0.1 Entry of the 10.0.0.0 Table

The following command modifies the 10.0.0.1 entry of the 10.0.0.0 table, changing the macro name to Green, setting the flags field to MANUAL and PERMANENT:

```
example# pntadm -M 10.0.0.1 -m Green -f 'PERMANENT + MANUAL' 10.0.0.0
```

**EXAMPLE 4** Changing the 10.0.0.1 Entry to 10.0.0.2

The following command changes the 10.0.0.1 entry to 10.0.0.2, making an entry in the hosts(4) table called myclient:

```
example# pntadm -M 10.0.0.1 -n 10.0.0.2 -h myclient 10.0.0.0
```

**EXAMPLE 5** Setting the Client ID as ASCII

The following command sets the client ID as ASCII aruba.foo.com for the myclient entry:

```
example# pntadm -M myclient -i 'aruba.foo.com' -a 10.0.0.0
```

**EXAMPLE 6** Deleting the myclient Entry from the 10.0.0.0 Table

The following command deletes the myclient (10.0.0.2) entry from the 10.0.0.0 table:

```
example# pntadm -D myclient 10.0.0.0
```
EXAMPLE 7 Removing the Named DHCP Network Table

The following command removes the named DHCP network table in the NIS+ directory specified:

```
example# pntadm -r SUNWnisplus -p Test.Nis.Plus. -R 10.0.0.0
```

EXAMPLE 8 Listing the Configured DHCP Network Tables

The following command lists the configured DHCP network tables:

```
example# pntadm -L
192.168.0.0
10.0.0.0
```

EXAMPLE 9 Executing pntadm Commands in Batch Mode

The following command runs a series of pntadm commands contained in a batch file:

```
example# pntadm -B addclients
```

EXIT STATUS
0      Successful completion.
1      Object already exists.
2      Object does not exist.
3      Non-critical error.
4      Critical error.

FILES
/etc/inet/dhcpsvc.conf
/etc/inet/hosts

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdhcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
dhcpconfig(1M), dhcpmgr(1M), dhcp_network(4), dhcpsvc.conf(4), dhcptab(4), hosts(4), netmasks(4), networks(4), user_attr(4), attributes(5), dhcp(5), dhcp_modules(5), rbac(5)

Solaris DHCP Service Developer’s Guide

System Administration Guide: IP Services


pooladm – activate and deactivate the resource pools facility

/usr/sbin/pooladm [-n] [-c [filename] | -x]

The pooladm command provides administrative operations on pools and sets. pooladm reads the specified filename and attempts to activate the pool configuration contained in it.

Before updating the current pool run-time configuration, pooladm validates the configuration for correctness.

Without options, pooladm prints out the current running pools configuration.

The following options are supported:

-c Instantiate the configuration at the given location. If a filename is not specified, it defaults to /etc/pooladm.conf.

-n Validate the configuration without actually updating the current active files.

-x Remove the currently active pool configuration. Destroy all defined resources, and return all formerly partitioned components to their default resources.

The following operands are supported:

filename Use the configuration contained within this file.

EXAMPLE 1 Instantiating a Configuration

The following command instantiates the configuration contained at /home/admin/newconfig:

example# /usr/sbin/pooladm -c /home/admin/newconfig

EXAMPLE 2 Validating the Configuration Without Instantiating It

The following command attempts to instantiate the configuration contained at /home/admin/newconfig. It displays any error conditions that it encounters, but does not actually modify the active configuration.

example# /usr/sbin/pooladm -n -c /home/admin/newconfig

EXAMPLE 3 Removing the Current Configuration

The following command removes the current pool configuration:

example# /usr/sbin/pooladm -x

FILES /etc/pooladm.conf
pooladm(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>Invocation</td>
<td>Unstable</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

poolcfg(1M), poolbind(1M), libpool(3LIB), attributes(5),

System Administration Guide: Resource Management and Network Services

NOTES

Resource bindings that are not presented in the form of a binding to a partitionable resource, such as the scheduling class, are not necessarily be modified in a pooladm -x operation.
poolbind(1M)

NAME  poolbind – bind processes, tasks, or projects or query binding of processes to resource pools

SYNOPSIS  

/usr/sbin/poolbind -p poolname [-i idtype] id...

/usr/sbin/poolbind -q pid...

/usr/sbin/poolbind -Q pid...

DESCRIPTION  The poolbind command allows an authorized user to bind projects, tasks, and processes to pools. It can also allow a user to query a process to determine which pool the process is bound to.

OPTIONS  The following options are supported:

-`i idtype`  This option, together with the idlist arguments, specifies one or more processes to which the poolbind command is to apply. The interpretation of idlist depends on the value of idtype. The valid idtype arguments and corresponding interpretations of idlist are as follows:

  `pid`  idlist is a list of process IDs. Binds the specified processes to the specified pool. This is the default behavior if no idtype is specified.

  `taskid`  idlist is a list of task IDs. Bind all processes within the list of task IDs to the specified pool.

  `projid`  idlist is a list of project IDs. Bind all processes within the list of projects to the specified pool. Each project ID can be specified as either a project name or a numerical project ID. See project(4).

-`q pid` ...  Queries the pool bindings for a given list of process IDs. If the collection of resources associated with the process does not correspond to any currently existing pool, or if there are multiple pools with the set of resources that the process is bound to, the query fails for that particular process ID.

-`Q pid` ...  Queries the resource bindings for a given list of process IDs. The resource bindings are each reported on a separate line.

OPERANDS  The following operands are supported:

`poolname`  The name of a pool to which the specified project, tasks or processes are to be bound.
EXAMPLE 1 Binding All Processes

The following command binds all processes in projects 5 and 7 to pool web_app:

example# /usr/sbin/poolbind -p web_app -i projid 5 7

EXAMPLE 2 Binding the Running Shell

The following command binds the running shell to pool web_app:

example# /usr/sbin/poolbind -p web_app $$

EXAMPLE 3 Querying the Pool Bindings

The following command queries the bindings to verify that the shell is bound to the given pool:

example# /usr/sbin/poolbind -q $$

EXAMPLE 4 Querying the Resource Bindings

The following command queries the bindings to verify that the shell is bound to the given resources:

example# /usr/sbin/poolbind -Q $$

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 Requested operation could not be completed.
2 Invalid command line options were specified.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>Invocation</td>
<td>Unstable</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

pooladm(1M), poolcfg(1M), libpool(3LIB), project(4), attributes(5)

System Administration Guide: Resource Management and Network Services
poolcfg – create and modify resource pool configuration files

The `poolcfg` command provides configuration operations on pools and sets. These operations are performed upon an existing configuration and take the form of modifications to the specified configuration file. The special `discover` command does not require an existing configuration. Actual activation of the resulting configuration is achieved by way of the `pooladm(1M)` command.

Pools configuration files are structured files that must have been constructed using `poolcfg` itself or `libpool(3LIB)` directly.

The configurations which are created by this tool may be used by `pooladm` to instantiate the configuration upon a target host.

The following options are supported:

- `-c command` Specify `command` as an editing command. See `USAGE`.
- `-f command_file` Take the commands from `command_file`. `command_file` consists of editing commands, one per line.
- `-h` Display extended information about the syntax of editing commands.

A script consists of editing commands, one per line, of the following:

- `info [entity-name]` Display configuration (or specified portion) in human readable form to standard output. If no entity is specified, system information is displayed. Therefore, `poolcfg -c 'info' afile` is an equivalent invocation to `poolcfg -c 'info system name' afile`.

- `create entity-name [property-list]` Make an entity of the specified type and name.

- `destroy entity-name` Remove the specified entity.

- `modify entity-name [property-list]` Change the listed properties on the named entity.

- `associate pool-name [resource-list]` Connect one or more resources to a pool, or replace one or more existing connections.
discover

Create a system entity, with one pool entity and resources to match current system configuration. All discovered resources of each resource type are recorded in the file, with the single pool referring to the default resource for each resource type.

rename entity-name to new-name

Change the name of an entity on the system to its new name.

Property Lists

The property list is specified by:

```
( proptype name = value [ ; proptype name = value ]* )
```

where the last definition in the sequence for a given proptype, name pair is the one that holds. For property deletion, use `~ proptype name`.

Resource Lists

A resource list is specified by

```
( resourcetype name [ ; resourcetype name ]* )
```

where the last specification in the sequence for a resource is the one that holds. There is no deletion syntax for resource lists.

Recognized Entities

- **system**: Machine level entity
- **pool**: Named collection of resource associations

Resource Types

- **pset**: Processor set resource

Property Types

- **boolean**: Takes one of two values true or false.
- **int**: A 64-bit signed integer value.
- **uint**: A 64-bit unsigned integer value.
- **string**: Strings are delimited by quotes ("), and support the character escape sequences defined in `formats(5)`.
- **float**: Scientific notation is not supported.

EXAMPLES

**EXAMPLE 1** Creating an Initial Configuration File

The following command creates an initial configuration file for this host. By not supplying a file name, `/etc/pooladm.conf` is assumed.

```
$ poolcfg -c discover
```

**EXAMPLE 2** Creating an Initial Configuration File

The following command creates an initial configuration file for this host and writes it to `/home/admin/new_config`:

```
$ poolcfg -c discover /home/admin/new_config
```
EXAMPLE 3 Writing a poolcfg Script

The following poolcfg script creates a pool named Accounting, and a processor set, small-1. The processor set is created first, then the pool is created and associated with the set.

```
create pset small-1 (uint pset.min = 1 ; uint pset.max = 4)
create pool Accounting
associate pool Accounting (pset small-1)
```

EXAMPLE 4 Reporting on pool_0

The following command reports on pool_0 to standard output in human readable form:

```
# poolcfg -c 'info pool pool_0' /etc/pooladm.conf
```

EXAMPLE 5 Destroying pool_0 and Its Associations

The following command destroys pool_0 and associations, but not the formerly associated resources:

```
# poolcfg -c 'destroy pool pool_0' /etc/pooladm.conf
```

EXAMPLE 6 Displaying the Current Configuration

The following command displays the current configuration:

```
$ poolcfg -c 'info' /etc/pooladm.conf
system muskoka
    int system.version 1
    boolean system.bind-default true
    string system.comment Discovered by libpool

pool pool_default
    boolean pool.default true
    boolean pool.active true
    int pool.importance 5
    string pool.comment
    string pool.scheduler FSS
    pset pset_default

pset pset_default
    int pset.sys_id -1
    string pset.units population
    boolean pset.default true
    uint pset.max 4294967295
    uint pset.min 1
    string pset.comment
    boolean pset.escapable false
    uint pset.load 0
    uint pset.size 2

cpu
```
EXAMPLE 6 Displaying the Current Configuration  (Continued)

```
int cpu.sys_id 0
string cpu.comment

cpu
    int cpu.sys_id 2
    string cpu.comment
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>Invocation</td>
<td>Unstable</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

pooladm(1M), poolbind(1M), libpool(3LIB), attributes(5), formats(5)

System Administration Guide: Resource Management and Network Services
NAME  
ports – creates /dev entries and initab entries for serial lines

SYNOPSIS  
/usr/sbin/ports [-r rootdir]

DESCRIPTION  
devfsadm(1M) is now the preferred command for /dev and /devices and should be used instead of ports.

The ports command creates symbolic links in the /dev/term and /dev/cua directories to the serial-port character device files in /devices and adds new entries in /etc/inittab for non-system ports found. System-board ports are given single lower-case letters for names (such as a and b) while other ports are named numerically.

ports searches the kernel device tree to find the serial devices attached to the system. It also checks /dev/term and /dev/cua to see what symbolic links to serial devices already exist. ports then performs the following:

1. Assigns new numbers (or letters for system-board ports) to ports that are attached to the system but do not have /dev/term and /dev/cua entries. The numbers or letters assigned are the lowest-unused numbers or letters.

2. Removes dangling links: links from /dev/term and /dev/cua pointing to no-longer-existing ports.


4. Invokes sacadm(1M) to make new port monitor entries for the new devices. This is not done automatically for on-board ports; on workstations these ports are often not used for dial-in sessions, so a port-monitor for one of these ports must be created explicitly.

If the configuration has not changed, ports exits without doing anything.

ports is run each time a reconfiguration-boot is performed, or when add_drv(1M) is executed. When invoking ports manually, first run drvconfig(1M) to ensure /devices is consistent with the current device configuration.

ports considers devices with a node type of DDI_NT_SERIAL, DDI_NT_SERIAL_MB, DDI_NT_SERIAL_DO, or DDI_NT_SERIAL_MB_DO to be serial port devices. Devices with one of these node types must create minor device names that obey the following conventions when calling ddi_create_minor_node(9F).

- The minor name for non-system port devices (DDI_NT_SERIAL) consists of an ASCII numeric string, where the first port on the device is named 0, the second named 1, the third named 2, up to the number of ports provided by the device.

- The minor name for non-system dialout devices (DDI_NT_SERIAL_DO) is the ASCII numeric port name, concatenated with ,cu. For example, the minor name for the first dialout port on the serial board is 0,cu.

- The minor name for system-board port devices (DDI_NT_SERIAL_MB) consists of a string containing a single ASCII lowercase character, where the first port on the device is named a, the second is named b, the third is named c, for all ports on the

---

Notice to Driver Writers

- The minor name for non-system port devices (DDI_NT_SERIAL) consists of an ASCII numeric string, where the first port on the device is named 0, the second named 1, the third named 2, up to the number of ports provided by the device.

- The minor name for non-system dialout devices (DDI_NT_SERIAL_DO) is the ASCII numeric port name, concatenated with ,cu. For example, the minor name for the first dialout port on the serial board is 0,cu.

- The minor name for system-board port devices (DDI_NT_SERIAL_MB) consists of a string containing a single ASCII lowercase character, where the first port on the device is named a, the second is named b, the third is named c, for all ports on the
device (or up through port z).

- The minor name for system-board dialout devices (DDI_NT_SERIAL_MB_DO) consists of the lowercase character port name, concatenated with .cu. For example, the minor name for the first dialout port on the on-board serial device is a,cu.

To prevent disks from attempting to automatically generate links for a device, drivers must specify a private node type and refrain from using one of the above node types when calling ddi_create_minor_node(9F).

**OPTIONS**

The following options are supported:

- `-r rootdir` Causes ports to presume that the /dev/term, /dev/cua, and /devices directories are found under rootdir, not directly under /.

To prevent disks from attempting to automatically generate links for a device, drivers must specify a private node type and refrain from using one of the above node types when calling ddi_create_minor_node(9F).

**EXAMPLES**

**EXEMPLARY 1** Creating the Serial and Dialout Minor Device Nodes

The following example creates the serial and dialout minor device nodes from the xkserial driver's attach(9E) function:

```c
/*
 * Create the minor number by combining the instance number
 * with the port number.
 */
#define XKNUMPORTS 8
#define XKMINORNUM(i, p) (((i) << 4 | (p))
#define XKMINORNUM_DO(i, p) (((i) << 4 | (p) | 0x80)

int xkserialattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
    int instance, portnum;
    char name[8];
    /* other stuff in attach... */
    instance = ddi_get_instance(dip);
    for (portnum = 0; portnum < XKNUMPORTS; portnum++) {
        /*
        * create the serial port device
        */
        sprintf(name, "%d", portnum);
        ddi_create_minor_node(dip, name, S_IFCHR,
                              XKMINORNUM(instance, portnum), DDI_NT_SERIAL, 0);
        /*
        * create the dialout device
        */
        sprintf(name, "%d,cu", portnum);
        ddi_create_minor_node(dip, name, S_IFCHR,
                              XKMINORNUM_DO(instance, portnum), DDI_NT_SERIAL_DO, 0);
    }
}
```

1330 man pages section 1M: System Administration Commands • Last Revised 10 Feb 1999
EXAMPLE 2 Installing the \texttt{xkserial} Port Driver on a SPARCstation 20

The following example installs the \texttt{xkserial} port driver on a SPARCstation 20 (with the driver controlling the fictional XKSerial 8 port serial board) and performs a reconfiguration-boot. It creates the following special files in /\texttt{devices}.

\begin{verbatim}
# ls -l /\texttt{devices}/iommu@f,e0000000/sbus@f,e0001000/xkserial@f,800000/

crw-r----- 1 root sys 32, 16 Aug 29 00:02 xkserial@2000:0
crw-r----- 1 root sys 32, 144 Aug 29 00:02 xkserial@2000:0,cu
crw-r----- 1 root sys 32, 17 Aug 29 00:02 xkserial@2000:1
crw-r----- 1 root sys 32, 145 Aug 29 00:02 xkserial@2000:1,cu
crw-r----- 1 root sys 32, 18 Aug 29 00:02 xkserial@2000:2
crw-r----- 1 root sys 32, 146 Aug 29 00:02 xkserial@2000:2,cu
crw-r----- 1 root sys 32, 19 Aug 29 00:02 xkserial@2000:3
crw-r----- 1 root sys 32, 147 Aug 29 00:02 xkserial@2000:3,cu
crw-r----- 1 root sys 32, 20 Aug 29 00:02 xkserial@2000:4
crw-r----- 1 root sys 32, 148 Aug 29 00:02 xkserial@2000:4,cu
crw-r----- 1 root sys 32, 21 Aug 29 00:02 xkserial@2000:5
crw-r----- 1 root sys 32, 149 Aug 29 00:02 xkserial@2000:5,cu
crw-r----- 1 root sys 32, 22 Aug 29 00:02 xkserial@2000:6
crw-r----- 1 root sys 32, 150 Aug 29 00:02 xkserial@2000:6,cu
crw-r----- 1 root sys 32, 23 Aug 29 00:02 xkserial@2000:7
crw-r----- 1 root sys 32, 151 Aug 29 00:02 xkserial@2000:7,cu
\end{verbatim}

/\texttt{dev/term} contain symbolic links to the serial port device nodes in /\texttt{devices}

\begin{verbatim}
# ls -l /\texttt{dev/term}
/dev/term/0 -> ../../\texttt{devices}/[...]/xkserial@2000:0
/dev/term/1 -> ../../\texttt{devices}/[...]/xkserial@2000:1
/dev/term/2 -> ../../\texttt{devices}/[...]/xkserial@2000:2
/dev/term/3 -> ../../\texttt{devices}/[...]/xkserial@2000:3
/dev/term/4 -> ../../\texttt{devices}/[...]/xkserial@2000:4
/dev/term/5 -> ../../\texttt{devices}/[...]/xkserial@2000:5
/dev/term/6 -> ../../\texttt{devices}/[...]/xkserial@2000:6
/dev/term/7 -> ../../\texttt{devices}/[...]/xkserial@2000:7
\end{verbatim}

and /\texttt{dev/cua} contain symbolic links to the dialout port device nodes in /\texttt{devices}

\begin{verbatim}
# ls -l /\texttt{dev/cua}
/dev/cua/0 -> ../../\texttt{devices}/[...]/xkserial@2000:0,cu
/dev/cua/1 -> ../../\texttt{devices}/[...]/xkserial@2000:1,cu
/dev/cua/2 -> ../../\texttt{devices}/[...]/xkserial@2000:2,cu
/dev/cua/3 -> ../../\texttt{devices}/[...]/xkserial@2000:3,cu
/dev/cua/4 -> ../../\texttt{devices}/[...]/xkserial@2000:4,cu
/dev/cua/5 -> ../../\texttt{devices}/[...]/xkserial@2000:5,cu
/dev/cua/6 -> ../../\texttt{devices}/[...]/xkserial@2000:6,cu
/dev/cua/7 -> ../../\texttt{devices}/[...]/xkserial@2000:7,cu
\end{verbatim}

\textbf{FILES}

/\texttt{dev/term/\textit{n}} Logical serial port devices

/\texttt{dev/cua/\textit{n}} Logical dialout port devices

/\texttt{etc/inittab}

/\texttt{/etc/saf/*}

System Administration Commands  1331
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

add_drv(1M), devfsadm(1M), devlinks(1M), disks(1M), drvconfig(1M), pmadm(1M), sacadm(1M), tapes(1M), attributes(5), attach(9E), ddi_create_minor_node(9F)

Writing Device Drivers
powerd(1M)

NAME  
powerd – Power manager daemon

SYNOPSIS  
/usr/lib/power/powerd [-n]

DESCRIPTION  
The powerd daemon is started by pmconfig(1M) to monitor system activity and perform an automatic shutdown using the suspend-resume feature. When the system is suspended, complete current state is saved on the disk before power is removed. On reboot, the system automatically starts a resume operation and the system is restored to the same state it was in immediately prior to suspend.

Immediately prior to system shutdown, the daemon notifies syslogd(1M) of the shutdown, which broadcasts a notification.

OPTIONS  
The following option is supported:

- n  No broadcast mode. The daemon silently shuts down the system without notifying syslogd(1M).

FILES  
/etc/power.conf  Power Management configuration information file

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpmu</td>
</tr>
<tr>
<td>Interface stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO  
pmconfig(1M), dtpower(1M), syslogd(1M), power.conf(4), attributes(5), cpr(7), pm(7D)

Using Power Management
The point-to-point protocol (PPP) provides a method for transmitting datagrams over serial point-to-point links. PPP is composed of three components: a facility for encapsulating datagrams over serial links, an extensible link control protocol (LCP), and a family of network control protocols (NCP) for establishing and configuring different network-layer protocols.

The encapsulation scheme is provided by driver code in the kernel. pppd provides the basic LCP authentication support and several NCPs for establishing and configuring the Internet Protocol (referred to as the IP Control Protocol or “IPCP”) and IPv6 (IPV6CP).

The following sections discuss the pppd options:

Options are taken from files and the command line. pppd reads options from the files /etc/ppp/options, $HOME/.ppprc and /etc/ppp/options.ttyname (in that order) before processing the options on the command line. (Command-line options are scanned for the terminal name before the options.ttyname file is read.) To form the name of the options.ttyname file, the initial /dev/ is removed from the terminal name, and any remaining forward slash characters (/) are replaced with dots. For example, with serial device /dev/cua/a, option file /etc/ppp/options.cua.a is read.

An options file is parsed into a series of words that are delimited by whitespace. Whitespace can be included in a word by enclosing the word in double-quotes ("). A backslash (\) quotes the succeeding character. A hash (#) starts a comment, which continues until the end of the line. There is no restriction on using the file or call options within an options file.

**<tty_name>**
Communicate over the named device. The string /dev/ is prepended if necessary. If no device name is given, or if the name of the terminal connected to the standard input is given, pppd uses that terminal and does not fork to put itself in the background. A value for this option from a privileged source cannot be overridden by a non-privileged user.

**<speed>**
Set the baud rate to **<speed>** (a decimal number). The default is to leave the baud rate unchanged. This option is normally needed for dial-out only.

**asyncmap <map>**
Set the async character map to **<map>**. The map describes which control characters cannot be successfully received over the serial line. pppd asks the peer to send these characters as a 2-byte escape sequence. The argument is a 32 bit hex number, with each bit representing a character to escape. Bit 0
(00000001) represents the character 0x00; bit 31
(80000000) represents the character 0x1f or ^_. If multiple asyncmap options are given, the values are
ORed together. If no asyncmap option is given, pppd
attempts to negotiate a value of 0. If the peer agrees,
this disables escaping of the standard control
characters. Use the default-asyncmap option to
disable negotiation and escape all control characters.

auth
Require the peer to authenticate itself before allowing
network packets to be sent or received. This option is
the default if the system has a default route. If the
auth or the noauth option is not specified, pppd
allows the peer to use only those IP addresses to which
the system does not already have a route.

call name
Read options from the file /etc/ppp/peers/name.
This file may contain privileged options, including
noauth, even if pppd is not being run by root. The
name string may not begin with a slash ("/") or include
consecutive periods ("..") as a pathname
component.

callback number
Request a callback to the given telephone number
using Microsoft CBCP.

connect script
Use the executable or shell command specified by script
to set up the serial line. This script would typically use
the chat(1M) program to dial the modem and start the
remote PPP session. A value for this option originating
from a privileged source cannot be overridden by a
non-privileged user.

crtscts
Use hardware flow control, that is, RTS/CTS, to control
the flow of data on the serial port. If the crtscts,
nocrtscts, cdtrcts or nocdtrcts option is not
provided, the hardware flow control setting for the
serial port is left unchanged. Some serial ports lack a
true RTS output and use this mode to implement
unidirectional flow control. The serial port suspends
transmission when requested by the modem by means
of CTS but cannot request the modem to stop sending
to the computer. This mode allows the use of DTR as a
modem control line.

defaultroute
Add a default route to the system routing tables when
IPCP negotiation successfully completes, using the peer
as the gateway. This entry is removed when the PPP
connection is broken. This option is privileged if the
nodefaultroute option is specified.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disconnect script</td>
<td>Run the executable or shell command specified by <code>script</code> after <code>pppd</code> terminates the link. Typically, this script is used to command the modem to hang up if hardware modem control signals are not available. <code>disconnect</code> is not run if the modem has already hung up. A value for this option originating from a privileged source cannot be overridden by a non-privileged user.</td>
</tr>
<tr>
<td>escape xx,yy,...</td>
<td>Specifies that certain characters be escaped on transmission regardless of whether the peer requests them to be escaped with its async control character map. The characters to be escaped are specified as a list of hex numbers separated by commas. Note that almost any character can be specified for the escape option, unlike the asyncmap option which allows only control characters to be specified. Characters that cannot be escaped are those containing hex values 0x20 through 0x3f and 0x5e.</td>
</tr>
<tr>
<td>file name</td>
<td>Read options from file <code>name</code>. If this option is used on the command line or in <code>$HOME/.ppprc</code>, the file must be readable by the user invoking <code>pppd</code>. See Options Files for a list of files that <code>pppd</code> always reads, regardless of the use of this option.</td>
</tr>
<tr>
<td>init script</td>
<td>Run the executable or shell command specified by <code>script</code> to initialize the serial line. This script would typically use the chat(1M) program to configure the modem to enable auto-answer. A value for this option from a privileged source cannot be overridden by a non-privileged user.</td>
</tr>
<tr>
<td>lock</td>
<td>Directs <code>pppd</code> to create a UUCP-style lock file for the serial device to ensure exclusive access to the device.</td>
</tr>
<tr>
<td>mru ( n )</td>
<td>Set the Maximum Receive Unit (MRU) value to ( n ). <code>pppd</code> asks the peer to send packets of no more than ( n ) bytes. Minimum MRU value is 128. Default MRU value is 1500. A value of 296 is recommended for slow links (40 bytes for TCP/IP header + 256 bytes of data). For IPv6, MRU must be at least 1280.</td>
</tr>
<tr>
<td>mtu ( n )</td>
<td>Set the Maximum Transmit Unit (MTU) value to ( n ). Unless the peer requests a smaller value via MRU negotiation, <code>pppd</code> requests the kernel networking code to send data packets of no more than ( n ) bytes through the PPP network interface. For IPv6, MTU must be at least 1280.</td>
</tr>
</tbody>
</table>
**passive**

Enables the "passive" option in the LCP. With this option, pppd attempts to initiate a connection; if no reply is received from the peer, pppd waits passively for a valid LCP packet instead of exiting, as it would without this option.

**<local_IP_address>:<remote_IP_address>**

Set the local and/or remote interface IP addresses. Either one may be omitted, but the colon is required. The IP addresses are specified with a host name or in decimal dot notation, for example: :10.1.2.3. The default local address is the first IP address of the system unless the noipdefault option is provided. The remote address is obtained from the peer if not specified in any option. Thus, in simple cases, this option is not required. If a local and/or remote IP address is specified with this option, pppd will not accept a different value from the peer in the IPCP negotiation unless the ipcp-accept-local and/or ipcp-accept-remote options are given, respectively.

**allow-fcs fcs-type**

Set allowable FCS type(s) for data sent to the peer. The fcs-type is a comma-separated list of "crc16", "crc32", "null", or integers. By default, all known types are allowed. If this option is specified and the peer requests a type not listed, a LCP Configure-Nak is sent to request only the listed types.

**allow-ip address(es)**

Allow peers to use the given IP address or subnet without authenticating themselves. The parameter is parsed in the same manner as each element of the list of allowed IP addresses is parsed in the secrets files. See the Authentication section for more details.

**bsdcomp nr,nt**

Request that the peer compress packets that it sends using the BSD-Compress scheme, with a maximum code size of nr bits, and agree to compress packets sent to the peer with a maximum code size of nt bits. If nt is not specified, it defaults to the value given for nr. Values in the range 9 to 15 may be used for nr and nt; larger values provide better compression but consume more kernel memory for compression dictionaries. Alternatively, a value of 0 for nr or nt disables compression in the corresponding direction. Use nobsdcomp or bsdcomp 0 to disable BSD-Compress compression entirely. If this option is read from a privileged source, a nonprivileged user may not specify a code size larger than the value from the privileged source.

**cdtrcts**

Use a non-standard hardware flow control such as DTR/CTS to control the flow of data on the serial port. If the crtscts, nocrtscts, cdtrcts or nocdtrcts option is not specified, the hardware flow control setting for the serial port is left unchanged. Some serial ports lack a true RTS output. Such serial ports use this mode to implement true bi-directional flow control. Note that this flow control mode does not permit using DTR as a modem control line.

**chap-interval n**

If this option is given, pppd will rechallenge the peer every n seconds.
chap-max-challenge n
Set the maximum number of CHAP challenge transmissions to \( n \) (default 10).

chap-restart n
Set the CHAP restart interval (retransmission timeout for challenges) to \( n \) seconds.
The default is 3.

connect-delay n
Wait for up to \( n \) milliseconds after the connect script finishes for a valid PPP packet from the peer. When the wait period elapses or when a valid PPP packet is received from the peer, \texttt{pppd} begins negotiation by sending its first LCP packet. The default value is 1000 (1 second). A wait period applies only if the connect or pty option is used.

datarate n
Set maximum data rate to \( n \) (in bytes per second) when using the pty, notty, record, or socket options.

default-asyncmap
Disable asyncmap negotiation, forcing all control characters to be escaped for both the transmit and the receive direction.

default-fcs
Disable FCS Alternatives negotiation entirely. By default, no FCS Alternatives option is sent to the peer, but the option is accepted. If this option is specified by the peer, then LCP Configure-Reject is sent.

default-mru
Disable MRU [Maximum Receive Unit] negotiation. With this option, \texttt{pppd} uses the default MRU value of 1500 bytes for the transmit and receive directions.

deflate \( nr,nt,e \)
Request that the peer compress packets that it sends, using the deflate scheme, with a maximum window size of \( 2^{nr} \) bytes, and agree to compress packets sent to the peer with a maximum window size of \( 2^{nt} \) bytes and effort level of \( e \) (1 to 9). If \( nt \) is not specified, it defaults to the value given for \( nr \). If \( e \) is not specified, it defaults to 6. Values in the range 9 to 15 may be used for \( nr \) and \( nt \); larger values provide better compression but consume more kernel memory for compression dictionaries. (Value 8 is not permitted due to a zlib bug.) Alternatively, a value of 0 for \( nr \) or \( nt \) disables compression in the corresponding direction. Use 
deflate or deflate 0 to disable deflate compression entirely. (Note: \texttt{pppd} requests deflate compression in preference to BSD-Compress if the peer can do either.) If this option is read from a privileged source, a nonprivileged user may not specify a code size larger than the value from the privileged source.
Initiate the link only on demand, that is, when data traffic is present. With this option, the remote IP address must be specified by the user on the command line or in an options file. pppd initially configures and enables the interface for IP traffic without connecting to the peer. When traffic is available, pppd connects to the peer and performs negotiation, authentication and other actions. When completed, pppd passes data packets across the link. The demand option implies the persist option. If this behavior is not desired, use the nopersist option after the demand option. The idle and holdoff options can be used in conjunction with the demand option.

Append the domain name $d$ to the local host name for authentication purposes. For example, if gethostname() returns the name porsche, but the fully qualified domain name is porsche.Quotron.COM, you could specify domain Quotron.COM. With this configuration, pppd uses the name porsche.Quotron.COM for accessing secrets in the secrets file and as the default name when authenticating to the peer. This option is privileged.

Set the endpoint discriminator (normally used for RFC 1990 Multilink PPP operation). The endpoint-value consists of a class identifier and a class-dependent value. The class identifier is one of "null," "local," "IP," "MAC," "magic," "phone," or a decimal integer. If present, the class-dependent value is separated from the identifier by a colon (":") or period ("."). This value may be a standard dotted-decimal IP address for class "IP," an optionally colon-or-dot separated hex Ethernet address for class "MAC" (must have 6 numbers), or an arbitrary string of bytes specified in hex with optional colon or dot separators between bytes. Although this option is available, this implementation does not support multilink.

Set FCS type(s) desired for data sent by the peer. The fcs-type is a comma-separated list of crc16, crc32, null, or integers. By default, an FCS Alternatives option is not specified, and the medium-dependent FCS type is used. If this option is specified and the peer sends an LCP Configure-Nak, only the listed types are used. If none are in common, the FCS Alternatives option is omitted from the next LCP Configure-Request to drop back to the default.

When logging the contents of PAP packets, this option causes pppd to exclude the password string from the log. This is the default.

Specifies how many seconds to wait before re-initiating the link after it terminates. This option is effective only if the persist or demand option is used. The holdoff period is not applied if the link is terminated because it was idle.

Set the LCP Identification string. The default value is a version string similar to that displayed by the --version option.
idle \textit{n}

Specifies that \texttt{pppd} must disconnect if the link is idle for \textit{n} seconds. The link is idle when no data packets (i.e. IP packets) are being sent or received. Do not use this option with the \texttt{persist} option but without the \texttt{demand} option.

\textbf{ipcp-accept-local}

With this option, \texttt{pppd} accepts the peer's idea of the local IP address, even if the local IP address is specified in an option.

\textbf{ipcp-accept-remote}

With this option, \texttt{pppd} accepts the peer's idea of its remote IP address, even if the remote IP address is specified in an option.

\textbf{ipcp-max-configure \textit{n}}

Set the maximum number of IPCP Configure-Request transmissions to \textit{n} (default 10).

\textbf{ipcp-max-failure \textit{n}}

Set the maximum number of IPCP Configure-NAKs sent before sending Configure-Rejects instead to \textit{n} (default 10).

\textbf{ipcp-max-terminate \textit{n}}

Set the maximum number of IPCP terminate-request transmissions to \textit{n} (default 3).

\textbf{ipcp-restart \textit{n}}

Set the IPCP restart interval (retransmission timeout) to \textit{n} seconds (default 3).

\textbf{ipparam \textit{string}}

Provides an extra parameter to the ip-up and ip-down scripts. When this option is given, the \textit{string} supplied is given as the sixth parameter to those scripts. See the Scripts section.

\textbf{ipv6 \textit{<local_interface_identifier>}, \textit{<remote_interface_identifier>}}

Set the local and/or remote 64-bit interface identifier. Either one may be omitted. The identifier must be specified in standard ASCII notation of IPv6 addresses (for example: ::dead:beef). If the \texttt{ipv6cp-use-ipaddr} option is given, the local and remote identifiers are derived from the respective IPv4 addresses (see above). The \texttt{ipv6cp-use-persistent} option can be used instead of the \texttt{ipv6 \textit{<local>}, \textit{<remote>}} option.

\textbf{ipv6cp-accept-local}

Accept peer's interface identifier for the local link identifier.

\textbf{ipv6cp-max-configure \textit{n}}

Set the maximum number of IPv6CP Configure-Request transmissions to \textit{n} (default 10).

\textbf{ipv6cp-max-failure \textit{n}}

Set the maximum number of IPv6CP Configure-NAKs sent before sending Configure-Rejects instead to \textit{n} (default 10).

\textbf{ipv6cp-max-terminate \textit{n}}

Set the maximum number of IPv6CP terminate-request transmissions to \textit{n} (default 3).
ipv6cp-restart
Set the IPv6CP restart interval (retransmission timeout) to \( n \) seconds (default 3).

ipv6cp-use-ipaddr
If either the local or remote IPv6 address is unspecified, use the corresponding configured IPv4 address as a default interface identifier. (This option uses the configured addresses, not the negotiated addresses. Do not use it with ipcp-accept-local if the local IPv6 identifier is unspecified or with ipcp-accept-remote if the remote IPv6 identifier is unspecified.)

ipv6cp-use-persistent
Use uniquely-available persistent value for link local address.

kdebug
Enable debugging code in the kernel-level PPP driver. Argument \( n \) is the sum of the following values: 1 to enable general debug messages, 2 to request that contents of received packets be printed, and 4 to request contents of transmitted packets be printed. Messages printed by the kernel are logged by syslogd(1M) to a file directed in the /etc/syslog.conf configuration file. Do not use the kdebug option to debug failed links. Use the debug option instead.

lcp-echo-failure
If this option is given, pppd presumes the peer to be dead if \( n \) LCP Echo-Requests are sent without receiving a valid LCP Echo-Reply. If this happens, pppd terminates the connection. This option requires a non-zero value for the lcp-echo-interval parameter. This option enables pppd to terminate after the physical connection is broken (for example, if the modem has hung up) in situations where no hardware modem control lines are available.

lcp-echo-interval
If this option is given, pppd sends an LCP Echo-Request frame to the peer every \( n \) seconds. Normally the peer responds to the Echo-Request by sending an Echo-Reply. This option can be used with the lcp-echo-failure option to detect that the peer is no longer connected.

lcp-max-configure
Set the maximum number of LCP Configure-Request transmissions to \( n \) (default 10).

lcp-max-failure
Set the maximum number of LCP Configure-NAKs sent before starting to send Configure-Rejects instead to \( n \) (default 10).

lcp-max-terminate
Set the maximum number of LCP Terminate-Request transmissions to \( n \) (default 3).

lcp-restart
Set the LCP restart interval (retransmission timeout) to \( n \) seconds (default 3).
linkname name
Sets the logical name of the link to name. pppd creates a file named ppp-name.pid in /var/run containing its process ID. This is useful in determining which instance of pppd is responsible for the link to a given peer system. This is a privileged option.

local
Do not use modem control lines. With this option, pppd ignores the state of the CD (Carrier Detect) signal from the modem and does not change the state of the DTR (Data Terminal Ready) signal.

logfd n
Send log messages to file descriptor n. pppd sends log messages to (at most) one file or file descriptor (as well as sending the log messages to syslog), so this option and the logfile option are mutually exclusive. By default pppd sends log messages to stdout (file descriptor 1) unless the serial port is open on stdout.

logfile filename
Append log messages to the file filename (and send the log messages to syslog). The file is opened in append mode with the privileges of the user who invoked pppd.

login
Use the system password database for authenticating the peer using PAP, and record the user in the system wtmp file. Note that the peer must have an entry in the /etc/ppp/pap-secrets file and the system password database to be allowed access.

maxconnect n
Terminate the connection after it has been available for network traffic for n seconds (that is, n seconds after the first network control protocol starts). An LCP Time-Remaining message is sent when the first NCP starts, and again when 5, 2, and 0.5 minutes are remaining.

maxfail n
Terminate after n consecutive failed connection attempts. A value of 0 means no limit. The default value is 10.

modem
Use the modem control lines. This option is the default. With this option, pppd waits for the CD (Carrier Detect) signal from the modem to be asserted when opening the serial device (unless a connect script is specified), and drops the DTR (Data Terminal Ready) signal briefly when the connection is terminated and before executing the connect script.

ms-dns <addr>
If pppd is acting as a server for Microsoft Windows clients, this option allows pppd to supply one or two DNS (Domain Name Server) addresses to the clients. The first instance of this option specifies the primary DNS address; the second instance (if given) specifies the secondary DNS address. If the first instance specifies a name that resolves to multiple IP addresses, then the first two addresses are used. (This option is present in some older versions of pppd under the name dns-addr.)
ms-lanman
If `pppd` connects as a client to a Microsoft server and uses MS-CHAPv1 for authentication, this option selects the LAN Manager password style instead of Microsoft NT.

ms-wins <addr>
If `pppd` acts as a server for Microsoft Windows or Samba clients, this option allows `pppd` to supply one or two WINS (Windows Internet Name Services) server addresses to the clients. The first instance of this option specifies the primary WINS address; the second instance (if given) specifies the secondary WINS address. As with `ms-dns`, if the name specified resolves to multiple IP addresses, then the first two will be taken as primary and secondary.

name name
Set the name of the local system for authentication purposes to `name`. This is a privileged option. With this option, `pppd` uses lines in the secrets files that have `name` as the second field to look for a secret to use in authenticating the peer. In addition, unless overridden with the `user` option, `name` is used as the name to send to the peer when authenticating the local system. (Note that `pppd` does not append the domain name to `name`.)

no-accm-test
Disable use of asyncmap (ACCM) checking using LCP Echo-Request messages. If the `lcp-echo-failure` is used on an asynchronous line, `pppd` includes all control characters in the first `n` LCP Echo-Request messages. If the asyncmap is set incorrectly, the link drops rather than continue operation with random failures. This option disables that feature.

noaccomp
Disable HDLC Address/Control compression in both directions (send and receive).

noauth
Do not require the peer to authenticate itself. This option is privileged.

nobsdcomp
Disables BSD-Compress compression; `pppd` will not request or agree to compress packets using the BSD-Compress scheme. This option is not necessary if `noccp` is specified.

noccp
Disable CCP (Compression Control Protocol) negotiation. This option should only be required if the peer has bugs or becomes confused by requests from `pppd` for CCP negotiation. If CCP is disabled, then BSD and deflate compression do not need to be separately disabled.

nocrtcts
Disable hardware flow control (i.e. RTS/CTS) on the serial port. If the `crtcts`, `nocrtcts`, `cdtrcts` or `nocdtrcts` options are not given, the hardware flow control setting for the serial port is left unchanged.
**nocdtrcts**

This option is a synonym for **nocrtscts**. Either option will disable both forms of hardware flow control.

**nodefaultroute**

Disable the defaultroute option. You can prevent non-root users from creating default routes with **pppd** by placing this option in the `/etc/ppp/options` file.

**nodeflate**

Disables deflate compression; **pppd** will not request or agree to compress packets using the deflate scheme. This option is not necessary if **noccp** is specified.

**nodeflatedraft**

Do not use Internet Draft (incorrectly assigned) algorithm number for deflate compression. This option is not necessary if **noccp** is specified.

**nodetach**

Do not detach from the controlling terminal. Without this option, **pppd** forks to become a background process if a serial device other than the terminal on the standard input is specified.

**noendpoint**

Do not send or accept the Multilink Endpoint Discriminator option.

**noident**

Disable use of LCP Identification. LCP Identification messages will not be sent to the peer, but received messages will be logged. (Specify this option twice to completely disable LCP Identification. In this case, **pppd** sends LCP Code-Reject in response to received LCP Identification messages.)

**noip**

Disable IPCP negotiation and IP communication. Use this option only if the peer has bugs or becomes confused by requests from **pppd** for IPCP negotiation.

**noipv6**

Disable IPv6CP negotiation and IPv6 communication. IPv6 is not enabled by default.

**noipdefault**

Disables the default behavior when no local IP address is specified, which is to determine (if possible) the local IP address from the hostname. With this option, the peer must supply the local IP address during IPCP negotiation (unless it specified explicitly on the command line or in an options file).

**nolog**

Do not send log messages to a file or file descriptor. This option cancels the **logfd** and **logfile** options. **nologfd** acts as an alias for this option.

**nomagic**

Disable magic number negotiation. With this option, **pppd** cannot detect a looped-back line. Use this option only if the peer has bugs. Do not use this option to work around the “Serial line is looped back” error message.
nopam
This privileged option disables use of pluggable authentication modules. If this
option is specified, pppd reverts to standard authentication mechanisms. The
default is not to use PAM.
	nopcomp
Disable protocol field compression negotiation in the receive and the transmit
direction.

nopersist
Exit once a connection has been made and terminated. This is the default unless the
persist or demand option is specified.
	noplusink
Cause pppd to use I_LINK instead of I_PLINK. This is the default. When I_LINK is
used, the system cleans up terminated interfaces (even when SIGKILL is used) but
does not allow ifconfig(1M) to unplumb PPP streams or insert or remove
modules dynamically. Use the plink option if ifconfig(1M) modinsert,
modremove or unplumb support is needed.

nopredictor1
Do not accept or agree to Predictor-1 compression. (This option is accepted for
compatibility. The implementation does not support Predictor-1 compression.)

noproxyarp
Disable the proxyarp option. If you want to prevent users from creating proxy
ARP entries with pppd, place this option in the /etc/ppp/options file.

notty
Normally, pppd requires a terminal device. With this option, pppd allocates itself a
pseudo-tty master/slave pair and uses the slave as its terminal device. pppd creates
a child process to act as a character shunt to transfer characters between the
pseudo-tty master and its standard input and output. Thus, pppd transmits
characters on its standard output and receives characters on its standard input even
if they are not terminal devices. This option increases the latency and CPU
overhead of transferring data over the ppp interface as all of the characters sent and
received must flow through the character shunt process. An explicit device name
may not be given if this option is used.

novj
Disable Van Jacobson style TCP/IP header compression in both the transmit and
the receive direction.

novjccomp
Disable the connection-ID compression option in Van Jacobson style TCP/IP header
compression. With this option, pppd does not omit the connection-ID byte from
Van Jacobson compressed TCP/IP headers, nor does it ask the peer to do so. This
option is unnecessary if novj is specified.
pam
This privileged option enables use of PAM. If this is specified, pppd uses the pam(3PAM) framework for user authentication with a service name of "ppp" if the login option and PAP authentication are used. The default is not to use PAM.

papcrypt
Indicates that pppd should not accept a password which, before encryption, is identical to the secret from the /etc/ppp/pap-secrets file. Use this option if the secrets in the pap-secrets file are in crypt(3C) format.

pap-max-authreq n
Set the maximum number of PAP authenticate-request transmissions to n (default 10).

pap-restart n
Set the PAP restart interval (retransmission timeout) to n seconds (default 3).

pap-timeout n
Set the maximum time that pppd waits for the peer to authenticate itself with PAP to n seconds (0= no limit). The default is 30 seconds.

password string
Password string for authentication to the peer.

persist
Do not exit after a connection is terminated; instead try to reopen the connection.

plink
Cause pppd to use I_PLINK instead of I_LINK. The default is to use I_LINK, which cleans up terminated interface (even if SIGKILL is used), but does not allow ifconfig(1M) to unplug PPP streams or insert or remove modules dynamically. Use this option if ifconfig(1M) modinsert/modremove/unplumb support is needed. See also the plumbed option.

plugin filename
Load the shared library object file filename as a plugin. This is a privileged option. Unless the filename specifies an explicit path, /etc/ppp/plugins and /usr/lib/inet/ppp will be searched for the object to load in that order.

plumbed
This option indicates that pppd should find a plumbed interface and use that for the session. If IPv4 addresses or IPv6 interface IDs or link MTU are otherwise unspecified, they are copied from the interface selected. This mode mimics some of the functionality of the older aspppd implementation and may be helpful when pppd is used with external applications that use ifconfig(1M).

pppmux timer
Enable PPP Multiplexing option negotiation and set transmit multiplexing timeout to timer microseconds.

privgroup group-name
Allows members of group group-name to use privileged options. This is a privileged option. Because there is no guarantee that members of group-name cannot use pppd
to become root themselves, you should be careful using this option. Consider it equivalent to putting the members of group-name in the root or sys group.

proxyarp
Add an entry to the system’s Address Resolution Protocol (ARP) table with the IP address of the peer and the Ethernet address of this system. When you use this option, the peer appears to other systems to be on the local Ethernet. The remote address on the PPP link must be in the same subnet as assigned to an Ethernet interface.

pty script
Specifies that the command script, and not a specific terminal device is used for serial communication. pppd allocates itself a pseudo-tty master/slave pair and uses the slave as its terminal device. script runs in a child process with the pseudo-tty master as its standard input and output. An explicit device name may not be given if this option is used. (Note: if the record option is used in conjunction with the pty option, the child process will have pipes on its standard input and output.)

receive-all
With this option, pppd accepts all control characters from the peer, including those marked in the receive asyncmap. Without this option, pppd discards those characters as specified in RFC 1662. This option should be used only if the peer has bugs, as is often found with dial-back implementations.

record filename
Directs pppd to record all characters sent and received to a file named filename. filename is opened in append mode, using the user’s user-ID and permissions. Because this option uses a pseudo-tty and a process to transfer characters between the pseudo-tty and the real serial device, it increases the latency and CPU overhead of transferring data over the PPP interface. Characters are stored in a tagged format with timestamps that can be displayed in readable form using the pppdump(1M) program. This option is generally used when debugging the kernel portion of pppd (especially CCP compression algorithms) and not for debugging link configuration problems. See the debug option.

remotename name
Set the assumed name of the remote system for authentication purposes to name. Microsoft WindowsNT does not provide a system name in its CHAP Challenge messages, and this option is often used to work around this problem.

refuse-chap
With this option, pppd will not agree to authenticate itself to the peer using standard Challenge Handshake Authentication Protocol (CHAP). (MS-CHAP is not affected.)

refuse-mschap
Do not agree to authenticate to peer with MS-CHAPv1. If this option is specified, requests for MS-CHAPv1 authentication from the peer are declined with LCP Configure-Nak. That option does not disable any other form of CHAP.
refuse-mschapv2
Do not agree to authenticate to peer with MS-CHAPv2. If specified, this option requests that MS-CHAPv2 authentication from the peer be declined with LCP Configure-Nak. That option does not disable any other form of CHAP.

refuse-pap
With this option, pppd will not agree to authenticate itself to the peer using Password Authentication Protocol (PAP).

require-chap
Require the peer to authenticate itself using standard CHAP authentication. MS-CHAP is not affected.

require-mschap
Require the peer to authenticate itself using MS-CHAPv1 authentication.

require-mschapv2
Require the peer to authenticate itself using MS-CHAPv2 authentication.

require-pap
Require the peer to authenticate itself using PAP authentication.

show-password
When logging contents of PAP packets, this option causes pppd to show the password string in the log message.

silent
With this option, pppd will not transmit LCP packets to initiate a connection until a valid LCP packet is received from the peer. This is like the “passive” option with older versions of pppd and is retained for compatibility, but the current passive option is preferred.

small-accm-test
When checking the asyncmap (ACCM) setting, pppd uses all 256 possible values by default. See no-accm-test. This option restricts the test so that only the 32 values affected by standard ACCM negotiation are tested. This option is useful on very slow links.

socket host:port
Connect to given host and port using TCP and run PPP over this connection.

sync
Use synchronous HDLC serial encoding instead of asynchronous. The device used by pppd with this option must have sync support. Currently supports zs, se, and hsi drivers.

unit n
Set PPP interface unit number to n, if possible.

updetach
With this option, pppd detaches from its controlling terminal after establishing the PPP connection. When this is specified, messages sent to stderr by the connect script, usually chat(1M), and debugging messages from the debug option are directed to pppd’s standard output.
usehostname
Enforce the use of the hostname with domain name appended, if given, as the name of the local system for authentication purposes. This overrides the name option. Because the name option is privileged, this option is normally not needed.

usepeerdns
Ask the peer for up to two DNS server addresses. Addresses supplied by the peer, if any, are passed to the /etc/ppp/ip-up script in the environment variables DNS1 and DNS2. In addition, pppd creates an /etc/ppp/resolv.conf file containing one or two nameserver lines with the address(es) supplied by the peer.

user name
Sets the name used for authenticating the local system to the peer to name.

vj-max-slots n
Sets the number of connection slots to be used by the Van Jacobson TCP/IP header compression and decompression code to n, which must be between 2 and 16 (inclusive).

welcome script
Run the executable or shell command specified by script before initiating PPP negotiation, after the connect script, if any, has completed. A value for this option from a privileged source cannot be overridden by a non-privileged user.

xonxoff
Use software flow control, that is, XON/XOFF, to control the flow of data on the serial port.

Obsolete Options
The following options are obsolete:

+ua name
Read a PAP user name and password from the file name. This file must have two lines for name and password. Name and password are sent to the peer when the peer requests PAP authentication.

+ipv6
Enable IPv6 and IPv6CP without specifying interface identifiers.

--version
Show version number and exit.

--help
Show brief help message and exit.

The following sections discuss miscellaneous features of pppd:

pppd allows system administrators to provide legitimate users with PPP access to a server machine without fear of compromising the security of the server or the network it runs on. Access control is provided by restricting IP addresses the peer may use based on its authenticated identity (if any), and through restrictions on options a non-privileged user may use. Options that permit potentially insecure configurations are privileged. Privileged options are accepted only in files that are under the control of the system administrator or when pppd is being run by root.
By default, `pppd` allows an unauthenticated peer to use a given IP address only if the system does not already have a route to that IP address. For example, a system with a permanent connection to the wider Internet will normally have a default route, meaning all peers must authenticate themselves to set up a connection. On such a system, the `auth` option is the default. Conversely, a system with a PPP link that comprises the only connection to the Internet probably does not possess a default route, so the peer can use virtually any IP address without authenticating itself.

Security-sensitive options are privileged and cannot be accessed by a non-privileged user running `pppd`, either on the command line, in the user’s `$HOME/.ppprc` file, or in an options file read using the `file` option. Privileged options may be used in `/etc/ppp/options` file or in an options file read using the `call` option. If `pppd` is run by the root user, privileged options can be used without restriction. If the `/etc/ppp/options` file does not exist, then only root may invoke `pppd`. The `/etc/ppp/options` file must be created (but may be empty) to allow ordinary non-root users to access `pppd`.

When opening the device, `pppd` uses the invoking user’s user ID or the root UID (that is, 0), depending if the device name was specified by the user or the system administrator. If the device name comes from a privileged source, that is, `/etc/ppp/options` or an options file read using the `call` option, `pppd` uses full root privileges when opening the device. Thus, by creating an appropriate file under `/etc/ppp/peers`, the system administrator can allow users to establish a PPP connection via a device that they would not normally have access to. Otherwise `pppd` uses the invoking user’s real UID when opening the device.

During the authentication process, one peer convinces the other of its identity by sending its name and some secret information to the other. During authentication, the first peer becomes the "client" and the second becomes the "server." Authentication names can (but are not required to) correspond to the peer’s Internet hostnames.

`pppd` supports four authentication protocols: the Password Authentication Protocol (PAP) and three forms of the Challenge Handshake Authentication Protocol (CHAP). With the PAP protocol, the client sends its name and a cleartext password to the server to authenticate itself. With CHAP, the server initiates the authentication exchange by sending a challenge to the client who must respond with its name and a hash value derived from the shared secret and the challenge.

The PPP protocol is symmetrical, meaning that each peer may be required to authenticate itself to the other. Different authentication protocols and names can be used for each exchange.

By default, `pppd` authenticates if requested and does not require authentication from the peer. However, `pppd` does not authenticate itself with a specific protocol if it has no secrets that can do so.
pdd stores authentication secrets in the /etc/ppp/pap-secrets (for PAP), and /etc/ppp/chap-secrets (for CHAP) files. Both files use the same format. pdd uses secrets files to authenticate itself to other systems and to authenticate other systems to itself.

Secrets files contain one secret per line. Secrets are specific to a particular combination of client and server and can only be used by that client to authenticate itself to that server. Each line in a secrets file has a minimum of three fields that contain the client and server names followed by the secret. Often, these three fields are followed by IP addresses that are used by clients to connect to a server.

A secrets file is parsed into words, with client name, server name and secrets fields allocated one word each. Embedded spaces or other special characters within a word must be quoted or escaped. Case is significant in all three fields.

A secret beginning with an at sign ("@") is followed by the name of a file containing the secret. An asterisk (*) as the client or server name matches any name. When choosing a match, pdd selects the one with the fewest wildcards. Succeeding words on a line are interpreted by pdd as acceptable IP addresses for that client. IP Addresses are disallowed if they appear in lines that contain only three words or lines whose first word begins with a hyphen ("-"). To allow any address, use "*". An address starting with an exclamation point (!) indicates that the specified address is not acceptable. An address may be followed by "/" and a number n to indicate a whole subnet (all addresses that have the same value in the most significant n bits). In this form, the address may be followed by a plus sign ("+") to indicate that one address from the subnet is authorized, based on the ppp network interface unit number in use. In this case, the host part of the address is set to the unit number, plus one.

When authenticating the peer, pdd chooses a secret with the peer’s name in the first field of the secrets file and the name of the local system in the second field. The local system name defaults to the hostname, with the domain name appended if the domain option is used. The default can be overridden with the name option unless the usehostname option is used.

When authenticating to the peer, pdd first determines the name it will use to identify itself to the peer. This name is specified with the user option. If the user option is not used, the name defaults to the host name of the local system. pdd then selects a secret from the secrets file by searching for an entry with a local name in the first field and the peer’s name in the second field. pdd will know the name of the peer if standard CHAP authentication is used because the peer will have sent it in the Challenge packet. However, if MS-CHAP or PAP is being used, pdd must determine the peer’s name from the options specified by the user. The user can specify the peer’s name directly with the remotename option. Otherwise, if the remote IP address was specified by a name, rather than in numeric form, that name will be used as the peer’s name. If that fails, pdd uses the null string as the peer’s name.
When authenticating the peer with PAP, the supplied password is compared with data in the secrets file. If the password and secret do not match, the password is encrypted using \texttt{crypt()} and checked against the secret again. If the \texttt{papcrypt} option is given, the first unencrypted comparison is omitted for better security, and entries must thus be in encrypted \texttt{crypt(3C)} form.

If the \texttt{login} option is specified, the username and password are also checked against the system password database. This allows you to set up the \texttt{pap-secrets} file to enable PPP access only to certain users, and to restrict the set of IP addresses available to users. Typically, when using the \texttt{login} option, the secret in \texttt{/etc/ppp/pap-secrets} would be ", which matches any password supplied by the peer. This makes having the same secret in two places unnecessary. When \texttt{login} is used, the \texttt{pam} option enables access control through \texttt{pam(3PAM)}.

Authentication must be completed before IPCP (or other network protocol) can be started. If the peer is required to authenticate itself and fails, \texttt{pppd} closes LCP and terminates the link. If IPCP negotiates an unacceptable IP address for the remote host, IPCP is closed. IP packets are sent or received only when IPCP is open.

To allow hosts that cannot authenticate themselves to connect and use one of a restricted set of IP addresses, add a line to the \texttt{pap-secrets} file specifying the empty string for the client name and secret.

Additional \texttt{pppd} options for a given peer may be specified by placing them at the end of the secrets entry, separated by two dashes (\texttt{--}). For example

```
servername secret ip-address -- novj
```

When IPCP negotiation is complete, \texttt{pppd} informs the kernel of the local and remote IP addresses for the PPP interface and creates a host route to the remote end of the link that enables peers to exchange IP packets. Communication with other machines generally requires further modification to routing tables and/or Address Resolution Protocol (ARP) tables. In most cases the \texttt{defaultroute} and/or \texttt{proxyarp} options are sufficient for this, but further intervention may be necessary. If further intervention is required, use the \texttt{/etc/ppp/ip-up} script or a routing protocol daemon.

To add a default route through the remote host, use the \texttt{defaultroute} option. This option is typically used for "client" systems; that is, end-nodes that use the PPP link for access to the general Internet.

In some cases it is desirable to use proxy ARP, for example on a server machine connected to a LAN, to allow other hosts to communicate with the remote host. \texttt{proxyarp} instructs \texttt{pppd} to look for a network interface on the same subnet as the remote host. That is, an interface supporting broadcast and ARP that is not a point-to-point or loopback interface and that is currently up. If found, \texttt{pppd} creates a permanent, published ARP entry with the IP address of the remote host and the hardware address of the network interface.
When the demand option is used, the interface IP addresses are already set at the time when IPCP comes up. If `pppd` cannot negotiate the same addresses it used to configure the interface, it changes the interface IP addresses to the negotiated addresses. This may disrupt existing connections. Using demand dialing with peers that perform dynamic IP address assignment is not recommended.

`pppd` invokes scripts at various stages during processing that are used to perform site-specific ancillary processing. These scripts may be shell scripts or executable programs. `pppd` does not wait for the scripts to finish. The scripts are executed as root (with the real and effective user-id set to 0), enabling them to update routing tables, run privileged daemons, or perform other tasks. Be sure that the contents of these scripts do not compromise your system’s security. `pppd` runs the scripts with standard input, output and error redirected to `/dev/null`, and with an environment that is empty except for some environment variables that give information about the link. The `pppd` environment variables are:

- **DEVICE**: Name of the serial tty device.
- **IFNAME**: Name of the network interface.
- **IPLOCAL**: IP address for the link’s local end. This is set only when IPCP has started.
- **IPREMOTE**: IP address for the link’s remote end. This is set only when IPCP has started.
- **PEERNAME**: Authenticated name of the peer. This is set only if the peer authenticates itself.
- **SPEED**: Baud rate of the tty device.
- **ORIG_UID**: Real user-id of user who invoked `pppd`.
- **PPPLOGNAME**: Username of the real user-id who invoked `pppd`. This is always set.

`pppd` also sets the following variables for the ip-down and auth-down scripts:

- **CONNECT_TIME**: Number of seconds between the start of PPP negotiation and connection termination.
- **BYTES_SENT**: Number of bytes sent at the level of the serial port during the connection.
- **BYTES_RCVD**: Number of bytes received at the level of the serial port during the connection.
- **LINKNAME**: Logical name of the link, set with the `linkname` option.

If they exist, `pppd` invokes the following scripts. It is not an error if they do not exist.

- **/etc/ppp/auth-up**: Program or script executed after the remote system successfully authenticates itself. It is executed with five command-line arguments: `interface-name`
EXAMPLE 1 Using the auth Option

The following examples assume that the /etc/ppp/options file contains the auth option.

pppd is commonly used to dial out to an ISP. You can do this using the “pppd call isp” command where the /etc/ppp/peers/isp file is set up to contain a line similar to the following:

cua/a 19200 crtscts connect '/usr/bin/chat -f /etc/ppp/chat-isp' noauth

For this example, chat(1M) is used to dial the ISP’s modem and process any login sequence required. The /etc/ppp/chat-isp file is used by chat and could contain the following:
**EXAMPLE 1** Using the auth Option  
(Continued)

ABORT "NO CARRIER"
ABORT "NO DIALTONE"
ABORT "ERROR"
ABORT "NO ANSWER"
ABORT "BUSY"
ABORT "Username/Password Incorrect"
OK "at&f&d2&c1"
OK "atdr2468135"
"name:" "Umyuserid"
"word:" "\mypassword"
"ispts" "\q\Upp"
*-* "Uppp--"

See the chat(1M) man page for details of chat scripts.

**EXAMPLE 2** Using pppd with proxyarp

pppd can also provide a dial-in ppp service for users. If the users already have login accounts, the simplest way to set up the ppp service is to let the users log in to their accounts and run pppd as shown in the following example:

example% pppd proxyarp

**EXAMPLE 3** Providing a User with Access to PPP Facilities

To provide a user with access to the PPP facilities, allocate an IP address for the user’s machine, create an entry in /etc/ppp/pap-secrets or /etc/ppp/chap-secrets. This enables the user’s machine to authenticate itself. For example, to enable user “Joe” using machine “joespc” to dial in to machine “server” and use the IP address “joespc.my.net,” add the following entry to the /etc/ppp/pap-secrets or /etc/ppp/chap-secrets files:

```
joespc server "joe’s secret" joespc.my.net
```

Alternatively, you can create another username, for example “ppp,” whose login shell is /usr/bin/pppd and whose home directory is /etc/ppp. If you run pppd this way, add the options to the /etc/ppp/.ppprc file.

If your serial connection is complex, it may be useful to escape such control characters as XON (^Q) and XOFF (^S), using asyncmap a0000. If the path includes a telnet, escape ^] (asyncmap 200a0000). If the path includes a rlogin command, add escape ff option to the options, because rlogin removes the window-size-change sequence [0xff, 0xff, 0x73, 0x73, followed by any 8 bytes] from the stream.

**EXIT STATUS**

The pppd exit status indicates errors or specifies why a link was terminated. Exit status values are:
pppd(1M)

0  pppd has detached or the connection was successfully established and
terminated at the peer's request.
1  An immediately fatal error occurred. For example, an essential system call
failed.
2  An error was detected in the options given. For example, two mutually
exclusive options were used, or /etc/ppp/options is missing and the
user is not root.
3  pppd is not setuid-root and the invoking user is not root.
4  The kernel does not support PPP. For example, the PPP kernel driver is not
included or cannot be loaded.
5  pppd terminated because it was sent a SIGINT, SIGTERM or SIGHUP
signal.
6  The serial port could not be locked.
7  The serial port could not be opened.
8  The connect script failed and returned a non-zero exit status.
9  The command specified as the argument to the pty option could not be
run.
10 The PPP negotiation failed because no network protocols were able to run.
11 The peer system failed or refused to authenticate itself.
12 The link was established successfully, but terminated because it was idle.
13 The link was established successfully, but terminated because the connect
time limit was reached.
14 Callback was negotiated and an incoming call should arrive shortly.
15 The link was terminated because the peer is not responding to echo
requests.
16 The link was terminated by the modem hanging up.
17 The PPP negotiation failed because serial loopback was detected.
18 The init script failed because a non-zero exit status was returned.
19 Authentication to the peer failed.

FILES
/var/run/spppn.pid    Process-ID for pppd process on PPP
                      interface unit n.
/var/run/ppp-name.pid Process-ID for pppd process for logical link
                      name (see the linkname option).
/etc/ppp/pap-secrets  Usernames, passwords and IP addresses for
                      PAP authentication. This file should be...
owned by root and not readable or writable by any other user, otherwise pppd will log a warning.

/etc/ppp/chap-secrets
Names, secrets and IP addresses for all forms of CHAP authentication. The /etc/ppp/pap-secrets file should be owned by root should not readable or writable by any other user, otherwise, pppd will log a warning.

/etc/ppp/options
System default options for pppd, read before user default options or command-line options.

$HOME/.ppprc
User default options, read before /etc/ppp/options.

/etc/ppp/options.ttyname
System default options for the serial port in use; read after $HOME/.ppprc. The ttyname component of this filename is formed when the initial /dev/ is stripped from the port name (if present), and slashes (if any) are converted to dots.

/etc/ppp/peers
Directory with options files that may contain privileged options, even if pppd was invoked by a user other than root. The system administrator can create options files in this directory to permit non-privileged users to dial out without requiring the peer to authenticate, but only to certain trusted peers.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
chat(1M), ifconfig(1M), crypt(3C), pam(3PAM), attributes(5)


NOTES

These signals affect pppd behavior:

SIGINT, SIGTERM
Terminate the link, restore the serial device settings and exit.

SIGHUP
Terminate the link, restore the serial device settings and close the serial device. If the persist or demand option is specified, pppd attempts to reopen the serial device and start another connection after the holdoff period. Otherwise pppd exits. If received during the holdoff period, SIGHUP causes pppd to end the holdoff period immediately.

SIGUSR1
Toggles the state of the debug option and prints link status information to the log.

SIGUSR2
Causes pppd to renegotiate compression. This is useful to re-enable compression after it has been disabled as a result of a fatal decompression error. (Fatal decompression errors generally indicate a bug in an implementation.)

DIAGNOSTICS

Messages are sent to the syslog daemon using facility LOG_DAEMON. To see error and debug messages, edit the /etc/syslog.conf file to direct the messages to the desired output device or file, or use the updetach or logfile options.

The debug option causes the contents of all LCP, PAP, CHAP or IPCP control packets sent or received to be logged. This is useful if PPP negotiation does not succeed or if authentication fails.

Debugging can also be enabled or disabled by sending a SIGUSR1 signal, which acts as a toggle to the pppd process.
NAME
  pppoe – PPPoE chat utility

SYNOPSIS
  pppoe [-oomillsecs] [-smillsecs] [-v] device [service [ [except] server... [only]]]
  pppoe [-oomillsecs] [-v] -i [device]

DESCRIPTION
  The pppoe utility implements the client-side negotiation of PPPoE. It is intended to be used with the pppd(1M) connect option, in the same manner as the chat(1M) utility is used for asynchronous dial-up PPP.

  When given with the -i flag, pppoe sends out a broadcast query on the given interface named by the device parameter. You can specify no other arguments in this mode. All responding PPPoE servers and the offered services are displayed on standard output.

  Otherwise, when given without the -i flag, pppoe does the full PPPoE client-side negotiation. The device parameter is the intended Ethernet interface, and must already be plumbed with sppptun(1M). The optional service parameter specifies a particular service desired; other offered services will be ignored. The optional server parameter specifies a specific server desired. You can specify server as an Ethernet address in the usual x:x:x:x:x:x format (with "*" in any of the six byte positions interpreted to mean "any"), or as a symbolic name resolved through /etc/ethers (or NIS), or as a PPPoE access concentrator name. The sense of the match (true or false) can be inverted by specifying the keyword except before this string. This parameter can be specified more than once, and the first match is taken.

  If you specify the server parameter, then the selected servers become "preferred." If no preferred server responds, then the first responding server is used instead. To exclude non-matching servers entirely, append the keyword only.

OPTIONS
  The following options are supported:

  -i
    Sends out broadcast query over interface specified by device.

  -o
    Sets the initial wait time in milliseconds for PADO from the server before PADI is retried. The default is 500 milliseconds for normal operation, or 3000 milliseconds (3 seconds) for inquiry (-i) mode.

  -s
    Sets the initial wait time in milliseconds for PADS from the server before PADR is retried. The default is 2000 milliseconds (2 seconds).

  -v
    Displays verbose progress messages, including all PPPoE messages sent, and all state machine transitions.

You normally do not need to adjust the parameters set with -o and -s. They are provided for coping with unusually slow servers.

OPERANDS
  The following operands are supported:

  device
    plumbed Ethernet interface
EXAMPLES

EXAMPLE 1 Connecting to Any Service on hme0

The following command enables you to connect to any PPPoE service on hme0:

```
#/usr/bin/pppd sppptun plugin pppoe.so \n    connect "*/usr/lib/inet/pppoec hme0" debug
```

Often, a command such as the preceding is specified in an /etc/ppp/peers file instead. For example, enter the following in /etc/ppp/peers/myisp:

```
sppptun
plugin pppoe.so
connect "*/usr/lib/inet/pppoec hme0"
debug
```

To invoke the PPP connection described in the file, enter:

```
% /usr/bin/pppd call myisp
```

Note that, because the /etc/ppp/peers files are considered privileged by pppd, you need not be root to invoke the preceding command.

EXAMPLE 2 Connecting to a Particular Service

A more complex example: on hme0, connect to only the internet service offered by PPPoE servers with access concentrator name isp, but not to any Ethernet addresses starting with 40:0:1a.

```
#/usr/lib/inet/pppoec hme0 internet except 40:0:1a:*:*:* isp only
```

Note that the except 40:0:1a:*:*:* filter must come before isp, because the filters are first-match.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/usr/lib/inet/pppoec
    executable command

/dev/sppptun
    Solaris PPP tunneling device driver.

/etc/ppp/connect-errors
    usual location of error output (see DIAGNOSTICS, below)
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdt</td>
</tr>
</tbody>
</table>

SEE ALSO

pppd(1M), sptun(1M), pppoed(1M), sptun(7M)

RFC 2516, Method for Transmitting PPP Over Ethernet (PPPoE), Mamakos et al, February 1999

DIAGNOSTICS

Error messages are written to standard error, which is normally redirected by pppd to /etc/ppp/connect-errors. The errors can also be redirected to pppd’s standard output by using the updetach option.

If you specify the -v, verbose progress messages are displayed, including all PPPoE messages sent, and all state machine transitions. Specifying the updetach or nodetach pppd option is helpful when using verbose mode.
The pppoed daemon implements the server-side negotiation of PPPoE. When a client requests service from this daemon, a copy of pppd(1M) is invoked to handle the actual PPP communication.

At startup, options are read from the command line and the /etc/ppp/pppoe file. After these options have been read, options in the per-device /etc/ppp/pppoe.device files are read, using the device names specified on the command line or in /etc/ppp/pppoe. Device names are not permitted in the per-device files. It is not an error if any of these files are absent; missing files are ignored.

Options are reread in the same order on SIGHUP. Except for the possibility of short delays due to the processing time, SIGHUP does not interfere with any client operations. Current status, including options read, is dumped to /tmp/pppoed.pid on SIGINT.

The options are used to set up a list of services to be offered to PPPoE clients on the broadcast domains (Ethernet subnets) specified by the named devices. Option parsing is always in one of two modes, either global mode or service mode. The initial mode at the beginning of each file (and the command line) is global mode. Options specified in global mode serve as default values for subsequently defined services. Service mode is entered by the service name option. In this mode, the named option is defined. Options that appear in this mode override any global mode definitions for the current service.

The option parsing follows standard shell tokenizing rules, using whitespace to delimit tokens, quotes to enclose strings that can contain whitespace, and escape sequences for special characters. Environment variables are substituted using familiar $VAR and ${VAR} syntax and set using NEWVAR=string. Variables are both usable in subsequent options and provided to the pppd(1M) processes spawned for each client, but they are interpreted as they are encountered during option processing. Thus, all set variables are seen by all processes spawned; position in the configuration files has no effect on this.

The pppoed daemon supports the following options:

**client [except] client-list**

This option restricts the clients that may receive the service. If the except keyword is given, then the clients on the list cannot access the service, but others can. If this keyword is not given, then only the listed clients can access the service.

This option can be specified more than once for a given service. For a given client, first match among all listed options encountered specifies the handling. If it
matches an option with `except` specified, then access is denied. Otherwise, it is granted. The `client` list within a service is prepended to any list specified in the global context.

If no `client` options are given or if all options are specified with `except`, then all clients are permitted by default. If any `client` options without `except` are specified, then no clients are permitted by default.

The `client-list` is a comma-separated list of client identifiers. The match is made if any client on the list matches; thus, these are logically "ORed" together. Each client identifier can be either a symbolic name (resolved through `/etc/ethers` or NIS, as defined by `/etc/nsswitch.conf`) or a hexadecimal Ethernet address in the format `x:x:x:x:x:x`. In the latter case, any byte of the address can be "*", which matches any value in that position. For example, `40:0:1a:*:*:*` matches Ethernet adapters from the manufacturer assigned block `40:0:1a`.

debug

Increase debug logging detail level by one. The detail levels are 0 (no logging), 1 (errors only; the default), 2 (warnings), 3 (informational messages), and 4 (debug messages). Log messages are written by default to `syslog(3C)` using facility `daemon` (see the `log` option below). When specified on the command line or in the global context of the `/etc/ppp/pppoe` file, this option also sets the daemon’s default (non-service-related) detail level.

device `device-list`

Specify the devices on which the service is available. The `device-list` is a comma-separated list of logical device names (without the leading `/dev/`), such as `hme0`. This option is ignored if encountered in the per-device `/etc/ppp/pppoe.device` files.

extra `string`

Specifies extra options to `pppd(1M)`. It defaults to "plugin pppoe.so directtty" and usually does not need to be overridden.

file `path`

Suspends parsing of the current file, returns to global mode, and reads options from `path`. This file must be present and readable; if it is not, an error is logged. When the end of that file is reached, processing returns to the current file and the mode is reset to global again.
The global mode options specified in files read by this command use the options set in the current file’s global mode; this condition extends to any file included by those files. All files read are parsed as though the command line had specified this option, and thus inherit the command line’s global modes.

This option can be used to revert to global mode at any point in an option file by specifying `file /dev/null`.

**group name**

Specifies the group ID (symbolic or numeric) under which `pppd` is executed. If `pppoed` is not run as root, this option is ignored.

**log path**

Specifies an alternate debug logging file. Debug messages are sent to this file instead of `syslog`. The special name `syslog` is recognized to switch logging back to `syslog`. When specified on the command line or in the global context of the `/etc/ppp/pppoe` file, this option also sets the daemon’s default (non-service-related) log file.

**nodebug**

Set debug logging detail level to 0 (no logging). When specified on the command line or in the global context of the `/etc/ppp/pppoe` file, this option also sets the daemon’s default (non-service-related) detail level.

**nowildcard**

Specifies that the current service should not be included in response to clients requesting "any" service. The client must ask for this service by name. When specified on the command line or in the global context of the `/etc/ppp/pppoe` file, this option causes `pppoed` to ignore all wildcard service requests.

**path path**

Specifies the path to the `pppd` executable. Defaults to `/usr/bin/pppd`.

**pppd string**

Passes command-line arguments to `pppd`. It can be used to set the IP addresses or configure security for the session. The default value is the empty string.

**server string**

Specifies the PPPoE Access Concentrator name to be sent to the client. It defaults to "Solaris PPPoE".

**service name**

Closes any service being defined and begins definition of a new service. The same service name can be used without conflict on multiple devices. If the same service name is used on a single device, then the last definition encountered during parsing overrides all previous definitions.
user name

Specifies the user ID, symbolic or numeric, under which pppd is executed. If pppoed is not run as root, this option is ignored.

wildcard

Specifies that the service should be included in responses to client queries that request "any" service, which is done by requesting a service name of length zero. When specified on the command line or in the global context of the /etc/ppp/pppoe file, this option causes pppoed to ignore all wildcard service requests. This is the default.

EXAMPLE 1 Configuring for Particular Services

In the /etc/ppp/pppoe file:

```
service internet
device $DEV
    pppd "proxyarp 192.168.1.1;"

service debugging
device hme0,$DEV
    pppd "debug proxyarp 192.168.1.1;"
```

You then invoke the daemon with:

```
example% /usr/lib/inet/pppoed DEV=le0
```

The lines in /etc/ppp/pppoe and the preceding command result in offering services "internet" and "debugging" (and responding to wildcard queries) on interface le0, and offering only service "debugging" on interface hme0.

SIGINT

Causes a snapshot of the state of the pppoed daemon to be written to /tmp/pppoed.pid (where pid is the decimal process ID of the daemon).

FILES

/usr/lib/inet/pppoed executable command
/dev/appptun Solaris PPP tunneling device driver
/etc/ppp/pppoe main configuration option file
/etc/ppp/pppoe.device per-device configuration option file
/etc/ppp/pppoe-errors location of output from pppd’s stderr
/etc/ppp/pppoe.if list of Ethernet interfaces to be plumbed at boot time
pppoed(1M)

_ASCII text file containing dumped pppoe state information

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdt</td>
</tr>
</tbody>
</table>

SEE ALSO

pppd(1M), pppoe(1M), sppptun(1M), sppptun(7M)


NOTES

Because pppd is installed setuid root, this daemon need not be run as root. However, if it is not run as root, the user and group options are ignored.

The Ethernet interfaces to be used must be plumbed for PPPoE using the sppptun(1M) utility before services can be offered.

The daemon operate runs even if there are no services to offer. If you want to modify a configuration, it is not necessary to terminate the daemon. Simply use pkill -HUP pppoe after updating the configuration files.

The PPPoE protocol is far from perfect. Because it runs directly over Ethernet, there is no possibility of security and the MTU is limited to 1492 (violating RFC 1661’s default value of 1500). It is also not possible to run the client and the server of a given session on a single machine with a single Ethernet interface for testing purposes. The client and server portions of a single session must be run on separate Ethernet interfaces with different MAC addresses.
NAME
pppstats – print PPP statistics

SYNOPSIS
pppstats [-a] [-v] [-r] [-z] [-c <count>] [-w <secs>] [interface]

DESCRIPTION
The pppstats utility reports PPP-related statistics at regular intervals for the
specified PPP interface. If the interface is unspecified, pppstats defaults to sppp0.
The display is split horizontally into input and output sections containing columns of
statistics describing the properties and volume of packets received and transmitted by
the interface.

OPTIONS
The pppstats options are:

- a
  Display absolute values rather than deltas. With this option, all
  reports show statistics for the time elapsed since the link was
  initiated. Without this option, the second and subsequent reports
  show statistics for the time since the last report.

- c count
  Repeat the display count times. If this option is not specified, the
  default repeat count is 1 if the -w option is not specified, otherwise
  infinity.

- r
  Display additional statistics summarizing the compression ratio
  achieved by the packet compression algorithm in use.

- v
  Display additional statistics relating to the performance of the Van
  Jacobson TCP header compression algorithm.

- w wait
  Pause wait seconds between each display. If this option is not
  specified, the default interval is five seconds.

- z
  Instead of the standard display, show statistics indicating the
  performance of the packet compression algorithm in use.

EXTENDED
DESCRIPTION
The following fields are printed on the input side when the - z option is not used:

IN
  Total number of bytes received by this interface.

PACK
  Total number of packets received by this interface.

VJCOMP
  Number of header-compressed TCP packets received by this
  interface.

VJUNC
  Number of header-uncompressed TCP packets received by this
  interface. Not reported when the - r option is specified.

VJERR
  Number of corrupted or bogus header-compressed TCP packets
  received by this interface. Not reported when the - r option is
  specified.

VJTOSS
  Number of VJ header-compressed TCP packets dropped on
  reception by this interface because of preceding errors. Only
  reported when the - v option is specified.
### NON-VJ
Total number of non-TCP packets received by this interface. Only reported when the `-v` option is specified.

### RATIO
Compression ratio achieved for received packets by the packet compression scheme in use, defined as the uncompressed size divided by the compressed size. Only reported when the `-r` option is specified.

### UBYTE
Total number of bytes received, after decompression of compressed packets. Only reported when the `-r` option is specified.

The following fields are printed on the output side:

#### OUT
Total number of bytes transmitted from this interface.

#### PACK
Total number of packets transmitted from this interface.

#### VJCOMP
Number of TCP packets transmitted from this interface with VJ-compressed TCP headers.

#### VJUNC
Number of TCP packets transmitted from this interface with VJ-uncompressed TCP headers. Not reported when the `-r` option is specified.

#### NON-VJ
Total number of non-TCP packets transmitted from this interface. Not reported when the `-r` option is specified.

#### VJSRCH
Number of searches for the cached header entry for a VJ header compressed TCP packet. Only reported when the `-v` option is specified.

#### VJMISS
Number of failed searches for the cached header entry for a VJ header compressed TCP packet. Only reported when the `-v` option is specified.

#### RATIO
Compression ratio achieved for transmitted packets by the packet compression scheme in use, defined as the size before compression divided by the compressed size. Only reported when the `-r` option is specified.

#### UBYTE
Total number of bytes to be transmitted before packet compression is applied. Only reported when the `-r` option is specified.

When the `-z` option is specified, `pppstats` displays the following fields relating to the packet compression algorithm currently in use. If packet compression is not in use, these fields display zeroes. The fields displayed on the input side are:

#### COMPRESSED BYTE
Number of bytes of compressed packets received.

#### COMPRESSED PACK
Number of compressed packets received.
INCOMPRESSIBLE BYTE
Number of bytes of incompressible packets (that is, those which were transmitted in uncompressed form) received.

INCOMPRESSIBLE PACK
Number of incompressible packets received.

COMP RATIO
Recent compression ratio for incoming packets, defined as the uncompressed size divided by the compressed size (including both compressible and incompressible packets).

The fields displayed on the output side are:

COMPRESSED BYTE
Number of bytes of compressed packets transmitted.

COMPRESSED PACK
Number of compressed packets transmitted.

INCOMPRESSIBLE BYTE
Number of bytes of incompressible packets received; that is, those that were transmitted by the peer in uncompressed form.

INCOMPRESSIBLE PACK
Number of incompressible packets transmitted.

COMP RATIO
Recent compression ratio for outgoing packets.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
pppd(1M), attributes(5)
NAME
praudit – print contents of an audit trail file

SYNOPSIS
praudit [-lrsx] [-d del] [filename...]

DESCRIPTION
praudit reads the listed filenames (or standard input, if no filename is specified) and interprets the data as audit trail records as defined in audit.log(4). By default, times, user and group IDs (UIDs and GIDs, respectively) are converted to their ASCII representation. Record type and event fields are converted to their ASCII representation. A maximum of 100 audit files can be specified on the command line.

OPTIONS
The following options are supported:

-d del
Use del as the field delimiter instead of the default delimiter, which is the comma. If del has special meaning for the shell, it must be quoted. The maximum size of a delimiter is three characters. The delimiter is not meaningful and is not used when the -x option is specified.

-l
Print one line per record.

-r
Print records in their raw form. Times, UIDs, GIDs, record types, and events are displayed as integers. This option and the -s option are exclusive. If both are used, a format usage error message is output.

-s
Print records in their short form. All numeric fields are converted to ASCII and displayed. The short ASCII representations for the record type and event fields are used. This option and the -r option are exclusive. If both are used, a format usage error message is output.

-x
Print records in XML form. Tags are included in the output to identify tokens and fields within tokens. Output begins with a valid XML prolog, which includes identification of the DTD which can be used to parse the XML.

FILES
/etc/security/audit_event
Audit event definition and class mappings.

/etc/security/audit_class
Audit class definitions.

/usr/share/lib/xml/dtd
Directory containing the versioned DTD file referenced in XML output, for example, adt_record.dtd.1.

/usr/share/lib/xml/style
Directory containing the versioned XSL file referenced in XML output, for example, adt_record.xsl.1.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>See below</td>
</tr>
</tbody>
</table>
The command stability is evolving. The output format is unstable.

SEE ALSO
bsmconv(1M), audit(2), getauditflags(3BSM), audit.log(4), audit_class(4),
audit_event(4), group(4), passwd(4), attributes(5)

NOTES
This functionality is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.
printmgr(1M)

NAME       printmgr – Solaris Print Manager is a graphical user interface for managing printers in a network

SYNOPSIS   /usr/sadm/admin/bin/printmgr

DESCRIPTION Solaris Print Manager is a Java-based graphical user interface that enables you to manage local and remote printer access. This tool can be used in the following name service environments: LDAP, NIS, NIS+, NIS+ with Federated Naming Service (FNS), and files. You must be logged in as superuser to use this tool.

Using Solaris Printer Manager is the preferred method for managing printer access instead of admintool:printers because Solaris Print Manager centralizes printer information when it is used in a name service environment.

Adding printer information to a name service makes access to printers available to all systems on the network and generally makes printer administration easier because all the information about printers is centralized.

Solaris Print Manager may be run on a remote system with the display sent to the local system. See the System Administration Guide: Advanced Administration for instructions on setting the DISPLAY environment variable.

Using Solaris Print Manager to perform printer-related tasks automatically updates the appropriate printer databases. Solaris Print Manager also includes a command-line console that displays the lp command line for the add, modify, and delete printer operations. Errors and warnings may also be displayed when Printer Manager operations are performed.

Help is available by clicking the Help button.

USAGE       Solaris Print Manager enables you to do the following tasks:

Select a Name Service
   Select a name service for retrieving or changing printer information.

Add Access to a Printer
   Add printer access on a printer client using Solaris Print Manager.

Add an Attached Printer
   After physically attaching the printer to a system, use Solaris Print Manager to install a local printer and make it available for printing.

Add a Network Printer
   After physically attaching the printer to a system, use Solaris Print Manager to install a local printer and make it available for printing.

Modify Printer Properties
   After adding access to a printer or adding an attached or network printer, you can modify certain printer attributes.

Delete a Printer
   Delete access to a printer from the print client or delete a printer from the print server or from the name service environment.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWppm</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(1), lpgt(1M), lpset(1M), attributes(5)

System Administration Guide: Advanced Administration

NOTES

Be mindful of the following if the LDAP database is used as the name service.

1. Because the domain information for the printer being updated is extracted from the ldapclient(1M) configuration, the LDAP server being updated must host the same domain that is used by the current ldapclient(1M) server.

2. If the LDAP server being updated is a replica LDAP server, the updates will be referred to the master LDAP server and completed there. The updates might be out of sync and not appear immediately, as the replica server may not have been updated by the master server. For example, a printer that you deleted by using lpset may still appear in the printer list you display with lpget until the replica is updated from the master. Replica servers vary as to how often they are updated from the master. See System Administration Guide: Advanced Administration for information on LDAP server replication.

3. Although users can use the LDAP command line utilities ldapadd(1) and ldapmodify(1) to update printer entries in the directory, the preferred method is to use lpset. Otherwise, if the lpadd and lpmodify utilities are used, the administrator must ensure that the printer-name attribute value is unique within the ou=printers container on the LDAP server. If the value is not unique, the result of modifications done using lpset or the Solaris Print Manager, printmgr(1M) may be unpredictable.
NAME  
privatepw – administer FTP Server enhanced group access file

SYNOPSIS  
privatepw [-c] [-f ftpgroups] [-g real_group_name] accessgroup
privatepw -d [-f ftpgroups] accessgroup
privatepw -l [-f ftpgroups]
privatepw -V

DESCRIPTION  
The privatepw utility is an administrative tool to add, delete and list enhanced access group information in the ftpgroups file. See ftpgroups(4).

When privatepw is used without options, the help usage message is displayed. The privatepw utility prompts for a password when adding an enhanced access group entry or modifying an existing one.

OPTIONS  
The following options are supported by the privatepw utility:
-c  
Create a new ftpgroups file for the specified accessgroup.
-d  
Delete information about the specified accessgroup from the ftpgroups file.
-f ftpgroups  
Use the specified ftpgroups file for all updates.
-g group  
Set the real system group to the group specified. group is a valid group name returned by getgrnam(3C). If the real system group is not supplied with the -g option when adding an enhanced access group entry, the privatepw utility prompts for it.
-l  
List the contents of the ftpgroups file.
-v  
Display program copyright and version information, then terminate.

OPERANDS  
The following operands are supported:
accessgroup  
The name of the enhanced access group to create or update. It consists of an arbitrary string of alphanumeric and punctuation characters. See ftpgroups(4).

EXIT STATUS  
The following exit values are returned:
0  
Successful completion.
>0  
An error occurred.

FILES  
/etc/ftpd/ftpgroups
/etc/group
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftpu</td>
</tr>
</tbody>
</table>

SEE ALSO in.ftpd(1M), getgrnam(3C), ftpgroups(4), attributes(5)
prodreg – Solaris Product Registry administration

NAME

SYNOPSIS

DESCRIPTION

Some installers make use of the libwsreg(3LIB) interface to register information. The Solaris Product Registry contains information about this installed software.

The database associated with the Solaris Product Registry is relative to the root of the installed file system. Normally, this is the root of the file system (/). Sometimes, an alternate root, with a different Solaris Product Registry install database is used, as during live upgrade installation. See live_upgrade(5).

The Registry database informs installers about installed software. The Registry and the prodreg utility do not directly perform installation or deinstallation. prodreg supports installers which are executed externally and launched by the prodreg utility or other means.

Depending on the subcommand, the prodreg command offers equivalent functions from the command line or a GUI viewer. Two versions of the GUI viewer are available. The default is the Java Swing GUI. The other version, the Java awt GUI is provided for environments without Java Swing support.

The only feature which exists in the CLI which is not present in the GUI is the unregister subcommand. It is possible for the product registry to become corrupted, if for example, some software is removed manually instead of by means of an uninstaller program. These entries can confuse installers which are run subsequently. The unregister subcommand allows stale entries to be removed, even forcefully. Care should be exercised when unregistering software with the recursive or force options so that valid entries in the registry are not removed by mistake.

The prodreg command, whether it launches the GUI or the command line interface browser, displays the contents of the registry at that time only. If software is installed or uninstalled subsequent to or concurrent with launching either prodreg viewer, the view can be inconsistent with the Solaris Product Registry.

SUBCOMMANDS

You can specify options to the prodreg command without specifying a subcommand. If the subcommand is omitted, the swing subcommand is assumed.

The following subcommands are supported:

awt

Launch the Java awt GUI.

The awt subcommand has the following format:

awt [-R alt_root | --help]
browse
Display the Solaris Product Registry using a command line interface. The text output of this command displays identifying information of any component in the product registry tree, including its ancestors and children. If you repeatedly invoke this subcommand, you can interactively browse the product registry.

The database components are related as a tree. Components may have one or more children. Except for the root, components have one parent. This subcommand displays the ancestors and children for a given component in the Solaris Product Registry database.

Each time the prodreg browse subcommand is executed, one component in the Registry is shown, along with its ancestry to the root of the Registry, as well as the component's children. To browse in the prodreg GUI, a user selects a node to expand and clicks on it. The analogous activity using the command line interface is to browse on children of nodes successively, which effectively expands a view into the registry.

Start by browsing the root of the Registry with prodreg browse. Select components to expand the scope of the browsing activity. Use browse numbers as a convenience during this interactive browsing, but not in scripts. Browse numbers can change from one session to the next or on different systems. This is because browse numbers are generated as they are first used, by a given user on a particular system.

The browse subcommand has the following format:

```
browse [-R alt_root] [-u uuid [-i instance | -p location]]
browse [-R alt_root] -n bnum [-i instance | -p location]
browse [-R alt_root] -m name
browse --help
```

This following information is output for each component:

**BROWSE #**
This is the browse number associated with each component. This number can be used as an argument to either the prodreg browse or info subcommands as a convenience.

`+/-/.
+` indicates a component in the tree with children who are not shown. `-` indicates a component with children of which at least one child is being shown. `. ` indicates a component which has no children. This field is arranged so that each space (reading left to right) depicts a successive generation.

**UUID**
This is the component's unique identifier.

**#**
This is the instance number of the component. Software components can be installed multiple times. The software registry assigns a unique instance to each one.
NAME
   Each component in the Solaris Product Registry database has a localized name which is displayed in this field. It is possible that this name may not be unique in the registry since there could be another component that has the same name.

The browse subcommand provides four distinct options for viewing the registry database. If multiple instances are associated with the same component, then the output of the subcommand is the ambiguous list. The request must be made unambiguous. The instance or location operands can be used to disambiguate the browse subcommand when used with the -u or -n options.
   - If no operand information is given, the root of the registry tree is displayed, as well as its children. This is the starting point for interactive browsing of the entire registry database.
   - If the browse number is given, the component associated is output.
   - If the uuid is given, the component associated with it is output.
   - If the name is given, the component associated with it is output.

info
   Display attributes for any component in the Solaris Product Registry by supplying identifying information for the component.

Components in the product registry are associated with attributes. These attributes are composed of a name and a single value string.

This subcommand outputs attribute information associated with components in the Solaris Product Registry. Individual components in the product registry are specified as for the browse subcommand, except that either the uuid, name or bnum must be specified.

If a component requested is ambiguous as it has more than one instance or the name is assigned to more than one component in the registry, the list of possibilities is output, not the attribute information.

The default output of this subcommand is a complete list of each attributes, each on a new line. The attribute name is followed by a colon (:) and a SPACE. The attribute value follows, after which a RETURN is appended. Other options include can be specified using -a and -d.

The info subcommand has the following format:

   info --help
   info [-R alt_root] -u uuid [-i instance | -p location]
   info [-R alt_root] -n bnum [-i instance | -p location]
   info [-R alt_root] -m name [-a attr | -d]

help | --help | -?
   Display help text.

The help subcommand has the following format:

   help | --help | -?
swing
Launch the Java Swing GUI. If the Java Swing GUI is not available, this
subcommand fails.

The swing subcommand has the following format:

```
swing [-R alt_root | --help]
```

version | --version | -V
Outputs a current version string.

The version subcommand has the following format:

```
version | --version | -V
```

unregister
Unregister an entry in the registry.

Remove a component from the Solaris Product Registry. The component
corresponding to the uuid specified with the -u option must be a single instance. If
it is not, the subcommand fails and returns the list of instances with the associated
uuid. The subcommand must be reissused using either -p or -i to uniquely
determine which component instance to unregister.

The unregister subcommand fails if there are components in the registry which
depend on the component which is to be unregistered.

The unregister subcommand fails if the user does not have write access to the
registry. See wsreg_can_access_registry(3WSREG). The unregister
subcommand fails if the user attempts to unregister a system component, instead of
a component registered with the Solaris Product Registry. System components
include those which include the attribute PKG and certain special Registry nodes
including the following:

<table>
<thead>
<tr>
<th>UUID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>root System Registry</td>
<td></td>
</tr>
<tr>
<td>a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b Solaris System Software</td>
<td></td>
</tr>
<tr>
<td>8f64eabf-1dd2-11b2-a3f1-0800209a5b6b Unclassified Software</td>
<td></td>
</tr>
<tr>
<td>b96ae9a9-1dd1-11b2-a3f2-0800209a5b6b System Software Localizations</td>
<td></td>
</tr>
<tr>
<td>b1c43601-1dd1-11b2-a3f2-0800209a5b6b Additional System Software</td>
<td></td>
</tr>
<tr>
<td>a8dcab4f-1dd1-11b2-a3f2-0800209a5b6b Software Localizations</td>
<td></td>
</tr>
</tbody>
</table>

Before the unregister subcommand with the -f option is used, you should
carefully review what components depend upon the component which is to be
unregistered. The -r option is even more dangerous, since all children and software
components depending upon the component are also deregistered. You can obtain
the list of dependent components for a component with UUID uuid using:

```
prodreg info -u uuid -a "Dependent Components"
```
You can obtain a list of required components using:

```
prodreg info -u <uuid> -a "Required Components"
```
The output lists the name, UUID and instance of the component.
The unregister subcommand has the following format:

```
unregister [-R alt_root] [-fr] -u uuid [-p location | -i instance]
unregister --help
```

**uninstall**

Launch an uninstaller program.

Each component in the registry can have an uninstaller associated with it. This subcommand executes this associated installer, if there is one, for a component in the registry given by the -u option. If there is no uninstaller associated with the component, the subcommand fails. If the component given by the -u option is not unique (as there is more than one instance of the component installed), the subcommand outputs a list of all instances. The subcommand must then be reissued using -i or -p to disambiguate the uuid given with the -u option. Finally, if the component to uninstall is depended upon by other components, the command fails.

The command may also launch an uninstaller with a -x option. No checks for whether this uninstalls a component upon which other components depend in this case.

The uninstall command is not executed if the user does not have write access to the registry. See `wsreg_can_access_registry(3WSREG)`.

The uninstall command has the following format:

```
uninstall [-R alt_root] [-f] -u uuid -p location
uninstall [-R alt_root] -i instance [arguments ...]
uninstall --help
```

**OPTIONS**

The **awt** subcommand supports the following options:

```
--help                     Display help text, do not launch the viewer.
-R alt_root                Use the specified alternate root to locate the database to display with the GUI viewer.
```

See OPERANDS for information regarding specification of `alt_root`.

The **browse** subcommand supports the following options:

```
-help                      Display help text, do not execute the browse subcommand.
-i instance                Output the specified component instance.
-m name                    Output the component instances associated with the name.
-n bnum                    Output the component instances associated with the browse number.
-p location                Output the component instance installed in the specified location.
```

The install location for a component can be obtained using the 'info' subcommand.
prodreg(1M)

-\texttt{R alt\_root} \quad \text{Use the specified alternate root to locate the database.}

-\texttt{u uuid} \quad \text{Output the component instances associated with the uuid.}

The \texttt{info} subcommand supports the following options:

-\texttt{a attr} \quad \text{Output only the attribute whose name is given by the operand ‘attr’, instead of all attributes of the specified component.}

-\texttt{d} \quad \text{Output only the attribute whose name is isDamaged, instead of all attributes of the specified component. If the value is set to true, this attribute indicates that the component in the registry}

-\texttt{--help} \quad \text{Output help text, do not execute the browse subcommand.}

-\texttt{i instance} \quad \text{The instance operand distinguishes among multiple instances of components with the same uuid or browse number.}

-\texttt{m name} \quad \text{The name operand indicates one or more components in the registry.}

-\texttt{n bnum} \quad \text{Output the attributes of the component instance associated with the browse number bnum. If there is more than one instance, the command must be disambiguated using the -i or -p options.}

-\texttt{p location} \quad \text{The install location indicated distinguishes among multiple instances of components with the same uuid or browse number.}

-\texttt{R alt\_root} \quad \text{Use the specified alternate root to locate the database.}

-\texttt{u uuid} \quad \text{Output the attributes of the component instance associated with the uuid. If there is more than one instance, the subcommand must be disambiguated using the -i or -p options.}

The \texttt{swing} subcommand supports the following options:

-\texttt{--help} \quad \text{Output help text, do not execute the install subcommand.}

-\texttt{R alt\_root} \quad \text{Use the specified alternate root to locate the database.}

The \texttt{uninstall} subcommand supports the following options:

-\texttt{f} \quad \text{Force the uninstall. A forced subcommand uninstalls all instances of a component, even if there are multiple ambiguous instances of the uuid operand.}

-\texttt{--help} \quad \text{Output help text, do not execute the unregister subcommand.}

-\texttt{i instance} \quad \text{Disambiguate the uuid operand.}

-\texttt{p location} \quad \text{Disambiguate the uuid operand. location corresponds to the where the software component was installed.}

-\texttt{R alt\_root} \quad \text{Use the specified alternate root to locate the database.}
Unregister the \texttt{uuid} component. If this component has been installed multiple times, the instance to unregister must be indicated unambiguously by using the \texttt{-i} or \texttt{-p} option.

The \texttt{unregister} subcommand supports the following options:

\texttt{-f} \quad Force the unregistration. A forced subcommand unregisters a component even if there are other components which are dependent on this component.

\texttt{--help} \quad Output help text, do not execute the unregister subcommand.

\texttt{-i \ \textit{instance}} \quad Disambiguate the \texttt{uuid} operand.

\texttt{-p \ \textit{location}} \quad Disambiguate the \texttt{uuid} operand. The \texttt{location} corresponds to the where the software component was installed.

\texttt{-r} \quad Causes a recursive deregistration of a component as well as that component's children and dependencies.

\texttt{-R \ \textit{alt\_root}} \quad Use the specified alternate root to locate the database.

\texttt{-u \ \textit{uuid}} \quad Unregister component \texttt{uuid} of the component to unregister. If this component has been installed multiple times, the instance to unregister must be indicated unambiguously by using the \texttt{-i} or \texttt{-p} option.

\textbf{OPERANDS}

The following operands are supported:

\textit{alt\_root} \quad Pathname to a file indicating an alternate root. The Solaris Product Registry database is located relative to the alternate root. If database relative to this location does not exist, it is created.

\textit{attr} \quad Name of an attribute. This operand is used only with the \texttt{info} subcommand. If \textit{attr} is associated with a component, the attribute name and value is displayed.

\textit{bnum} \quad The browse number.

Each component in the Solaris Product Registry is associated with a browse number. This number is generated for the convenience of an interactive user. The browse number can change if the system is rebooted or reinstalled. Do not store or use the browse number except to facilitate the \texttt{browse} and \texttt{info} subcommands. Browse numbers are always output by the \texttt{prodreg browse} subcommand. Only these values can be used as input values to the \texttt{browse} or \texttt{info} subcommand.

\textit{instance} \quad Software can be installed in more than one location. The Solaris Product Registry associates a unique instance number for each. The browse subcommand shows the instance number associated
with each component in the registry. The instance operand is used
to distinguish between installed, and possibly different, copies of
software, when such exist.

**location**

A path to a specific file or directory in the file system. This operand
indicates the installed location of registered software. For instance,
if software is installed relative to `/usr/local` the value of this
operand would be `/usr/local`. The install location is used to
installer or to indicate the location of an installer or to diambiguate
which instance is intended, of a software component which can
have multiple instances.

**name**

Each software component in the Solaris Product Registry is
associated with a name. This name is output by the `browse`
subcommand. Some subcommands allow the user to input the
software by name as an operand as a convenience. These names
might not be unique. If the user supplies an ambiguous name, for
which more than one components exist, the subcommand outputs
a list of possible choices. The name can be localized; depending on
the language setting the name can differ.

**uuid**

Each software component in the Solaris Product Registry is
associated with a unique identifier. This identifier is a handle
which accesses an entry in the registry database. The uuid
corresponds to the component irrespective of how many instances
of the component have been installed, and what the localized
name of the component is.

---

### EXAMPLE 1 Using the `prodreg` Command to Browse

Browsing is performed by means of the `prodreg` browse subcommand. Using these
requests iteratively, one can peruse the tree, much as one would using a GUI by
expanding components which are collections of other components. Browsing using
browse numbers for convenience should be done only during this iterative browsing
process, since the numbers are generated as a result of the browsing operation.

Evoking the `browse` subcommand without any arguments browses from the top of
the registry. The output varies depending on the software installed on a particular
system.

```
$ prodreg browse
BROWSE # +/-/. UUID # NAME
-------- ------- ---------------------------------- == =============
1 -       root 1 System Registry
2 +       a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b 1 Solaris 9 System Software
3 +       8f64eabf-1dd2-11b2-a3f1-0800209a5b6b 1 Unclassified Software
```
EXAMPLE 1 Using the prodreg Command to Browse  (Continued)

The output of this command lists the browse number, UUID, instance number and name of the root component and its children. The ancestors of a component, each parent up to the root, are also shown. The +/-/. column indicates whether the component in the tree is an expanded parent (-), a child with children (+) or a child without children (*)..

EXAMPLE 2 Requesting Information About the Components in a Tree

The UUID, name and browse number fields can be used to request browsing information about components in the tree. The next example shows how a component can be browsed by UUID.

$ prodreg browse -u a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b
BROWSE # +/-/. UUID # NAME
======== ===== ==================================== = ===========
1 - root 1 System Registry
2 - a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b 1 Solaris 9 System Software
4 + b96ae9a9-1dd1-11b2-a3f2-0800209a5b6b 1 System Software Localizations
5 + SUNWCall 1 Entire Distribution

EXAMPLE 3 Browsing a Node by Name

The following example shows how a node can be browsed by name.

$ prodreg browse -m "System Software Localizations"
BROWSE # +/-/. UUID # NAME
======== ===== ==================================== = ===========
1 - root 1 System Registry
2 - a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b 1 Solaris 9 System Software
4 - b96ae9a9-1dd1-11b2-a3f2-0800209a5b6b 1 System Software Localizations
316 . SUNWceuow 1 Central Europe OW Support
317 . SUNWcsfw 1 Simplified Chinese freeware message
318 . SUNWceuox 1 Central Europe 64-bit OS
EXAMPLE 3 Browsing a Node by Name (Continued)

EXAMPLE 4 Browsing Iteratively

Additional output has been omitted. As a convenience, the browse number can be used for iterative browsing. This number should not be stored, as it differs depending on which system the prodreg command is run on, which user is running the command, and the log in session in which the command is run.

$ prodreg browse -n 3

<table>
<thead>
<tr>
<th>BROWSE #</th>
<th>+/-/.</th>
<th>UUID</th>
<th>#</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>root</td>
<td>1</td>
<td>System Registry</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>a0lee8dd-1dd1-11b2-a3f2-0800209a5b6b</td>
<td>1</td>
<td>Solaris 9 System Software</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>SUNWCall</td>
<td>1</td>
<td>Entire Software Distribution</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>SUNWrsmo</td>
<td>1</td>
<td>RSMPI Operations Registration Module</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>SUNWCjvx</td>
<td>1</td>
<td>JavaVM (64-bit)</td>
</tr>
<tr>
<td>8</td>
<td>.</td>
<td>SUNWrsmx</td>
<td>1</td>
<td>Remote Shared Memory (64-bit)</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>SUNWCacc</td>
<td>1</td>
<td>System Accounting</td>
</tr>
</tbody>
</table>

EXAMPLE 5 Browsing Using an Ambiguous Value

If the requested value is ambiguous, the list of ambiguous instances are displayed. In the following example, there are two distinct software components with the same name.

$ ./prodreg browse -m JavaVM

The request failed because multiple components correspond to the criteria given. Use the list of possible components given below, select one and try again.

<table>
<thead>
<tr>
<th>BROWSE #</th>
<th>+/-/.</th>
<th>UUID</th>
<th>#</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>.</td>
<td>org.spybeam.javavm</td>
<td>1</td>
<td>JavaVM</td>
</tr>
<tr>
<td>51</td>
<td>.</td>
<td>SUNWCjv</td>
<td>1</td>
<td>JavaVM</td>
</tr>
</tbody>
</table>

Issue one of the following requests again:
EXAMPLE 5 Browsing Using an Ambiguous Value (Continued)

$ prodreg browse -u SUNWCjv

or

$ prodreg browse -u org.spybeam.javavm

EXAMPLE 6 Browsing Multiple Installations of Software

Another possible ambiguous response arises when a particular software component is installed multiple times. In the example below Example software is registered three times.

$ prodreg browse -m Example

The request failed because multiple components correspond to the criteria given. Use the list of possible components given below, select one and try again.

<table>
<thead>
<tr>
<th>BROWSE #</th>
<th>+/-/.</th>
<th>UUID</th>
<th># NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>2 Example</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>3 Example</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>1 Example</td>
</tr>
</tbody>
</table>

The component requested could not be found.

EXAMPLE 7 Browsing Using a Particular Instance

The request can be repeated specifying a particular instance to disambiguate it. It is also possible to disambiguate a request with the -p option, followed by the install location. In this case, to browse the first instance of the Example software, one would use the command:

$ prodreg browse -u org.spybeam.example -i 1

EXAMPLE 8 Using the info Subcommand

The install location, as well as other attributes of a component can be obtained with the info subcommand. The info subcommand accepts the same disambiguating options and returns all the attributes of a component, each on a single line.

$ prodreg info -m Example

The request failed because multiple components correspond to the criteria given. Use the list of possible components given below, select one and try again.

<table>
<thead>
<tr>
<th>BROWSE #</th>
<th>+/-/.</th>
<th>UUID</th>
<th># NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>2 Example</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>3 Example</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>org.spybeam.example</td>
<td>1 Example</td>
</tr>
</tbody>
</table>

The component requested could not be found.
EXAMPLE 8 Using the info Subcommand (Continued)

This variation of the info subcommand outputs all information associated with instance 1 of the Example component. The output from this variation is not displayed.

$ prodreg info -u org.spybeam.example -i 1

EXAMPLE 9 Obtaining Information on the Install Location

You can use the info subcommand to obtain the install location and other attributes of a component. The info subcommand accepts the same disambiguating options as the browse subcommand. It returns all the attributes of a component, each on a single line. You can also request a single attribute.

The following command outputs the value of the install location attribute:

$ prodreg info -n 23 -a Location

EXAMPLE 10 Identifying and Unregistering Damaged Software

Removing installed software without using the associated uninstaller can damage the software in the registry. A damaged component indicates that certain software is installed, when in fact it is not present. A component can be damaged by removing files or packages directly, without running the associated uninstaller. The general rule to follow is: If software has been installed by an installer program, it should be uninstalled using the supplied uninstaller program.

This example shows how to identify and repair damaged software components so that software can be reinstalled.

Browsing for Examplesoft, produces the following:

$ prodreg browse -m Examplesoft
BROWSE # +/-/. UUID # NAME
-------- ------ **************************** = = = =
1 - root 1 System Registry
2 + a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b 1 Solaris 9 System Software
3 + 8f64eabf-1dd2-11b2-a3f1-0800209a5b6b 1 Unclassified Software
4 - 95842091-725a-8501-ef29-0472985982be 1 ExampleSoft
233 . 90209809-9785-b89e-c821-0472985982be 1 Example Doc
234 . EXSOztt 1
235 . EXSOblob 1 Example Data

The Examplesoft child EXSOztt, representing a package component of registered software does not display its name. This is likely to be because the software Examplesoft is damaged. Verify this with the following command:

$ prodreg info -u 95842091-725a-8501-ef29-0472985982be \ 
  -i 1 -d
EXAMPLE 10 Identifying and Unregistering Damaged Software  (Continued)

isDamaged=TRUE

Since Damaged is TRUE, some part of Examplesoft is damaged. The following command lists the packages which make up Examplesoft:

$ prodreg info \
   -u 95842091-725a-8501-ef29-0472985982be\ 
   -i 1 -a PKGS pkgs:
EXSOzzt EXSOblob

Use the pkginfo command to verify if EXSO is installed:

$ pkginfo EXSOzzt
ERROR: information for "EXSOzzt" was not found

$ pkginfo EXSOblob
application EXSOblob Example Data

The output of these commands shows that the package EXSOzzt has been removed, probably with the pkgrm command. The Examplesoft software will probably not function. To repair the software, one should run the uninstaller registered with Examplesoft. You probably need to run the uninstaller with root permissions, as it unregisters the software and runs pkgrm commands. Both of these operations require root permissions.

# prodreg uninstall -u 95842091-725a-8501-ef29-0472985982be -i 1
The install program requested could not be found.

Something is wrong, or else you would be able to access uninstall program to uninstall the software. One possibility is that the uninstaller program has been removed manually. It is possible to determine where the uninstaller is located by requesting the uninstallprogram attribute:

$ prodreg info -m ExampleSoft -a uninstallprogram
uninstallprogram: /usr/bin/java -mx64m -classpath \\
/var/sadm/prod/org.example.ExampleSoft/987573587 uninstall_ExampleSoft

Check to see if there is an uninstaller in the registered location.

# ls /var/sadm/prod/org.example.ExampleSoft/987573587
/var/sadm/prod/org.example.ExampleSoft/987573587:
No such file or directory

Since there is no uninstaller at the desired location, you have two options. One is to load the uninstaller from back up storage and run it manually. Use the command line stored in the registry:

# /usr/bin/java -mmx64m -classpath \\
/var/sadm/prod/org.example.ExampleSoft/987573587 \\
uninstall_ExampleSoft

If there is no other possibility, manually unregister the software.

# prodreg unregister -u 95842091-725a-8501-ef29-0472985982be -i 1
This does not remove the remaining package EXSOblob. You must do this manually.

# pkgrm EXSOblob
EXAMPLE 11 Removing Multiple Components

Component A has children B and C, and C has children D and E, and the you wish to remove all of the components at once. This is useful if the whole hierarchy has to be reinstalled and the uninstaller has been lost or cannot be run.

```
$ prodreg browse -u UUID-of-C
BROWSE # +/-/. UUID # NAME
-------- ------ --------------------------- = = = = = = =
 1 - root 1 System Registry
 2 + a01ee8dd-1dd1-11b2-a3f2-0800209a5b6b 1 Solaris 9 System Software
 3 + 8f64eabf-1dd2-11b2-a3f1-0800209a5b6b 1 Unclassified Software
 1423 - UUID-of-A 1 Example A
 1436 . UUID-of-B 1 Example B
 1437 - UUID-of-C 1 Example C
 1462 . UUID-of-D 1 Example D
 1463 . UUID-of-E 1 Example E
```

```
# prodreg uninstall -u UUID-of-A -i 1
```

The `uninstall` subcommand can fail various ways, for example if the java classes have been removed, if the user has insufficient permissions or if Java software is not present on the system. The recursive unregistration subcommand is very powerful and dangerous. Not only does it unregister every child of a component, it also unregisters every component which depends upon the component to unregister. It is a good idea to view all information about the component to determine if any components will be unintentionally unregistered with UUID-of-A.

```
$ prodreg info -u UUID-of-A
Title: Example A Software
Version: 5.8.0.2001.11.02
Location: /usr
Vendor: Example Vendor
uninstallprogram: /usr/bin/java -mx64m -classpath /var/sadm/prod/org.example.ExampleA/90820965 uninstall_ExampleA
vendorurl: http://www.example.org
description: Example A Software has many uses
Supported Languages: en

Child Components:
Name | UUID #
-----+---------
Example B | UUID-of-B 1
Example C | UUID-of-C 1

Required Components:
Name | UUID #
-----+---------
Example B | UUID-of-B 1
```
EXAMPLE 11 Removing Multiple Components  (Continued)

Example C  UUID-of-C  1

No software depends on Example A, or else an additional field, Dependent Components would be shown. To further ensure that there are no surprises, one should examine the dependent components and children of UUID-of-B and UUID-of-C, all the components which depend on UUID-of-B, UUID-of-C and their children, and so on.

If you examine the browse tree, you know the entire list of descendents of UUID-of-A. You can also examine the dependent component attributes of all of Example A’s descendents.

$ prodreg info -u UUID-of-B -i 1 -a "Dependent Components"
Dependent Components:
Name   UUID     #
Example A  UUID-of-A  1

$ prodreg info -u UUID-of-C -i 1 -a "Dependent Components"
Dependent Components:
Name   UUID     #
Example A  UUID-of-A  1

$ prodreg info -u UUID-of-D -i 1 -a "Dependent Components"
Dependent Components:
Name   UUID     #
Example C  UUID-of-C  1

$ prodreg info -u UUID-of-E -i 1 -a "Dependent Components"
Dependent Components:
Name   UUID     #
Example C  UUID-of-C  1

A recursive unregistration of Example A only results in unregistering Example A and its descendents, as intended.

# prodreg unregister -r -u UUID-of-A -i 1

EXAMPLE 12 Reinstalling a Damaged Component

In this example, there is a component, Software ZZZ which is depended upon by other software. Software ZZZ has been damaged and you need to reinstall it. The reinstallation is impossible until Software ZZZ is unregistered.

First, you check what depends upon Software ZZZ:

$ prodreg info -m "Software ZZZ" -a "Dependent Components"
Dependent Components:
EXAMPLE 12 Reinstalling a Damaged Component  (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>UUID</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Foobar</td>
<td>d9723500-9823-1432-810c-0100e09832ff</td>
<td>1</td>
</tr>
</tbody>
</table>

Normally, you would have to uninstall Software Foobar before unregistering Software ZZZ, since Software Foobar depends on Software ZZZ. You decide that it is impossible or unreasonable to reinstall Software Foobar. Performing a recursive unregister of Software ZZZ is not an option as it would unregister Software Foobar as well. Instead you can do a forced unregister of Software ZZZ. The UUID of Software ZZZ is 90843fb1-9874-3a20-9b88-984b32098432.

```
# prodreg unregister -f -u 90843fb1-9874-3a20-9b88-984b32098432 -i 1
```

You can then reinstall Software ZZZ:

```
# /usr/bin/java -cp /usr/installers/org.example.softwarezzz
```

The registry can become out of date because of software being manually removed, or removed using `pkgrm(1M)` directly. To avoid damaging the registry, use uninstall programs to remove software which was initially installed using an install program.

**ENVIRONMENT VARIABLES**

The following environment variable affects the execution of `prodreg`:

- `PKG_INSTALL_ROOT` If present, defines the full path name of a directory to use as the system’s `PKG_INSTALL_ROOT` path. All product and package information files are then looked for in the directory tree, starting with the specified `PKG_INSTALL_ROOT` path. If not present, the default system path of `/` is used.

**EXIT STATUS**

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwsr2, SUNWwsrv</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`pkgadd(1M), pkgrm(1M), wsreg_can_access_registry(3WSREG), libwsreg(3LIB), live_upgrade(5), attributes(5)`

*Application Packaging Developer’s Guide*
prodreg(1M)

NOTES

The prodreg GUI and command line interface view both the Solaris Product Registry and the package database. Both look like components in the registry, but some of these cannot be unregistered or uninstalled. Packages do not have an associated uninstaller, so they cannot be uninstalled using the prodreg uninstall subcommand. Solaris packages cannot be unregistered using the prodreg unregister subcommand. Packages are removed using the pkgrm(1M) command, after which time the packages do not appear in the GUI or CLI prodreg viewer.

It is preferable to remove software using the uninstaller associated with the software installed than to remove individual packages using pkgrm(1M), since the uninstaller software takes care of comprehensive removal of all resources associated with the installed software, including unregistering information in Registry and removing the appropriate packages.

The prodreg uninstall subcommand launches an external program. The command line conventions of these programs have to be used to indicate the alternate root for the product registry. Another possibility is to use the PKG_INSTALL_ROOT environment variable for this purpose as the install program is executed in the same environment as prodreg. Uninstall programs are frequently java classes which require Java to be installed. If Java software has been removed or is missing from a Solaris distribution, it is impossible to run java based uninstallers.

Only the prodreg unregister and uninstall subcommands can only be run with root permissions. This is because they modify the product registry in the case of unregister, and remove packages in the case of uninstall. The other operations merely read the registry and can be run with any user permissions. The prodreg uninstall subcommand might require root permissions as well, as installers can execute commands such as pkgadd(1M) or pkgrm(1M) which require root permissions to run.

Attributes associated with components are documented in various places - primarily in the Application Packaging Developer’s Guide. The attributes associated with the Solaris Product Registry itself are described in the following glossary.

Dependent Components
  List of components upon which the component depends.

Location
  The location relative to which software was installed.

pkgs
  List of packages which correspond to the component. These packages are added with pkgadd after the component is registered. They are removed with pkgrm before the component is unregistered.

Required Components
  List of components on which the component depends.

Source
  Media from which the install was done.

Supported Languages
  List of locales for which there are registered titles.
Title
   Name given by the prodreg browse subcommand. This name can be localized to
   the locale in which the shell is running.

Unique Name
   Name used by previous versions of the Solaris Product Registry. This value is often
   set to the package name corresponding to a given component in the registry.

Vendor
   Vendor who produced the component.

Version
   Version string associated with the component.

The Registry can contain components which do not correspond to software actually
installed on the system. This can be detected several ways. The easiest is to check
using the info subcommand if a component is damaged. Another way is to
determine where software was installed using the info subcommand, and verify it is
still there.
projadd(1M)

NAME       projadd – administer a new project on the system

SYNOPSIS   projadd [-c comment] [-U user [user...]] [-G group [group...]]
            [-p projid [projid...]] project

DESCRIPTION projadd adds a new project entry to the /etc/project file. If the files
            backend is being used for the project database, the new project is available for
            use immediately upon the completion of the projadd command.

OPTIONS    The following options are supported:
            -c comment  Add a project comment. Comments are stored in the project’s
                        entry in the /etc/project file. Generally, comments contain a short
                        description of the project and are used as the field for the
                        project’s full name.

                        Specify comment as a text string. comment cannot contain a colon
                        (:) or NEWLINE.

            -G group    Make group a member group of project.

                        Specify group as a group ID or name.

            -o          Enable duplication of a project ID.

            -p projid   Set the project ID of the new project.

                        Specify projid as a non-negative decimal integer below UID_MAX as
                        defined in limits.h. projid defaults to the next available unique
                        number above the highest number currently assigned. For
                        example, if projids 100, 105, and 200 are assigned, the next
                        default projid is 201. projids between 0-99 are reserved by SunOS.

            -U          Add the existing users (as specified either by user ID or name), to
                        member users of project.

OPERANDS   The following operands are supported:
            project        The name of the project to create. The project operand is a string
                            consisting of characters from the set of alphabetic characters,
                            numeric characters, underline (_), and hyphen (-). The period (’.’)
                            is reserved for projects with special meaning to the operating
                            system. The first character of the project name must be a letter. A
                            warning message is displayed if these restrictions are not met.

EXIT STATUS The following exit values are returned:
            0       Successful completion.

            2       The command syntax was invalid. A usage message for projadd is
                    displayed.

            3       An invalid argument was provided to an option.
The projid given with the -p option is already in use.
The project files contain an error. See project(4).
The project to be modified, group, or user does not exist.
The project is already in use.
Cannot update the /etc/project file.

FILES

/etc/project  System project file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO

projects(1), groupadd(1M), groupdel(1M), groupmod(1M), grpchk(1M),
projdel(1M), projmod(1M), useradd(1M), userdel(1M), usermod(1M),
project(4), attributes(5)

NOTES

In case of an error, projadd prints an error message and exits with a non-zero status.

projadd adds a project definition only on the local system. If a network name service
such as NIS or LDAP is being used to supplement the local /etc/project file with
additional entries, projadd cannot change information supplied by the network
name service.
projdel(1M)

NAME     projdel – delete a project from the system

SYNOPSIS projdel project

DESCRIPTION The projdel utility deletes a project from the system and makes the appropriate
changes to the system file.

OPERANDS The following operands are supported:

        project    The name of the project to be deleted.

EXIT STATUS The following exit values are returned:

      0  Successful completion.
      2  The command syntax was invalid. A usage message for projdel is
displayed.
      3  An invalid argument was provided to an option.
      4  The projid given with the -p option is already in use.
      5  The project files contain an error. See project(4).
      6  The project to be modified, group, or user does not exist.
      9  The project is already in use.
     10  Cannot update the /etc/project file.

FILES     /etc/project     System project file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

+----------------+-----------------+
| ATTRIBUTE TYPE  | ATTRIBUTE VALUE |
+----------------+-----------------+
| Availability    | SUNWesu         |
+----------------+-----------------+

SEE ALSO projects(1), groupadd(1M), groupdel(1M), groupmod(1M), grpchk(1M),
logins(1M), projadd(1M), projmod(1M), useradd(1M), userdel(1M),
usermod(1M), project(4), attributes(5)

DIAGNOSTICS In case of an error, projdel prints an error message and exits with a non-zero status.

NOTES projdel deletes a project definition only on the local system. If a network name
service such as NIS or LDAP is being used to supplement the local /etc/project
file with additional entries, projdel cannot change information supplied by the
network name service.
projmod(1M)

NAME
projmod – modify a project’s information on the system

SYNOPSIS
projmod [-p projid [-o] [-a | -r]] [-U user [,user...]] [-G group [,group...]] [-c comment] [-l new_projectname] project

DESCRIPTION
The projmod utility modifies a project’s definition on the system. projmod changes the definition of the specified project and makes the appropriate project-related system file and file system changes.

OPTIONS
The following options are supported:

- -c comment
  Specify comment as a text string. Generally, comment contains a short description of the project. This information is stored in the project’s /etc/project entry.

- -G group [,group...]
  Specify a replacement list of member groups of the project, or with -a or -r, a list of groups to be added or removed from the project.

- -l new_projectname
  Specify the new project name for the project. The new_projectname argument is a string consisting of characters from the set of alphabetic characters, numeric characters, period (.), underline (_), and hyphen (-). The first character should be alphabetic. A warning message is written if these restrictions are not met.

- -o
  This option allows the specified project ID to be duplicated (non-unique).

- -a
  This option specifies that the users or groups specified by the -U or -G flags should be added to the project, rather than replacing the existing member list.

- -r
  This option specifies that the users or groups specified by the -U or -G flags should be removed from the project, rather than replacing the existing member list.

- -p projid
  Specify a new project ID for the project. It must be a non-negative decimal integer less than MAXUID as defined in param.h.

- -U user [,user...]
  Specify a replacement list of member users of the project, or with -a or -r, a list of users to be added or removed from the project.

OPERANDS
The following operands are supported:

project
An existing project name to be modified.

EXIT STATUS
In case of an error, projmod prints an error message and exits with one of the following values:
The following exit values are returned:

0  Successful completion.
2  The command syntax was invalid. A usage message for projmod is displayed.
3  An invalid argument was provided to an option.
4  The projid given with the -p option is already in use.
5  The project files contain an error. See project(4).
6  The project to be modified, group, or user does not exist.
9  The project is already in use.
10  Cannot update the /etc/project file.

FILES
/etc/group  System file containing group definitions
/etc/project  System project file
/etc/passwd  System password file
/etc/shadow  System file containing users' encrypted passwords and related information

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO

groupadd(1M), groupdel(1M), groupmod(1M), projadd(1M), projdel(1M),
useradd(1M), userdel(1M), usermod(1M), passwd(4), project(4),
attributes(5)

NOTES

The projmod utility modifies project definitions only in the local /etc/project file. If a network name service such as NIS or LDAP is being used to supplement the local files with additional entries, projmod cannot change information supplied by the network name service. However projmod verifies the uniqueness of project name and project ID against the external name service.
prstat(1M)

NAME
prstat – report active process statistics

SYNOPSIS
prstat [-acJLtTv] [-C psrsetlist] [-j projlist] [-k tasklist]
            [-n ntop[,nbottom]] [-p pidlist] [-P cpulist] [-s key | -S key ]
            [-u euidlist] [-U uidlist] [interval [count]]

DESCRIPTION
The prstat utility iteratively examines all active processes on the system and reports
statistics based on the selected output mode and sort order. prstat provides options
to examine only processes matching specified PIDs, UIDs, CPU IDs, and processor set
IDs.

The -j, -k, -C, -p, -P, -u, and -U options accept lists as arguments. Items in a list can
be either separated by commas or enclosed in quotes and separated by commas or
spaces.

If you do not specify an option, prstat examines all processes and reports statistics
sorted by CPU usage.

OPTIONS
The following options are supported:

- a
  Report information about processes and users. In this
  mode prstat displays separate reports about
  processes and users at the same time.

- c
  Print new reports below previous reports instead of
  overprinting them.

- C psrsetlist
  Report only processes or lwps that are bound to
  processor sets in the given list. Each processor set is
  identified by an integer as reported by psrset(1M).
  The load averages displayed are the sum of the load
  averages of the specified processor sets (see
  pset_getloadavg(3C)).

- j projlist
  Report only processes or lwps whose project ID is in
  the given list. Each project ID can be specified as either
  a project name or a numerical project ID. See
  project(4).

- J
  Report information about processes and projects. In
  this mode prstat displays separate reports about
  processes and projects at the same time.

- k tasklist
  Report only processes or lwps whose task ID is in
  tasklist.

- L
  Report statistics for each light-weight process (LWP).
  By default, prstat reports only the number of LWPs
  for each process.

- m
  Report microstate process accounting information. In
  addition to all fields listed in -v mode, this mode also
prstat(1M)

includes the percentage of time the process has spent
processing system traps, text page faults, data page
faults, waiting for user locks and waiting for CPU
(latency time).

-\( n \)top[\( nbottom \)]

Restrict number of output lines. The \( ntop \) argument
determines how many lines of process or \( lwps \) statistics
are reported, and the \( nbottom \) argument determines
how many lines of user, task, or projects statistics are
reported if the \(-a\), \(-t\), \(-T\), or \(-J\) options are specified.
By default, prstat displays as many lines of output
that fit in a window or terminal. When you specify the
\(-c\) option or direct the output to a file, the default
values for \( ntop \) and \( nbottom \) are 15 and 5.

-\( p \) pidlist

Report only processes whose process ID is in the given
list.

-\( P \) cpulist

Report only processes or lwps which have most
recently executed on a CPU in the given list. Each CPU
is identified by an integer as reported by
psrinfo(1M).

-\( R \)

Put prstat in the real time scheduling class. When
this option is used, prstat is given priority over
time-sharing and interactive processes. This option is
available only for superuser.

-\( s \) key

Sort output lines (that is, processes, lwps, or users) by
key in descending order. Only one key can be used as an
argument.

There are five possible key values:

  cpu
  Sort by process CPU usage. This is the default.

  pri
  Sort by process priority.

  rss
  Sort by resident set size.

  size
  Sort by size of process image.

  time
  Sort by process execution time.

-\( S \) key

Sort output lines by key in ascending order. Possible key
values are the same as for the \(-s\) option. See \(-s\).
Report total usage summary for each user. The summary includes the total number of processes or LWPs owned by the user, total size of process images, total resident set size, total cpu time, and percentages of recent cpu time and system memory.

Report information about processes and tasks. In this mode `prstat` displays separate reports about processes and tasks at the same time.

Report only processes whose effective user ID is in the given list. Each user ID may be specified as either a login name or a numerical user ID.

Report only processes whose real user ID is in the given list. Each user ID may be specified as either a login name or a numerical user ID.

Report verbose process usage. This output format includes the percentage of time the process has spent in user mode, in system mode, and sleeping. It also includes the number of voluntary and involuntary context switches, system calls and the number of signals received. Statistics that are not reported are marked with the `-` sign.

The following list defines the column headings and the meanings of a `prstat` report:

<table>
<thead>
<tr>
<th>Column</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>The process ID of the process.</td>
</tr>
<tr>
<td>USERNAME</td>
<td>The real user (login) name or real user ID.</td>
</tr>
<tr>
<td>SIZE</td>
<td>The total virtual memory size of the process, including all mapped files and devices, in kilobytes (K), megabytes (M), or gigabytes (G). The resident set size of the process (RSS), in kilobytes (K), megabytes (M), or gigabytes (G).</td>
</tr>
<tr>
<td>STATE</td>
<td>The state of the process:</td>
</tr>
<tr>
<td></td>
<td>cpuN                       Process is running on CPU N.</td>
</tr>
<tr>
<td></td>
<td>sleep                      Sleeping: process is waiting for an event to complete.</td>
</tr>
<tr>
<td></td>
<td>run                        Runnable: process in on run queue.</td>
</tr>
<tr>
<td></td>
<td>zombie                     Zombie state: process terminated and parent not waiting.</td>
</tr>
</tbody>
</table>
stop
  Process is stopped.

PRI  The priority of the process. Larger numbers mean higher priority.

NICE Nice value used in priority computation. Only processes in certain scheduling classes have a nice value.

TIME The cumulative execution time for the process.

CPU The percentage of recent CPU time used by the process.

PROCESS The name of the process (name of executed file).

LWPID The lwp ID of the lwp being reported.

NLWP The number of lwp's in the process.

The following columns are displayed when the -v or -m option is specified

USR The percentage of time the process has spent in user mode.

SYS The percentage of time the process has spent in system mode.

TRP The percentage of time the process has spent in processing system traps.

TFL The percentage of time the process has spent processing text page faults.

DFL The percentage of time the process has spent processing data page faults.

LCK The percentage of time the process has spent waiting for user locks.

SLP The percentage of time the process has spent sleeping.

LAT The percentage of time the process has spent waiting for CPU.

VCX The number of voluntary context switches.

ICX The number of involuntary context switches.

SCL The number of system calls.

SIG The number of signals received.

Under the -l option, one line is printed for each lwp in the process and some reporting fields show the values for the lwp, not the process.

**OPERANDS** The following operands are supported:
count

Specifies the number of times that the statistics are repeated. By default, prstat reports statistics until a termination signal is received.

interval

Specifies the sampling interval in seconds; the default interval is 5 seconds.

EXAMPLE 1 Reporting the Five Most Active Super-User Processes

The following command reports the five most active super-user processes running on CPU1 and CPU2:

```
example% prstat -u root -n 5 -P 1,2 1 1
```

```
PID  USERNAME  SIZE  RSS  STATE  PRI  NICE  TIME  CPU  PROCESS/LWP
306  root   3024K  1448K  sleep  58   0   0:00.00   0.3%  sendmail/1
102  root   1600K  592K   sleep  59   0   0:00.00   0.1%  in.rdisc/1
250  root   1000K  552K   sleep  58   0   0:00.00   0.0%  utmpd/1
288  root   1720K  1032K  sleep  58   0   0:00.00   0.0%  sac/1
 1  root    744K   168K  sleep  58   0   0:00.00   0.0%  init/1
```

TOTAL: 25, load averages: 0.05, 0.08, 0.12

EXAMPLE 2 Displaying Verbose Process Usage Information

The following command displays verbose process usage information about processes with lowest resident set sizes owned by users root and john.

```
example% prstat -S rss -n 5 -vc -u root,john
```

```
PID  USERNAME  USR  SYS  TRP  TFL  DFL  LCK  SLP  LAT  VCX  ICX  SCL  SIG  PROCESS/LWP
   1  root  0.0  0.0  ----  1  0  0  -  0000  init/1
102  root  0.0  0.0  ----  1  0  0  -  0030  in.rdisc/1
250  root  0.0  0.0  ----  1  0  0  -  0000  utmpd/1
1185  john 0.0  0.0  ----  1  0  0  -  0000  csh/1
240  root  0.0  0.0  ----  1  0  0  -  0000  powerd/4
```

TOTAL: 71, load averages: 0.02, 0.04, 0.08

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
The snapshot of system usage displayed by prstat is true only for a split-second, and it may not be accurate by the time it is displayed. When the -m option is specified, prstat tries to turn on microstate accounting for each process; the original state is restored when prstat exits. See proc(4) for additional information about the microstate accounting facility.

SEE ALSO
proc(1), psrinfo(1M), psrset(1M), sar(1M), pset_getloadavg(3C), proc(4), project(4), attributes(5)

NOTES
NAME
prtconf – print system configuration

SYNOPSIS
SPARC
/usr/sbin/prtconf [-V] | [-F] | [-x] | [-vpPD]

x86
/usr/sbin/prtconf [-V] | [-x] | [-vpPD]

DESCRIPTION
The prtconf command prints the system configuration information. The output includes the total amount of memory, and the configuration of system peripherals formatted as a device tree.

OPTIONS
The following options are supported:

-D For each system peripheral in the device tree, displays the name of the device driver used to manage the peripheral.

-F Returns the device path name of the console frame buffer, if one exists. If there is no frame buffer, prtconf returns a non-zero exit code. This flag must be used by itself. It returns only the name of the console, frame buffer device or a non-zero exit code. For example, if the console frame buffer on a SPARCstation 1 is cgthree in SBus slot #3, the command returns: /sbus@1,f80000000/cgthree@3,0. This option could be used to create a symlink for /dev/fb to the actual console device.

-p Displays information derived from the device tree provided by the firmware (PROM) on SPARC platforms or the booting system on x86 platforms. The device tree information displayed using this option is a snapshot of the initial configuration and may not accurately reflect reconfiguration events that occur later.

-P Includes information about pseudo devices. By default, information regarding pseudo devices is omitted.

-v Specifies verbose mode.

-V Displays platform-dependent PROM (on SPARC platforms) or booting system (on x86 platforms) version information. This flag must be used by itself. The output is a string. The format of the string is arbitrary and platform-dependent.

-x Reports if the firmware on this system is 64-bit ready. Some existing platforms may need a firmware upgrade in order to run the 64-bit kernel. If the operation is not applicable to this platform or the firmware is already 64-bit ready, it exits silently with a return code of zero. If the operation is applicable to this platform and the firmware is not 64-bit ready, it displays a descriptive message on the standard output and exits with a non-zero return code. The hardware platform documentation contains more information about the platforms that may need a firmware upgrade in order to run the 64-bit kernel.

This flag overrides all other flags and must be used by itself.
The following exit values are returned:

0  No error occurred.

non-zero  With the -F option (SPARC only), a non-zero return value means that the output device is not a frame buffer. With the -x option, a non-zero return value means that the firmware is not 64-bit ready. In all other cases, a non-zero return value means that an error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO  modinfo(1M), sysdef(1M), attributes(5)

Sun Hardware Platform Guide

SPARC Only  openprom(7D)

NOTES  The output of the prtconf command is highly dependent on the version of the PROM installed in the system. The output will be affected in potentially all circumstances.

The driver not attached message means that no driver is currently attached to that instance of the device. In general, drivers are loaded and installed (and attached to hardware instances) on demand, and when needed, and may be unloaded when the device is not in use.
prtdiag – display system diagnostic information

SYNOPSIS
/usr/platform/platform-name/sbin/prtdiag [-v] [-l]

DESCRIPTION
prtdiag displays system configuration and diagnostic information on sun4u systems.

The diagnostic information lists any failed field replaceable units (FRUs) in the system.

The interface, output, and location in the directory hierarchy for prtdiag are uncommitted and subject to change in future releases.

platform-name is the name of the platform implementation and can be found using the -i option of uname(1).

Note – prtdiag does not display diagnostic information and environmental status when executed on the Sun Enterprise 10000 server. See the /var/opt/SUNWssp/adm/${SUNW_HOSTNAME}/messages file on the system service processor (SSP) to obtain such information for this server.

OPTIONS
The following options are supported:

- -l Log output. If failures or errors exist in the system, output this information to syslogd(1M) only.

- -v Verbose mode. Displays the time of the most recent AC Power failure, and the most recent hardware fatal error information, and (if applicable) environmental status. The hardware fatal error information is useful to repair and manufacturing for detailed diagnostics of FRUs.

EXIT STATUS
The following exit values are returned:

0 No failures or errors are detected in the system.
1 Failures or errors are detected in the system.
2 An internal prtdiag error occurred, for example, out of memory.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm</td>
</tr>
</tbody>
</table>

SEE ALSO
uname(1), modinfo(1M), prtconf(1M), psrinfo(1M), sysdef(1M), syslogd(1M), attributes(5), openprom(7D)
prtfru(1M)

NAME     prtfru – print FRUID-specific information about the FRUs on a system or domain

SYNOPSIS /usr/sbin/prtfru [-d] | [-clx] [container]

DESCRIPTION The prtfru utility is used to obtain FRUID data from the system or domain. Its output is that of a tree structure echoing the path in the FRU (Field-Replaceable Unit) tree to each container. When a container is found, the data from that container is printed in a tree-like structure as well.

prtfru without any arguments will print the FRU hierarchy and all of the FRUID container data. prtfru prints to stdout which may be redirected to a file.

OPTIONS The following options are supported:
- c         Prints only the containers and their data. This option does not print the FRU tree hierarchy.
- d         Prints a DTD for the current registry to stdout.
- l         Prints only the FRU tree hierarchy. This option does not print the container data.
- x         Prints in XML format with a system identifier (SYSTEM) of prtfrureg.dtd.

Options -c and -l can be used together to obtain a list of the containers.

OPERANDS The following operand is supported:
container   The name of a particular container in the FRU hierarchy, that is, either the name or path/name of a container as displayed in the -l option.

EXIT STATUS The following exit values are returned:
0           All information was found and printed successfully.
>0          An error has occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfruid</td>
</tr>
</tbody>
</table>

SEE ALSO fruadm(1M), attributes(5)
NAME prtpicl – print PICL tree
SYNOPSIS /usr/sbin/prtpicl [-c picl_class] [-v]
DESCRIPTION The prtpicl command prints the PICL tree maintained by the PICL daemon. The output of prtpicl includes the name and PICL class of the nodes.
OPTIONS The following options are supported:
    -c picl_class Print only the nodes of the named PICL class.
    -v Print in verbose mode. In verbose mode, prtpicl prints a list of properties and values for each node. Verbose mode is disabled by default.
EXIT STATUS The following exit values are returned:
    0 Successful completion.
    non-zero An error occurred.
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpiclu</td>
</tr>
</tbody>
</table>

SEE ALSO picld(1M), attributes(5)
prtvtoc(1M)

NAME
prtvtoc – report information about a disk geometry and partitioning

SYNOPSIS
prtvtoc [-fhs] [-t vfstab] [-m mnttab] device

DESCRIPTION
The prtvtoc command allows the contents of the label to be viewed. The command can be used only by the super-user.

The device name can be the file name of a raw device in the form of /dev/rdsk/c?t?d?s2 or can be the file name of a block device in the form of /dev/dsk/c?t?d?s2.

OPTIONS
The following options are supported:

- f Report on the disk free space, including the starting block address of the free space, number of blocks, and unused partitions.

- h Omit the headers from the normal output.

- m mnttab Use mnttab as the list of mounted filesystems, in place of /etc/mnttab.

- s Omit all headers but the column header from the normal output.

- t vfstab Use vfstab as the list of filesystem defaults, in place of /etc/vfstab.

EXAMPLES

EXAMPLE 1 Using the prtvtoc Command

The following example uses the prtvtoc command on a 424-megabyte hard disk:

example# prtvtoc /dev/rdsk/c0t3d0s2
* /dev/rdsk/c0t3d0s2 partition map
* * Dimension:
* 512 bytes/sector
* 80 sectors/track
* 9 tracks/cylinder
* 720 sectors/cylinder
* 2500 cylinders
* 1151 accessible cylinders
* * Flags:
* 1: unmountable
* 10: read-only
* * Partition Tag Flags Sector Count Sector Mount Directory
* 0 2 00 0 76320 76319 /
* 1 3 01 76320 132480 208799
* 2 5 00 0 828720 828719
* 5 6 00 208800 131760 340559 /opt
* 6 4 00 340560 447120 787679 /usr
* 7 8 00 787680 41040 828719 /export/home
example#

The data in the Tag column above indicates the type of partition, as follows:
**EXAMPLE 1 Using the `prtvtoc` Command** (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNASSIGNED</td>
<td>0x00</td>
</tr>
<tr>
<td>BOOT</td>
<td>0x01</td>
</tr>
<tr>
<td>ROOT</td>
<td>0x02</td>
</tr>
<tr>
<td>SWAP</td>
<td>0x03</td>
</tr>
<tr>
<td>USR</td>
<td>0x04</td>
</tr>
<tr>
<td>BACKUP</td>
<td>0x05</td>
</tr>
<tr>
<td>STAND</td>
<td>0x06</td>
</tr>
<tr>
<td>VAR</td>
<td>0x07</td>
</tr>
<tr>
<td>HOME</td>
<td>0x08</td>
</tr>
<tr>
<td>ALTSCTR</td>
<td>0x09</td>
</tr>
<tr>
<td>CACHE</td>
<td>0x0a</td>
</tr>
<tr>
<td>RESERVED</td>
<td>0x0b</td>
</tr>
</tbody>
</table>

The data in the Flags column above indicates how the partition is to be mounted, as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNTABLE, READ AND WRITE</td>
<td>0x00</td>
</tr>
<tr>
<td>NOT MOUNTABLE</td>
<td>0x01</td>
</tr>
<tr>
<td>MOUNTABLE, READ ONLY</td>
<td>0x10</td>
</tr>
</tbody>
</table>

**EXAMPLE 2 Using the `prtvtoc` Command with the `-f` Option**

The following example uses the `prtvtoc` command with the `-f` option on a 424-megabyte hard disk:

```
example# prtvtoc -f /dev/rdsk/c0t3d0s2
FREE_START=0 FREE_SIZE=0 FREE_COUNT=0 FREE_PART=34
```

**EXAMPLE 3 Using the `prtvtoc` Command on a Disk Over One Terabyte**

The following example uses the `prtvtoc` command on a disk over one terabyte:

```
example# prtvtoc /dev/rdsk/c1t1d0s2
* /dev/rdsk/c1t1d0s2 partition map
```
EXAMPLE 3 Using the `prtvtoc` Command on a Disk Over One Terabyte  

(Continued)

* Dimensions:
  * 512 bytes/sector
  * 3187630080 sectors
  * 3187630013 accessible sectors
* Flags:
  * 1: unmountable
  * 10: read-only
* First Sector Last
  * Partition Tag Flags Sector Count Sector Mount Directory
    * 0 2 00 34 262144 262177
    * 1 3 01 262178 262144 524321
    * 6 4 00 524322 3187089340 3187613661
    * 8 11 00 3187613662 16384 318763004

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO devinfo(1M), fmthard(1M), format(1M), mount(1M), attributes(5)

WARNINGS The `mount` command does not check the "not mountable" bit.
The `psradm` utility changes the operational status of processors. The legal states for the processor are on-line, off-line, and no-intr.

An on-line processor processes LWPs (lightweight processes) and may be interrupted by I/O devices in the system.

An off-line processor does not process any LWPs. Usually, an off-line processor is not interruptible by I/O devices in the system. On some processors or under certain conditions, it may not be possible to disable interrupts for an off-line processor. Thus, the actual effect of being off-line may vary from machine to machine.

A no-intr processor processes LWPs but is not interruptible by I/O devices.

A processor may not be taken off-line if there are LWPs that are bound to the processor. On some architectures, it might not be possible to take certain processors off-line if, for example, the system depends on some resource provided by the processor.

At least one processor in the system must be able to process LWPs. At least one processor must also be able to be interrupted. Since an off-line processor may be interruptible, it is possible to have an operational system with one processor no-intr and all other processors off-line but with one or more accepting interrupts.

If any of the specified processors are powered off, psradm may power on one or more processors.

Only superusers can use the `psradm` utility.

### OPTIONS

The following options are supported:

- `-a`
  - Perform the action on all processors, or as many as possible.
- `-f`
  - Take the specified processors off-line.
- `-i`
  - Set the specified processors no-intr.
- `-n`
  - Bring the specified processors on-line.
- `-v`
  - Output a message giving the results of each attempted operation.

### OPERANDS

The following operands are supported:

- `processor_id`
  - The processor ID of the processor to be set on-line or off-line or no-intr.
  - Specify `processor_id` as an individual processor number (for example, 3), multiple processor numbers separated by spaces (for example, 1 2 3), or a range of processor numbers (for example,
psradm(1M)  1-4. It is also possible to combine ranges and (individual or multiple) processor_ids (for example, 1-3 5 7-8 9).

EXAMPLES

EXAMPLE 1 Examples of psradm.

The following example sets processors 2 and 3 off-line.

```
psradm -f 2 3
```

The following example sets processors 1 and 2 no-intr.

```
psradm -i 1 2
```

The following example sets all processors on-line.

```
psradm -a -n
```

EXIT STATUS

The following exit values are returned:

0      Successful completion.

>0     An error occurred.

FILES

/etc/wtmpx  records logging processor status changes

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

psrinfo(1M), psrset(1M), p_online(2), attributes(5)

DIAGNOSTICS

psradm: processor 4: Invalid argument
The specified processor does not exist in the configuration.

psradm: processor 3: Device busy
The specified processor could not be taken off-line because it either has LWPs bound to it, is the last on-line processor in the system, or is needed by the system because it provides some essential service.

psradm: processor 3: Device busy
The specified processor could not be set no-intr because it is the last interruptible processor in the system, or it is the only processor in the system that can service interrupts needed by the system.

psradm: processor 3: Device busy
The specified processor is powered off, and it cannot be powered on because some platform-specific resource is unavailable.

psradm: processor 0: Not owner
The user does not have permission to change processor status.
psradm: processor 2: Operation not supported
The specified processor is powered off, and the platform does not support power on of individual processors.
**NAME**

psrinfo – displays information about processors

**SYNOPSIS**

```
psrinfo [-p] [-v] [processor_id...]
psrinfo [-p] -s processor_id
```

**DESCRIPTION**

psrinfo displays information about processors. Each physical processor may support multiple virtual processors. Each virtual processor is an entity with its own interrupt ID, capable of executing independent threads.

Without the `processor_id` operand, psrinfo displays one line for each configured processor, displaying whether it is on-line, non-interruptible (designated by `no-intr`), off-line, or powered off, and when that status last changed. Use the `processor_id` operand to display information about a specific processor. See **OPERANDS**.

**OPTIONS**

The following options are supported:

- `-s processor_id`
  
  Silent mode. Displays 1 if the specified processor is fully on-line, and 0 if the specified processor is non-interruptible, off-line, or powered off.

  Use silent mode when using psrinfo in shell scripts.

- `-p`

  Display the number of physical processors in a system.

  When combined with the `-v` option, reports additional information about each physical processor.

- `-v`

  Verbose mode. Displays additional information about the specified processors, including: processor type, floating point unit type and clock speed. If any of this information cannot be determined, psrinfo displays `unknown`.

  When combined with the `-p` option, reports additional information about each physical processor.

**OPERANDS**

The following operands are supported:

- `processor_id`

  The processor ID of the processor about which information is to be displayed.

  Specify `processor_id` as an individual processor number (for example, 3), multiple processor numbers separated by spaces (for example, 1 2 3), or a range of processor numbers (for example, 1-4). It is also possible to combine ranges and (individual or multiple) `processor_ids` (for example, 1-3 5 7-8 9).

**EXAMPLES**

**EXAMPLE 1** Displaying Information About All Configured Processors in Verbose Mode

The following example displays information about all configured processors in verbose mode.

```
psrinfo -v
```
EXAMPLE 2 Determining If a Processor is On-line

The following example uses `psrinfo` in a shell script to determine if a processor is on-line.

```bash
if [ -eq 1 ]
  then
    echo "processor 3 is up"
fi
```

EXAMPLE 3 Displaying Information About the Physical Processors in the System

With no additional arguments, the `-p` option displays a single integer: the number of physical processors in the system:

```bash
> psrinfo -p
8
```

`psrinfo` also accepts command line arguments (processor IDs):

```bash
> psrinfo -p 0 512  # IDs 0 and 512 exist on the same physical processor
> psrinfo -p 0 1    # IDs 0 and 1 exist on different physical processors
```

In this example, virtual processors 0 and 512 exist on the same physical processor. Virtual processors 0 and 1 do not. This is specific to this example and is not a general rule.

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

`psradm(1M), p_online(2), processor_info(2), attributes(5)`

DIAGNOSTICS

`psrinfo: processor 9: Invalid argument`

The specified processor does not exist.
**NAME**

psrset – creation and management of processor sets

**SYNOPSIS**

```bash
psrset -a processor_set_id processor_id...
psrset -b processor_set_id pid...
psrset -c [processor_id...]
psrset -d processor_set_id
psrset -e processor_set_id command [argument(s)]
psrset -f processor_set_id
psrset [-i] [processor_set_id...]
psrset -n processor_set_id
psrset -p [processor_id...]
psrset -q [pid...]
psrset -r processor_id...
psrset -u pid...
```

**DESCRIPTION**

The `psrset` utility controls the management of processor sets. Processor sets allow the binding of processes to groups of processors, rather than just a single processor. Processors assigned to processor sets can run only LWPs that have been bound to that processor set.

**OPTIONS**

The following options are supported:

- **-a**
  Assign the specified processors to the specified processor set.
  
  This option is restricted to use by the super-user.

- **-b**
  Bind all the LWPs of the specified processes to the specified processor set.
  
  LWPs bound to a processor set are restricted to run only on the processors in that set. Processes can only be bound to non-empty processor sets, that is, processor sets that have had processors assigned to them.

  Bindings are inherited, so new LWPs and processes created by a bound LWP have the same binding. Binding an interactive shell to a processor, for example, binds all commands executed by the shell.

  This option is restricted to use by the super-user.

- **-c**
  Create a new processor set and displays the new processor set ID.

  If a list of processors is given, it also attempts to assign those processors to the processor set. If this succeeds, the processors are idle until LWPs are bound to the processor set. This option is restricted to use by the super-user.
Only a limited number of processor sets can be active (created and not destroyed) at a given time. This limit is always be greater than the number of processors in the system. If the -c option is used when the maximum number of processor sets is already active, the command fails.

The following format is used for the first line of output of the -c option when the LC_MESSAGES locale category specifies the "C" locale. In other locales, the strings created, processor, and set can be replaced with more appropriate strings corresponding to the locale.

"created processor set %d\n processor set ID"

-d Remove the specified processor set, releasing all processors and processes associated with it.

This option is restricted to use by the super-user.

-e Execute a command (with optional arguments) in the specified processor set.

The command process and any child processes are executed only by processors in the processor set.

This option is restricted to use by the super-user.

-f Disables interrupts for all processors within the specified processor set. See psradm(1M).

If some processors in the set cannot have their interrupts disabled, the other processors still have their interrupts disabled, and the command reports an error and return non-zero exit status.

This option is restricted to use by the super-user.

-i Display a list of processors assigned to each named processor set. If no argument is given, a list of all processor sets and the processors assigned to them is displayed. This is also the default operation if the psrset command is not given an option.

-n Enable interrupts for all processors within the specified processor set. See psradm(1M).

This option is restricted to use by the super-user.

-p Display the processor set assignments for the specified list of processors. If no argument is given, the processor set assignments for all processors in the system is given.

-q Display the processor set bindings of the specified processes. If a process is composed of multiple LWPs, which have different bindings, the bindings of only one of the bound LWPs is shown. If no argument is given, the processor set bindings of all processes in the system is displayed.
psrset(1M)

-\( r \) Remove a list of processors from their current processor sets. Processors that are removed return to the general pool of processors.

Processors with LWPs bound to them using pbind(1M) cannot be assigned to or removed from processor sets.

This option is restricted to use by the super-user.

-\( u \) Remove the processor set bindings from all the LWPs of the specified processes, allowing them to be executed on any on-line processor if they are not bound to individual processors through pbind.

The super-user can unbind any process from any active processor set. Other users can unbind processes from processor sets that do not have the PSET_NOESCAPE attribute set. In addition, the user must have permission to control the affected processes; the real or effective user ID of the user must match the real or saved user ID of the target processes.

OPERANDS The following operands are supported:

\( \text{pid} \)
Specify \( \text{pid} \) as a process ID.

\( \text{processor_id} \)
Specify \( \text{processor_id} \) as an individual processor number (for example, 3), multiple processor numbers separated by spaces (for example, 1 2 3), or a range of processor numbers (for example, 1-4). It is also possible to combine ranges and (individual or multiple) \( \text{processor_ids} \) (for example, 1-3 5 7-8 9).

\( \text{processor_set_id} \)
Specify \( \text{processor_set_id} \) as a processor set ID.

EXIT STATUS The following exit values are returned:

0 Successful completion.

non-0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO pbind(1M), psradm(1M), psrinfo(1M), processor_bind(2), processor_info(2), pset_bind(2), pset_create(2), pset_info(2), sysconf(3C), attributes(5)

DIAGNOSTICS psrset: cannot query pid 31: No such process
The process specified did not exist or has exited.
psrset: cannot bind pid 31: Not owner
   The user does not have permission to bind the process.

psrset: cannot assign processor 4: Not owner
   The user does not have permission to assign the processor.

psrset: cannot assign processor 8: Invalid argument
   The specified processor is not on-line, or the specified processor does not exist.

psrset: cannot bind pid 67: Device busy
   An LWP in the specified process is bound to a processor and cannot be bound to a processor set that does not include that processor.

psrset: cannot assign processor 7: Device busy
   The specified processor could not be added to the processor set. This can be due to bound LWPs on that processor, or because that processor cannot be combined in the same processor set with other processors in that set, or because the processor is the last one in its current processor set.

psrset: cannot execute in processor set 8: Invalid argument
   The specified processor set does not exist.

psrset: cannot create processor set: Not enough space
   The maximum number of processor sets allowed in the system is already active.
NAME
  putdev – edits device table

SYNOPSIS
  putdev -a alias [attribute=value [...]]
  putdev -m device attribute=value [attribute = value [...]]
  putdev -d device [attribute [...]]

DESCRIPTION
  putdev adds a new device to the device table, modifies an existing device description
  or removes a device entry from the table. The first synopsis is used to add a device.
  The second synopsis is used to modify existing entries by adding or changing
  attributes. If a specified attribute is not defined, this option adds that attribute to the
  device definition. If a specified attribute is already defined, it modifies the attribute
  definition. The third synopsis is used to delete either an entire device entry or, if the
  attribute argument is used, to delete an attribute assignment for a device.

OPTIONS
  The following options are supported:

    -a       Add a device to the device table using the specified attributes. The device
             must be referenced by its alias.

    -d       Remove a device from the device table, when executed without the
             attributes argument. Used with the attribute argument, it deletes the given
             attribute specification for device from the table.

    -m       Modify a device entry in the device table. If an entry already exists, it adds
             any specified attributes that are not defined. It also modifies any attributes
             which already have a value with the value specified by this command.

OPERANDS
  The following operands are supported:

    alias    Designates the alias of the device to be added.

    attribute Designates a device attribute to be added, modified, or deleted.
                 Can be any of the device attributes described under DEVICE
                 ATTRIBUTES except alias. This prevents an accidental
                 modification or deletion of a device’s alias from the table.

    device   Designates the pathname or alias of the device whose attribute is
             to be added, modified, or removed.

    value    Designates the value to be assigned to a device’s attribute.

DEVICE

ATTRIBUTES
  The following list shows the standard device attributes, used by applications such as
  ufsdump(1M) and ufsrestore(1M), which can be defined for a device. You are not
  limited to this list, you can define any attribute you like.

    alias    The unique name by which a device is known. No two devices in
             the database may share the same alias name. The name is limited
             in length to 14 characters and should contain only alphanumeric
             characters and the following special characters if they are escaped
             with a backslash: underscore (_), dollar sign ($), hyphen (−), and
             period (.).
| **bdevice** | The pathname to the block special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the cdevice field, if any. (It is the administrator's responsibility to ensure that these major/minor numbers are unique in the database.) |
| **capacity** | The capacity of the device or of the typical volume, if removable. |
| **cdevice** | The pathname to the character special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the bdevice field, if any. (It is the administrator's responsibility to ensure that these major/minor numbers are unique in the database.) |
| **cyl** | Used by the command specified in the mkfscmd attribute. |
| **desc** | A description of any instance of a volume associated with this device (such as floppy diskette). |
| **dpartlist** | The list of disk partitions associated with this device. Used only if type=disk. The list should contain device aliases, each of which must have type=dpart. |
| **dparttype** | The type of disk partition represented by this device. Used only if type=dpart. It should be either fs (for file system) or dp (for data partition). |
| **erasecmd** | The command string that, when executed, erases the device. |
| **fmtcmd** | The command string that, when executed, formats the device. |
| **fsname** | The file system name on the file system administered on this partition, as supplied to the /usr/sbin/labelit command. This attribute is specified only if type=dpart and dparttype=fs. |
| **gap** | Used by the command specified in the mkfscmd attribute. |
| **mkfscmd** | The command string that, when executed, places a file system on a previously formatted device. |
| **mountpt** | The default mount point to use for the device. Used only if the device is mountable. For disk partitions where type=dpart and dparttype=fs, this attribute should specify the location where the partition is normally mounted. |
| **nblocks** | The number of blocks in the file system administered on this partition. Used only if type=dpart and dparttype=fs. |
| **ninodes** | The number of inodes in the file system administered on this partition. Used only if type=dpart and dparttype=fs. |
putdev(1M)

norewind  The name of the character special device node that allows access to
the serial device without rewinding when the device is closed.

pathname  Defines the pathname to an i-node describing the device (used for
non-block or character device pathnames, such as directories).

type  A token that represents inherent qualities of the device. Standard
types include: 9-track, ctape, disk, directory, diskette, dpart, and
qtape.

volname  The volume name on the file system administered on this
partition, as supplied to the /usr/sbin/labelit command.
Used only if type=dpart and dparttype=fs.

volume  A text string used to describe any instance of a volume associated
with this device. This attribute should not be defined for devices
which are not removable.

EXIT STATUS  The following exit values are returned:

0  Successful completion.
1  Command syntax was incorrect, an invalid option was used, or an internal
error occurred.
2  The device table could not be opened for reading, or a new device table
could not be created.
3  If executed with the -a option, indicates that an entry in the device table
with the alias alias already exits. If executed with the -m or -d options,
indicates that no entry exists for device device.
4  Indicates that -d was requested and one or more of the specified attributes
were not defined for the device.

FILES  /etc/device.tab

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  devattr(1M), putdgrp(1M), ufsdump(1M), ufsrestore(1M), attributes(5)

System Administration Guide: Basic Administration
**NAME**
putdgrp – edits device group table

**SYNOPSIS**
putdgrp [-d] dgroup [device...]

**DESCRIPTION**
putdgrp modifies the device group table. It performs two kinds of modification. It can modify the table by creating a new device group or removing a device group. It can also change group definitions by adding or removing a device from the group definition.

When the command is invoked with only a `dgroup` specification, the command adds the specified group name to the device group table if it does not already exist. If the `-d` option is also used with only the `dgroup` specification, the command deletes the group from the table.

When the command is invoked with both a `dgroup` and a `device` specification, it adds the given device name(s) to the group definition. When invoked with both arguments and the `-d` option, the command deletes the device name(s) from the group definition.

When the command is invoked with both a `dgroup` and a `device` specification and the device group does not exist, it creates the group and adds the specified devices to that new group.

**OPTIONS**
The following options are supported:

- `-d`  Delete the group or, if used with `device`, delete the device from a group definition.

**OPERANDS**
The following operands are supported:

- `dgroup`  Specify a device group name.
- `device`  Specify the pathname or alias of the device that is to be added to, or deleted from, the device group.

**EXIT STATUS**
The following exit values are returned:

- `0`  Successful completion.
- `1`  Command syntax was incorrect, an invalid option was used, or an internal error occurred.
- `2`  Device group table could not be opened for reading or a new device group table could not be created.
- `3`  If executed with the `-d` option, indicates that an entry in the device group table for the device group `dgroup` does not exist and so cannot be deleted. Otherwise, indicates that the device group `dgroup` already exists and cannot be added.
- `4`  If executed with the `-d` option, indicates that the device group `dgroup` does not have as members one or more of the specified devices. Otherwise, indicates that the device group `dgroup` already has one or more of the specified devices as members.
EXAMPLE 1 Adding a new device group.
The following example adds a new device group:

example# putdgrp floppies

EXAMPLE 2 Adding a device to a device group.
The following example adds a device to a device group:

example# putdgrp floppies diskette2

EXAMPLE 3 Deleting a device group.
The following example deletes a device group:

example# putdgrp -d floppies

EXAMPLE 4 Deleting a device from a device group.
The following example deletes a device from a device group:

example# putdgrp -d floppies diskette2

FILES
/etc/dgroup.tab

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
listdgrp(1M), putdev(1M), attributes(5)
NAME | pwck, grpck – password/group file checkers

SYNOPSIS | 
/usr/sbin/pwck [filename] 
/usr/sbin/grpck [filename]

DESCRIPTION | pwck scans the password file and notes any inconsistencies. The checks include validation of the number of fields, login name, user ID, group ID, and whether the login directory and the program-to-use-as-shell exist. The default password file is /etc/passwd.

grpck verifies all entries in the group file. This verification includes a check of the number of fields, group name, group ID, whether any login names belong to more than NGROUPS_MAX groups, and that all login names appear in the password file. The default group file is /etc/group.

All messages regarding inconsistent entries are placed on the stderr stream.

FILES | /etc/group 
/etc/passwd

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | getpwent(3C), group(4), passwd(4), attributes(5)

DIAGNOSTICS | Group entries in /etc/group with no login names are flagged.

Group file 'filename' is empty
The /etc/passwd or /etc/group file is an empty file.

cannot open file filename: No such file or directory
The /etc/passwd or /etc/group file does not exist.

NOTES | If no filename argument is given, grpck checks the local group file, /etc/group, and also makes sure that all login names encountered in the checked group file are known to the system getpwent(3C) routine. This means that the login names may be supplied by a network name service.
pwconv(1M)

NAME  pwconv – installs and updates /etc/shadow with information from /etc/passwd

SYNOPSIS  pwconv

DESCRIPTION  The pwconv command creates and updates /etc/shadow with information from /etc/passwd.

pwconv relies on a special value of ‘x’ in the password field of /etc/passwd. This value of ‘x’ indicates that the password for the user is already in /etc/shadow and should not be modified.

If the /etc/shadow file does not exist, this command will create /etc/shadow with information from /etc/passwd. The command populates /etc/shadow with the user’s login name, password, and password aging information. If password aging information does not exist in /etc/passwd for a given user, none will be added to /etc/shadow. However, the last changed information will always be updated.

If the /etc/shadow file does exist, the following tasks will be performed:

Entries that are in the /etc/passwd file and not in the /etc/shadow file will be added to the /etc/shadow file.

Entries that are in the /etc/shadow file and not in the /etc/passwd file will be removed from /etc/shadow.

Password attributes (for example, password and aging information) that exist in an /etc/passwd entry will be moved to the corresponding entry in /etc/shadow.

The pwconv command can only be used by the super-user.

FILES  
/etc/opasswd
/etc/oshadow
/etc/passwd
/etc/shadow

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  passwd(1), passmgmt(1M), usermod(1M), passwd(4), attributes(5)

DIAGNOSTICS  pwconv exits with one of the following values:

0 SUCCESS.
1 Permission denied.
Invalid command syntax.

Unexpected failure. Conversion not done.

Unexpected failure. Password file(s) missing.

Password file(s) busy. Try again later.

Bad entry in /etc/shadow file.
NAME
quot – summarize file system ownership

SYNOPSIS
quot [-acfhnv] filesystem ...
quot -a [-cfhnv]

DESCRIPTION
quot displays the number of blocks (1024 bytes) in the named filesystem (one or more) currently owned by each user. There is a limit of 2048 blocks. Files larger than this will be counted as a 2048 block file, but the total block count will be correct.

OPTIONS
The following options are supported:
- a Generate a report for all mounted file systems.
- c Display three columns giving a file size in blocks, the number of files of that size, and a cumulative total of blocks containing files of that size or a smaller size.
- f Display three columns giving, for each user, the number of blocks owned, the count of number of files, and the user name. This option is incompatible with the -c and -v options.
- h Estimate the number of blocks in the file. This does not account for files with holes in them.
- n Attach names to the list of files read from standard input. quot -n cannot be used alone, because it expects data from standard input. For example, the pipeline

    ncheck myfilesystem | sort +0n | quot -n myfilesystem

    will produce a list of all files and their owners. This option is incompatible with all other options.
- v In addition to the default output, display three columns containing the number of blocks not accessed in the last 30, 60, and 90 days.

OPERANDS
filesystem mount-point of the filesystem(s) being checked

USAGE
See largefile(5) for the description of the behavior of quot when encountering files greater than or equal to 2 Gbyte (2³³ bytes).

EXIT STATUS
0 Successful operation.
32 Error condition (bad or missing argument, bad path, or other error).

FILES
/etc/mnttab Lists mounted file systems.
/etc/passwd Used to obtain user names
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO du(1), mnttab(4), passwd(4), attributes(5), largefile(5)

NOTES This command can only be used by the super-user.
quota(1M)

NAME
quota – display a user’s ufs file system disk quota and usage

SYNOPSIS
quota [-v] [username]

DESCRIPTION
quota displays users’ ufs disk usage and limits. Only the super-user may use the
optional username argument to view the limits of other users.

quota without options only display warnings about mounted file systems where
usage is over quota. Remotely mounted file systems which do not have quotas turned
on are ignored.

username can be the numeric UID of a user.

OPTIONS
-v Display user’s quota on all mounted file systems where quotas exist.

USAGE
See largefile(5) for the description of the behavior of quota when encountering
files greater than or equal to 2 Gbyte (2^{31} bytes).

FILES
/etc/mnttab list of currently mounted filesystems

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
edquota(1M), quotaon(1M), quotacheck(1M), repquota(1M), rquotad(1M),
attributes(5), largefile(5)

NOTES
quota will also display quotas for NFS mounted ufs-based file systems if the
rquotad daemon is running. See rquotad(1M).

quota may display entries for the same file system multiple times for multiple mount
points. For example,

quota -v user1
may display identical quota information for user1 at the mount points
/home/user1, /home/user2, and /home/user, if all three mount points are
mounted from the same file system with quotas turned on.
NAME
quotacheck – ufs file system quota consistency checker

SYNOPSIS
quotacheck [-fp] [-v] filesystem...
quotacheck -a [-fpv]

DESCRIPTION
quotacheck examines each mounted ufs file system, builds a table of current disk usage, and compares this table against the information stored in the file system’s disk quota file. If any inconsistencies are detected, both the quota file and the current system copy of the incorrect quotas are updated.

filesystem is either a file system mount point or the block device on which the file system resides.

quotacheck expects each file system to be checked to have a quota file named quotas in the root directory. If none is present, quotacheck will not check the file system.

quotacheck accesses the character special device in calculating the actual disk usage for each user. Thus, the file systems that are checked should be quiescent while quotacheck is running.

OPTIONS
The following options are supported:

-a Check the file systems which /etc/mnttab indicates are ufs file systems. These file systems must be read-write mounted with disk quotas enabled, and have an rq entry in the mntopts field in /etc/vfstab.

-f Force check on file systems with logging enabled. Use in combination with the -p option.

-p Check quotas of file systems in parallel. For file systems with logging enabled, no check is performed unless the -f option is also specified.

-v Indicate the calculated disk quotas for each user on a particular file system. quotacheck normally reports only those quotas modified.

USAGE
See largefile(5) for the description of the behavior of quotacheck when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES
/etc/mnttab Mounted file systems
/etc/vfstab List of default parameters for each file system

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
edquota(1M), quota(1M), quotaon(1M), repquota(1M), attributes(5), largefile(5), quotactl(7I), mount_ufs(1M)
NAME  
quotaon, quotaoff – turn ufs file system quotas on and off

SYNOPSIS  
quotaon [-v] filesystem...
quotaon -a [-v]
quotaoff [-v] filesystem...
quotaoff -a [-v]

DESCRIPTION  
quotaon turns on disk quotas for one or more ufs file systems.

Before a file system may have quotas enabled, a file named quotas, owned by root, must exist in the root directory of the file system. See edquota(1M) for details on how to modify the contents of this file.

quotaoff turns off disk quotas for one or more ufs file systems.

The file systems specified must already be mounted.

These commands update the mntopts field of the appropriate entries in /etc/mnttab to indicate when quotas are on or off for each file system. If quotas are on, the string quota will be added to mntopts; if quotas are off, the quota string is not present.

filesystem must be either the mount point of a file system, or the block device on which the file system resides.

OPTIONS  
quotaon  
   -a This option is normally used at boot time to enable quotas. It applies only to those file systems in /etc/vfstab which have "rq" in the mntopts field, are currently mounted "rw", and have a quotas file in the root directory.
   -v Display a message for each file system after quotas are turned on.

quotaoff  
   -a Force all file systems in /etc/mnttab to have their quotas disabled.
   -v Display a message for each file system affected.

USAGE  
See largefile(5) for the description of the behavior of quotaon and quotaoff when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES  
/etc/mnttab mounted file systems
/etc/vfstab list of default parameters for each file system

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
SEE ALSO

edquota(1M), quota(1M), quotacheck(1M), repquota(1M), mnttab(4),
vfstab(4), attributes(5), largefile(5), quotactl(7I)
raidctl(1M)

NAME
raidctl – RAID hardware utility

SYNOPSIS
raidctl -c disk1 disk2
raidctl -d disk1
raidctl [-f] -F filename controller...
raidctl -l [controller...]

DESCRIPTION
The raidctl utility creates, deletes, or displays RAID volumes of the LSI1030 HW Raid controller.

The raidctl utility requires privileges that are controlled by the underlying file-system permissions. Only privileged users can manipulate the RAID system configuration. If a non-privileged user attempts to create or delete a RAID volume, the command fails with EPERM.

Without options, raidctl displays the current RAID configuration on all existing controllers.

OPTIONS
The following options are supported:

- c disk1 disk2
  Create a mirror using disk1 and disk2. Replace the contents of disk2 with the contents of disk1. Specify disk1 and disk2 in canonical form, for example, c0t0d0.

  When you create a a RAID volume, the RAID volume assumes the identity of the first target in the disk pair (disk1). The second target (disk2) disappears from the system. Therefore, the RAID volume appears as one disk.

  To have a successful RAID creation, there must not already be a RAID configuration present on the specified controller. Additionally, the secondary disk must not be mounted, as it has all its data erased and replaced with the primary disk’s data.

- d disk1
  Delete the RAID volume specified as disk1.

  Specify disk1 in canonical form, for example, c0t0d0.

- f
  Force an update. Do not prompt.

- F filename controller
  Update the firmware running on the specified controller (controller).

- l [controller ...]
  List the system’s RAID configuration. If controller is specified, list RAID configurations for controller.

  Output from the -l lists the following information:
RAID Volume Displays logical RAID volume name.

RAID Status Displays RAID status as either RESYNCING (disks are syncing), DEGRADED RAID is operating with reduced functionality), OK (operating optimally), or FAILED (non-functional).

RAID Disk Displays RAID disk name.

Disk Status Displays disk status as either OK or FAILED.

EXAMPLE 1 Creating the RAID Configuration
The following command creates the RAID configuration:

```
# raidctl -c c0t0d0 c0t1d0
RAID Volume 'c0t0d0' created
```

EXAMPLE 2 Displaying the RAID Configuration
The following command displays the RAID configuration:

```
# raidctl
RAID Volume Status Disk Status
----------------------------------------
c0t0d0 RESYNCING c0t0d0 OK
          c0t1d0 OK
```

EXAMPLE 3 Deleting the RAID Configuration
The following command deletes the RAID configuration:

```
# raidctl -d c0t0d0
RAID Volume 'c0t0d0' deleted
```

EXAMPLE 4 Updating Flash Images on the Controller
The following command updates flash images on the controller:

```
# raidctl -F lsi1030.fw 0
Update flash image on controller 0? (y/N): y
Flash updated successfully
```

EXIT STATUS The following exit values are returned:

0 Successful completion.
raidctl(1M)

1  Invalid command line input.
2  Request operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

System Administration Guide: Basic Administration
**NAME**
ramdiskadm – administer ramdisk pseudo device

**SYNOPSIS**
```
/usr/sbin/ramdiskadm -a name size [g | m | k | b]
/usr/sbin/ramdiskadm -d name
```

**DESCRIPTION**
The `ramdiskadm` command administers `ramdisk(7D)`, the ramdisk driver. Use `ramdiskadm` to create a new named ramdisk device, delete an existing named ramdisk, or list information about existing ramdisks.

Ramdisks created using `ramdiskadm` are not persistent across reboots.

**OPTIONS**
The following options are supported:

- `-a name size`
  Create a ramdisk named `name` of size `size` and its corresponding block and character device nodes.

  - `name` must be composed only of the characters a-z, A-Z, 0-9, _ (underbar), and - (hyphen), but it must not begin with a hyphen. It must be no more than 32 characters long. Ramdisk names must be unique.

  - The size can be a decimal number, or, when prefixed with 0x, a hexadecimal number, and can specify the size in bytes (no suffix), 512-byte blocks (suffix b), kilobytes (suffix k), megabytes (suffix m) or gigabytes (suffix g). The size of the ramdisk actually created might be larger than that specified, depending on the hardware implementation.

  - If the named ramdisk is successfully created, its block device path is printed on standard out.

- `-d name`
  Delete an existing ramdisk of the name `name`. This command succeeds only when the named ramdisk is not open. The associated memory is freed and the device nodes are removed.

  - You can delete only ramdisks created using `ramdiskadm`. It is not possible to delete a ramdisk that was created during the boot process.

Without options, `ramdiskadm` lists any existing ramdisks, their sizes (in decimal), and whether they can be removed by `ramdiskadm` (see the description of the `-d` option, above).

**EXAMPLES**

**EXAMPLE 1** Creating a 2MB Ramdisk Named mydisk
```
# ramdiskadm -a mydisk 2m
/dev/ramdisk/mydisk
```

**EXAMPLE 2** Listing All Ramdisks
```
# ramdiskadm
Block Device  Size  Removable
/dev/ramdisk/miniroot  134217728  No
```
EXAMPLE 2 Listing All Ramdisks  (Continued)

/dev/ramdisk/certfs  1048576  No
/dev/ramdisk/mydisk  2097152  Yes

EXIT STATUS  
ramdiskadm returns the following exit values:
0  
  Successful completion.
>0  
  An error occurred.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO  
attributes(5), ramdisk(7D)

NOTES  
The abilities of ramdiskadm and the privilege level of the person who uses the utility are controlled by the permissions of /dev/ramdiskctl. Read access allows query operations, for example, listing device information. Write access is required to do any state-changing operations, for example, creating or deleting ramdisks.

As shipped, /dev/ramdiskctl is owned by root, in group sys, and mode 0644, so all users can do query operations but only root can perform state-changing operations. An administrator can give write access to non-privileged users, allowing them to add or delete ramdisks. However, granting such ability entails considerable risk; such privileges should be given only to a trusted group.
NAME
rcapadm – configure resource capping daemon
SYNOPSIS
rcapadm

DESCRIPTION
The rcapadm command allows a user with the privileges described below to configure various attributes of the resource capping daemon. If used without arguments, rcapadm displays the current status of the resource capping daemon if it has been configured. See rcapd(1M) for more information.

In Solaris 9, rcapadm is available to users who have the Process Management profile in their list of profiles. The System Administrator role includes the Process Management profile.

The resource capping daemon (rcapd(1M)) is an optional feature.

OPTIONS
- n
  Do not affect the running state of the resource capping daemon when enabling or disabling it.

- E
  Enable the resource capping daemon so that it will be started each time the system is booted. Also start the resource capping daemon now, if the -n option is not specified and it is not currently running.

- D
  Disable the resource capping daemon so that it will not be started when the system is booted. Also stop the resource capping daemon now, if the -n option is not specified and it is currently running.

- i interval=value,...,interval=value
  Set intervals for various periodic operations performed by rcapd. All intervals are specified in seconds. You can set the following intervals:

  scan
  The interval at which rcapd scans for new processes. The default scan interval is every 15 seconds. The minimum value is 1 second.

  sample
  The interval of process resident set size sampling. The default sample interval is every 5 seconds. The minimum value is 1 second.

  report
  The interval at which various paging statistics are updated by rcapd, in seconds. These statistics can be viewed by using rcapstat(ISRM). The default reporting interval is every 5 seconds. When the interval is set to 0, statistics will not be updated.

  Note – Paging refers to the act of relocating portions of memory, called pages, to or from physical memory. rcapd pages out the most infrequently used pages.
config
The reconfiguration interval, in seconds. At each reconfiguration event, rcapd checks its configuration file for updates, and scans the project databases for new project caps. The default reconfiguration interval is every 60 seconds. The minimum interval is 0. When the interval is set to 0, no periodic reconfiguration occurs, although the running daemon can still be reconfigured by sending it SIGHUP.

-c percent
Set the minimum physical memory utilization for memory cap enforcement. Caps will not be enforced until the physical memory available to processes is low. The percent value should be in the range 0 to 100. The minimum (and default) value is 0, which means that memory caps are always enforced.

EXAMPLES
EXAMPLE 1 Configuring the Resource Capping Daemon with Immediate Enforcement

```
# rcapadm -E -i scan=15, sample=5, report=5, config=60 -c 0
```

EXIT STATUS
The following exit values are returned:

0  Successful completion. The modifications to the current configuration were valid and made successfully.

1  An error occurred. A fatal error occurred either in obtaining or modifying the resource capping configuration.

2  Invalid command-line options were specified.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNW_rcapu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
rcapstat(1), rcapd(1M), project(4), attributes(5)

The `rcapd` daemon enforces resource caps on collections of processes. Per-project physical memory caps are supported. For information about projects, see `project(4)`. When the resident set size (RSS) of a collection of processes exceeds its cap, `rcapd` takes action and reduces the RSS of the collection.

The virtual memory system divides physical memory into segments known as pages. To read data from a file into memory, the virtual memory system reads in individual pages. To reduce resource consumption, the daemon can page out, or relocate, infrequently used pages to an area outside of physical memory.

In the `project` file, caps are defined for projects that have positive values for the following project attribute:

```
rcap.max-rss
```

The total amount of physical memory, in bytes, that is available to the project’s member processes

See `project(4)` for a description of project attributes.

You can configure `rcapd` through the use of `rcapadm(1M)`. The daemon can be monitored with `rcapstat(1)`. Configuration changes are incorporated into `rcapd` by sending it `SIGHUP` (see `kill(1)`), or according to the configuration interval (see `rcapadm(1M)`).

`rcapd` is an optional feature.

### OPTIONS

The following option is supported:

- `-d`  
  Enable debug mode. Messages are displayed on the invoking user’s terminal.

### EXAMPLES

**EXAMPLE 1 Setting Resident Set Size Cap Attribute**

The following line in the `/etc/project` database sets an RSS cap of 1073741824 bytes for a project named `foo`.

```
foo:100::foo,root::rcap.max-rss=10737418240
```

### EXIT STATUS

The following exit values are returned:

- 0  
  Successful completion.

- 1  
  An error occurred.

- 2  
  Invalid command-line options were specified.

### FILES

- `/etc/project`  
  Project database.
rcapd(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcapu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
rcapstat(1), rcapadm(1M), project(4), attributes(5)


NOTES
If killed with SIGKILL, rcapd can leave processes in a stopped state. Use SIGTERM to cause rcapd to terminate properly.

A collection’s RSS can exceed its cap for some time before the cap is enforced, even if sufficient pageable memory is available. This period of time can be reduced by shortening the RSS sampling interval with rcapadm.
The \texttt{rctladm} command allows the examination and modification of active resource controls on the running system. An instance of a resource control is referred to as an \texttt{rctl}. See \texttt{setrctl(2)} for further description of an \texttt{rctl}. Logging of \texttt{rctl} violations can be activated or deactivated system-wide and active \texttt{rctls} (and their state) can be listed.

The following options are supported:

- \texttt{-d action} Disable (-d) or enable (-e) the global action on the specified \texttt{rctls}. If no \texttt{rctl} is specified, no action is taken and an error status is returned. You can use the special token \texttt{all} with the disable option to deactivate all global actions on a resource control.

You can set the syslog action to a specific degree by assigning a severity level. To do this, specify \texttt{syslog=level}, where \texttt{level} is one of the string tokens given as valid severity levels in \texttt{syslog}(3C). You can omit the common \texttt{LOG_} prefix on the severity level.

- \texttt{-l} List available \texttt{rctls} with event status. This option displays the global event actions available for each \texttt{rctl}, and by the action name used with the enable (-e) and disable (-d) options below. The global flag values for the control are also displayed. If one or more name operands are specified, only those \texttt{rctls} matching the given names is displayed.

This is the default action if no options are specified.

- \texttt{-u} Configure resource controls based on the contents of \texttt{/etc/rctladm.conf}. Any name operands are ignored.

The following operands are supported:

\begin{itemize}
  \item \texttt{name} The name of the \texttt{rctl} to operate on. You can specify multiple \texttt{rctl} names may be specified. If no names are specified, and the list action has been specified, then all \texttt{rctls} are listed. If the enable or disable action is specified, one or more \texttt{rctl} names must be specified.
\end{itemize}

\section*{Examples}

\textbf{Example 1} Activating System Logging for Specific Violations

The following command activates system logging of all violations of \texttt{task.max-lwps}.

\begin{verbatim}
example# rctladm -e syslog task.max-lwps
example#
\end{verbatim}
EXAMPLE 2 Examining Current Status of a Specific Resource

The following command examines the current status of the task.max-lwps resource.

```
example$ rctladm -l task.max-lwps
  task.max-lwps  syslog=DEBUG
example$
```

EXIT STATUS

The following exit values are returned:

- **0**: Successful completion.
- **1**: Fatal error occurred.
- **2**: Invalid command line options were specified.

FILES

/etc/rctladm.conf Each time `rctladm` is executed, it updates the contents of `rctladm.conf` with the current configuration.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO

`sctrct1(2), strct1(2), prct1(1), rctlblk_get_global_flags(3C),
 rctlblk_get_global_action(3C), attributes(5)`

NOTES

The base operating system provides a variety of controls by default:

- `process.max-address-space`
- `process.max-file-descriptor`
- `process.max-core-size`
- `process.max-stack-size`
- `process.max-data-size`
- `process.max-file-size`
- `process.max-cpu-time`
- `task.max-cpu-time`
- `task.max-lwps`
- `project.cpu-shares`

The default properties of the process resource controls are described on `setrlimit(2)`. Task and project resource controls are unenforced by default.

By default, there is no global logging of rctl violations.
rdate – set system date from a remote host

**SYNOPSIS**
```
rdate hostname
```

**DESCRIPTION**
`rdate` sets the local date and time from the `hostname` given as an argument. You must have the authorization `solaris.system.date` on the local system. Typically, `rdate` is used in a startup script.

The `inetd` daemon responds to `rdate` requests. To enable `inetd` response, the lines invoking the `time` command in `inetd.conf` must not be commented out.

**USAGE**
The `rdate` command is IPv6–enabled. See `ip6(7P)`.

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

**SEE ALSO**
`inetd(1M), inetd.conf(4), attributes(5), ip6(7P)`
reboot(1M)

NAME reboot – restart the operating system

SYNOPSIS /usr/sbin/reboot [-dlnq] [boot_arguments]

DESCRIPTION The reboot utility restarts the kernel. The kernel is loaded into memory by the PROM monitor, which transfers control to the loaded kernel.

Although reboot can be run by the super-user at any time, shutdown(1M) is normally used first to warn all users logged in of the impending loss of service. See shutdown(1M) for details.

The reboot utility performs a sync(1M) operation on the disks, and then a multi-user reboot is initiated. See init(1M) for details.

The reboot utility normally logs the reboot to the system log daemon, syslogd(1M), and places a shutdown record in the login accounting file /var/adm/wtmpx. These actions are inhibited if the -n or -q options are present.

Normally, the system reboots itself at power-up or after crashes.

OPTIONS The following options are supported:

- Force a system crash dump before rebooting. See dumpadm(1M) for information on configuring system crash dumps.
- Suppress sending a message to the system log daemon, syslogd(1M) about who executed reboot.
- Avoid calling sync(2) and do not log the reboot to syslogd(1M) or to /var/adm/wtmpx. The kernel still attempts to sync filesystems prior to reboot, except if the -d option is also present. If -d is used with -n, the kernel does not attempt to sync filesystems.
- Quick. Reboot quickly and ungracefully, without shutting down running processes first.

OPERANDS The following operands are supported:

boot_arguments An optional boot_arguments string can be used to specify arguments to the uadmin(2) function that will be passed to the boot program and kernel upon restart. The form and list of arguments is described in the boot(1M) and kernel(1M) man pages. If multiple arguments are specified, they must be quoted for the shell, as shown in the EXAMPLES section. If the boot_arguments begin with a hyphen, they must be preceded by the -- delimiter (two hyphens) to denote the end of the reboot argument list.

EXAMPLES EXAMPLE 1 Passing the -r and -v Arguments to boot

In the following example, the delimiter -- (two hyphens) must be used to separate the options of reboot from the arguments of boot(1M).
EXAMPLE 1 Passing the -r and -v Arguments to boot (Continued)

```
example# reboot -dl -- -rv
```

EXAMPLE 2 Rebooting Using a Specific Disk and Kernel

The following example reboots using a specific disk and kernel. Note that multiple boot arguments are quoted.

```
example# reboot *disk1 kernel.test/unix*
```

FILES
/var/adm/wtmpx login accounting file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
mdb(1), boot(1M), dumpadm(1M), fsck(1M), halt(1M), init(1M), kernel(1M), shutdown(1M), sync(1M), syslogd(1M), sync(2), uadmin(2), reboot(3C), attributes(5)

NOTES
The reboot utility does not execute the scripts in /etc/rcnum.d or execute shutdown actions in inittab(4). To ensure a complete shutdown of system services, use shutdown(1M) or init(1M) to reboot a Solaris system.
rem_drv(1M)

NAME     rem_drv – remove a device driver from the system

SYNOPSIS rem_drv [-b basedir] device_driver

DESCRIPTION The rem_drv command informs the system that the device driver device_driver is no longer valid. If possible, rem_drv unloads device_driver from memory. Entries for the device in the /devices namespace are removed. rem_drv also updates the system driver configuration files.

If rem_drv has been executed, the next time the system is rebooted it automatically performs a reconfiguration boot (see kernel(1M)).

OPTIONS The following options are supported:

- b basedir     Sets the path to the root directory of the diskless client. Used on the server to execute rem_drv for a client. The client machine must be rebooted to unload the driver.

EXAMPLES EXAMPLE 1 Removing the sd Driver

The following example removes the sd driver from use:

example% rem_drv sd

EXAMPLE 2 Removing a Diskless Client

The next example removes the driver from the sun1 diskless client. The driver is not uninstalled or unloaded until the client machine is rebooted.

example% rem_drv -b /export/root/sun1 sd

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO add_drv(1M), drvconfig(1M), kernel(1M), attributes(5)
NAME
removef – remove a file from software database

SYNOPSIS
removef [ [-M] -R root_path] [-V fs_file] pkginst path...
removef [-M] -R root_path] [-V fs_file] -f pkginst

DESCRIPTION
removef informs the system that the user, or software, intends to remove a pathname. Output from removef is the list of input pathnames that may be safely removed (no other packages have a dependency on them).

OPTIONS
The following options are supported:
- \( \text{-f} \) After all files have been processed, removef should be invoked with the \( \text{-f} \) option to indicate that the removal phase is complete.
- \( \text{-M} \) Instruct removef not to use the \$root_path/etc/vfstab file for determining the client’s mount points. This option assumes the mount points are correct on the server and it behaves consistently with Solaris 2.5 and earlier releases.
- \( \text{-R root_path} \) Define the full path name of a directory to use as the root_path. All files, including package system information files, are relocated to a directory tree starting in the specified root_path. The root_path may be specified when installing to a client from a server (for example, /export/root/client1).
- \( \text{-V fs_file} \) Specify an alternative fs_file to map the client’s file systems. For example, used in situations where the \$root_path/etc/vfstab file is non-existent or unreliable.

OPERANDS
The following operands are supported:
path The pathname to be removed.
pkginst The package instance from which the pathname is being removed.

EXAMPLES
**EXAMPLE 1 Using removef**
The following example uses the removef command in an optional pre-install script:

echo "The following files are no longer part of this package and are being removed."
removef $PKGINST /dev/xt[0-9][0-9][0-9] | while read pathname
do
echo "$pathname"
rm -f "$pathname"
done
removef -f $PKGINST || exit 2

EXIT STATUS
0 Successful completion.
>0 An error occurred.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1M), attributes(5)

Application Packaging Developer’s Guide
repquota(1M)

NAME
repquota – summarize quotas for a ufs file system

SYNOPSIS
repquota [-v] filesystem...
repquota -a [-v]

DESCRIPTION
repquota prints a summary of the disk usage and quotas for the specified ufs file systems. The current number of files and amount of space (in kilobytes) is printed for each user along with any quotas created with edquota(1M).

The filesystem must have the file quotas in its root directory.

Only the super-user may view quotas which are not their own.

OPTIONS
The following options are supported:
- a Report on all mounted ufs file systems that have rq in the mntopts field of the /etc/vfstab file.
- v Report quotas for all users, even those who do not consume resources.

USAGE
See largefile(5) for the description of the behavior of repquota when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
edquota(1M), quota(1M), quotacheck(1M), quotaon(1M), attributes(5), largefile(5), quotactl(7I)
**NAME**
re-preinstall – installs the JumpStart software on a system

**SYNOPSIS**
```
cdrom-mnt-pt/Solaris_XX/Tools/Boot/usr/sbin/install.d/re-preinstall [-m Solaris_boot_dir] [-k platform_name] target-slice
```

**DESCRIPTION**
re-preinstall installs the JumpStart software (preinstall boot image) on a system, so you can power-on the system and have it automatically install the Solaris software (perform a JumpStart installation on the system). When you turn on a re-preinstalled system, the system looks for the JumpStart software on the system’s default boot disk. All new SPARC systems have the JumpStart software already preinstalled. The XX in Solaris_XX is the version number of the Solaris release being used.

You can use the re-preinstall command in several ways. The most common way is to run re-preinstall on a system to install the JumpStart software on its own default boot disk. This is useful if you want to restore a system to its original factory conditions. (See the first procedure described in **EXAMPLES**.)

You can also run re-preinstall on a system to install JumpStart software on any attached disk (non-boot disk). After you install the JumpStart software on a disk, you can move the disk to a different system and perform a JumpStart installation on the different system. (See the second procedure described in **EXAMPLES**.)

re-preinstall creates a standard file system on the specified target-slice (usually slice 0), and re-preinstall makes sure there is enough space on the target-slice for the JumpStart software. If sufficient space is not available, re-preinstall fails with the following message:

```
re-preinstall: target-slice too small xx Megabytes required
```

You can use the `format(1M)` command to create sufficient space on the target-slice for the JumpStart software.

**OPTIONS**
The following options are supported:

- `-k platform_name`
  Platform name of the system that will use the disk with the JumpStart software. The default is the platform name of the system running re-preinstall. (Use the `uname(1)` command (-i option) to determine a system’s platform name.)

- `-m Solaris_boot_dir`
  Absolute path to the Solaris_XX/Tools/Boot subdirectory of a mounted Solaris CD or a Solaris CD copied to disk that re-preinstall uses to install the JumpStart software. The default is root (/), which is where the Solaris CD is mounted in single-user mode.

**OPERANDS**
The following operands are supported:

- `target-slice`
  Device name of the disk slice where the JumpStart software will be installed (usually slice 0), for example, c0t3d0s0.
EXAMPLE 1 Installing the JumpStart Software on a System’s Own Default Boot Disk

The following procedure installs the JumpStart software on a system’s own default boot disk:

1. From the ok prompt, boot the system from the Solaris media CD or DVD in single-user mode:
   
   `ok boot cdrom -s`

2. The following command installs the JumpStart software on the System default boot disk, c0t0d0s0 on a Solaris 9 system:
   
   `example# /usr/sbin/install.d/re-preinstall c0t0d0s1`

3. Reboot the slice:
   
   `example# reboot disk:b`

EXAMPLE 2 Installing the JumpStart Software on a System’s Attached (non-boot) Disk

The following procedure installs the JumpStart software on a system’s attached (non-boot) disk:

1. Mount the Solaris CD or DVD if vold(1M) is not running or CD or DVD is not mounted.

2. Use the `format`(1M) command to determine the target-slice where JumpStart will be installed.

3. Use the `uname`(1) command (`-i` option) to determine the platform name of the system that will use the re-preinstalled disk

4. Run `re-preinstall` with the `-m Solaris_boot_dir` option if the Solaris CD or DVD is not mounted on `/cdrom`.

   The following command installs the JumpStart software on the system’s attached disk for a system with a Sun4u kernel architecture, and it uses the Solaris CD or DVD mounted with vold(1M) on a Solaris 9 system:

   `example# /cdrom/cdrom/s1/usr/bin/install.d/re-preinstall -m /cdrom/cdrom/s1 -k sun4u c0t2d0s0`

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  An error has occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:
### SEE ALSO

uname(1), eeprom(1M), format(1M), mount(1M), vold(1M), attributes(5)

*Solaris 9 12/03 Installation Guide*

---

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcdrom (Solaris CD, SPARC Platform Edition)</td>
</tr>
</tbody>
</table>
NAME
rmount – removable media mounter for CD-ROM, floppy, Jaz drive, and others

SYNOPSIS
/usr/sbin/rmount [-D]

DESCRIPTION
The rmount utility is a removable media mounter that is executed by Volume Management whenever a removable medium, such as a CD-ROM or a floppy, is inserted. The Volume Management daemon, vold(1M), manages removable media. rmount can also be called by using volrmmount(1).

Upon insertion of a medium and following invocation of the volcheck(1) command, rmount determines what type of file system (if any) is on that medium. If a file system is present, rmount mounts the file system in one of the locations listed below.

For a diskette (floppy):

/floppy/floppy0
  symbolic link to mounted floppy in local floppy drive

/floppy/floppy_name
  mounted named floppy

/floppy/unnamed_floppy
  mounted unnamed floppy

For a CD-ROM or a DVD-ROM:

/cdrom/cdrom0
  symbolic link to mounted CD-ROM in local CD-ROM drive

/cdrom/CD-ROM_name
  mounted named CD-ROM

/cdrom/CD-ROM_name/partition
  mounted named CD-ROM with partitioned file system

/cdrom/unnamed_cdrom
  mounted unnamed CD-ROM

For a Zip drive:

/rmdisk/zip0
  symbolic link to mounted Zip medium in local Zip drive

/rmdisk/Zip_name
  mounted named Zip medium

/rmdisk/Zip_name/partition
  mounted named Zip medium with partitioned file system

/rmdisk/unnamed_zip
  mounted unnamed Zip medium

For a Jaz drive:
For a generic “rmdisk” drive:

```bash
/rmdisk/rmdisk0
    symbolic link to mounted removable medium in local removable medium drive
```

If the media is read-only (for example, a CD-ROM or a floppy with write-protect tab set), the file system is mounted read-only.

If a file system is not identified, `rmmount` does not mount a file system. See the *System Administration Guide: Basic Administration* for more information on the location of CD-ROM, floppy, and other media without file systems. Also see `volfs(7FS)`.

If a file system type has been determined, it is then checked to see that it is “clean.” If the file system is “dirty,” `fsck -p` (see `fsck(1M)`) is run in an attempt to clean it. If `fsck` fails, the file system is mounted read-only.

After the mount is complete, “actions” associated with the media type are executed. These actions allow for the notification to other programs that new media are available. These actions are shared objects and are described in the configuration file, `/etc/rmmount.conf`. See `rmmount.conf(4)`.

Actions are executed in the order in which they appear in the configuration file. The action function can return either 1 or 0. If it returns 0, no further actions will be executed. This allows the function to control which applications are executed.

In order to execute an action, `rmmount` performs a `dlopen(3DL)` on the shared object and calls the action function defined within it. The definition of the interface to actions can be found in `/usr/include/rmmount.h`. 
File systems mounted by `rmmount` are always mounted with the `nosuid` flag set, thereby disabling setuid programs and access to block or character devices in that file system. Upon ejection, `rmmount` unmounts mounted file systems and executes actions associated with the media type. If a file system is "busy" (that is, it contains the current working directory of a live process), the ejection will fail.

**OPTIONS**
- `D`  Turn on the debugging output from the `rmmount` `dprintf` calls.

**FILES**
- `/etc/rmmount.conf`  removable media mounter configuration file
- `/usr/lib/rmmount/*.so.1`  shared objects used by `rmmount`

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
`volcancel(1)`, `volcheck(1)`, `volmissing(1)`, `volrmount(1)`, `fsck(1M)`,
`vold(1M)`, `dlopen(3DL)`, `rmmount.conf(4)`, `vold.conf(4)`, `attributes(5)`,
`volfs(7FS)`

*System Administration Guide: Basic Administration*
rmt(1M)

NAME
rmt – remote magtape protocol module

SYNOPSIS
/usr/sbin/rmt

DESCRIPTION
rmt is a program used by the remote dump and restore programs in manipulating a magnetic tape drive through an interprocess communication connection. rmt is normally started up with a rexec(3SOCKET) or rcmd(3SOCKET) call.

The rmt program accepts requests that are specific to the manipulation of magnetic tapes, performs the commands, then responds with a status indication. All responses are in ASCII and in one of two forms. Successful commands have responses of:

A number

where number is an ASCII representation of a decimal number.

Unsuccessful commands are responded to with:

Error-number\nerror-message

where error-number is one of the possible error numbers described in intro(3), and error-message is the corresponding error string as printed from a call to perror(3C).

The protocol consists of the following commands:

S

Return the status of the open device, as obtained with a MTIOCGET ioctl call. If the operation was successful, an “ack” is sent with the size of the status buffer, then the status buffer is sent (in binary).

C\ndevice

Close the currently open device. The device specified is ignored.

I\noperation\ncount

Perform a MTIOCOP ioctl(2) command using the specified parameters. The parameters are interpreted as the ASCII representations of the decimal values to place in the mt_op and mt_count fields of the structure used in the ioctl call. When the operation is successful the return value is the count parameter.

L\noffset\nwhence

Perform an lseek(2) operation using the specified parameters. The response value is returned from the lseek call.

O\ndevice\nmode

Open the specified device using the indicated mode. device is a full pathname, and mode is an ASCII representation of a decimal number suitable for passing to open(9E). If a device is already open, it is closed before a new open is performed.

R\ncount

Read count bytes of data from the open device. rmt performs the requested read(9E) and responds with Acount-read if the read was successful; otherwise an
error in standard format is returned. If the read was successful, the data read is sent.

Write data onto the open device. \texttt{rmt} reads \textit{count} bytes from the connection, aborting if a premature EOF is encountered. The response value is returned from the \texttt{write(9E)} call.

Any other command causes \texttt{rmt} to exit.

**ATTRIBUTES**

See \texttt{attributes(5)} for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

**SEE ALSO**

\texttt{ufsdump(1M), ufsrestore(1M), intro(3), ioctl(2), lseek(2), perror(3C), rcmd(3SOCKET), rexec(3SOCKET), attributes(5), mtio(7I), open(9E), read(9E), write(9E)}

**DIAGNOSTICS**

All responses are of the form described above.

**BUGS**

Do not use this for a remote file access protocol.
roleadd(1M)

NAME
roleadd – administer a new role account on the system

SYNOPSIS
roleadd [-c comment] [-d dir] [-e expire] [-f inactive] [-g group]
    [-G group [ , group ...]] [-m [-k skel_dir]] [-u uid [-o]] [-s shell]
    [-A authorization [ , authorization ...]] role
roleadd -D [-b base_dir] [-e expire] [-f inactive] [-g group]
    [-A authorization [ , authorization ...]] [-P profile [ , profile ...]]

DESCRIPTION
roleadd adds a role entry to the /etc/passwd and /etc/shadow and
/etc/user_attr files. The -A and -P options respectively assign authorizations and
profiles to the role. Roles cannot be assigned to other roles.

roleadd also creates supplementary group memberships for the role (-G option) and
creates the home directory (-m option) for the role if requested. The new role account
remains locked until the passwd(1) command is executed.

Specifying roleadd -D with the -g, -b, -f, or -e option (or any combination of these
option) sets the default values for the respective fields. See the -D option. Subsequent
roleadd commands without the -D option use these arguments.

The system file entries created with this command have a limit of 512 characters per
line. Specifying long arguments to several options can exceed this limit.

The role (role) field accepts a string of no more than eight bytes consisting of
characters from the set of alphabetic characters, numeric characters, period (.),
underscore (_), and hyphen (-). The first character should be alphabetic and the field
should contain at least one lower case alphabetic character. A warning message will be
written if these restrictions are not met. A future Solaris release may refuse to accept
role fields that do not meet these requirements.

The role field must contain at least one character and must not contain a colon (:) or
a newline (\n).

OPTIONS
The following options are supported:

-A authorization One or more comma separated authorizations defined in
    auth_attr(4). Only a user or role who has grant rights to the
    authorization can assign it to an account
-b base_dir The default base directory for the system if -d dir is not specified.
    base_dir is concatenated with the account name to define the home
directory. If the -m option is not used, base_dir must exist.
-c comment Any text string. It is generally a short description of the role. This
    information is stored in the role's /etc/passwd entry.
-d dir The home directory of the new role. It defaults to
    base_dir/account_name, where base_dir is the base directory for new
    login home directories and account_name is the new role name.
roleadd(1M)

-\(D\) Display the default values for group, base_dir, skel_dir, shell, inactive, and expire. When used with the -\(g\), -\(b\), or -\(f\) options, the -\(D\) option sets the default values for the specified fields. The default values are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>other (GID of 1)</td>
</tr>
<tr>
<td>base_dir</td>
<td>/home</td>
</tr>
<tr>
<td>skel_dir</td>
<td>/etc/skel</td>
</tr>
<tr>
<td>shell</td>
<td>/bin/sh</td>
</tr>
<tr>
<td>inactive</td>
<td>0</td>
</tr>
<tr>
<td>expire</td>
<td>Null</td>
</tr>
<tr>
<td>auths</td>
<td>Null</td>
</tr>
<tr>
<td>profiles</td>
<td>Null</td>
</tr>
</tbody>
</table>

-\(e\) expire Specify the expiration date for a role. After this date, no user will be able to access this role. The expire option argument is a date entered using one of the date formats included in the template file /etc/datemsk. See getdate(3C).

If the date format that you choose includes spaces, it must be quoted. For example, you can enter 10/6/90 or "October 6, 1990". A null value (""") defeats the status of the expired date. This option is useful for creating temporary roles.

-\(f\) inactive The maximum number of days allowed between uses of a role ID before that ID is declared invalid. Normal values are positive integers. A value of 0 defeats the status.

-\(g\) group An existing group's integer ID or character-string name. Without the -\(D\) option, it defines the new role's primary group membership and defaults to the default group. You can reset this default value by invoking roleadd -\(D\) -\(g\) group.

-\(G\) group An existing group's integer ID or character-string name. It defines the new role's supplementary group membership. Duplicates between group with the -\(g\) and -\(G\) options are ignored. No more than NGROUPS_MAX groups can be specified.

-\(k\) skel_dir A directory that contains skeleton information (such as .profile) that can be copied into a new role's home directory. This directory must already exist. The system provides the /etc/skel directory that can be used for this purpose.

-\(m\) Create the new role's home directory if it does not already exist. If the directory already exists, it must have read, write, and execute permissions by group, where group is the role's primary group.
roleadd(1M)

- o
  This option allows a UID to be duplicated (non-unique).

- P profile
  One or more comma-separated execution profiles defined in
  prof_attr(4).

- s shell
  Full pathname of the program used as the user’s shell on login. It
defaults to an empty field causing the system to use /bin/sh as
the default. The value of shell must be a valid executable file.

- u uid
  The UID of the new role. This UID must be a non-negative decimal
integer below MAXUID as defined in <sys/param.h>. The UID
defaults to the next available (unique) number above the highest
number currently assigned. For example, if UIDs 100, 105, and 200
are assigned, the next default UID number will be 201. (UIDs from
0-99 are reserved for possible use in future applications.)

FILES
/etc/datemsk
/etc/passwd
/etc/shadow
/etc/group
/etc/skel
/usr/include/limits.h
/etc/user_attr

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
passwd(1)profiles(1)roles(1), users(1B), groupadd(1M), groupdel(1M),
grouppwd(1M), grpck(1M), login(1M), pwck(1M), userdel(1M), usermod(1M),
getdate(3C), auth_attr(4), passwd(4), prof_attr(4), user_attr(4),
attributes(5)

DIAGNOSTICS
In case of an error, roleadd prints an error message and exits with a non-zero status.

The following indicates that login specified is already in use:

UX: roleadd: ERROR: login is already in use. Choose another.

The following indicates that the uid specified with the -u option is not unique:

UX: roleadd: ERROR: uid uid is already in use. Choose another.
roleadd(1M)

The following indicates that the group specified with the -g option is already in use:
UX: roleadd: ERROR: group group does not exist. Choose another.

The following indicates that the uid specified with the -u option is in the range of
reserved UIDs (from 0-99):
UX: roleadd: WARNING: uid uid is reserved.

The following indicates that the uid specified with the -u option exceeds MAXUID as
defined in <sys/param.h>:
UX: roleadd: ERROR: uid uid is too big. Choose another.

The following indicates that the /etc/passwd or /etc/shadow files do not exist:
UX: roleadd: ERROR: Cannot update system files - login cannot be created.

NOTES
If a network nameservice such as NIS or NIS+ is being used to supplement the local
/etc/passwd file with additional entries, roleadd cannot change information
supplied by the network nameservice.
NAME
roledel – delete a role’s login from the system

SYNOPSIS
roledel [-r] role

DESCRIPTION
The roledel utility deletes a role account from the system and makes the appropriate
account-related changes to the system file and file system. roledel also removes the
role from each user’s list of assumable roles.

OPTIONS
The following options are supported:

-r
Remove the role’s home directory from the system. This directory
must exist. The files and directories under the home directory will
no longer be accessible following successful execution of the
command.

OPERANDS
The following operands are supported:

role
An existing role name to be deleted.

EXIT STATUS
The following exit values are returned:

0
Successful completion.

2
Invalid command syntax. A usage message for the roledel
command is displayed.

6
The account to be removed does not exist.

8
The account to be removed is in use.

10
Cannot update the /etc/group or /etc/user_attr file but the
login is removed from the /etc/passwd file.

12
Cannot remove or otherwise modify the home directory.

FILES
/etc/passwd
system password file

/etc/shadow
system file containing roles’ encrypted passwords and
related information

/etc/group
system file containing group definitions

/etc/user_attr
system file containing additional role attributes

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
-----------------|------------------
Availability     | SUNWcsu

1466 man pages section 1M: System Administration Commands • Last Revised 8 Sep 1999
SEE ALSO auths(1), passwd(1), profiles(1), roles(1), users(1B), groupadd(1M),
groupdel(1M), groupmod(1M), logins(1M), roleadd(1M), rolemod(1M),
useradd(1M), userdel(1M), usermod(1M), passwd(4), prof_attr(4),
user_attr(4), attributes(5)

NOTES The roledel utility only deletes an account definition that is in the local
/etc/group, /etc/passwd, /etc/shadow, and /etc/user_attr file. If a
network name service such as NIS or NIS+ is being used to supplement the local
/etc/passwd file with additional entries, roledel cannot change information
supplied by the network name service.
rolemod(1M)

NAME  rolemod – modify a role’s login information on the system

SYNOPSIS  rolemod [-u uid [-o]] [-g group] [-G group [, group...]] [-d dir [-m]]
           [-s shell] [-c comment] [-l new_name] [-f inactive] [-e expire]
           [-A authorization [, authorization]] [-P profile [, profile]] role

DESCRIPTION  The rolemod utility modifies a role’s login information on the system. It changes the
definition of the specified login and makes the appropriate login-related system file
and file system changes.

The system file entries created with this command have a limit of 512 characters per
line. Specifying long arguments to several options may exceed this limit.

OPTIONS  The following options are supported:

-A authorization  One or more comma separated authorizations as
defined in auth_attr(4). Only role with grant rights
to the authorization can assign it to an account.
This replaces any existing authorization setting.

-c comment  Specify a comment string. comment can be any text
string. It is generally a short description of the login,
and is currently used as the field for the user’s full
name. This information is stored in the user’s
/etc/passwd entry.

-d dir  Specify the new home directory of the role. It defaults
to base_dir/login, where base_dir is the base directory for
new login home directories, and login is the new
login.

-e expire  Specify the expiration date for a role. After this date, no
role will be able to access this login. The expire option
argument is a date entered using one of the date
formats included in the template file /etc/datemsk.
See getdate(3C).

For example, you may enter 10/6/90 or October 6,
1990. A value of ‘ ‘ ‘ defeats the status of the
expired date.

-f inactive  Specify the maximum number of days allowed
between uses of a login ID before that login ID is
declared invalid. Normal values are positive integers.
A value of 0 defeats the status.

-g group  Specify an existing group’s integer ID or
character-string name. It redefines the role’s primary
group membership.

-G group  Specify an existing group’s integer "ID" "," or character
string name. It redefines the role’s supplementary
group membership. Duplicates between group with the -g and -G options are ignored. No more than
NGROUPS_UMAX groups may be specified as defined in <param.h>.

-1 new_logname
Specify the new login name for the role. The new_logname argument is a string no more than eight
bytes consisting of characters from the set of alphabetic characters, numeric characters, period (.), underline (_), and hyphen (−). The first character should be alphabetic and the field should contain at least one
lower case alphabetic character. A warning message will be written if these restrictions are not met. A future
Solaris release may refuse to accept login fields that do not meet these requirements. The new_logname
argument must contain at least one character and must not contain a colon (:) or NEWLINE (\n).

-m
Move the role's home directory to the new directory specified with the -d option. If the directory already
exists, it must have permissions read/write/execute by group, where group is the role's primary group.

-o
This option allows the specified UID to be duplicated (non-unique).

-P profile
One or more comma-separated execution profiles defined in auth_attr(4). This replaces any existing
profile setting.

-s shell
Specify the full pathname of the program that is used as the role’s shell on login. The value of shell must be a
valid executable file.

-u uid
Specify a new UID for the role. It must be a non-negative decimal integer less than MAXUID as
defined in <param.h>. The UID associated with the role's home directory is not modified with this option;
a role will not have access to their home directory until the UID is manually reassigned using chown(1M).

OPERANDS
The following operands are supported:

login An existing login name to be modified.

EXIT STATUS
In case of an error, rolemod prints an error message and exits with one of the following values:

2 The command syntax was invalid. A usage message for the rolemod command is displayed.

3 An invalid argument was provided to an option.
The uid given with the `-u` option is already in use.

The password files contain an error. `pwconv(1M)` can be used to correct possible errors. See `passwd(4)`.

The login to be modified does not exist, the `group` does not exist, or the login shell does not exist.

The login to be modified is in use.

The `new_logname` is already in use.

Cannot update the `/etc/group` or `/etc/user_attr` file. Other update requests will be implemented.

Insufficient space to move the home directory (`-m` option). Other update requests will be implemented.

Unable to complete the move of the home directory to the new home directory.

FILES

`/etc/group` system file containing group definitions
`/etc/datemask` system file of date formats
`/etc/passwd` system password file
`/etc/shadow` system file containing users’ and roles’ encrypted passwords and related information
`/etc/usr_attr` system file containing additional user and role attributes

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO `passwd(1), users(1B), chown(1M), groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), pwconv(1M), roleadd(1M), roledel(1M), useradd(1M), userdel(1M), usermod(1M), getdate(3C), auth_attr(4), passwd(4), attributes(5)`
route manually manipulates the network routing tables. These tables are normally maintained by the system routing daemon, such as in.routed(1M) and in.ripngd(1M).

route supports a limited number of general options, but a rich command language. Users can specify an arbitrary request that can be delivered by means of the programmatic interface discussed in route(7P).

route uses a routing socket and the new message types RTM_ADD, RTM_DELETE, RTM_GET, and RTM_CHANGE. Only superusers can modify routing tables.

Options

- **f**: Flush the routing tables of all gateway entries. If you use the -f option in conjunction with any of the route sub-commands, route flushes the gateways before performing the sub-command. Specify the table to flush by placing the -inet or -inet6 modifier immediately after the -f option. If unspecified, flushing IPv4 (-inet) routes is the default.
- **n**: Prevent attempts to print host and network names symbolically when reporting actions. This option is useful when name servers are unavailable.
- **v**: Print additional details in verbose mode.
- **q**: Suppress all output.

Sub-commands

The following sub—commands are supported:

add

Add a route.

delete

Delete a specific route.

flush

Remove all gateway entries from the routing table.

get

Look up and display the route for a destination.

monitor

Continuously report any changes to the routing information base, routing lookup misses, or suspected network partitionings.

The add and delete sub-commands have the following syntax:

route [ -fnvq ] cmd destination gateway [metric/netmask]
where *cmd* is *add* or *delete*, *destination* is the destination host or network, and *gateway* is the next-hop intermediary through which packets should be routed. Modifiers described in OPERANDS can be placed anywhere on the command line.

The *get* and *change* sub-commands have the following syntax:

```
route [ -fnvq ] cmd destination [gateway [metric/netmask]]
```

where *cmd* is *get* or *change*, *destination* is the destination host or network, and *gateway* is the next-hop intermediary through which packets should be routed. Modifiers described in OPERANDS can be placed anywhere on the command line.

The *monitor* sub-command has the following syntax:

```
route monitor [ -inet | -inet6 ]
```

*route* executes its sub-commands on routes to destinations by way of gateways.

By default, destination and gateway addresses are interpreted as IPv4 addresses. All symbolic names are tried first as a host name, using *getipnodebyname* (3SOCKET). If this lookup fails in the AF_INET case, *getnetbyname* (3SOCKET) interprets the name as that of a network.

Including an optional modifier on the command line before the address changes how the *route* sub-command interprets it.

The following modifiers are supported:

- **-inet** Force the address to be interpreted as an IPv4 address, that is, under the AF_INET address family.
- **-inet6** Force the address to be interpreted as an IPv6 address, that is, under the AF_INET6 address family.

For IPv4 addresses, routes to a particular host are by default distinguished from those to a network by interpreting the Internet address specified as the destination. If the destination has a *local address part* (that is, the portion not covered by the netmask) of 0, or if the destination is resolved as the symbolic name of a network, then the route is assumed to be to a network; otherwise, it is presumed to be a route to a host.

You can force this selection by using one of the following modifiers:

- **-host** Force the destination to be interpreted as a host.
- **-net** Force the destination to be interpreted as a network.

For example:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Destination Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.32</td>
<td>-host 128.0.0.32</td>
</tr>
</tbody>
</table>
Two modifiers avoid confusion between addresses and keywords (for example, host used as a symbolic host name). You can distinguish a destination by preceding it with the -dst modifier. You can distinguish a gateway address by using the -gateway modifier. If the destination is directly reachable by way of an interface requiring no intermediary IP router to act as a gateway, this can be indicated by using the -interface or -iface modifier.

In the following example, the route does not refer to an external gateway (router), but rather to one of the machine’s interfaces. Packets with IP destination addresses matching the destination and mask on such a route are sent out on the interface identified by the gateway address. For interfaces using the ARP protocol, this type of route is used to specify that all matching destinations are local to the physical link. That is, a host could be configured to ARP for all addresses, without regard to the configured interface netmask, by adding a default route using this command. For example:

```bash
example# route add default hostname -interface
```

where gateway address `hostname` is the name or IP address associated with the network interface over which all matching packets should be sent. On a host with a single network interface, `hostname` is usually the same as the `nodename` returned by the `uname -n` command. See `uname(1)`.

For backward compatibility with older systems, directly reachable routes can also be specified by placing a 0 after the gateway address:

```bash
example# route add default hostname 0
```

This value was once a route metric, but this metric is no longer used. If the value is specified as 0, then the destination is directly reachable (equivalent to specifying -interface). If it is non-zero but cannot be interpreted as a subnet mask, then a gateway is used (default).

With the AF_INET address family or an IPv4 address, a separate subnet mask can be specified. This can be specified in one of the following ways:

- IP address following the gateway address. This is typically specified in decimal dot notation as for `inet_addr(3SOCKET)` rather than in symbolic form.
- IP address following the -netmask qualifier.
- Slash character and a decimal length appended to the destination address.
If a subnet mask is not specified, the mask used is the subnet mask of the output interface selected by the gateway address, if the classful network of the destination is the same as the classful network of the interface. Otherwise, the classful network mask for the destination address is used.

Each of the following examples creates an IPv4 route to the destination 192.0.2.32 subnet with a subnet mask of 255.255.255.224:

example# route add 192.0.2.32/27 somegateway
example# route add 192.0.2.32 -netmask 255.255.255.224 somegateway
example# route add 192.0.2.32 somegateway 255.255.255.224

For IPv6, only the slash format is accepted. The following example creates an IPv6 route to the destination 3ffe:: with a netmask of 16 one-bits followed by 112 zero-bits.

example# route add -inet6 3ffe::/16 somegateway

In cases where the gateway does not uniquely identify the output interface (for example, when several interfaces have the same address), you can use the -ifp ifname modifier to specify the interface by name. For example, -ifp lo0 associates the route with the lo0 interface.

Routes have associated flags that influence operation of the protocols when sending to destinations matched by the routes. These flags can be set (and in some cases cleared, indicated by ~) by including the following modifiers on the command line:

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-interface</td>
<td>~RTF_GATEWAY</td>
<td>Destination is directly reachable</td>
</tr>
<tr>
<td>-iface</td>
<td>~RTF_GATEWAY</td>
<td>Alias for interface modifier</td>
</tr>
<tr>
<td>-static</td>
<td>RTF_STATIC</td>
<td>Manually added route</td>
</tr>
<tr>
<td>-nostatic</td>
<td>~RTF_STATIC</td>
<td>Pretend route was added by kernel or routing daemon</td>
</tr>
<tr>
<td>-reject</td>
<td>RTF_REJECT</td>
<td>Emit an ICMP unreachable when matched</td>
</tr>
<tr>
<td>-blackhole</td>
<td>RTF_BLACKHOLE</td>
<td>Silently discard packets during updates</td>
</tr>
<tr>
<td>-proto1</td>
<td>RTF_PROTO1</td>
<td>Set protocol specific routing flag #1</td>
</tr>
<tr>
<td>-proto2</td>
<td>RTF_PROTO2</td>
<td>Set protocol specific routing flag #2</td>
</tr>
<tr>
<td>-private</td>
<td>RTF_PRIVATE</td>
<td>Do not advertise this route</td>
</tr>
<tr>
<td>-multirt</td>
<td>RTF_MULTIRT</td>
<td>Creates the specified redundant route</td>
</tr>
<tr>
<td>-setsrc</td>
<td>RTF_SETSRC</td>
<td>Assigns the default source address</td>
</tr>
</tbody>
</table>
The optional modifiers -rtt, -rttvar, -sendpipe, -recvpipe, -mtu, -hopcount, -expire, and -ssthresh provide initial values to quantities maintained in the routing entry by transport level protocols, such as TCP. These can be individually locked either by preceding each modifier to be locked by the -lock meta-modifier, or by specifying that all ensuing metrics can be locked by the -lockrest meta-modifier.

Some transport layer protocols can support only some of these metrics. The following optional modifiers are supported:

- **expire** — Lifetime for the entry. This optional modifier is not currently supported.
- **hopcount** — Maximum hop count. This optional modifier is not currently supported.
- **mtu** — Maximum MTU in bytes.
- **recvpipe** — Receive pipe size in bytes.
- **rtt** — Round trip time in microseconds.
- **rttvar** — Round trip time variance in microseconds.
- **sendpipe** — Send pipe size in bytes.
- **ssthresh** — Send pipe size threshold in bytes.

### Compatibility

The modifiers host and net are taken to be equivalent to -host and -net. To specify a symbolic address that matches one of these names, use the dst or gateway keyword to distinguish it. For example: -dst host

The following two flags are also accepted for compatibility with older systems, but have no effect.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>-cloning</td>
<td>RTF_CLONING</td>
</tr>
<tr>
<td>-xresolve</td>
<td>RTF_XRESOLVE</td>
</tr>
</tbody>
</table>

The -ifa hostname modifier is also accepted, but has no effect.

### FILES

- /etc/defaultrouter — List of default routers
- /etc/hosts — List of host names and net addresses
- /etc/networks — List of network names and addresses
route(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
uname(1), in.ripngd(1M), in.routed(1M), netstat(1M), routed(1M), ioctl(2),
getipnodebyname(3SOCKET), getnetbyname(3SOCKET), inet_addr(3SOCKET),
defaultrouter(4), hosts(4), networks(4), attributes(5), ARP(7P), ip(7P),
route(7P), routing(7P)

DIAGNOSTICS
add [ host | network ] destination:gateway flags
The specified route is being added to the tables. The values printed are from the
routing table entry supplied in the ioctl(2) call. If the gateway address used was
not the primary address of the gateway (the first one returned by
getipnodebyname(3SOCKET)) the gateway address is printed numerically as
well as symbolically.
delete [ host | network ] destination:gateway flags
change [ host | network ] destination:gateway flags
As add, but when deleting or changing an entry.
destination done
When the -f flag is specified, or the flush sub-command is used, each routing
table entry deleted is indicated with a message of this form.

Network is unreachable
An attempt to add a route failed because the gateway listed was not on a
directly-connected network. Give the next-hop gateway instead.

not in table
A delete operation was attempted for an entry that is not in the table.

destination exists
An add operation was attempted for a route that already exists in the kernel.

routing table overflow
An operation was attempted, but the system was unable to allocate memory to
create the new entry.

NOTES
Specifying that destinations are local (with the -interface modifier) assumes that
the routers implement proxy ARP, meaning that they respond to ARP queries for all
reachable destinations. Normally, using either router discovery or RIP is more reliable
and scalable than using proxy ARP. See in.routed(1M) for information related to
RIP.

Combining the all destinations are local route with subnet or network routes can lead
to unpredictable results. The search order as it relates to the all destinations are local
route are undefined and can vary from release to release.
rpcbind – universal addresses to RPC program number mapper

SYNOPSIS
rpcbind [-d] [-w]

DESCRIPTION
rpcbind is a server that converts RPC program numbers into universal addresses. It must be running on the host to be able to make RPC calls on a server on that machine.

When an RPC service is started, it tells rpcbind the address at which it is listening, and the RPC program numbers it is prepared to serve. When a client wishes to make an RPC call to a given program number, it first contacts rpcbind on the server machine to determine the address where RPC requests should be sent.

rpcbind should be started before any other RPC service. Normally, standard RPC servers are started by port monitors, so rpcbind must be started before port monitors are invoked.

When rpcbind is started, it checks that certain name-to-address translation-calls function correctly. If they fail, the network configuration databases may be corrupt. Since RPC services cannot function correctly in this situation, rpcbind reports the condition and terminates.

rpcbind can only be started by the super-user.

OPTIONS
The following options are supported:
-d Run in debug mode. In this mode, rpcbind will not fork when it starts, will print additional information during operation, and will abort on certain errors. With this option, the name-to-address translation consistency checks are shown in detail.
-w Do a warm start. If rpcbind aborts or terminates on SIGINT or SIGTERM, it will write the current list of registered services to /tmp/portmap.file and /tmp/rpcbind.file. Starting rpcbind with the -w option instructs it to look for these files and start operation with the registrations found in them. This allows rpcbind to resume operation without requiring all RPC services to be restarted.

FILES
/tmp/portmap.file
/tmp/rpcbind.file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
rpcinfo(1M), rpcbind(3NSL), attributes(5)
NOTES

Terminating `rpcbind` with SIGKILL will prevent the warm-start files from being written.

All RPC servers must be restarted if the following occurs: `rpcbind` crashes (or is killed with SIGKILL) and is unable to write the warm-start files; `rpcbind` is started without the `-w` option after a graceful termination; or, the warm-start files are not found by `rpcbind`. 
rpc.bootparamd(1M)

NAME
rpc.bootparamd, bootparamd – boot parameter server

SYNOPSIS
/usr/sbin/rpc.bootparamd [-d]

DESCRIPTION
rpc.bootparamd is a server process that provides information from a bootparams database to diskless clients at boot time. See bootparams(4)

The source for the bootparams database is determined by the nsswitch.conf(4) file (on the machine running the rpc.bootparamd process).

The rpc.bootparamd program can be invoked either by inetd(1M) or directly from the command line.

OPTIONS
-d Display debugging information.

FILES
/etc/bootparams boot parameter database
/etc/nsswitch.conf configuration file for the name-service switch

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbsu</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), bootparams(4), nsswitch.conf(4), attributes(5)

NOTES
A diskless client requires service from at least one rpc.bootparamd process running on a server that is on the same IP subnetwork as the diskless client.

Some routines that compare hostnames use case-sensitive string comparisons; some do not. If an incoming request fails, verify that the case of the hostname in the file to be parsed matches the case of the hostname called for, and attempt the request again.
rpcinfo(1M)

NAME
rpcinfo – report RPC information

SYNOPSIS
rpcinfo [-m | -s] [host]
rpcinfo -p [host]
rpcinfo -T transport host prognum [versnum]
rpcinfo -l [-T transport] host prognum versnum
rpcinfo [-n portnum] -u host prognum [versnum]
rpcinfo [-n portnum] -t host prognum [versnum]
rpcinfo -a serv_address -T transport prognum [versnum]
rpcinfo -b [-T transport] prognum versnum
rpcinfo -d [-T transport] prognum versnum

description
rpcinfo makes an RPC call to an RPC server and reports what it finds.

In the first synopsis, rpcinfo lists all the registered RPC services with rpcbind on host. If host is not specified, the local host is the default. If -s is used, the information is displayed in a concise format.

In the second synopsis, rpcinfo lists all the RPC services registered with rpcbind, version 2. Note that the format of the information is different in the first and the second synopsis. This is because the second synopsis is an older protocol used to collect the information displayed (version 2 of the rpcbind protocol).

The third synopsis makes an RPC call to procedure 0 of prognum and versnum on the specified host and reports whether a response was received. transport is the transport which has to be used for contacting the given service. The remote address of the service is obtained by making a call to the remote rpcbind.

The prognum argument is a number that represents an RPC program number (see rpc(4)).

If a versnum is specified, rpcinfo attempts to call that version of the specified prognum. Otherwise, rpcinfo attempts to find all the registered version numbers for the specified prognum by calling version 0, which is presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely high version number instead, and attempts to call each registered version. Note that the version number is required for -b and -d options.

The EXAMPLES section describes other ways of using rpcinfo.

options
- T transport Specify the transport on which the service is required. If this option is not specified, rpcinfo uses the transport specified in the NETPATH environment variable, or if that is unset or NULL, the transport in the netconfig(4) database is used. This is a generic
option, and can be used in conjunction with other options as shown in the SYNOPSIS.

-a **serv_address**

Use **serv_address** as the (universal) address for the service on **transport** to ping procedure 0 of the specified **prognum** and report whether a response was received. The -T option is required with the -a option. If **versnum** is not specified, **rpcinfo** tries to ping all available version numbers for that program number. This option avoids calls to remote **rpcbind** to find the address of the service. The **serv_address** is specified in universal address format of the given transport.

-b

Make an RPC broadcast to procedure 0 of the specified **prognum** and **versnum** and report all hosts that respond. If **transport** is specified, it broadcasts its request only on the specified transport. If broadcasting is not supported by any transport, an error message is printed. Use of broadcasting should be limited because of the potential for adverse effect on other systems.

-d

Delete registration for the RPC service of the specified **prognum** and **versnum**. If **transport** is specified, unregister the service on only that transport, otherwise unregister the service on all the transports on which it was registered. Only the owner of a service can delete a registration, except the superuser, who can delete any service.

-l

Display a list of entries with a given **prognum** and **versnum** on the specified **host**. Entries are returned for all transports in the same protocol family as that used to contact the remote **rpcbind**.

-m

Display a table of statistics of **rpcbind** operations on the given **host**. The table shows statistics for each version of **rpcbind** (versions 2, 3 and 4), giving the number of times each procedure was requested and successfully serviced, the number and type of remote call requests that were made, and information about RPC address lookups that were handled. This is useful for monitoring RPC activities on **host**.

-n **portnum**

Use **portnum** as the port number for the -t and -u options instead of the port number given by **rpcbind**. Use of this option avoids a call to the remote **rpcbind** to find out the address of the service. This option is made obsolete by the -a option.
Probe rpcbind on host using version 2 of the rpcbind protocol, and display a list of all registered RPC programs. If host is not specified, it defaults to the local host. This option is not useful for IPv6; use -s (see below) instead. Note that version 2 of the rpcbind protocol was previously known as the portmapper protocol.

Display a concise list of all registered RPC programs on host. If host is not specified, it defaults to the local host.

Make an RPC call to procedure 0 of prognum on the specified host using TCP, and report whether a response was received. This option is made obsolete by the -T option as shown in the third synopsis.

Make an RPC call to procedure 0 of prognum on the specified host using UDP, and report whether a response was received. This option is made obsolete by the -T option as shown in the third synopsis.

EXAMPLES

EXAMPLE 1 RPC services.

To show all of the RPC services registered on the local machine use:

different% rpcinfo

to show all of the RPC services registered with rpcbind on the machine named klaxon use:

different% rpcinfo klaxon

The information displayed by the above commands can be quite lengthy. Use the -s option to display a more concise list:

different% rpcinfo -s klaxon

<table>
<thead>
<tr>
<th>program</th>
<th>vrsn</th>
<th>netid(s)</th>
<th>service</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>2,3,4</td>
<td>tcp,udp,ticlts,ticots,ticotsord</td>
<td>rpcbind</td>
<td>superuser</td>
</tr>
<tr>
<td>100008</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>walld</td>
<td>superuser</td>
</tr>
<tr>
<td>100002</td>
<td>2,1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>rusersd</td>
<td>superuser</td>
</tr>
<tr>
<td>100001</td>
<td>2,3,4</td>
<td>ticotsord,ticots,tcp,ticlts,udp</td>
<td>rstatd</td>
<td>superuser</td>
</tr>
<tr>
<td>100012</td>
<td>1</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>sprayd</td>
<td>superuser</td>
</tr>
<tr>
<td>100007</td>
<td>3</td>
<td>ticotsord,ticots,ticlts,udp,tcp</td>
<td>ybind</td>
<td>superuser</td>
</tr>
<tr>
<td>100029</td>
<td>1</td>
<td>ticotsord,ticots,ticlts</td>
<td>keyserv</td>
<td>superuser</td>
</tr>
</tbody>
</table>
EXAMPLE 1 RPC services.  (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Program</th>
<th>Version</th>
<th>Attributes</th>
<th>Type</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>100078</td>
<td>ticotsord, ticots, ticlts</td>
<td>-</td>
<td></td>
<td>superuser</td>
<td></td>
</tr>
<tr>
<td>100024</td>
<td>ticotsord, ticots, ticlts, udp, tcp</td>
<td>status</td>
<td></td>
<td>superuser</td>
<td></td>
</tr>
<tr>
<td>100021</td>
<td>ticotsord, ticots, ticlts, udp, tcp</td>
<td>nlockmgr</td>
<td></td>
<td>superuser</td>
<td></td>
</tr>
<tr>
<td>100020</td>
<td>ticotsord, ticots, ticlts, udp, tcp</td>
<td>llockmgr</td>
<td></td>
<td>superuser</td>
<td></td>
</tr>
</tbody>
</table>

To show whether the RPC service with program number `prognum` and version `versnum` is registered on the machine named `klaxon` for the transport TCP use:

```
example% rpcinfo -T tcp klaxon prognum versnum
```

To show all RPC services registered with version 2 of the `rpcbind` protocol on the local machine use:

```
example% rpcinfo -p
```

To delete the registration for version 1 of the `walld` (program number `100008`) service for all transports use:

```
example# rpcinfo -d 100008 1
```

or

```
example# rpcinfo -d walld 1
```

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

`rpcbind(1M), rpc(3NSL), netconfig(4), rpc(4), attributes(5)`
rpc.metad(1M)

NAME  rpc.metad – remote metaset services

SYNOPSIS  /usr/sbin/rpc.metad

DESCRIPTION  rpc.metad is an rpc(4) daemon (functioning as a server process) that is used to manage local copies of metadevice diskset information. The rpc.metad daemon is invoked by inetd(1M).

EXIT STATUS  The following exit values are returned:
0    Successful completion.
>0    An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO  inetd(1M), metaset(1M), rpc.metamhd(1M), rpc(3NSL), services(4), attributes(5)

Solaris Volume Manager Administration Guide
rpc.metamedd – remote mediator services

**SYNOPSIS**
/usr/sbin/rpc.metamedd

**DESCRIPTION**
rpc.metamedd is an rpc(4) server which is used to manage mediator information for use in 2-string HA configurations. The rpc.metamedd daemon is invoked by inetd(1M).

**EXIT STATUS**
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**
inetd(1M), rpc(4), services(4),
Sun Cluster documentation, Solaris Volume Manager Administration Guide
rpc.metamhd(1M)

NAME    rpc.metamhd – remote multihost disk services

SYNOPSIS /usr/sbin/rpc.metamhd

DESCRIPTION rpc.metamhd is an rpc(4) daemon (functioning as a server process) that is used to manage multi-hosted disks. The rpc.metamhd daemon is invoked by inetd(1M).

EXIT STATUS The following exit values are returned:

0       Successful completion.

>0      An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdu</td>
</tr>
</tbody>
</table>

SEE ALSO inetd(1M), metaset(1M), rpc.metad(1M), rpc(3NSL), services(4), attributes(5)

Solaris Volume Manager Administration Guide
rpc.nisd(1M)

NAME
rpc.nisd, nisd – NIS+ service daemon

SYNOPSIS
/usr/sbin/rpc.nisd [-ACDFhlv] [-Y [-B [-t netid]]] [-d dictionary]
    [-L load] [-S level] [-m mappingfile] [-x attribute=value]... [-z number]

DESCRIPTION
The rpc.nisd daemon is an RPC service that implements the NIS+ service. This
daemon must be running on all machines that serve a portion of the NIS+ namespace.

rpc.nisd is usually started from a system startup script.

The -B option causes rpc.nisd to start an auxiliary process, rpc.nisd_resolv,
which provides ypserv compatible DNS forwarding for NIS host requests.

rpc.nisd_resolv can also be started independently. See rpc.nisd_resolv(1M)
for more information on using rpc.nisd_resolv independently.

The /etc/default/rpc.nisd file contains the following default parameter settings.
See FILES.

ENABLE_NIS_YP_EMULATION
Specifies whether the server is put into NIS (YP) compatibility mode.
ENABLE_NIS_YP_EMULATION=NO is equivalent to the -Y command-line option. The default value for
ENABLE_NIS_YP_EMULATION is NO.

OPTIONS
-A
Authentication verbose mode. The daemon logs all the
authentication related activities to syslogd(1M) with
LOG_INFO priority.

-B
Provide ypserv compatible DNS forwarding for NIS
host requests. The DNS resolving process,
rpc.nisd_resolv, is started and controlled by
rpc.nisd. This option requires that the
/etc/resolv.conf file be setup for communication
with a DNS nameserver. The nslookup utility can be
used to verify communication with a DNS nameserver.
See resolv.conf(4) and nslookup(1M).

-C
Open diagnostic channel on /dev/console.

-D
Debug mode. Do not fork.

-d dictionary
Specify an alternate dictionary for the NIS+ database.
The primary use of this option is for testing. Note that
the string is not interpreted, rather it is simply passed
to the db_initialize function.

-F
Force the server to do a checkpoint of the database
when it starts up. Forced checkpoints may be required
when the server is low on disk space. This option
removes updates from the transaction log that have
propagated to all of the replicas.
rpc.nisd(1M)

- h
  Print list of options.

- L number
  Specify the “load” the NIS+ service is allowed to place on the server. The load is specified in terms of the number of child processes that the server may spawn. The value of number must be at least 1 for the callback functions to work correctly. The default is 128.

- m mappingfile
  Specify the name of a configuration file that maps NIS+ objects (especially tables and columns) to LDAP (entries and attributes). See NIS+LDAPmapping(4). The default path is /var/nis. The default mapping file is NIS+LDAPmapping. If this file exists, the rpc.nisd daemon will map data to and from LDAP. A template mapping file that covers the normal NIS+ directories and tables is installed as /var/nis/NIS+LDAPmapping.template.

  A NIS+ object must have a valid mapping entry in the mapping file in order to have data for that table read from or written to the LDAP repository.

  The rpc.nisd(4) file contains specifications for LDAP server addresses, LDAP authentication method, and the like. See NIS+LDAPmapping(4) for an overview of the setup you need to map NIS+ data to or from LDAP.

- s level
  Set the authorization security level of the service. The argument is a number between 0 and 2. By default, the daemon runs at security level 2.

  0  Security level 0 is designed to be used for testing and initial setup of the NIS+ namespace. When running at level 0, the daemon does not enforce any access controls. Any client is allowed to perform any operation, including updates and deletions.

  1  At security level 1, the daemon accepts both AUTH_SYS and AUTH_DES credentials for authenticating clients and authorizing them to perform NIS+ operations. This is not a secure mode of operation since AUTH_SYS credentials are easily forged. It should not be used on networks in which any untrusted users may potentially have access.
At security level 2, the daemon only accepts authentication using the security mechanisms configured by nisauthconf(1M). The default security mechanism is AUTH_DES. Security level 2 is the default if the -S option is not used.

-t netid
Use netid as the transport for communication between rpc.nisd and rpc.nisd_resolv. The default transport is ticots(7D) (tcp on SunOS 4.x systems).

-v
Verbose. With this option, the daemon sends a running narration of what it is doing to the syslog daemon (see syslogd(1M)) at LOG_INFO priority. This option is most useful for debugging problems with the service. See also -A option.

-x attribute=value
Specify the value of the named attribute. Attributes that control the NIS+ to LDAP mapping operation are derived as follows:

1. Retrieve from LDAP.
2. Override with values from the mappingfile, if any. See the -m option.
3. Override with values from the command line -x options.

See NIS+LDAPmapping(4) and rpc.nisd(4) for the recognized attributes and their syntax.

As a special case, you can use the nisplusLdapConfig* attributes to derive additional information from LDAP. You can only specify the nisplusLdapConfig* attributes in rpc.nisd(4) or by means of the command line.

-Y
Put the server into NIS (YP) compatibility mode. When operating in this mode, the NIS+ server will respond to NIS Version 2 requests using the version 2 protocol. Because the YP protocol is not authenticated, only those items that have read access to nobody (the unauthenticated request) will be visible through the V2 protocol. It supports only the standard Version 2 maps in this mode (see -8 option and NOTES in ypfiles(4)). See FILES.

-z number
Specify the maximum RPC record size that can be used over connection oriented transports. The default is 9000 bytes. If you specify a size less than the default value, the default value will be used instead.
ENSG 1 Setting up the NIS+ Service

The following example sets up the NIS+ service.

```bash
example$ rpc.nisd
```

EXAMPLE 2 Setting Up NIS+ Service Emulating YP With DNS Forwarding

The following example sets up the NIS+ service, emulating YP with DNS forwarding.

```bash
example$ rpc.nisd -YB
```

EXAMPLE 3 Specifying NIS+ and LDAP Mapping Information

The following example shows how to specify that all additional NIS+ and LDAP mapping information should be retrieved from DNS “dc=x,dc=y,dc=z”, from the LDAP server at IP address 1.2.3.4, port 389. The examples uses the simple authentication method and the cn=nisplusAdmin,ou=People, proxy user. The -m option is omitted for clarity in this example.

```bash
-x nisplusLDAPconfigDN=dc=x,dc=y,dc=z \
-x nisplusLDAPconfigPreferredServerList=127.0.0.1:389 \
-x nisplusLDAPconfigAuthenticationMethod=simple \
-x nisplusLDAPconfigProxyUser=cn=nisplusAdmin,ou=People, \
-x nisplusLDAPconfigProxyPassword=xyzzy
```

NETPATH

The transports that the NIS+ service will use can be limited by setting this environment variable. See netconfig(4).

FILES

- `/var/nis/data/parent.object`
  This file describes the namespace that is logically above the NIS+ namespace. The most common type of parent object is a DNS object. This object contains contact information for a server of that domain.

- `/var/nis/data/root.object`
  This file describes the root object of the NIS+ namespace. It is a standard XDR-encoded NIS+ directory object that can be modified by authorized clients using the nis_modify(3NSL) interface.

- `/etc/init.d/rpc`
  Initialization script for NIS+.

- `/etc/default/rpc.nisd`
  LDAP connection and general `rpc.nisd` configuration. You can override some of the settings by command-line options.

- `/var/nis/nis+LDAPmapping`
  Default path for LDAP mapping file. See the discussion of the `-m` option.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis_cache(1M), nisauthconf(1M), nisinit(1M), nissetup(1M),
nisLdapmaptest(1M), nslookup(1M), rpc.nisd_resolv(1M),
rpc.nispasswdd(1M), syslogd(1M), nis_modify(3NSL), NIS+LDAPmapping(4),
netconfig(4), nisfiles(4), resolv.conf(4), rpc.nisd(4), ypfiles(4),
attributes(5), ticots(7D)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
rpc.nisd_resolv(1M)

NAME     rpc.nisd_resolv, nisd_resolv - NIS+ service daemon

SYNOPSIS  
 rpc.nisd_resolv [-v | -V] [-F [-C fd]] [-t xx] [-p yy]

DESCRIPTION  rpc.nisd_resolv is an auxiliary process which provides DNS forwarding service
for NIS hosts requests to both ypser and rpc.nisd that are running in the NIS
compatibility mode. It is generally started by invoking rpc.nisd(1M) with the -B
option or ypser(1M) with the -d option. Although it is not recommended,
rpc.nisd_resolv can also be started independently with the following options.

This command requires that the /etc/resolv.conf file be setup for communication
with a DNS nameserver. The nslookup utility can be used to verify communication
with a DNS nameserver. See resolv.conf(4) and nslookup(1M).

OPTIONS  
-F    Run in foreground.
-C fd Use fd for service xprt (from nisd).
-v    Verbose. Send output to the syslog daemon.
-V    Verbose. Send output to stdout.
-t xx Use transport xx.
-p yy Use transient program# yy.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO  nslookup(1M), rpc.nisd(1M), resolv.conf(4), attributes(5)

NOTES  NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
rpc.nispasswdd(1M)

NAME
rpc.nispasswdd, nispasswdd – NIS+ password update daemon

SYNOPSIS
/usr/sbin/rpc.nispasswdd [-a attempts] [-c minutes] [-D] [-g] [-v]

DESCRIPTION
rpc.nispasswdd daemon is an ONC+ RPC service that services password update requests from nispasswd(1) and yppasswd(1). It updates password entries in the NIS+ passwd table.

rpc.nispasswdd is normally started from a system startup script after the NIS+ server (rpc.nisd(1M)) has been started. rpc.nispasswdd will determine whether it is running on a machine that is a master server for one or more NIS+ directories. If it discovers that the host is not a master server, then it will promptly exit. It will also determine if rpc.nisd(1M) is running in NIS (YP) compatibility mode (the -Y option) and will register as yppasswd for NIS (YP) clients as well.

rpc.nispasswdd will syslog all failed password update attempts, which will allow an administrator to determine whether someone was trying to "crack" the passwords.

rpc.nispasswdd has to be run by a superuser.

OPTIONS
- a attempts  Set the maximum number of attempts allowed to authenticate the caller within a password update request session. Failed attempts are syslogd(1M) and the request is cached by the daemon. After the maximum number of allowed attempts the daemon severs the connection to the client. The default value is set to 3.

- c minutes  Set the number of minutes a failed password update request should be cached by the daemon. This is the time during which if the daemon receives further password update requests for the same user and authentication of the caller fails, then the daemon will simply not respond. The default value is set to 30 minutes.

- D  Debug. Run in debugging mode.

- g  Generate DES credential. By default the DES credential is not generated for the user if they do not have one. By specifying this option, if the user does not have a credential, then one will be generated for them and stored in the NIS+ cred table.

- v  Verbose. With this option, the daemon sends a running narration of what it is doing to the syslog daemon. This option is useful for debugging problems.

EXIT STATUS
0  success
1  an error has occurred.

FILES
/etc/init.d/rpc  initialization script for NIS+
rpc.nispasswd(1M)

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO | nispasswd(1), passwd(1), yppasswd(1), rpc.nisd(1M), syslogd(1M), nsswitch.conf(4), attributes(5)

NOTES | NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
rpc.rexd, rexd – RPC-based remote execution server

/usr/sbin/rpc.rexd [-s]

rpc.rexd is the Sun RPC server for remote program execution. This daemon is started by inetd(1M) whenever a remote execution request is made.

For non-interactive programs, the standard file descriptors are connected directly to TCP connections. Interactive programs involve pseudo-terminals, in a fashion that is similar to the login sessions provided by rlogin(1). This daemon may use NFS to mount file systems specified in the remote execution request.

The following options are supported:

- **-s** Secure. When specified, requests must have valid DES credentials. If the request does not have a DES credential it is rejected. The default publickey credential is rejected. Only newer on(1) commands send DES credentials.

  If access is denied with an authentication error, you may have to set your publickey with the chkey(1) command.

  Specifying the -s option without presenting secure credentials will result in an error message: Unix too weak auth (DesONLY)!

rpc.rexd uses pam(3PAM) for account and session management. The PAM configuration policy, listed through /etc/pam.conf, specifies the modules to be used for rpc.rexd. Here is a partial pam.conf file with rpc.rexd entries for account and session management using the UNIX module.

```
opc.rexd    account requisite            pam_roles.so.1
opc.rexd    account required            pam_projects.so.1
opc.rexd    account required            pam_unix_account.so.1
opc.rexd    session required            pam_unix_session.so.1
```

If there are no entries for the rpc.rexd service, then the entries for the "other" service will be used. rpc.rexd uses the getpwuid() call to determine whether the given user is a legal user.

/dev/pts
Pseudo-terminals used for interactive mode

/etc/passwd
Authorized users

/tmp_rex/rexd??????? Temporary mount points for remote file systems

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>
SEE ALSO
chkey(1), on(1), rlogin(1), inetd(1M), pam(3PAM), inetd.conf(4), pam.conf(4),
publickey(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

DIAGNOSTICS
Diagnostic messages are normally printed on the console, and returned to the
requestor.

NOTES
Root cannot execute commands using rexd client programs such as on(1).

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
rpc.rstatd, rstatd – kernel statistics server

SYNOPSIS /usr/lib/netsvc/rstat/rpc.rstatd

DESCRIPTION rpc.rstatd is a server which returns performance statistics obtained from the kernel. rup(1) uses rpc.rstatd to collect the uptime information that it displays.

rpc.rstatd is an RPC service.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO rup(1), inetd(1M), services(4), attributes(5)
rpc.rusersd(1M)

NAME     rpc.rusersd, rusersd – network username server

SYNOPSIS /usr/lib/netsvc/rusers/rpc.rusersd

DESCRIPTION  rpc.rusersd is a server that returns a list of users on the host. The rpc.rusersd
daemon may be started by inetd(1M) or listen(1M).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO  inetd(1M), listen(1M), pmadm(1M), sacadm(1M), attributes(5)
rpc.rwalld is a server that handles rwall(1M) requests. It is implemented by calling wall(1M) on all the appropriate network machines. The rpc.rwalld daemon may be started by inetd(1M) or listen(1M).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), listen(1M), rwall(1M), wall(1M), attributes(5)
**rpc.smserverd(1M)**

**NAME**  
rpcl.smserverd – removable media device server

**SYNOPSIS**  
/usr/lib/smedia/rpc.smserverd

**DESCRIPTION**  
rpcl.smserverd is a server that handles requests from client applications, including the Volume Management daemon (vold(1M)), for access to removable media devices. In addition to vold, rmformat(1) and the CDE Filemanager (when performing removable media operations) are rpc.smserverd clients. The rpc.smserverd daemon is started by inetd(1M) when a client makes a call to a Solaris-internal library to access a SCSI, IDE, or USB device. The daemon is not started if a client attempts to access a floppy or PCMCIA device. Once started, the daemon remains active until such time as it is idle for three minutes or more.

The rpc.smserverd daemon is provided for the exclusive use of the client applications mentioned above. It has no external, customer-accessible interfaces, including no configuration file.

**ATTRIBUTES**  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

**SEE ALSO**  
inetd(1M), vold(1M), vold.conf(4), attributes(5)
rpc.sprayd is a server that records the packets sent by spray(1M). The rpc.sprayd daemon may be started by inetd(1M) or listen(1M).

The service provided by rpc.sprayd is not useful as a networking benchmark as it uses unreliable connectionless transports, (udp for example). It can report a large number of packets dropped when the drops were caused by the program sending packets faster than they can be buffered locally (before the packets get to the network medium).

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO inetd(1M), listen(1M), pmadm(1M), sacadm(1M), spray(1M), attributes(5)
rpc.yppasswdd(1M)

NAME
rpc.yppasswdd, yppasswdd – server for modifying NIS password file

SYNOPSIS

```
/usr/lib/netsvc/yp/rpc.yppasswdd [-D directory] [-nogecos]
[-noshell] [-nopw] [-m argument1 argument2...]
```

```
/usr/lib/netsvc/yp/rpc.yppasswdd [passwordfile [adjunctfile]] [-nogecos]
[-noshell] [-nopw] [-m argument1 argument2...]
```

DESCRIPTION

rpc.yppasswdd is a server that handles password change requests from
yppasswd(1). It changes a password entry in the passwd, shadow, and
security/passwd.adjunct files. The passwd and shadow files provide the basis
for the passwd.byname and passwd.byuid maps. The passwd.adjunct file
provides the basis for the passwd.adjunct.byname and passwd.adjunct.byuid
maps. Entries in the passwd, shadow or passwd.adjunct files are changed only if
the password presented by yppasswd(1) matches the encrypted password of the
entry. All password files are located in the PWDIR directory.

If the -D option is given, the passwd, shadow, or passwd.adjunct files are placed
under the directory path that is the argument to -D.

If the -noshell, -nogecos or -nopw options are given, these fields cannot be
changed remotely using chfn, chsh, or passwd(1).

If the -m option is given, a make(1) is performed in /var/yp after any of the passwd,
shadow, or passwd.adjunct files are modified. All arguments following the flag are
passed to make.

The second of the listed syntaxes is provided only for backward compatibility. If the
second syntax is used, the passwordfile is the full pathname of the password file
and adjunctfile is the full pathname of the optional passwd.adjunct file. If a
shadow file is found in the same directory as passwordfile, the shadowfile is
used as described above. Use of this syntax and the discovery of a shadowfile file
generates diagnostic output. The daemon, however, starts normally.

The first and second syntaxes are mutually exclusive. You cannot specify the full
pathname of the passwd, passwd.adjunct files and use the -D option at the same
time.

The daemon is started automatically on the master server of the passwd map by
ypstart(1M), which is invoked at boot time by the /etc/init.d/rpc script.

The server does not insist on the presence of a shadow file unless there is no -D option
present or the directory named with the -D option is /etc. In addition, a
passwd.adjunct file is not necessary. If the -D option is given, the server attempts
to find a passwd.adjunct file in the security subdirectory of the named directory.
For example, in the presence of -D /var/yp the server checks for a
/var/yp/security/passwd.adjunct file.
If only a passwd file exists, then the encrypted password is expected in the second field. If both a passwd and a passwd.adjunct file exist, the encrypted password is expected in the second field of the adjunct file with #username in the second field of the passwd file. If all three files are in use, the encrypted password is expected in the shadow file. Any deviation causes a password update to fail.

If you remove or add a shadow or passwd.adjunct file after rpc.yppasswdd has started, you must stop and restart the daemon to enable it to recognize the change. See ypstart(1m) for information on restarting the daemon.

The rpc.yppasswdd daemon considers a shell that has a name that begins with 'r' to be a restricted shell. By default, the daemon does not check whether a shell begins with an 'r'. However, you can tell it to do so by uncommenting the check_restricted_shell_name=1 line in /etc/default/yppasswdd. The result will be to restrict a user's ability to change from his default shell. See yppasswdd(4).

On start up, yppasswdd checks for the existence of a NIS to LDAP (N2L) configuration file, /var/yp/NISLDAPmapping. If the configuration file is present, the daemon runs in N2L mode. If the file is not present, yppasswdd runs in traditional, non-N2L mode.

In N2L mode, changes are written directly to the Directory Information Tree (DIT). If the changes are written successfully, the NIS map is updated. The NIS source files, passwd, shadow, and passwd.adjunct, for example, are not updated. Thus, in N2L mode, the -D option is meaningless. In N2L mode, yppasswdd propagates changes by calling yppush(1M) instead of ypmake(1M). The -m option is thus unused.

### ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
</tbody>
</table>

### SEE ALSO

make(1), passwd(1), yppasswdd(1), inetd(1M), ypmake(1M), yppush(1M), NISLDAPMapping(4), passwd(4), shadow(4), ypfiles(4), yppasswdd(4), ypserv(4), attributes(5)

### NOTES

If make has not been installed and the -m option is given, the daemon outputs a warning and proceeds, effectively ignoring the -m flag.

When using the -D option, you should make sure that the PWDIR of the /var/yp/Makefile is set accordingly.

The second listed syntax is supplied only for backward compatibility and might be removed in a future release of this daemon.
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications PLC, and cannot be used without permission.
ypupdated is a daemon that updates information in the Network Information Service (NIS). ypupdated consults the updaters(4) file in the /var/yp directory to determine which NIS maps should be updated and how to change them.

By default, the daemon requires the most secure method of authentication available to it, either DES (secure) or UNIX (insecure).

On start up, ypupdated checks for the existence of a NIS to LDAP (N2L) configuration file, /var/yp/NISLDAPmapping. If the file is present, ypupdated generates an informational message and exits. ypupdated is not supported in N2L mode.

OPTIONS
- i Accept RPC calls with the insecure AUTH_UNIX credentials. This allows programmatic updating of the NIS maps in all networks.
- s Accept only calls authenticated using the secure RPC mechanism (AUTH_DES authentication). This disables programmatic updating of the NIS maps unless the network supports these calls.

FILES
/var/yp/updaters Configuration file for rpc.ypupdated command.
/var/yp/NISLDAPmapping Configuration file for N2L.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO keyserv(1M), updaters(4), NISLDAPmapping(4), attributes(5)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

NOTES The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two services remains the same. Only the name has changed. The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications PLC, and it must not be used without permission.
NAME  rpld – x86 Network Booting RPL (Remote Program Load) Server

SYNOPSIS

/usr/sbin/rpld [-fdDMblgz] interface
/usr/sbin/rpld -a [-fdDMblgz]

DESCRIPTION

The RPL server provides network booting functionality to x86 clients by listening to boot requests from them according to the RPL protocol specifications. Boot requests can be generated by clients using the boot floppy supplied in the x86 distribution. Once the request has been received, the server validates the client and adds it to its internal service list. Subsequent requests from the client to download boot files will result in the sending of data frames from the server to the client specifying where to load the boot program in memory. When all the boot files have been downloaded, the server specifies where to start execution to initiate the boot process.

In the first synopsis, the interface parameter names the network interface upon which rpld is to listen for requests. For example:

/usr/sbin/rpld /dev/le0
/usr/sbin/rpld /dev/smc0

In the second synopsis, rpld locates all of the network interfaces present on the system and starts a daemon process for each one.

The server starts by reading the default configuration file, or an alternate configuration file if one is specified. If no configuration file can be found, internal default values will be used. Alternatively, command line options are available to override any of the values in the configuration file. After the configuration options are set, it then opens the network interface as specified in the command line and starts listening to RPL boot requests.

Network boot x86 clients have to have information pre-configured on a server for the RPL server to validate and serve them. This involves putting configuration information in both the ethers(4) and the bootparams(4) databases. The ethers database contains a translation from the physical node address to the IP address of the clients and is normally used by the RARP server. The bootparams database stores all other information needed for booting off this client, such as the number of boot files and the file names of the various boot components. Both databases can be looked up by the RPL server through NIS. See the sub-section Client Configuration for information on how to set up these databases.

To assist in the administration and maintenance of the network boot activity, there are two run-time signals that the server will accept to change some run-time parameters and print out useful status information. See the sub-section Signals for details.

The RPL server is not limited to the ability to boot only x86 clients. If properly configured, the server should be able to download any boot files to the clients.

Client Configuration

The following configuration information is specific to booting x86 clients.
In order to allow clients to boot x86 from across the network, the client's information has to be pre-configured in two databases: ethers(4) and bootparams(4). Both databases can be accessed through NIS. Refer to Solaris 9 12/03 Installation Guide for information on how to configure a diskless x86 client. The discussion contained in the rest of this section is provided for your information only and should not be performed manually.

The ethers database contains a translation table to convert the physical node address to the IP address of the client. Therefore, an IP address must be assigned to the client (if this has not been done already), the node address of the client must be obtained, and then this information needs to be entered in the ethers database.

The bulk of the configuration is done in the bootparams database. This is a free-format database that essentially contains a number of keyword-value string pairs. A number of keywords have been defined for specific purposes, like the bootparams RPC in bootparamd(1M). Three more keywords have been defined for the RPL server. They are numbootfiles, bootfile, and bootaddr. All three keywords must be in lowercase letters with no spaces before or after the equals symbol following the keyword.

- **numbootfiles**: Specifies the number of files to be downloaded to the network boot client. The format of this option is:

  numbootfiles=n

  Always use numbootfiles=3 to boot x86 across the network.

- **bootfile**: Specifies the path name of the bootfile to be downloaded and where in memory to start loading the bootfile. A complete path name should be used. For example, assuming the client's IP address is 129.181.32.15:

  bootfile=/rplboot/129.181.32.15.hw.com:45000
  bootfile=/rplboot/129.181.32.15.glue.com:35000
  bootfile=/rplboot/129.181.32.15.inetboot=8000

  The path name following the equals symbol specifies the bootfile to be downloaded, and the hex address following the colon (:) is the absolute address of the memory location to start loading that bootfile. These addresses should be in the range of 7c00 to a0000 (i.e., the base 640K range excluding the interrupt vector and BIOS data areas). Address 45000 for this hw.com bootfile is also a suggested value and if possible should not be changed. The address of 35000 for glue.com is a suggested value that, if possible, should not be changed. The address of 8000 for inetboot is an absolute requirement and should never be changed.
These files, when created following the procedures in the Solaris 9 12/03 Installation Guide are actually symbolic links to the real file to be downloaded to the client. hw.com is linked to a special driver that corresponds to the network interface card of the client. glue.com and inetboot are generic to all network boot clients.

The order of these boot file lines is not significant, but because problems have been found with certain boot PROMs, it is highly recommended that the boot file lines be ordered in descending order of the load addresses.

**bootaddr**

The absolute address in memory to start executing after all the bootfiles have been downloaded. This address should always correspond to the address where glue.com is being loaded. If possible, always use:

```
bootaddr=35000
```

### OPTIONS

The following options are supported:

- **-b background_mode**
  Specify 1 to run the server in the background and relinquish the controlling terminal, or 0 to run in the foreground without relinquishing the controlling terminal. This option corresponds to the BackGround setting in the configuration file. If you have specified that the error or warning messages be sent to standard output in the configuration file or by using the -D option above, the server cannot be run in background mode. Doing so will cause the server to exit after announcing the error.

- **-d debug_level**
  Specify a level of 0 if you do not want any error or warning messages to be generated, or a level from 1 to 9 for increasing amounts of messages. This option corresponds to the DebugLevel setting in the configuration file. The default value is 0. Note that it is best to limit the level to 8 or below; use of level 9 may generate so many debug messages that the performance of the RPL server may be impacted.

- **-D debug_destination**
  Specify 0 to send error or warning messages to standard output, 1 to syslogd, and 2 to the log file. This option corresponds to the DebugDest setting in the configuration file. The default value is 2.

- **-f config_filename**
  Use this to specify a configuration file name other than the system default /etc/rpld.conf file.

- **-g delay_granularity**
  This corresponds to the DelayGran setting in the configuration file. If retransmission requests from clients do occur, the delay granularity factor will be used to adjust the delay count for this client upwards.
or downwards. If the retransmission request is caused by data overrun, the delay count will be incremented by delay granularity units to increase the delay between data frames. If the retransmission request is caused by sending data too slowly, this will be used to adjust the delay count downwards to shorten the delay. Eventually the server will settle at the delay count value that works best with the speed of the client and no retransmission request will be needed. The default value is 2.

-1 log_filename

Specify an alternate log file name to hold the error or warning messages in connection with the -D 2 option or the configuration file DebugDest = 2 setting. This option corresponds to the LogFile setting in the configuration file. The default is /var/spool/rpld.log.

-M maximum_clients

Specify the maximum number of simultaneous network boot clients to be served. This option corresponds to the MaxClients setting in the configuration file. A value of −1 means unlimited, and the actual number will depend on available system resources. The default value is −1.

-s start_delay_count

This option corresponds to the StartDelay setting in the configuration file. Specify the number of delay units between outgoing data frames sent to clients to avoid retransmission requests from them. Using the LLC type 1 protocol, data transfer is a one-way, best-effort delivery mechanism. The server, without any type of delay mechanism, can overrun the client by sending data frames too quickly. Therefore, a variable delay is built into the server to limit the speed of sending data to the clients, thus avoiding the clients sending back retransmission requests. This value should be machine environment specific. If you have a fast server machine but slow client machines, you may want to set a large start delay count. If you have comparable server and client machines, the delay count may be set to 1. The delay is only approximate and should not be taken as an accurate measure of time. There is no specific correlation between the delay unit and the actual time of delay. The default value is 20.

-z frame_size

This option corresponds to the FrameSize setting in the configuration file. This specifies the size of the data frames used to send data to the clients. This is limited by the underlying physical medium. For
The RPL server accepts two signals to change run-time parameters and display status information, respectively:

**HANGUP** This will cause the RPL server to reread the default configuration file `/etc/rpld.conf` or an alternate configuration file if one is specified when the server is started. New values of certain parameters can be used immediately, such as `DebugLevel`, `DebugDest`, `LogFile`, `DelayGran`, and `FrameSize`. For `MaxClients`, if the server is already serving more than the new value, the server will not accept additional boot requests until the number has fallen below the `MaxClients` parameter. For `StartDelay`, this will only affect new boot requests. All the existing delay counts for the various clients in service will not be affected. Finally, the `BackGround` parameter will have no effect once the server has been running. You cannot change the mode of service without first killing the server and then restarting it.

**USR1** This signal will cause the server to dump all the parameter values and the status of each individual boot client to the destination specified by `DebugDest`.

**FILES**

- `/usr/sbin/rpld`
- `/etc/rpld.conf`
- `/var/spool/rpld.log`
- `/etc/ethers`
- `/etc/bootparams`
- `/rplboot`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWbsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`bootparamd(1M)`, `in.rarpd(1M)`, `bootparams(4)`, `ethers(4)`, `nsswitch.conf(4)`, `rpld.conf(4)`, `attributes(5)`

*Solaris 9 12/03 Installation Guide*
NAME  

rquotad – remote quota server

SYNOPSIS  

/usr/lib/nfs/rquotad

DESCRIPTION  

rquotad is an rpc(4) server which returns quotas for a user of a local file system which is mounted by a remote machine over the NFS. The results are used by quota(1M) to display user quotas for remote file systems. The rquotad daemon is normally invoked by inetd(1M).

USAGE  

See largefile(5) for the description of the behavior of rquotad when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES  

quotas  quote file at the file system root

ATTRIBUTES  

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfsu</td>
</tr>
</tbody>
</table>

SEE ALSO  

inetd(1M), quota(1M), rpc(4), services(4), attributes(5), largefile(5)

*Solaris 9 12/03 Installation Guide*
rsh(1M)

**NAME**
rsh, restricted_shell – restricted shell command interpreter

**SYNOPSIS**
```
/usr/lib/rsh [-acefhiknprstuvx] [argument...]
```

**DESCRIPTION**
`rsh` is a limiting version of the standard command interpreter `sh`, used to restrict logins to execution environments whose capabilities are more controlled than those of `sh` (see `sh(1)` for complete description and usage).

When the shell is invoked, it scans the environment for the value of the environmental variable, `SHELL`. If it is found and `rsh` is the file name part of its value, the shell becomes a restricted shell.

The actions of `rsh` are identical to those of `sh`, except that the following are disallowed:

- changing directory (see `cd(1)`),
- setting the value of `$PATH`,
- specifying path or command names containing `/`,
- redirecting output (`>` and `>>`).

The restrictions above are enforced after `.profile` is interpreted.

A restricted shell can be invoked in one of the following ways:

1. `rsh` is the file name part of the last entry in the `/etc/passwd` file (see `passwd(4)`);
2. the environment variable `SHELL` exists and `rsh` is the file name part of its value;
   the environment variable `SHELL` needs to be set in the `.login` file;
3. the shell is invoked and `rsh` is the file name part of argument 0;
4. the shell is invoke with the `-r` option.

When a command to be executed is found to be a shell procedure, `rsh` invokes `sh` to execute it. Thus, it is possible to provide to the end-user shell procedures that have access to the full power of the standard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the `.profile` (see `profile(4)`) has complete control over user actions by performing guaranteed setup actions and leaving the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, `/usr/rbin`) that can be safely invoked by a restricted shell. Some systems also provide a restricted editor, `red`.

**EXIT STATUS**
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell returns the exit status of the last command executed.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

intro(1), cd(1), login(1), rsh(1), sh(1), exec(2), passwd(4), profile(4), attributes(5)

NOTES

The restricted shell, /usr/lib/rsh, should not be confused with the remote shell, /usr/bin/rsh, which is documented in rsh(1).
rtc(1M)

NAME RTC — provide all real-time clock and GMT-lag management

SYNOPSIS /usr/sbin/rtc [-c] [-z zone-name]

DESCRIPTION On x86 systems, the RTC command reconciles the difference in the way that time is
established between UNIX and MS-DOS systems. UNIX systems utilize Greenwich
Mean Time (GMT), while MS-DOS systems utilize local time.

Without arguments, RTC displays the currently configured time zone string. The
currently configured time zone string is based on what was last recorded by RTC-z
zone-name.

The RTC command is not normally run from a shell prompt; it is generally invoked by
the system. Commands such as date(1) and rdate(1M), which are used to set the
time on a system, invoke /usr/sbin/rtc -c to ensure that daylight savings time
(DST) is corrected for properly.

OPTIONS

- c This option checks for DST and makes corrections if necessary. It is
normally run once a day by a cron job.

If there is no RTC time zone or /etc/RTC_config file, this
option will do nothing.

- z zone-name This option, which is normally run by the system at software
installation time, is used to specify the time zone in which the RTC
is to be maintained. It updates the configuration file
/etc/RTC_config with the name of the specified zone and the
current GMT lag for that zone. If there is an existingRTC_config
file, this command will update it. If not, this command will create
it.

FILES /etc/RTC_config The data file used to record the time zone and GMT
lag. This file is completely managed by
/usr/sbin/RTC, and it is read by the kernel.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO date(1), rdate(1M), attributes(5)
rtquery(1M)

NAME
rtquery – query routing daemons for their routing tables

SYNOPSIS
rtquery [-np1] [-w timeout] [-r addr] [-a secret] host...
rtquery [-t operation] host...

DESCRIPTION
The rtquery command is used to query a RIP network routing daemon,
in.routed(1M) or GateD, for its routing table by sending a request or poll
command. The routing information in any routing response packets returned is
displayed numerically and symbolically.

By default, rtquery uses the request command. When the -p option is speci-

fied, rtquery uses the poll command, an undocumented extension to the RIP protocol
supported by GateD. When querying GateD, the poll command is preferred over the
request command because the response is not subject to Split Horizon and/or
Poisoned Reverse, and because some versions of GateD do not answer the request
command. in.routed does not answer the poll command, but recognizes requests
coming from rtquery and so answers completely.

The rtquery command is also used to turn tracing on or off in in.routed.

OPTIONS
The following options are supported:

- apasswd=XXX
- a
md5_passwd=XXX | KeyID
- n
- p
- r addr
- t operation

Causes the query to be sent with the indicated cleartext or MD5 password.
Displays only the numeric network and host addresses instead of both numeric and symbolic names.
Uses the poll command to request full routing information from GateD. This is an undocumented extension RIP protocol supported only by GateD.
Asks about the route to destination addr.
Changes tracing, where operation is one of the actions listed below. Requests from processes not running with UID 0 or on distant networks are generally ignored by
the daemon except for a message in the system log. GateD is likely to ignore these debugging requests.

on=tracefile
  Turns tracing on, directing tracing into the specified file. That file must have been specified when the
daemon was started or have the name,
  /var/log/in.routed.trace.
more
  Increases the debugging level.
off
  Turns off tracing.
rtquery(1M)

dump
Dumps the daemon’s routing table to the current trace file.

-w timeout
Changes the delay for an answer from each host. By default, each host is given 15 seconds to respond.

-1
Queries using RIP version 1 instead of RIP version 2.

EXIT STATUS
The following exit values are returned:
0    Successful completion.
>0   An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWroute</td>
</tr>
</tbody>
</table>

SEE ALSO
in.routed(1M), route(1M), gateways(4), attributes(5), icmp(7P), inet(7P), udp(7P)

Routing Information Protocol, RIPv1, RFC 1058
Routing Information Protocol, RIPv2, RFC 2453, STD 0056
NAME
runacct – run daily accounting

SYNOPSIS
/usr/lib/acct/runacct  [mmdd  [state]]

DESCRIPTION
runacct is the main daily accounting shell procedure. It is normally initiated using
cron. runacct processes connect, fee, disk, and process accounting files. It also
prepares summary files for prdaily or billing purposes. runacct is distributed only
to source code licensees.

runacct takes care not to damage active accounting files or summary files in the
event of errors. It records its progress by writing descriptive diagnostic messages into
active. When an error is detected, a message is written to /dev/console, mail (see
mail(1)) is sent to root and adm, and runacct terminates. runacct uses a series of
lock files to protect against re-invocation. The files lock and lock1 are used to
prevent simultaneous invocation, and lastdate is used to prevent more than one
invocation per day.

runacct breaks its processing into separate, restartable states using statefile to
remember the last state completed. It accomplishes this by writing the state name into
statefile. runacct then looks in statefile to see what it has done and to
determine what to process next. states are executed in the following order:

SETUP      Move active accounting files into working files.
WTMPFIX    Verify integrity of wtmpx file, correcting date changes if necessary.
CONNECT    Produce connect session records in tacct.h format.
PROCESS    Convert process accounting records into tacct.h format.
MERGE      Merge the connect and process accounting records.
FEES       Convert output of chargefee into tacct.h format, merge with
            connect, and process accounting records.
DISK       Merge disk accounting records with connect, process, and fee
            accounting records.
MERGETACCT Merge the daily total accounting records in daytacct with the
            summary total accounting records in
            /var/adm/acct/sum/tacct.
CMS        Produce command summaries.
USEREXIT   Any installation dependent accounting programs can be included
            here.
CLEANUP    Clean up temporary files and exit. To restart runacct after a
            failure, first check the active file for diagnostics, then fix any
            corrupted data files, such as pacct or wtmpx. The lock, lock1,
            and lastdate files must be removed before runacct can be
            restarted. The argument mmdd is necessary if runacct is being
            restarted. mmdd specifies the month and day for which runacct
            will rerun the accounting. The entry point for processing is based

runacct(1M)
runacct(1M)

on the contents of statefile; to override this, include the desired state on the command line to designate where processing should begin.

EXAMLES

EXAMPLE 1 Starting runacct

The following example starts runacct:

example$ nohup runacct 2> /var/adm/acct/nite/fd2log &

EXAMPLE 2 Restarting runacct

The following example restarts runacct:

example$ nohup runacct 0601 2>> /var/adm/acct/nite/fd2log &

EXAMPLE 3 Restarting runacct at a Specific State

The following example restarts runacct at a specific state:

example$ nohup runacct 0601 MERGE 2>> /var/adm/acct/nite/fd2log &

FILES

/var/adm/wtmpx
  History of user access and administration information
/var/adm/pacctincr
/var/adm/acct/nite/active
/var/adm/acct/nite/daytacct
/var/adm/acct/nite/lock
/var/adm/acct/nite/lock1
/var/adm/acct/nite/lastdate
/var/adm/acct/nite/statefile

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

acctcom(1), mail(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), cron(1M), ftmp(1M), acct(2), acct(3HEAD), utmpx(4), attributes(5)

NOTES

It is not recommended to restart runacct in the SETUP state. Run SETUP manually and restart using:
runacct(1M)

runacct  mmdd  WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it will not be complete.

The runacct command can process a maximum of

- 6000 distinct sessions
- 1000 distinct terminal lines
- 2000 distinct login names

during a single invocation of the command. If at some point the actual number of any one of these items exceeds the maximum, the command will not succeed.

Do not invoke runacct at the same time as ckpacct, as there may be a conflict if both scripts attempt to execute turnacct switch simultaneously.
rwall(1M)

NAME
rwall – write to all users over a network

SYNOPSIS
/usr/sbin/rwall hostname...
/usr/sbin/rwall -n netgroup...
/usr/sbin/rwall -h hostname -n netgroup

DESCRIPTION
rwall reads a message from standard input until EOF. It then sends this message, preceded by the line:

    Broadcast Message...

to all users logged in on the specified host machines. With the -n option, it sends to the specified network groups.

OPTIONS
- n netgroup     Send the broadcast message to the specified network groups.
- h hostname     Specify the hostname, the name of the host machine.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

SEE ALSO
inetd(1M), listen(1M), pmadm(1M), sacadm(1M), wall(1M), attributes(5)

NOTES
The timeout is fairly short to allow transmission to a large group of machines (some of which may be down) in a reasonable amount of time. Thus the message may not get through to a heavily loaded machine.
The Service Access Controller (SAC) is the overseer of the server machine. It is started when the server machine enters multiuser mode. The SAC performs several important functions as explained below.

When sac is invoked, it first looks for the per-system configuration script /etc/saf/_sysconfig. sac interprets _sysconfig to customize its own environment. The modifications made to the SAC environment by _sysconfig are inherited by all the children of the SAC. This inherited environment may be modified by the children.

After it has interpreted the _sysconfig file, the sac reads its administrative file /etc/saf/_sactab. _sactab specifies which port monitors are to be started. For each port monitor to be started, sac forks a child (see fork(2)) and creates a utmpx entry with the type field set to LOGIN_PROCESS. Each child then interprets its per-port monitor configuration script /etc/saf/pmtag/_config, if the file exists. These modifications to the environment affect the port monitor and will be inherited by all its children. Finally, the child process execs the port monitor, using the command found in the _sactab entry. (See sacadm; this is the command given with the -c option when the port monitor is added to the system.)

The -t option sets the frequency with which sac polls the port monitors on the system. This time may also be thought of as half of the maximum latency required to detect that a port monitor has failed and that recovery action is necessary.

The Service Access Controller represents the administrative point of control for port monitors. Its administrative tasks are explained below.

When queried (sacadm with either -l or -L), the Service Access Controller returns the status of the port monitors specified, which sacadm prints on the standard output. A port monitor may be in one of six states:

- **ENABLED**: The port monitor is currently running and is accepting connections. See sacadm(1M) with the -e option.
- **DISABLED**: The port monitor is currently running and is not accepting connections. See sacadm with the -d option, and see NOTRUNNING, below.
- **STARTING**: The port monitor is in the process of starting up. STARTING is an intermediate state on the way to ENABLED or DISABLED.
- **FAILED**: The port monitor was unable to start and remain running.
- **STOPPING**: The port monitor has been manually terminated but has not completed its shutdown procedure. STOPPING is an intermediate state on the way to NOTRUNNING.
The port monitor is not currently running. (See `sacadm` with `-k`.) This is the normal “not running” state. When a port monitor is killed, all ports it was monitoring are inaccessible. It is not possible for an external user to tell whether a port is not being monitored or the system is down. If the port monitor is not killed but is in the `DISABLED` state, it may be possible (depending on the port monitor being used) to write a message on the inaccessible port telling the user who is trying to access the port that it is disabled. This is the advantage of having a `DISABLED` state as well as the `NOTRUNNING` state.

When a port monitor terminates, the SAC removes the `utmpx` entry for that port monitor.

The SAC receives all requests to enable, disable, start, or stop port monitors and takes the appropriate action.

The SAC is responsible for restarting port monitors that terminate. Whether or not the SAC will restart a given port monitor depends on two things:

- The restart count specified for the port monitor when the port monitor was added by `sacadm`; this information is included in `/etc/saf/pmtag/_sactab`.
- The number of times the port monitor has already been restarted.

### SECURITY

`sac` uses `pam(3PAM)` for session management. The PAM configuration policy, listed through `/etc/pam.conf`, specifies the session management module to be used for `sac`. Here is a partial `pam.conf` file with entries for `sac` using the UNIX session management module.

```
sac session required pam_unix_session.so
```

If there are no entries for the `sac` service, then the entries for the "other" service will be used.

### OPTIONS

```
-t sanity_interval
```

Sets the frequency (`sanity_interval`) with which `sac` polls the port monitors on the system.

### FILES

```
/etc/saf/_sactab
/etc/saf/_sysconfig
/var/adm/utmpx
/var/saf/_log
```

### ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
SEE ALSO pmadm(1M), sacadm(1M), fork(2) pam(3PAM), pam.conf(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

NOTES The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
NAME  
sacadm – service access controller administration

SYNOPSIS  
sacadm -a -p pmtag -t type -c cmd -v ver [-f dx] [-n count] [-y comment]  
[-z script]

sacadm -r -p pmtag
sacadm -s -p pmtag
sacadm -k -p pmtag
sacadm -e -p pmtag
sacadm -d -p pmtag

sacadm -l [-p pmtag | -t type]

sacadm -L [-p pmtag | -t type]

sacadm -g -p pmtag [-z script]

sacadm -G [-z script]

sacadm -x [-p pmtag]

DESCRIPTION  
sacadm is the administrative command for the upper level of the Service Access  
Facility hierarchy (port monitor administration). sacadm performs the following  
functions:

- adds or removes a port monitor
- starts or stops a port monitor
- enables or disables a port monitor
- installs or replaces a per-system configuration script
- installs or replaces a per-port monitor configuration script
- prints requested port monitor information

Requests about the status of port monitors (-l and -L) and requests to print per-port  
monitor and per-system configuration scripts (-g and -G without the -z option) may  
be executed by any user on the system. Other sacadm commands may be executed  
only by the super-user.

OPTIONS  

-a  Add a port monitor. When adding a port monitor, sacadm creates  
the supporting directory structure in /etc/saf and /var/saf  
and adds an entry for the new port monitor to  
/etc/saf/_sactab. The file _sactab already exists on the  
delivered system. Initially, it is empty except for a single line,  
which contains the version number of the Service Access  
Controller. Unless the command line that adds the new port  
monitor includes the -f option with the -x argument, the new  
port monitor will be started. Because of the complexity of the  
options and arguments that follow the -a option, it may be  
convenient to use a command script or the menu system to add  
port monitors.
Execute the command string *cmd* to start a port monitor. The `-c` option may be used only with a `-a`. A `-a` option requires a `-c`.

Disable the port monitor *pmtag*.

Enable the port monitor *pmtag*.

The `-f` option specifies one or both of the following two flags which are then included in the flags field of the `_sactab` entry for the new port monitor. If the `-f` option is not included on the command line, no flags are set and the default conditions prevail. By default, a port monitor is started. A `-f` option with no following argument is illegal.

- `d` Do not enable the new port monitor.
- `x` Do not start the new port monitor.

The `-g` option is used to request output or to install or replace the per-port monitor configuration script `/etc/saf/pmtag/_config`. `-g` requires a `-p` option. The `-g` option with only a `-p` option prints the per-port monitor configuration script for port monitor *pmtag*. The `-g` option with a `-p` option and a `-z` option installs the file script as the per-port monitor configuration script for port monitor *pmtag*. Other combinations of options with `-g` are invalid.

The `-G` option is used to request output or to install or replace the per-system configuration script `/etc/saf/_sysconfig`. The `-G` option by itself prints the per-system configuration script. The `-G` option in combination with a `-z` option installs the file script as the per-system configuration script. Other combinations of options with `-G` option are invalid.

Stop port monitor *pmtag*.

The `-l` option is used to request port monitor information. The `-l` by itself lists all port monitors on the system. The `-l` option in combination with the `-p` option lists only the port monitor specified by *pmtag*. A `-l` in combination with the `-t` option lists all port monitors of type *type*. Any other combination of options with the `-l` option is invalid.

The `-L` option is identical to the `-l` option except that the output appears in a condensed format.

Set the restart count to *count*. If a restart count is not specified, count is set to 0. A count of 0 indicates that the port monitor is not to be restarted if it fails.

Specifies the tag associated with a port monitor.

Remove port monitor *pmtag*. `sacadm` removes the port monitor entry from `/etc/saf/_sactab`. If the removed port monitor is
not running, then no further action is taken. If the removed port
monitor is running, the Service Access Controller (SAC) sends it
SIGTERM to indicate that it should shut down. Note that the port
monitor’s directory structure remains intact.

- s  Start a port monitor. The SAC starts the port monitor pmtag.
- t type  Specifies the port monitor type.
- v ver  Specifies the version number of the port monitor. This version
number may be given as

-v 'pmspec -V'

where pmspec is the special administrative command for port
monitor pmtag. This special command is ttyadm for ttymon and
nlsadmin for listen. The version stamp of the port monitor is
known by the command and is returned when pmspec is invoked
with a -V option.

- x  The -x option by itself tells the SAC to read its database
file (_sactab). The -x option with the -p option tells port monitor
pmtag to read its administrative file.

- y comment  Include comment in the _sactab entry for port monitor pmtag.
- z script  Used with the -g and -G options to specify the name of a file
that contains a configuration script. With the -g option, script is a
per-port monitor configuration script; with -G it is a per-system
configuration script. Modifying a configuration script is a
three-step procedure. First a copy of the existing script is made (-g
or -G). Then the copy is edited. Finally, the copy is put in place
over the existing script (-g or -G with -z).

OUTPUT  If successful, sacadm will exit with a status of 0. If sacadm fails for any reason, it will
exit with a nonzero status. Options that request information will write the information
on the standard output. In the condensed format (-L), port monitor information is
printed as a sequence of colon-separated fields; empty fields are indicated by two
successive colons. The standard format (-l) prints a header identifying the columns,
and port monitor information is aligned under the appropriate headings. In this
format, an empty field is indicated by a hyphen. The comment character is #.

EXAMPLES  EXAMPLE 1  A sample output of the sacadm command.
The following command line adds a port monitor. The port monitor tag is npack; its
type is listen; if necessary, it will restart three times before failing; its administrative
command is nlsadmin; and the configuration script to be read is in the file script:

sacadm -a -p npack -t listen -c /usr/lib/saf/listen npack
-v 'nlsadmin -V' -n 3 -z script

Remove a port monitor whose tag is pmtag:

sacadm -r -p pmtag
EXAMPLE 1 A sample output of the `sacadm` command. (Continued)

Start the port monitor whose tag is `pmtag`:
```bash
sacadm -s -p pmtag
```

Stop the port monitor whose tag is `pmtag`:
```bash
sacadm -k -p pmtag
```

Enable the port monitor whose tag is `pmtag`:
```bash
sacadm -e -p pmtag
```

Disable the port monitor whose tag is `pmtag`:
```bash
sacadm -d -p pmtag
```

List status information for all port monitors:
```bash
sacadm -l
```

List status information for the port monitor whose tag is `pmtag`:
```bash
sacadm -l -p pmtag
```

List the same information in condensed format:
```bash
sacadm -L -p pmtag
```

List status information for all port monitors whose type is `listen`:
```bash
sacadm -l -t listen
```

Replace the per-port monitor configuration script associated with the port monitor whose tag is `pmtag` with the contents of the file `file.config`:
```bash
sacadm -g -p pmtag -z file.config
```

**FILES**

- `/etc/saf/_sactab`
- `/etc/saf/_sysconfig`
- `/etc/saf/pmtag/_config`

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`pmdadm(1M), sac(1M), doconfig(3NSL), attributes(5)`
sadmind is the daemon used by Solstice AdminSuite applications to perform distributed system administration operations.

The sadmind daemon is started automatically by the inetd daemon whenever a request to invoke an operation is received. The sadmind daemon process continues to run for 15 minutes after the last request is completed, unless a different idle-time is specified with the -i command line option. The sadmind daemon may be started independently from the command line, for example, at system boot time. In this case, the -i option has no effect; sadmind continues to run, even if there are no active requests.

The sadmind daemon process can be configured to write tracing information into a log file by specifying the -c and -l command line options. The -c option specifies a comma-separated list of keywords indicating the types of information to be logged. The following keywords may be useful to administrators:

- **Errors** Includes messages about errors that occurred during the daemon execution.
- **Requests** Includes messages about which operations sadmind invoked and when.
- **System-Info** Includes messages about when the sadmind daemon was started and stopped.
- ***** Includes all possible log messages.

The -l option enables logging and optionally specifies the path and file name of the log file. If no log file is specified, the default log file /var/adm/admin.log is used.

The following options are supported:

- **-c keywords** Specify the types of information to be logged as a comma-separated list of keywords. The default is to log all types of messages.
- **-i secs** Specify the number of seconds for sadmind to stay up after the last request is completed. The default is 15 minutes (900 seconds). If secs is 0 or over 10,000,000, sadmind stays up forever. -i only applies when sadmind is started by the inetd daemon. You may want sadmind to run permanently (or for extended durations) on systems that are frequently administered by applications using sadmind (for example, a server managed through Host Manager) to improve application performance.
Enable logging and optionally define the path name to the distributed system administration log file. The default log file is: /var/adm/admin.log

Define the path name to the OpenWindows home directory. If this option is not specified, the sadmind daemon will use the OpenWindows home directory defined in the OPENWINHOME environment variable, if defined; the home directory specified in the /etc/OPENWINHOME file, if it exists; or the default directory /usr/openwin. When the sadmind daemon is started by the inetd daemon, the environment variable OPENWINHOME is typically not defined. If the OpenWindows home directory is not one of the path names specified (/usr/openwin or in the file /etc/OPENWINHOME), the -O option must be added to the sadmind entry in the inetd.conf configuration file.

Define the level of security to be used by the sadmind daemon when checking a client’s right to perform an operation on the server system. Security level specifies the authentication mechanism used to provide and check the client’s identity. The client’s identity must be authenticated by the specified mechanism for sadmind to accept his or her request. The system-wide authentication requirements set by the security level may take precedence over any operation-specific requirements. Consequently, the security level can be used system-wide to ensure that all operations meet minimum authentication requirements, regardless of the requirements assigned specifically to an operation. In addition, the security level determines whether sadmind will perform authorization access control checking.

Security level may be one of the following:

0  Set authentication type to NONE. All clients’ user and group identities are set to the nobody identity by sadmind (see Solstice AdminSuite 2.1 User’s Guide). If access is granted to nobody, sadmind executes the operation. Use this level only for testing.

1  Set authentication type to WEAK. Clients’ user and group identities are set by sadmind from their authentication credentials. Client identities are accepted by
sadmind when they have satisfied either AUTH_SYS or AUTH_DES authentication mechanisms. The authenticated client identity is checked by sadmind for authorization to execute the operation. If an operation calls for a stronger security level, sadmind demotes the user identity to nobody, and then checks whether nobody is authorized to execute the operation. Since AUTH_SYS client credentials are easily forged, this level should be used only in relatively secure environments. No check is done that the user ID of the client represents the same user on the server system as on the client system. It is assumed that user and group identities are set up consistently on the network.

2 Set authentication type to STRONG. Clients’ user and group identities are set by sadmind from their authentication credential mappings (effectively, user and group IDs from netid.byname for NIS, or cred table for NIS+). Client identities are accepted by sadmind only when they have satisfied the AUTH_DES authentication mechanism. The sadmind daemon checks whether the client identity is authorized to execute the operation. This level provides the most secure environment for executing distributed administration operations. It overrides any weaker level specific to an operation. A DES credential must exist for the host running the sadmind daemon and all administration client user identities. This security level is the default.

-v Enable the writing of log messages to the system logger, syslogd. Messages logged include fatal errors encountered while attempting to start the sadmind daemon process and those specified by the -c trace message keywords.

EXAMPLES

EXAMPLE 1 Using the sadmind command

By default, the line in /etc/inetd.conf that starts sadmind appears as follows:

```
100232/10  tli  rpc/udp  wait  root
/usr/sbin/sadmind sadmind
```
EXAMPLE 1 Using the sadmind command  (Continued)

To make a network as secure as possible, change the line to:

```
100232/10  tli  rpc/udp  wait  root
/usr/sbin/sadmind sadmind -S 2
```

To minimize delays due to starting up sadmind, change the line to include the -i option:

```
100232/10  tli  rpc/udp  wait  root
/usr/sbin/sadmind sadmind -i 86400
```

In this example, the duration that sadmind remains up after the last operation request was completed is extended to 24 hours (86,400 seconds). Extending the timeout period may enhance performance on servers and workstations that frequently run or are administered by applications that use the sadmind daemon (for example, Solstice AdminSuite applications such as Host Manager).

FILES
/var/adm/admin.log  Distributed system administration default log file
/etc/inetd.conf  Internet servers database file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmfw</td>
</tr>
</tbody>
</table>

SEE ALSO
inetc(1M), rpcbind(1M), inetc.conf(4), attributes(5)

Solstice AdminSuite 2.1 User’s Guide

NOTES
Whenever inetc fails to start sadmind, re-register the RPC number for sadmind, 100232, with rpcbind by sending the inetc process a SIGHUP signal:

```
example$ kill -HUP pid
```

or

```
example$ kill -l
```

Sometimes inetc does not start sadmind in response to system administration requests, even though the inetc.conf file has the correct entry for the sadmind daemon. This can happen when sadmind is started manually from the command line and takes over the previous registration of the sadmind RPC number, 100232, by inetc. When the manually-started sadmind daemon is terminated, the sadmind RPC number, 100232, is de-registered with rpcbind. Consequently, system administration requests are ignored by inetc.
NAME  
saf – Service Access Facility

DESCRIPTION
The SAF generalizes the procedures for service access so that login access on the local system and network access to local services are managed in similar ways. Under the SAF, systems may access services using a variety of port monitors, including ttymon, the listener, and port monitors written expressly for a user’s application. The manner in which a port monitor observes and manages access ports is specific to the port monitor and not to any component of the SAF. Users may therefore extend their systems by developing and installing their own port monitors. One of the important features of the SAF is that it can be extended in this way by users.

Relative to the SAF, a service is a process that is started. There are no restrictions on the functions a service may provide. The SAF consists of a controlling process, the service access controller (SAC), and two administrative levels corresponding to two levels in the supporting directory structure. The top administrative level is concerned with port monitor administration, the lower level with service administration. The SAC is documented in the sac(1M) man page. The administrative levels and associated utilities are documented in the System Administration Guide - Volume II. The requirements for writing port monitors and the functions a port monitor must perform to run under the SAF and the SAC are documented here.

Port Monitors
A port monitor is a process that is responsible for monitoring a set of homogeneous, incoming ports on a machine. A port monitor’s major purpose is to detect incoming service requests and to dispatch them appropriately.

A port is an externally seen access point on a system. A port may be an address on a network (TSAP or PSAP), a hardwired terminal line, an incoming phone line, etc. The definition of what constitutes a port is strictly a function of the port monitor itself.

A port monitor performs certain basic functions. Some of these are required to conform to the SAF; others may be specified by the requirements and design of the port monitor itself. Port monitors have two main functions: managing ports and monitoring ports for indications of activity.

Port Management
The first function of a port monitor is to manage a port. The actual details of how a port is managed are defined by the person who defines the port monitor. A port monitor is not restricted to handling a single port; it may handle multiple ports simultaneously.

Some examples of port management are setting the line speed on incoming phone connections, binding an appropriate network address, reinitializing the port when the service terminates, outputting a prompt, etc.

Activity Monitoring
The second function of a port monitor is to monitor the port or ports for which it is responsible for indications of activity. Two types of activity may be detected.
The first is an indication to the port monitor to take some port monitor-specific action. Pressing the break key to indicate that the line speed should be cycled is an example of a port monitor activity. Not all port monitors need to recognize and respond to the same indications. The indication used to attract the attention of the port monitor is defined by the person who defines the port monitor.

The second is an incoming service request. When a service request is received, a port monitor must be able to determine which service is being requested from the port on which the request is received. The same service may be available on more than one port.

This section briefly describes other port monitor functions.

Restricting Access to the System
A port monitor must be able to restrict access to the system without disturbing services that are still running. In order to do this, a port monitor must maintain two internal states: enabled and disabled. The port monitor starts in the state indicated by the ISTATE environment variable provided by the sac. See sac(1M) for details. Enabling or disabling a port monitor affects all ports for which the port monitor is responsible. If a port monitor is responsible for a single port, only that port will be affected. If a port monitor is responsible for multiple ports, the entire collection of ports will be affected. Enabling or disabling a port monitor is a dynamic operation: it causes the port monitor to change its internal state. The effect does not persist across new invocations of the port monitor. Enabling or disabling an individual port, however, is a static operation: it causes a change to an administrative file. The effect of this change will persist across new invocations of the port monitor.

Creating utmpx Entries
Port monitors are responsible for creating utmpx entries with the type field set to USER_PROCESS for services they start. If this action has been specified, by using the -fu option in the pmadm command line that added the service, these utmpx entries may in turn be modified by the service. When the service terminates, the utmpx entry must be set to DEAD_PROCESS.

Port Monitor Process IDs and Lock Files
When a port monitor starts, it writes its process id into a file named _pid in the current directory and places an advisory lock on the file.

Changing the Service Environment: Running
doconfig(3NSL) Before invoking the service designated in the port monitor administrative file, _pmtab, a port monitor must arrange for the per-service configuration script to be run, if one exists, by calling the library function doconfig(3NSL). Because the per-service configuration script may specify the execution of restricted commands, as well as for other security reasons, port monitors are invoked with root permissions. The details of how services are invoked are specified by the person who defines the port monitor.

Terminating a Port Monitor
A port monitor must terminate itself gracefully on receipt of the signal SIGTERM. The termination sequence is the following:

saf(1M)
1. The port monitor enters the stopping state; no further service requests are accepted.
2. Any attempt to re-enable the port monitor will be ignored.
3. The port monitor yields control of all ports for which it is responsible. It must be possible for a new instantiation of the port monitor to start correctly while a previous instantiation is stopping.
4. The advisory lock on the process id file is released. Once this lock is released, the contents of the process id file are undefined and a new invocation of the port monitor may be started.

**SAF Files**

This section briefly covers the files used by the SAF.

The Port Monitor Administrative File

A port monitor’s current directory contains an administrative file named `_pmtab`; `_pmtab` is maintained by the `pmadm` command in conjunction with a port monitor-specific administrative command.

The port monitor administrative command for a listen port monitor is `nladmin(1M)`; the port monitor administrative command for `ttymon` is `ttyadm(1M)`. Any port monitor written by a user must be provided with an administrative command specific to that port monitor to perform similar functions.

Per-Service Configuration Files

A port monitor’s current directory also contains the per-service configuration scripts, if they exist. The names of the per-service configuration scripts correspond to the service tags in the `_pmtab` file.

Private Port Monitor Files

A port monitor may create private files in the directory `/var/saf/tag`, where `tag` is the name of the port monitor. Examples of private files are log files or temporary files.

**The SAC/Port Monitor Interface**

The SAC creates two environment variables for each port monitor it starts: PMTAG and ISTATE.

This variable is set to a unique port monitor tag by the SAC. The port monitor uses this tag to identify itself in response to `sac` messages. ISTATE is used to indicate to the port monitor what its initial internal state should be. ISTATE is set to "enabled" or "disabled" to indicate that the port monitor is to start in the enabled or disabled state respectively.

The SAC performs a periodic sanity poll of the port monitors. The SAC communicates with port monitors through FIFOs. A port monitor should open `_pmpipe`, in the current directory, to receive messages from the SAC and `../_sacpipe` to send return messages to the SAC.

**Message Formats**

This section describes the messages that may be sent from the SAC to a port monitor (sac messages), and from a port monitor to the SAC (port monitor messages). These messages are sent through FIFOs and are in the form of C structures.
sac Messages

The format of messages from the SAC is defined by the structure `sacmsg`:

```c
struct sacmsg {
    int sc_size; /* size of optional data portion */
    char sc_type; /* type of message */
};
```

The SAC may send four types of messages to port monitors. The type of message is indicated by setting the `sc_type` field of the `sacmsg` structure to one of the following:

- **SC_STATUS** status request
- **SC_ENABLE** enable message
- **SC_DISABLE** disable message
- **SC_READDB** message indicating that the port monitor’s `_pmtab` file should be read

The `sc_size` field indicates the size of the optional data part of the message. See "Message Classes." For Solaris, `sc_size` should always be set to 0. A port monitor must respond to every message sent by the SAC.

Port Monitor Messages

The format of messages from a port monitor to the SAC is defined by the structure `pmmsg`:

```c
struct pmmsg {
    char pm_type; /* type of message */
    uchar_t pm_state; /* current state of port monitor */
    char pm_maxclass; /* maximum message class this port monitor understands */
    char pm_tag[PMTAGSIZE + 1]; /* port monitor’s tag */
    int pm_size; /* size of optional data portion */
};
```

Port monitors may send two types of messages to the SAC. The type of message is indicated by setting the `pm_type` field of the `pmmsg` structure to one of the following:

- **PM_STATUS** state information
- **PM_UNKNOWN** negative acknowledgment

For both types of messages, the `pm_tag` field is set to the port monitor’s tag and the `pm_state` field is set to the port monitor’s current state. Valid states are:

- **PM_STARTING** starting
- **PM_ENABLED** enabled
- **PM_DISABLED** disabled

---

saf(1M)

System Administration Commands  1535
The current state reflects any changes caused by the last message from the SAC. The status message is the normal return message. The negative acknowledgment should be sent only when the message received is not understood. pm_size indicates the size of the optional data part of the message. pm_maxclass is used to specify a message class. Both are discussed under "Message Classes." In Solaris, always set pm_maxclass to 1 and sc_size to 0. Port monitors may never initiate messages; they may only respond to messages that they receive.

Port monitors may never initiate messages; they may only respond to messages that they receive.

The concept of message class has been included to accommodate possible SAF extensions. The messages described above are all class 1 messages. None of these messages contains a variable data portion; all pertinent information is contained in the message header. If new messages are added to the protocol, they will be defined as new message classes (for example, class 2). The first message the SAC sends to a port monitor will always be a class 1 message. Since all port monitors, by definition, understand class 1 messages, the first message the SAC sends is guaranteed to be understood. In its response to the SAC, the port monitor sets the pm_maxclass field to the maximum message class number for that port monitor. The SAC will not send messages to a port monitor from a class with a larger number than the value of pm_maxclass. Requests that require messages of a higher class than the port monitor can understand will fail. For Solaris, always set pm_maxclass to 1.

For any given port monitor, messages of class pm_maxclass and messages of all classes with values lower than pm_maxclass are valid. Thus, if the pm_maxclass field is set to 3, the port monitor understands messages of classes 1, 2, and 3. Port monitors may not generate messages; they may only respond to messages. A port monitor’s response must be of the same class as the originating message. Since only the SAC can generate messages, this protocol will function even if the port monitor is capable of dealing with messages of a higher class than the SAC can generate.

pm_size (an element of the pmmsg structure) and sc_size (an element of the sacmsg structure) indicate the size of the optional data part of the message. The format of this part of the message is undefined. Its definition is inherent in the type of message. For Solaris, always set both sc_size and pm_size to 0.

This section discusses the port monitor administrative files available under the SAC.

The service access controller’s administrative file contains information about all the port monitors for which the SAC is responsible. This file exists on the delivered system. Initially, it is empty except for a single comment line that contains the version number of the SAC. Port monitors are added to the system by making entries in the SAC’s administrative file. These entries should be made using the administrative command sacadm(1M) with a -a option. sacadm(1M) is also used to remove entries from the SAC’s administrative file. Each entry in the SAC’s administrative file contains the following information.
PMTAG
A unique tag that identifies a particular port monitor. The system administrator is responsible for naming a port monitor. This tag is then used by the SAC to identify the port monitor for all administrative purposes. PMTAG may consist of up to 14 alphanumeric characters.

PMTYPE
The type of the port monitor. In addition to its unique tag, each port monitor has a type designator. The type designator identifies a group of port monitors that are different invocations of the same entity. ttymon and listen are examples of valid port monitor types. The type designator is used to facilitate the administration of groups of related port monitors. Without a type designator, the system administrator has no way of knowing which port monitor tags correspond to port monitors of the same type. PMTYPE may consist of up to 14 alphanumeric characters.

FLGS
The flags that are currently defined are:

- d When started, do not enable the port monitor.
- x Do not start the port monitor.

If no flag is specified, the default action is taken. By default a port monitor is started and enabled.

RCNT
The number of times a port monitor may fail before being placed in a failed state. Once a port monitor enters the failed state, the SAC will not try to restart it. If a count is not specified when the entry is created, this field is set to 0. A restart count of 0 indicates that the port monitor is not to be restarted when it fails.

COMMAND
A string representing the command that will start the port monitor. The first component of the string, the command itself, must be a full path name.

Each port monitor will have two directories for its exclusive use. The current directory will contain files defined by the SAF (_pmtab, _pid) and the per-service configuration scripts, if they exist. The directory /var/saf/pmtag, where pmtag is the tag of the port monitor, is available for the port monitor’s private files. Each port monitor has its own administrative file. The pmadm(1M) command should be used to add, remove, or modify service entries in this file. Each time a change is made using pmadm(1M), the corresponding port monitor rereads its administrative file. Each entry in a port monitor’s administrative file defines how the port monitor treats a specific port and what service is to be invoked on that port. Some fields must be present for all types of port monitors. Each entry must include a service tag to identify the service uniquely and an identity to be assigned to the service when it is started (for example, root).

The combination of a service tag and a port monitor tag uniquely define an instance of a service. The same service tag may be used to identify a service under a different port monitor. The record must also contain port monitor specific data (for example, for a
ttymon port monitor, this will include the prompt string which is meaningful to ttymon. Each type of port monitor must provide a command that takes the necessary port monitor-specific data as arguments and outputs these data in a form suitable for storage in the file. The ttymadm(1M) command does this for ttymon and nlsadmin(1M) does it for listen. For a user-defined port monitor, a similar administrative command must also be supplied. Each service entry in the port monitor administrative file must have the following format and contain the information listed below:

```
svctag:flgs:id:reserved:reserved:reserved:pmspecific# comment
```

SVCTAG is a unique tag that identifies a service. This tag is unique only for the port monitor through which the service is available. Other port monitors may offer the same or other services with the same tag. A service requires both a port monitor tag and a service tag to identify it uniquely. SVCTAG may consist of up to 14 alphanumeric characters. The service entries are defined as:

**FLGS**

Flags with the following meanings may currently be included in this field:

- x  Do not enable this port. By default the port is enabled.
- u  Create a utmpx entry for this service. By default no utmpx entry is created for the service.

**ID**

The identity under which the service is to be started. The identity has the form of a login name as it appears in /etc/passwd.

**PMSPECIFIC**

Examples of port monitor information are addresses, the name of a process to execute, or the name of a STREAMS pipe to pass a connection through. This information will vary to meet the needs of each different type of port monitor.

**COMMENT**

A comment associated with the service entry. Port monitors may ignore the u flag if creating a utmpx entry for the service is not appropriate to the manner in which the service is to be invoked. Some services may not start properly unless utmpx entries have been created for them (for example, login). Each port monitor administrative file must contain one special comment of the form:

```
# VERSION=value
```

where `value` is an integer that represents the port monitor’s version number. The version number defines the format of the port monitor administrative file. This comment line is created automatically when a port monitor is added to the system. It appears on a line by itself, before the service entries.

Previously, two pieces of information included in the _pmtab file were described: the port monitor’s version number and the port monitor part of the service entries in the port monitor’s _pmtab file. When a new port monitor is added, the version number
must be known so that the _pmtab file can be correctly initialized. When a new service is added, the port monitor part of the _pmtab entry must be formatted correctly. Each port monitor must have an administrative command to perform these two tasks. The person who defines the port monitor must also define such an administrative command and its input options. When the command is invoked with these options, the information required for the port monitor part of the service entry must be correctly formatted for inclusion in the port monitor’s _pmtab file and must be written to the standard output. To request the version number the command must be invoked with a -V option; when it is invoked in this way, the port monitor’s current version number must be written to the standard output. If the command fails for any reason during the execution of either of these tasks, no data should be written to standard output.

The interface between a port monitor and a service is determined solely by the service. Two mechanisms for invoking a service are presented here as examples.

New Service Invocations
The first interface is for services that are started anew with each request. This interface requires the port monitor to first fork(2) a child process. The child will eventually become the designated service by performing an exec(1). Before the exec(1) happens, the port monitor may take some port monitor-specific action; however, one action that must occur is the interpretation of the per-service configuration script, if one is present. This is done by calling the library routine doconfig(3NSL).

Standing Service Invocations
The second interface is for invocations of services that are actively running. To use this interface, a service must have one end of a stream pipe open and be prepared to receive connections through it.

To implement a port monitor, several generic requirements must be met. This section summarizes these requirements. In addition to the port monitor itself, an administrative command must be supplied.

Initial Environment
When a port monitor is started, it expects an initial execution environment in which:

- It has no file descriptors open
- It cannot be a process group leader
- It has an entry in /etc/utmpx of type LOGIN_PROCESS
- An environment variable, ISTATE, is set to ’enabled” or ’disabled” to indicate the port monitor’s correct initial state
- An environment variable, PMTAG, is set to the port monitor’s assigned tag
- The directory that contains the port monitor’s administrative files is its current directory
- The port monitor is able to create private files in the directory /var/saf/tag, where tag is the port monitor’s tag
- The port monitor is running with user id 0 (root)
Important Files

Relative to its current directory, the following key files exist for a port monitor.

_config
The port monitor’s configuration script. The port monitor configuration script is run by the SAC. The SAC is started by init(1M) as a result of an entry in /etc/inittab that calls sac(1M).

_pid
The file into which the port monitor writes its process id.

_pmtab
The port monitor’s administrative file. This file contains information about the ports and services for which the port monitor is responsible.

_pmpipe
The FIFO through which the port monitor will receive messages from the SAC.

svctag
The per-service configuration script for the service with the tag svctag.

../_sacpipe
The FIFO through which the port monitor will send messages to sac(1M).

A port monitor is responsible for performing the following tasks in addition to its port monitor function:

- Write its process id into the file _pid and place an advisory lock on the file
- Terminate gracefully on receipt of the signal SIGTERM
- Follow the protocol for message exchange with the SAC

A port monitor must perform the following tasks during service invocation:

- Create a utmpx entry if the requested service has the u flag set in _pmtab
- Port monitors may ignore this flag if creating a utmpx entry for the service does not make sense because of the manner in which the service is to be invoked. On the other hand, some services may not start properly unless utmpx entries have been created for them.
- Interpret the per-service configuration script for the requested service, if it exists, by calling the doconfig(3NL) library routine

The library routine doconfig(3NL), defined in libnsl.so, interprets the configuration scripts contained in the files /etc/saf/_sysconfig (the per-system configuration file), and /etc/saf/pmtag/_config (per-port monitor configuration files), and in /etc/saf/pmtag/svctag (per-service configuration files). Its syntax is:

```c
#include <sac.h>
int doconfig (int fd, char *script, long rflag);
```

script is the name of the configuration script; fd is a file descriptor that designates the stream to which stream manipulation operations are to be applied; rflag is a bitmask that indicates the mode in which script is to be interpreted. rflag may take two values, NORUN and NOASSIGN, which may be or’d. If rflag is zero, all commands in
the configuration script are eligible to be interpreted. If rflag has the NOASSIGN bit set, the assign command is considered illegal and will generate an error return. If rflag has the NORUN bit set, the run and runwait commands are considered illegal and will generate error returns. If a command in the script fails, the interpretation of the script ceases at that point and a positive integer is returned; this number indicates which line in the script failed. If a system error occurs, a value of −1 is returned. If a script fails, the process whose environment was being established should not be started. In the example, doconfig(3NSL) is used to interpret a per-service configuration script.

```c
... if ((i = doconfig (fd, svctag, 0)) != 0){
    error (*doconfig failed on line %d of script %s",i,svctag);
 }
```

The Per-System Configuration File

The per-system configuration file, /etc/saf/_sysconfig, is delivered empty. It may be used to customize the environment for all services on the system by writing a command script in the interpreted language described in this chapter and on the doconfig(3NSL) manpage. When the SAC is started, it calls the doconfig(3NSL) function to interpret the per-system configuration script. The SAC is started when the system enters multiuser mode.

Per-Port Monitor Configuration Files

Per-port monitor configuration scripts (/etc/saf/pmtag/_config) are optional. They allow the user to customize the environment for any given port monitor and for the services that are available through the ports for which that port monitor is responsible. Per-port monitor configuration scripts are written in the same language used for per-system configuration scripts. The per-port monitor configuration script is interpreted when the port monitor is started. The port monitor is started by the SAC after the SAC has itself been started and after it has run its own configuration script, /etc/saf/_sysconfig. The per-port monitor configuration script may override defaults provided by the per-system configuration script.

Per-Service Configuration Files

Per-service configuration files allow the user to customize the environment for a specific service. For example, a service may require special privileges that are not available to the general user. Using the language described in the doconfig(3NSL) manpage, you can write a script that will grant or limit such special privileges to a particular service offered through a particular port monitor. The per-service configuration may override defaults provided by higher-level configuration scripts. For example, the per-service configuration script may specify a set of STREAMS modules other than the default set.

The language in which configuration scripts are written consists of a sequence of commands, each of which is interpreted separately. The following reserved keywords are defined: assign, push, pop, runwait, and run. The comment character is #. Blank lines are not significant. No line in a command script may exceed 1024 characters.
assign variable=value
Used to define environment variables; variable is the name of the environment variable and value is the value to be assigned to it. The value assigned must be a string constant; no form of parameter substitution is available. value may be quoted. The quoting rules are those used by the shell for defining environment variables. assign will fail if space cannot be allocated for the new variable or if any part of the specification is invalid.

push module1, module2, module3, ...]
Used to push STREAMS modules onto the stream designated by fd; module1 is the name of the first module to be pushed, module2 is the name of the second module to be pushed, and so on. The command will fail if any of the named modules cannot be pushed. If a module cannot be pushed, the subsequent modules on the same command line will be ignored and modules that have already been pushed will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is invoked with no arguments, the top module on the stream is popped. If an argument is given, modules will be popped one at a time until the named module is at the top of the stream. If the named module is not on the designated stream, the stream is left as it was and the command fails. If module is the special keyword ALL, then all modules on the stream will be popped. Only modules above the topmost driver are affected.

runwait command
The runwait command runs a command and waits for it to complete; command is the path name of the command to be run. The command is run with /bin/sh -c prepended to it; shell scripts may thus be executed from configuration scripts. The runwait command will fail if command cannot be found or cannot be executed, or if command exits with a nonzero status.

run command
The run command is identical to runwait except that it does not wait for command to complete; command is the path name of the command to be run. run will not fail unless it is unable to create a child process to execute the command. Although they are syntactically indistinguishable, some of the commands available to run and runwait are interpreter built-in commands. Interpreter built-ins are used when it is necessary to alter the state of a process within the context of that process. The doconfig interpreter built-in commands are similar to the shell special commands and, like these, they do not spawn another process for execution. See the sh(1) man page. The initial set of built-in commands is: cd, ulimit, umask.

Sample Port Monitor Code
This example shows an example of a "null" port monitor that simply responds to messages from the SAC.

```c
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
```

1542  man pages section 1M: System Administration Commands  Last Revised 30 Jul 1998
# include <sac.h>

```
char Scratch[BUFSIZ]; /* scratch buffer */
char Tag[PMTAGSIZE + 1]; /* port monitor's tag */
FILE *Fp; /* file pointer for log file */
FILE *Tfp; /* file pointer for pid file */
char State; /* portmonitor's current state*/
```

```
main(argc, argv)
    int argc;
    char *argv[];
{
    char *istate;
    strcpy(Tag, getenv("PMTAG"));
    /* open up a log file in port monitor's private directory */
    sprintf(Scratch, "/var/saf/%s/log", Tag);
    Fp = fopen(Scratch, "a+");
    if (Fp == (FILE *)NULL)
        exit(1);
    log(Fp, "starting");
    /* retrieve initial state (either "enabled" or "disabled") and set
     * State accordingly */
    istate = getenv("ISTATE");
    sprintf(Scratch, "ISTATE is %s", istate);
    log(Fp, Scratch);
    if (!strcmp(istate, "enabled"))
        State = PM_ENABLED;
    else if (!strcmp(istate, "disabled"))
        State = PM_DISABLED;
    else {
        log(Fp, "invalid initial state");
        exit(1);
    }
    sprintf(Scratch, "PMTAG is %s", Tag);
    log(Fp, Scratch);
    /* set up pid file and lock it to indicate that we are active */
    Tfp = fopen("_pid", "w");
    if (Tfp == (FILE *)NULL) {
        log(Fp, "couldn't open pid file");
        exit(1);
    }
    fprintf(Tfp, "%d", getpid());
    log(Fp, "locking file");
    if (lockf(fileno(Tfp), F_TEST, 0) < 0) {
        log(Fp, "pid file already locked");
        exit(1);
    }
    log(Fp, "lock failed");
    if (lockf(fileno(Tfp), F_LOCK, 0) < 0) {
        log(Fp, "lock failed");
        exit(1);
    }
    fprintf(Tfp, "%d", getpid());
```
handlepoll();

/**
 * handle poll messages from the sac ... this function never returns
 */
handlepoll();
pause();
fclose(Tfp);
fclose(Fp);
}

handlepoll()
{
    int pfd; /* file descriptor for incoming pipe */
    int sfd; /* file descriptor for outgoing pipe */
    struct sacmsg sacmsg; /* incoming message */
    struct pmmsg pmmsg; /* outgoing message */

    /* open pipe for incoming messages from the sac */
    pfd = open("_pmpipe", O_RDONLY|O_NONBLOCK);
    if (pfd < 0) {
        log(Fp, "_pmpipe open failed");
        exit(1);
    }

    /* open pipe for outgoing messages to the sac */
    sfd = open("../_sacpipe", O_WRONLY);
    if (sfd < 0) {
        log(Fp, "_sacpipe open failed");
        exit(1);
    }

    /* start to build a return message; we only support class 1 messages */
    strcpy(pmmsg.pm_tag, Tag);
    pmmsg.pm_size = 0;
    pmmsg.pm_maxclass = 1;

    /* keep responding to messages from the sac */
    for (;;) {
        if (read(pfd, &sacmsg, sizeof(sacmsg)) != sizeof(sacmsg)) {
            log(Fp, "_pmpipe read failed");
            exit(1);
        }

        /* determine the message type and respond appropriately */
        switch (sacmsg.sc_type) {
            case SC_STATUS:
                log(Fp, "Got SC_STATUS message");
                pmmsg.pm_type = PM_STATUS;
                pmmsg.pm_state = State;
                break;
            case SC_ENABLE:
                /*note internal state change below*/

log(Fp, "Got SC_ENABLE message");
    pmmsg.pm_type = PM_STATUS;
    State = PM_ENABLED;
    pmmsg.pm_state = State;
    break;
  case SC_DISABLE:
    /* note internal state change below*/
    log(Fp, "Got SC_DISABLE message");
    pmmsg.pm_type = PM_STATUS;
    State = PM_DISABLED;
    pmmsg.pm_state = State;
    break;
  case SC_READDB:
    /*
     * if this were a fully functional port
     * monitor it would read _pmtab here
     * and take appropriate action
     */
    log(Fp, "Got SC_READDB message");
    pmmsg.pm_type = PM_STATUS;
    pmmsg.pm_state = State;
    break;
  default:
    sprintf(Scratch, "Got unknown message <%d>",
            sacramsg.sc_type);
    log(Fp, Scratch);
    pmmsg.pm_type = PM_UNKNOWN;
    pmmsg.pm_state = State;
    break;
  }

  /*
   * send back a response to the poll
   * indicating current state
   */
  if (write(sfd, &pmmsg, sizeof(pmmsg)) != sizeof(pmmsg))
    log(Fp, "sanity response failed");
}

/* general logging function */
log(fp, msg)
    FILE *fp;
    char *msg;
{
    fprintf(fp, "%d; %s\n", getpid(), msg);
    fflush(fp);
}

The following example shows the sac.h header file.

/* length in bytes of a utmpx id */
#define IDLEN 4
/* wild character for utmpx ids */
#define SC_WILDC 0xff
/* max len in bytes for port monitor tag */
#define PMTAGSIZE 14

*/
* values for rflag in doconfig()
*/
/** don't allow assign operations */
#define NOASSIGN 0x1
/** don't allow run or runwait operations */
#define NORUN 0x2
/**
 * message to SAC (header only). This header is forever fixed. The
 * size field (pm_size) defines the size of the data portion of the
 * message, which follows the header. The form of this optional data
 * portion is defined strictly by the message type (pm_type).
 */
struct pmmsg {
    char pm_type;  /* type of message */
    uchar_t pm_state;  /* current state of pm */
    char pm_maxclass;  /* max message class this port monitor
                        understands */
    char pm_tag[PMTAGSIZE + 1];  /* pm's tag */
    int pm_size;  /* size of opt data portion */
};
/*
 * pm_type values
 */
#define PM_STATUS 1  /* status response */
#define PM_UNKNOWN 2  /* unknown message was received */
/*
 * pm_state values
 */
/*
 * Class 1 responses
 */
#define PM_STARTING 1  /* monitor in starting state */
#define PM_ENABLED 2  /* monitor in enabled state */
#define PM_DISABLED 3  /* monitor in disabled state */
#define PM_STOPPING 4  /* monitor in stopping state */
/*
 * message to port monitor
 */
struct sacmsg {
    int sc_size;  /* size of optional data portion */
    char sc_type;  /* type of message */
};
/*
 * sc_type values
 * These represent commands that the SAC sends to a port monitor.
 * These commands are divided into "classes" for extensibility. Each
 * subsequent "class" is a superset of the previous "classes" plus
 * the new commands defined within that "class". The header for all
 * commands is identical; however, a command may be defined such that
 * an optional data portion may be sent in addition to the header.
 * The format of this optional data piece is self-defining based on
 * the command. The first message sent by the SAC
 * will always be a class 1 message. The port monitor response
 * indicates the maximum class that it is able to understand. Another
 * note is that port monitors should only respond to a message with
 * an equivalent class response (i.e. a class 1 command causes a
 * class 1 response). */
*/
* Class 1 commands (currently, there are only class 1 commands)
*/
#define SC_STATUS 1 /* status request */
#define SC_ENABLE 2 /* enable request */
#define SC_DISABLE 3 /* disable request */
#define SC_READDB 4 /* read pmtab request */
/
* 'errno' values for Saferno, note that Saferno is used by both
* pmadm and sacadm and these values are shared between them
*/
#define E_BADARGS 1 /* bad args/ill-formed cmd line */
#define E_NOPRIV 2 /* user not priv for operation */
#define E_SAFERR 3 /* generic SAF error */
#define E_SYSERR 4 /* system error */
#define E_NOEXIST 5 /* invalid specification */
#define E_DUP 6 /* entry already exists */
#define E_PMRUN 7 /* port monitor is running */
#define E_PMNOTRUN 8 /* port monitor is not running */
#define E_RECOVER 9 /* in recovery */

/**
  * Directory Structure
  *
  * This section gives a description of the SAF files and directories.
  */

/etc/saf/_sysconfig

The per-system configuration script.

/etc/saf/_sactab

The SAC's administrative file. Contains information about the port monitors for which the SAC is responsible.

/etc/saf/pmtag

The home directory for port monitor pmtag.

/etc/saf/pmtag/_config

The per-port monitor configuration script for port monitor pmtag.

/etc/saf/pmtag/_pmtab Port monitor pmtag's administrative file. Contains information about the services for which pmtag is responsible.

/etc/saf/pmtag/svcstag The file in which the per-service configuration script for service svcstag (available through port monitor pmtag) is placed.

/etc/saf/pmtag/_pid The file in which a port monitor writes its process id in the current directory and places an advisory lock on the file. /etc/saf/pmtag/_pmpipe The file in which the port monitor receives messages from the SAC and ../_sacpipe and sends return messages to the SAC. /var/saf/_log The SAC's log file. /var/saf/pmtag The directory for files created by port monitor pmtag, for example its log file.
The following administrative commands relate to SAF.

**sacadm**(1M) port monitor administrative command

**pmadm**(1M) service administration command

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>

**SEE ALSO**

exec(1), sh(1), init(1M), nlsadmin(1M), pmadm(1M), sac(1M), sacadm(1M), ttyadm(1M), fork(2), doconfig(3NSL), attributes(5)
System activity data can be accessed at the special request of a user (see sar(1)) and automatically, on a routine basis, as described here. The operating system contains several counters that are incremented as various system actions occur. These include counters for CPU utilization, buffer usage, disk and tape I/O activity, TTY device activity, switching and system-call activity, file-access, queue activity, inter-process communications, and paging. For more general system statistics, use iostat (1M), sar(1), or vmstat(1M).

sadc and two shell procedures, sa1 and sa2, are used to sample, save, and process this data.

sadc, the data collector, samples system data \( n \) times, with an interval of \( t \) seconds between samples, and writes in binary format to ofile or to standard output. The sampling interval \( t \) should be greater than 5 seconds; otherwise, the activity of \( \text{sadc} \) itself may affect the sample. If \( t \) and \( n \) are omitted, a special record is written. This facility can be used at system boot time, when booting to a multi-user state, to mark the time at which the counters restart from zero. For example, when accounting is enabled, the /etc/init.d/perf file writes the restart mark to the daily data file using the command entry:

```
su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +\%d'"
```

The shell script sa1, a variant of \( \text{sadc} \), is used to collect and store data in the binary file /var/adm/sa/sadd, where \( \text{id} \) is the current day. The arguments \( t \) and \( n \) cause records to be written \( n \) times at an interval of \( t \) seconds, or once if omitted. The following entries in /var/spool/cron/crontabs/sys will produce records every 20 minutes during working hours and hourly otherwise:

```
0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1
```

See crontab(1) for details.

The shell script sa2, a variant of sar, writes a daily report in the file /var/adm/sa/sardd. See the OPTIONS section in sar(1) for an explanation of the various options. The following entry in /var/spool/cron/crontabs/sys will report important activities hourly during the working day:

```
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```

NAME sar, sa1, sa2, sadc – system activity report package

SYNOPSIS

```
/usr/lib/sa/sadc [t n] [ofile]

/usr/lib/sa/sa1 [t n]

/usr/lib/sa/sa2 [-aAbcdgkmpqruvwy] [-e time] [-f filename] [-i sec] [-s time]
```

DESCRIPTION System activity data can be accessed at the special request of a user (see sar(1)) and automatically, on a routine basis, as described here. The operating system contains several counters that are incremented as various system actions occur. These include counters for CPU utilization, buffer usage, disk and tape I/O activity, TTY device activity, switching and system-call activity, file-access, queue activity, inter-process communications, and paging. For more general system statistics, use iostat (1M), sar(1), or vmstat(1M).

sadc and two shell procedures, sa1 and sa2, are used to sample, save, and process this data.

sadc, the data collector, samples system data \( n \) times, with an interval of \( t \) seconds between samples, and writes in binary format to ofile or to standard output. The sampling interval \( t \) should be greater than 5 seconds; otherwise, the activity of \( \text{sadc} \) itself may affect the sample. If \( t \) and \( n \) are omitted, a special record is written. This facility can be used at system boot time, when booting to a multi-user state, to mark the time at which the counters restart from zero. For example, when accounting is enabled, the /etc/init.d/perf file writes the restart mark to the daily data file using the command entry:

```
su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +\%d'"
```

The shell script sa1, a variant of \( \text{sadc} \), is used to collect and store data in the binary file /var/adm/sa/sadd, where \( \text{id} \) is the current day. The arguments \( t \) and \( n \) cause records to be written \( n \) times at an interval of \( t \) seconds, or once if omitted. The following entries in /var/spool/cron/crontabs/sys will produce records every 20 minutes during working hours and hourly otherwise:

```
0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1
```

See crontab(1) for details.

The shell script sa2, a variant of sar, writes a daily report in the file /var/adm/sa/sardd. See the OPTIONS section in sar(1) for an explanation of the various options. The following entry in /var/spool/cron/crontabs/sys will report important activities hourly during the working day:

```
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```
sar(1M)

FILES
/etc/init.d/perf
/tmp/sa.adrf1 address file
/var/adm/sa/sadd daily data file
/var/adm/sa/sar dd daily report file
/var/spool/cron/crontabs/sys

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

crontab(1), sag(1), sar(1), timex(1), iostat(1M), vmstat(1M), attributes(5)

System Administration Guide: Basic Administration
savecore – save a crash dump of the operating system

/usr/bin/savecore [-Lvd] [-f dumpfile] [directory]

The `savecore` utility saves a crash dump of the kernel (assuming that one was made) and writes a reboot message in the shutdown log. It is invoked by the `/etc/init.d/savecore` file after the system boots, if `savecore` is enabled by way of `dumpadm(1M)`. `savecore` is enabled on reboot by default.

The `savecore` utility checks the crash dump to be certain it corresponds with the version of the operating system currently running. If it does, `savecore` saves the crash dump data in the file `directory/vmcore.n` and the kernel’s namelist in `directory/unix.n`. The trailing `.n` in the pathnames is replaced by a number which grows every time `savecore` is run in that directory.

Before writing out a crash dump, `savecore` reads a number from the file `directory/minfree`. This is the minimum number of kilobytes that must remain free on the file system containing `directory`. If after saving the crash dump the file system containing `directory` would have less free space the number of kilobytes specified in `minfree`, the crash dump is not saved. If the `minfree` file does not exist, `savecore` assumes a `minfree` value of 1 megabyte.

The `savecore` utility also logs a reboot message using facility `LOG_AUTH` (see `syslog(3C)`). If the system crashed as a result of a panic, `savecore` logs the panic string too.

The following options are supported:

- `-d` Disregard dump header valid flag. Force `savecore` to attempt to save a crash dump even if the header information stored on the dump device indicates the dump has already been saved.

- `-f dumpfile` Attempt to save a crash dump from the specified file instead of from the system’s current dump device. This option may be useful if the information stored on the dump device has been copied to an on-disk file by means of the `dd(1M)` command.

- `-L` Save a crash dump of the live running Solaris system, without actually rebooting or altering the system in any way. This option forces `savecore` to save a live snapshot of the system to the dump device, and then immediately to retrieve the data and to write it out to a new set of crash dump files in the specified directory. Live system crash dumps can only be performed if you have configured your system to have a dedicated dump device using `dumpadm(1M)`.

  `savecore -L` does not suspend the system, so the contents of memory continue to change while the dump is saved. This means that live crash dumps are not fully self-consistent.

- `-v` Verbose. Enables verbose error messages from `savecore`.
The following operands are supported:

directory

Save the crash dump files to the specified directory. If directory is not specified, savecore saves the crash dump files to the default savecore directory, configured by dumpadm(1M).

FILES

directory/vmcore.n

directory/unix.n

directory/bounds

directory/minfree

/dev/ksyms

the kernel namelist

/etc/init.d/savecore

/var/crash/’uname -n’

default crash dump directory

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

adb(1), mdb(1), dd(1M), dumpadm(1M), syslog(3C), attributes(5)

BUGS

If the dump device is also being used as a swap device, you must run savecore very soon after booting, before the swap space containing the crash dump is overwritten by programs currently running.
NAME       scadm – administer System Controller (SC)

SYNOPSIS   /usr/platform/platform-name/sbin/scadm subcommand [option] [argument…]

DESCRIPTION The scadm utility administers the System Controller (SC). This utility allows the host server to interact with the SC.

The scadm utility must be run as root.

The interface, output, and location in the directory hierarchy for scadm are uncommitted and might change.

platform-name is the name of the platform implementation. Use the uname -i command to identify the platform implementation. See uname(1).

The scadm utility has fifteen subcommands. Some subcommands have specific options and arguments associated with them. See SUBCOMMANDS, OPTIONS, OPERANDS, and USAGE.

SUBCOMMANDS Subcommands immediately follow the scadm command on the command line, and are separated from the command by a SPACE.

The following subcommands are supported

date Display the SC’s time and date

    The format for the date subcommand is:

        scadm date

download Program the SC’s firmware.

    There are two parts to the firmware, the boot monitor and the main image.

    By default, the scadm command’s download programs the main firmware image. The boot argument selects programming of the boot monitor.

    The format for the download subcommand is:

        scadm download [boot] file

help Display a list of commands.

    The format for the help subcommand is:

        scadm help

loghistory Display the most recent entries in the SC event log.

    The format for the loghistory subcommand is:

        scadm loghistory
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>resetrsc</strong></td>
<td>Reset the SC. There are two types of resets allowed, a hard reset and a soft reset. The hard reset is done by default. The soft reset can be selected by using the -s option.</td>
</tr>
<tr>
<td><strong>send_event</strong></td>
<td>Manually send a text based event. The SC can forward the event to the SC event log. You can configure the -c option to send a critical warning to email, alert to logged in SC users, and syslog. Critical events are logged to syslog(3C). There is an 80 character limit to the length of the associated text message.</td>
</tr>
<tr>
<td><strong>set</strong></td>
<td>Set SC configuration variables to a value. Examples of SC configuration variables include: SC IP address <code>netsc_ipaddr</code> and SC Customer Information <code>sc_customerinfo</code>. See the output from the <code>scadm help</code> command for a complete list of SC configuration variables.</td>
</tr>
<tr>
<td><strong>show</strong></td>
<td>Display the current SC configuration variable settings. If no variable is specified, <code>scadm</code> shows all variable settings.</td>
</tr>
<tr>
<td><strong>shownetwork</strong></td>
<td>Display the current network configuration parameters for SC.</td>
</tr>
<tr>
<td><strong>useradd</strong></td>
<td>Add user accounts to the SC. The SC supports up to sixteen separate users.</td>
</tr>
</tbody>
</table>

The format for the `resetrsc` subcommand is:

```bash
scadm resetrsc [-s]
```

The format for the `send_event` subcommand is:

```bash
scadm send_event [-c] "message"
```

The format for the `set` subcommand is:

```bash
scadm set variable value
```

The format for the `show` subcommand is:

```bash
scadm show [variable]
```

The format for the `shownetwork` subcommand is:

```bash
scadm shownetwork
```

The format for the `useradd` subcommand is:

```bash
scadm useradd username
```
### OPTIONS

The resetrc, send_event, and version subcommands have associated options. Options follow subcommands on the command line and are separated from the subcommand by a SPACE.

The resetrc subcommand supports the following options:

- `-s`
  Perform a soft reset instead of a hard reset. A hard reset physically resets the SC hardware. The SC software jumps to the boot firmware, simulating a reset, for a soft reset.

The send_event subcommand supports the following options:

- `-c`
  Send a critical event. Without the `-c`, `send_event` sends a warning.

The version subcommand supports the following options:

- `-v`
  Display a verbose output of version numbers and associated information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>userdel</td>
<td>Delete a user account from SC.</td>
<td><code>scadm userdel username</code></td>
</tr>
<tr>
<td>userpassword</td>
<td>Set a password for the user account specified. This password overrides any existing password currently set. There is no verification of the old password before setting the new password.</td>
<td><code>scadm userpassword username</code></td>
</tr>
<tr>
<td>userperm</td>
<td>Set the permission level for the user.</td>
<td><code>scadm userperm username [aucr]</code></td>
</tr>
<tr>
<td>usershow</td>
<td>Display details on the specified user account. If a username is not specified, all user accounts are displayed.</td>
<td><code>scadm usershow username</code></td>
</tr>
<tr>
<td>version</td>
<td>Display the version numbers of the SC and its components.</td>
<td><code>scadm version [-v]</code></td>
</tr>
</tbody>
</table>
The download, send_event, set, show, useradd, userdel, userperm, usershow, userpassword, and userperm subcommands have associated arguments (operands).

If the subcommand has an option, the arguments follow the option on the command line and are separated from the option by a SPACE. If the subcommand does not have an option, the arguments follow the subcommand on the command line and are separated from the subcommand by a SPACE. If there are more than one arguments, they are separated from each other by a SPACE.

The download subcommand supports the following arguments:

- **boot**
  Program the boot monitor portion of the flash. The main portion of the flash is programmed without any arguments.

- **file**
  Specify file as the path to where the boot or main firmware image resides for download.

  Examples of file are:

  `/usr/platform/platform_type/lib/image/alommainfw`

  or

  `/usr/platform/platform_type/lib/image/alombootfw`

The send_event subcommand supports the following arguments:

- **"message"**
  Describe event using the test contained in message. Enclose message in quotation marks.

The set subcommand supports the following arguments:

- **variable**
  Set SC configuration variable.

- **value**
  Set SC configuration variable to value.

The show subcommand supports the following arguments:

- **variable**
  Display the value of that particular variable.

The useradd subcommand supports the following arguments:

- **username**
  Add new SC account username.

The userdel subcommand supports the following arguments:

- **username**
  Remove SC account username.

The userperm subcommand supports the following arguments:

- **-aucr**
  Set permissions for SC user accounts. If no permissions are specified, all four permissions are disabled and read only access is assigned.
The following are the definitions for permissions:

- **a** Allow user to administer or change the SC configuration variables
- **u** Allow user to use the user commands to modify SC accounts
- **c** Allow user to connect to console.
- **r** Allow user to reset SC and to power on and off the host.

**username**

Change permissions on SC account **username**.

The **-usershow** subcommand supports the following arguments:

**username**

display information on SC account **username**. If **username** is not specified, all accounts are displayed.

The **userpassword** subcommand supports the following arguments:

**username**

Set SC password for **username**.

The **userperm** subcommand supports the following arguments:

**username**

Change SC permissions for **username**.

**EXAMPLES**

**EXAMPLE 1** Displaying the SC’s Date and Time

The following command displays the SC’s date and time.

```
scadm date
```

**EXAMPLE 2** Setting the SC’s Configuration Variables

The following command sets the SC’s configuration variable **netsc_ipaddr** to 192.168.1.2:

```
scadm set netsc_ipaddr 192.168.1.2
```

**EXAMPLE 3** Displaying the Current SC’s Configuration Settings:

The following command displays the current SC configuration settings:

```
scadm show
```

**EXAMPLE 4** Displaying the Current Settings for a Variable

The following command displays the current settings for the **sys_hostname** variable:

```
scadm show sys_hostname
```

*System Administration Commands*
EXAMPLE 4 Displaying the Current Settings for a Variable (Continued)

EXAMPLE 5 Sending a Text-Based Critical Event

The following command sends a critical event to the SC logs, alerts the current SC users, and sends an event to syslog(3C):

```
scadm send_event -c "The UPS signaled a loss in power"
```

EXAMPLE 6 Sending an Informational Text-Based Event

The following command sends a non-critical informational text based event to the SC event log:

```
scadm send_event "The disk is close to full capacity"
```

EXAMPLE 7 Adding a User To the SC

The following command adds user rscroot to the SC:

```
scadm useradd rscroot
```

EXAMPLE 8 Deleting a User From the SC

The following command deletes user olduser from the SC:

```
scadm userdel olduser
```

EXAMPLE 9 Displaying User Details

The following command displays details of all user accounts:

```
scadm usershow
```

EXAMPLE 10 Displaying Details for a Specific User

The following command displays details of user account rscroot:

```
scadm usershow rscroot
```

EXAMPLE 11 Setting the User Permission Level

The following command sets the full permission level for user rscroot to aucr:

```
scadm userperm rscroot aucr
```
EXAMPLE 12 Setting the User Permission Level

The following command sets only console access for user newuser to c:

```
scdm userperm newuser c
```

EXAMPLE 13 Setting the User Permission Level

The following command sets the permission level for user newuser to read only access:

```
scdm userperm newuser
```

EXAMPLE 14 Displaying the Current Network Parameters

The following command displays the current network configuration parameters for the SC:

```
scdm shownetwork
```

EXAMPLE 15 Viewing the Loghistory

The following command displays the most recent entries in the SC event log:

```
scdm loghistory
```

EXAMPLE 16 Displaying Verbose Information

The following command displays verbose version information on the SC and its components:

```
scdm version -v
```

EXIT STATUS

The following exit values are returned:

- 0       Successful completion.
- non-zero An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm</td>
</tr>
</tbody>
</table>

SEE ALSO

uname(1), syslog(3C), attributes(5)
sckmd(1M)

NAME  sckmd – Sun Fire High-End system key management daemon

SYNOPSIS  /usr/platform/SUNW,Sun-Fire-15000/lib/sckmd

DESCRIPTION  sckmd is a server process that resides on a Sun Fire high-end system domain. sckmd maintains the Internet Protocol Security (IPsec) Security Associations (SAs) needed to secure the communication between the Sun Fire 15K System Controller (SC) and the cvcd(1M) and dcs(1M) daemons running on a Sun Fire 15K domain. See ipsec(7P) for a description of Security Associations.

sckmd receives SAs from the SC and provides these SAs to the Security Association Databases (SADBs) using pf_key(7P).

sckmd normally starts up at system boot time. Each domain supports only one running sckmd process at a time.

FILES  /etc/inet/ipsecinit.conf  Configuration file for default system-wide IPsec policies

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Sun Fire High-End systems</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWsckmx.u, SUNWsckmu.u, SUNWsckmr</td>
</tr>
</tbody>
</table>

SEE ALSO  cvcd(1M), dcs(1M), ipsecconf(1M), attributes(5), authmd5h(7M), encr3des(7M), ipsec(7P), pf_key(7P)

Sun Enterprise 10000 SSP Reference Manual
System Management Services (SMS) Reference Manual

NOTES  IPsec is used by Sun Fire high-end systems such as a Sun Fire 15K, to secure the communication between the SC, and the cvcd(1M) and dcs(1M) daemons running on a domain. System-wide IPsec policies for these daemons are configured on a domain with ipsecconf(1M). Default policies are defined when the SUNWsckmr package is installed on a Sun Fire high-end system domain at OS install time.

Package SUNWsckmr configures default system-wide policies for cvcd(1M) and dcs(1M) by adding the following entries in /etc/inet/ipsecinit.conf:

```
{ dport sun-dr ulp tcp } permit
  { auth_alg md5 }  
{ sport sun-dr ulp tcp } apply
  { auth_alg md5 }  
{ dport cvc_hostd ulp tcp } permit
  { auth_alg md5 }  
{ sport cvc_hostd ulp tcp } apply
  { auth_alg md5 }  
```
The `cvc_hostd` service represents `cvcd(1M)` and the `sun-dr` service represents `dcs(1M)` in the preceding entries.

These policies conform to the format defined by `ipsec(7P)` and require HMAC-MD5 authentication. See `authmd5h(7M)`.

System-wide policies for `cvcd(1M)` and `dcs(1M)` configured on a domain using `ipsecconf(1M)` must match the IPsec policies defined for these services on the SC. On an SC, IPsec policies for these services are defined by the SMS key management daemon. Refer to the `kmd(1M)` man page in the `System Management Services (SMS) Reference Manual`.

IPsec encryption or authentication with encryption can be enabled on the domain using the `encr_algs` and `encr_auth_algs` properties, as described in the `ipsecconf(1M)` manual page. For example, the following `ipsecconf(1M)` entries require Triple-DES and HMAC-MD5 authentication for the network console `cvcd(1M)` service:

```plaintext
{ dport cvc_hostd ulp tcp } permit
    { encr_algs 3des encr_auth_algs md5 }
{ sport cvc_hostd ulp tcp } apply
    { encr_algs 3des encr_auth_algs md5 sa unique }
```

See `encr3des(7M)` for Triple-DES authentication and `authmd5h(7M)` for HMAC-MD5 authentication.
sendmail utility sends a message to one or more people, routing the message over whatever networks are necessary. sendmail does internetwork forwarding as necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine. Other programs provide user-friendly front ends. sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an EOF, or a line with a single dot, and sends a copy of the letter found there to all of the addresses listed. It determines the network to use based on the syntax and contents of the addresses.

Local addresses are looked up in the local aliases(4) file, or in a name service as defined by the nsswitch.conf(4) file, and aliased appropriately. In addition, if there is a .forward file in a recipient’s home directory, sendmail forwards a copy of each message to the list of recipients that file contains. Refer to the NOTES section for more information about .forward files. Aliasing can be prevented by preceding the address with a backslash.

There are several conditions under which the expected behavior is for the alias database to be either built or rebuilt. This cannot occur under any circumstances unless root owns and has exclusive write permission to the /etc/mail/aliases* files.

If a message is found to be undeliverable, it is returned to the sender with diagnostics that indicate the location and nature of the failure; or, the message is placed in a dead.letter file in the sender’s home directory.

Startup Options

The /etc/default/sendmail file stores startup options for sendmail so that the options are not removed when a host is upgraded.

You can use the following variables in the /etc/default/sendmail startup file:

CLIENTOPTIONS="string"

Selects additional options to be used with the client daemon, which looks in the client-only queue (/var/spool/clientmqueue) and acts as a client queue runner. No syntax checking is done, so be careful when making changes to this variable.

CLIENTQUEUEINTERVAL=#

Similar to the QUEUEINTERVAL option, CLIENTQUEUEINTERVAL sets the time interval for mail queue runs. However, the CLIENTQUEUEINTERVAL option controls the functions of the client daemon, instead of the functions of the master daemon. Typically, the master daemon is able to deliver all messages to the SMTP
port. However, if the message load is too high or the master daemon is not running, then messages go into the client-only queue, /var/spool/clientmqueue. The client daemon, which checks in the client-only queue, then acts as a client queue processor.

ETRN_HOSTS="string"
Enables an SMTP client and server to interact immediately without waiting for the queue run intervals, which are periodic. The server can immediately deliver the portion of its queue that goes to the specified hosts. For more information, refer to the etrn(1M) man page.

MODE=-bd
Selects the mode to start sendmail with. Use the -bd option or leave it undefined.

OPTIONS=string
Selects additional options to be used with the master daemon. No syntax checking is done, so be careful when making changes to this variable.

QUEUEINTERVAL=#
Sets the interval for mail queue runs on the master daemon. # can be a positive integer that is followed by either s for seconds, m for minutes, h for hours, d for days, or w for weeks. The syntax is checked before sendmail is started. If the interval is negative or if the entry does not end with an appropriate letter, the interval is ignored and sendmail starts with a queue interval of 15 minutes.

QUEUEOPTIONS=p
Enables one persistent queue runner that sleeps between queue run intervals, instead of a new queue runner for each queue run interval. You can set this option to p, which is the only setting available. Otherwise, this option is not set.

The following options are supported:

-AC  Uses submit.cf even if the operation mode does not indicate an initial mail submission.

-AM  Uses sendmail.cf even if the operation mode indicates an initial mail submission.

-Ba  Goes into ARPANET mode. All input lines must end with a RETURN-LINEFEED, and all messages are generated with a RETURN-LINEFEED at the end. Also, the From: and Sender: fields are examined for the name of the sender.

-Bd  Runs as a daemon in the background, waiting for incoming SMTP connections.

-bD  Runs as a daemon in the foreground, waiting for incoming SMTP connections.

-Bi  Initializes the aliases(4) database. Root must own and have exclusive write permission to the /etc/mail/aliases* files for successful use of this option.

sendmail(1M)
### sendmail(1M)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-bm</code></td>
<td>Delivers mail in the usual way (default).</td>
</tr>
<tr>
<td><code>-bp</code></td>
<td>Prints a summary of the mail queues.</td>
</tr>
<tr>
<td><code>-bP</code></td>
<td>Prints the number of entries in the queues. This option is only available with shared memory support.</td>
</tr>
<tr>
<td><code>-bs</code></td>
<td>Uses the SMTP protocol as described in RFC 821. This flag implies all the operations of the <code>-ba</code> flag that are compatible with SMTP.</td>
</tr>
<tr>
<td><code>-bt</code></td>
<td>Runs in address test mode. This mode reads addresses and shows the steps in parsing; it is used for debugging configuration tables.</td>
</tr>
<tr>
<td><code>-bv</code></td>
<td>Verifies names only. Does not try to collect or deliver a message. Verify mode is normally used for validating users or mailing lists.</td>
</tr>
<tr>
<td><code>-B type</code></td>
<td>Indicates body type (7BIT or 8BITMIME).</td>
</tr>
<tr>
<td><code>-C file</code></td>
<td>Uses alternate configuration file.</td>
</tr>
<tr>
<td><code>-d X</code></td>
<td>Sets debugging value to $X$.</td>
</tr>
<tr>
<td><code>-E name</code></td>
<td>Sets the name of the “from” person (that is, the sender of the mail).</td>
</tr>
<tr>
<td><code>-F fullname</code></td>
<td>Sets the full name of the sender.</td>
</tr>
<tr>
<td><code>-G</code></td>
<td>When accepting messages by way of the command line, indicates that they are for relay (gateway) submission. When this flag is set, <code>sendmail</code> might complain about syntactically invalid messages, for example, unqualified host names, rather than fixing them. <code>sendmail</code> does not do any canonicalization in this mode.</td>
</tr>
<tr>
<td><code>-h N</code></td>
<td>Sets the hop count to $N$. The hop count is incremented every time the mail is processed. When it reaches a limit, the mail is returned with an error message, the victim of an aliasing loop.</td>
</tr>
<tr>
<td><code>-L tag</code></td>
<td>Sets the identifier used in <code>syslog</code> messages to the supplied $tag$.</td>
</tr>
<tr>
<td><code>-m x=value</code></td>
<td>Sets macro $x$ to the specified $value$.</td>
</tr>
<tr>
<td><code>-n</code></td>
<td>Does not do aliasing.</td>
</tr>
<tr>
<td><code>-N notifications</code></td>
<td>Tags all addresses being sent as wanting the indicated $notifications$, which consists of the word “NEVER” or a comma-separated list of “SUCCESS”, “FAILURE”, and “DELAY” for successful delivery, failure and a message that is stuck in a queue somewhere. The default is “FAILURE,DELAY”.</td>
</tr>
<tr>
<td><code>-o x=value</code></td>
<td>Sets option $x$ to the specified $value$. Processing Options are described below.</td>
</tr>
<tr>
<td><code>-p protocol</code></td>
<td>Sets the sending protocol. The $protocol$ field can be in form $protocol:host$ to set both the sending protocol and the sending host.</td>
</tr>
</tbody>
</table>
For example: `-pUUCP:uunet` sets the sending protocol to UUCP and the sending host to uunet. Some existing programs use `-oM` to set the `r` and `s` macros; this is equivalent to using `-p`.

`-q[time]` Processes saved messages in the queue at given intervals. If `time` is omitted, processes the queue once. `time` is given as a tagged number, where `s` is seconds, `m` is minutes, `h` is hours, `d` is days, and `w` is weeks. For example, `-q1h30m` or `-q90m` would both set the timeout to one hour thirty minutes.

By default, sendmail runs in the background. This option can be used safely with `-bd`.

`-qp[time]` Similar to `-q[time]`, except that instead of periodically forking a child to process the queue, sendmail forks a single persistent child for each queue that alternates between processing the queue and sleeping. The sleep time (`time`) is specified as the argument; it defaults to 1 second. The process always sleeps at least 5 seconds if the queue was empty in the previous queue run.

`-qf` Processes saved messages in the queue once and does not fork (2), but runs in the foreground.

`-qG name` Processes jobs in queue group called `name` only.

`-q[!]I substr` Limits processed jobs to those containing `substr` as a substring of the queue ID or not when `!` is specified.

`-q[!]R substr` Limits processed jobs to those containing `substr` as a substring of one of the recipients or not when `!` is specified.

`-q[!]S substr` Limits processed jobs to those containing `substr` as a substring of the sender or not when `!` is specified.

`-r name` An alternate and obsolete form of the `-f` flag.

`-R ret` Identifies the information you want returned if the message bounces. `ret` can be `HDRS` for headers only or `FULL` for headers plus body.

`-t` Reads message for recipients. `To:`, `Cc:`, and `Bcc:` lines are scanned for people to send to. The `Bcc:` line is deleted before transmission. Any addresses in the argument list is suppressed. The `NoRecipientAction` Processing Option can be used to change the behavior when no legal recipients are included in the message.

`-v` Goes into verbose mode. Alias expansions are announced, and so forth.

`-V envid` The indicated `envid` is passed with the envelope of the message and returned if the message bounces.
**Processing Options**

- `*-X logfile` Logs all traffic in and out of `sendmail` in the indicated `logfile` for debugging mailer problems. This produces a lot of data very quickly and should be used sparingly.

There are a number of "random" options that can be set from a configuration file. Options are represented by a single character or by multiple character names. The syntax for the single character names of is:

```
O x=value
```

This sets option `x` to be `value`. Depending on the option, `value` may be a string, an integer, a boolean (with legal values `t`, `T`, `f`, or `F`; the default is `TRUE`), or a time interval.

The multiple character or long names use this syntax:

```
O Longname=argument
```

This sets the option `Longname` to be `argument`. The long names are beneficial because they are easier to interpret than the single character names.

Not all processing options have single character names associated with them. In the list below, the multiple character name is presented first followed by the single character syntax enclosed in parentheses.

- **AliasFile (Afile)** Specifies possible alias files.
- **AliasWait (a N)** If set, waits up to `N` minutes for an "@:" entry to exist in the `aliases(4)` database before starting up. If it does not appear in `N` minutes, issues a warning. Defaults to 10 minutes.
- **AllowBogusHELO** Allows a HELO SMTP command that does not include a host name. By default this option is disabled.
- **BadRcptThrottle=N** If set and more than the specified number of recipients in a single SMTP envelope are rejected, sleeps for one second after each rejected RCPT command.
- **BlankSub (Bc)** Sets the blank substitution character to `c`. Unquoted spaces in addresses are replaced by this character. Defaults to SPACE (that is, no change is made).
- **CheckAliases (n)** Validates the RHS of aliases when rebuilding the `aliases(4)` database.
- **CheckpointInterval (CN)** Checkpoints the queue every `N` (default 10) addresses sent. If your system crashes during delivery to a large list, this prevents retransmission to any but the last `N` recipients.
ClassFactor (zfact)
The indicated factor fact is multiplied by the message class (determined by the Precedence: field in the user header and the P lines in the configuration file) and subtracted from the priority. Thus, messages with a higher Priority: are favored. Defaults to 1800.

ClientPortOptions
Sets client SMTP options. The options are key=value pairs. Known keys are:

- **Addr Address Mask**
  Address Mask defaults to INADDR_ANY. The address mask can be a numeric address in dot notation or a network name.

- **Family**
  Address family (defaults to INET).

- **Listen**
  Size of listen queue (defaults to 10).

- **Port**
  Name/number of listening port (defaults to smtp).

- **RcvBufSize**
  The size of the TCP/IP receive buffer.

- **SndBufSize**
  The size of the TCP/IP send buffer.

- **Modifier**
  Options (flags) for the daemon. Can be:
  - **h**
    Uses name of interface for HELO command.

    If h is set, the name corresponding to the outgoing interface address (whether chosen by means of the Connection parameter or the default) is used for the HELO/EHLO command.

- **ColonOkInAddr**
  If set, colons are treated as a regular character in addresses. If not set, they are treated as the introducer to the RFC 822 “group” syntax. This option is on for version 5 and lower configuration files.

- **ConnectionCacheSize (kN)**
  The maximum number of open connections that are to be cached at a time. The default is 1. This delays closing the current connection until either this invocation of sendmail needs to connect to another host or it terminates. Setting it to 0 defaults to the old behavior, that is, connections are closed immediately.

- **ConnectionCacheTimeout (Ktimeout)**
  The maximum amount of time a cached connection is permitted to idle without activity. If this time is exceeded, the connection is immediately closed. This value should be small (on the order of ten minutes). Before sendmail uses a cached connection, it always sends a NOOP (no operation) command to check the connection. If the NOOP command fails, it reopens the connection. This keeps your end from failing if the other end times out. The point of this option is to be a good network neighbor and avoid using up excessive resources on the other end. The default is five minutes.
ConnectionRateThrottle
The maximum number of connections permitted per second. After this many
connections are accepted, further connections are delayed. If not set or <= 0, there is
no limit.

ControlSocketName
Name of the control socket for daemon management. A running sendmail
daemon can be controlled through this Unix domain socket. Available commands
are: help, restart, shutdown, and status. The status command returns the
current number of daemon children, the free disk space (in blocks) of the queue
directory, and the load average of the machine expressed as an integer. If not set, no
control socket is available. For the sake of security, this Unix domain socket must be
in a directory which is accessible only by root;
/var/spool/mqueue/.smcontrol is recommended for the socket name.

DaemonPortOptions (Options)
Sets server SMTP options. The options are key=value pairs. Known keys are:

Name User-definable name for the daemon (defaults to “Daemon#”).
Used for error messages and logging.
Addr Address mask (defaults INADDR_ANY).
The address mask may be a numeric address in dot notation or
a network name.
Family Address family (defaults to INET).
Listen Size of listen queue (defaults to 10).
Modifier Options (flags) for the daemon; can be a sequence (without any
delimiters) of:
a Requires authentication.
b Binds to interface through which mail has been
received.
c Performs hostname canonification (.cf).
f Requires fully qualified hostname (.cf).
h Uses name of interface for HELO command.
u Allows unqualified addresses (.cf).
C Does not perform hostname canonification.
E Disallows ETRN (see RFC 2476).

ReceiveSize The size of the TCP/IP receive buffer.
**SendSize**

The size of the TCP/IP send buffer.

Sendmail listens on a new socket for each occurrence of the DaemonPortOptions option in a configuration file.

**DataFileBufferSize**

Sets the threshold, in bytes, before a memory-bases queue data file becomes disk-based. The default is 4096 bytes.

**DeadLetterDrop**

Defines the location of the system-wide dead.letter file, formerly hard-coded to /var/tmp/dead.letter. If this option is not set (the default), sendmail does not attempt to save to a system-wide dead.letter file in the event it cannot bounce the mail to the user or postmaster. Instead, it renames the qf file as it has in the past when the dead.letter file could not be opened.

**DefaultCharSet**

Sets the default character set to use when converting unlabeled 8 bit input to MIME.

**DefaultUser (g gid) or (u uid)**

Sets the default group ID for mailers to run in to gid or set the default userid for mailers to uid. Defaults to 1. The value can also be given as a symbolic group or user name.

**DelayLA=LA**

When the system load average exceeds LA, sendmail sleeps for one second on most SMTP commands and before accepting connections.

**DeliverByMin=time**

Sets minimum time for Deliver By SMTP Service Extension (RFC 2852). If 0, no time is listed, if less than 0, the extension is not offered, if greater than 0, it is listed as minimum time for the EHLO keyword DELIVERBY.

**DeliveryMode (dx)**

Delivers in mode x. Legal modes are:

- **i** Delivers interactively (synchronously).
- **b** Delivers in background (asynchronously).
- **d** Deferred mode. Database lookups are deferred until the actual queue run.
- **q** Just queues the message (delivers during queue run).

Defaults to b if no option is specified, i if it is specified but given no argument (that is, Od is equivalent to Odi).

**DialDelay**

If a connection fails, waits this many seconds and tries again. Zero means “do not retry”.

**sendmail(1M)**
DontBlameSendmail
   If set, overrides the file safety checks. This compromises system security and should
   not be used. See http://www.sendmail.org/tips/DontBlameSendmail.html for
   more information.

DontExpandCnames
   If set, $[ ... $] lookups that do DNS-based lookups do not expand CNAME records.

DontInitGroups
   If set, the initgroups(3C) routine is never invoked. If you set this, agents run on
   behalf of users only have their primary (/etc/passwd) group permissions.

DontProbeInterfaces
   If set, sendmail does not insert the names and addresses of any local interfaces
   into the $=w class. If set, you must also include support for these addresses,
   otherwise mail to addresses in this list bounces with a configuration error.

DontPruneRoutes (R)
   If set, does not prune route-addr syntax addresses to the minimum possible.

DoubleBounceAddress
   If an error occurs when sending an error message, sends that “double bounce” error
   message to this address.

EightBitMode (8)
   Uses 8-bit data handling. This option requires one of the following keys. The key
   can selected by using just the first character, but using the full word is better for
   clarity.
      mimify
         Does any necessary conversion of 8BITMIME to 7-bit.
      pass
         Passes unlabeled 8-bit input through as is.
      strict
         Rejects unlabeled 8-bit input.

ErrorHeader (E/file/message)
   Appends error messages with the indicated message. If it begins with a slash, it is
   assumed to be the pathname of a file containing a message (this is the
   recommended setting). Otherwise, it is a literal message. The error file might
   contain the name, email address, and/or phone number of a local postmaster who
   could provide assistance to end users. If the option is missing or NULL, or if it
   names a file which does not exist or which is not readable, no message is printed.

ErrorMode (e)
   Disposes of errors using mode x. The values for x are:
      e  Mails back errors and gives 0 exit status always.
      m  Mails back errors.
      p  Prints error messages (default).
q  No messages, just gives exit status.
w  Writes back errors (mail if user not logged in).

FallbackMXhost (V fallbackhost)
   If specified, the fallbackhost acts like a very low priority MX on every host. This is intended to be used by sites with poor network connectivity.

FastSplit
   If set to a value greater than zero (the default is one), it suppresses the MX lookups on addresses when they are initially sorted, that is, for the first delivery attempt. This usually results in faster envelope splitting unless the MX records are readily available in a local DNS cache. To enforce initial sorting based on MX records set FastSplit to zero. If the mail is submitted directly from the command line, then the value also limits the number of processes to deliver the envelopes; if more envelopes are created they are only queued up and must be taken care of by a queue run. Since the default submission method is by way of SMTP (either from a MUA or by way of the MSP), the value of FastSplit is seldom used to limit the number of processes to deliver the envelopes.

ForkEachJob (Y)
   If set, delivers each job that is run from the queue in a separate process. Use this option if you are short of memory, since the default tends to consume considerable amounts of memory while the queue is being processed.

ForwardPath (J path)
   Sets the path for searching for users’ .forward files. The default is $z/.forward. Some sites that use the automounter may prefer to change this to /var/forward/$u to search a file with the same name as the user in a system directory. It can also be set to a sequence of paths separated by colons; sendmail stops at the first file it can successfully and safely open. For example, /var/forward/$u:$z/.forward searches first in /var/forward/ username and then in -username/.forward (but only if the first file does not exist). Refer to the NOTES section for more information.

HelpFile (H file)
   Specifies the help file for SMTP.

HoldExpensive (c)
   If an outgoing mailer is marked as being expensive, does not connect immediately.

HostsFile
   Sets the file to use when doing “file” type access of host names.

HostStatusDirectory
   If set, host status is kept on disk between sendmail runs in the named directory tree. If a full path is not used, then the path is interpreted relative to the queue directory.

IgnoreDots (i)
   Ignores dots in incoming messages. This is always disabled (that is, dots are always accepted) when reading SMTP mail.
sendmail(1M)

LogLevel \((L_n)\)
Sets the default log level to \(n\). Defaults to 9.

\((M_x \text{ value})\)
Sets the macro \(x\) to \(value\). This is intended only for use from the command line.

MailboxDatabase
Type of lookup to find information about local mail boxes, defaults to \(pw\) which uses \texttt{getpwnam(3C)}. Other types can be introduced by adding them to the source code, see \texttt{libsm/mbdb.c} for details.

MatchGECOS \((G)\)
Tries to match recipient names using the GECOS field. This allows for mail to be delivered using names defined in the GECOS field in /etc/passwd as well as the login name.

MaxDaemonChildren
The maximum number of children the daemon permits. After this number, connections are rejected. If not set or \(<=0\), there is no limit.

MaxHopCount \((h_N)\)
The maximum hop count. Messages that have been processed more than \(N\) times are assumed to be in a loop and are rejected. Defaults to 25.

MaxMessageSize
The maximum size of messages that are accepted (in bytes).

MaxMimeHeaderLength=\(M[/N]\)
Sets the maximum length of certain MIME header field values to \(M\) characters. For some of these headers which take parameters, the maximum length of each parameter is set to \(N\) if specified. If \(/N\) is not specified, one half of \(M\) is used. By default, these values are 0, meaning no checks are done.

MaxQueueChildren=\(N\)
When set, this limits the number of concurrent queue runner processes to \(N\). This helps to control the amount of system resources used when processing the queue. When there are multiple queue groups defined and the total number of queue runners for these queue groups would exceed MaxQueueChildren then the queue groups are not all run concurrently. That is, some portion of the queue groups run concurrently such that MaxQueueChildren is not be exceeded, while the remaining queue groups are run later (in round robin order). See MaxRunnersPerQueue.

MaxQueueRunSize
If set, limits the maximum size of any given queue run to this number of entries. This stops reading the queue directory after this number of entries is reached; job priority is not used. If not set, there is no limit.

MaxRunnersPerQueue=\(N\)
This sets the default maximum number of queue runners for queue groups. Up to \(N\) queue runners work in parallel on a queue group’s messages. This is useful where the processing of a message in the queue might delay the processing of subsequent messages. Such a delay can be the result of non-erroneous situations
such as a low bandwidth connection. The can be overridden on a per queue group basis by setting the Runners option. The default is 1 when not set.

**MeToo (M)**

Sends to me too, even if I am in an alias expansion.

**MaxRecipientsPerMessage**

If set, allows no more than the specified number of recipients in an SMTP envelope. Further recipients receive a 452 error code and are deferred for the next delivery attempt.

**MinFreeBlocks (bN/M)**

Insists on at least \( N \) blocks free on the file system that holds the queue files before accepting email by way of SMTP. If there is insufficient space, sendmail gives a 452 response to the MAIL command. This invites the sender to try again later. The optional \( M \) is a maximum message size advertised in the ESMTP EHLO response. It is currently otherwise unused.

**MinQueueAge**

Specifies the amount of time a job must sit in the queue between queue runs. This allows you to set the queue run interval low for better responsiveness without trying all jobs in each run. The default value is 0.

**MustQuoteChars**

Specifies the characters to be quoted in a full name phrase. \( \& , ; : \{ \} [ ] \) are quoted automatically.

**NiceQueueRun**

Specifies the priority of queue runners. See nice(1).

**NoRecipientAction**

Sets action if there are no legal recipient files in the message. The legal values are:

- **add-apparently-to** Adds an Apparently-to: header with all the known recipients (which may expose blind recipients).
- **add-bcc** Adds an empty Bcc: header.
- **add-to** Adds a To: header with all the known recipients (which may expose blind recipients).
- **add-to-undisclosed** Adds a To: undisclosed-recipients: header.
- **none** Does nothing, that is, leaves the message as it is.

**OldStyleHeaders (o)**

Assumes that the headers may be in old format, that is, spaces delimit names. This actually turns on an adaptive algorithm: if any recipient address contains a comma, parenthesis, or angle bracket, it is assumed that commas already exist. If this flag is not on, only commas delimit names. Headers are always output with commas between the names.
OperatorChars or $o
Defines the list of characters that can be used to separate the components of an address into tokens.

PidFile
Specifies the filename of the pid file. The default is /var/run/sendmail.pid. The filename is macro-expanded before it is opened.

PostmasterCopy (Ppostmaster)
If set, copies of error messages are sent to the named postmaster. Only the header of the failed message is sent. Since most errors are user problems, this is probably not a good idea on large sites, and arguably contains all sorts of privacy violations, but it seems to be popular with certain operating systems vendors.

PrivacyOptions (popt,opt,...)
Sets privacy options. Privacy is really a misnomer; many of these options are just a way of insisting on stricter adherence to the SMTP protocol.

The goaway pseudo-flag sets all flags except noreceipts, restrictmailq, restrictqrun, restrictexpand, noetrn, and nobodyreturn. If mailq is restricted, only people in the same group as the queue directory can print the queue. If queue runs are restricted, only root and the owner of the queue directory can run the queue. The restrict-expand pseudo-flag instructs sendmail to drop privileges when the -bv option is given by users who are neither root nor the TrustedUser so users cannot read private aliases, forwards, or :include: files. It adds the NonRootSafeAddr to the "DontBlame-Sendmail" option to prevent misleading unsafe address warnings. It also overrides the -v (verbose) command line option to prevent information leakage. Authentication Warnings add warnings about various conditions that may indicate attempts to fool the mail system, such as using an non-standard queue directory.

The options can be selected from:

authwarnings Puts X-Authentication-Warning: headers in messages.
goaway Disallows essentially all SMTP status queries.
needexpnhelo Insists on HELO or EHLO command before EXPN.
needmailhelo Insists on HELO or EHLO command before MAIL.
needvrfyhelo Insists on HELO or EHLO command before VRFY.
noetrn Disallows ETRN entirely.
noexpn Disallows EXPN entirely.
noreceipts Prevents return receipts.
nobodyreturn Does not return the body of a message with DSNs.
novrfy Disallows VRFY entirely.
public Allows open access.
restrictexpand
Restricts -bv and -v command line flags.

restrictmailq
Restricts mailq command.

restrictqrun
Restricts -q command line flag.

ProcessTitlePrefix string
Prefixes the process title shown on "/usr/ucb/ps auxww" listings with string. The string is macro processed.

QueueDirectory (Qdir)
Uses the named dir as the queue directory.

QueueFactor (qfactor)
Uses factor as the multiplier in the map function to decide when to just queue up jobs rather than run them. This value is divided by the difference between the current load average and the load average limit (x flag) to determine the maximum message priority to be sent. Defaults to 600000.

QueueFileMode=mode
Defaults permissions for queue files (octal). If not set, sendmail uses 0600 unless its real and effective uid are different in which case it uses 0644.

QueueLA (xLA)
When the system load average exceeds LA, just queues messages (that is, does not try to send them). Defaults to eight times the number of processors online when sendmail starts.

QueueSortOrder=algorithm
Sets the algorithm used for sorting the queue. Only the first character of the value is used. Legal values are host (to order by the name of the first host name of the first recipient), filename (to order by the name of the queue file name), time (to order by the submission/creation time), random (to order randomly), modification (to order by the modification time of the qf file (older entries first)), and priority (to order by message priority). Host ordering makes better use of the connection cache, but may tend to process low priority messages that go to a single host over high priority messages that go to several hosts; it probably shouldn’t be used on slow network links. Filename and modification time ordering saves the overhead of reading all of the queued items before starting the queue run. Creation (submission) time ordering is almost always a bad idea, since it allows large, bulk mail to go out before smaller, personal mail, but may have applicability on some hosts with very fast connections. Random is useful if several queue runners are started by hand which try to drain the same queue since odds are they are working on different parts of the queue at the same time. Priority ordering is the default.

QueueTimeout (Trtime/wtime)
Sets the queue timeout to trtime. After this interval, messages that have not been successfully sent are returned to the sender. Defaults to five days (5d). The optional wtime is the time after which a warning message is sent. If it is missing or 0, then no warning messages are sent.
RecipientFactor (yfact)
The indicated factor fact is added to the priority (thus lowering the priority of the job) for each recipient, that is, this value penalizes jobs with large numbers of recipients. Defaults to 30000.

RefuseLA (XLA)
When the system load average exceeds LA, refuses incoming SMTP connections. Defaults to 12 times the number of processors online when sendmail starts.

ResolverOptions (I)
Tunes DNS lookups.

RetryFactor (Zfact)
The indicated factor fact is added to the priority every time a job is processed. Thus, each time a job is processed, its priority is decreased by the indicated value. In most environments this should be positive, since hosts that are down are all too often down for a long time. Defaults to 90000.

RrtImpliesDsn
If this option is set, a Return-Receipt-To: header causes the request of a DSN, which is sent to the envelope sender as required by RFC 1891, not to the address given in the header.

RunAsUser
If set, becomes this user when reading and delivering mail. Intended for use of firewalls where users do not have accounts.

SafeFileEnvironment
If set, sendmail does a chroot into this directory before writing files.

SaveFromLine (f)
Saves Unix-style From lines at the front of headers. Normally they are assumed redundant and discarded.

SendMimeErrors (j)
If set, sends error messages in MIME format (see RFC 2045 and RFC 1344 for details). If disabled, sendmail does not return the DSN keyword in response to an EHLO and does not do Delivery Status Notification processing as described in RFC 1891.

ServiceSwitchFile
Defines the path to the service-switch file. Since the service-switch file is defined in the Solaris operating environment this option is ignored.

SevenBitInput (7)
Strips input to seven bits for compatibility with old systems. This should not be necessary.

SharedMemoryKey
Specifies key to use for shared memory segment. If not set (or 0), shared memory is not be used. If this option is set, sendmail can share some data between different instances. For example, the number of entries in a queue directory or the available
space in a file system. This allows for more efficient program execution, since only one process needs to update the data instead of each individual process gathering the data each time it is required.

**SingleLineFromHeader**
If set, `From:` lines that have embedded newlines are unwrapped onto one line.

**SingleThreadDelivery**
If this option and the `HostStatusDirectory` option are both set, uses single thread deliveries to other hosts.

**SmtpGreetingMessage or $e**
Specifies the initial SMTP greeting message.

**StatusFile** *(sfile)*
Logs statistics in the named file. By default, this is `/etc/mail/sendmail.st`. As root, you must `touch(1)` this file to enable `mailstats(1)`.

**SuperSafe** *(s)*
This option can be set to `True`, `False`, or `Interactive`. If set to `True`, `sendmail` is set to super-safe when running things, that is, always instantiate the queue file, even if you are going to attempt immediate delivery. `sendmail` always instantiates the queue file before returning control to the client under any circumstances. This should really always be set to `True`. The `Interactive` value has been introduced in 8.12 and can be used together with `DeliveryMode=i`. It skips some synchronization calls which are effectively doubled in the code execution path for this mode.

**TempFileMode** *(Fmode)*
Specifies the file mode for queue files.

**Timeout** *(rtimouts)*
Timeout reads after time interval. The `timeout` argument is a list of `keyword=value` pairs. All but `command` apply to client SMTP. For backward compatibility, a timeout with no `keyword=` part is set all of the longer values. The recognized timeouts and their default values, and their minimum values specified in RFC 1123 section 5.3.2 are:

- `aconnect`
  - all connections for a single delivery attempt [0, unspecified]
- `command`
  - command read [1h, 5m]
- `connect`
  - initial connect [0, unspecified]
- `control`
  - complete control socket transaction [2m, none]
- `datablock`
  - data block read [1h, 3m]
sendmail(1M)

datafinal
   reply to final . in data [1h, 10m]
datainit
   reply to DATA command [5m, 2m]
fileopen
   file open [60sec, none]
helo
   reply to HELO or EHLO command [5m, none]
hoststatus
   host retry [30m, unspecified]
iconnect
   first attempt to connect to a host [0, unspecified]
ident
   IDENT protocol timeout [5s, none]
initial
   wait for initial greeting message [5m, 5m]
lhlo
   wait for reply to an LMTP LHLO command [2m, unspecified]
mail
   reply to MAIL command [10m, 5m]
misc
   reply to NOOP and VERB commands [2m, none]
queuereturn
   undeliverable message returned [5d]
queuewarn
   deferred warning [4h]
quit
   reply to QUIT command [2m, none]
rcpt
   reply to RCPT command [1h, 5m]
resolver.retrans
   Resolver's retransmission time interval (in seconds) [varies]. Sets both
   Timeout.resolver.retrans.first and
   Timeout.resolver.retrans.normal.
resolver.retrans.first
   Resolver's retransmission time interval (in seconds) for the first attempt to
deliver a message [varies].
### resolver.retrans.normal

Resolver's retransmission time interval (in seconds) for all look-ups except the first delivery attempt [varies].

### resolver.retry

Number of times to retransmit a resolver query [varies]. Sets both Timeout.resolver.retry.first and Timeout.resolver.retry.normal.

### resolver.retry.first

Number of times to retransmit a resolver query for the first attempt to deliver a message [varies].

### resolver.retry.normal

Number of times to retransmit a resolver query for all look-ups except the first delivery attempt [varies].

### rset

reply to RSET command [5m, none]

### TimeZoneSpec (tzinfo)

Sets the local time zone info to `tzinfo`, for example, "PST8PDT ". Actually, if this is not set, the TZ environment variable is cleared (so the system default is used); if set but null, the user’s TZ variable is used, and if set and non-null, the TZ variable is set to this value.

### TrustedUser

The user parameter can be a user name (looked up in the passwd map) or a numeric user id. Trusted user for file ownership and starting the daemon. If set, generated alias databases and the control socket (if configured) are automatically owned by this user.

### TryNullMXList (w)

If you are the "best" (that is, lowest preference) MX for a given host, you should normally detect this situation and treat that condition specially, by forwarding the mail to a UUCP feed, treating it as local, or whatever. However, in some cases (such as Internet firewalls) you may want to try to connect directly to that host as though it had no MX records at all. Setting this option causes sendmail to try this. The downside is that errors in your configuration are likely to be diagnosed as "host unknown" or "message timed out" instead of something more meaningful. This option is deprecated.

### UnixFromLine or $l

The “From “ line used when sending to files or programs.

### UnsafeGroupWrites

If set, group-writable .include: and .forward files are considered “unsafe”, that is, programs and files cannot be directly referenced from such files.

### UseErrorsTo (l)

If there is an Errors-To: header, sends error messages to the addresses listed there. They normally go to the envelope sender. Use of this option causes sendmail to violate RFC 1123. This option is not recommended and deprecated.
**sendmail(1M)**

**UseMSP**
Uses as mail submission program, that is, allows group writable queue files if the group is the same as that of a set-group-id sendmail binary.

**UserDatabaseSpec (U)**
Defines the name and location of the file containing User Database information.

**Verbose (v)**
Runs in verbose mode. If this is set, sendmail adjusts the HoldExpensive and DeliveryMode options so that all mail is delivered completely in a single job so that you can see the entire delivery process. The *Verbose* option should **never** be set in the configuration file; it is intended for command line use only.

**XscriptFileBufferSize**
Sets the threshold, in bytes, before a memory-bases queue transcript file becomes disk-based. The default is 4096 bytes.

If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a program to pipe the mail to. It may be necessary to quote the name of the user to keep sendmail from suppressing the blanks from between arguments.

If invoked as *newaliases*, sendmail rebuilds the alias database, so long as the */etc/mail/aliases* files are owned by root and root has exclusive write permission. If invoked as *mailq*, sendmail prints the contents of the mail queue.

**OPERANDS**

| address              | address of an intended recipient of the message being sent. |

**USAGE**
See *largefile(5)* for the description of the behavior of sendmail when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXIT STATUS**
sendmail returns an exit status describing what it did. The codes are defined in `/usr/include/sysexits.h`.

| EX_OK               | Successful completion on all addresses. |
| EX_NOUSER           | User name not recognized. |
| EX_UNAVAILABLE      | Catchall. Necessary resources were not available. |
| EX_SYNTAX           | Syntax error in address. |
| EX_SOFTWARE         | Internal software error, including bad arguments. |
| EX_OSERR            | Temporary operating system error, such as “cannot fork”. |
| EX_NOHOST           | Host name not recognized. |
| EX_TEMPFAIL         | Message could not be sent immediately, but was queued. |
No environment variables are used. However, at system start-up, `~/etc/init.d/sendmail` reads `~/etc/default/sendmail`. In this file, if the variable `ETRN_HOSTS` is set, `~/etc/init.d/sendmail` parses this variable and invokes `etrn(1M)` appropriately. `ETRN_HOSTS` should be of the form:

```
s1:c1.1,c1.2    s2:c2.1    s3:c3.1,c3.2,c3.3
```

That is, white-space separated groups of `server:client` where `client` can be one or more comma-separated names. The :client part is optional. server is the name of the server to prod; a mail queue run is requested for each client name. This is comparable to running:

```
/usr/lib/sendmail -qR client
```

on the host server.

**FILES**

- `dead.letter`: Unmailable text
- `~/etc/default/sendmail`: Contains default settings. You can override some of the settings by command line options.
- `~/etc/mail/aliases`: Mail aliases file (ASCII)
- `~/etc/mail/aliases.db`: Database of mail aliases (binary)
- `~/etc/mail/aliases.dir`: Database of mail aliases (binary)
- `~/etc/mail/aliases.pag`: Database of mail aliases (binary)
- `~/etc/mail/sendmail.cf`: Defines environment for `sendmail`
- `~/var/spool/clientmqueue/*`: Temporary files and queued mail
- `~/var/spool/mqueue/*`: Temporary files and queued mail
- `~/.forward`: List of recipients for forwarding messages

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

- `biff(1B)`, `mail(1)`, `mailq(1)`, `mailx(1)`, `nice(1)`, `check-hostname(1M)`, `check-permissions(1M)`, `etrn(1M)`, `newaliases(1M)`, `fork(2)`, `getpwnam(3C)`, `getusershell(3C)`, `resolver(3RESOLV)`, `aliases(4)`, `hosts(4)`, `shells(4)`, `attributes(5)`, `largefile(5)`


sendmail(1M)
sendmail(1M)

NOTES

The sendmail program requires a fully qualified host name when starting. A script has been included to help verify if the host name is defined properly (see check-hostname(1M)).

The permissions and the ownership of several directories have been changed in order to increase security. In particular, access to /etc/mail and /var/spool/mqueue has been restricted.

Security restrictions have been placed users using .forward files to pipe mail to a program or redirect mail to a file. The default shell (as listed in /etc/passwd) of these users must be listed in /etc/shells. This restriction does not affect mail that is being redirected to another alias.

Additional restrictions have been put in place on .forward and :include: files. These files and the directory structure that they are placed in cannot be group- or world-writable. See check-permissions(1M).

If you have interfaces that map to domains that have MX records that point to non-local destinations, you might need to enable the DontProbeInterfaces option to enable delivery to those destinations. In its default startup behavior, sendmail probes each interface and adds an interface’s IP addresses, as well as any domains that those addresses map to, to its list of domains that are considered local. For domains thus added, being on the list of local domains is equivalent to having a 0-preference MX record, with localhost as the MX value. If this is not the result you want, enable DontProbeInterfaces.
The `setuname` utility changes the parameter value for the system name and node name. Each parameter can be changed using `setuname` and the appropriate option.

Either or both the `-s` and `-n` options must be given when invoking `setuname`.

The system architecture may place requirements on the size of the system and network node name. The command will issue a fatal warning message and an error message if the name entered is incompatible with the system requirements.

The following options are supported:

- `-n node` Changes the node name. `node` specifies the new network node name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.

- `-s name` Changes the system name. `name` specifies new system name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.

- `-t` Temporary change. No attempt will be made to create a permanent change.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsux (64-bit)</td>
</tr>
</tbody>
</table>

`setuname` attempts to change the parameter values in two places: the running kernel and, as necessary per implementation, to cross system reboots. A temporary change changes only the running kernel.
The Sun Fire 880 Dynamic Reconfiguration daemon, `sf880drd`, is part of the PCI and system bus hotplug framework. `sf880drd` starts at boot time. It has no configuration options and does not report any system status.

`sf880drd` implements the Sun Fire 880 console-less system administration (per-slot pushbuttons and LED status indicators). It also manages various aspects of CPU/memory hotplug.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsfdr.u</td>
</tr>
</tbody>
</table>

See also `cfgadm(1M), cfgadm_pci(1M), cfgadm_sbd(1M), attributes(5)`
sftp-server – SFTP server subsystem

/usr/lib/ssh/sftp-server

sftp-server implements the server side of the SSH File Transfer Protocol as defined in the IETF draft-ietf-secsh-filexfer.

sftp-server is a subsystem for sshd(1M) and must not be run directly. There are no options or config settings.

To enable the sftp-server subsystem for sshd add the following to /etc/ssh/sshd_config:

Subsystem sftp /usr/lib/ssh/sftp-server

See sshd_config(4) for a description of the format and contents of that file.

There is no relationship between the protocol used by sftp-server and the FTP protocol (RFC 959) provided by in.ftpd.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshdu</td>
</tr>
</tbody>
</table>

SEE ALSO

sftp(1), ssh(1), ssh-add(1), ssh-keygen(1), sshd(1M), sshd_config(4), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.

Markus Friedl
share(1M)

<table>
<thead>
<tr>
<th>NAME</th>
<th>share – make local resource available for mounting by remote systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td><code>share [-F FSType] [-o specific_options] [-d description] [pathname]</code></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The <code>share</code> command exports, or makes a resource available for mounting, through a remote file system of type <code>FSType</code>. If the option <code>-F FSType</code> is omitted, the first file system type listed in <code>/etc/dfs/fstypes</code> is used as default. For a description of NFS specific options, see <code>share_nfs(1M)</code>. <code>pathname</code> is the pathname of the directory to be shared. When invoked with no arguments, <code>share</code> displays all shared file systems.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td><code>-F FSType</code> Specify the filesystem type.</td>
</tr>
<tr>
<td></td>
<td><code>-o specific_options</code> The <code>specific_options</code> are used to control access of the shared resource. (See <code>share_nfs(1M)</code> for the NFS specific options.) They may be any of the following:</td>
</tr>
<tr>
<td></td>
<td><code>rw</code> <code>pathname</code> is shared read/write to all clients. This is also the default behavior.</td>
</tr>
<tr>
<td></td>
<td><code>rw=client[:client]...</code> <code>pathname</code> is shared read/write only to the listed clients. No other systems can access <code>pathname</code>.</td>
</tr>
<tr>
<td></td>
<td><code>ro</code> <code>pathname</code> is shared read-only to all clients.</td>
</tr>
<tr>
<td></td>
<td><code>ro=client[:client]...</code> <code>pathname</code> is shared read-only only to the listed clients. No other systems can access <code>pathname</code>.</td>
</tr>
<tr>
<td></td>
<td>Separate multiple options with colons.</td>
</tr>
<tr>
<td></td>
<td><code>-d description</code> The <code>-d</code> flag may be used to provide a description of the resource being shared.</td>
</tr>
</tbody>
</table>

| EXAMPLES | EXAMPLE 1 Sharing a read-only filesystem |
| EXAMPLE 1 | This line will share the `/disk` file system read-only at boot time. |
| EXAMPLE 1 | `share -F nfs -o ro /disk` |

| EXAMPLE 2 | Invoking multiple options |
| EXAMPLE 2 | The following command shares the filesystem `/export/manuals`, with members of the netgroup having read-only access and users on the specified host having read-write access. |
EXAMPLE 2 Invoking multiple options  
(Continued)

share -F nfs -o ro=netgroup_name:rw=hostname /export/manuals

FILES
/etc/dfs/dfstab  list of share commands to be executed at boot time
/etc/dfs/fstypes  list of file system types, NFS by default
/etc/dfs/sharetab  system record of shared file systems

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
mountd(1M), nfsd(1M), share_nfs(1M), shareall(1M), unshare(1M), attributes(5)

NOTES
Export (old terminology): file system sharing used to be called exporting on SunOS 4.x, so the share command used to be invoked as exportfs(1B) or /usr/sbin/exportfs.

If share commands are invoked multiple times on the same filesystem, the last share invocation supersedes the previous—the options set by the last share command replace the old options. For example, if read-write permission was given to usera on /somefs, then to give read-write permission also to userb on /somefs:

eexample% share -F nfs -o rw=usera:userb /somefs

This behavior is not limited to sharing the root filesystem, but applies to all filesystems.
shareall(1M)

NAME  shareall, unshareall – share, unshare multiple resources

SYNOPSIS  shareall [-F FSType [,FSType...]] [- | file]

unshareall [-F FSType [,FSType...]]

DESCRIPTION  When used with no arguments, shareall shares all resources from file, which
contains a list of share command lines. If the operand is a hyphen (−), then the
share command lines are obtained from the standard input. Otherwise, if neither a
file nor a hyphen is specified, then the file /etc/dfs/dfstab is used as the
default.

Resources may be shared by specific file system types by specifying the file systems in
a comma-separated list as an argument to -F.

unshareall unshares all currently shared resources. Without a -F flag, it unshares
resources for all distributed file system types.

OPTIONS  -F FSType  Specify file system type. Defaults to the first entry in
/etc/dfs/fstypes.

FILES  /etc/dfs/dfstab

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  share(1M), unshare(1M), attributes(5)
share_nfs(1M)

NAME
share_nfs – make local NFS file systems available for mounting by remote systems

SYNOPSIS
share [-d description] [-F nfs] [-o specific_options] pathname

DESCRIPTION
The share utility makes local file systems available for mounting by remote systems.

If no argument is specified, then share displays all file systems currently shared, including
NFS file systems and file systems shared through other distributed file
system packages.

OPTIONS
The following options are supported:

- `-d description`  Provide a comment that describes the file system to be shared.
- `-F nfs`  Share NFS file system type.
- `-o specific_options`  Specify `specific_options` in a comma-separated list of
keywords and attribute-value-assertions for interpretation by the file-system-type-specific
command. If `specific_options` is not specified, then by default sharing will be read-write to all clients.

`specific_options` can be any combination of the following:

- `aclok`  Allows the NFS server to do access control for NFS Version 2 clients (running SunOS 2.4 or earlier).
  When `aclok` is set on the server, maximal access is given to all clients. For example, with `aclok` set, if
  anyone has read permissions, then everyone does. If `aclok` is not set, minimal access is given to all
  clients.

- `anon=uid`  Set `uid` to be the effective user ID of unknown users. By default, unknown users are given the effective
  user ID `UID_NOBODY`. If `uid` is set to `−1`, access is denied.

- `index=file`  Load `file` rather than a listing of the directory
  containing this file when the directory is referenced by an NFS URL.

- `log=tag`  Enables NFS server logging for the specified file system. The optional tag determines the location of
  the related log files. The `tag` is defined in
  `etc/nfs/nfslog.conf`. If no `tag` is specified, the
default values associated with the “global” `tag` in
  `etc/nfs/nfslog.conf` will be used.
share_nfs(1M)

nosub
Prevents clients from mounting subdirectories of shared directories. For example, if /export is shared with the nosub option on server fooey then a NFS client will not be able to do:

```
mount -F nfs fooey:/export/home/mnt
```

nosuid
By default, clients are allowed to create files on the shared file system with the setuid or setgid mode enabled. Specifying nosuid causes the server file system to silently ignore any attempt to enable the setuid or setgid mode bits.

public
Moves the location of the public file handle from root( / ) to the exported directory for WebNFS-enabled browsers and clients. This option does not enable WebNFS service; WebNFS is always on. Only one file system per server may use this option. Any other option, including the -ro=list and -rw=list options can be included with the public option.

ro
Sharing will be read-only to all clients.

ro=access_list
Sharing will be read-only to the clients listed in access_list; overrides the rw suboption for the clients specified. See access_list below.

root=access_list
Only root users from the hosts specified in access_list will have root access. See access_list below. By default, no host has root access, so root users are mapped to an anonymous user ID (see the anon=uid option described above). Netgroups can be used if the file system shared is using UNIX authentication (AUTH_SYS).

rw
Sharing will be read-write to all clients.

rw=access_list
Sharing will be read-write to the clients listed in access_list; overrides the ro suboption for the clients specified. See access_list below.
sec=mode[:mode]...

Sharing will use one or more of the specified security modes. The mode in the sec=mode option must be a node name supported on the client. If the sec= option is not specified, the default security mode used is AUTH_SYS. Multiple sec= options can be specified on the command line, although each mode can appear only once. The security modes are defined in nfssec(5).

Each sec= option specifies modes that apply to any subsequent window=, rw, ro, rw=, ro= and root= options that are provided before another sec= option. Each additional sec= resets the security mode context, so that more window=, rw, ro, rw=, ro= and root= options can be supplied for additional modes.

sec=none

If the option sec=none is specified when the client uses AUTH_NONE, or if the client uses a security mode that is not one that the file system is shared with, then the credential of each NFS request is treated as unauthenticated. See the anon=uid option for a description of how unauthenticated requests are handled.

secure

This option has been deprecated in favor of the sec=dh option.

window=value

When sharing with sec=dh, set the maximum life time (in seconds) of the RPC request’s credential (in the authentication header) that the NFS server will allow. If a credential arrives with a life time larger than what is allowed, the NFS server will reject the request. The default value is 30000 seconds (8.3 hours).

access_list

The access_list argument is a colon-separated list whose components may be any number of the following:

hostname

The name of a host. With a server configured for DNS or LDAP naming in the nsswitch "hosts" entry, any hostname must be represented as a fully qualified DNS or LDAP name.

netgroup

A netgroup contains a number of hostnames. With a server configured for DNS or LDAP naming in the
nsswitch "hosts" entry, any hostname in a netgroup must be represented as a fully qualified DNS or LDAP name.

domain name suffix
To use domain membership the server must use DNS or LDAP to resolve hostnames to IP addresses; that is, the "hosts" entry in the /etc/nsswitch.conf must specify "dns" or "ldap" ahead of "nis" or "nisplus", since only DNS and LDAP return the full domain name of the host. Other name services like NIS or NIS+ cannot be used to resolve hostnames on the server because when mapping an IP address to a hostname they do not return domain information. For example,

NIS or NIS+ 129.144.45.9 --> "myhost"

DNS or LDAP 129.144.45.9 --> "myhost.mydomain.mycompany.com"

The domain name suffix is distinguished from hostnames and netgroups by a prefixed dot. For example,

rw=.mydomain.mycompany.com

A single dot can be used to match a hostname with no suffix. For example,

rw=

will match "mydomain" but not "mydomain.mycompany.com". This feature can be used to match hosts resolved through NIS and NIS+ rather than DNS and LDAP.

network
The network or subnet component is preceded by an at-sign (@). It can be either a name or a dotted address. If a name, it will be converted to a dotted address by getnetbyname(3SOCKET). For example,

@@mynet would be equivalent to:

@@129.144 or @@129.144.0.0 The network prefix assumes an octet aligned netmask determined from the zero octets in the low-order part of the address. In the case where network prefixes are not byte-aligned, the
syntax will allow a mask length to be specified explicitly following a slash (/) delimiter. For example,

```bash
@theothernet/17 or @129.144.132/22
```
where the mask is the number of leftmost contiguous significant bits in the corresponding IP address.

A prefixed minus sign (−) denies access to that component of `access_list`. The list is searched sequentially until a match is found that either grants or denies access, or until the end of the list is reached. For example, if host "terra" is in the "engineering" netgroup, then

```bash
rw-=terra:engineering will deny access to terra but
rw-engineering: -terra will grant access to terra.
```

**OPERANDS**
The following operands are supported:

- `pathname` The pathname of the file system to be shared.

**EXAMPLES**

**EXAMPLE 1** Sharing A File System With Logging Enabled

The following example shows the `/export` file system shared with logging enabled:

```bash
example% share -o log /export
```

The default global logging parameters are used since no tag identifier is specified. The location of the log file, as well as the necessary logging work files, is specified by the global entry in `/etc/nfs/nfslog.conf`. Note that the `nfslogd(1M)` daemon will run only if at least one file system entry in `/etc/dfs/dfstab` is shared with logging enabled upon starting or rebooting the system. Simply sharing a file system with logging enabled from the command line will not start the `nfslogd(1M)`.

**EXIT STATUS**
The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

**FILES**

- `/etc/dfs/fstypes` list of system types, NFS by default
- `/etc/dfs/sharetab` system record of shared file systems
- `/etc/nfs/nfslogtab` system record of logged file systems
- `/etc/nfs/nfslog.conf` logging configuration file
share_nfs(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfssu</td>
</tr>
</tbody>
</table>

SEE ALSO

mount(1M), mountd(1M), nfsd(1M), nfslogd(1M), share(1M), unshare(1M), getnetbyname(3SOCKET), nfslog.conf(4), netgroup(4), attributes(5), nfssec(5)

NOTES

If the sec= option is presented at least once, all uses of the window=, rw, ro, rw=, ro= and root= options must come after the first sec= option. If the sec= option is not presented, then sec=sys is implied.

If one or more explicit sec= options are presented, sys must appear in one of the options mode lists for accessing using the AUTH_SYS security mode to be allowed. For example:

```bash
share -F nfs /var
share -F nfs -o sec=sys /var will grant read-write access to any host using AUTH_SYS, but
share -F nfs -o sec=dh /var will grant no access to clients that use AUTH_SYS.
```

Unlike previous implementations of share_nfs(1M), access checking for the window=, rw, ro, rw=, and ro= options is done per NFS request, instead of per mount request.

Combining multiple security modes can be a security hole in situations where the ro= and rw= options are used to control access to weaker security modes. In this example,

```bash
share -F nfs -o sec=dh,rw,sec=sys,rw=hosta /var
```

an intruder can forge the IP address for hosta (albeit on each NFS request) to side-step the stronger controls of AUTH_DES. Something like:

```bash
share -F nfs -o sec=dh,rw,sec=sys,ro /var
```

is safer, because any client (intruder or legitimate) that avoids AUTH_DES will only get read-only access. In general, multiple security modes per share command should only be used in situations where the clients using more secure modes get stronger access than clients using less secure modes.

If rw=, and ro= options are specified in the same sec= clause, and a client is in both lists, the order of the two options determines the access the client gets. If client hosta is in two netgroups - group1 and group2 - in this example, the client would get read-only access:

```bash
share -F nfs -o ro=group1,rw=group2 /var
```
In this example hosta would get read-write access:

```
share -F nfs -o rw=group2,ro=group1 /var
```

If within a `sec=` clause, both the `ro` and `rw=` options are specified, for compatibility, the order of the options rule is not enforced. All hosts would get read-only access, with the exception to those in the read-write list. Likewise, if the `ro=` and `rw` options are specified, all hosts get read-write access with the exceptions of those in the read-only list.

The `ro=` and `rw=` options are guaranteed to work over UDP and TCP but may not work over other transport providers.

The `root=` option with `AUTH_SYS` is guaranteed to work over UDP and TCP but may not work over other transport providers.

The `root=` option with `AUTH_DES` is guaranteed to work over any transport provider.

There are no interactions between the `root=` option and the `rw`, `ro`, `rw=`, and `ro=` options. Putting a host in the `root` list does not override the semantics of the other options. The access the host gets is the same as when the `root=` options is absent. For example, the following `share` command will deny access to hostb:

```
share -F nfs -o ro=hosta,root=hostb /var
```

The following will give read-only permissions to hostb:

```
share -F nfs -o ro=hostb,root=hostb /var
```

The following will give read-write permissions to hostb:

```
share -F nfs -o ro=hosta,rw=hostb,root=hostb /var
```

If the file system being shared is a symbolic link to a valid pathname, the canonical path (the path which the symbolic link follows) will be shared. For example, if `/export/foo` is a symbolic link to `/export/bar` (/export/foo -> /export/bar), the following `share` command will result in `/export/bar` as the shared pathname (and not `/export/foo`).

```
exmaples# share -F nfs /export/foo
```

Note that an NFS mount of server:/export/foo will result in server:/export/bar really being mounted.

This line in the `/etc/dfs/dfstab` file will share the `/disk` file system read-only at boot time:

```
share -F nfs -o ro /disk
```

Note that the same command entered from the command line will not share the `/disk` file system unless there is at least one file system entry in the `/etc/dfs/dfstab` file. The `mountd(1M)` and `nfsd(1M)` daemons only run if there is a file system entry in `/etc/dfs/dfstab` when starting or rebooting the system.
showmount(1M)

NAME   showmount – show all remote mounts
SYNOPSIS /usr/sbin/showmount [-ade] [hostname]
DESCRIPTION showmount lists all the clients that have remotely mounted a filesystem from host. This information is maintained by the mountd(1M) server on host, and is saved across crashes in the file /etc/rmtab. The default value for host is the value returned by hostname(1).
OPTIONS
-a  Print all remote mounts in the format:

        hostname : directory

        where hostname is the name of the client, and directory is the root of the filesystem that has been mounted.
-d  List directories that have been remotely mounted by clients.
-e  Print the list of shared file systems.
FILES /etc/rmtab
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

+----------------+---------------------+
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfscc</td>
</tr>
</tbody>
</table>
### NAME
showrev – show machine, software revision, and patch revision information

### SYNOPSIS
```
/usr/bin/showrev [-a] [-p | -p -R root_path] [-w] [-c command]
[-s hostname]
```

### DESCRIPTION
showrev displays revision information for the current hardware and software. With no arguments, showrev shows the system revision information including hostname, hostid, release, kernel architecture, application architecture, hardware provider, domain, and kernel version.

If a command is supplied with the `-c` option, showrev shows the `PATH` and `LD_LIBRARY_PATH` and finds out all the directories within the `PATH` that contain it. For each file found, its file type, revision, permissions, library information, and checksum are printed as well.

### OPTIONS
The following options are supported:

- `-a`
  - Print all system revision information available. Window system and patch information are added.

- `-c command`
  - Print the revision information about `command`.

- `-p`
  - Print only the revision information about patches.

- `-R root_path`
  - Define the full path name of a directory to use as the `root_path`. By specifying the root path, showrev retrieves the revision information about the patch from package system information files located under a directory tree starting at `root_path`. The `root_path` can be specified when retrieving installed patch information in a client from a server, for example, `/export/root/client1`.

- `-s hostname`
  - Perform this operation on the specified `hostname`. The `-s` operation completes correctly only when `hostname` is running Solaris 2.5 or compatible versions.

- `-w`
  - Print only the OpenWindows revision information.

### OUTPUT
Varies, based on flags passed. If no flags are passed, output similar to the following appears:

```
Hostname: system1
  Hostid: 7233808e
  Release: 5.9
  Kernel architecture: sun4u
  Application architecture: sparc
  Hardware provider: Sun_Microsystems
  Domain: a.network.COM
  Kernel version: SunOS 5.9 generic February 2001
```

### EXIT STATUS
The following error values are returned:

- `0`
  - Successful completion.

- `>0`
  - An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmin</td>
</tr>
</tbody>
</table>

SEE ALSO

arch(1), ldd(1), mcs(1), sum(1), patchadd(1M), attributes(5)

BUGS

For the -s option to work when hostname is running a version of Solaris prior to 2.5, the Solstice AdminSuite must be installed on hostname.
shutdown – shut down system, change system state

/shutdown [-y] [-g grace-period] [-i init-state] [message]

shutdown is executed by the super user to change the state of the machine. In most cases, it is used to change from the multi-user state (state 2) to another state.

By default, shutdown brings the system to a state where only the console has access to the operating system. This state is called single-user.

Before starting to shut down daemons and killing processes, shutdown sends a warning message and, by default, a final message asking for confirmation. message is a string that is sent out following the standard warning message "The system will be shut down in . . ." If the string contains more than one word, it should be contained within single ('') or double (") quotation marks.

The warning message and the user provided message are output when there are 7200, 3600, 1800, 1200, 600, 300, 120, 60, and 30 seconds remaining before shutdown begins. See EXAMPLES.

System state definitions are:

state 0 Stop the operating system.

state 1 State 1 is referred to as the administrative state. In state 1 file systems required for multi-user operations are mounted, and logins requiring access to multi-user file systems can be used. When the system comes up from firmware mode into state 1, only the console is active and other multi-user (state 2) services are unavailable. Note that not all user processes are stopped when transitioning from multi-user state to state 1.

state s, S State s (or S) is referred to as the single-user state. All user processes are stopped on transitions to this state. In the single-user state, file systems required for multi-user logins are unmounted and the system can only be accessed through the console. Logins requiring access to multi-user file systems cannot be used.

state 5 Shut the machine down so that it is safe to remove the power. Have the machine remove power, if possible. The rc0 procedure is called to perform this task.

state 6 Stop the operating system and reboot to the state defined by the initdefault entry in /etc/inittab. The rc6 procedure is called to perform this task.

-y Pre-answer the confirmation question so the command can be run without user intervention.

-g grace-period Allow the super user to change the number of seconds from the 60-second default.
shutdown(1M)

- `init-state`  
  If there are warnings, `init-state` specifies the state `init` is to be in. By default, system state `s` is used.

**EXAMPLES**

**EXAMPLE 1** Using `shutdown`

In the following example, `shutdown` is being executed on host `foo` and is scheduled in 120 seconds. The warning message is output 2 minutes, 1 minute, and 30 seconds before the final confirmation message.

```
eexample# shutdown -i S -g 120 "===== disk replacement ====="
Shutdown started.  Tue Jun  7 14:51:40 PDT 1994

Broadcast Message from root (pts/1) on foo Tue Jun  7 14:51:41. . .
The system will be shut down in 2 minutes

Broadcast Message from root (pts/1) on foo Tue Jun  7 14:52:41. . .
The system will be shut down in 1 minutes

Broadcast Message from root (pts/1) on foo Tue Jun  7 14:53:41. . .
The system will be shut down in 30 seconds

Do you want to continue? (y or n):```

**FILES**

`/etc/inittab` controls process dispatching by `init`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`boot(1M), halt(1M), init(1M), killall(1M), reboot(1M), ufsdump(1M),
init.d(4), inittab(4), nologin(4), attributes(5)`

**NOTES**

When a system transitions down to the S or s state, the `/etc/nologin` file (see `nologin(4)`) is created. Upon subsequent transition to state 2 (multi-user state), this file is removed by a script in the `/etc/rc2.d` directory.
The `slpd` daemon provides common server functionality for the Service Location Protocol ("SLP") versions 1 and 2, as defined by IETF in RFC 2165 and RFC 2608. SLP provides a scalable framework for the discovery and selection of network services.

`sled` provides the following framework services:

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory Agent</td>
<td>This service automatically caches service advertisements from service agents to provide them to user agents, and makes directory agent advertisements of its services. This service is optional. <code>slpd</code> does not provide directory agent service by default. Directory agents are not databases, and they do not need to be maintained.</td>
</tr>
<tr>
<td>Service Agent Server</td>
<td>All service agents on the local host register and deregister with this server. This service responds to all requests for services, and forwards registrations to directory agents. By default, <code>slpd</code> is a service agent server.</td>
</tr>
<tr>
<td>Passive Directory Agent Discovery</td>
<td>This service listens for directory agent advertisements and maintains a table of active directory agents. When a user agent wishes to discover a directory agent, it can simply query <code>slpd</code>, obviating the need to perform discovery by means of multicast. By default, <code>slpd</code> performs this service.</td>
</tr>
<tr>
<td>Proxy Registration</td>
<td>This service can act as a proxy service agent for services that cannot register themselves. <code>slpd</code> reads the proxy registration file for information on services it is to proxy. By default, no services are registered by proxy.</td>
</tr>
</tbody>
</table>

All configuration options are available from the configuration file. `slpd` reads its configuration file upon startup.

Stop and start the `slpd` daemon by using the startup script: `/etc/init.d/slpd`. Use the command `/etc/init.d/slpd stop` to stop the `slpd` daemon. Use the command `/etc/init.d/slpd start` to start it.

The file `/etc/inet/slp.conf` must exist before the startup script can start the daemon. Only the example file `/etc/inet/slp.conf.example` is present by default. To enable SLP, copy `/etc/inet/slp.conf.example` to `/etc/inet/slp.conf`. 
The following options are supported:

- `-f configuration-file` Specify an alternate configuration file

**EXAMPLE 1** Stopping the `slpd` daemon

The following command stops the `slpd` daemon:

`example# /etc/init.d/slpd stop`

**EXAMPLE 2** Restarting the `slpd` daemon

The following command restarts the `slpd` daemon:

`example# /etc/init.d/slpd start`

**FILES**

- `/etc/inet/slp.conf` The default configuration file
- `slpd.reg` The proxy registration file

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu, SUNWslpr</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

- `slp_api(3SLP)`, `slp.conf(4)`, `slpd.reg(4)`, `attributes(5)`, `slp(7P)`

`SYSADV4-tt`

NAME| smartcard – configure and administer a smart card
SYNOPSIS| smartcard -c admin [-a application] [propertyname…]
| smartcard -c admin [-a application]
| [x { add|delete|modify } propertyname=value…]
| smartcard -c admin -t service -j classname -x { add|delete|modify}
| smartcard -c admin -t terminal { -j classname | -H libraryname }
| -d device -r userfriendlyreadername -n readername
| -x { add|delete|modify } [-R]
| smartcard -c admin -t debug -j classname -l level
| -x { add|delete|modify}
| smartcard -c admin -t override -x { add|delete|modify}
| propertyname=value
| smartcard -c admin -I -k keytype -i filename
| smartcard -c admin -E -k keytype -o filename
| smartcard -c load -A aid [-r userfriendlyreadername] -P pin [-s slot]
| [-i inputfile] [-p propfile] [-v] [propertyname=value…]
| smartcard -c load -u -P pin [-A aid] [-r userfriendlyreadername] [-s slot]
| [-v]
| smartcard -c bin2capx -T cardname [-i inputfile] [-o outputfile]
| [-p propfile] [-I anothercapxfile] [-v] [propertyname=value…]
| smartcard -c init -A aid [-r readername] [-s slot] -L
| smartcard -c init -A aid [-r readername] -P pin [-s slot]
| [propertyname=value…]
| smartcard -c enable
| smartcard -c disable

DESCRIPTION| The smartcard utility is used for all configurations related to a smart card. It comprises the following subcommands:
1. Administration of OCF properties. (c admin)
   This subcommand is used to list and modify any of the OCF properties. With no arguments it will list all the current properties. It can only be executed by root.
   Some OCF properies are:
   defaultcard
   # default card for an application
   defaultreader
   # default reader for an application
   authmechanism
   # authentication mechanism
validcards
  # list of cards valid for an application

A complete listing can be obtained by using the `smartcard` utility as described in the EXAMPLES section.

2. Loading and Unloading of applets from the smart card (`-c load`) and performing initial configuration of a non-Java card.

This subcommand administers the applets or properties on a smartcard. It can be used to load or unload applets and/or properties to and from a smart card. The applet is a Java class file that has been run through a converter to make the byte code JavaCard-compliant. This command can be used to load both an applet file in the standard format or a file converted to the capx format. If no `-r` option is specified, the loader tries to load to any connected reader, provided it has already been inserted using the `smartcard -c admin` command.

3. Converting card applets or properties to the capx format (`-c bin2capx`)

This subcommand is used to convert a Java card applet or properties into a new format called capx before downloading it onto the smart card. Converting to this format enables the applet developer to add applet-specific information that is useful during the downloading process and identifies the applet.

In the following example,

```
smartcard -c bin2capx -i cyberflex.bin \
-T CyberFlex aidto-000102030405060708090A0B0C0D0E0F fileID=2222 \ 
instanceID=2223 and more.
```

if no output file is specified, a default file with the name `input_filename.capx` is created in the current directory. The mandatory `-T` option requires the user to specify the card name for which the capx file is being generated.

The following example

```
smartcard -c bin2capx -T IButton
```

tells the loader that the capx file contains the binary for IButton. A single capx file can hold binaries for multiple cards (1 per card.) Users can, for example, hold binary files for both CyberFlex and IButton in the same capx file as follows:

```
smartcard -c bin2capx -T IButton -i IButton.jib -o file.capx
```

In the following example,

```
smartcard -c bin2capx -T CyberFlex -i cyberflex.bin \
-l file.capx -o file.capx
```

the `-l` option is used to provide an already-generated capx file. The output is directed to the same capx file, resulting in capx file holding binaries for both cards.

4. Personalizing a smart card (`-c init`)
This subcommand is used to set user-specific information required by an applet on a smart card. For example, the Sun applet requires a user name to be set on the card. This subcommand is also used to personalize information for non-Java cars.

5. Enabling and disabling the smart card desktop login (-c {enable | disable})

**OPTIONS**
The following options are supported:

- `-a application` Specify application name for the configuration parameter. Parameters may differ depending on the application. If no application name is specified, then `ocf` is the default application.

- `-A aid` Specify a unique alphanumeric string that identifies the applet. The `aid` argument must be a minimum of 5 characters and can be a maximum of 16 characters in length. If an applet with an identical `aid` already exists on the card, a load will result in an error.

- `-c` Specify subcommand name. Valid options are: admin, load, bin2capx, init, enable, and disable.

- `-d device` Specify device on which the reader is connected (for example, `/dev/cua/a`).

- `-D` Disable a system from using smart cards.

- `-E` Export the keys to a file.

- `-H libraryname` Specify the full path of the IFD handler library for the reader.

- `-i filename` Specify input file name.

- `-I` Import from a file.

- `-j classname` Specify fully-qualified class name.

- `-k keytype` Specify type of key (for example, `challenge_response`, `pki`.)

- `-l` Specify debug level (0–9), signifying level of debug information displayed.

- `-L` List all properties configurable in an applet.

- `-n readername` Specify reader name as required by the driver.

- `-o filename` Specify output file name.

- `-p profile` Specify properties file name. This file could contain a list of property names and value pairs, in the format `propertyname=value`.

- `-P pin` Specify pin used to validate to the card.
smartcard(1M)

-x userfriendlyreadername Specify user-defined reader name where the card to be initialized is inserted.

-R Restart the ocf server.

-s slot Specify slot number. If a reader has multiple slots, this option specifies which slot to use for initialization. If a reader has only one slot, this option is not required. If no slot number is specified, by default the first slot of the reader is used.

-t Specify type of property being updated. The valid values are:
- service Updating a card service provider details.
- terminal Updating a card reader provider details.
- debug OCF trace level.
- override Override a system property of the same name.

-T cardname Specify card name.

-u Unload the applet specified by the application ID from the card. If no application ID is specified, all applets are unloaded from the card.

-v Verbose mode (displays helpful messages).

-x Specify action to be taken. Valid values are: add, delete, or modify.

EXAMPLES

EXAMPLE 1 Viewing the Values of All Properties
Enter the following command to view the values of all the properties that are set:

% smartcard -c admin

EXAMPLE 2 Viewing the Values of Specific Properties
Enter the following command to view the values of specific properties:

% smartcard -c admin language country

EXAMPLE 3 Adding a Card Service
Enter the following command to add a card service factory for a CyberFlex card, available in the package com.sun.services.cyberflex, to the properties:
EXAMPLE 3 Adding a Card Service  (Continued)

% smartcard -c admin -t service\
  -j com.sun.services.cyberflex.CyberFlexCardServiceFactory -x add

EXAMPLE 4 Adding a Reader

Enter the following command to add an SCM reader, available in the package com.sun.services.scm, to the properties on device /dev/cua/a and assign it a name of SCM:

% smartcard -c admin -t terminal\
  -j com.sun.opencard.terminal.scm.SCMStc.SCMStcCardTerminalFactory\
  -x add -d /dev/cua/a -r SCM -n SunSCRI

Enter the following command to add a reader for which an IFD handler is available:

% smartcard -c admin -t terminal\
  -H /usr/lib/smartcard/libifdmyserial.so\
  -x add -d /dev/cua/a -r MySerialReader -n MySerial

EXAMPLE 5 Deleting a Reader

Enter the following command to delete the SCM reader, added in the previous example, from the properties:

% smartcard -c admin -t terminal -r SCM -x delete

EXAMPLE 6 Changing the Debug Level

Enter the following command to change the debug level for all of the com.sun package to 9:

% smartcard -c admin -t debug -j com.sun -l 9 -x modify

EXAMPLE 7 Setting the Default Card for an Application

Enter one of the following commands to set the default card for an application (dtlogin) to be CyberFlex.

If the property default card does not exist, enter the following command:

% smartcard -c admin -a dtlogin -x add defaultcard=CyberFlex

If the property default card exists, enter the following command:

% smartcard -c admin -a dtlogin -x modify defaultcard=CyberFlex
EXAMPLE 8 Exporting Keys for a User into a File

Enter the following command to export the challenge-response keys for a user into a file:

```
% smartcard -c admin -k challenge_response -E -o /tmp/mykeys
```

EXAMPLE 9 Importing Keys from a File

Enter the following command to import the challenge-response keys for a user from a file:

```
% smartcard -c admin -k challenge_response -I -i /tmp/mykeys
```

EXAMPLE 10 Downloading an Applet into a Java Card

Enter the following command to download an applet into a Java card or to configure a PayFlex (non-Java) card inserted into an SCM reader for the capx file supplied in the `/usr/share/lib/smartcard` directory:

```
% smartcard -c load -r SCM \n-i /usr/share/lib/smartcard/SolarisAuthApplet.capx
```

EXAMPLE 11 Downloading an Applet Binary

Enter the following command to download an applet binary from some place other that the capx file supplied with Solaris 8 into an IButton (the aid and input file are mandatory, the remaining parameters are optional):

```
% smartcard -c load -A A000000062030400 -i newapplet.jib
```

EXAMPLE 12 Downloading an Applet on a CyberFlex Access Card

On a CyberFlex Access Card, enter the following command to download an applet newapplet.bin at fileID 2222, instanceID 3333 using the specified verifyKey and a heap size of 2000 bytes:

```
% smartcard -c load -A newaid -i newapplet.bin \nfileID=2222 instanceID=3333 verifyKey=newKey \nMAC=newMAC heapsize=2000
```

EXAMPLE 13 Configuring a PayFlex Card

Enter the following command to configure a PayFlex (non-Java) card with specific aid, transport key, and initial pin:

```
% smartcard -c load aid=A00000006203400 \npin=242424246A617661 transportKey=4746584932567840
```
EXAMPLE 14 Unloading an Applet from a Card

Enter the following command to unload an applet from iButton:

```
% smartcard -c load -u
```

EXAMPLE 15 Displaying Usage of `smartcard -c load`

Enter the following command to display the usage of the `smartcard -c load` command:

```
% smartcard -c load
```

EXAMPLE 16 Displaying All Configurable Parameters for an Applet

Enter the following command to display all the configurable parameters for an applet with aid 123456 residing on a card inserted into an SCM reader:

```
% smartcard -c init -r SM -A 123456 -L
```

EXAMPLE 17 Changing the PIN

Enter the following command to change the pin for the SolarisAuthApplet residing on a card or to change the PIN for a PayFlex (non-Java) card inserted into an SCM reader:

```
% smartcard -c init -A A000000062030400 -P oldpin pin=newpin
```

EXAMPLE 18 Displaying All Configurable Parameters for the SolarisAuthApplet

Enter the following command to display all the configurable parameters for the SolarisAuthApplet residing on a card inserted into an SCM reader:

```
% smartcard -c init -A A000000062030400 -L
```

EXAMPLE 19 Setting a Property to a Value on a smart card

Enter the following command to set properties called "user" to the value "james" and "application" to the value "login" on a card inserted into an SCM reader that has a pin "testpin":

```
% smartcard -c init -A A000000062030400 -r CyberFlex -P testpin \ 
application=login user=james
```

EXAMPLE 20 Converting an Applet for the CyberFlex Card into capx Format.

Enter the following command to convert an applet for the CyberFlex card into the capx format required for downloading the applet into the card:

```
% smartcard -c bin2capx \ 
-i /usr/share/lib/smartcard/SolarisAuthApplet.bin \ 
```
EXAMPLE 20 Converting an Applet for the CyberFlex Card into capx Format.  
(Continued)

-T CyberFlex -o /home/CorporateCard.capx -v memory=128 heapsize=12

EXAMPLE 21 Converting an Applet for the IButton Card into capx Format

Enter the following command to convert an applet for the IButton card into the capx format required for downloading the applet into the button:

% smartcard -c bin2capx \
  -i /usr/share/lib/smartcard/SolarisAuthApplet.jib \
  -T IButton -o /home/CorporateCard.capx -v

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWocf</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

ocfserv(1M), attributes(5), smartcard(5)

NOTES

The command line options contain only alphanumeric input.
**NAME**
smattrpop – populate security attribute databases in a name service

**SYNOPSIS**

**DESCRIPTION**
The smattrpop command updates the auth-attr(4), exec_attr(4), prof_attr(4), and user_attr(4) role-based access control databases in a target NIS, NIS+, LDAP, or local /etc files name service from the corresponding databases in a source name service or files.

This command processes the table entries from the source database and merges each source entry field into the same field in the corresponding table entry in the target database. If a source entry does not exist in the target database, the entry is created. If the source entry exists in the target database, the fields are merged or replaced according to the command options.

Any errors encountered while updating the target entry are reported to stdout, and the command continues with the next source database entry.

**OPTIONS**
The following options are supported:

- **-c**
  Performs cross-table checking. If you specify this option and a check error occurs, a message identifying the check error is written to stdout.

  The target entry values are checked against entries in related databases:
  
  - auths values — Each value must exist as the name of an authorization in the auth-attr(4) database.
  - profiles values — Each value must exist as a name of a profile in the prof_attr(4) database.
  - roles values — Each value must exist as the name of a role identity in the user_attr(4) database.
  - For each exec_attr(4) entry in the source database, the name must exist as the name of a profile in the prof_attr(4) database.

- **-f**
  Specifies that the value in each field in the source entry replaces the value in the corresponding field in the target entry, if the source entry field has a non-empty value.

- **-m**
  For the auths, profiles, and roles attributes, specifies that the values in each field in the source entry are merged with the values in the corresponding target entry field. If a source value does not exist in the target field, the value is appended to the set of target values. If the target field is empty, the source values replace the target field. The attribute values that merge depend on the database being updated:
  
  - prof_attr(4) — the auths and profiles attribute values are merged.
smattrpop(1M)

- **user_attr(4)** — the auths, profiles, and roles attribute values are merged.
- **exec_attr(4)** — the uid, gid, euid, and egid values are merged.

- **p policy**
  Specifies the value of the policy field in the exec_attr(4) database. Valid values are suser (standard Solaris superuser) and tsol (Trusted Solaris). If you specify this option, only the entries in the source exec_attr database with the specified policy are processed. If you omit this option, all entries in the source exec_attr database are processed.

- **r**
  Specifies that role identities in the user_attr(4) database in the source name service are processed. If you omit this option, only the normal user entries in the user_attr source database are processed.

- **s scope**
  Specifies the source name service or local file directory for database updates, using the following syntax:

  
  \[
  type:/server/domain
  \]

  where **type** indicates the type of name service. Valid values for **type** are:

  - file — local files
  - nis — NIS name service
  - nisplus — NIS+ name service
  - ldap — LDAP name service

  **server** indicates the local host name of the Solaris system on which the smattrpop command is executed, and on which both the source and target databases exist.

  **domain** specifies the management domain name for the name service.

  You can use two special cases of **scope** values:

  - To indicate the databases in the /etc/security local system directory, use the scope file:/server, where **server** is the name of the local system.
  - To load from databases in an arbitrary directory on the Solaris server, use the scope file:/server/pathname, where **server** is the name of the local system and **pathname** is the fully-qualified directory path name to the database files.

- **t scope**
  Specifies the target name service or local file directory for database updates, using the following syntax:

  
  \[
  type:/server/domain
  \]
where type indicates the type of name service. Valid values for type are:

- file — local files
- nis — NIS name service
- nisplus — NIS+ name service
- ldap — LDAP name service

server indicates the local host name of the Solaris system on which the smattrpop command is executed, and on which both the source and target databases exist.

domain specifies the management domain name for the name service.

You can use two special cases of scope values:

- To indicate the databases in the /etc/security local system directory, use the scope file:/server, where server is the name of the local system.
- To update to databases in an arbitrary directory on the Solaris server, use the scope file:/server/pathname, where server is the name of the local system and pathname is the fully-qualified directory path name to the database files.

-v Specifies that verbose messages are written. A message is written to stdout for each entry processed.

OPERANDS

The following operands are supported:

database Populates one or all databases. You can specify either the name of the database you want to process (for example, auth_attr), or all to process all databases. If you specify all, the databases are processed in the following order:

1. auth_attr
2. prof_attr
3. exec_attr
4. user_attr

EXAMPLES

EXAMPLE 1 Populating all tables in the NIS name service

The following example merges the values from all four attribute databases in the /etc/security directory of the local system into the corresponding tables in the NIS domain, east.sun.com. The command is executed on the master server, hoosier, for the NIS domain and the source files are in the /etc and /etc/security directories on the NIS master server. No cross-table checking is performed. A summary message indicating the number of entries processed and updated for each table is written to stdout.
EXAMPLE 1 Populating all tables in the NIS name service  (Continued)

/usr/sadm/bin/smattrpop -s file:/hoosier \ 
   -t nis:/hoosier/east.sun.com all

EXAMPLE 2 Updating the authorization table in the NIS+ name service

This example merges new authorization data from a local system file in the
auth_attr text format into the existing auth_attr database in the NIS+ domain,
east.sun.com. The command is executed on the NIS+ master server, foobar.
Values from the source auth_attr file replace the corresponding field values in the
NIS+ tables for each entry. A message is written to stdout for each entry processed.
Database cross-checking is performed and any check error is written to stdout. A
summary message indicating the number of entries processed and updated for the
auth_attr database is written to stdout.

/usr/sadm/bin/smattrpop -c -f -v -s file:/foobar/var/temp \ 
   -t nisplus:/foobar/East.Sun.COM auth_attr

ENVIRONMENT VARIABLES  See environ(5) for a description of the JAVA_HOME environment variable, which
affects the execution of the smattrpop command. If this environment variable is not
specified, the /usr/java location is used. See smc(1M).

EXIT STATUS  Any errors encountered while updating the target entry are reported to stdout. The
following exit values are returned:

0   The specified tables were updated. Individual entries may have
    encountered checking errors.

1   A syntax error occurred in the command line.

2   A fatal error occurred and the tables were not completely processed. Some
    entries may have been updated before the failure.

FILES  /etc/security/auth_attr   Authorization description database. See
       auth-attr(4).

       /etc/security/exec_attr   Execution profiles database. See
       exec_attr(4).

       /etc/security/prof_attr  Profile description database. See
       prof_attr(4).

       /etc/user_attr           Extended user attribute database. See
       user_attr(4).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:
smattrpop(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO smc(1M), smexec(1M), smprofile(1M), auth_attr(4), exec_attr(4), prof_attr(4), user_attr(4), attributes(5), environ(5)
The `smc` command starts the Solaris Management Console. The Solaris Management Console is a graphical user interface that provides access to Solaris system administration tools. It relies on Solaris Management Console servers running on one or more computers to perform modifications and report data. Each of these servers is a repository for code which the console can retrieve after the user of the console has authenticated himself or herself to the server.

The console can also retrieve toolboxes from the server. These toolboxes are descriptions of organized collections of tools available on that and possibly other servers. Once one of these toolboxes is loaded, the console will display it and the tools referenced in it.

The console can also run in a terminal (non-graphically), for use over remote connections or non-interactively from a script.

For information on the use of the graphical console, and for more detailed explanations of authentication, tools, and toolboxes, please refer to the Solaris Management Console online help available under the "Help" menu in the Solaris Management Console. To enable an NIS/NIS+ map to be managed from the Solaris Management Console, you must use the `smcedit` command to create a new toolbox for that map and enter the information about your NIS/NIS+ server where necessary. For instructions on creating a new toolbox, in the Solaris Management Console Help menu, select "Contents," then "About the Solaris Management Console Editor," then "To Create a Toolbox."

### `subcommands`

- **open**
  - The default subcommand for the Solaris Management Console is `open`. This will launch the console and allow you to run tools from the toolboxes you load. It does not need to be specified explicitly on the command line.
  
- **edit**
  - The `edit` subcommand will also launch the console, like the `open` subcommand. However, after loading a toolbox, you will not be able to run the referenced tools. Instead, you will be able to edit that toolbox, that is, add, remove, or modify any tools or folders in that toolbox.

### OPTIONS

The following options are supported. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either `-D` or `--domain` with the `domain` argument.

If `tool_args` are specified, they must be preceded by the `-` option and separated from the double dashes by a space.
- `--auth-data file`
  Specifies a file which the console can read to collect authentication data. When running the Solaris Management Console non-interactively, the console will still need to authenticate itself with the server to retrieve tools. This data can either be passed on the command line using the `-u`, `-p`, `-r`, and `-l` options (which is insecure, because any user can see this data), or it can be placed in a file for the console to read. For security reasons, this file should be readable only by the user running the console, although the console does not enforce this restriction.

  The format of file is:
  
  ```
  hostname=host name
  username=user name
  password=password for user name
  rolename=role name
  rolepassword=password for role name
  ```

  Only one set of `hostname`-`username`-`password`-`rolename`-`rolepassword` may be specified in any one file. If the `rolename` is not specified, no role will be assumed.

- `-B | --toolbox toolbox`
  Loads the specified toolbox. `toolbox` can be either a fully-qualified URL or a filename. If you specify an HTTP URL as, for example,

  ```
  http://host_name:port/... 
  ```

  it must point to a `host_name` and `port` on which an Solaris Management Console server is running. If you omit `port`, the default port, `898`, is used. This option overrides the `-H` option.

- `-D | --domain domain`
  Specifies the default domain that you want to manage. The syntax of `domain` is `type:/host_name/domain_name`, where `type` is `nis`, `nisplus`, `dns`, `ldap`, or `file`; `host_name` is the name of the machine that serves the domain; and `domain_name` is the name of the domain you want to manage. (Note: Do not use `nis+` for `nisplus`.) This option applies only to a single tool run in the terminal console.

  If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

- `-h | --help`
  Prints a usage statement about the `smc` command and its subcommands to the terminal window. To print a usage statement for one of the subcommands, enter `-h` after the subcommand.

- `--hostname host_name:port`
  Specifies the `host_name` and `port` to which you want to connect. If you do not specify a `port`, the system connects to the default port, `898`. If you do not specify `host_name:port`, the Solaris Management Console connects to the local host on port `898`.
You may still have to choose a toolbox to load into the console. To override this behavior, use the `-B` option (see above), or set your console preferences to load a “home toolbox” by default.

`-Java_option`  
Specifies an option that can be passed directly to the Java runtime (see `java(1)`). Do not enter a space between `-J` and the argument. This option is most useful for developers.

`-l|--rolepassword role_password`  
Specifies the password for the `role_name`. If you specify a `role_name` but do not specify a `role_password`, the system prompts you to supply a `role_password`. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

`-p|--password password`  
Specifies the password for the `user_name`. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

`-r|--rolename role_name`  
Specifies a role name for authentication. If you are running the Solaris Management Console in a terminal and you do not specify this option, no role is assumed. The GUI console may prompt you for a role name, although you may not need to assume a role.

`-s|--silent`  
Disables informational messages printed to the terminal.

`-t`  
Runs the Solaris Management Console in terminal mode. If this option is not given, the Solaris Management Console will automatically run in terminal mode if it cannot find a graphical display.

`-trust`  
Trusts all downloaded code implicitly. Use this option when running the terminal console non-interactively and you cannot let the console wait for user input.

`-T|--tool tool_name`  
Runs the tool with the Java class name that corresponds to `tool_name`. If you do not specify this option and the Solaris Management Console is running in terminal mode, the system prompts you. If the Solaris Management Console is running in graphical mode, the system either loads a toolbox or prompts you for one (see options `-H` and `-B`).

`-u|--username user_name`  
Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

`-v|--version`  
Prints the version of the Solaris Management Console to the terminal. In the graphical console, this information can be found in the `About` box, available from the `Help` menu.
-y | -yes
    Answers yes to all yes/no questions. Use this option when running the terminal
    console non-interactively and you cannot let the console wait for user input.

**EXAMPLES**

**EXAMPLE 1 Printing a Usage Statement**

The following prints a usage statement about the `smc` command to the terminal
window:

```bash
smc --help
```

**EXAMPLE 2 Passing an Option to Java**

The following passes an option through to the Java VM, which sets the
`com.example.boolean` system property to `true`. This system property is only an
example; the Solaris Management Console does not use it.

```bash
smc -J-Dcom.example.boolean=true
```

**ENVIRONMENT VARIABLES**

See `environ(5)` for a description of the following environment variable that affects the
execution of the `smc` command:

```bash
JAVA_HOME
```

If you do not specify this environment variable, your `PATH` is
searched for a suitable `java`. Otherwise, the `/usr/j2se` location is
used.

**EXIT STATUS**

The following exit values are returned. Other error codes may be returned if you
specify a tool (using `-T tool_name`) that has its own error codes. See the documentation
for the appropriate tool.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmcc</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`auths(1), java(1), profiles(1), roles(1), smcconf(1M), attributes(5),
environ(5), x(7)`
smccompile(1M)

NAME
smccompile – build class list and compile Solaris Management Console service beans for remote use

SYNOPSIS
/usr/sadm/bin/smccompile -c beanname
/usr/sadm/bin/smccompile -j tool | service [-n altjarname] jarfile
/usr/sadm/bin/smccompile -j library [-n altjarname]
   ALLTOOL | ALLSERVICE | ALL | attachedBeanname jarfile

DESCRIPTION
The smccompile command is used by developers of tools, services, and libraries for the Solaris Management Console. For information regarding the Solaris Management Console, see smc(1M).

smccompile compiles service class files given by the bean name for use with the Solaris Management Console. This step builds the extra proxy and stub classes for services to be used with Solaris Management Console tools. Solaris Management Console requires running smccompile -c before creating service jar files, and smccompile -j after creating tool, service, and library jars.

smccompile, in conjunction with smcregister(1M), is intended to replace the smcconf command as the preferred interface for managing the Solaris Management Console repository as well as toolboxes from within scripts, due to significant performance enhancements over smcconf.

OPTIONS
The following options are supported:

ALL Specify that the library being registered to or unregistered from the repository is for use by all tools and services.

ALLSERVICE Specify that the library being registered to or unregistered from the repository is for use by all services.

ALLTOOL Specify that the library being registered to or unregistered from the repository is for use by all tools.

attachedBeanname Specify the name of a registered jar to which the library jarfile should be attached to (or detached from). This is typically the same as altjarname (if provided) or jarfile used to register the jar to which this library is being attached or detached. An attached library means the library is only available for use by the tool or service to which it is being attached.

beanname The full package path of the bean name to be compiled. An example bean name is:

-c Compile and build service class files for the specified bean name. This step builds the extra proxy and stub classes for services to be used with Solaris Management Console tools. You must run smccompile with this option before creating service type jar files.
Build a list of classes in text format, suitable as input to
smcregister for registration with the Solaris Management
Console repository. The output is written to standard out and
should be redirected to a file. You must run smccompile with this
option after creating any tool, service, or library jar.

-j  Build a list of classes in text format, suitable as input to
smcregister for registration with the Solaris Management
Console repository. The output is written to standard out and
should be redirected to a file. You must run smccompile with this
option after creating any tool, service, or library jar.

-jarfile  Specify the full path to the jar file to be registered. The name must
be in the form beanname.jar, where beanname is the package path
to the bean. If it is not, an alternate name must be given in that
form using the -n option.

-n altjarname  Rename the jar file in the repository to altjarname. Typically, this is
the full bean name. For example, if the jar file was MyTool.jar,
then altjarname might be
com.mycompany.myproduct.MyTool.jar. It is recommended
that an altjarname containing the full package path be used. You
must use this same name when registering the jar with
smcregister.

EXAMPLES

EXAMPLE 1  Compiling a Service

The following command takes a Solaris Management Console service and builds its
proxy and stub classes to make the service usable by Solaris Management Console
tools:

/usr/sadm/bin/smccompile -c com.mycompany.myproject.MyServiceImpl

EXAMPLE 2  Building a Class List for a Service

The following command builds the class list file (classlist.txt) for a service
suitable for use with the smcregister(1M) command:

/usr/sadm/bin/smccompile -j service \
   -n com.mycompany.myproject.MyServiceImpl.jar \
   ${HOME}/workarea/MyServiceImpl.jar > classlist.txt

The following command does the same thing without specifying an alternate name:

/usr/sadm/bin/smccompile -j service \
   ${HOME}/workarea/com.mycompany.myproject.MyServiceImpl.jar > classlist.txt

EXAMPLE 3  Building a Class List for a Tool

The following command builds the class list file (classlist.txt) for a tool suitable
for use with the smcregister(1M) command:

/usr/sadm/bin/smccompile -j tool \
   -n com.mycompany.myproject.MyTool.jar \
   ${HOME}/workarea/MyTool.jar > classlist.txt

The following command does the same thing without specifying an alternate name:
EXAMPLE 3 Building a Class List for a Tool (Continued)

```bash
/usr/sadm/bin/smccompile -j tool \
   ${HOME}/workarea/com.mycompany.myproject.MyTool.jar > classlist.txt
```

EXAMPLE 4 Building a Class List for a Library Attached to All Tools

The following command builds the class list file (classlist.txt) for a library suitable for use with the smcregister(1M) command, and is attached to all tools:

```bash
/usr/sadm/bin/smccompile -j library \ 
   -n com.mycompany.myproject.MyLibrary.jar \ 
   ALLTOOL ${HOME}/workarea/MyLibrary.jar > classlist.txt
```

The following command does the same thing without specifying an alternate name:

```bash
/usr/sadm/bin/smccompile -j library \ 
   ALLTOOL \ 
   ${HOME}/workarea/com.mycompany.myproject.MyLibrary.jar > classlist.txt
```

EXAMPLE 5 Building a Class List for a Library Attached to a Specific Tool

The following command builds the class list file (classlist.txt) for a library suitable for use with the smcregister(1M) command, and is attached to a specific tool:

```bash
/usr/sadm/bin/smccompile -j library \ 
   -n com.mycompany.myproject.MyLibrary.jar \ 
   com.mycompany.myproject.MyTool.jar \ 
   ${HOME}/workarea/MyLibrary.jar > classlist.txt
```

The following command does the same thing without specifying an alternate name:

```bash
/usr/sadm/bin/smccompile -j library \ 
   com.mycompany.myproject.MyTool.jar \ 
   ${HOME}/workarea/com.mycompany.myproject.MyLibrary.jar > classlist.txt
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of smccompile:

JAVA_HOME
   If you do not specify this environment variable, your PATH is searched for a suitable java. Otherwise, the /usr/j2se location is used.

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  An error occurred.
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWMc</td>
</tr>
</tbody>
</table>

SEE ALSO | smc(1M), smcconf(1M), smcregister(1M), attributes(5), environ(5)

NOTES | All standard shell quoting rules apply.
smcconf(1M)

NAME  smcconf – configure the Solaris Management Console

SYNOPSIS  

/usr/sadm/bin/smcconf [-h] [-v] toolbox [action] [target] [parameters]  
[options]

/usr/sadm/bin/smcconf [-h] [-v] repository [action] [target]
[parameters] [options]

DESCRIPTION  The smcconf command configures the Solaris Management Console. See smc(1M). This command enables you to add to, remove from, and list the contents of the toolboxes and bean repository.

Using smcconf to edit toolboxes is not as feature-rich as using the graphical editor in Solaris Management Console. The command line interface is intended for use in packaging scripts that do not require user interaction. To edit all the properties of a toolbox or to modify the hierarchy of folders in a toolbox, you must use the specialized graphical editor, that is, smc edit. See smc(1M).

smcregister is intended to replace the smcconf command as the preferred interface for managing the Solaris Management Console repository as well as toolboxes from within scripts, due to significant performance enhancements over smcconf. See smcregister(1M), smccompile(1M), and the Solaris Management Console SDK Guide at /usr/sadm/lib/smc/docs/sdkguide/index.html for details.

OPTIONS  The following options are supported:

- h  Prints out a usage summary for the command.

- v  Verbose option. Displays the debugging output at any time.

toolbox configuration

action

Legal values are:

add  Adds a target to the toolbox. Specify the path to the toolbox using the -B toolboxpath option and, optionally, provide locale information with the -L locale option.

remove  Removes a target from the toolbox. Specify the path to the toolbox using the -B toolboxpath option and, as an alternative, provide locale information with the -L locale option.

create  Creates a new toolbox with no tools in it. The only target recognized is toolbox.

list  Lists the contents of the toolbox. No target is recognized. If you specify a parameter, it is taken as the path to a toolbox and the contents of that toolbox are listed. If you do not specify a parameter, the contents of the default toolbox are listed.
target Legal values are:

tool

If the action is specified as add, this target adds a native Solaris Management Console tool from the toolbox. The required parameter is the full Java classname of the tool you are adding. If you specify a folder name with the -F option, the tool is placed inside that folder (the folder will not be created if it does not already exist). Otherwise, the tool is appended to the end of the toolbox and not placed inside any folder.

If the action is specified as remove, this target removes a native Solaris Management Console tool from the toolbox. The required parameter is the full Java classname of the tool you want to remove. If you specify a folder name with the -F option, any tool with the given name in that folder will be removed. If no folder name is specified, all tools with the given name in the toolbox are removed.

For the tool to appear in the console, the tool must also be registered in the repository. See the repository configuration section below for more information. If a tool is referenced in a toolbox but is not registered, it will not appear in the console when the toolbox is loaded.

Removing a tool from a toolbox does not remove the tool from the server repository.

tbxURL

If the action is specified as add or remove, this target adds to or removes from the toolbox a link to another toolbox. The required parameter is the URL to the other toolbox.

The properties of addition and removal are the same as for the tool target.

toolbox

If the action is specified as create, this target creates a skeleton toolbox with no tools. The required parameters are: the toolbox name, description, and small and large icon paths. These must be followed by the -B toolboxpath and -D scope options.

legacy

If the action is specified as add or remove, this target adds or removes legacy applications (command-line, X-windows, and web-based) to or from the toolbox. The -N, -T, -E, and -B options are required. The -A option is optional. Placement in the toolbox with the -F option follows the same rules as for the tool and tbxURL targets. See NOTES for more information about legacy applications.
folder
If the action is specified as add, this target adds a folder to the toolbox. The required parameters are: the folder name, description, and small and large icon paths.

If the action is specified as remove, this target removes a folder from the toolbox. If the folder to be removed is itself inside a folder, the containing folder must be specified with the -F option.

parameters
Specifies values that might be required, depending on the combination of action and target.

options
Supported options for various action and target combinations for the toolbox configuration are:

-A parameters
Specifies the parameters to pass to the legacy application. This option is available only for the legacy target.

-B toolboxpath
Specifies the path of the toolbox that is being modified. If this option is not given, the modifications will be performed on the default toolbox, "This Computer".

-D scope
Specifies the scope (domain) in which the tool should be run. The legal values for scope are file, nis, nisplus, dns, and ldap. This can also be specified for a folder or a toolbox.

In the former case, all tools in that folder and its subfolders are run in that scope; in the latter, all tools in the toolbox are run in that scope.

-E appPath
Specifies the absolute executable path of the legacy application. This option is available only for the legacy target.

-F folder
Specifies the full path of the container folder. If this option is not given, the default folder is the ‘root’ folder of the toolbox.

-H [host_name]:[port]
Specifies the host and port from which a tool should be loaded. If host_name is not given, the default host is used. The default host is localhost, if the toolbox is loaded from the local file system, or the host from which the toolbox is loaded if loaded from a remote Solaris Management Console server. If :port is not given, the default port will be used. If this option is not given at all, both the default host and the default port are used.
-locale
  Specifies the locale of the toolbox that is being modified. The default is the C locale.

-appName
  Specifies the name of the legacy application being registered. This is the name that appears in the console. This option is available only for the legacy target.

-key:value
  Specifies the key/value pairs that define parameters to a tool. Multiple key/value pairs can be specified at a time.

-appType
  Specifies the legacy application type. Legal values are CLI, XAPP, or HTML. This option is available only for the legacy target.

The Solaris Management Console repository stores information about the registered tools and services, as well as libraries (for instance, resource jars) and properties attached to tools or services.

**action**

Legal values are:

add
  Adds information to the repository. If the -f option is given to add, the information overwrites any information of the same name already in the repository. If the -f option is not given, an error might be returned if the information is already in the repository.

remove
  Removes information from the repository.

list
  Lists the contents of the repository:

  - All registered tools
  - All registered services
  - All libraries attached to all tools
  - All libraries attached to all services
  - All libraries attached to all tools and services

**target**

Legal values are:

bean
  If the action is specified as add, this target will add a tool or service bean (which kind is determined by the contents of the bean) to the repository. The required parameter is the path to the jar file that contains the bean to be added.
If the action is specified as remove, this target will remove a tool or service bean from the repository. The required parameter is the full Java classname of the desired bean.

library
If the action is specified as add, this target adds a “library” jar file to a tool or service bean. The two required parameters are the full Java classname of the desired bean and the path to the jar file to be attached. The bean name can also be one of the “pseudo-beans,” ALL, ALLTOOL, or ALLSERVICE, in which case the library is attached, respectively, to all beans, all tools, or all services in the repository.

If the action is specified as remove, this target detaches a “library” jar file from a tool or service bean. The two required parameters are the full Java classname of the desired bean and the name of the jar file that is attached. As with the add action, the three “pseudo-beans” ALL, ALLTOOL, or ALLSERVICE can be used.

property
If the action is specified as add, this target defines a property on a tool or service. One or more key/value pairs must be specified in the form,

-P key=value
Following this property list is a “pseudo-bean name,” pseudoBeanName, as defined for the library target, on which the properties are defined. Optionally, a library name can follow the “pseudo-bean” name, in which case the properties are defined on the library that is attached to the named bean.

If the action is specified as remove, this target undresses a property on a tool or service. The key/value pairs, “pseudo-bean” name, and optional library are specified for the add action.

EXAMPLE 1 Adding Legacy Applications to a Toolbox
The following command adds to the default toolbox the command line interface (CLI) application, /usr/bin/ls, with arguments -al -R, giving it the name, Directory Listing:

/usr/sadm/bin/smcconf toolbox add legacy -N "Directory Listing" -T CLI -E /usr/bin/ls -A "-al -R"

EXAMPLE 2 Adding a Folder to a Toolbox
The following command adds to the standard Management Tools toolbox a folder with the name, New Folder, the description, This is a new folder, and the small and large icons, folder_s.gif and folder_l.gif:
EXAMPLE 2 Adding a Folder to a Toolbox (Continued)

/usr/sadm/bin/smcconf toolbox add folder "New Folder" \
  "This is a new folder" folder_s.gif folder_l.gif \
  -B /var/sadm/smc/toolboxes/smc/smc.tbx

EXAMPLE 3 Adding a Native Solaris Management Console Tool to a Toolbox

The following command adds a native Solaris Management Console tool to the default toolbox. The Java classname of the tool is HelloWorld.client.HelloTool (the name, description, and icons visible in the console are provided by the tool itself). When loaded, it is run in the NIS domain, syrinx, which is hosted by the machine, temple, and is retrieved from port 2112 on the machine from which the toolbox was loaded:

/usr/sadm/bin/smcconf toolbox add tool HelloWorld.client.HelloTool \
  -D nis:/temple/syrinx -H :2112

EXAMPLE 4 Adding an Solaris Management Console Tool to the Repository

The following command adds the Java bean found in HelloWorld.jar to the repository. The jar file contains information that the bean is a tool:

/usr/sadm/bin/smcconf repository add bean HelloWorld.jar

EXAMPLE 5 Removing an Solaris Management Console Service from the repository

The following command removes a Java bean from the repository. Although the name of the bean implies that it is a service, that is merely a convention; the repository knows whether a particular registered bean is a tool or a service:

/usr/sadm/bin/smcconf repository remove bean HelloWorld.server.HelloService

EXAMPLE 6 Attaching a Library to a Tool

The following command adds the library jar file, HelloWorld_fr.jar (probably a French localized version of the HelloTool’s resources) to the bean, HelloWorld.client.HelloTool:

/usr/sadm/bin/smcconf repository add library \
  HelloWorld.client.HelloTool HelloWorld_fr.jar

EXAMPLE 7 Attaching a Library to all Tools

The following command adds the library jar file, widgets.jar, to all tools in the repository. The library probably contains a widget set that might be useful to any registered tools:

/usr/sadm/bin/smcconf repository add library ALLTOOL widgets.jar

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of the smcconf command:

smcconf(1M)
If you do not specify this environment variable, your PATH is searched for a suitable java. Otherwise, the /usr/j2se location is used.

If you do not set this environment variable, set it to null, or set it to an X(7) display to which you are not authorized to connect, the Solaris Management Console starts in terminal mode instead of graphical mode.

The following exit values are returned:

- **0**: Successful completion.
- **1**: An error occurred.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmc</td>
</tr>
</tbody>
</table>

See also `jar(1), java(1), javac(1), smc(1M), smccompile(1M), smcregister(1M), attributes(5), environ(5)`

All standard shell quoting rules apply.

Legacy applications (X-windows, command-line, and web-based applications) are handled differently from “native” Solaris Management Console tools. Legacy tools are handled by an instantiation of a native Solaris Management Console tool, `LegacyAppLauncher`, which, through the toolbox, is given the necessary information to run the legacy application: path, options, and so forth. Thus, you do not register a legacy application into the repository as you would a native Solaris Management Console tool. Instead, legacy applications appear only in toolboxes.
The smcregister command configures the Solaris Management Console. For information regarding the Solaris Management Console, see smc(1M). This command enables you to add to, remove from, and list the contents of toolboxes and the Solaris Management Console repository.

smcregister also allows you to register scripts to perform registrations and unregistrations. Typically, a package containing one or more tools or services posts tool and service registrations immediately after installation. On Solaris, this is by way of invocations of smcregister from within a package post-install script. Similarly, unregistrations would be posted from within a package pre-remove script. These are per-machine registrations - that is, registration requests must be posted on each machine on which the Solaris Management Console server will be running. However, due to the way that diskless clients are installed, registration requests cannot be made at install time. Therefore, packages should include and install registration and unregistration scripts, and then register these scripts during installation by way of the scripts subcommand. These scripts should contain tool, toolbox, service, library or property configurations in any of its forms as listed in this man page. While these scripts function very much like package post-install and pre-remove scripts, do not assume the normal package environment is available. However, PATH can assumed to be /usr/sbin:/usr/bin.
Using `smcregister` to edit toolboxes is not as feature-rich as using the Solaris Management Console’s graphical editor. The command line interface is intended for use in packaging scripts that do not require user interaction. To edit all the properties of a toolbox or to modify the hierarchy of folders in a toolbox, you must use the specialized graphical editor, that is, `smc edit`. See `smc(1M)`.

`smcregister` is intended to replace the `smcconf` command as the preferred interface for managing the Solaris Management Console repository as well as toolboxes from within scripts, due to significant performance enhancements over `smcconf`.

### OPTIONS

The following options are supported:

- `-h`
  Prints out a usage summary for the command.

#### Scripts Configuration

- `regscript`
  The full path of a script containing registration commands. The script is executed upon the next restart of the Solaris Management Console server after the package containing the script is installed.

- `unregscript`
  The full path of a script containing unregistration commands. The script is executed upon the next restart of the Solaris Management Console server after the package containing the script is removed.

#### Toolbox Configuration

- `action`
  Legal values are:

  - `add`
    Adds a target to the toolbox. Specify the path to the toolbox using the `-B toolboxpath` option and, optionally, provide locale information with the `-L locale` option.

  - `create`
    Creates a new toolbox with no tools in it. The only target recognized is `toolbox`.

  - `list`
    Lists the contents of the toolbox. No target is recognized. If you specify a parameter, it is taken as the path to a toolbox and the contents of that toolbox are listed. If you do not specify a parameter, the contents of the default toolbox are listed.

  - `remove`
    Removes a target from the toolbox. Specify the path to the toolbox using the `-B toolboxpath` option and, optionally, provide locale information with the `-L locale` option.
Defers execution of the *toolbox* command until the Solaris Management Console server is restarted. This is a convenient option for use in packaging scripts during install and un-install. Additionally, the command runs much faster than if run interactively (without -D).

**target**
Legal values are:

**folder**
If the action is specified as `add`, this target adds a folder to the toolbox. There are four required parameters: the folder name, description, and small and large icon paths. If the action is specified as `remove`, this target removes a folder from the toolbox. If the folder to be removed is itself inside a folder, the containing folder must be specified with the `-F` option.

**legacy**
If the action is specified as `add` or `remove`, this target adds or removes legacy applications (command line, X-windows, and web-based) to or from the toolbox. The `-N`, `-T`, `-E`, and `-B` options are required, and the `-A` option is optional. Placement in the toolbox with the `-F` option follows the same rules as for the `tool` and `tbxURL` targets. See `NOTES` for more information about legacy applications.

**tbxURL**
If the action is specified as `add` or `remove`, this target adds to or removes from the toolbox a link to another toolbox. The required parameter is the URL to the other toolbox. The properties of addition and removal are the same as for the `tool` target.

**tool**
If the action is specified as `add`, this target adds a native Solaris Management Console tool from the toolbox. The required parameter is the full Java classname of the tool you are adding. If you specify a folder name with the `-F` option, the tool is placed inside that folder (the folder will not be created if it does not already exist). Otherwise, the tool is appended to the end of the toolbox and not placed inside any folder. If the action is specified as `remove`, this target removes a native Solaris Management Console tool from the toolbox. The required parameter is the full Java classname of the tool you wish to remove. If you specify a folder name with the `-F` option, any tool with the given name in that folder will be removed. If no folder name is specified, all tools with the given name in the toolbox will be removed. For the tool to show up in the console, the tool must also be registered in the repository. See the repository configuration section below for more information. If a tool is referenced in a toolbox but is not registered, it will not appear in the console when the toolbox is loaded. Removing a tool from a toolbox does not remove the tool from the server repository.

**toolbox**
If the action is specified as `create`, this target creates a skeleton toolbox with no tools. There are four required parameters: the toolbox name, description, and
small and large icon paths. These must be followed by the `-B toolboxpath` and `-D scope` options.

parameters
Specifies values that may be required depending on the combination of action and target.

options
Supported options for various action and target combinations for the toolbox configuration are:

- **-A**
  Specifies the parameters to pass to the legacy application. This option is available only for the legacy target.

- **-B**
  Specifies the path of the toolbox that is being modified. If this option is not given, the modifications will be performed on the default toolbox, This Computer.

- **-D**
  Specifies the scope (domain) in which the tool should be run. The legal values for scope are file, nis, nisplus, dns, and ldap. This may also be specified for a folder or a toolbox. In the former case, all tools in that folder and its subfolders will be run in that scope; in the latter, all tools in the toolbox will be run in that scope.

- **-E**
  Specifies the absolute executable path of the legacy application. This option is available only for the legacy target.

- **-f**
  If the `-f` option is given to add, the information will overwrite any information of the same name already in the toolbox. If the `-f` option is not given, an error may be returned if the information is already in the toolbox.

- **-F folder**
  Specifies the full path of the container folder. If this option is not given, the default folder is the root folder of the toolbox.

- **-H [host_name][:port]**
  Specifies the host and port from which a tool should be loaded. If host_name is not given, the default host (localhost, if the toolbox is loaded from the local filesystem, or the host from which the toolbox is loaded if loaded from a remote Solaris Management Console server) will be used. If :port is not given, the default port will be used. If this option is not given at all, both the default host and the default port will be used.

- **-L locale**
  Specifies the locale of the toolbox which is being modified. The default is the C locale.
-N appName
   Specifies the name of the legacy application being registered. This is the name
   that will appear in the console. This option is available only for the legacy
   target.

- P key:value
   Specifies the key/value pairs that define parameters to a tool. Multiple
   key/value pairs can be specified at a time.

-T appType
   Specifies the legacy application type. Legal values are CLI, XAPP, or HTML. This
   option is available only for the legacy target.

See NOTES for more information about registration and unregistration of tools,
services, and libraries.

ALL
   Specify that the library being registered to or unregistered from the repository is for
   use by all tools and services.

ALLSERVICE
   Specify that the library being registered to or unregistered from the repository is for
   use by all services.

ALLTOOL
   Specify that the library being registered to or unregistered from the repository is for
   use by all tools.

attachedBeanname
   The name of a registered jar to which the library jar file should be attached to (or
   detached from). This is typically the same as altjarname (if provided) or jarnfile used
   to register the jar to which this library is being attached or detached. An attached
   library means the library is only available for use by the tool or service to which it
   is being attached.

classlistfile
   The classlist text file generated from the smccompile(1M) command.

Library registration does not require that a classlist file be specified. Instead, you
   can substitute the keyword none in place of the classlist path argument to
   smcregister, in which case one will be generated automatically. Generating the
   classlist automatically during server startup will cause the next server restart to
   take longer, so it is strongly suggested that developers always provide a classlist file
   with their libraries. Auto-generation is more appropriately used to register
   3rd-party library jars.

jarfile
   The full path to the jar file to be registered/unregistered. The name must be in the
   form beanname.jar, where beanname is the package path to the bean. If it is not, an
   alternate name must be given in that form using the -n option.
-n altjarname
    Rename the jar file in the repository to altjarname. This would typically be the full bean name. For example, if the jar file was MyTool.jar, then altjarname might be com.mycompany.myproduct.MyTool.jar. It is recommended that an altjarname containing the full package path be used.

native_lib_list
    List of up to 4 native libraries that can be associated with a service bean.

-u
    The operation will be to un-register the jar with the Solaris Management Console repository. The jar file argument must be identical to the altjarname used to register the jar (if provided), or jarfile.

xmlfile
    The xml descriptor file that describes this jar file. Every tool or services must have one. See the Solaris Management Console SDK Guide located at /usr/sadm/lib/smc/docs/sdkguide/index.html.

Repository Configuration
The Solaris Management Console repository stores information about the registered tools and services, as well as libraries (for instance, resource jars) and properties attached to tools or services.

list
    Lists the contents of the repository:
    • All registered tools
    • All registered services
    • All libraries attached to all tools
    • All libraries attached to all services
    • All libraries attached to all tools and services

Property Configuration
See NOTES for more information about registration and unregistration of properties. If registering a property, this defines a property on a tool or service. Only one key value pair at a time can be registered.

beanname
    The name of a registered jar on which the properties will be defined. Optionally, a library name may follow the bean name, in which case the properties are defined on the library that is attached to the named bean.

If unregistering a property, this und efines a property from a tool or service. Only one key value pair at a time can be registered. The key, beanname, and optional library are specified as for registering a property.

EXAMPLES

EXAMPLE 1 Adding Legacy Applications to a Toolbox

The following command adds to the default toolbox the Command Line Interface (CLI) application, /usr/bin/ls with arguments -al -R, giving it the name, Directory Listing:

/usr/sadm/bin/smcregister toolbox add legacy -N "Directory Listing" \
-T CLI -E /usr/bin/ls -A "-al -R"
EXAMPLE 1 Adding Legacy Applications to a Toolbox

Use this variation to defer execution of this command until the Solaris Management Console server is restarted:

```
/usr/sadm/bin/smcregister toolbox -D add legacy -N "Directory Listing" \
   -T CLI -E /usr/bin/ls -A "-al -R"
```

EXAMPLE 2 Adding a Folder to a Toolbox

The following command adds to the standard Management Tools toolbox a folder with the name, New Folder, the description, This is a new folder, and the small and large icons, folder_s.gif and folder_l.gif:

```
/usr/sadm/bin/smcregister toolbox add folder "New Folder" \
   "This is a new folder" folder_s.gif folder_l.gif \
   -B /var/sadm/smc/toolboxes/smc/smc.tbx
```

EXAMPLE 3 Adding a Native Solaris Management Console Tool to a Toolbox

The following command adds a native Solaris Management Console tool to the default toolbox. The Java classname of the tool is com.mycompany.myproject.client.MyTool (the name, description, and icons visible in the console are provided by the tool itself). When loaded, it will be run in the NIS domain, syrinx, which is hosted by the machine, temple, and will be retrieved from port 2112 on the machine from which the toolbox was loaded.

```
/usr/sadm/bin/smcregister toolbox add tool \n   com.mycompany.myproject.client.MyTool \n   -D nis:/temple/syrinx -H :2112
```

EXAMPLE 4 Adding a Solaris Management Console Tool to the Repository

The following command adds the Java bean found in MyTool.jar to the repository. The xml file contains information about the tool. The classlist file would have been generated by smccompile -j:

```
/usr/sadm/bin/smcregister tool -n com.mycompany.myproject.client.MyTool.jar \n   ${HOME}/workarea/MyTool.jar \n   ${HOME}/workarea/MyTool_classlist.txt \n   ${HOME}/workarea/MyTool.xml
```

Use this variation to add a Solaris Management Console tool to the repository without specifying an alternate name:

```
/usr/sadm/bin/smcregister tool \n   ${HOME}/workarea/com.mycompany.myproject.client.MyTool.jar \n   ${HOME}/workarea/MyTool_classlist.txt \n   ${HOME}/workarea/MyTool.xml
```

EXAMPLE 5 Adding an Solaris Management Console Service to the Repository

The following command adds the Java bean found in MyServiceImpl.jar to the repository. The xml file contains information about the service. The classlist file would have been generated by smccompile -j. The extra proxy and stub classes included in the jar would have been generated by smccompile -c:
EXAMPLE 5 Adding an Solaris Management Console Service to the Repository
(Continued)

```
/usr/sadm/bin/smcregister service \
   -n com.mycompany.myproject.server.MyServiceImpl.jar \
   ${HOME}/workarea/MyServiceImpl.jar \
   ${HOME}/workarea/MyServiceImpl_classlist.txt \
   ${HOME}/workarea/MyServiceImpl.xml
```

Use this variation to add a Solaris Management Console service to the repository without specifying an alternate name:

```
/usr/sadm/bin/smcregister service \ 
  ${HOME}/workarea/com.mycompany.myproject.server.MyServiceImpl.jar \ 
  ${HOME}/workarea/MyServiceImpl_classlist.txt \ 
  ${HOME}/workarea/MyServiceImpl.xml
```

EXAMPLE 6 Removing an Solaris Management Console Tool From the Repository

The following command removes a Java tool bean from the repository:

```
/usr/sadm/bin/smcregister tool \
   -u com.mycompany.myproject.client.MyTool.jar
```

EXAMPLE 7 Removing an Solaris Management Console Service From the Repository

The following command removes a Java service bean from the repository:

```
/usr/sadm/bin/smcregister service \
   -u com.mycompany.myproject.server.MyServiceImpl.jar
```

EXAMPLE 8 Attaching a Library to a Specific Tool

The following command adds the library jar file, MyTool_fr.jar (probably a French localized version of the MyTool’s resources) to the bean, com.mycompany.myproject.client.MyTool:

```
/usr/sadm/bin/smcregister library \
   -n MyTool_fr.jar \
   ${HOME}/workarea/MyTool_fr.jar \
   ${HOME}/workarea/MyTool_fr_classlist.txt \
   com.mycompany.myproject.client.MyTool
```

EXAMPLE 9 Attaching a Library to All Tools

The following command adds the library jar file, widgets.jar, to all tools in the repository. The library probably contains a widget set which might be useful to any registered tools. The classlist file would have been generated by smccompile -j.

```
/usr/sadm/bin/smcregister library \
   ${HOME}/workarea/lib/widgets.jar\ 
   ${HOME}/workarea/lib/widgets_classlist.txt \ 
   ALLTOOL
```
EXAMPLE 9 Attaching a Library to All Tools (Continued)

Alternatively, to add a 3rd-party library jar to all tools, replace the classlist file with none:

```
/usr/sadm/bin/smcregister library \n/opt/lib/XYWidgets.jar none ALLTOOL
```

EXAMPLE 10 Detaching a Library from All Tools

The following command removes the Java library bean from the repository:

```
/usr/sadm/bin/smcregister library -u MyTool_fr.jar ALLTOOL
```

EXAMPLE 11 Detaching a Library from a Specific Tool

The following command detaches the library jar file, MyTool_fr.jar (probably a French localized version of the MyTool’s resources) from the bean com.mycompany.myproject.client.MyTool, and removes it from the repository:

```
/usr/sadm/bin/smcregister library -u MyTool_fr.jar \ncom.mycompany.myproject.client.MyTool
```

EXAMPLE 12 Registering Scripts

The following command registers the following scripts containing registration and unregistration commands. MyProduct_reg.sh will be executed upon the next server restart after the file is installed by the owning package. MyProduct_unreg.sh will be executed upon the next server restart after the file is removed by the owning package:

```
/usr/sadm/bin/smcregister scripts \n/usr/sadm/lib/myProduct/MyProduct_reg.sh \n/usr/sadm/lib/myProduct/MyProduct_unreg.sh
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of smcregister:

JAVA_HOME

If you do not specify this environment variable, your PATH is searched for a suitable java. Otherwise, the /usr/j2se location is used.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

1 An error occurred.
smcregister(1M)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmc</td>
</tr>
</tbody>
</table>

SEE ALSO  smc(1M), smcconf(1M), smccompile(1M), attributes(5), environ(5)

NOTES  All standard shell quoting rules apply.

Legacy applications (X-windows, command-line, and web-based applications) are handled differently from native Solaris Management Console tools. Legacy tools are handled by an instantiation of a native Solaris Management Console tool, LegacyAppLauncher, which, through the toolbox, is given the necessary information to run the legacy application: path, options, and so forth. Thus, you do not register a legacy application into the repository as you would a native Solaris Management Console tool. Instead, legacy applications appear only in toolboxes.

Registration and unregistration of tools, services, libraries, and properties do not take effect until the Solaris Management Console server is restarted. Run /etc/init.d/init.wbem stop followed by /etc/init.d/init.wbem start.
**NAME**
smcron – manage jobs in the crontab database

**SYNOPSIS**
/usr/sadm/bin/smcron subcommand [ auth_args ] - - [ subcommand_args ]

**DESCRIPTION**
The smcron command manages jobs in the crontab(1) database.

*subcommands*
smcron subcommands are:

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a job to the crontab(1) database. To add a job, the administrator must have the solaris.jobs.user authorization. To add a job to another user's crontab file, the administrator must have the solaris.jobs.admin authorization.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a job from the crontab(1) database. To delete a job, the administrator must have the solaris.jobs.user authorization. To delete a job from another user's crontab file, the administrator must have the solaris.jobs.admin authorization.</td>
</tr>
<tr>
<td>list</td>
<td>Lists one or more jobs in the crontab(1) database. To list all jobs, the administrator must have the solaris.jobs.user authorization. To list a job in another user's crontab file, the administrator must have the solaris.jobs.admin authorization. No authorization is needed to list a user's own jobs.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies a job in the crontab(1) database. To modify a job, the administrator must have the solaris.jobs.user authorization. To modify a job in another user's crontab file, the administrator must have the solaris.jobs.admin authorization.</td>
</tr>
</tbody>
</table>

**OPTIONS**
The smcron authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smcron command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - - option.

*auth_args*
The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or --domain with the domain argument.

-D | --domain domain
Specifies the default domain that you want to manage. smcron accepts only file for this option. file is also the default value.
The file default domain means that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

-\H - -\hostname host_name:port
Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

-\l - -\rolepassword role_password
Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password.
Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-\p - -\password password
Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-\r - -\rolename role_name
Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-\u - -\username user_name
Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

- -
This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - - option.

For the time-related subcommands described below, -\m, -M, -t, and -w, you can enter multiple arguments, separated only by commas. smcron will construct crontab entries appropriate for your arguments. See EXAMPLES.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

- For subcommand add:
  -\c command
    Specifies the command that you want to run.

  -h
    (Optional) Displays the command’s usage statement.
-m day_of_month  
(Optional) Specifies the day of the month you want to run the job. Valid values are 1–31. If you specify both -t and -m options, the job executes one day per month at the time specified by -t.

-M month  
(Optional) Specifies the month that you want to run the job. Valid values are 1–12. If you specify both -t and -M options, the job executes during the specified month at the time specified by -t.

-n name  
Specifies the unique name of the job.

-o owner  
(Optional) Specifies the user name that is the owner of the job. If you do not specify this option, the user name specified by the -U option is assumed.

-t time_of_day  
Specifies the time (in hh:mm) that you want to execute the command. If no other time-related options are specified (-m, -M, or -w), the job executes every day at the time specified by -t. If you specify both -t and -w options, the job executes one day per week at the time specified by -t. If you specify both -t and -m options, the job executes one day per month at the time specified by -t. If you specify both -t and -M options, the job executes each day during the specified month at the time specified by -t.

-w day_of_week  
(Optional) Specifies the day of the week you want to execute the command. Valid values are as follows:

- 0=Sunday
- 1=Monday
- 2=Tuesday
- 3=Wednesday
- 4=Thursday
- 5=Friday
- 6=Saturday

If you specify both -t and -w options, the job executes one day per week at the time specified by -t.

■ For subcommand delete:

-h  
(Optional) Displays the command’s usage statement.

-n name  
Specifies the unique name of the job.

-o owner  
(Optional) Specifies the user name that is the owner of the job. If you do not specify this option, the user name specified by the -U option is assumed.

■ For subcommand list:
-f n|s|v
  (Optional) Specifies the format of the output. See EXAMPLES for examples of each output type.
  - n — Displays the data in native format, as it appears in the crontab(1) database.
  - s — Default format. Displays the data in summary format.
  - v — Displays the data in verbose format.

-h
  (Optional) Displays the command’s usage statement.

-o owner
  (Optional) Lists all jobs for the specified owner (user name). If you do not specify this option, all jobs in the crontab(1) database are listed.

For subcommand modify:

-c command
  (Optional) Specifies the command that you want to run.

-h
  (Optional) Displays the command’s usage statement.

-m day_of_month
  (Optional) Specifies the day of the month you want to run the job. Valid values are 1–31. If you specify both -t and -m options, the job executes one day per month at the time specified by -t.

-M month
  (Optional) Specifies the month that you want to run the job. Valid values are 1–12. If you specify both -t and -M options, the job executes during the specified month at the time specified by -t.

-n name
  Specifies the current unique name of the job.

-N new_name
  (Optional) Specifies the new unique name of the job.

-o owner
  (Optional) Specifies the user name that is the owner of the job. If you do not specify this option, the user name specified by the -U option is assumed.

-O new_owner
  Specifies the new owner of the job.

-t time_of_day
  (Optional) Specifies the time (in hh:mm) that you want to execute the command. If no other time-related options are specified (-m, -M, or -w), then the job executes every day at the time specified by -t. If you specify both -t and -w options, the job executes one day per week at the time specified by -t. If you specify both -t and -m options, the job executes one day per month at the time specified by -t. If you specify both -t and -M, then the job executes each day during the specified month at the time specified by -t.
-w day_of_week
(Optional) Specifies the day of the week you want to execute the command.
Valid values are as follows:

- 0 = Sunday
- 1 = Monday
- 2 = Tuesday
- 3 = Wednesday
- 4 = Thursday
- 5 = Friday
- 6 = Saturday

If you specify both -t and -w options, the job executes one day per week at the
time specified by -t.

EXAMPLES

EXAMPLE 1 Adding a Job

The following adds a new job, owned by root, that removes the old log files from
/tmp daily at 1:30 AM.

```bash
./smcron add -H myhost -u root -p mypassword -n "Remove old logs" -t 1:30 -c "rm /tmp/*.log" -o root
```

EXAMPLE 2 Deleting a Job

The following deletes the job Remove old logs owned by root:

```bash
./smcron delete -H myhost -u root -p mypassword -n "Remove old logs" -o root
```

EXAMPLE 3 Listing Jobs in Native Format

The following lists all jobs in native, or crontab(1), format:

```bash
./smcron list -H myhost -u root -p mypassword -f n
```

```bash
MINUTE HOUR DATE MONTH DAY COMMAND
10 3 ** * /usr/sbin/logadm
15 3 ** * /usr/lib/fs/nfs/nfsfind
1 2 ** * [-x /usr/sbin/rtc ] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 ** * [-x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean
```

EXAMPLE 4 Listing Jobs in Standard Format

The following lists all jobs owned by lp in standard format:

```bash
./smcron list -H myhost -u root -p mypassword -f s -o lp
```

```bash
NAME::OWNER::SCHEDULE::COMMAND
NoName_176566371::lp::Weekly on Sundays at 3:13 AM::cd /var/lp/logs;
  if [ -f requests ]; then if [ -f requests.1 ]; then /bin/mv requests.1
    requests.2; fi; /usr/bin/cp requests requests.1; > requests; fi
NoName_512822673::lp::Weekly on Sundays at 4:15 AM::cd /var/lp/logs;
```
EXAMPLE 4 Listing Jobs in Standard Format  (Continued)

if [-f lpsched]; then if [-f lpsched.1]; then /bin/mv lpsched.1 lpsched.2; fi; /usr/bin/cp lpsched lpsched.1; lpsched; fi

EXAMPLE 5 Listing jobs in verbose format

The following lists all jobs in verbose format:

./smcron list -H myhost -u root -p mypassword -- -f v
NAME:OWNER:SCHEDULE:NEXT_RUN:STATUS:COMMAND
NoName_1075488942::root::Advanced:::Finished on Feb 10 3:10 with code 1::/etc/cron.d/logchecker
databackup::root::Weekly on Sundays at 3:10 AM::3/19/00 3:10 AM::Finished on Sep 19 3:10::/usr/lib/newsyslog
databackup::root::Weekly on Sundays at 3:10 AM::3/19/00 3:10 AM::Finished on Sep 19 3:10::/usr/lib/newsyslog
runlog::root::Daily at 2:01 AM::3/14/00 2:01 AM::Finished on Feb 11 2:01 AM::/usr/sbin/rtc

EXAMPLE 6 Changing a Job

The following modifies the job Remove old logs owned by root to execute daily at 2:00 AM:

./smcron modify -H myhost -u root -p mypassword -- -n "Remove old logs" -o root -t 2:00

EXAMPLE 7 Specifying Multiple Time Arguments

smcron allows you to specify a range of times for all of its time-related subcommands, -m, -M, -t, and -w. For example, the following command:

# smcron add -u root -p xxxx -- -n cronjob1 -w 1-4,5 -t 12:00,13:15,14:30 -c ls

...creates the following entry in crontab:

0,15,30 12,13,14 * * 1,2,3,4,6 ls #cronjob1

This job would run on Monday through Thursday and Saturday at the following times:

12:00 12:15 12:30
13:00 13:15 13:30
14:00 14:15 14:30

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smcron command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

0 Successful completion.
Invalid command syntax. A usage message displays.

An error occurred while executing the command. An error message displays.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

crontab(1), cron(1M), smc(1M), attributes(5), environ(5)

NOTES

The timezone of the cron daemon sets the system-wide timezone for cron entries. This, in turn, is by set by default system-wide using /etc/default/init.

If some form of daylight savings or summer/winter time is in effect, then jobs scheduled during the switchover period could be executed once, twice, or not at all.
NAME  
smcwebserver – start the Sun Management Center console web server

SYNOPSIS  
/usr/sadm/bin/smwebserver subcommand

DESCRIPTION  
The smcwebserver utility starts the Sun Management Center web console server. Sun Management Center Web Console is a browser-based interface that performs systems management. System administrators can manage systems, devices and services from the console.

When the console webserver is running, you can view the console by opening a browser and pointing to:

https://host:6789

host is the machine where the console has been installed and the console server is running.

SUBCOMMANDS  
The following subcommands are supported:

disable  
Disable automatic start or stop. Until the administrator reruns the script with the smcwebserver enable subcommand the webserver can be started/stopped only when the administrator executes the script manually using the following command:

/usr/sadm/bin/smwebserver [start | stop]

enable  
Enable the webserver to startup automatically during subsequent system boot and gracefully stop during system shutdown.

help  
Display the usage statement.

restart  
Stop and subsequently start the console webserver.

start  
Start the console webserver.

stop  
Stop the console webserver.

EXAMPLES  

EXAMPLE 1 Displaying the Usage Statement

The following command displays the smcwebserver usage statement:

smcwebserver help

ENVIRONMENT VARIABLES  
See environ(5) for descriptions of the following environment variables that affect the execution of smcwebserver:

JAVA_HOME
If you do not specify this environment variable, your PATH is searched for a suitable java. Otherwise, the /usr/j2se location is used.

CATALINA_HOME
If you do not specify this environment variable, your PATH is searched for a suitable Tomcat 4.X version. Otherwise, the command returns with an error status.
EXIT STATUS The following exit values are returned:
0 Successful completion.
1 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmcon</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5), environ(5)
smdiskless(1M)

NAME  smdiskless – manage diskless client support for a server

SYNOPSIS  /usr/sadm/bin/smdiskless subcommand [ auth_args ] – – [subcommand_args]

DESCRIPTION  The smdiskless command manages diskless client support for a server.

smdiskless subcommands are:

add          Adds a new diskless client to a server. There are two usages for
             this command. The user can either specify all the optional
             arguments directly on the command line, or provide a
             sysidcfg(4) formatted file as input. A future enhancement will
             allow specifying both a sysidcfg(4) formatted file and optional
             arguments, which will override the values in the sysidcfg(4) file.

delete       Deletes an existing diskless client from the system databases and
             removes any server support associated with the host, depending
             on the os_server type.

list          Lists existing diskless clients served by os_server.

modify       Modifies the specified attributes of the diskless client os_server.

OPTIONS

The smdiskless authentication arguments, auth_args, are derived from the smc(1M)
arg set and are the same regardless of which subcommand you use. The smdiskless
command requires the Solaris Management Console to be initialized for the command
to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the
first Solaris Management Console connection might time out, so you might need to
retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args
and must be separated from them by the – – option.

auth_args

The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args
are specified, certain defaults will be assumed and the user may be prompted for
additional information, such as a password for authentication purposes. These letter
options can also be specified by their equivalent option words preceded by a double
dash. For example, you can use either -D or - – domain.

Note – smdiskless supports the ––auth-data file option, which enables you to
specify a file the console can read to collect authentication data. See smc(1M) for a
description of this option.

-D | –domain domain

Specifies the default domain that you want to manage. The syntax of domain is
type:/host_name/domain_name, where type is nis, nis+, dns, ldap, or file;
host_name is the name of the machine that serves the domain; and domain_name is
the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)
If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

```
-H | -hostname host_name:port
   Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a "home toolbox" by default.
```

```
-l | -rolepassword role_password
   Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.
```

```
-p | -password password
   Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.
```

```
-r | -rolename role_name
   Specifies a role name for authentication. If you do not specify this option, no role is assumed.
```

```
-u | -username user_name
   Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.
```

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

For subcommand add:

```
-h
   (Optional) Displays the command's usage statement.
```

```
-i IP_address
   Specifies the IP address for the host in the form of 129.9.200.1.
```

```
-o ethernet_addr
   Specifies the Ethernet address.
```

```
-n host
   Specifies the client name.
```

```
-o os_server
   (optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified
```
smdiskless(1M)

in the smc(1M) -D option. This option is useful in the event that the name service server and the OS server are not the same machine.

-x os=platform

Specifies the operating system. The syntax for platform is as follows:

instruction_set.implementation.Solaris_version

where

- instruction_set is one of sparc or i386
- implementation is the implementation architecture, that is, i86pc and sun4u.
- version is the Solaris version number. The supported version numbers are 2.6, 2.7 (for Solaris 7), 8, and 9. Examples are:

sparc.sun4u.Solaris_8

-x root=pathname

(Optional) Specifies the absolute path of the directory in which to create the root directory for diskless clients. The default (and recommended) pathname is /export/root/client_name.

-x swap=pathname

(Optional) Specifies the absolute path of the directory in which to create the swap file for diskless clients. The default (and recommended) pathname is /export/swap/client_name.

-x swapsize=size

(Optional) Specifies the size, in megabytes, of the swap file for diskless clients. The default swap size is 24M.

-x dump=pathname

(Optional) Specifies the absolute path of the dump directory for diskless clients. The default (and recommended) pathname is /export/dump/client_name.

-x dumpsize=size

(Optional) Specifies the size, in megabytes, of the dump file for diskless clients. The default swap size is 24M.

-x pw=Y

(Optional) Prompts for the system’s root password. The default is not to prompt. The following options are used to configure workstations on first boot by sysidtool(1M). They can either be specified on the command line, or in a sysidcfg(4) formatted file. Note: Use the sysidcfg(4) file to:

- Add a DNS client.
Specify use of the LDAP name service.
Specify a security policy.

The keywords and functions supported by `sysidtool` and `sysidcfg` vary among Solaris releases. Consult the man pages for your operating system release (`uname -r`) to determine the level of support available.

- `-x tz=timezone`
  (Optional) Specifies the path of a timezone file, relative to `/usr/share/lib/zoneinfo`. The default is the server's timezone.

- `-x ns=NIS | NIS+ | NONE`
  (Optional) Specifies the client's nameservice. This is one of NIS, NIS+, or NONE.
  Use a `sysidcfg(4)` file to specify DNS or LDAP. The default `ns` value is `NONE`, which results in the use of the files source in `nsswitch.conf`. See `nsswitch.conf(4)` for a description of the files source.

- `-x nameserver=hostname`
  (Optional) Specifies the nameserver's hostname. The default is the server's nameserver.

- `-x domain=domain`
  (Optional) Specifies the client's domain. The default is the server's domain.

- `-x nameserver_ipaddress=ip_address`
  (Optional) Specifies the nameserver's IP address.

- `-x netmask=ip_address`
  (Optional) Specifies the client's IP address netmask. The default is the server's netmask.

- `-x locale=locale`
  (Optional) Specifies the client's system locale. The default is the C locale.

- `-x terminal=term`
  (Optional) Specifies the workstation's terminal type, typically, `sun` or `xterms`.

- `-x passwd=root_password`
  (Optional) Specifies the system's root password. The default is no password.

- `-x sysidcfg=path_to_sysidcfg_file`
  (Optional) Specifies the file to be placed in the `/etc` directory of the diskless client. On first boot, `/etc/.UNCONFIGURED` exists and `sysidtool(1M)` will run. If a file called `/etc/sysidcfg` exists, `sysidtool(1M)` reads this file and uses the information for system configuration.

For subcommand delete:

- `-h`
  (Optional) Displays the command's usage statement.

- `-n host`
  Specifies the hostname of the diskless client to delete. This host is deleted from relevant tables and OS Services for this client are deleted.
smdiskless(1M)

- `os_server`
  (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the `snc(1M) -D` option. This option is useful in the event that the name service server and the OS server are not the same machine.

For subcommand `list`:

- `-h`
  (Optional) Displays the command’s usage statement.

- `os_server`
  (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the `snc(1M) -D` option. This option is useful in the event that the name service server and the OS server are not the same machine.

For subcommand `modify`:

- `-e ethernet_addr`
  Changes the specified diskless client’s ethernet address to `ethernet_addr`.

- `-h`
  (Optional) Displays the command’s usage statement.

- `-n host`
  Specifies the host name of the diskless client to modify.

- `os_server`
  (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the `snc(1M) -D` option. This option is useful in the event that the name service server and the OS server are not the same machine.

- `-x tz=timezone`
  (Optional) Changes the specified diskless client’s timezone.

**EXAMPLES**

**EXAMPLE 1** Creating a new diskless client

The following command adds a new diskless client named `client1` which will run Solaris 9 on a `sun4u` machine:

```
example% /usr/sadm/bin/smdiskless add -- -i 129.9.200.1 \
  -e 8:0:11:12:13:14 -n client1 -x os=sparc.sun4u.Solaris_9 \
  -x root=/export/root/client1 -x swap=/export/swap/client1 \ 
  -x swapsize=32 -x tz=US/Eastern -x locale=en_US
```

**EXAMPLE 2** Deleting an existing diskless client

The following command deletes the diskless client named `client1` from the OS server named `osserver`, where the OS server is using NIS+ and the NIS+ server is `nisplusserver`:

```
example% /usr/sadm/bin/smdiskless delete \
  -D nisplus:/nisplusserver/my.domain.com -- \
  -o osserver -n client1
```
EXAMPLE 3 Listing the diskless clients served by a host

The following command lists the diskless clients running on the OS server, osserver:

```
example$ /usr/sadm/bin/smdiskless list -D file:/osserver/osserver -- \ 
   -o osserver
```

EXAMPLE 4 Modifying the attributes of the diskless client host

The following command modifies the ethernet address for the client named client1 on the OS server, osserver, to be 8:0:11:12:13:15:

```
example$ /usr/sadm/bin/smdiskless modify -D file:/osserver/osserver -- \ 
   -o osserver -n client1 -e 8:0:11:12:13:15
```

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smdiskless command. If this environment variable is not specified, the /usr/java1.2 location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>Invalid command syntax. A usage message displays.</td>
</tr>
<tr>
<td>2</td>
<td>An error occurred while executing the command. An error message displays.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdclnt</td>
</tr>
</tbody>
</table>

SEE ALSO

smc(1M), smosservice(1M), sysidtool(1M), nsswitch.conf(4), sysidcfg(4), attributes(5), environ(5)
smexec(1M)

NAME
smexec – manage entries in the exec.attr database

SYNOPSIS
/usr/sadm/bin/smexec subcommand [ auth_args ] - - [subcommand_args]

DESCRIPTION
The smexec command manages an entry in the exec_attr(4) database in the local
/etc files name service or a NIS or NIS+ name service.

subcommands smexec subcommands are:

<table>
<thead>
<tr>
<th>subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a new entry to the exec_attr(4) database. To add an entry to the exec_attr database, the administrator must have the solaris.profmgr.execattr.write authorization.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an entry from the exec_attr(4) database. To delete an entry from the exec_attr database, the administrator must have the solaris.profmgr.execattr.write authorization.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies an entry in the exec_attr(4) database. To modify an entry in the exec_attr database, the administrator must have the solaris.profmgr.execattr.write authorization.</td>
</tr>
</tbody>
</table>

OPTIONS
The smexec authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smexec command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - - option.

auth_args
The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or - -domain with the domain argument.

- -domain domain
Specifies the default domain that you want to manage. The syntax of domain is type:/host_name/domain_name, where type is nis, nisplus, dns, ldap, or file; host_name is the name of the machine that serves the domain; and domain_name is the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)

If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

- -hostname host_name:port
Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify
host_name:host, the Solaris Management Console connects to the local host on port
898. You may still have to choose a toolbox to load into the console. To override
this behavior, use the smc(1M) -B option, or set your console preferences to load a
“home toolbox” by default.

-1 | -rolepassword role_password
Specifies the password for the role_name. If you specify a role_name but do not
specify a role_password, the system prompts you to supply a role_password.
Passwords specified on the command line can be seen by any user on the system,
Hence this option is considered insecure.

-p | -password password
Specifies the password for the user_name. If you do not specify a password, the
system prompts you for one. Passwords specified on the command line can be seen
by any user on the system, hence this option is considered insecure.

-r | -rolename role_name
 Specifies a role name for authentication. If you do not specify this option, no role is
assumed.

-u | -username user_name
Specifies the user name for authentication. If you do not specify this option, the
user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not
enter the preceding options, you must still enter the -p option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in
double quotes.

For subcommand add:

-c command_path
Specifies the full path to the command associated with the new exec_attr
entry.

-g egid
(Optional) Specifies the effective group ID that executes with the command.

-G gid
(Optional) Specifies the real group ID that executes with the command.

-h
(Optional) Displays the command’s usage statement.

-n profile_name
Specifies the name of the profile associated with the new exec_attr entry.

-t type
Specifies the type for the command. Currently, the only acceptable value for type
is cmd.
-u euid
   (Optional) Specifies the effective user ID that executes with the command.

- U uid
   (Optional) Specifies the real user ID that executes with the command.

For subcommand delete:

- c command_path
   Specifies the full path to the command associated with the exec_attr entry.

- h
   (Optional) Displays the command’s usage statement.

- n profile_name
   Specifies the name of the profile associated with the exec_attr entry.

- t type
   Specifies the type cmd for command. Currently, the only acceptable value for type is cmd.

For subcommand modify:

- c command_path
   Specifies the full path to the command associated with the exec_attr entry that you want to modify.

- g egid
   (Optional) Specifies the new effective group ID that executes with the command.

- G gid
   (Optional) Specifies the new real group ID that executes with the command.

- h
   (Optional) Displays the command’s usage statement.

- n profile_name
   Specifies the name of the profile associated with the exec_attr entry.

- t type
   Specifies the type cmd for command. Currently, the only acceptable value for type is cmd.

- u euid
   (Optional) Specifies the new effective user ID that executes with the command.

- U uid
   (Optional) Specifies the new real user ID that executes with the command.

EXAMPLES

EXAMPLE 1 Creating an exec_attr database entry

The following creates a new exec_attr entry for the User Manager profile on the local file system. The entry type is cmd for the command /usr/bin/cp. The command has an effective user ID of 0 and an effective group ID of 0.

```
./smexec add -H myhost -p mypasswd -u root -- -n "User Manager" \ 
   -t cmd -c /usr/bin/cp -u 0 -g 0
```
EXAMPLE 2 Deleting an exec_attr database entry

The following example deletes an exec_attr database entry for the User Manager profile from the local file system. The entry designated for the command /usr/bin/cp is deleted.

```
./smexec delete -H myhost -p mypasswd -u root -- -n "User Manager" \
   -t cmd -c /usr/bin/cp
```

EXAMPLE 3 Modifying an exec_attr database Entry

The following modifies the attributes of the exec_attr database entry for the User Manager profile on the local file system. The /usr/bin/cp entry is modified to execute with the real user ID of 0 and the real group ID of 0.

```
./smexec modify -H myhost -p mypasswd -u root -- -n "User Manager" \
   -t cmd -c /usr/bin/cp -U 0 -G 0
```

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smexec command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `1` Invalid command syntax. A usage message displays.
- `2` An error occurred while executing the command. An error message displays.

FILES

The following file is used by the smexec command:

```
/etc/security/exec_attr
```

Execution profiles database. See exec_attr(4).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

smc(1M), exec_attr(4), attributes(5), environ(5)
smgroup(1M)

NAME
smgroup – manage group entries

SYNOPSIS
/usr/sadm/bin/smgroup subcommand [ auth_args ] - - [subcommand_args]

DESCRIPTION
The smgroup command manages one or more group definitions in the group database for the appropriate files in the local /etc files name service or a NIS or NIS+ name service.

The following smgroup subcommands are supported

<table>
<thead>
<tr>
<th>subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a new group entry. To add an entry, the administrator must have the solaris.admin.usermgr.write authorization.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a group entry. You can delete only one entry at a time. To delete an entry, the administrator must have the solaris.admin.usermgr.write authorization. Note: You cannot delete the system groups with IDs less than 100, or the groups 60001, 60002, or 65534.</td>
</tr>
<tr>
<td>list</td>
<td>Lists one or more group entries in the form of a three-column list, containing the group name, group ID, and group members, separated by colons (:). To list entries, the administrator must have the solaris.admin.usermgr.read authorization.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies a group entry. To modify an entry, the administrator must have the solaris.admin.usermgr.write authorization.</td>
</tr>
</tbody>
</table>

OPTIONS
The smgroup authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smgroup command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - - option.

auth_args
The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or - - domain.

The following auth_args are supported:

- D ! - - domain domain
   Specifies the default domain that you want to manage. The syntax of domain is type:/host_name/domain_name, where type is nis, nisplus, dns, ldap or file; host_name is the name of the machine that serves the domain; and domain_name is the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)
If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

-\h | -\hostname host_name:port
Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

-\l | -\rolepassword role_password
Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-\p | -\password password
Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-\r | -\rolename role_name
Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-\u | -\username user_name
Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

-\-
This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - - option.

Descriptions and other argument options that contain white spaces must be enclosed in double quotes.

The add subcommand supports the following subcommand_args:

-\g gid
(Optional) Specifies the group ID for the new group. The group ID must be a non-negative decimal integer with a maximum value of 2MB (2,147,483,647). Group IDs 0-99 are reserved for the system and should be used with care. If you do not specify a gid, the system automatically assigns the next available gid. To maximize interoperability and compatibility, administrators are recommended to assign groups using the range of GIDs below 60000 where possible.

-\h
(Optional) Displays the command’s usage statement.
smgroup(1M)

-`m group_member1 -m group_member2 ...`
  (Optional) Specifies the new members to add to the group.

-`n group_name`
  Specifies the name of the new group. The group name must be unique within a
domain, contain 2–32 alphanumeric characters, begin with a letter, and contain at
least one lowercase letter.

The `delete` subcommand supports the following `subcommand_args`:

-`h`
  (Optional) Displays the command’s usage statement.

-`n group_name`
  Specifies the name of the group you want to delete.

The `list` subcommand supports the following `subcommand_args`:

-`h`
  (Optional) Displays the command’s usage statement.

-`n group_name`
  (Optional) Specifies the name of the group you want to list. If you do not specify a
group name, all groups are listed.

The `modify` subcommand supports the following `subcommand_args`:

-`h`
  (Optional) Displays the command’s usage statement.

-`m group_member1 -m group_member2 ...`
  (Optional) Specifies the new members to add to the group. Note that `group_member`
  overwrites the existing member list in the group file.

-`n group_name`
  Specifies the name of the group you want to modify.

-`N new_group`
  (Optional) Specifies the new group name. The group name must be unique within a
domain, contain 2–32 alphanumeric characters, begin with a letter, and contain at
least one lowercase letter.

**EXAMPLES**

**EXAMPLE 1 Creating a Test Group**

The following creates the `test_group` group entry with a group ID of 123 and adds
test_member1 and test_member2 to the group:

```
./smgroup add -H myhost -p mypasswd -u root -- -n test_group \
   -m test_member1 -m test_member2 -g 123
```

**EXAMPLE 2 Deleting a Group**

The following deletes `test_group`:

```
./smgroup delete -H myhost -p mypasswd -u root -- -n test_group
```
EXAMPLE 3 Displaying All Groups

The following displays all groups in a three-column list showing the group name, group ID, and group members:

```
./smgroup list -H myhost -p mypasswd -u root --
```

EXAMPLE 4 Displaying a Group

The following displays the group_1 data in a three-column list showing the group name, group ID, and group members:

```
./smgroup list -H myhost -p mypasswd -u root -- -n group_1
```

EXAMPLE 5 Renaming a Group

The following renames a group from finance to accounting:

```
./smgroup modify -H myhost -p mypasswd -u root -- \
   -n finance -N accounting
```

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smgroup command. If this environment variable is not specified, the /usr/java location is used. See sm(1M).

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 Invalid command syntax. A usage message displays.
2 An error occurred while executing the command. An error message displays.

FILES

The following files are used by the smgroup command:

/etc/group Group file. See group(4).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

smc(1M), group(4), attributes(5), environ(5)
### NAME
smlog – manage and view WBEM log files

### SYNOPSIS
/usr/sadm/bin/smlog subcommand [auth_args] -- [subcommand_args]

### DESCRIPTION
The smlog command manages WBEM log files and allows a user to view WBEM log file records.

**Subcommands**
The smlog command supports the following subcommands:

- **backup**
  Backs up the entries in the current WBEM log file. The backup command then creates a new log file and makes this log file the current log file.

- **delete**
  Deletes an existing (backed up) WBEM log file.

- **list**
  Lists the names of all the WBEM log files available for viewing.

- **view**
  Allows the user to view the contents of the specified WBEM log file.

### OPTIONS
The smlog authentication arguments, *auth_args*, are derived from the smc(1M) *arg* set and are the same regardless of which subcommand you use. The smlog command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, *subcommand_args*, must come after the *auth_args* and must be separated from them by the -- option.

#### auth_args
The valid *auth_args* are -D, -H, -l, -p, -r, and -u; they are all optional. If no *auth_args* are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or --domain with the *domain* argument.

- **-D**
  Specifies the default domain that you want to manage. smlog accepts only *file* for this option. *file* is also the default value.

  The *file* default domain means that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

- **-H**
  Specifies the *hostname* and *port* to which you want to connect. If you do not specify a *port*, the system connects to the default port, 898. If you do not specify *hostname:port*, the Solaris Management Console connects to the local host on port
You may still have to choose a toolbox to load into the console. To override this behavior, use the `smc -B` option (see `smc(1M)`), or set your console preferences to load a “home toolbox” by default.

```
-1 | -rolepassword role_password
   Specifies the password for the `role_name`. If you specify a `role_name` but do not specify a `role_password`, the system prompts you to supply a `role_password`. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-p | -password password
   Specifies the password for the `user_name`. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-r | -rolename role_name
   Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-u | -username user_name
   Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.
```

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the `- -` option.

The `backup` subcommand supports the following `subcommand_args`:

```
-h
   Displays the command’s usage statement.
```

This `subcommand_arg` is optional.

The `delete` subcommand supports the following `subcommand_args`:

```
-h
   Displays the command’s usage statement.

-n name
   Specifies the name of the log file you want to delete.
```

The `list` subcommand supports the following `subcommand_args`:

```
-h
   Displays the command’s usage statement.
```

This `subcommand_arg` is optional.
The view subcommand supports the following subcommand_args:

- **h**
  Displays the command's usage statement.

  This subcommand_arg is optional.

- **n name**
  Specifies the name of the log file you want to view.

- **v**
  Displays the data in verbose format.

  This subcommand_arg is optional.

### EXAMPLE 1  Listing WBEM Log Files

The following command lists all available WBEM log files:

```
./smlog list -H myhost -p mypasswd -u root --
```

- Log.01/03/2001.14:38:29
- Log.01/04/2001.16:34:59
- Log.01/11/2001.18:39:53
- Log.01/12/2001.10:31:31

### EXAMPLE 2  Displaying a WBEM Log File

The following command displays the contents of a log file:

```
./smlog view -H myhost -p mypasswd -u root -- -n Log.01/04/2001.16:34:59
```

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Client</th>
<th>User</th>
<th>Source</th>
<th>Severity</th>
<th>Category</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5/01 5:22:47 PM</td>
<td>hostname1</td>
<td>root</td>
<td>Solaris OsService</td>
<td>Informational</td>
<td>Application log</td>
<td>No services found.</td>
</tr>
<tr>
<td>1/5/01 5:21:46 PM</td>
<td>hostname1</td>
<td>root</td>
<td>Solaris OsService</td>
<td>Informational</td>
<td>Application log</td>
<td>No services found.</td>
</tr>
</tbody>
</table>

The smlog output wraps when it exceeds 80 characters.

### ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smlog command. If this environment variable is not specified, the /usr/java1.2 location is used. See smc(1M).

### EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>Invalid command syntax. A usage message displays.</td>
</tr>
<tr>
<td>2</td>
<td>An error occurred while executing the command. An error message displays.</td>
</tr>
</tbody>
</table>
**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

**SEE ALSO** `smc(1M), attributes(5), environ(5)`
The smmaillist command manages one or more email alias entries for the appropriate files in the local /etc files name service or a NIS or NIS+ name service.

**subcommands**

- **add**
  Creates a new email alias definition and adds it to the appropriate files. To add an entry, the administrator must have the `solaris.admin.usermgr.write` authorization.

- **delete**
  Deletes an email alias entry. You can delete only one entry at a time. To delete an entry, the administrator must have the `solaris.admin.usermgr.write` authorization. **Note:** You cannot delete Postmaster or Mailer-Daemon aliases.

- **list**
  Lists one or more email alias entries. To list an entry, the administrator must have the `solaris.admin.usermgr.read` authorization.

- **modify**
  Modifies an email alias entry. To modify an entry, the administrator must have the `solaris.admin.usermgr.write` authorization.

**OPTIONS**

The `smmaillist` authentication arguments, `auth_args`, are derived from the `smc(1M)` arg set and are the same regardless of which subcommand you use. The `smmaillist` command requires the Solaris Management Console to be initialized for the command to succeed (see `smc(1M)`). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, `subcommand_args`, must come after the `auth_args` and must be separated from them by the `- -` option.

**auth_args**

The valid `auth_args` are `-D`, `-H`, `-1`, `-p`, `-r`, and `-u`; they are all optional. If no `auth_args` are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either `-D` or `-domain domain` with the `domain` argument.

- `-D` or `-domain domain`
  Specifies the default domain that you want to manage. The syntax of `domain` is `type:/host_name/domain_name`, where `type` is `nis`, `nisplus`, `dns`, `ldap`, or `file`; `host_name` is the name of the machine that serves the domain; and `domain_name` is the name of the domain you want to manage. **(Note: Do not use nis+ for nisplus.)**
If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

\[-H | -\text{-hostname host\_name:port}\]
Specifies the host\_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host\_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the \text{smc}(1M) -B option, or set your console preferences to load a “home toolbox” by default.

\[-l | -\text{-rolepassword role\_password}\]
Specifies the password for the role\_name. If you specify a role\_name but do not specify a role\_password, the system prompts you to supply a role\_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

\[-p | -\text{-password password}\]
Specifies the password for the user\_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

\[-r | -\text{-rolename role\_name}\]
Specifies a role name for authentication. If you do not specify this option, no role is assumed.

\[-u | -\text{-username user\_name}\]
Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the \text{- -} option.

\text{Note:} Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

- For subcommand add:
  \[-a address1 -a address2 \ldots\]
  (Optional) Specifies the new email address. See \text{sendmail}(1M).
  \[-h\]
  (Optional) Displays the command’s usage statement.
  \[-n alias\_name\]
  Specifies the name of the alias you want to add. See \text{sendmail}(1M).

- For subcommand delete:
  \[-h\]
  (Optional) Displays the command’s usage statement.
-n alias_name
  Specifies the alias you want to delete.

- For subcommand list:
  
  -h
    (Optional) Displays the command’s usage statement.
  
  -n alias_name
    (Optional) Specifies the name of the alias you want to display. If you do not specify an alias, all aliases are listed.

- For subcommand modify:
  
  -a address1 -a address2...
    (Optional) Specifies new email address(es) to replace the existing one(s). See sendmail(1M).

  -h
    (Optional) Displays the command’s usage statement.
  
  -n alias_name
    (Optional) Specifies the name of the alias you want to modify.
  
  -N new_alias_name
    Specifies the new alias name. Use only when renaming an alias. See sendmail(1M).

EXAMPLE 1 Creating an alias

The following creates the coworkers alias and adds the following member list: bill@machine1, sue@machine2, and me@machine3 to the alias:

./smmaillist add -H myhost -p mypasswd -u root -- -n coworkers 
  -a bill@machine1 -a sue@machine2 -a me@machine3

EXAMPLE 2 Deleting a mail alias

The following deletes the my_alias alias:

./smmaillist delete -H myhost -p mypasswd -u root -- -n my_alias

EXAMPLE 3 Displaying members of a mail alias

The following displays the list of members belonging to the my_alias alias:

./smmaillist list -H myhost -p mypasswd -u root -- -n my_alias

EXAMPLE 4 Displaying members of all mail aliases

The following displays the list of members belonging to all mail aliases:

./smmaillist list -H myhost -p mypasswd -u root --

EXAMPLE 5 Renaming a mail alias

The following renames the current_name mail alias to new_name:
EXAMPLE 5  Renaming a mail alias  (Continued)

./smmaillist modify -H myhost -p mypasswd -u root -- \
   -n current_name -N new_name

EXAMPLE 6  Redefining an address list

The following changes the recipients of the alias my_alias to bill@machine1. Any
previous recipients are deleted from the alias.

./smmaillist modify -H myhost -p mypasswd -u root -- \
   -n my_alias -a bill@machine1

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which
affects the execution of the smmaillist command. If this environment variable is not
specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

   0    Successful completion.
   1    Invalid command syntax. A usage message displays.
   2    An error occurred while executing the command. An error message
displays.

FILES

The following files are used by the smmaillist command:

/var/mail/aliases        Aliases for sendmail(1M). See
                          aliases(4).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

sendmail(1M), smc(1M), aliases(4), attributes(5), environ(5)
NAME  smmultiuser – manage bulk operations on user accounts

SYNOPSIS  /usr/sadm/bin/smmultiuser subcommand [ auth_args ] - - [subcommand_args]

DESCRIPTION  The smmultiuser command allows bulk operations on user entries in the local /etc filesystem or a NIS or NIS+ name service, using either an input file or piped input. 

Note: Both input files and piped input contain a cleartext (non-encrypted) password for each new user entry.

subcommands  smmultiuser subcommands are:

<table>
<thead>
<tr>
<th>subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds multiple user entries to the appropriate files. To add an entry, the administrator must have the solaris.admin.usermgr.write authorization.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes one or more user entries from the appropriate files. To delete an entry, the administrator must have the solaris.admin.usermgr.write authorization.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies existing user entries in the user account database. To modify an entry, the administrator must have the solaris.admin.usermgr.write authorization. Here is the list of what can be modified using the modify subcommand:</td>
</tr>
</tbody>
</table>

1. UserName (only under certain conditions; see Note 2 in NOTES).
2. Password (only under certain conditions; see Note 3 in NOTES). To modify a password, the administrator must have the solaris.admin.usermgr.pswd authorization.
3. Description.
4. Primary Group ID.
5. Shell type.
6. FullName.

OPTIONS  The smmultiuser authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smmultiuser command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - - option.

auth_args  The valid auth_args are -D, -H, -l, -p, -r, -trust, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or - -domain.
domain

Specifies the default domain that you want to manage. The syntax of domain is

```
type:/host_name/domain_name
```

where type is nis, nisplus, dns, ldap, or file; host_name is the name of the machine that serves the domain; and domain_name is the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)

If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

hostname host_name:port

Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

role_password role_name

Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

password user_name

Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

role_name

Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-trust

Trusts all downloaded code implicitly. Use this option when running the terminal console non-interactively and you cannot let the console wait for user input.

If using piped input into any of the smmultiuser subcommands, it will now be necessary to use the -trust option with the -L logfile option. See EXAMPLES.

user_name

Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.
For subcommand add:

-h
(Optional) Displays the command’s usage statement.

-i input_file
Specifies the input file containing the user account information. After the command is executed, the input file is removed. The input file must follow the /etc/passwd file format. If you do not specify the -i input_file option, you must include a piped_input operand immediately before the command. See EXAMPLES.

-L logfile
(Optional) Specifies the full pathname to the text file that stores the command’s success/failure data. Note: This text file is an ASCII—formatted log file; it is different from and unrelated to the output of the normal logging mechanism that also occurs within the Log Viewer tool. The -L logfile option is used to dump additional logging information to a text file.

For subcommand delete:

-h
(Optional) Displays the command’s usage statement.

-i input_file
Specifies the input file containing the user account information. After the command is executed, the input file is removed. The input file must follow the /etc/passwd file format. If you do not specify the -i input_file option, you must include a piped_input operand immediately before the command. See EXAMPLES.

-L logfile
(Optional) Specifies the full pathname to the text file that stores the command’s success/failure data.

For subcommand modify:

-h
(Optional) Displays the command’s usage statement.

-i input_file
Specifies the input file containing the user account information. After the command is executed, the input file is removed. The input file must follow the /etc/passwd file format. If you do not specify the -i input_file option, you must include a piped_input operand immediately before the command. See EXAMPLES. Note: When modifying passwords, use the piped input, since it is more secure than keeping passwords in a file. See Note 1 in NOTES.

-L logfile
(Optional) Specifies the full pathname to the text file that stores the command’s success/failure data.

OPERANDS

The following operands are supported:
You must include piped_input if you do not specify an input_file. Include the piped input immediately before the command. The piped input must follow the /etc/passwd file format. See EXAMPLES. Note: Use the -trust option when using piped input with the -L logfile option to avoid the user prompt from the Security Alert Manager, which normally asks the user whether the log file should be created. Without the -trust option, the piped input is improperly taken as the answer to the prompt before the user can answer “Y” or “N”, and the logging operation will probably fail.

EXAMPLES

EXAMPLE 1 Creating multiple user accounts

The following reads in user account data from the /tmp/foo file and creates new user accounts on the local file system. The input file is formatted in the /etc/passwd format.

./smmultiuser add -H myhost -p mypasswd -u root -- -i /tmp/foo

EXAMPLE 2 Deleting multiple user accounts

The following reads in user account data from the /tmp/foo file and deletes the named user accounts from the local file system:

./smmultiuser delete -H myhost -p mypasswd -u root -- -i /tmp/foo

EXAMPLE 3 Creating a log file with piped input

The following example shows the use of the smc(1M) -trust option that is required when creating a log file. It is applicable to the delete and modify subcommands also.

cat /tmp/users.txt | smmultiuser add --trust -- -L /tmp/mylog.txt

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smprofile command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

0 Successful completion.

1 Invalid command syntax. A usage message displays.

2 An error occurred while executing the command. An error message displays.

FILES

The following files are used by the smprofile command:
/smmtuser(1M)

/etc/passwd Contains the file format to use for the input_file and piped_input. See passwd(4).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO smc(1M), passwd(4), attributes(5), environ(5)

NOTES

1. The file format used by both the add and modify subcommands is the /etc/passwd format. But there is an allowance for a mutated version of this file format that contains an extra field at the end of each line to be used for the Full Name. If the extra field is appended to the end of each line, it will be used for the Full Name value, but if it is omitted, it will be assumed that no Full Name modification is being done. The extra field is separated with a colon (:), just like all the other fields.

Example of regulation /etc/passwd entry:

```
rick2:x:101:10:description1:/home/rick2:/bin/sh
```

Example of /etc/passwd variant entry:

```
rick2:x:101:10:description1:/home/rick2:/bin/sh:Ricks_fullname
```

2. The modifies are all done based on lookups of the user name in the user tables. If a user name cannot be found in this lookup, a secondary check will be made to see if the uid and Full Name can be found in the user tables. If they are both found, assume that a user rename has occurred. If neither can be found, assume that the user account does not exist and cannot be modified.

3. If no password is supplied, assume that there is no change to the password information. If a password is being changed, it should be supplied in cleartext as piped input, although this is not required. The password can be supplied in the input file also. Once read in, the password will be changed accordingly.
**NAME**
smosservice - manage OS services

**SYNOPSIS**
/usr/sadm/bin/smosservice subcommand [ auth_args] - − [subcommand_args]

**DESCRIPTION**
The smosservice command manages OS services.

**smosservice subcommands are:**
- **add**
  Adds the specified OS services.
- **delete**
  Deletes the specified OS services.
- **list**
  Either lists all the installed OS services for the server if you do not specify a hostname, or lists the OS services for the specified diskless client if you do specify a hostname.
- **patch**
  Manages patches on all existing diskless clients. For example, you can use this subcommand to initially establish a patch spool directory on an OS server. Then, you can apply the patch to the spool area, verifying the patch as needed. Once the patch exists in the spool area, you can apply the patch to the clone area. In addition, you can migrate the patched clone area to clients.

**OPTIONS**
The smosservice authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smosservice command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - − option.

**auth_args**
The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or - − domain.

- **-D** | - − domain domain
  Specifies the default domain that you want to manage. The syntax of domain is type:/host_name/domain_name, where type is nis, nis+, dns, ldap, or file; host_name is the name of the machine that serves the domain; and domain_name is the name of the domain you want to manage. *(Note: Do not use nis+ for nisplus.)*

If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.
Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

Specifies a role name for authentication. If you do not specify this option, no role is assumed.

Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - - option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

For subcommand add:

- h
  (Optional) Displays the command’s usage statement.

- o os_server
  (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the smc(1M) -D option. This option is useful in the event that the name service server and the OS server are not the same machine.

- x mediapath=path
  Specifies the full path to the Solaris CD image.

- x platform=platform
  Specifies the OS service to add. The instruction architecture, machine class, OS, and version are given in the form:
For subcommand `delete`:

- `-h` (Optional) Displays the command's usage statement.

- `-o os_server` (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the `smc(1M) -D` option. This option is useful in the event that the name service server and the OS server are not the same machine.

- `-x rmplatform=platform` Specifies the OS service to remove. The instruction architecture, machine class, OS, and version are given in the form:

  `instruction_set.machine_class.Solaris_os_version` for example, `sparc.all.Solaris_9`. Note: Only a machine class of `all` is supported.

For subcommand `list`:

- `-h` (Optional) Displays the command's usage statement.

- `-o os_server` (Optional) Specifies the name of the host where the OS service filesystems reside. If this option is not specified, the host will be the same as that specified in the `smc(1M) -D` option. This option is useful in the event that the name service server and the OS server are not the same machine.

For subcommand `patch`:

- `-a patch_directory/patch_ID` Adds the specified patch, `patch_ID`, to the spool directory. `patch_directory` specifies the source path of the patch to be spooled which includes the patchid directory name. Patches are spooled to `/export/diskless/Patches/`. If the patch being added obsoletes an existing patch in the spool, the obsolete patch is moved to the archive area, `/export/diskless/Patches/Archive` (to be restored if this new patch is ever removed).

- `-h` (Optional) Displays the command's usage statement.
-m (Optional) Synchronizes spooled patches with offline copies of each diskless client OS service on the server. Spooled patches and applied patches are compared so that newly spooled patches can be installed and patches recently removed from the spool can be backed out. This option does not apply to patches directly to diskless client OS services or diskless clients; the -u option must be used to update the services and clients with the changes. Clients are not required to be down at this time, as all patching is done off line. Note: The server is fully available during this operation.

-P
Lists all currently spooled patches with an associated synopsis. The list is split up into sections detailing the patches for each OS and architecture in this format:

Solaris os_re11 architecture1:
  patchid Synopsis
  patchid Synopsis
  .......
Solaris os_re11 architecture2:
  patchid Synopsis
  .......

-r patchid
Removes the specified patchid from the spool if it is not a requirement for any of the other patches in the spool. All archived patches that were obsoleted by the removed patch are restored to the spool.

-U (Optional) Updates all diskless client OS services and diskless clients with any changes after synchronizing patches with the -m option. Clients must be brought down during this operation. Once execution has completed, each client should be booted again.

EXAMPLE 1 Creating a new OS service

The following command adds an OS service for Solaris 9 for the sun4u machine class where the OS server is not using a name service:

eexample% /usr/sadm/bin/smosservice add -- \
  -x mediapath=/net/imageserver/5.8/sparc \
  -x platform=sparc.sun4u.Solaris_9 \
  -x cluster=SUNWXall -x locale=en_US

The following command adds an OS service for Solaris 9 for the sun4u machine class where the OS server is using NIS, the NIS server is nisserver, the OS server is osserver, and the port to which you connect on osserver is 898:

eexample% /usr/sadm/bin/smosservice add -D nis:/nisserver/my.domain.com -- \
  -H osserver:898 -- \
  -x mediapath=/net/imageserver/5.8/sparc \
  -x platform=sparc.sun4u.Solaris_9 \

EXAMPLES
In the preceding example, the OS service is placed in /export on osserver, while the hosts.byaddr, ethers, and bootparams maps are updated on the NIS server.

**EXAMPLE 2** Deleting an OS service

The following command deletes the OS service for Solaris 9 for the sun4u machine class where the OS server is using NIS, the NIS server is nisserver, and the OS server is osserver:

```
example% /usr/sadm/bin/smosservice delete
    -D nis:/nisserver/my.domain.com -- \
    -x rmplatform=sparc.all.Solaris_9 \ 
    -o osserver
```

**EXAMPLE 3** Listing installed OS services

The following command lists the OS services installed on the machine, osserver:

```
example% /usr/sadm/bin/smosservice list \
    -D file:/osserver/osserver -- -o osserver
```

**ENVIRONMENT VARIABLES**

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smosservice command. If this environment variable is not specified, the /usr/java1.2 location is used. See smc(1M).

**EXIT STATUS**

The following exit values are returned:

0  Successful completion.
1  Invalid command syntax. A usage message displays.
2  An error occurred while executing the command. An error message displays.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdclnt</td>
</tr>
</tbody>
</table>

**SEE ALSO**

smc(1M), smdiskless(1M), attributes(5), environ(5)
smatch(1M)

NAME
smatch – manage patches

SYNOPSIS
/usr/sadm/bin/smatch subcommand [auth_args ] - - [subcommand_args]

DESCRIPTION
The smatch command manages patch installation on single or multiple machines,
analyzes patch requirements, and downloads required patches.

To run this command on multiple machines, you must first create a role on each
machine that contains the necessary rights to perform patch management. In addition,
all of the machines on which you want to install patches must run the same version of
the Solaris operating environment, have the same hardware architecture, and have the
same patches installed.

Subcommands
The following subcommands are supported:

add
Installs patches on single or multiple machines. You can either specify the patch IDs
and the machine names directly on the command line, or you can specify a
patchlist_file and a machinelist_file that contains the list of patches and the machines
on which you want to install the patches, respectively.

analyze
Analyzes and lists the patches required for a specified machine.

You must first install the PatchPro application on the host machine before you run
the analyze command. To install PatchPro, download the packages from the Sun
Microsystems web site and follow the instructions to install the software on your
machine.

download
Downloads patches from the SunSolve Online database to the patch directory. You
can either specify the patches that you want to download, or you can specify a
machine name to download the recommended patches for that machine.

You must first install the PatchPro application on the host machine before you run
the download command. To install PatchPro, download the packages from the Sun
Microsystems web site and follow the instructions to install the software on your
machine.

remove
Removes a single patch from a system.

update
Analyzes the single local or remote system, downloads the recommended patches,
and installs the recommended patches on the system.

The default installation policy installs the standard patches and sequesters the
non-standard patches. Standard patches can be safely installed in a multi-user
mode. Non-standard patches require special installation instructions. You can find
these instructions in the README file for each patch. To change the installation
policy, refer to PatchPro documentation (pprosetup). You must install the
PatchPro application on the host machine before running the update command. To
install PatchPro, download the packages from http://www.sun.com and follow the instructions to install the software on your machine.

There are two kinds of options: authentication arguments (auth_args) and subcommand arguments (subcommand_args).

The smpatch authentication arguments, auth_args, are derived from the smc(1M) argument set and are the same regardless of which subcommand you use.

Valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes.

The single letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or --domain.

Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

The following authentication arguments (auth_args) are supported:

- **-D** | **-domain** **domain**
  Specifies the default domain that you want to manage. smpatch only accepts files for this option.

  If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

- **-H** | **-hostname** **host_name:****port**
  Specifies the host and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify a host (host_name:port), the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc -B option, or set your console preferences to load a home toolbox by default.

- **-l** | **-rolepassword** **role_password**
  Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password.

  Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

- **-p** | **-password** **password**
  Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Because passwords specified on the command line can be seen by any user on the system, this option is considered insecure.

- **-r** | **-rolename** **role_name**
  Specifies a role name for authentication. If you do not specify this option, no role is assumed.
smatch(1M)

Subcommand Arguments

-username user_name
  Specifies the user name for authentication. If you do not specify this option, the
  user identity running the console process is assumed.

-This option is required and must always follow the preceding options. If you do not
  enter the preceding options, you must still enter the -- option.

The subcommand-specific options, subcommand_args, must come after the auth_args
and must be separated from them by the -- option. Enclose descriptions and arg
options that contain white space in double quotes.

add
  The add subcommand requires one of the following subcommand arguments:

  -i patch_id1 -i patch_id2 ...
    Specifies the patch or patches that you want to install. You can specify the -x
    idlist=patchlist_file operand instead of specifying this option.

  -x idlist=patchlist_file
    Specifies a file that contains the list of patches that you want to install. You can
    specify the -i patch_id1 option instead of specifying this operand.

The following subcommand arguments are optional for the add subcommand:

  -patchdir
    Specifies the directory where the patches are located. If you do not specify this
    option, the default patch spool directory (/var/sadm/spool), located on the
    host specified with the -H authentication argument, is assumed. The patch
directory has the following syntax: machine_name:/directory_path, where
/directory_path is a fully-qualified, shared directory. You can specify just the
/directory_path if the directory is an NFS-mounted network directory or is
located on the machine on which you want to install the patches.

  -h
    Displays the command’s usage statement.

  -n machine_name1 -n machine_name2 ...
    Specifies the machine(s) on which you want to install the patches. If you do not
    specify this option, the machine is assumed to be be that specified with the -H
    authentication argument. You can specify the -x mlist=machinelist_file
    operand instead of specifying this option.

  -x mlist=machinelist_file
    Specifies a file that contains the list of machines to which you want to install
    patches. You can specify the -n machine_name1 option instead of specifying this
    operand.

analyze
  The following subcommand arguments are optional for the analyze subcommand:

  -h
    Displays the command’s usage statement.
download
The download subcommand requires one of the following subcommand arguments:

- `i patch_id1 -i patch_id2 ...`
  Specifies the patch or patches that you want to download. You can specify the
  `-x idlist=patchlist_file` operand instead of this option or you can omit this
  argument in favor of `-n download_machine` option.

- `x idlist=patchlist_file`
  Specifies the file containing the list of patches that you want to download. You
  can specify this operand instead of specifying the `-i patch_id1` option.

The following subcommand arguments are optional for the download subcommand:

- `n download_machine`
  Specifies the machine on which you want to download the recommended
  patches. If you do not specify this option, the machine is assumed to be that
  specified by the `-H` authentication argument.

- `d downloaddir`
  Specifies the directory where the patches are downloaded. This directory must
  have write permission and be accessible to the download_machine. If you do not
  specify this option, the default patch spool directory (`/var/sadm/spool`) located
  on the download machine is assumed.

remove
The remove subcommand requires the following arguments:

- `i patch_id`
  Specifies the patch that you want to remove.

The following subcommand arguments are optional for the remove subcommand:

- `n machine`
  Specifies the machine on which you want to remove the recommended patches. If
  you do not specify this option, the machine is assumed to be that specified by the
  `-H` authentication argument.

update
The following subcommand arguments are optional for the update subcommand:

- `n machine_name`
  Specifies the machine for which you want to display a list of patches
  recommended by SunSolve. If you do not specify this option, the machine is
  assumed to be that specified by the `-H` authentication argument.
-d patchdir
  Specifies the directory where the patches are downloaded. This directory must have write permission and must be accessible to the machine that is being analyzed. If you do not specify this option, the default patch spool directory (/var/sadm/spool) located on the machine that is being analyzed is assumed. After the required patches are downloaded, they are installed from the effective patch directory.

Patches that could not be installed are sequestered to the patchdir/patchproSequester directory, where patchdir is the effective patch directory. See update -d.

OPERANDS
The following operands are supported:

machinelist_file
  Specifies the fully-qualified path and file name of the file containing the list of machine names on which you want to install the patches. The machinelist_file file contains one machine name per line.

patchlist_file
  Specifies the fully-qualified path and file name of the file containing the list of patches that you want to install. The patchlist_file contains one patch ID per line.

EXAMPLES

EXAMPLE 1 Installing Patches on Multiple Machines
The following example installs patches 102893-01, 106895-09, and 106527-05 on the machines lab1 and lab2. The patches are located in the /files/patches/s9 shared directory on the machine fileserver:

/usr/sadm/bin/smpatch add -H myhost -p mypasswd -u root --
  -i 102893-01 -i 106895-09 -i 106527-05
  -d fileserver:/files/patches/s9
  -n lab1 -n lab2

EXAMPLE 2 Installing Patches Using a patch_list File
The following example specifies the /tmp/patch/patch_file to install patches on the machines lab1 and lab2. The patches are located in the NFS network-mounted directory /net/fileserver/export/patchspool/Solaris9:

/usr/sadm/bin/smpatch add -H myhost -p mypasswd -u root --
  -x mlist=/tmp/patch/patch_file
  -d /net/fileserver/export/patchspool/Solaris9
  -n lab1 -n lab2

EXAMPLE 3 Installing Patches Using a patch_list File and a machine_list File
The following example installs the patches listed in /tmp/patch/patch_file on the machines listed in /tmp/patch/machine_file. The patches are located in the default /var/sadm/spool directory on the default machine myhost.
EXAMPLE 3 Installing Patches Using a patch_list File and a machine_list File

```
/usr/sadm/bin/smpatch add -H myhost -p mypasswd -u root --
-x mlist=/tmp/patch/patch_file \
-x mlist=/tmp/patch/machine_file
```

EXAMPLE 4 Analyzing and Downloading Patches from Sunsolve Online

The following example analyzes the lab1 machine and downloads the assessed patches from the Sunsolve Online database to the default patch spool directory.

```
/usr/sadm/bin/smpatch download -p mypasswd -u root -- -n lab1
```

EXAMPLE 5 Downloading Patches From the Sunsolve Database

The following example downloads the 102893-01 and 106895-09 patches from the Sunsolve Online database to the /files/patches/s8 directory located on the default machine.

```
/usr/sadm/bin/smpatch download -p mypasswd -u root -- \
-i 102893-01 -i 106895-09 -d /files/patches/s8
```

EXAMPLE 6 Removing Patches

The following example removes patch 102893-01:

```
/usr/sadm/bin/smpatch remove -p mypasswd -u root -- \
-i 102893-01
```

EXAMPLE 7 Updating Your System

The following example analyzes your local or remote system and lists the recommended patches. It downloads them in a specified directory and installs the standard patches:

```
/usr/sadm/bin/smpatch update -u root --
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of smpatch: JAVA_HOME. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  Invalid command syntax. A usage message displays.
2  An error occurred while executing the command. An error message displays.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

arch(1), uname(1), patchadd(1M), patchrm(1M), share(1M), smc(1M), attributes(5), environ(5)
The smprofile command manages one or more profiles in the prof_attr(4) or exec_attr(4) databases in the local /etc files name service or a NIS or NIS+ name service.

**subcommands** smprofile subcommands are:

- **add** Adds a new profile (right) to the prof_attr(4) database. To add a profile, the administrator must have the solaris.profmgr.write authorization.

- **delete** Deletes a profile from the prof_attr(4) database, deletes all associated entries from the exec_attr(4) database, and deletes the assigned profile from the user_attr(4) database. To delete a profile, the administrator must have the solaris.profmgr.execattr.write and solaris.profmgr.write authorization.

- **list** Lists one or more profiles from the prof_attr(4) or exec_attr(4) databases. To list a profile, the administrator must have the solaris.profmgr.read authorization.

- **modify** Modifies a profile in the prof_attr(4) database. To modify a profile, the administrator must have the solaris.profmgr.write authorization.

**OPTIONS**

The smprofile authentication arguments, auth_args, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smprofile command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must come after the auth_args and must be separated from them by the - - option.

**auth_args**

- The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either -D or - -domain with the domain argument.

- **-D | - -domain domain**

  Specifies the default domain that you want to manage. The syntax of domain is type:/host_name/domain_name, where type is nis, nisplus, dns, ldap, or file; host_name is the name of the machine that serves the domain; and domain_name is the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)
If you do not specify this option, the Solaris Management Console assumes the default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

-H -host=hostname host_name:port
   Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

-l -role=role_password role_password
   Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-p -password password
   Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-r -rolename role_name
   Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-u -username user_name
   Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - - option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

For subcommand add:

-a addauth1 -a addauth2 . . .
   (Optional) Specifies the authorization name(s) to add to the new profile. The administrator must have the solaris.profmgr.write authorization and must have the corresponding “grant” authorization. A “grant” authorization is one in which the lowest component of the authorization name is replaced by the word grant. For example, to grant some profile the solaris.role.write authorization, the administrator needs that authorization and also the solaris.role.grant authorization. For more information on granting authorizations, see auth_attr(4).

smprof(1M)
-d description
    Specifies the description of the new profile.

-h
    (Optional) Displays the command’s usage statement.

-m html_help
    Specifies the HTML help file name for the new profile. The help file name must be put in the /usr/lib/help/profiles/locale/C directory.

-n name
    Specifies the name of the new profile.

-p addprof1 -p addprof2 ...
    (Optional) Specifies the supplementary profile name(s) to add to the new profile.

For subcommand delete:

-h
    (Optional) Displays the command’s usage statement.

-n name
    Specifies the name of the profile you want to delete.

For subcommand list:

-h
    (Optional) Displays the detailed output for each profile in a block of key:value pairs, followed by a blank line that delimits each profile block. Each key:value pair is displayed on a separate line. All the attributes associated with a profile from the prof_attr and exec_attr databases are displayed. If you do not specify this option, only the specified profile name(s) and associated profile description(s) are displayed.

-n name1 -n name2 ...
    (Optional) Specifies the profile(s) that you want to display. If you do not specify a profile name, all profiles are displayed.

For subcommand modify:

-a addauth1 -a addauth2 ...
    (Optional) Specifies the authorization name(s) to add to the profile. The administrator must currently have been granted each of the specified authorizations and must have the ability to grant each of those authorizations to other users or roles. For more information on granting authorizations, see auth_attr(4).

-d description
    (Optional) Specifies the new description of the profile.

-h
    (Optional) Displays the command’s usage statement.
-m html_help
(Optional) Specifies the new HTML help file name of the profile. If you change this name, you must accordingly rename the help file name entered in the /usr/lib/help/profiles/locale/C directory.

-n name
Specifies the name of the profile you want to modify.

-p addprof1 -p addprof2 ...
(Optional) Specifies the supplementary profile name(s) to add to the profile. The administrator must have the solaris.profmgr.assign authorization to add any profile and the solaris.profmgr.delegate authorization to add any profile that has been assigned to the authenticated user.

-q delprof1 -q delprof2 ...
(Optional) Specifies the supplementary profile name(s) to delete from the profile. The administrator must have the solaris.profmgr.assign authorization to delete any profile and the solaris.profmgr.delegate authorization to delete any profile that has been assigned to the authenticated user.

-r delauth1 -r delauth2 ...
(Optional) Specifies the authorization name(s) to delete from the profile. The administrator must have the solaris.profmgr.write authorization and must have the corresponding “grant” authorization. For more information about “grant” authorizations, see the -a option description for the add subcommand above.

EXAMPLES

EXAMPLE 1 Creating a new profile
The following creates a new User Manager profile on the local file system. The new profile description is Manage users and groups, and the authorizations assigned are solaris.admin.usermgr.write and solaris.admin.usermgr.read. The supplementary profile assigned is Operator. The help file name is RtUserMgmt.html.

```bash
./smprofile add -H myhost -p mypasswd -u root -- -n "User Manager" \
-d "Manage users and groups" -a solaris.admin.usermgr.write \
-a solaris.admin.usermgr.read -p Operator -m RtUserMgmt.html
```

EXAMPLE 2 Deleting a profile
The following deletes the User Manager profile from the local file system:

```bash
./smprofile delete -H myhost -p mypasswd -u root -- -n "User Manager"
```

EXAMPLE 3 Listing all profiles
The following lists all profiles and their associated profile descriptions on the local file system.

```bash
./smprofile list -H myhost -p mypasswd -u root --
EXAMPLE 4 Modifying a profile

The following modifies the User Manager profile on the local file system. The new profile description is Manage world, the new authorization assignment is solaris.admin.usermgr.* authorizations, and the new supplementary profile assignment is All. (The -a option argument must be enclosed in double quotes when the wildcard character (*) is used.)

```
./smprofile modify -H myhost -p mypasswd -u root -- -n "User Manager" \ 
   -d "Manage world" -a "solaris.admin.usermgr.*" -p All
```

ENVIRONMENT VARIABLES
See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smprofile command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS
The following exit values are returned:

0   Successful completion.
1   Invalid command syntax. A usage message displays.
2   An error occurred while executing the command. An error message displays.

FILES
The following files are used by the smprofile command:

```
/etc/security/exec_attr   Execution profiles database. See exec_attr(4).
/etc/security/prof_attr   Profile description database. See prof_attr(4).
/etc/user_attr           Extended user attribute database. See user_attr(4).
```

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO
smc(1M), auth_attr(4), exec_attr(4), prof_attr(4), user_attr(4), attributes(5), environ(5)
**NAME**

smrole – manage roles and users in role accounts

**SYNOPSIS**

```
/usr/sadm/bin/smrole subcommand [ auth_args ] - - [subcommand_args]
```

**DESCRIPTION**

The smrole command manages roles and adds or deletes users in role accounts.

**subcommands**

smrole subcommands are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a new role entry. To add an entry, the administrator must have the <code>solaris.role.write</code> authorization.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes one or more roles. To delete an entry, the administrator must have the <code>solaris.role.write</code> authorization.</td>
</tr>
<tr>
<td>list</td>
<td>Lists one or more roles. If you do not specify a role name, all roles are listed. To list an entry, the administrator must have the <code>solaris.admin.usermgr.read</code> authorization.</td>
</tr>
<tr>
<td>modify</td>
<td>Adds or deletes users from a role account. To modify an entry, the administrator must have the <code>solaris.role.write</code> authorization.</td>
</tr>
</tbody>
</table>

**OPTIONS**

The smrole authentication arguments, `auth_args`, are derived from the smc(1M) arg set and are the same regardless of which subcommand you use. The smrole command requires the Solaris Management Console to be initialized for the command to succeed (see smc(1M)). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, `subcommand_args`, must come after the `auth_args` and must be separated from them by the `−−` option.

**auth_args**

The valid `auth_args` are `-D`, `-H`, `-l`, `-p`, `-r`, and `-u`; they are all optional. If no `auth_args` are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either `-D` or `−−domain` with the `domain` argument.

- `-D` | `-−domain domain`
  Specifies the default domain that you want to manage. The syntax of `domain` is `type:/host_name/domain_name`, where `type` is nis, nisplus, dns, ldap, or file; `host_name` is the name of the machine that serves the domain; and `domain_name` is the name of the domain you want to manage. (Note: Do not use nis+ for nisplus.)

If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

- `-H` | `-−hostname host_name:port`
  Specifies the `host_name` and `port` to which you want to connect. If you do not specify a `port`, the system connects to the default port, 898. If you do not specify
host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

-l | -rolepassword role_password
   Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-p | -password password
   Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-r | -rolename role_name
   Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-u | -username user_name
   Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

- This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - − option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

- For subcommand add:
  
  -a adduser1 -a adduser2 ...
    (Optional) Specifies the user name(s) to add to the new role. The administrator must have the solaris.role.assign authorization.

  -c comment
    (Optional) Includes a short description of the role. Consists of a string of up to 256 printable characters, excluding the colon (:).

  -d dir
    (Optional) Specifies the home directory of the new role, limited to 1024 characters.

  -f full_name
    (Optional) Specifies the full, descriptive name of the role. The full_name must be unique within a domain, and can contain alphanumeric characters and spaces. If you use spaces, you must enclose the full_name in double quotes.
smrole(1M)

-\(G\) group1 -\(G\) group2 . . .
(Optional) Specifies the new role’s supplementary group membership in the system group database with the character string names of one or more existing groups. \textit{Note:} You cannot assign a primary group to a role. A role’s primary group is always \texttt{sysadmin} (group 14).

\(-h\)
(Optional) Displays the command’s usage statement.

\(-n\) rolename
Specifies the name of the role you want to create.

\(-p\) addprof1 -\(p\) addprof2 . . .
(Optional) Specifies the profile(s) to add to the role. To assign a profile to a role, the administrator must have the \texttt{solaris.profmgr.assign} or \texttt{solaris.profmgr.delegate} authorization.

\(-P\) password
(Optional) Specifies the role’s password. The \textit{password} can contain up to eight characters. If you do not specify a password, the system prompts you for one. To set the password, the administrator must have the \texttt{solaris.admin.usermgr.pswd} authorization. \textit{Note:} When you specify a password using the \(-P\) option, you type the password in plain text. Specifying a password using this method introduces a security gap while the command is running. However, if you do not specify a password (and the system prompts you for one), the echo is turned off when you type in the password.

\(-s\) shell
(Optional) Specifies the full pathname of the program used as the role’s shell on login. Valid entries are \texttt{/bin/pfcs}h (C shell), \texttt{/bin/pfk}sh (Korn shell), and \texttt{/bin/pfsh} (Bourne shell), the default.

\(-u\) uid
(Optional) Specifies the ID of the role you want to add. If you do not specify this option, the system assigns the next available unique ID greater than 100.

\(-x\) autohome=Y|N
(Optional) Sets the role’s home directory. The home directory path in the password entry is set to \texttt{/home/\textit{login name}}.

\(-x\) perm=home_perm
(Optional) Sets the permissions on the role’s home directory. \textit{perm} is interpreted as an octal number, and the default is 0775.

\(-x\) serv=homedir_server
(Optional) If \(-D\) is \texttt{nis}, \texttt{nisplus}, or \texttt{ldap}, use this option to specify the name of the server where the user’s home directory resides. Users created in a local scope must have their home directory server created on their local machines.

For subcommand delete:

\(-h\)
(Optional) Displays the command’s usage statement.
-n role1 -n role2...
   Specifies the name of the role(s) you want to delete.

- For subcommand list:

  -h  (Optional) Displays the command’s usage statement.

  -l  (Optional) Displays the output for each user in a block of key:value pairs (for example, user name:root), followed by a blank line that delimits each user block. Each key:value pair is displayed on a separate line. The keys are: autohome setup, comment, home directory, login shell, primary group, secondary groups, server, user ID (UID), and user name.

  -n role1 -n role2...
   (Optional) Specifies the role(s) that you want to list. If you do not specify a role name, all roles are listed.

- For subcommand modify:

  -a adduser1 -a adduser2...
   (Optional) Specifies the user name(s) to add to the new role. The administrator must have the solaris.role.assign authorization, or must have the solaris.role.delegate authorization and be a member of the role being modified.

  -c comment
   (Optional) Includes a short description of the role. Consists of a string of up to 256 printable characters, excluding the colon (:).

  -d dir
   (Optional) Specifies the home directory of the new role, limited to 1024 characters.

  -F full_name
   (Optional) Specifies the full, descriptive name of the role. The full_name must be unique within a domain, and can contain alphanumeric characters and spaces. If you use spaces, you must enclose the full_name in double quotes.

  -G group1 -G group2...
   (Optional) Specifies the new role’s secondary group membership in the system group database with the character string names of one or more existing groups. Note: You cannot assign a primary group to a role. A role’s primary group is always sysadmin (group 14).

  -h  (Optional) Displays the command’s usage statement.

  -n role
   Specifies the name of the role you want to modify.

  -N new_role
   (Optional) Specifies the new name of the role.
-p addprof1 -p addprof2 ...
(Optional) Specifies the profile(s) to add to the role. To assign a profile to a role, the administrator must have the solaris.profmgr.assign or solaris.profmgr.delegate authorization.

-P password
(Optional) Specifies the role's password. The password can contain up to eight characters. To set the password, the administrator must have the solaris.admin.usermgr.pswd authorization. Note: When you specify a password, you type the password in plain text. Specifying a password using this method introduces a security gap while the command is running.

-q delprof1 -q delprof2 ...
(Optional) Specifies the profile(s) to delete from the role.

-x deluser1 -x deluser2 ...
(Optional) Specifies the user name(s) to delete from the role.

-s shell
(Optional) Specifies the full pathname of the program used as the role's shell on login. Valid entries are /bin/pfcs (C shell), /bin/pfksh (Korn shell), and /bin/pfsh (Bourne shell), the default.

-x autohome=Y | N
(Optional) Sets the role's home directory. The home directory path in the password entry is set to /home/login_name.

-x perm=home_perm
(Optional) Sets the permissions on the role's home directory. perm is interpreted as an octal number, and the default is 0775.

EXAMPLES

EXAMPLE 1 Creating a role account
The following creates the role1 account with a full name of Engineering Admin and a password of abc123 on the local file system, and assigns user1 and user2 to the role. This role has Name Service Security and Audit Review rights. The system assigns the next available unique UID greater than 100.

./smrole add -H myhost -p mypasswd -u root -- -n role1 -F "Engineering Admin" -P abc123 -a user1 -a user2 -p "Name Service Security" -p "Audit Review"

EXAMPLE 2 Deleting role accounts
The following deletes the role1 and role2 accounts from the local file system.

./smrole delete -H myhost -p mypasswd -u root -- -n role1 -n role2

EXAMPLE 3 Listing role accounts
The following lists all role accounts on the local file system in summary form.

./smrole list -H myhost -p mypasswd -u root --
EXAMPLE 4 Modifying a role account

The following modifies the role1 account so the role defaults to the Korn shell, includes the user3 account, and does not include the user2 account.

```
./smrole modify -H myhost -p mypasswd -u root -- -n role1 \
   -s /bin/pfksh -a user3 -r user2
```

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smrole command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

- 0  Successful completion.
- 1  Invalid command syntax. A usage message displays.
- 2  An error occurred while executing the command. An error message displays.

FILES

The following files are used by the smrole command:

- /etc/aliases  Mail aliases. See aliases(4).
- /etc/auto_home  Automatic mount points. See automount(1M).
- /etc/group  Group file. See group(4).
- /etc/passwd  Password file. See passwd(4).
- /etc/security/policy.conf  Configuration file for security policy. See policy.conf(4).
- /etc/shadow  Shadow password file. See shadow(4).
- /etc/user_attr  Extended user attribute database. See user_attr(4).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO

automount(1M), smc(1M), aliases(4), group(4), passwd(4), policy.conf(4), shadow(4), user_attr(4), attributes(5), environ(5)
The `smrsh` program is intended as a replacement for the `sh` command in the program in `sendmail(1M)` configuration files. The `smrsh` program sharply limits commands that can be run using the `|program` syntax of `sendmail`. This improves overall system security. `smrsh` limits the set of programs that a programmer can execute, even if `sendmail` runs a program without going through an alias or forward file.

Briefly, `smrsh` limits programs to be in the directory `/var/adm/sm.bin`, allowing system administrators to choose the set of acceptable commands. It also rejects any commands with the characters: `,`, `<`, `>`, `|`, `;`, `$`, `\r` (RETURN), or `\n` (NEWLINE) on the command line to prevent end run attacks.

Initial pathnames on programs are stripped, so forwarding to `/usr/ucb/vacation`, `/usr/bin/vacation`, `/home/server/mydir/bin/vacation`, and `vacation` all actually forward to `/var/adm/sm.bin/vacation`.

System administrators should be conservative about populating `/var/adm/sm.bin`. Reasonable additions are utilities such as `vacation(1)` and `procmail`. Never include any shell or shell-like program (for example, `perl`) in the `sm.bin` directory. This does not restrict the use of shell or perl scripts in the `sm.bin` directory (using the `#!` syntax); it simply disallows the execution of arbitrary programs.

The following options are supported:

- `-c command`
  Where `command` is a valid command, executes `command`.

`smrsh` directory for restricted programs

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr, SUNWcsu</td>
</tr>
</tbody>
</table>

`sendmail(1M), attributes(5)`
The `smserialport` command manages serial ports.

The following `smserialport` sub-commands (subcommand) are supported:

- **configure**
  Configures a serial port’s basic settings for a device such as a terminal, modem or no connection.

- **delete**
  Deletes a given port. You can disable a port and prevent new services from being spawned for incoming connections, without interfering with existing services.

- **list**
  Lists all serial ports.

- **modify**
  Modifies a serial port’s parameters.

There are two kinds of options: authentication arguments (args) and sub-command arguments (subcommand_args).

### Authentication Arguments

The `smserialport` authentication arguments, args, are derived from the `smc(1M)` argument set and are the same regardless of which sub-command you use.

Valid `args` are `-D`, `-H`, `-l`, `-p`, `-r`, and `-u`; they are all optional. If no `args` are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes.

The single letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either `-D` or `--domain`.

Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

The following authentication arguments (args) are supported:

- **-D** | `--domain domain`
  Specifies the default domain that you want to manage. `smserialport` accepts only the `file` value for this option. `file` is also the default value.

  The `file` default domain means that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the `domain` for all other tools.

- **-H** | `--hostname host_name:port`
  Specifies the host and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify a host (host_name:port), the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the `smc -B` option, or set your console preferences to load a home toolbox by default.
-l | --rolepassword role_password
   Specifies the password for the role_name. If you specify a role_name but do not
   specify a role_password, the system prompts you to supply a role_password.
   Passwords specified on the command line can be seen by any user on the system,
   hence this option is considered insecure.

-p | --password password
   Specifies the password for the user_name. If you do not specify a password, the
   system prompts you for one. Because passwords specified on the command line can
   be seen by any user on the system, this option is considered insecure.

-r | --rolename role_name
   Specifies a role name for authentication. If you do not specify this option, no role is
   assumed.

-u | --username user_name
   Specifies the user name for authentication. If you do not specify this option, the
   user identity running the console process is assumed.

--
   This option is required and must always follow the preceding options. If you do not
   enter the preceding options, you must still enter the -- option.

The sub-command specific options, subcommand_args, must come after the args and
must be separated from them by the -- option. Enclose descriptions and arg options
that contain white space in double quotes.

configure
   The configure sub-command requires the following
   sub-command argument:

   -n port_name
      Specifies the name of the serial port to reconfigure.

   The following sub-command arguments are optional for the
   configure sub-command:

   -b baudrate
      Specifies the port baud rate. The supported baud rate are
      38400, 19200, 9600, 4800, 2400, 1200, 300 and auto. The
default is 9600.

   -c comment
      Specifies a short comment description of the service. The
default is a description of the requested device type.

   -h
      Displays the command’s usage statement.

   -l login_prompt
      Specifies the login prompt. The default is tty ‘port_name’
      login:.
-t terminal_type
   Specifies the terminal type. The default is tvi925.

-x device=device_name
   Specifies the device to be configured. Valid device_names are:
   terminal, modemdiaлин, modemdiaлout, 
   modemdiaлинout or initializeonly for no connection. The
default is terminal.

-x service=y | n
   Specifies the status of service, that is y for enabled or n for
   disabled. The default is y.

delete
   The delete sub-command requires the following sub-command
   arguments:

   -n port_name
      Specifies the name of the serial port to be disabled.

   The following sub-command arguments are optional for the
   delete sub-command:

   -h
      Displays the command’s usage statement.

list
   The list sub-command does not require any sub-command
   arguments.

   The following sub-command arguments are optional for the list
   sub-command:

   -h
      Displays the command’s usage statement.

   -v
      Displays the data in verbose format.

modify
   The modify sub-command requires the following sub-command
   arguments:

   -n port_name
      Specifies the name of the serial port to modify.

   The following sub-command arguments are optional for the
   modify sub-command:

   -b baudrate
      Specifies the port baud rate. The supported baud rate are
      38400, 19200, 9600, 4800, 2400, 1200, 300 and auto.

   -c comment
      A short comment description of the service.
Displays the command usage statement.

Specifies the login prompt.

Specifies the terminal type.

Specifies the bi-directional port flag, y for set or n for not set. When this flag is set, the line can be used in both directions.

Specifies if to connect on carrier, that is y or n.

Specifies if the service invocation. If y the service is invoked only once. This can be used to configure a particular device without actually monitoring it, as with software carrier.

Specifies the full pathname of the service command to invoke when a connection request is received.

Specifies the status of service, that is y for enabled or n for disabled.

Specifies the carrier detection. y for software or n for hardware.

Specifies the time to close a port if the open on the port succeeds, and no input data is received in timeout seconds. The supported timeout are never, 30, 60 and 90.

The following example lists the serial ports:

```
example% ./smserialport list -H myhost -u root -p mypassword --
```

The following example contains two commands. The first command modifies serial port b for a baud rate of 4800, an xterm as terminal type, a b: for login prompt and a comment. The second command lists the ports.

```
example% ./smserialport modify -H myhost -u root -p mypassword -- \n  -n b -b 4800 -t xterm -l b: -c "modified port b"
```
EXAMPLE 2 Modifying Serial Ports (Continued)

```
example% ./smserialport list -H myhost -u root -p mypassword --
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
<th>Baud-Rate</th>
<th>Terminal-Type</th>
<th>Prompt</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>enabled</td>
<td>9600</td>
<td>xterm</td>
<td>as</td>
<td>welcome</td>
</tr>
<tr>
<td>b</td>
<td>enabled</td>
<td>4800</td>
<td>xterm</td>
<td>b:</td>
<td>modified port b</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Deleting a Serial Port

The following example contains two commands. The first command deletes serial port b. The second command lists the ports.

```
example% ./smserialport delete -H myhost -u root -p mypassword -- -n b
example% ./smserialport list -H myhost -u root -p mypassword --
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
<th>Baud-Rate</th>
<th>Terminal-Type</th>
<th>Prompt</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>enabled</td>
<td>9600</td>
<td>xterm</td>
<td>as</td>
<td>welcome</td>
</tr>
<tr>
<td>b</td>
<td>disabled</td>
<td>9600</td>
<td>tvi925</td>
<td>ttyb</td>
<td>login:</td>
</tr>
</tbody>
</table>

EXAMPLE 4 Configuring a Serial Port

The following example contains two commands. The first command configures serial port b for a bi-directional modem. The second command lists the ports.

```
example% ./smserialport configure -H myhost -u root -p mypassword -- -n b -x device=modemdialinout
example% ./smserialport list -H myhost -u root -p mypassword --
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
<th>Baud-Rate</th>
<th>Terminal-Type</th>
<th>Prompt</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>enabled</td>
<td>9600</td>
<td>xterm</td>
<td>as</td>
<td>welcome</td>
</tr>
<tr>
<td>b</td>
<td>enabled</td>
<td>9600</td>
<td>tvi925</td>
<td>ttyb</td>
<td>login: Modem - Dial In and Out</td>
</tr>
</tbody>
</table>

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of smserialport: JAVA_HOME. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  Invalid command syntax. A usage message displays.
2  An error occurred while executing the command. An error message displays.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
smserialport(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmg'a</td>
</tr>
</tbody>
</table>

**SEE ALSO**

tip(1), pmadm(1M), sacadm(1M), smc(1M), ttyadm(1M), ttymon(1M), attributes(5), environ(5)
The `smuser` command manages one or more user entries in the local /etc filesystem or a NIS or NIS+ target name service.

**subcommands**  

*smuser subcommands* are:

**add**  

Adds a new user entry to the appropriate files. You can use a template and input file instead of supplying the additional command line options. If you use a template and command line options, the command line options take precedence and override any conflicting template values. To add an entry, the administrator must have the `solaris.admin.usermgr.write` authorization.

**delete**  

Deletes one or more user entries from the appropriate files. To delete an entry, the administrator must have the `solaris.admin.usermgr.write` authorization. *Note:* You cannot delete the system accounts with IDs less than 100, or 60001, 60002, or 65534.

**list**  

Lists one more user entries from the appropriate files. To list entries, the administrator must have the `solaris.admin.usermgr.read` authorization.

**modify**  

Modifies a user entry in the appropriate files. To modify an entry, the administrator must have the `solaris.admin.usermgr.write` authorization.

**OPTIONS**  

The `smuser` authentication arguments, *auth_args*, are derived from the `smc(1M)` argument set and are the same regardless of which subcommand you use. The `smuser` command requires the Solaris Management Console to be initialized for the command to succeed (see `smc(1M)`). After rebooting the Solaris Management Console server, the first Solaris Management Console connection might time out, so you might need to retry the command.

The subcommand-specific options, *subcommand_args*, must come after the *auth_args* and must be separated from them by the `- -` option.

*auth_args*  

The valid *auth_args* are `-D`, `-H`, `-l`, `-p`, `-r`, and `-u`; they are all optional. If no *auth_args* are specified, certain defaults will be assumed and the user may be prompted for additional information, such as a password for authentication purposes. These letter options can also be specified by their equivalent option words preceded by a double dash. For example, you can use either `-D` or `-domain domain` with the *domain* argument.

- `-D`  

Specifies the default domain that you want to manage. The syntax of *domain* is `type:/host_name/domain_name`, where *type* is `nis`, `nisplus`, `dns`, `ldap`, or `file`; *host_name* is the name of the machine that serves the domain; and *domain_name* is the name of the domain you want to manage. *Note:* Do not use `nis+` for `nisplus`.
If you do not specify this option, the Solaris Management Console assumes the file default domain on whatever server you choose to manage, meaning that changes are local to the server. Toolboxes can change the domain on a tool-by-tool basis; this option specifies the domain for all other tools.

-H | -hostname host_name:port
Specifies the host_name and port to which you want to connect. If you do not specify a port, the system connects to the default port, 898. If you do not specify host_name:port, the Solaris Management Console connects to the local host on port 898. You may still have to choose a toolbox to load into the console. To override this behavior, use the smc(1M) -B option, or set your console preferences to load a “home toolbox” by default.

-l | -rolepassword role_password
Specifies the password for the role_name. If you specify a role_name but do not specify a role_password, the system prompts you to supply a role_password.
Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-p | -password password
Specifies the password for the user_name. If you do not specify a password, the system prompts you for one. Passwords specified on the command line can be seen by any user on the system, hence this option is considered insecure.

-r | -rolename role_name
Specifies a role name for authentication. If you do not specify this option, no role is assumed.

-u | -username user_name
Specifies the user name for authentication. If you do not specify this option, the user identity running the console process is assumed.

This option is required and must always follow the preceding options. If you do not enter the preceding options, you must still enter the - - option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double quotes.

For subcommand add:

- c comment
  (Optional) Includes a short description of the login, which is typically the user’s name. Consists of a string of up to 256 printable characters, excluding the colon (:).

- d dir
  (Optional) Specifies the home directory of the new user, limited to 1024 characters.

- e ddmmyyyy
  (Optional) Specifies the expiration date for a login. After this date, no user can access this login. This option is useful for creating temporary logins. Specify a
null value (""") to indicate that the login is always valid. The administrator must have the solaris.admin.usermgr.pswd authorization.

-\f inactive
(Optional) Specifies the maximum number of days allowed between uses of a login ID before that ID is declared invalid. Normal values are positive integers. Enter zero to indicate that the login account is always active.

-\f full_name
(Optional) Specifies the full, descriptive name of the user. The full_name must be unique within a domain and can contain alphanumeric characters and spaces. If you use spaces, you must enclose the full_name in double quotes.

-\g group
(Optional) Specifies the new user’s primary group membership in the system group database with an existing group’s integer ID.

-\G group1 -G group2 ... 
(Optional) Specifies the new user’s supplementary group membership in the system group database with the character string names of one or more existing groups. Duplicates of groups specified with the -\g and -\G options are ignored.

-\h
(Optional) Displays the command’s usage statement.

-\n login
Specifies the new user’s login name. The login name must be unique within a domain, contain 2–32 alphanumeric characters, begin with a letter, and contain at least one lowercase letter.

-\P password
(Optional) Specifies up to an eight-character password assigned to the user account. Note: When you specify a password, you type the password in plain text. Specifying a password using this method introduces a security gap while the command is running. To set the password, the administrator must have the solaris.admin.usermgr.pswd authorization.

-\s shell
(Optional) Specifies the full pathname (limited to 1024 characters) of the program used as the user’s shell on login. Valid entries are a user-defined shell, /bin/csh (C shell), bin/ksh (Korn shell), and the default, /bin/sh (Bourne shell).

-\t template
(Optional) Specifies a template, created using the User Manager tool, that contains a set of pre-defined user attributes. You may have entered a name service server in the template. However, when a user is actually added with this template, if a name service is unavailable, the user’s local server will be used for both the Home Directory Server and Mail Server.
-u uid
  (Optional) Specifies the user ID of the user you want to add. If you do not
  specify this option, the system assigns the next available unique user ID greater
  than 100.

-x autohome=Y|N
  (Optional) Sets the home directory to automount if set to Y. The user’s home
directory path in the password entry is set to /home/login name.

-x mail=mail_server
  (Optional) Specifies the host name of the user’s mail server, and creates a mail
  file on the server. Users created in a local scope must have a mail server created
  on their local machines.

-x perm=home_perm
  (Optional) Sets the permissions on the user’s home directory. perm is interpreted
  as an octal number, and the default is 0775.

-x pwmax=days
  (Optional) Specifies the maximum number of days that the user’s password is
  valid. The administrator must have the solaris.admin.usermgr.pswd
  authorization.

-x pwmin=days
  (Optional) Specifies the minimum number of days between user password
  changes. The administrator must have the solaris.admin.usermgr.pswd
  authorization.

-x pwwarn=days
  (Optional) Specifies the number of days relative to pwmax that the user is
  warned about password expiration prior to the password expiring. The
  administrator must have the solaris.admin.usermgr.pswd authorization.

-x serv=homedir_server
  (Optional) Specifies the name of the server where the user’s home directory
  resides. Users created in a local scope must have their home directory server
  created on their local machines.

For subcommand delete:

- h
  (Optional) Displays the command’s usage statement.

- n login1
  Specifies the login name of the user you want to delete.

- n login2 ...
  (Optional) Specifies the additional login name(s) of the user(s) you want to
  delete.

For subcommand list:

- h
  (Optional) Displays the command’s usage statement.
-l
Displays the output for each user in a block of key:value pairs (for example, user name:root) followed by a blank line to delimit each user block. Each key:value pair is displayed on a separate line. The keys are: autohome setup, comment, days to warn, full name, home directory, home directory permissions, login shell, mail server, max days change, max days inactive, min days change, password expires, password type, primary group, rights, roles, secondary groups, server, user ID (UID), and user name.

-n login1
Specifies the login name of the user you want to list.

-n login2...
(Optional) Specifies the additional login name(s) of the user(s) you want to list.

For subcommand modify:

-a addrole1 -a addrole2...
(Optional) Specifies the role(s) to add to the user account. To assign a role to a user, the administrator must have the solaris.role.assign authorization or must have the solaris.role.delegate authorization and be a member of each of the roles specified.

-c comment
(Optional) Describes the changes you made to the user account. Consists of a string of up to 256 printable characters, excluding the colon (:).

-d description
(Optional) Specifies the user’s home directory, limited to 1024 characters.

-e ddmmyyyy
(Optional) Specifies the expiration date for a login in a format appropriate to the locale. After this date, no user can access this login. This option is useful for creating temporary logins. Specify a null value (""") to indicate that the login is always valid.

-f inactive
(Optional) Specifies the maximum number of days allowed between uses of a login ID before the ID is declared invalid. Normal values are positive integers. Specify zero to indicate that the login account is always active.

-F full_name
(Optional) Specifies the full, descriptive name of the user. The full_name must be unique within a domain and can contain alphanumeric characters and spaces. If you use spaces, you must enclose the full_name in double quotes.

-g group
(Optional) Specifies the new user’s primary group membership in the system group database with an existing group’s integer ID.
-G group1 -G group2 ...  
(Optional) Specifies the new user’s supplementary group membership in the  
system group database with the character string names of one or more existing  
groups. Duplicates of groups specified with the -g and -G options are ignored.

-h  
(Optional) Displays the command’s usage statement.

-n name  
Specifies the user’s current login name.

-N new_name  
(Optional) Specifies the user’s new login name. The login name must be unique  
within a domain, contain 2–32 alphanumeric characters, begin with a letter, and  
contain at least one lowercase letter.

-p addprof1 -p addprof2 ...  
(Optional) Specifies the profile(s) to add to the user account. To assign a profile  
to a user, the administrator must have the solaris.profmgr.assign or  
solaris.profmgr.delegate authorization.

-p password  
(Optional) Specifies up to an eight-character password assigned to the user  
account.

When you specify a password, you type the password in plain text. Specifying a  
password using this method introduces a security gap while the command is  
running.

-q delprof1 -q delprof2 ...  
(Optional) Specifies the profile(s) to delete from the user account.

-x delrole1 -x delrole2 ...  
(Optional) Specifies the role(s) to delete from the user account.

-s shell  
(Optional) Specifies the full pathname (limited to 1024 characters) of the  
program used as the user’s shell on login. Valid entries are a user-defined shell,  
/bin/csh (C shell), /bin/ksh (Korn shell), and the default, /bin/sh (Bourne  
shell).

-x autohome=Y|N  
(Optional) Sets up the home directory to automount if set to Y. The user’s home  
directory path in the password entry is set to /home/login name.

-x pwmax=days  
(Optional) Specifies the maximum number of days that the user’s password is  
valid.

-x pwmin=days  
(Optional) Specifies the minimum number of days between password changes.
-x pwwarn=days
(Optional) Specifies the number of days relative to pwmax that the user is warned about password expiration before the password expires.

EXAMPLE 1 Creating a new user account

The following creates a new user account on the local file system. The account name is user1, and the full name is Joe Smith. The comment field verifies that the account is for Joe Smith. The system will assign the next available user ID greater than 100 to this account. There is no password set for this account, so when Joe Smith logs in for the first time, he will be prompted to enter a password.

./smuser add -H myhost -p mypasswd -u root -- -n user1 -F "Joe Smith" \
   -n user1 -c "Joe’s account"

EXAMPLE 2 Deleting a user account

The following deletes the user1 account from the local file system:

./smuser delete -H myhost -p mypasswd -u root -- -n user1

EXAMPLE 3 Listing all user accounts

The following lists all user accounts on the local file system in summary form:

./smuser list -H myhost -p mypasswd -u root --

EXAMPLE 4 Modifying a user account

The following modifies the user1 account to default to a Korn shell, and assigns the account to the qa_group secondary group.

./smuser modify -H myhost -p mypasswd -u root -- -n user1 \
   -s /bin/ksh -G qa_group

ENVIRONMENT VARIABLES

See environ(5) for a description of the JAVA_HOME environment variable, which affects the execution of the smuser command. If this environment variable is not specified, the /usr/java location is used. See smc(1M).

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 Invalid command syntax. A usage message displays.
2 An error occurred while executing the command. An error message displays.

FILES

The following files are used by the smuser command:

/etc/aliases Mail aliases. See aliases(4).
/etc/auto_home Automatic mount points. See automount(1M).
ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmga</td>
</tr>
</tbody>
</table>

SEE ALSO
automount(1M), smc(1M), aliases(4), group(4), passwd(4), policy.conf(4), shadow(4), user_attr(4), attributes(5), environ(5)
snmpdx(1M)

NAME
snmpdx – Sun Solstice Enterprise Master Agent

SYNOPSIS
[-i filename] [-m GROUP -m SPLIT] [-o filename] [-p port]
[-r filename]

DESCRIPTION
The Master Agent, snmpdx, is the main component of Solstice Enterprise Agent technology. It runs as a daemon process and listens to User Datagram Protocol (UDP) port 161 for SNMP requests. The Master Agent also opens another port to receive SNMP trap notifications from various subagents. These traps are forwarded to various managers, as determined by the configuration file.

Upon invocation, snmpdx reads its various configuration files and takes appropriate actions by activating subagents, determining the subtree Object Identifier (OID) for various subagents, populating its own Management Information Bases (MIBs), and so forth. The Master Agent invokes subagents, registers subagents, sends requests to subagents, receives responses from subagents, and traps notifications from subagents.

The Master Agent is invoked from a start-up script at boot time only if contents of the resource configuration file /etc/snmp/conf/snmpdx.rsrc are non-trivial.

OPTIONS
The following options are supported:

-a filename Specify the full path of the access control file used by the Master Agent. The default access control file is /etc/snmp/conf/snmpdx.acl.

-c config-dir Specify the full path of the directory containing the Master Agent configuration files. The default directory is /etc/snmp/conf.

-d debug-level Debug. Levels from 0 to 4 are supported, giving various levels of debug information. The default is 0 which means no debug information is given.

-h Help. Print the command line usage.

-i filename Specify the full path of the enterprise-name OID map. This file contains the PID used by the Master Agent for recovery after a crash. It contains tuples of the UNIX process ID, port number, resource name, and agent name. The default file is /var/snmp/snmpdx.st.

-m GROUP | -m SPLIT Specify the mode to use for forwarding of SNMP requests.

GROUP Multiple variables can be included in each request from the Master Agent to the subagents. This results in, at most, one send-request per agent.
Each variable in the incoming request results in one send-request to each subagent.

The default is GROUP.

- `filename` Specify the full path of the file containing the tuple (enterprise-name, OID). For example, (Sun Microsystems, 1.3.1.6.1.4.32). The Master Agent uses this file as a base for look-up in the trap-filtering and forwarding process. The default file is `/etc/snmp/conf/enterprises.oid`.

- `port` Specify the port number. The default port number is 161.

- `filename` Specify the full path of the resource file to be used by the Master Agent. This file stores information about the subagents that the Master Agent invokes and manages. The default resource file is `/etc/snmp/conf/snmpdx.rsrc`.

- `y` Set a recovery indicator to invoke the recovery module. The recovery process discovers which subagents in the previous session are still active; those subagents not active are re-spawned by the Master Agent.

FILES

/etc/snmp/conf/enterprises.oid
Enterprise-name OID map

/etc/snmp/conf/snmpdx.acl
Access control file

/etc/snmp/conf/snmpdx.rsrc
Resource configuration file

/var/snmp/snmpdx.st
Master Agent status file

/var/snmp/mib/snmpdx.mib
Master Agent MIB file

EXIT STATUS

The following error values are returned:

0 Successful completion.

non-zero An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
**snmpdx(1M)**

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsasnm</td>
</tr>
</tbody>
</table>

SEE ALSO `snmpXdmid(1M), attributes(5)`
The `snmpXdmid` utility is a subagent in the Solstice Enterprise Agent Desktop Management Interface package. It maps the SNMP requests forwarded by the Master Agent (`snmpdx(1M)`) into one or more equivalent DMI requests. Further, it remaps the DMI response into SNMP response back to `snmpdx`. By default, `snmpXdmid` also forwards the DMI indications as SNMP traps to `snmpdx`. The feature is configurable and can be disabled by setting `TRAP_FORWARD_TO_MAGENT=0` in the `snmpXdmid` configuration file, `snmpXdmid.conf`.

This subagent runs as a daemon in the system. The subagent uses a set of .MAP files located in `/var/dmi/map` to map the SNMP Object Identifier (OID) into a corresponding DMI component. The map files are generated using the MIF-to-MIB utility, `miftomib`. They are read by `snmpXdmid` when a corresponding MIF file gets registered with the DMI Service Provider (`dmispd(1M)`).

The `snmpXdmid.conf` file is used for configuration information. Each entry in the file consists of a keyword followed by an equal sign (=), followed by a parameter string. The keyword must begin in the first position. A line beginning with a pound sign (#) is treated as a comment and the subsequent characters on that line are ignored. The keywords currently supported are:

- **WARNING_TIMESTAMP**: Indication subscription expiration, warning time.
- **EXPIRATION_TIMESTAMP**: Indication subscription expiration timestamp.
- **FAILURE_THRESHOLD**: DMISP retries before dropping indication due to comm errors.
- **TRAP_FORWARD_TO_MAGENT**: 0 Drop indication at the subagent level. non-zero Forward indications as SNMP traps to `snmpdx`.

By default, the configuration file `snmpXdmid.conf` is located in the `/etc/dmi/conf` directory. You can specify an alternative directory with the `-c` option.

The following options are supported:

- `-c config-dir` Specify the directory where `snmpXdmid.conf` file is located.
- `-d debug-level` Debug. Levels from 1 to 5 are supported, giving various levels of debug information.
- `-h` Help. Print the command line usage.
- `-s hostname` Specify the host on which `dmispd` is running.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadmi</td>
</tr>
</tbody>
</table>

SEE ALSO

dmispd(1M), snmpdx(1M), attributes(5)
snmpXwbemd(1M)

NAME
snmpXwbemd – SNMP Adapter Subagent for WBEM

SYNOPSIS
/usr/sadm/lib/wbem/snmpXwbemd [-d] [-h] [-p port]

DESCRIPTION
The snmpXwbemd daemon is a subagent in the Web-Based Enterprise Management (WBEM) services package.

This daemon maps the Simple Network Management Protocol (SNMP) requests forwarded by the Solstice Enterprise Agents (SEA) Master Agent snmpdx(1M) into one or more equivalent WBEM Common Information Model (CIM) properties and instances. Further, it remaps the response from the CIM Object Manager into a SNMP response, which it passes back to snmpdx(1M).

A mapping file contains the corresponding Object Identifier (OID), class name, property name, and Abstract Syntax Notation 1 (ASN.1) type for each object. You can also create your own mapping file.

OPTIONS
The following options are supported:

-\d Displays all debug information.
-\h Displays help by printing the correct command line usage.
-\p Specifies the port number to use.

OPERANDS
The following operand is supported:

port Specifies the port number you want to use.

EXAMPLES

EXAMPLE 1 An Example of a 050SUNWwbcou.map File

This mapping file that Sun Microsystems provides contains definitions of objects, in this format:

# #pragma ident "@(#)050SUNWwbcou.map 1.0 01/04/03 SMI"
# # Copyright (c) 2001 by Sun Microsystems, Inc.
# # All rights reserved.
# # *** Description of contents ***
# # First non-commented non-blank line contains required Version label.
# # Remaining non-commented non-blank lines are considered map entries
# # used as described below:
# # Column 1 - SNMP OID - Uniquely describes an SNMP variable
# Column 2 - CIM Class Name - CIM class associated with this variable
# Column 3 - CIM Property Name - CIM property that maps to SNMP OID variable
# Column 4 - ASN.1 type - SNMP datatype that dictates how data is mapped
to/from SNMP requests. Supported types are: SnmpString, SnmpOid,
# SnmpTimeticks, SnmpCounter, SnmpInt, SnmpGauge, SnmpIpAddress,
# SnmpOpaque)
# Column 5 and greater are ignored
#
EXAMPLE 1 An Example of a 050SUNWwbcou.map File (Continued)

Version 1.0

1.3.6.1.2.1.1.1.0 Solaris_ComputerSystem Description SnmpString
1.3.6.1.2.1.1.3.0 Solaris_OperatingSystem LastBootUpTime SnmpTimeticks
1.3.6.1.2.1.1.4.0 Solaris_ComputerSystem PrimaryOwnerContact SnmpString
1.3.6.1.2.1.1.5.0 Solaris_ComputerSystem Name SnmpString

1.3.6.1.2.1.25.1.5.0 Solaris_OperatingSystem NumberOfUsers SnmpGauge
1.3.6.1.2.1.25.1.6.0 Solaris_OperatingSystem NumberOfProcesses SnmpGauge
1.3.6.1.2.1.25.1.7.0 Solaris_OperatingSystem MaxNumberOfProcesses SnmpGauge
1.3.6.1.2.1.25.1.2.0 Solaris_OperatingSystem LocalDateTime SnmpString

Each definition of an object in this file contains an OID, its corresponding CIM class name, its corresponding CIM property name, and its corresponding ASN.1 type. Each of these elements is separated by a space character.

FILES /var/sadm/wbem/snmp/map/050SUNWwbcou.map
The SNMP Adapter Subagent for WBEM MIB–2 mapping file that Sun Microsystems provides contains SNMP Management Information Base (MIB) definitions for the CIM instrumentation that SNMP manages.

EXIT STATUS The following exit values are returned:
0 Successful completion.
1 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes.

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcou</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO snmpdx(1M), attributes(5)
snoop captures packets from the network and displays their contents. snoop uses both the network packet filter and streams buffer modules to provide efficient capture of packets from the network. Captured packets can be displayed as they are received, or saved to a file (which is RFC 1761–compliant) for later inspection.

snoop can display packets in a single-line summary form or in verbose multi-line forms. In summary form, only the data pertaining to the highest level protocol is displayed. For example, an NFS packet will have only NFS information displayed. The underlying RPC, UDP, IP, and ethernet frame information is suppressed but can be displayed if either of the verbose options are chosen.

In the absence of a name service, such as LDAP or NIS, snoop displays host names as numeric IP addresses.

snoop requires an interactive interface.

**OPTIONS**

- `C` List the code generated from the filter expression for either the kernel packet filter, or snoop’s own filter.
- `D` Display number of packets dropped during capture on the summary line.
- `N` Create an IP address-to-name file from a capture file. This must be set together with the `-i` option that names a capture file. The address-to-name file has the same name as the capture file with `.names` appended. This file records the IP address to hostname mapping at the capture site and increases the portability of the capture file. Generate a `.names` file if the capture file is to be analyzed elsewhere. Packets are not displayed when this flag is used.
- `P` Capture packets in non-promiscuous mode. Only broadcast, multicast, or packets addressed to the host machine will be seen.
- `S` Display size of the entire ethernet frame in bytes on the summary line.
- `V` Verbose summary mode. This is halfway between summary mode and verbose mode in degree of verbosity. Instead of displaying just the summary line for the highest level protocol in a packet, it displays a summary line for each protocol layer in the packet. For instance, for an NFS packet it will display a line each
for the ETHER, IP, UDP, RPC and NFS layers. Verbose
summary mode output may be easily piped through
grep to extract packets of interest. For example, to
view only RPC summary lines, enter the following:
exemple# snoop -i rpc.cap -V | grep RPC

-a
Listen to packets on /dev/audio (warning: can be
noisy).

-c maxcount
Quit after capturing maxcount packets. Otherwise keep
capturing until there is no disk left or until interrupted
with Control-C.

-d device
Receive packets from the network using the interface
specified by device, for example, le0 or hme0. The
program netstat(1M), when invoked with the -i
flag, lists all the interfaces that a machine has.
Normally, snoop will automatically choose the first
non-loopback interface it finds.

-i filename
Display packets previously captured in filename.
Without this option, snoop reads packets from the
network interface. If a filename.names file is present, it
is automatically loaded into the snoop IP
address-to-name mapping table (See -N flag).

-n filename
Use filename as an IP address-to-name mapping table.
This file must have the same format as the
/etc/hosts file (IP address followed by the
hostname).

-o filename
Save captured packets in filename as they are captured.
(This filename is referred to as the “capture file”.) The
format of the capture file is RFC 1761-compliant.
During packet capture, a count of the number of
packets saved in the file is displayed. If you wish just
to count packets without saving to a file, name the file
/dev/null.

-p first [,last ]
Select one or more packets to be displayed from a
capture file. The first packet in the file is packet number
1.

-q
When capturing network packets into a file, do not
display the packet count. This can improve packet
capturing performance.

-r
Do not resolve the IP address to the symbolic name.
This prevents snoop from generating network traffic
while capturing and displaying packets. However, if
the -n option is used, and an address is found in the mapping file, its corresponding name will be used.

-\textit{a snaplen}
Truncate each packet after \textit{snaplen} bytes. Usually the whole packet is captured. This option is useful if only certain packet header information is required. The packet truncation is done within the kernel giving better utilization of the streams packet buffer. This means less chance of dropped packets due to buffer overflow during periods of high traffic. It also saves disk space when capturing large traces to a capture file. To capture only IP headers (no options) use a \textit{snaplen} of 34. For UDP use 42, and for TCP use 54. You can capture RPC headers with a \textit{snaplen} of 80 bytes. NFS headers can be captured in 120 bytes.

-\textit{t [r | a | d]}
Time-stamp presentation. Time-stamps are accurate to within 4 microseconds. The default is for times to be presented in \textit{d} (delta) format (the time since receiving the previous packet). Option \textit{a} (absolute) gives wall-clock time. Option \textit{r} (relative) gives time relative to the first packet displayed. This can be used with the -p option to display time relative to any selected packet.

-\textit{v}
Verbose mode. Print packet headers in lots of detail. This display consumes many lines per packet and should be used only on selected packets.

-\textit{x offset [ , length]}
Display packet data in hexadecimal and ASCII format. The \textit{offset} and \textit{length} values select a portion of the packet to be displayed. To display the whole packet, use an \textit{offset} of 0. If a \textit{length} value is not provided, the rest of the packet is displayed.

\textbf{OPERANDS}
\textit{expression}
Select packets either from the network or from a capture file. Only packets for which the expression is true will be selected. If no expression is provided it is assumed to be true.

Given a filter expression, \texttt{snoo\textasciitilde} generates code for either the kernel packet filter or for its own internal filter. If capturing packets with the network interface, code for the kernel packet filter is generated. This filter is implemented as a streams module, upstream of the buffer module. The buffer module accumulates packets until it becomes full and passes the packets on to \texttt{snoo\textasciitilde}. The kernel packet filter is very efficient, since it rejects unwanted packets in the kernel before they reach the packet buffer or \texttt{snoo\textasciitilde}. The kernel packet filter has some limitations in its implementation; it is possible to construct filter expressions that it cannot handle. In this event, \texttt{snoo\textasciitilde} tries to split the filter and do as much filtering in the kernel as
possible. The remaining filtering is done by the packet filter for snoop. The -c flag can be used to view generated code for either the packet filter for the kernel or the packet filter for snoop. If packets are read from a capture file using the -i option, only the packet filter for snoop is used.

A filter expression consists of a series of one or more boolean primitives that may be combined with boolean operators (AND, OR, and NOT). Normal precedence rules for boolean operators apply. Order of evaluation of these operators may be controlled with parentheses. Since parentheses and other filter expression characters are known to the shell, it is often necessary to enclose the filter expression in quotes. Refer to Example 2 for information about setting up more efficient filters.

The primitives are:

**host hostname**

True if the source or destination address is that of hostname. The hostname argument may be a literal address. The keyword host may be omitted if the name does not conflict with the name of another expression primitive. For example, "pinky" selects packets transmitted to or received from the host pinky, whereas "pinky and dinky" selects packets exchanged between hosts pinky AND dinky.

The type of address used depends on the primitive which precedes the host primitive. The possible qualifiers are "inet", "inet6", "ether", or none. These three primitives are discussed below. Having none of the primitives present is equivalent to “inet host hostname or inet6 host hostname”. In other words, snoop tries to filter on all IP addresses associated with hostname.

**inet or inet6**

A qualifier that modifies the host primitive that follows. If it is inet, then snoop tries to filter on all IPv4 addresses returned from a name lookup. If it is inet6, snoop tries to filter on all IPv6 addresses returned from a name lookup.

**ipaddr, atalkaddr, or etheraddr**

Literal addresses, IP dotted, AppleTalk dotted, and ethernet colon are recognized. For example,

- "129.144.40.13" matches all packets with that IP;
- "2::9255:a00:20ff:fe73:6e35" matches all packets with that IPv6 address as source or destination;
- "65281.13" matches all packets with that AppleTalk address;
- "8:0:20:f:b1:51" matches all packets with the ethernet address as source or destination.

An ethernet address beginning with a letter is interpreted as a hostname. To avoid this, prepend a zero when specifying the address. For example, if the ethernet address is "aa:0:45:23:52:44", then specify it by add a leading zero to make it "0aa:0:45:23:52:44".
from or src
A qualifier that modifies the following host, net, ipaddr, atalkaddr, etheraddr,
port or rpc primitive to match just the source address, port, or RPC reply.

to or dst
A qualifier that modifies the following host, net, ipaddr, atalkaddr, etheraddr,
port or rpc primitive to match just the destination address, port, or RPC call.

ether
A qualifier that modifies the following host primitive to resolve a name to an
ethernet address. Normally, IP address matching is performed.

ethertype number
True if the ethernet type field has value number. Equivalent to "ether[12:2] =
number".

ip, ip6, arp, rarp, pppoed, pppoas
True if the packet is of the appropriate ethertype.

pppoed
True if the ethertype of the packet is either pppoed or pppoas.

broadcast
True if the packet is a broadcast packet. Equivalent to "ether[2:4] =
0xffffffff".

multicast
True if the packet is a multicast packet. Equivalent to "ether[0] & 1 = 1".

bootp, dhcp
True if the packet is an unfragmented UDP packet with either a source port of
BOOTPS (67) and a destination port of BOOTPC (68), or a source port of
BOOTPC (68) and a destination of BOOTPS (67).

apple
True if the packet is an Apple Ethertalk packet. Equivalent to "ethertype
0x809b or ethertype 0x80f3".

decnet
True if the packet is a DECNET packet.

greater length
True if the packet is longer than length.

less length
True if the packet is shorter than length.

udp, tcp, icmp, icmp6, ah, esp
True if the IP or IPv6 protocol is of the appropriate type.

net net
True if either the IP source or destination address has a network number of net.
The from or to qualifier may be used to select packets for which the network
number occurs only in the source or destination address.
port port
True if either the source or destination port is port. The port may be either a port number or name from /etc/services. The tcp or udp primitives may be used to select TCP or UDP ports only. The from or to qualifier may be used to select packets for which the port occurs only as the source or destination.

rpc prog [, vers [, proc ]]
True if the packet is an RPC call or reply packet for the protocol identified by prog. The prog may be either the name of an RPC protocol from /etc/rpc or a program number. The vers and proc may be used to further qualify the program version and procedure number, for example, "rpc nfs, 2, 0" selects all calls and replies for the NFS null procedure. The to or from qualifier may be used to select either call or reply packets only.

ldap
True if the packet is an LDAP packet on port 389.

gateway host
True if the packet used host as a gateway, that is, the ethernet source or destination address was for host but not the IP address. Equivalent to "ether host host and not host host".

nofrag
True if the packet is unfragmented or is the first in a series of IP fragments. Equivalent to "ip[6:2] & 0x1fff = 0".

expr relop expr
True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr is an arithmetic expression composed of numbers, packet field selectors, the length primitive, and arithmetic operators +, −, *, &, |, ^, and %. The arithmetic operators within expr are evaluated before the relational operator and normal precedence rules apply between the arithmetic operators, such as multiplication before addition. Parentheses may be used to control the order of evaluation. To use the value of a field in the packet use the following syntax:

base[expr [: size ]]

where expr evaluates the value of an offset into the packet from a base offset which may be ether, ip, ip6, udp, tcp, or icmp. The size value specifies the size of the field. If not given, 1 is assumed. Other legal values are 2 and 4. For example,

ether[0] & 1 = 1

is equivalent to multicast

ether[2:4] = 0xffffffff

is equivalent to broadcast.

ip(ip[0] & 0xf * 4 : 2) = 2049

is equivalent to udp[0:2] = 2049
ip[0] & 0xf > 5

selects IP packets with options.

ip[6:2] & 0xff = 0

eliminates IP fragments.

udp and ip[6:2]&0xff = 0 and udp[6:2] != 0

finds all packets with UDP checksums.

The length primitive may be used to obtain the length of the packet. For instance "length > 60" is equivalent to "greater 60", and "ether[length – 1]" obtains the value of the last byte in a packet.

and

Perform a logical AND operation between two boolean values. The AND operation is implied by the juxtaposition of two boolean expressions, for example "dinky pinky" is the same as "dinky AND pinky".

or

Perform a logical OR operation between two boolean values. A comma may be used instead, for example, "dinky,pinky" is the same as "dinky OR pinky".

not

Perform a logical NOT operation on the following boolean value. This operator is evaluated before AND or OR.

slp

True if the packet is an SLP packet.

sctp

True if the packet is a SCTP packet.

EXAMPLES

EXAMPLE 1 Using the snoop Command

Capture all packets and display them as they are received:

eexample# snoop

capture packets with host funky as either the source or destination and display them as they are received:

eexample# snoop funky

capture packets between funky and pinky and save them to a file. Then inspect the packets using times (in seconds) relative to the first captured packet:

eexample# snoop -o cap funky pinky
eexample# snoop -i cap -t r | more

To look at selected packets in another capture file:

eexample# snoop -i pkts -p 99,108

99 0.0027 boutique -> sunroof  NFS C GETATTR FH=8E6
EXAMPLE 1 Using the snoop Command (Continued)

100 0.0046 sunroof -> boutique NFS R GETATTR OK
101 0.0080 boutique -> sunroof NFS C RENAME FH=8E6C MTra00192 to .nfs08
102 0.0102 marmot -> viper NFS C LOOKUP FH=561E screen.r.13.i386
103 0.0072 viper -> marmot NFS R LOOKUP No such file or directory
104 0.0085 bugbomb -> sunroof RLOGIN C PORT=1023 h
105 0.0005 kandinsky -> sparky RSTAT C Get Statistics
106 0.0004 beeblebrox -> sunroof NFS C GETATTR FH=0307
107 0.0021 sparky -> kandinsky RSTAT R
108 0.0073 office -> jeremiah NFS C READ FH=2584 at 40960 for 8192

To look at packet 101 in more detail:

eexample# snoop -i pkts -v -p101
ether: ----- Ether Header ----- 
ether: Packet 101 arrived at 16:09:53.59
ether: Packet size = 210 bytes
ether: Destination = 8:0:20:1:3d:94, Sun
ether: Source = 8:0:69:1:5f:e, Silicon Graphics
ether: Ethertype = 0800 (IP)
ether: 
ip: ----- IP Header ----- 
ip: Version = 4, header length = 20 bytes
ip: Type of service = 00
ip: ...0. .... = routine
ip: ........ = normal delay
ip: .... 0... = normal throughput
ip: .... .0.. = normal reliability
ip: Total length = 196 bytes
ip: Identification 19846
ip: Flags = 0x
ip: ....0. ... = may fragment
ip: ......0. .... = more fragments
ip: Fragment offset = 0 bytes
ip: Time to live = 255 seconds/hops
ip: Protocol = 17 (UDP)
ip: Header checksum = 18DC
ip: Source address = 129.144.40.222, boutique
ip: Destination address = 129.144.40.200, sunroof
ip: 
udp: ----- UDP Header ----- 
udp: Source port = 1023
udp: Destination port = 2049 (Sun RPC)
udp: Length = 176
udp: Checksum = 0
udp: 
rpc: ----- SUN RPC Header ----- 
rpc: Transaction id = 665905
rpc: Type = 0 (Call)
rpc: RPC version = 2
rpc: Program = 100003 (NFS), version = 2, procedure = 1
rpc: Credentials: Flavor = 1 (Unix), len = 32 bytes
EXAMPLE 1 Using the snoop Command (Continued)

RPC: Time = 06-Mar-90 07:26:58
RPC: Hostname = boutique
RPC: Uid = 0, Gid = 1
RPC: Groups = 1
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
NFS: ----- SUN NFS ----- 
NFS: Proc = 11 (Rename)
NFS: File handle = 000016430000000100080000305A1C47
NFS: 597A0000000B00002046314AFC45000
NFS: File name = MTra00192
NFS: File handle = 000016430000000100080000305A1C47
NFS: 597A0000000B00002046314AFC45000
NFS: File name = .nfs08
NFS:

To view just the NFS packets between sunroof and boutique:

example# snoop -i pkts rpc nfs and sunroof and boutique
1 0.0000 boutique -> sunroof NFS C GETATTR FH=8E6C
2 0.0046 sunroof -> boutique NFS R GETATTR OK
3 0.0080 boutique -> sunroof NFS C RENAME FH=8E6C MTra00192 to .nfs08

To save these packets to a new capture file:

example# snoop -i pkts -o pkts.nfs rpc nfs sunroof boutique

To view encapsulated packets, there will be an indicator of encapsulation:

example# snoop ip-in-ip
sunroof -> boutique ICMP Echo request (1 encap)

If -V is used on an encapsulated packet:

example# snoop -V ip-in-ip
sunroof -> boutique ETHER Type=0800 (IP), size = 118 bytes
sunroof -> boutique IP D=129.144.40.222 S=129.144.40.200 LEN=104, ID=27497
sunroof -> boutique IP D=10.1.1.1 S=10.1.1.1 LEN=84, ID=27497
sunroof -> boutique ICMP Echo request

EXAMPLE 2 Setting Up A More Efficient Filter

To set up a more efficient filter, the following filters should be used toward the end of the expression, so that the first part of the expression can be set up in the kernel:
greater, less, port, rpc, nofrag, and relop. The presence of OR makes it difficult to split the filtering when using these primitives that cannot be set in the kernel. Instead, use parentheses to enforce the primitives that should be OR’d.

To capture packets between funky and pinky of type tcp or udp on port 80:

example# snoop funky and pinky and port 80 and tcp or udp
EXAMPLE 2 Setting Up A More Efficient Filter  (Continued)

Since the primitive port cannot be handled by the kernel filter, and there is also an OR in the expression, a more efficient way to filter is to move the OR to the end of the expression and to use parentheses to enforce the OR between tcp and udp:

```
example# snoop funky and pinky and (tcp or udp) and port 80
```

EXIT STATUS

0 Successful completion.
1 An error occurred.

FILES

/dev/audio Symbolic link to the system’s primary audio device.
/dev/null The null file.
/etc/hosts Host name database.
/etc/rpc RPC program number data base.
/etc/services Internet services and aliases.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

SEE ALSO

netstat(1M), hosts(4), rpc(4), services(4), attributes(5), audio(7I), bufmod(7M), dlpi(7P), le(7D), pfmod(7M), tun(7M)


WARNINGS

The processing overhead is much higher for realtime packet interpretation. Consequently, the packet drop count may be higher. For more reliable capture, output raw packets to a file using the -o option and analyze the packets off-line.

Unfiltered packet capture imposes a heavy processing load on the host computer, particularly if the captured packets are interpreted realtime. This processing load further increases if verbose options are used. Since heavy use of snoop may deny computing resources to other processes, it should not be used on production servers. Heavy use of snoop should be restricted to a dedicated computer.

snoop does not reassemble IP fragments. Interpretation of higher level protocol halts at the end of the first IP fragment.
snoop may generate extra packets as a side-effect of its use. For example it may use a network name service (NIS or NIS+) to convert IP addresses to host names for display. Capturing into a file for later display can be used to postpone the address-to-name mapping until after the capture session is complete. Capturing into an NFS-mounted file may also generate extra packets.

Setting the `snaplen (-s option)` to small values may remove header information that is needed to interpret higher level protocols. The exact cutoff value depends on the network and protocols being used. For NFS Version 2 traffic using UDP on 10 Mb/s ethernet, do not set `snaplen` less than 150 bytes. For NFS Version 3 traffic using TCP on 100 Mb/s ethernet, `snaplen` should be 250 bytes or more.

`snoop` requires information from an RPC request to fully interpret an RPC reply. If an RPC reply in a capture file or packet range does not have a request preceding it, then only the RPC reply header will be displayed.
soconfig – configure transport providers for use by sockets

/sbin/soconfig -f file
/sbin/soconfig family type protocol [path]

The soconfig utility configures the transport provider driver for use with sockets. It specifies how the family, type, and protocol parameters in the socket(3SOCKET) call are mapped to the name of a transport provider such as /dev/tcp. This utility can be used to add an additional mapping or remove a previous mapping.

The init(1M) utility uses soconfig with the sock2path(4) file during the booting sequence.

The following options are supported:

- `-f file` Set up the soconfig configuration for each driver according to the information stored in file. A soconfig file consists of lines of at least the first three fields listed below, separated by spaces:

  family type protocol path

  These fields are described in the OPERANDS section below.

  An example of file can be found in the EXAMPLES section below.

The following operands are supported:

family The protocol family as listed in the /usr/include/sys/socket.h file, expressed as an integer.

type The socket type as listed in the /usr/include/sys/socket.h file, expressed as an integer.

protocol The protocol number as specified in the family-specific include file, expressed as an integer. For example, for AF_INET this number is specified in /usr/include/netinet/in.h. An unspecified protocol number is denoted with the value zero.

path The string that specifies the path name of the device that corresponds to the transport provider. If this parameter is specified, the configuration will be added for the specified family, type, and protocol. If this parameter is not specified, the configuration will be removed.

The following example sets up /dev/tcp for family AF_INET and type SOCK_STREAM:

eample$ soconfig 2 2 0 /dev/tcp
EXAMPLE 1 Using soconfig  (Continued)

The following is a sample file used with the -f option. Comment lines begin with a number sign (#):

```
# Family Type Protocol Path
2  2   0   /dev/tcp
2  2   6   /dev/tcp
2  1   0   /dev/udp
2  1  17   /dev/udp
1  2   0   /dev/ticotsord
1  1   0   /dev/ticlts
2  4   0   /dev/rawip
```

FILES
/etc/sock2path file containing mappings from sockets to transport providers

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

```
ATTRIBUTE TYPE       ATTRIBUTE VALUE
Availability          SUNWcsr
```

SEE ALSO
init(1M), sock2path(4), attributes(5)

Network Interfaces Programmer’s Guide
soladdapp – add an application to the Solstice application registry

## SYNOPSIS

`/usr/snadm/bin/soladdapp [-r registry] [-n name] [-i icon] [-e executable] [args]`

## DESCRIPTION

`soladdapp` adds an application to the Solstice application registry. After it is added, the application is displayed in the Solstice Launcher main window (see `solstice(1M)`).

## OPTIONS

- `-r registry` Define the full path name of the Solstice registry file.
- `-n name` Define the name of the tool to be registered.
- `-i icon` Define the full path name of the tool icon.
- `-e executable` Define the full path name of the tool.
- `args` Specify any arguments to use with the tool.

When executed without options, `soladdapp` uses `/opt/SUNWadm/etc/.solstice_registry` (the default registry path).

## RETURN VALUES

- 0 on success
- 1 on failure
- 2 if the registry is locked
- 3 if the entry is a duplicate.

## EXAMPLES

**EXAMPLE 1** A sample display of the `soladdapp` command.

The following adds an application called Disk Manager to the Solstice application registry for display in the Solstice Launcher main window.

```bash
# soladdapp -r /opt/SUNWadm/etc/.solstice_registry -n "Disk Manager"
- i /opt/SUNWdsk/etc/diskmgr.xpm -e /opt/SUNWdsk/bin/diskmgr
```

## FILES

`/opt/SUNWadm/etc/.solstice_registry`

The default registry path.

## ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadml</td>
</tr>
</tbody>
</table>

## SEE ALSO

`soldelapp(1M), solstice(1M), attributes(5)`

## NOTES

Globally registered applications are used by local and remote users sharing the software in a particular `/opt` directory. They can be added only using `soladdapp`.

---

System Administration Commands 1735
soldelapp(1M)

NAME
soldelapp – remove an application from the Solstice application registry

SYNOPSIS
/usr/snadm/bin/soldelapp [-r registry] -n name

DESCRIPTION
soldelapp removes an application from the Solstice application registry. After removal, the application is no longer displayed in the Solstice Launcher main window (see solstice(1M)).

OPTIONS
- r registry Define the full path name of the Solstice registry file.
- n name Define the name of the tool to be removed.

When executed without options, soldelapp uses /opt/SUNWadm/etc/.solstice_registry (the default registry path).

RETURN VALUES
0 on success
1 on failure
2 if the registry is locked
3 if name is not found in the registry
4 if the named registry or default registry is not found

EXAMPLES
EXAMPLE 1 A sample display of the soldelapp command.
The following removes an application called Disk Manager from the Solstice application registry and the Solstice Launcher main window.

# soldelapp -r /opt/SUNWadm/etc/.solstice_registry -n "Disk Manager"

FILES
/opt/SUNWadm/etc/.solstice_registry
The default registry file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadml</td>
</tr>
</tbody>
</table>

SEE ALSO
soladdapp(1M), solstice(1M), attributes(5)

NOTES
Globally registered applications are used by local and remote users sharing the software in a particular /opt directory. They can be removed only using soldelapp.
solstice – access system administration tools with a graphical user interface

```
/bin/solstice
```

solstice used on a system presents the Solstice Launcher, a graphical user interface that provides access to the Solstice AdminSuite product family of system administration tools. The tools that appear in the launcher depend on what Solstice products you installed on your system.

Help is available by using the Help button.

**USAGE**
The Solstice Launcher allows you to do the following tasks:

- **Launch applications**
  - Use the Solstice Launcher to launch system administration tools.

- **Register applications**
  - Use the Solstice Launcher to add and register applications locally with the launcher.

- **Remove applications**
  - Use the Solstice Launcher to remove locally registered applications.

- **Customize application properties**
  - Use the Solstice Launcher to show, hide, or remove applications in the launcher, reorder the icons, change the launcher window width, modify applications properties, and add applications.

**FILES**

```
/$HOME/.solstice_registry
```

- Local registry information.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsadml</td>
</tr>
</tbody>
</table>

**SEE ALSO**
soladdapp(1M), soldelapp(1M), attributes(5)

**NOTES**
The Solstice Launcher adds or removes local applications that are private to the user (not local to the system) only. The properties of globally registered applications that are used by local and remote users sharing the software from a particular `opt` directory cannot be modified from the Solstice Launcher. To register global applications for use by local and remote users, use the soladdapp(1M) command. To remove globally registered applications, use the soldelapp(1M) command.
sppptun(1M)

NAME  | sppptun – PPP tunneling driver utility
SYNOPSIS | sppptun plumb
          | sppptun plumb protocol device
          | sppptun unplumb interface
          | sppptun query

DESCRIPTION | The sppptun utility is used to configure and query the Solaris PPP tunneling device
driver, /dev/sppptun. Currently, only PPP over Ethernet (PPPoE) is supported, so
the plumb and unplumb arguments are used to specify Ethernet interfaces that are to
be used for PPPoE, and the query option lists the plumbed interfaces.

The use of sppptun to add interfaces is similar to the use of ifconfig(1M) to add
interfaces to IP. The plumbing is done once for each interface, preferably at system
start-up time, and is not normally manipulated on a running system. If multiple
instances of PPP are run over a single interface, they share the plumbing to that
interface. Plumbing for each session is not required (and not possible for PPPoE).

The proper way to plumb interfaces for PPPoE is to list the interfaces, one per line, in
the /etc/ppp/pppoe.if file.

USAGE | sppptun plumb
When specified with no additional arguments, the plumb argument lists the
protocols that are supported by the utility. These are the strings that are used as the
protocol argument below.

sppptun plumb protocol device
This plumbs a new interface into the driver. The protocol parameter is pppoe for the
PPP-carrying "Session Stage" connection or pppoeed for the PPPoE "Discovery
Stage" connection. Both connections must be present for each Ethernet interface that
is to be used for PPPoE. The device parameter is the path name of the Ethernet
interface to use (use ifconfig(1M) to list available devices). If the path begins
with /dev/, then this portion may be omitted.

sppptun unplumb interface
This removes an existing interface from the driver and terminates any PPP sessions
that were using the interface. The interface parameter is the name of the interface as
reported when the interface was plumbed.

sppptun query
Displays the canonical names of all interfaces plumbed into the /dev/sppptun
device driver.

EXAMPLES  | EXAMPLE 1 Setting up to Use PPPoE on hme0
           | Plumb the hme0 interface.
EXAMPLE 1 Setting up to Use PPPoE on hme0 (Continued)

```bash
# sppptun plumb pppoed hme0
hme0:pppoed
# sppptun plumb pppoe hme0
hme0:pppoe

Remove the hme0 interface.

# sppptun unplumb hme0:pppoed
# sppptun unplumb hme0:pppoe
```

EXAMPLE 2 Script to Remove All Plumbed Interfaces

```bash
#!/bin/sh
for intf in `sppptun query`
do
    sppptun unplumb $intf
done
```

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- 1 One or more errors occurred.

FILES

- `/etc/ppp/pppoe.if` list of Ethernet interfaces to be plumbed at boot time
- `/usr/sbin/sppptun` executable command
- `/dev/sppptun` Solaris PPP tunneling device driver

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpppdt</td>
</tr>
</tbody>
</table>

SEE ALSO

- `pppd(1M), ppoec(1M), pppoed(1M), sppptun(7M)`
## NAME
spray – spray packets

## SYNOPSIS
```
/usr/sbin/spray [-c count] [-d delay] [-l length] [-t nettype] host
```

## DESCRIPTION
`spray` sends a one-way stream of packets to `host` using RPC, and reports how many were received, as well as the transfer rate. The `host` argument can be either a name or an Internet address.

`spray` is not useful as a networking benchmark, as it uses unreliable connectionless transports, UDP for example. `spray` can report a large number of packets dropped when the drops were caused by `spray` sending packets faster than they can be buffered locally, that is, before the packets get to the network medium.

## OPTIONS
- `-c count`  Specify how many packets to send. The default value of `count` is the number of packets required to make the total stream size 100000 bytes.
- `-d delay`  Specify how many microseconds to pause between sending each packet. The default is 0.
- `-l length`  The `length` parameter is the numbers of bytes in the Ethernet packet that holds the RPC call message. Since the data is encoded using XDR, and XDR only deals with 32 bit quantities, not all values of `length` are possible, and `spray` rounds up to the nearest possible value. When `length` is greater than 1514, then the RPC call can no longer be encapsulated in one Ethernet packet, so the `length` field no longer has a simple correspondence to Ethernet packet size. The default value of `length` is 86 bytes, the size of the RPC and UDP headers.
- `-t nettype`  Specify class of transports. Defaults to netpath. See `rpc(3NSL)` for a description of supported classes.

## ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

## SEE ALSO
`rpc(3NSL), attributes(5)`
ssaadm – administration program for SPARCstorage Array and SPARCstorage RSM disk systems

**SYNOPSIS**

`ssaadm [-v] [-e] subcommand [subcommand_option...] | pathname...

The ssaadm program is an administrative command that manages the SPARCstorage Array and SPARCstorage RSM disk systems (henceforth called SPARCstorage systems). ssaadm performs a variety of control and query tasks depending on the command line arguments and options used. The luxadm(1M) utility replaces ssaadm and should be used instead.

The command line must contain a subcommand (listed under USAGE) and at least one pathname. Commands specific to either a SPARCstorage Array or a SPARCstorage RSM state that fact. It may also contain options and other parameters depending on the subcommand. The subcommand is applied to each of the pathnames on the command line.

**DESCRIPTION**

**pathname** specifies the SPARCstorage system controller or a disk in the SPARCstorage system. The controller name is specified by its physical name, for example,

```
/devices/.../.../SUNW,soc@3,0/SUNW,
pln@axxxxxxx,xxxxxxxxx:ctlr
```

or by a name of the form

```
cN
```

where N is the logical controller number. ssaadm uses the cN name to find an entry in the /dev/rdsk directory of a disk that is attached to the SPARCstorage system controller. The /dev/rdsk entry is then used to determine the physical name of the SPARCstorage system controller. A disk in the SPARCstorage system is specified by its logical or physical device name, for example,

```
/dev/rdsk/c1t0d0s2
```

or

```
/devices/.../.../SUNW,soc@3,0/SUNW,
pln@axxxxxxx,xxxxxxxxx/ssd@0,0:c,raw
```

See disks(1M) for more information on logical names for disks and controllers.

The SPARCstorage Array is obsolete. Support for this device will be removed in a future version of Solaris.

**OPTIONS**

The following options are supported:

```
-e
```

Expert mode. This is required for the expert mode subcommands listed below.
verbose mode.

Subcommands and their options are described below. Expert mode subcommands are
listed separately.

OPERANDS

The following operands are supported:

pathname

The SPARCstorage system controller or a disk in the
SPARCstorage system.

display [-p] pathname ...

Display configuration information for the specified units or display performance
information for the specified SPARCstorage Array controller. If pathname specifies
the controller, the configuration information is displayed for all disks in the
SPARCstorage Array. For each drive that has fast write enabled, (FW) are displayed
after the drive identification.

-p

Display performance information for the specified SPARCstorage Array
controller. The accumulation of the performance statistics must be enabled using
the perf_statistics subcommand before displaying the performance
information. If not enabled, all of the I/Os per second are displayed as zeros.

The performance display reports the following information:

BUSY

How busy the controller in the SPARCstorage Array is, expressed as a
percentage.

IOPS

The total I/Os per second for the SPARCstorage Array.

entries for each disk

The total number of I/Os per second.

download -f filename pathname

download -w wwn pathname

Download an image to the SPARCstorage Array controller.

-f

Download the prom image specified by filename to the SPARCstorage Array
controller FEPROMs. When the download is complete, the SPARCstorage Array
must be reset in order to use the downloaded code. Note that the download
subcommand modifies the FEPROM on the SPARCstorage Array and should be
used with caution.

-w

Change the SPARCstorage Array controller’s World Wide Name. wwn is a 12
digit hex number, leading zeros required. The new SPARCstorage Array
controller’s image have the least significant 6 bytes of the 8-byte World Wide
Name modified to wwn.
fast_write [-s] -c pathname
fast_write [-s] -d pathname
fast_write [-s] -e pathname

Enable or disable the use of the NVRAM to enhance the performance of writes in the SPARCstorage Array. pathname may refer to the SPARCstorage Array controller or to an individual disk.

-c
Enable fast writes for synchronous writes only.

-d
Disable fast writes.

-e
Enable fast writes.

-s
Save the state that is currently being requested so it persists across power-cycles.

fc_s_download [-f fcode-file]
Download the fcode contained in the file fcode-file into all the FC/S Sbus Cards. This subcommand is interactive and expects user confirmation before downloading the fcode. When invoked without the [-f fcode-file] option, the current version of the fcode in each FC/S Sbus card is printed. Note that the fc_s_download subcommand should be used only in single-user mode; otherwise the FC/S card could be reset.

insert_device pathname
Guide user through hot insertion of a disk device.

This subcommand only applies to the RSM. See NOTES for hot plugging limitations.

perf_statistics -d pathname
perf_statistics -e pathname
Enable or disable the accumulation of performance statistics for the specified SPARCstorage Array controller. The accumulation of performance statistics must be enabled before using the display -p subcommand. This subcommand can be issued only to the SPARCstorage Array controller.

-d
Disable the accumulation of performance statistics.

-e
Enable the accumulation of performance statistics.

purge pathname
Purge any fast write data from NVRAM for one disk, or all disks if the controller is specified. This option should be used with caution, usually only when a drive has failed.
release path\name
Release a reservation held on the specified controllers or disks. When HA (High Availability) Software is running on a system, do not use this subcommand to release a disk on an SSA. Doing so could cause problems for the HA software.

remove_device path\name
Guide user through hot removal of a disk device.

This subcommand only applies to the RSM. See NOTES for hot plugging limitations.

replace_device path\name
Guide user through hot replacement of a disk device.

This subcommand only applies to the RSM. See NOTES for hot plugging limitations.

reserve path\name
Reserve the specified controllers or disks for exclusive use by the issuing host. When HA (High Availability) Software is running on a system, do not use this subcommand to reserve a disk on an SSA. Doing so could cause problems for the HA software.

set_boot_dev [-y] path\name
Set the boot-device variable in the PROM to the physical device name specified by path\name which can be a block special device or the pathname of the directory on which the boot file system is mounted. This subcommand normally runs interactively and requests confirmation for setting the default boot device in the PROM. The -y option can be used to run it in non-interactive mode, in which case no confirmation is requested or required.

start [-t tray-number] path\name
Spin up the specified disks. If path\name specifies the controller, this action applies to all disks in the SPARCstorage Array.

  -t
Spin up all disks in the tray specified by tray-number. path\name must specify the controller.

stop [-t tray-number] path\name
Spin down the specified disks. If path\name specifies the controller, this action applies to all disks in the SPARCstorage Array.

  -t
Spin down all disks in the tray specified by tray-number. path\name must specify the controller.

sync_cache path\name
Flush all outstanding writes for the specified disk from NVRAM to the media. If path\name specifies the controller, this action applies to all disks in the SPARCstorage Array.
The SPARCstorage RSM tray is addressed by using the logical or physical path of the SES device or specifying the controller followed by the tray number if that controller has multiple trays. The controller is addressed by `cN` or the physical path to the SPARCstorage Array’s controller.

See `ses(7D)` for more information about environmental sensor cards and associated devices.

These subcommands also work with RSM trays directly attached to wide differential SCSI controllers.

```
alarm pathname [controller tray-number]
   Display the current state of the audible alarm.

alarm_on pathname [controller tray-number]
alarm_off pathname [controller tray-number]
   Enable or disable the audible alarm for this enclosure.

alarm_set pathname [controller tray-number [seconds]]
   Set the audible alarm setting to seconds.

env_display pathname [controller tray-number]
   Display the environmental information for the specified unit.

led pathname
   Display the current state of the led for the specified disk.

led_on pathname
led_off pathname
   Turn on or off the led for this disk.

power_off pathname [controller tray-number]
   Power down this RSM. The RSM will need to be powered back on manually.

   This subcommand does not work with RSMs directly attached to wide differential SCSI controllers.
```

See `NOTES` for limitations of these subcommands. Only users that are knowledgeable about the systems they are managing should use the expert mode subcommands.

For the following subcommands that work on a bus if a disk is specified then the bus that disk attached to is used.

```
bus_getstate pathname
   Get and display the state of the specified bus.

bus_quiesce pathname
   Quiesce the specified bus.

bus_reset pathname
   Reset the specified bus.

bus_resetall pathname
   Reset the specified bus and all devices on that bus.

bus_unquiesce pathname
   Unquiesce the specified bus.
```
**ssaadm(1M)**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dev_getstate pathname</code></td>
<td>Get the state (online or offline) of the specified device.</td>
</tr>
<tr>
<td><code>dev_reset pathname</code></td>
<td>Reset the specified device.</td>
</tr>
<tr>
<td><code>offline pathname</code></td>
<td>Turn the specified disk offline.</td>
</tr>
<tr>
<td><code>online pathname</code></td>
<td>Turn the specified disk online.</td>
</tr>
</tbody>
</table>

**EXAMPLES**

**EXAMPLE 1** Using `ssaadm` to remove a disk on an SSA

An example of using the expert mode hot plugging subcommands to hot remove a disk on a SSA follows. See **NOTES** for hot plugging limitations.

The first step reserves the SCSI device so that it can’t be accessed via its second SCSI bus:

```
example# ssaadm reserve /dev/dsk/c1t8d0s2
```

The next two steps take the disk to be removed offline then quiesce the bus:

```
example# ssaadm -e offline /dev/dsk/c1t8d0s2
example# ssaadm -e bus_quiesce /dev/dsk/c1t8d0s2
```

The user then removes the disk and continues by unquiescing the bus, putting the disk back online, then releasing it:

```
example# ssaadm -e bus_unquiesce /dev/dsk/c1t8d0s2
example# ssaadm -e online /dev/dsk/c1t8d0s2
example# ssaadm release /dev/dsk/c1t8d0s2
```

**EXIT STATUS**

The following exit values are returned:

- 0: Successful completion.
- non-zero: An error occurred.

**ATTRIBUTES**

See **attributes(5)** for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWssaop</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`disks(1M), luxadm(1M), attributes(5), ses(7D)`

`SPARCstorage Array User's Guide`

**NOTES**

Currently, only some device drivers support hot plugging. If hot plugging is attempted on a disk or bus where it is not supported, an error message of the form:

```
ssaadm: can't acquire "PATHNAME": No such file or directory
```

---

1746  man pages section 1M: System Administration Commands • Last Revised 5 Jun 2003
is displayed.

Do not quiesce any bus containing a disk with the `root`, `usr`, or `swap` partitions to avoid possible system deadlock.
**NAME**

sshd – secure shell daemon

**SYNOPSIS**

```bash
sshd [-dq46] [-b bits] [-f config_file] [-g login_grace_time]
  [-h host_key_file] [-k key_gen_time] [-p port] [-u len]
  [-V client_protocol_id]
```

**DESCRIPTION**

The **sshd** (Secure Shell daemon) is the daemon program for **ssh**(1). Together these programs replace **rlogin** and **rsh**, and provide secure encrypted communications between two untrusted hosts over an insecure network. The programs are intended to be as easy to install and use as possible.

**sshd** is the daemon that listens for connections from clients. It forks a new daemon for each incoming connection. The forked daemons handle key exchange, encryption, authentication, command execution, and data exchange.

This implementation of **sshd** supports both SSH protocol versions 1 and 2 simultaneously. Because of security weaknesses in the v1 protocol, sites should run only v2, if possible. In the default configuration, only protocol v2 is enabled for the server. To enable v1 and v2 simultaneously, see the instructions in **sshd_config**(4).

Support for v1 is provided to help sites with existing **ssh** v1 clients and servers to transition to v2. v1 might not be supported in a future release.

**SSH Protocol Version 1**

Each host has a host-specific RSA key (normally 1024 bits) used to identify the host. Additionally, when the daemon starts, it generates a server RSA key (normally 768 bits). This key is normally regenerated every hour if it has been used, and is never stored on disk.

Whenever a client connects the daemon responds with its public host and server keys. The client compares the RSA host key against its own database to verify that it has not changed. The client then generates a 256-bit random number. It encrypts this random number using both the host key and the server key, and sends the encrypted number to the server. Both sides then use this random number as a session key which is used to encrypt all further communications in the session. The rest of the session is encrypted using a conventional cipher, currently Blowfish or 3DES, with 3DES being used by default. The client selects the encryption algorithm to use from those offered by the server.

Next, the server and the client enter an authentication dialog. The client tries to authenticate itself using `.rhosts` authentication, `.rhosts` authentication combined with RSA host authentication, RSA challenge-response authentication, or password-based authentication.

Rhosts authentication is normally disabled because it is fundamentally insecure, but can be enabled in the server configuration file if desired. System security is not improved unless **rshd**(1M), **rlogin**(1M), **rexec**(1M), and **rex**(1M) are disabled (thus completely disabling **rlogin**(1) and **rsh**(1) into the machine).
**SSH Protocol Version 2**

Version 2 works similarly to version 1: Each host has a host-specific DSA/RSA key. However, when the daemon starts, it does not generate a server key. Forward security is provided through a Diffie-Hellman key agreement. This key agreement results in a shared session key. The rest of the session is encrypted using a symmetric cipher, currently Blowfish, 3DES, or AES. The client selects the encryption algorithm to use from those offered by the server. Additionally, session integrity is provided through a cryptographic message authentication code (hmac-sha1 or hmac-md5).

Protocol version 2 provides a public key based user authentication method (PubKeyAuthentication) and conventional password authentication.

If the client successfully authenticates itself, a dialog for preparing the session is entered. At this time the client can request things like allocating a pseudo-tty, forwarding X11 connections, forwarding TCP/IP connections, or forwarding the authentication agent connection over the secure channel.

Finally, the client either requests a shell or execution of a command. The sides then enter session mode. In this mode, either side may send data at any time, and such data is forwarded to/from the shell or command on the server side, and the user terminal on the client side.

When the user program terminates and all forwarded X11 and other connections have been closed, the server sends command exit status to the client, and both sides exit.

**sshd** can be configured using command-line options or the configuration files `/etc/ssh/sshd_config` and `~/.ssh/config`, both described in `ssh_config(4)`. Command-line options override values specified in the configuration file.

**Host Access Control**

The `sshd` daemon uses TCP Wrappers to restrict access to hosts. It uses the service name of `sshd` for `hosts_access()`. For more information on TCP Wrappers see `tcpd(1M)` and `hosts_access(3)` man pages, which are part of the SUNWsfman package (they are not SunOS man pages). TCP wrappers binaries, including `libwrap`, are in SUNWtcpd, a required package for SUNWsshdu, the package containing `sshd`.

**OPTIONS**

The options for `sshd` are as follows:

- `-b bits`
  Specifies the number of bits in the server key (the default is 768).

- `-d`
  Debug mode. The server sends verbose debug output to the system log, and does not put itself in the background. The server also will not fork and will only process one connection. This option is only intended for debugging for the server. Multiple `-d` options increase the debugging level. Maximum is 3.

- `-f configuration_file`
  Specifies the name of the configuration file. The default is `/etc/ssh/sshd_config`. `sshd` refuses to start if there is no configuration file.
-g login_grace_time
   Gives the grace time for clients to authenticate themselves (the default is 300
   seconds). If the client fails to authenticate the user within this number of seconds,
   the server disconnects and exits. A value of zero indicates no limit.

-h host_key_file
   Specifies the file from which the host key is read (the default is
   /etc/ssh/ssh_host_key). This option must be given if sshd is not run as root
   (as the normal host file is normally not readable by anyone but root).

-i
   Specifies that sshd is being run from inetd. sshd is normally not run from inetd
   because it needs to generate the server key before it can respond to the client, and
   this may take tens of seconds. Clients would have to wait too long if the key was
   regenerated every time. However, with small key sizes (for example, 512) using
   sshd from inetd may be reasonable.

-k key_gen_time
   Specifies how often the server key is regenerated (the default is 3600 seconds, or
   one hour). The motivation for regenerating the key fairly often is that the key is not
   stored anywhere, and after about an hour, it becomes impossible to recover the key
   for decrypting intercepted communications even if the machine is cracked into or
   physically seized. A value of zero indicates that the key will never be regenerated.

-p port
   Specifies the port on which the server listens for connections (the default is 22).

-q
   Quiet mode. Nothing is sent to the system log. Normally the beginning,
   authentication, and termination of each connection is logged.

-u len
   Used to specify the size of the field in the utmp structure that holds the remote host
   name. If the resolved host name is longer than len, the dotted decimal value will be
   used instead. This allows hosts with very long host names that overflow this field
   to still be uniquely identified. Specifying -u0 indicates that only dotted decimal
   addresses should be put into the utmp file.

-4
   Forces sshd to use IPv4 addresses only.

-6
   Forces sshd to use IPv6 addresses only.

The $HOME/.ssh/authorized_keys file lists the public keys that are permitted for
RSA authentication. Each line of the file contains one key (empty lines and lines
starting with a hash mark [#] are ignored as comments). Each line consists of the
following fields, separated by spaces: options, bits, exponent, modulus, comment. The
options field is optional; its presence is determined by whether the line starts with a

number or not (the option field never starts with a number). The bits, exponent, modulus and comment fields give the RSA key; the comment field is not used for anything (but may be convenient for the user to identify the key).

Lines in this file are usually several hundred bytes long (because of the size of the RSA key modulus). You will find it very inconvenient to type them in; instead, copy the identity.pub file and edit it.

Permissions of this file must be set so that it is not world or group writable. See the StrickModes option of sshd_config(4).

The options (if present) consist of comma-separated option specifications. No spaces are permitted, except within double quotes. The following option specifications are supported:

*from=*"pattern-list"
  Specifies that in addition to RSA authentication, the canonical name of the remote host must be present in the comma-separated list of patterns (* and ? serve as wildcards). The list can also contain patterns negated by prefixing them with !; if the canonical host name matches a negated pattern, the key is not accepted. The purpose of this option is to optionally increase security: RSA authentication by itself does not trust the network or name servers or anything (but the key); however, if somebody somehow steals the key, the key permits an intruder to log in from anywhere in the world. This additional option makes using a stolen key more difficult (name servers and/or routers would have to be compromised in addition to just the key).

*command=*"command"
  Specifies that the command is executed whenever this key is used for authentication. The command supplied by the user (if any) is ignored. The command is run on a pty if the connection requests a pty; otherwise it is run without a tty. A quote can be included in the command by quoting it with a backslash. This option might be useful to restrict certain RSA keys to perform only a specific operation. An example might be a key that permits remote backups but nothing else. The client might specify TCP/IP and/or X11 forwarding unless they are explicitly prohibited.

*environment=*"NAME=value"
  Specifies that the string NAME=value is to be added to the environment when logging in using this key. Environment variables set this way override other default environment values. Multiple options of this type are permitted.

*no-port-forwarding*
  Forbids TCP/IP forwarding when this key is used for authentication. Any port forward requests by the client will return an error. This might be used, for example, in connection with the command option.

*no-X11-forwarding*
  Forbids X11 forwarding when this key is used for authentication. Any X11 forward requests by the client will return an error.
no-agent-forwarding
Forbids authentication agent forwarding when this key is used for authentication.

no-pty
Prevents tty allocation (a request to allocate a pty will fail).

The /etc/ssh/ssh_known_hosts and $HOME/.ssh/known_hosts files contain host public keys for all known hosts. The global file should be prepared by the administrator (optional), and the per-user file is maintained automatically: whenever the user connects from an unknown host its key is added to the per-user file.

Each line in these files contains the following fields: hostnames, bits, exponent, modulus, comment. The fields are separated by spaces.

Hostnames is a comma-separated list of patterns (\* and ? act as wildcards); each pattern in turn is matched against the canonical host name (when authenticating a client) or against the user-supplied name (when authenticating a server). A pattern can also be preceded by ! to indicate negation: if the host name matches a negated pattern, it is not accepted (by that line) even if it matched another pattern on the line.

Bits, exponent, and modulus are taken directly from the RSA host key; they can be obtained, for example, from /etc/ssh/ssh_host_rsa_key.pub. The optional comment field continues to the end of the line, and is not used.

Lines starting with a hash mark (#) and empty lines are ignored as comments.

When performing host authentication, authentication is accepted if any matching line has the proper key. It is thus permissible (but not recommended) to have several lines or different host keys for the same names. This will inevitably happen when short forms of host names from different domains are put in the file. It is possible that the files contain conflicting information; authentication is accepted if valid information can be found from either file.

The lines in these files are typically hundreds of characters long. You should definitely not type in the host keys by hand. Rather, generate them by a script or by taking /etc/ssh/ssh_host_rsa_key.pub and adding the host names at the front.

**EXAMPLES**

**EXAMPLE 1 authorized_key File Entries**

The following are examples of authorized_key file entries.

```
1024 33 12121...312314325 ylo@foo.bar
from="*.niksula.hut.fi,!pc.niksula.hut.fi" 1024 35 23...2334 ylo@niksula
command="dump /home",no-pty,no-port-forwarding 1024 33 23...2323 backup.hut.fi
```

**EXAMPLE 2 ssh_known_hosts File Entries**

The following are examples of ssh_known_hosts file entries.

```
closenet,closenet.hut.fi,...,130.233.208.41 1024 37 159...93 closenet.hut.fi
```
EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/etc/ssh/sshd_config
Contains configuration data for sshd. This file should be writable by root only, but it is recommended (though not necessary) that it be world-readable.

/etc/ssh/ssh_host_key
Contains the private part of the host key. This file should only be owned by root, readable only by root, and not accessible to others. sshd does not start if this file is group/world-accessible.

/etc/ssh/ssh_host_key.pub
Contains the public part of the host key. This file should be world-readable but writable only by root. Its contents should match the private part. This file is not used for encryption; it is provided only for the convenience of the user so its contents can be copied to known hosts files. These two files are created using ssh-keygen(1).

/var/run/sshd.pid
Contains the process ID of the sshd listening for connections. If there are several daemons running concurrently for different ports, this contains the pid of the one started last. The content of this file is not sensitive; it can be world-readable. You can use the PidFile keyword in sshd_config to specify a file other than /var/run/sshd.pid. See sshd_config(4).

/etc/ssh/ssh_known_hosts and $HOME/.ssh/known_hosts
These files are consulted when using rhosts with RSA host authentication to check the public key of the host. The key must be listed in one of these files to be accepted. The client uses the same files to verify that the remote host is the one it intended to connect. These files should be writable only by root or the owner.

/etc/ssh/ssh_known_hosts should be world-readable, and $HOME/.ssh/known_hosts can but need not be world-readable.

/etc/nologin
If this file exists, sshd refuses to let anyone except root log in. The contents of the file are displayed to anyone trying to log in, and non-root connections are refused. The file should be world-readable.

$HOME/.rhosts
This file contains host-username pairs, separated by a space, one per line. The given user on the corresponding host is permitted to log in without password. The same file is used by rlogind and rshd. The file must be writable only by the user; it is recommended that it not be accessible by others. It is also possible to use netgroups in the file. Either host or user name may be of the form +@groupname to specify all hosts or all users in the group.
**$HOME/.shosts**

For **ssh**, this file is exactly the same as for **.rhosts**. However, this file is not used by **rlogin** and **rshd**, so using this permits access using **SSH** only.

**/etc/hosts.equiv**

This file is used during **.rhosts** authentication. In its simplest form, this file contains host names, one per line. Users on these hosts are permitted to log in without a password, provided they have the same user name on both machines. The host name can also be followed by a user name; such users are permitted to log in as any user on this machine (except root). Additionally, the syntax `+@group` can be used to specify netgroups. Negated entries start with a hyphen (`-`).

If the client host/user is successfully matched in this file, login is automatically permitted, provided the client and server user names are the same. Additionally, successful RSA host authentication is normally required. This file must be writable only by root; it is recommended that it be world-readable.

Warning: It is almost never a good idea to use user names in `hosts.equiv`. Beware that it really means that the named user(s) can log in as anybody, which includes `bin`, `daemon`, `adm`, and other accounts that own critical binaries and directories. For practical purposes, using a user name grants the user root access. Probably the only valid use for user names is in negative entries. This warning also applies to **rsh/rlogin**.

**/etc/ssh/shosts.equiv**

This file is processed exactly as **/etc/hosts.equiv**. However, this file might be useful in environments that want to run both **rsh/rlogin** and **ssh**.

**$HOME/.ssh/environment**

This file is read into the environment at login (if it exists). It can contain only empty lines, comment lines (that start with `#`), and assignment lines of the form `name=value`. The file should be writable only by the user; it need not be readable by anyone else.

**$HOME/.ssh/rc**

If this file exists, it is run with `/bin/sh` after reading the environment files but before starting the user’s shell or command. If X11 spoofing is in use, this will receive the ‘proto cookie’ pair in standard input (and `DISPLAY` in environment). This must call `xauth(1)` in that case.

The primary purpose of `$.ssh/rc` is to run any initialization routines that might be needed before the user’s home directory becomes accessible; AFS is a particular example of such an environment.

This file will probably contain some initialization code followed by something similar to:

```bash
if read proto cookie;
then echo add $DISPLAY $proto $cookie | xauth -q -;
fi
```
If this file does not exist, `/etc/sh/shrc` is run, and if that does not exist, `xauth` is used to store the cookie. `$HOME/.ssh/rc` should be writable only by the user, and need not be readable by anyone else.

`/etc/sh/shrc`
Similar to `$HOME/.ssh/rc`. This can be used to specify machine-specific login-time initializations globally. This file should be writable only by root, and should be world-readable.

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshdu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
`scp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), sftp-server(1M), sshd(1M), sshd_config(4), attributes(5)`

To view license terms, attribution, and copyright for OpenSSH, the default path is `/var/sadm/pkg/SUNWsshdr/install/copyright`. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.

**AUTHORS**
OpenSSH is a derivative of the original and free `ssh` 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, added newer features and created Open SSH. Markus Friedl contributed the support for SSH protocol versions 1.4 and 2.0.
statd(1M)

NAME  statd – network status monitor

SYNOPSIS  /usr/lib/nfs/statd

DESCRIPTION  statd is an intermediate version of the status monitor. It interacts with lockd(1M) to provide the crash and recovery functions for the locking services on NFS. statd keeps track of the clients with processes which hold locks on a server. When the server reboots after a crash, statd sends a message to the statd on each client indicating that the server has rebooted. The client statd processes then inform the lockd on the client that the server has rebooted. The client lockd then attempts to reclaim the lock(s) from the server.

statd on the client host also informs the statd on the server(s) holding locks for the client when the client has rebooted. In this case, the statd on the server informs its lockd that all locks held by the rebooting client should be released, allowing other processes to lock those files.

FILES  
/var/statmon/sm
    lists hosts and network addresses to be contacted after a reboot

/var/statmon/sm.bak
    lists hosts and network addresses that could not be contacted after last reboot

/var/statmon/state
    includes a number which changes during a reboot

/usr/include/rpcserv/sm_inter.x
    contains the rpcgen source code for the interface services provided by the statd daemon.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfscu</td>
</tr>
</tbody>
</table>

SEE ALSO  lockd(1M), attributes(5)

System Administration Guide: IP Services

NOTES  The crash of a server is only detected upon its recovery.
NAME
strace – print STREAMS trace messages

SYNOPSIS
strace [mid sid level...]

DESCRIPTION
strace without arguments writes all STREAMS event trace messages from all drivers and modules to its standard output. These messages are obtained from the STREAMS log driver (see log(7D)). If arguments are provided, they must be in triplets of the form mid, sid, level, where mid is a STREAMS module ID number, sid is a sub-ID number, and level is a tracing priority level. Each triplet indicates that tracing messages are to be received from the given module/driver, sub-ID (usually indicating minor device), and priority level equal to, or less than the given level. The token all may be used for any member to indicate no restriction for that attribute.

The format of each trace message output is:

<seq> <time> <ticks> <level> <flags> <mid> <sid> <text>

<seq> trace sequence number
<time> time of message in hh:mm:ss
<ticks> time of message in machine ticks since boot
<level> tracing priority level
<flags> E : message is also in the error log F : indicates a fatal error N : mail was sent to the system administrator (hardcoded as root)
<mid> module ID number of source
<sid> sub-ID number of source
<text> formatted text of the trace message

Once initiated, strace will continue to execute until terminated by the user.

EXAMPLES
EXAMPLE 1 A sample output of the strace command:

The following example outputs all trace messages from the module or driver whose module ID is 41:

strace 41 all all

The following example outputs those trace messages from driver or module ID 41 with sub-IDs 0, 1, or 2:

strace 41 0 1 41 1 1 41 2 0

Messages from sub-IDs 0 and 1 must have a tracing level less than or equal to 1. Those from sub-ID 2 must have a tracing level of 0.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5), log(7D)

STREAMS Programming Guide

NOTES

- There is no restriction to the number of strace processes opening the STREAMS log driver at a time.
- The log-driver records the list of the triplets specified in the command invocation, and compares each potential trace message against this list to decide if it should be formatted and sent up to the strace process. Hence, long lists of triplets will have a greater impact on overall STREAMS performance. Running strace will have the most impact on the timing of the modules and drivers generating the trace messages that are sent to the strace process. If trace messages are generated faster than the strace process can handle them, some of the messages will be lost. This last case can be determined by examining the sequence numbers on the trace messages output.
NAME     strclean – STREAMS error logger cleanup program

SYNOPSIS  strclean [-a age] [-d logdir]

DESCRIPTION  strclean is used to clean up the STREAMS error logger directory on a regular basis (for example, by using cron. By default, all files with names matching error.* in /var/adm/streams that have not been modified in the last three days are removed.

OPTIONS  The following options are supported:

-<em>age</em>  The maximum age in days for a log file can be changed using the -a option.

-<em>logdir</em>  A directory other than /var/adm/streams can be specified using the -d option.

EXAMPLES  EXAMPLE 1 A sample of using the strclean command.

This example has the same result as running strclean with no arguments:

example% strclean -d /var/adm/streams -a 3

FILES  /var/adm/streams/error.*

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  cron(1M), strerr(1M), attributes(5)

STREAMS Programming Guide

NOTES  strclean is typically run from cron on a daily or weekly basis.
NAME  |  strerr – STREAMS error logger daemon
SYNOPSIS  |  strerr
DESCRIPTION  |  strerr receives error log messages from the STREAMS log driver (see log(7D)) and appends them to a log file. The resultant error log files reside in the directory /var/adm/streams, and are named error.mm-dd, where mm is the month and dd is the day of the messages contained in each log file.

The format of an error log message is:

```
<seq> <time> <ticks> <flags> <mid> <sid> <text>
```

- `<seq>` error sequence number
- `<time>` time of message in hh:mm:ss
- `<ticks>` time of message in machine ticks since boot priority level
- `<flags>`
  - `T`: the message was also sent to a tracing process
  - `F`: indicates a fatal error
  - `N`: send mail to the system administrator (hardcoded as root)
- `<mid>` module ID number of source
- `<sid>` sub-ID number of source
- `<text>` formatted text of the error message

Messages that appear in the error log are intended to report exceptional conditions that require the attention of the system administrator. Those messages which indicate the total failure of a STREAMS driver or module should have the `F` flag set. Those messages requiring the immediate attention of the administrator will have the `N` flag set, which causes the error logger to send the message to the system administrator using mail. The priority level usually has no meaning in the error log but will have meaning if the message is also sent to a tracer process.

Once initiated, strerr continues to execute until terminated by the user. It is commonly executed asynchronously.

FILES  |  /var/adm/streams/error.mm-dd error log file.

ATTRIBUTES  |  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  |  attributes(5), log(7D)

STREAMS Programming Guide
There is no restriction to the number of `strerr` processes opening the STREAMS log driver at a time.

If a module or driver is generating a large number of error messages, running the error logger will cause a degradation in STREAMS performance. If a large burst of messages are generated in a short time, the log driver may not be able to deliver some of the messages. This situation is indicated by gaps in the sequence numbering of the messages in the log files.
**NAME**
sttydefs – maintain line settings and hunt sequences for TTY ports

**SYNOPSIS**

```

/usr/sbin/sttydefs -l [ttylabel]

/usr/sbin/sttydefs -r ttylabel
```

**DESCRIPTION**

sttydefs is an administrative command that maintains the line settings and hunt sequences for the system’s TTY ports by making entries in, and deleting entries from the `/etc/ttydefs` file.

sttydefs with a `-a` or `-r` option may be invoked only by the super-user. sttydefs with `-l` may be invoked by any user on the system.

**OPTIONS**

The following options are supported:

- `-a ttylabel`
  
  Add a record to the `ttydefs` file, using `ttylabel` as its label. The following describes the effect of the `-b`, `-n`, `-i`, or `-f` options when used in conjunction with the `-a` option:

- `-b`
  
  Enable autobaud. Autobaud allows the system to set the line speed of a given TTY port to the line speed of the device connected to the port without the user’s intervention.

- `-f final-flags`
  
  Specify the value to be used in the `final-flags` field in `/etc/ttydefs`. `final-flags` must be in a format recognized by the `stty` command. `final-flags` are the `termio(7I)` settings used by `ttymon` after receiving a successful connection request and immediately before invoking the service on the port. If this option is not specified, `sttydefs` will set `final-flags` equal to the `termio(7I)` flags 9600 and `sane`.

- `-i initial-flags`
  
  Specify the value to be used in the `initial-flags` field in `/etc/ttydefs`. `initial-flags` must be in a format recognized by the `stty` command. These flags are used by `ttymon` when searching for the correct baud rate. They are set prior to writing the prompt. If this option is not specified, `sttydefs` will set `initial-flags` equal to the `termio(7I)` flag 9600.

- `-n nextlabel`
  
  Specify the value to be used in the `nextlabel` field in `/etc/ttydefs`. If this option is not specified, `sttydefs` will set `nextlabel` equal to `ttylabel`.

- `-l [ttylabel]`
  
  If a `ttylabel` is specified, `sttydefs` displays the record from `/etc/ttydefs` whose TTY label matches the specified `ttylabel`. If no `ttylabel` is specified, `sttydefs`
displays the entire contents of `/etc/ttydefs`. `sttydefs` verifies that each entry it displays is correct and that the entry’s `nextlabel` field references an existing record.

```
-r ttylabel
```

Remove any record in the `ttydefs` file that has `ttylabel` as its label.

**OUTPUT**

If successful, `sttydefs` will exit with a status of 0. `sttydefs -l` will generate the requested information and send it to standard output.

**EXAMPLES**

**EXAMPLE 1** A sample of `sttydefs` command.

The following command lists all the entries in the `ttydefs` file and prints an error message for each invalid entry that is detected.

```
example# sttydefs -l
```

The following shows a command that requests information for a single label and its output:

```
example# sttydefs -l 9600
```

```
9600:9600 hupcl erase ^h:9600 sane ixany tab3 hupcl erase ^h::4800
-----------------------------------------------
ttylabel: 9600
initial flags: 9600 hupcl erase ^h
final flags: 9600 sane ixany tab3 hupcl erase ^h
autobaud: no
nextlabel: 4800
```

The following sequence of commands will add the labels 1200, 2400, 4800, and 9600 and put them in a circular list:

```
sttydefs -a 1200 -n 2400 -i 1200 -f "1200 sane"
sttydefs -a 2400 -n 4800 -i 2400 -f "2400 sane"
sttydefs -a 4800 -n 9600 -i 4800 -f "4800 sane"
sttydefs -a 9600 -n 1200 -i 9600 -f "9600 sane"
```

**FILES**

`/etc/ttydefs`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`attributes(5), termio(7I)`
su(1M)

**NAME**
su – become superuser or another user

**SYNOPSIS**
```
su [-] [username [arg...]]
```

**DESCRIPTION**
The `su` command allows one to become another user without logging off or to assume a role. The default user name is `root` (superuser).

To use `su`, the appropriate password must be supplied (unless the invoker is already `root`). If the password is correct, `su` creates a new shell process that has the real and effective user ID, group IDs, and supplementary group list set to those of the specified `username`. Additionally, the new shell’s project ID is set to the default project ID of the specified user. See `getdefaultproj(3PROJECT)`, `setproject(3PROJECT)`. The new shell will be the shell specified in the shell field of `username`’s password file entry (see `passwd(4)`). If no shell is specified, `/usr/bin/sh` is used (see `sh(1)`). If superuser privilege is requested and the shell for the superuser cannot be invoked using `exec(2)`, `/sbin/sh` is used as a fallback. To return to normal user ID privileges, type an EOF character (CTRL-D) to exit the new shell.

Any additional arguments given on the command line are passed to the new shell. When using programs such as `sh`, an arg of the form `-c string` executes `string` using the shell and an arg of `-r` gives the user a restricted shell.

The following statements are true if the login shell is `/usr/bin/sh` or an empty string (which defaults to `/usr/bin/sh`) in the specific user’s password file entry. If the first argument to `su` is a dash (-), the environment will be changed to what would be expected if the user actually logged in as the specified user. Otherwise, the environment is passed along, with the exception of `PATH`, which is controlled by `PATH` and `SUPATH` in `/etc/default/su`.

All attempts to become another user using `su` are logged in the log file `/var/adm/sulog` (see `sulog(4)`).

**SECURITY**
su uses pam(3PAM) with the service name `su` for authentication, account management, and credential establishment.

**EXAMPLES**

**EXAMPLE 1** Becoming User bin While Retaining Your Previously Exported Environment

To become user `bin` while retaining your previously exported environment, execute:
```
eexample$ su bin
```

**EXAMPLE 2** Becoming User bin and Changing to bin’s Login Environment

To become user `bin` but change the environment to what would be expected if `bin` had originally logged in, execute:
```
eexample$ su - bin
```

**EXAMPLE 3** Executing command with user bin’s Environment and Permissions

To execute command with the temporary environment and permissions of user `bin`, type:
**EXAMPLE 3** Executing command with user bin’s Environment and Permissions
(Continued)

```bash
example su - bin -c "command args"
```

Variables with `LD_` prefix are removed for security reasons. Thus, `su bin` will not retain previously exported variables with `LD_` prefix while becoming user `bin`.

If any of the `LC_*` variables (`LC_CTYPE`, `LC_MESSAGES`, `LC_TIME`, `LC_COLLATE`, `LC_NUMERIC`, and `LC_MONETARY`) (see `environ(5)`) are not set in the environment, the operational behavior of `su` for each corresponding locale category is determined by the value of the `LANG` environment variable. If `LC_ALL` is set, its contents are used to override both the `LANG` and the other `LC_*` variables. If none of the above variables are set in the environment, the "C" (U.S. style) locale determines how `su` behaves.

- **LC_CTYPE** Determines how `su` handles characters. When `LC_CTYPE` is set to a valid value, `su` can display and handle text and filenames containing valid characters for that locale. `su` can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. `su` can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

- **LC_MESSAGES** Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

---

**FILES**

- `~/.profile` user’s login commands for `sh` and `ksh`
- `/etc/passwd` system’s password file
- `/etc/profile` system-wide `sh` and `ksh` login commands
- `/var/adm/sulog` log file
- `/etc/default/su` the default parameters in this file are:
  - **SULOG** If defined, all attempts to `su` to another user are logged in the indicated file.
  - **CONSOLE** If defined, all attempts to `su` to `root` are logged on the console.
  - **PATH** Default path. (/usr/bin:)
  - **SUPATH** Default path for a user invoking `su` to `root`. (/usr/sbin:/usr/bin)
  - **SYSLOG** Determines whether the `syslog(3C)` `LOG_AUTH` facility
should be used to log all su
attempts. LOG_NOTICE messages
are generated for su’s to root,
LOG_INFO messages are generated
for su’s to other users, and
LOG_CRIT messages are generated
for failed su attempts.

SLEEPTIME

If present, sets the number of
seconds to wait before login failure
is printed to the screen and another
login attempt is allowed. Default is
4 seconds. Minimum is 0 seconds.
Maximum is 5 seconds.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), env(1), ksh(1), login(1), roles(1), sh(1), syslogd(1M), exec(2),
getdefaultproj(3PROJECT), setproject(3PROJECT), pam(3PAM), syslog(3C),
pam.conf(4), passwd(4), profile(4), sulog(4), attributes(5), environ(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

NOTES

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
NAME
sulogin – access single-user mode

SYNOPSIS
sulogin

DESCRIPTION
The sulogin utility is automatically invoked by init when the system is first started. It prompts the user to type the root password to enter system maintenance mode (single-user mode) or to type EOF (typically CTRL-D) for normal startup (multi-user mode). The user should never directly invoke sulogin.

The sulogin utility can prompt the user to enter the root password on a variable number of serial console devices, in addition to the traditional console device. See consadm(1M) and msglog(7D) for a description of how to configure a serial device to display the single-user login prompt.

FILES
/etc/default/sulogin
Default value can be set for the following flag:

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASSREQ</td>
<td>Determines if login requires a password. Default is PASSREQ=TRUE.</td>
</tr>
</tbody>
</table>

/etc/default/login
Default value can be set for the following flag:

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEEPTIME</td>
<td>If present, sets the number of seconds to wait before login failure is printed to the screen and another login attempt is allowed. Default is 4 seconds. Minimum is 0 seconds. Maximum is 5 seconds.</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
</tbody>
</table>

SEE ALSO
consadm(1M), init(1M), attributes(5), msglog(7D)
NAME
suninstall – install the Solaris environment

SYNOPSIS
suninstall

DESCRIPTION
suninstall is a forms-based subsystem for installing the operating system.
suninstall only exists on the Solaris CD-ROM and should only be invoked from
there. Refer to the installation manual for more details.
suninstall allows installation of the operating system onto any stand-alone system.
suninstall loads the software available on the CD-ROM. Refer to the installation
manual for disk space requirements.

To abort the installation procedure, use the interrupt character (typically, CTRL-C).

USAGE
Refer to the installation manual for more information on the various menus and
selections.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcdrom (Solaris CD)</td>
</tr>
</tbody>
</table>

SEE ALSO
pkginfo(1), install(1M), pkgadd(1M), attributes(5)

Solaris 9 12/03 Installation Guide

NOTES
It is advisable to exit suninstall through the exit options from the suninstall
menus.
SUNWgfb_config(1M)

NAME
SUNWgfb_config – fbconfig module for configuring Sun XVR-1000 Graphics Accelerator

SYNOPSIS
fbconfig [-dev device-filename] [-active a | b | both | auto]
 [-res video-mode [now | try] [noconfirm]] [-file machine
 | system] [-doublewide enable | disable | reverse]
 [-doublehigh enable | disable | reverse] [-multisample
 enable | disable | auto [static | dynamic]]
 [-samples samples-per-pixel] [-g gamma-correction-value] [-master a | b
 | input] [-buffersize [width height] | auto] [-clearpixel0
 | 255]

fbconfig [-dev device-filename] -stream a | b [-port hd15 | dvid
 | svideo | auto] [-res video-mode [now | try] [noconfirm]]
 [-file machine | system] [-offset xoff-value [yoff-value]] [-slave
 [enable | disable] [internal | external]]

fbconfig [-dev device-filename] -defaults

fbconfig [-dev device-filename] [-propt | -prconf | -res \\?

fbconfig [-help | -list]

DESCRIPTION
SUNWgfb_config is the Sun XVR-1000 Graphics Accelerator device dependent layer
for fbconfig(1M). It configures the Sun XVR-1000 Graphics Accelerator and some of
the X11 window system defaults. The device can drive two monitors, each with a
unique video stream (called stream a and stream b).

The first form of SUNWgfb_config shown in the synopsis above sets card options,
which are options common to both stream a and stream b, and apply to the entire
card.

The second form is used to set stream options, which are options specific to either
stream a or stream b. The second form usage requires the -stream option to define
which stream is affected.

Both the first form and the second form store the specified options in the config
file. These options will be used to initialize the device the next time the window
system is run on that device. Updating options in the config file provides
persistence of these options across window system sessions and system reboots. For
-res now, -try, -slave, -master, -port, and -g, the device will be immediately
programmed.

The third form, which invokes the -defaults option, sets all card options and all
stream options to their default values.

The fourth form, which invokes the -prconf, -propt, and -res \? options, queries
the device for status that is card-specific.

The fifth form, which invokes the -help, and -list options, provides instruction on
using SUNWgfb_config and a list of available devices. Additionally for the fifth form,
all other options are ignored.
You can specify options for only one device at a time. Specifying options for multiple devices requires multiple invocations of SUNWgfb_config.

Only Sun XVR-1000 Graphics Accelerator-specific options can be specified through SUNWgfb_config. The normal window system options for specifying default depth, default visual class, and so forth are still specified as device modifiers on the command line when the X server is started.

You can also specify the OWconfig file that is to be updated. By default, the machine-specific file in the /etc/openwin directory tree is updated. You can use the -file option to specify an alternate file. For example, the system-global OWconfig file in the /usr/openwin directory tree can be updated instead.

-dev device-filename
   Specifies the device’s special file. The default is /dev/fb.

-file machine | system
   Specifies which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.

-res video-mode [now | try [noconfirm]]
   Specifies the video mode used to drive the monitor connected to the specified device. If -res is invoked with now or try, you must specify a -stream option or a device, such as /dev/fbs/gfb0a. If -active is set to both or auto, then both stream video-mode values will be modified.

The video-mode argument specifies resolution and timing information for the display (for example, SUNW_STD_1280x1024x76). The naming convention for the video-mode specifier is:

origin_type_widthxheightxrate

The elements of the specifier are described as follows:

origin
   This can be one of:
      - SUNW, Sun derived resolution
      - VESA, Video Electronics Standards Association-derived resolution
      - other, other source

type
   This can be one of:
      - STD, normal resolution, usable by most display devices
      - DIG, resolution tuned only for LCD flat panels
      - INT, interlaced
      - STEREO, stereo

width
   screen width in pixels
height
  screen height in pixels
rate
  vertical frequency of the screen refresh

Note that some video-modes supported by the device, might not be supported by
the monitor. The list of video-modes supported by the device and the monitor can
be obtained by running SUNWgfb_config with the -res \? option (the fourth
form shown in the command synopsis above).

The -res option also accepts additional, optional arguments, listed below,
immediately following the video mode specification. Either now or try (try
subsumes now) and noconfirm can be present.

now
  If present, not only is the video mode updated in the OWconfig file, but the
device is immediately programmed to display this video mode. This is useful for
changing the video mode before starting the window system.

  Note – It is recommended that you not use this suboption with
SUNWgfb_config while the configured device is being used (for example, while
running the window system). Unpredictable results can occur. To run
SUNWgfb_config with the now suboption, first bring the window system
down. If the now suboption is used within a window system session, the video
mode is changed immediately, but the width and height of the affected screen do
not change until the window system is exited and reentered. In addition, the
system might not recognize changes in stereo mode.

noconfirm
  Using the -res option, the user can put the system into an unusable state, with
no video output. To reduce the chance of this, the default behavior of
SUNWgfb_config is to display a warning message and to ask the user whether
to continue. The noconfirm bypasses this confirmation. This option is useful
when SUNWgfb_config is being run from a shell script.

try
  If present, the specified video mode will be programmed on a trial basis. The
user is asked to confirm the video mode by typing y within 10 seconds.
Alternatively, the user can terminate the trial before 10 seconds elapse by typing
any character other than y or carriage return. Such input is considered a no and
the previous video mode is restored. With a negative response,
SUNWgfb_config does not change the video mode in the OWconfig file; other
options specified still take effect. If a carriage return is typed, the user is asked (y
or n) whether to keep the new video mode. The try suboption implies the now
suboption. See the warning note in the description of the now suboption, above.

-defaults
  Resets all option values to their default values. Writes these values to the
  OWconfig file.
-propt
Displays the current values of all options in the OWconfig file specified by the
-file option for the device specified by the -dev option. Displays the values of
options as they will be in the OWconfig file after the call to SUNWgfb_config
completes. The following is an example display:

--- OpenWindows Configuration for /dev/fbs/gfb0 ---
OWconfig: machine
Active Streams: both
Samples Per Pixel: 2
Multisample Allocation Model: static
Multisample Mode: auto
Doublewide: disable
Gamma Correction Value: 2.22

--- OpenWindows Configuration for Stream a ---
Video Mode: SUNW_STD_1280x1024x76

--- OpenWindows Configuration for Stream b ---
Video Mode: VESA_STD_640x480x60

-prconf
Displays the XVR-1000 hardware configuration. The following is an example
display:

--- Hardware Configuration for /dev/fb (SUNWgfb0) ---
Type: Sun Graphics Accelerator
Part: 501-5865
Memory:
MAJC: 32MB
Texture: 256MB total
3DRAM64: 5.0M pixels

Versions: FCode 1.14 MCode 0.19 MAJC 2.1 FBC3 3.0 XChip 2.0

Video Streams:
Stream a
  Current resolution Setting: SUNW_STD_1280x1024x76
  Monitor/EDID data (13W3)
  Monitor Manufacturer: SUN
  Monitor Name: GDM-5410
  EDID: Version 1, Revision 2

Stream b
  Current resolution Setting: VESA_STD_640x480x60
  Port: svideo

-help
Displays a list of the SUNWgfb_config command line options, along with a brief
explanation of each.

-res \?
Displays list of defined video-mode names.

CARD OPTIONS
-active a | b | both | auto
Specifies which streams are enabled. both select both streams. The default is auto,
which means whichever stream is chosen by the console.
The suboptions for -multisample are described as follows:

disable
    No multisample is possible.

enable
    Multisample is possible but is selected on a per-application basis.

auto
    All Sun OpenGL applications are rendered using multisampling.

static
    Multisample allocation occurs at X startup/config load time. The config samples-per-pixel or max parameter specifies the depth that is pre-allocated.

dynamic
    OpenGL tasks allocate buffers themselves.

-samples samples-per-pixel
    Specifies the number of samples/pixel to pre-allocate in static mode. Provides a hint to OpenGL in dynamic mode. The allowable choices for samples-per-pixel are 2, 3, 4, 5, 6, 8, 10, 16, and max. The default is max, which means to use the maximum number of samples that can be supported with the amount of memory available.

doublewide enable | disable | reverse
    This option makes it easy for you to combine both streams into one side-by-side virtual display. If you specify enable, stream a is to the left of stream b. If reverse is specified, stream b is to the left of stream b. Both will be the same resolution defined with the -res option. If you specify disable, only one stream will be enabled. -doublewide precludes -doublehigh.

doublehigh enable | disable | reverse
    This option makes it easy for you to combine both streams into one virtual display, with one monitor on a shelf above the other. If you specify enable, stream a is above stream b. If reverse is specified, stream b is above stream a. Both will be the same resolution defined with the -res option. If you specify disable, only one stream will be enabled. -doublehigh precludes -doublewide.

gamma-correction value
    This option changes the gamma correction value. By default the gamma correction value is 2.22. Any value less than zero is illegal. This option can be used while the window system is running. Changing the gamma correction value will affect all the windows being displayed using gamma-corrected visuals. The gamma correction value is also saved in the OWconfig file for the next time the window system starts.

master a | b | input
    This option controls the setting frame pins on the stereo/sync connector on the device. It also controls which stream drives stereo glasses, which attach to the same connector.
If a (the default) or b is selected, the card is setup to be a sync master, and the frame sync signal from the corresponding stream will be sent out this connector.

If you select input, the card is setup to take its frame sync from another card through this connector. This sync can then be used to sync either or both streams by setting the stream-specific -slave option(s) to external.

If stereo glasses are used, the a or b options select which stream is used for the sync signal to the glasses.

-buffersize [ width height ] | auto
Explicitly allows you to specify size of managed area, which occupies all or a portion of the device's 3D RAM. The default is auto, that is, to automatically size the buffer based on the current stream resolutions. This should be sufficient for most users.

-clearpixel 0 | 255
Selects the overlay transparent color. This is the pixel value (color index) used by the transparent overlay visual to display the underlay (RGB) pixel contents. The default is 255 (all bits 1), but some applications require 0. All other color indices display a colormap color.

-stream a | b
Specifies for which stream options will be set. It is a required option for each of the other options in this section. It is optional for -res. Only one -stream option can be specified.

-port hd15 | dvid | svideo | auto
Directs stream b to the appropriate output connector: hd-15, dvid, svideo. If auto, then the output connector for stream b is selected by the console. Stream a is always output through the 13W3 connector.

-offset xoff-value [yoff-value]
Offsets display of child stream (specified by -stream) relative to parent and child alignment edges.

xoff-value
Number of pixels offset in horizontal direction. Positive direction is right; negative is left. Default is 0, which means the two edges touch.

yoff-value
Number of pixels offset in vertical direction. Positive direction is down; negative is up. Default is 0, which means the two edges touch.

-slave [ enable | disable ] [ internal | external ]
This option allows you to specify the sync source for the specified stream. internal indicates that the sync source is the other stream of this device. external indicates the sync is taken from a source outside the device. If you use external, you also need to use the card option -master input.
For a given invocation of `SUNWgfb_config`, if an option does not appear on the command line, the corresponding `OWconfig` option is not updated. It retains its previous value.

When the window system is run, if an option has never been specified through `SUNWgfb_config`, a default value is used. The option defaults are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dev</td>
<td>/dev/fb</td>
</tr>
<tr>
<td>-file</td>
<td>machine</td>
</tr>
<tr>
<td>-res</td>
<td>none</td>
</tr>
<tr>
<td>-samples</td>
<td>max</td>
</tr>
<tr>
<td>-multisample</td>
<td>enable/dynamic</td>
</tr>
<tr>
<td>-clearpixel</td>
<td>255</td>
</tr>
<tr>
<td>-master</td>
<td>a</td>
</tr>
<tr>
<td>-slave</td>
<td>disable/external</td>
</tr>
<tr>
<td>-doublewide</td>
<td>not set</td>
</tr>
<tr>
<td>-g</td>
<td>2.22</td>
</tr>
<tr>
<td>-active</td>
<td>auto</td>
</tr>
<tr>
<td>-port</td>
<td>auto</td>
</tr>
<tr>
<td>-offset</td>
<td>0/0</td>
</tr>
</tbody>
</table>

The default for the `-res` option of `none` means that, when the window system is run, the screen resolution will be the video mode that is currently programmed in the device. This provides compatibility for users who are used to specifying the device resolution through the PROM.

**EXAMPLE 1** Switching Resolution of a Monitor

The following example switches to the resolution of 1280 by 1024 at 76 Hz:

```
example$ fbconfig -stream a -res -SUNW_STD_1280x1024x76
```

**FILES**

```
/usr/lib/fbconfig/SUNWgfb_config
device special file
```
SUNWgfb_config(1M)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgfbcf</td>
</tr>
</tbody>
</table>

SEE ALSO
fbconfig(1M), attributes(5)
See the dtlogin(1) man page in the CDE man page collection. Also useful is the Xsun(1) man page in the OpenWindows man page collection.
SUNWxfb_config – configure the Sun Expert3D Graphics Accelerator

SYNOPSIS
/usr/lib/fbconfig/SUNWxfb_config [-dev device-filename]
[-res video-mode [now | try] [noconfirm | nocheck]]
[-file machine | system] [-deflinear true | false]
[-defoverlay true | false] [-linearorder first | last]
[-overlayorder first | last] [-expvis enable | disable]
[-slave enable | disable] [-accum enable | disable]
[-g gamma-correction-value] [-gfile gamma-correction-file] [-propt]
[-prconf] [-defaults] [-slave] []
[-samples 1 | 2 | 4 | 8 | 16]
[-multisample enable | disable | auto]
/usr/lib/fbconfig/SUNWxfb_config [-propt] [prconf]
/usr/lib/fbconfig/SUNWxfb_config [-help] [-res \?]

DESCRIPTION
SUNWxfb_config configures the Sun Expert3D Graphics Accelerator, Sun Expert3D-Lite, and Sun XVR-500 Graphics Accelerators, and some of the X11 window system defaults for the graphics accelerator.

The first form of SUNWxfb_config shown in the synopsis above stores the specified options in the OWconfig file. These options will be used to initialize the Sun Expert3D device the next time the window system is run on that device. Updating options in the OWconfig file provides persistence of these options across window system sessions and system reboots.

The second and third forms of SUNWxfb_config, which invoke only the -prconf, -propt, -help, and -res \? options, do not update the OWconfig file.
Additionally, for the third form of the command, all other options are ignored.

Options may be specified for only one Sun Expert3D device at a time. Specifying options for multiple Sun Expert3D devices requires multiple invocations of SUNWxfb_config.

Only options specific to the Sun Expert3D device can be specified through SUNWxfb_config. The normal window system options for specifying default depth, default visual class and so forth are still specified as device modifiers on the openwin command line (see the Xsun(1) manual page in the OpenWindows Desktop Reference Manual).

OPTIONS
The following options are supported:
-dev device-filename
   Specifies the Sun Expert3D special file. The default is /dev/fbs/ifb0.
-file machine | system
   Specifies which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.
-res video-mode
Specifies the video mode used to drive the monitor connected to the specified Sun Expert3D device.

The format of these built-in video modes is:
widthxheightxrate
where width is the screen width in pixels, height is the screen height in pixels, and rate is the vertical frequency of the screen refresh. The s suffix of 960x680x112s and 960x680x108s means that these are stereo video modes. The i suffix of 640x480x60i and 768x575x50i designates interlaced video timing. If absent, non-interlaced timing will be used. As a convenience, -res also accepts formats with @ (at sign) in front of the refresh rate instead of x. For example:
1280x1024@76. Note that some video-modes supported by the Sun Expert3D device might not be supported by the monitor. The list of video-modes supported by the Sun Expert3D device and the monitor can be obtained by running SUNWifb_config with the -res ? option (shown in the command synopsis above). The following is a list of all possible video-modes supported on the Sun Expert3D device:

1024x768x60
1024x768x70
1024x768x75
1024x768x75
1024x768x77
1024x800x84
1152x900x66
1152x900x76
1280x800x76
1280x1024x60
1280x1024x67
1280x1024x76
1280x1024x85
1280x1024x112s (Stereo)
960x680x112s (Stereo)
960x680x108s (Stereo)
640x480x60
640x480x60i (Interlaced)
768x575x50i (Interlaced)
1440x900x76
1600x1000x66
1600x1000x76
Symbolic names

For convenience, some of the above video modes have symbolic names defined for them. Instead of the form width x height x rate, one of these names may be supplied as the argument to -res. The meaning of the symbolic name none is that when the window system is run the screen resolution will be the video mode that is currently programmed in the device.

<table>
<thead>
<tr>
<th>Name</th>
<th>Corresponding Video Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>svga</td>
<td>1024x768x60</td>
</tr>
<tr>
<td>1152</td>
<td>1152x900x76</td>
</tr>
<tr>
<td>1280</td>
<td>1280x1024x76</td>
</tr>
<tr>
<td>stereo</td>
<td>960x640x112s</td>
</tr>
<tr>
<td>ntsc</td>
<td>640x480x60i</td>
</tr>
<tr>
<td>pal</td>
<td>768x576x50i</td>
</tr>
<tr>
<td>none</td>
<td>(see text above)</td>
</tr>
</tbody>
</table>

The res option also accepts additional, optional arguments immediately following the video mode specification. Any or all of the following might be present.

now

If present, not only will the video mode be updated in the OWconfig file, but the Sun Expert3D device will be immediately programmed to display this video mode. (This is useful for changing the video mode before starting the window system).

Note that it is inadvisable to use this suboption with SUNWifb_config while the configured device is being used (for example, while running the window system); unpredictable results might occur. To run SUNWifb_config with the now suboption, first bring the window system down. If the now suboption is used within a window system session, the video mode will be changed immediately, but the width and height of the affected screen will not change until the window system is exited and reentered again. In addition, the system may not recognize changes in stereo mode. Consequently, this usage is strongly discouraged.
Using the -res option, the user could potentially put the system into an unusable state, a state where there is no video output. This can happen if there is ambiguity in the monitor sense codes for the particular code read. To reduce the chance of this, the default behavior of SUNWifb_config is to print a warning message to this effect and to prompt the user to find out if it is okay to continue. The noconfirm option instructs SUNWifb_config to bypass this confirmation and to program the requested video mode anyway. This option is useful when SUNWifb_config is being run from a shell script.

If present, the normal error checking based on the monitor sense code (described above) will be suspended. The video mode specified by the user will be accepted regardless of whether it is appropriate for the currently attached monitor. (This option is useful if a different monitor is to be connected to the Sun Expert3D device). Use of this option implies noconfirm as well.

If present, the specified video mode will be programmed on a trial basis. The user will be asked to confirm the video mode by typing y within 10 seconds. Or the user may terminate the trial before 10 seconds are up by typing any character. Any character other than y or carriage return is considered a "no" and the previous video mode will be restored and SUNWifb_config will not change the video mode in the OWconfig file (other options specified will still take effect). If a carriage return is typed, the user is prompted for a yes or no answer on whether to keep the new video mode. This option implies the now suboption (see the warning paragraph under the now suboption).

The Sun Expert3D device possesses two types of visuals: linear and nonlinear. Linear visuals are gamma corrected and nonlinear visuals are not. There are two visuals that have both linear and nonlinear versions: 24-bit TrueColor and 8-bit StaticGray. If true, the default visual is set to the linear visual that satisfies other specified default visual selection options (specifically, the Xsun(1) -defdepth and -defclass options described in the OpenWindows Desktop Reference Manual). If false, or if there is no linear visual that satisfies the other default visual selection options, the non-linear visual specified by these other options will be chosen to be the default. This option cannot be used when the -defoverlay option is present, because the Sun Expert3D does not possess a linear overlay visual.
-defoverlay true | false
   The Sun Expert3D device provides an 8-bit PseudoColor visual whose pixels are disjoint from the rest of the Sun Expert3D visuals. This is called the overlay visual. Windows created in this visual will not damage windows created in other visuals. The converse, however, is not true. Windows created in other visuals will damage overlay windows. If the value of this option is true, the overlay visual will be made the default visual. If false, the nonoverlay visual that satisfies the other default visual selection options, such as -defdepth and -defclass, will be chosen as the default visual. See the Xsun(1) manual page in the OpenWindows Desktop Reference Manual. Whenever -defoverlay true is used, the default depth and class chosen on the openwin command line must be 8-bit PseudoColor. If not, a warning message will be printed and the -defoverlay option will be treated as false. This option cannot be used when the -deflinear option is present, because the Sun Expert3D device does not possess a linear overlay visual.

-linearorder first | last
   If first, linear visuals will come before their non-linear counterparts on the X11 screen visual list for the Sun Expert3D screen. If last, the nonlinear visuals will come before the linear ones.

-overlayorder first | last
   If first, the depth 8 PseudoColor Overlay visual will come before the non-overlay visual on the X11 screen visual list for the Sun Expert3D screen. If last, the non-overlay visual will come before the overlay one.

-expvis enable | disable
   If enabled, OpenGL Visual Expansion will be activated. Multiple instances of selected visual groups (8-bit PseudoColor, 24-bit TrueColor, and so forth) can be found in the screen visual list.

-slave enable | disable
   If enabled, the video for this frame buffer will be synced with the video of the display which is connected to it. For applications which support it buffers will also be swapped synchronously.

-accum enable | disable
   If enabled, frame buffer memory is allocated for accelerated accumulation buffer for windows. If disabled, software accumulation buffering will be done for windows. Accelerated accumulation buffers for pBuffers are always available as memory allows.

-g gamma-correction_value
   This option allows changing the gamma correction value. All linear visuals provide gamma correction. By default the gamma correction value is 2.22. Any value less than zero is illegal. The gamma correction value is applied to the linear visual, which then has an effective gamma value of 1.0, which is the value returned by XSolarisGetVisualGamma(). See XSolarisGetVisualGamma(3) for a description of that function. This option can be used while the window system is running. Changing the gamma correction value will affect all the windows being displayed using the linear visuals.
-gfile gamma-correction_file

This option loads gamma correction table from the specified file. This file should be formatted to provide the gamma correction values for R, G and B channels on each line. Each of these values should be in hexadecimal format and separated from each other by at least one space. Also, this file should provide 1024 such triplets. An example of this file is as follows:

```
0x00 0x00 0x00
0x01 0x01 0x01
0x02 0x02 0x02
...
...
0xff 0xff 0xff
```

Using this option, the gamma correction table can be loaded while the window system is running. The new gamma correction will affect all the windows being displayed using the linear visuals. Note that, when gamma correction is being done using a user-specified table, the gamma correction value is undefined. By default, the window system assumes a gamma correction value of 2.22 and loads the gamma table it creates corresponding to this value.

-defaults

Resets all option values to their default values.

-propt

Prints the current values of all Sun Expert3D options in the OWconfig file specified by the -file option for the device specified by the -dev option. Prints the values of options as they will be in the OWconfig file after the call to SUNWfb_config completes. This is a typical display:

```
--- OpenWindows Configuration for /dev/fbs/ifb0 ---
OWconfig: machine
Video Mode: 1280x1024x76
Accum: Disabled (do not allocate an accumulation buffer)
Default Visual: Non-Linear Normal Visual
Visual Ordering: Linear Visuals are last
  Overlay Visuals are last
OpenGL Visual Expansion: enabled
Gamma Correction Value: 2.22
Gamma Correction Table: Available
```

-prconf

Prints the Sun Expert3D hardware configuration. This is a typical display:

```
--- Hardware Configuration for /dev/fbs/ifb0 ---
PROM Information: #(f)ib.fth 1.25 99/10/12 SMI
EDID Data: Available - EDID version 1 revision 1
Monitor possible resolutions: 1024x768x60, 1024x768x70, 1024x768x75,
  1152x900x66, 1152x900x76, 1280x1024x67, 1280x1024x76, 960x680x112s,
  640x480x60
Current resolution setting: 1280x1024x76
```
-help
Prints a list of the SUNWifb_config command-line options, along with a brief explanation of each.

-samples 1 | 2 | 4 | 8 | 16
Requested number of samples to compute per display pixel. The requested number of samples per pixel will be used if -multisample is not disabled and resources exist for the request.

Query the number of samples used with -propt (see above) or the xglinfo utility. The xglinfo utility can return the number of multisamples after you specify the option -multisample enable.

The default is 16.

-multisample enable | disable | auto
If set to disable, no multisample is possible. If set to enable, multisample is possible but is selected on a per-window basis using a library interface. If set to auto, all Sun OpenGL windows are rendered using multisampling.

Query the number of samples used with -propt (see above) or the xglinfo utility. The xglinfo utility can return the number of multisamples if -multisample is set to enable.

The default is disable.

The xglinfo utility is shipped with the Sun OpenGL package, SUNWglrt. The man page for xglinfo is part of another Sun OpenGL package, SUNWgldoc.

**DEFAULTS**
For a given invocation of SUNWifb_config command line if an option does not appear on the command line, the corresponding OWconfig option is not updated; it retains its previous value. When the window system is run, if an Sun Expert3D option has never been specified via SUNWifb_config, a default value is used. The option defaults are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dev</td>
<td>/dev/fbs/ifb0</td>
</tr>
<tr>
<td>-file</td>
<td>machine</td>
</tr>
<tr>
<td>-res</td>
<td>none</td>
</tr>
<tr>
<td>-deflinear</td>
<td>false</td>
</tr>
<tr>
<td>-defoverlay</td>
<td>false</td>
</tr>
<tr>
<td>-linearorder</td>
<td>last</td>
</tr>
<tr>
<td>-overlayorder</td>
<td>last</td>
</tr>
<tr>
<td>-expvis</td>
<td>enable</td>
</tr>
<tr>
<td>-slave</td>
<td>disable</td>
</tr>
<tr>
<td>-accum</td>
<td>enable</td>
</tr>
<tr>
<td>-g</td>
<td>2.22</td>
</tr>
<tr>
<td>-samples</td>
<td>16</td>
</tr>
<tr>
<td>-multisample</td>
<td>disable</td>
</tr>
</tbody>
</table>
The default for the `-res` option of `none` means that, when the window system is run, the screen resolution will be the video mode that is currently programmed in the device. This design choice provides compatibility for users who are used to specifying the device resolution through the PROM. On some devices (for example, GX), this is the only way of specifying the video mode. This means that the PROM ultimately determines the default Sun Expert3D video mode.

**EXAMPLE 1 Changing Monitor Resolution**

The following example switches the monitor type to the resolution of 1280 x 1024 at 76 Hz:

```
example% /usr/lib/fbconfig/SUNWifb_config -res 1280x102476
```

**FILES** `/dev/fbs/ifb0` device special file

**ATTRIBUTES** See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWifbcf</td>
</tr>
</tbody>
</table>

**SEE ALSO** attributes(5), mmap(2), ifb(7D), fbio(7I)
### NAME
SUNWpfb_config – fbconfig module for configuring Sun XVR-100 Graphics Accelerator

### SYNOPSIS
```
/usr/lib/fbconfig/SUNWpfb_config [-dev device-filename] [-res video-mode
  [now | try] [noconfirm | nocheck]] [-file | machine | system]
  [-fake8 | enable | disable] [-doublewide | enable | disable]
  [-doublehigh | enable | disable] [-outputs | swapped
  | direct] [-depth | 8 | 24] [-offset xval yval] [-defaults]

```

```
/usr/lib/fbconfig/SUNWpfb_config [-propt] [-prconf]

```

```
/usr/lib/fbconfig/SUNWpfb_config [-help] [-res \?]

```

### DESCRIPTION
SUNWpfb_config is the Sun XVR-100 device dependent layer for fbconfig(1M). It configures the Sun XVR-100 Graphics Accelerator and some of the X11 window system defaults for Sun XVR-100. The Sun XVR-100 provides the capability to drive two monitors, each with a unique video stream (Stream #1 and Stream #2).

The first form of SUNWpfb_config shown in the SYNOPSIS section sets options for the Sun XVR-100. It stores the specified options in the OWconfig file. These options initialize the Sun XVR-100 device the next time the window system is run on that device. Updating options in the OWconfig file provides persistence of these options across window system sessions and system reboots. The Sun XVR-100 device is immediately programmed if you specify the -res now.

The second form, which invokes the only the -prconf and -propt options, queries the Sun XVR-100 for status.

The third form, which invokes the -help, and -res and \? options, provides instruction on using SUNWpfb_config. Additionally, for the third form all other options are ignored.

You can only specify options for only one Sun XVR-100 device at a time. If you want to specify options for multiple Sun XVR-100 devices, you must require multiple invocations of SUNWpfb_config.

You can only use SUNWpfb_config to specify Sun XVR-100-specific options. You can use the normal window system options to specify the default depth, default visual class and so forth as device modifers on the command line when the X Server is started. See dtlogin(1) for information regarding the Xservers File.

You can also specify the OWconfig file to update. The machine-specific file in the /etc/openwin directory tree is updated by default. You can used the -file option to specify an alternate file. For example, you can update the system-global OWconfig file in the /usr/openwin directory tree instead.

### OPTIONS
The following options are supported:

- `defaults`
  Reset all option values to their default values.
Set the depth (bits per pixel) for the window system. Possible values for the
-depth option are 8 or 24. You must log out of the current window system session
and log back in again for the change to take effect. Any depth setting in the Xserver
command line takes precedence over what is set using fbconfig. The default is 8.

-dev device-filename
 Specify the Sun XVR-100 special file. The default is /dev/fb.

doublehigh enable | disable
 Configure the two outputs of the Sun XVR-100 into one vertical virtual display. The
default is disable.

doublewide enable | disable
 Configure the two outputs of the Sun XVR-100 into one horizontal virtual display.
The default is disable.

fake8 enable | disable
 Enable or disable simple 8 bit X windows to be rendered without a hardware
colormap to reduce colormap flashing. You might notice performance reductions.
The default is disable.

-file machine | system
 Specify which OWconfig file to update. If you specify machine, SUNWpfb_config
updates the machine-specific OWconfig file in the /etc/openwin directory tree. If
It you specify system, SUNWpfb_config updates the global OWconfig file in the
/usr/openwin directory tree. If either file does not exist, it is created.

-help
 Print a list of the SUNWpfb_config command line options, along with a brief
explanation of each.

-offset xval yval
 Adjust the position of the specified stream by the value specified. This option is
only implemented in -doublewide and -doublehigh modes. For
-doubelwide, use the xval to position the rightmost stream. Negative is left
(overlaps with the left stream). For -doublehigh, use the yval to position the
bottom stream. Negative is up (overlaps with top stream). The default is [0, 0].

-outputs swapped | direct
 Reverse or not reverse the positions of the -doublewide or -doublehigh outputs
relative to each other. The default is direct.

-propt
 Print the current values of all Sun XVR-100 options in the OWconfig file specified
by the -file option for the device specified by the -dev option. Print the values of
options as they will be in the OWconfig file after the call to SUNWpfb_config
completes.

This is a typical display:

--- OpenWindows Configuration for /dev/fbs/pfb0 ---
OWconfig: machine
Video Mode: NONE
Depth: not set

Screen Information:
  Doublewide: Disable
  Doublehigh: Disable
  Output Configuration: Direct

-prconf
Print the Sun XVR-100 hardware configuration.

This is a typical display:

--- Hardware Configuration for /dev/fbs/pfb0 ---
Type: XVR-100
ASIC: version 0x5159
REV : version 0x3000000
PROM: version 0

Monitor/Resolution Information:
  EDID Data: Not Available
  Current resolution setting: 1280x1024x75

Depth Information:
  Possible depths: 8, 24
  Current depth: 8

-res video-mode [ now | try [ noconfirm | nocheck ]]
Specify the video mode that drives the monitor connected to the specified Sun
XVR-100 device.

Video modes are built-in. The -res option requires you to specify the video-mode.
You can specify video-mode in the format of widthxheightxrate or as a symbolic name.

widthxheightxrate
Specify video-mode in the format of widthxheightxrate, where width is the screen
width in pixels, height is the screen height in pixels, and rate is the the vertical
frequency of the screen refresh. An example video mode specified in this format
is 1280x1024x76.

The -res option also accepts formats with @ preceding the refresh rate instead
of x,(1280x1024@76).

Symbolic Names
Some video modes have symbolic names defined for them. Instead of the form
widthxheightxrate format, you can specify one of the symbolic names as the
argument to the -res. The meaning of the symbolic name none is that when the
window system is run the screen resolution is the video mode that is currently
programmed in the device.

The following symbolic names and their corresponding video modes are supported:
Some video-modes, supported by Sun XVR-100, might not be supported by the monitor. Use the `-res` option to obtain the list of video-modes supported by the Sun XVR-100 device and the monitor.

The `-res` option also accepts additional, optional arguments immediately following the video mode specification. The following additional, optional arguments are supported:

- **nocheck**
  If present, the normal error checking based on the monitor sense code is suspended. The video mode specified by the user is accepted regardless of whether it is appropriate for the currently attached monitor. This option is useful if a different monitor is to be connected to the Sun XVR-100 device. Use of this option implies noconfirm as well.

- **noconfirm**
  You could put the system into an unusable state using the `-res` option, which has no video output. To reduce the chance of this, the default behavior of SUNWpfb_config is to print a warning message and to ask the user whether to continue. The noconfirm option bypasses this confirmation. This option is useful when you are running SUNWpfb_config from a shell script.

- **now**
  If present, updates the video mode in the OWconfig file and immediately programs the Sun XVR-100 device to display this video mode. This is useful for changing the video mode before starting the window system.

  Do not use this suboption with SUNWpfb_config while the configured device is being used, for example, while running the window system. Unpredictable results can occur.

  If you want to run SUNWpfb_config with the now suboption, first bring the window system down. If you use the now within a window system session, the video mode is changed immediately. The width and height of the affected screen will not change until the window system is exited and re-entered again. Additionally, the system might not recognize changes in stereo mode. This usage is discouraged.

- **try**
  If present, programs the specified video mode on a trial basis. You are asked to confirm the video mode by entering a `y` within 10 seconds. You can terminate the trial before 10 seconds by entering any character but `y` or RETURN. If you want to run SUNWpfb_config with the now suboption, first bring the
window system down. If you use the now suboption within a window system session, the video mode is changed immediately. The width and height of the affected screen won’t change until the window system is exited and re-entered again. Additionally, the system might not recognize changes in stereo mode. This usage is strongly discouraged.

-res \?
Print a list of defined video-mode names.

For a given invocation of SUNWpfb_config command line if an option does not appear on the command line, the corresponding OWconfig option is not updated; it retains its previous value.

When the window system is run, if an Sun XVR-100 option has never been specified by SUNWpfb_config, a default value is used. The options and their corresponding defaults are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dev</td>
<td>/dev/fb</td>
</tr>
<tr>
<td>-file</td>
<td>machine</td>
</tr>
<tr>
<td>-res</td>
<td>none</td>
</tr>
<tr>
<td>-fake8</td>
<td>disable</td>
</tr>
<tr>
<td>-depth</td>
<td>8</td>
</tr>
<tr>
<td>-doublewide</td>
<td>disable</td>
</tr>
<tr>
<td>-doublehigh</td>
<td>disable</td>
</tr>
<tr>
<td>-outputs</td>
<td>direct</td>
</tr>
<tr>
<td>-offset</td>
<td>[0,0]</td>
</tr>
</tbody>
</table>

The default for the -res option none means that when the window system is run the screen resolution will be the video mode that is currently programmed in the Sun XVR-100 PROM.

This provides compatibility for users who are used to specifying the device resolution through the Sun XVR-100 PROM. On some devices (e.g. GX) this is the only way of specifying the video mode. This means that the PROM ultimately determines the default Sun XVR-100 video mode.

**EXAMPLE 1 Switching the Monitor Type**

The following example switches the monitor type to the resolution of 1280 × 1024 at 76 Hz:
EXAMPLE 1 Switching the Monitor Type (Continued)

    example$ fbconfig -res 1280x1024x76

FILES
/dev/fbs/pfb
    Device special file for Sun XVR-100 single screen
/dev/fbs/pfb/a
    Device special file for the Sun XVR-100 first video out
/dev/fbs/pfb/b
    Device special file for the Sun XVR-100 second video out
/usr/lib/fbconfig/SUNWpfb_config
    Device special file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpfbcf</td>
</tr>
</tbody>
</table>

SEE ALSO
fbconfig(1M), attributes(5), pfb(7D)
XSun(1), dtlogin(1)
SUNWzulu_config(1M)

NAME
SUNWzulu_config – fbconfig module for configuring SunXVR-4000 Graphics Accelerator

SYNOPSIS
fbconfig [-dev device-filename] [-file machine | system]
    [options... | -defaults]

fbconfig [-dev device-filename] [-propt] [-prconf]

fbconfig [-dev device-filename] [-list | -help | -res ?]

fbconfig [-dev device-filename] [-doublewide enable | disable]
    [-doublehigh enable | disable]
    [-outputs direct | swapped | streamA | streamB]
    [-master a | b] [-clearpixel 0 | 255]

fbconfig [-dev device-filename] [-res video_mode [now | try]
    [noconfirm]] [-multisample available | disable | forceon]
    [-samples samples-per-pixel]
    [-jitter regular | random | permuted | auto]

fbconfig [-dev device-filename] [-stream a | b]
    [-filter cylinder | gaussian | mitchell | catmull]
    [-filter_file filter_filename [-offset xoff-value yoff-value]
        [-g gamma-correction-value] [-slave [ enable | disable]
        [framelock [internal | external] | genlock | bothlock]]
    [-genlock [defaults] [hphase ±hphs] [vphase ±vphs]
        [sync [auto | tip | tri | slice]] [pol [auto | pos | neg]]]

DESCRIPTION
SUNWzulu_config is the Sun XVR-4000 Graphics Accelerator device-dependent layer for fbconfig(1M). It configures the Sun XVR-4000 Graphics Accelerator and some of the X11 window system defaults and some interactions with 3D-accelerated graphics (through OpenGL).

The first through third synopses, above, show the general form of a SUNWzulu_config command. The fourth synopsis (with -res as the first option) shows card options. The fifth synopsis is for managed-area options. The sixth and last synopsis shows stream options. These option categories—card, managed-area, and streams—are used mainly to explain the SUNWzulu_config functions. Where appropriate, you can use options of different types on the same command line.

The Sun XVR-4000 device can support one or two unique video streams (called stream a and stream b), each of which can drive a display device.

Option Classes
The many options that fbconfig can select on the Sun XVR-4000 Graphics Accelerator are divided into the following categories:

general options
Shared among different invocation forms or used for query without selecting device settings.
card options
   Of the entire XVR-4000 Graphics Accelerator, shared between up to two video
   streams.

managed area options
   Pertain to an area of the frame buffer managed by X and possibly shared between
two video streams.

stream options
   Specific to a video stream.

To use the device to provide a single X managed area with one video stream, use a
stream-independent device argument (for example, -dev zulu0) without a trailing a
or b. The device name (for example, /dev/fb or /dev/fbs/zulu0), without any
trailing stream indicator should appear on the Xsun command line. Stream options
will control stream a (the only stream used).

To enable two streams from a single X managed area (without needing X’s
+xinerama option), use the device name (for example, -dev zulu0) without any
trailing a or b. Enable card option -doublewide or -doublehigh. Without using the
-stream option, any stream options you specify are applied to both streams. Stream
options can differ between the video streams if fbconfig is be run separately for
each stream, using the -stream a | b option, as shown in EXAMPLES (second
example), below.

To use the device’s two streams as independent X screens, run fbconfig separately
for each stream (-dev zulu0a and -dev zulu0b), as shown in EXAMPLES (third
eexample). Card options -doublehigh and -doublewide are not available. The
device names with trailing stream indicators (for example, /dev/fbs/zulu0a and
/dev/fbs/zulu0b) must be added to the Xsun command line to use these
independent X screens. The -stream option is not needed; the stream is implied by
the stream-specific device name.

The fbconfig utility checks settings for the two stream devices to assure X can use
them simultaneously. Therefore, you might need to use fbconfig to reduce resource
consumption (for example, -samples) used by one stream’s device (for example,
zulu0a) before you can use fbconfig to increase consumption by the other stream’s
device (for example, zulu0b).

The first form of SUNWzulu_config shown in SYNOPSIS, above, stores the specified
options in the OWconfig file associated with the device and (for stream options) the
stream. These options are used to initialize the device the next time the window
system is started on that device-filename. Updating options in the OWconfig file
provides persistence of these options across window system sessions and system
reboots. You can select the OWconfig file that is to be updated using the -file
option. For -jitter, -res now, -res try, and all stream options, the device will
also be immediately programmed.

The second form, which invokes any of the -prconf and -propt options, queries the
device for status that is card-specific.
The third form, which invokes the -help, -list, or -res \? options, provides instruction on using SUNWzulu_config, a list of available devices, or a list of available resolutions. When using this form, all other options are ignored.

You can specify options for only one device at a time.Specifying options for multiple devices (or multiple independent X managed areas or streams) requires multiple invocations of fbconfig.

Only Sun XVR-4000 Graphics Accelerator-specific options can be specified through SUNWzulu_config. Window system options for specifying default depth, default visual class, -nobanner, and so forth are still specified as device modifiers on the Xsun command line when the X server is started, probably in CDE’s Xservers file. See the Xsun(1) man page in the OpenWindows man page collection and /usr/dt/config/Xservers.

This section is subdivided into general, card, managed area, and stream options.

### OPTIONS

#### General Options

- **-dev device-filename**
  Specifies the device’s special file, such as /dev/fbs/zulu0 or the basename such as zulu0 as a shorthand. The default is /dev/fb. See “Device Usage and Invocation Forms,” above.

- **-file machine | system**
  Selects which OWconfig file to update. If machine, the machine-specific OWconfig file in the /etc/openwin directory tree is used. (This is the default.) If system, the global OWconfig file in the /usr/openwin directory tree is used. If the file does not exist, it is created.

- **-defaults**
  Resets all option values to their default values, listed in the DEFAULTS section, below. For example, invoking -defaults on zulu0, zulu0a, or zulu0b will reset all card, managed area, and stream options for all these zulu0 subdevices.

- **-propt**
  Displays the current values of all options in the OWconfig file specified by the -file option for the device specified by the -dev option. Displays the values of options as they will be in the OWconfig file after the call to SUNWzulu_config completes. The following is an example display:

```
--- OpenWindows Configuration for /dev/fbs/zulu0 ---

OWconfig File: machine

Card:
Double[wide/high]: disable
Stream to Port Mapping: direct (Stream A to Port A; B to B)
Clearpixel Value: 255

Managed Area:
Resolution: SUNW_STD_1280x1024x76
Samples Per Pixel: max
Multisample Mode: forceon
Jitter Table: auto
```
Video Streams:
Stream A:
  Offset (x,y):  (0, 0)
  Gamma Correction Value: 2.22
  Filter Type: mitchell
Stream B:
  Offset (x,y):  (0, 0)
  Gamma Correction Value: 2.22
  Filter Type: mitchell

Framelock:
  Framelock/Stereo Port: Output from Stream A
  Stream A Sync: Free Run (no frame sync)
  Stream B Sync: Free Run (no frame sync)

-prconfig
Displays the current XVR-4000 hardware configuration, including version numbers of each class of chip. The following is an example display:

--- Hardware Configuration for /dev/fbs/zulu0 ---
Type: XVR-4000 Graphics Accelerator
Part: 501-5588

Memory:
  MAJC: 128MB
  Texture: 1GB total
  3DRAM64: 10.0M samples

Versions:
  Fcode 1.19  MCode 1.4  MAJC 2.1
  FBC3 3.0  Master 1.0  Convolve 0.0
  Sched 1.0  I/O 1.0  FPGA 0.0

Power Level:
  Monitor Power: On
  Board Power: On

Video Streams:
Stream A:
  Current resolution setting: SUNW_STD_1280x1024x76
  Flags: Allocated Default Primary
  Samples per pixel: 6
  Port: 13W3a
  Monitor/EDID data (13W3)
    Monitor Manufacturer: SUN
    Monitor Name: GDM-5410
    EDID: Version 1, Revision 2

Stream B:
  Current resolution setting: SUNW_STD_1280x1024x76
  Flags: Allocated
  Samples per pixel: 2
  Port: 13W3b
  Monitor/EDID data (13W3)
    Monitor Manufacturer: SUN
    EDID: Version 1, Revision 3
-help
Displays a list of the SUNWzulu_config command line options, along with a brief explanation of each.

-res \?
Displays list of defined video mode names supported by the XVR-4000 Graphics Accelerator and the display device.

**Card Options**

- **doublewide enable | disable**
  This option makes it easy for you to combine both streams into one side-by-side virtual display. When enabled with -outputs direct, stream a is to the left of stream b. Both streams will use the same video mode defined with the -res option. If you specify disable, only stream a will be enabled. Enabling -doublewide disables -doublehigh.

- **doublehigh enable | disable**
  This option makes it easy for you to combine both streams into one virtual display with one display device above the other. When enabled with -outputs direct, stream a is above stream b. Both streams will use the same video mode defined with the -res option. If you specify disable, only stream a will be enabled. Enabling -doublehigh disables -doublewide.

- **outputs direct | swapped | streamA | streamB**
  Controls the internal routing of video streams to output ports (that is, backplane 13W3 connectors). The choices are:
  
  - **direct**
    Stream a to output port a, stream b to output port b
  
  - **swapped**
    Stream a to output port b, stream b to output port a
  
  - **streamA**
    Stream a to both output ports
  
  - **streamB**
    Stream b to both output ports

  The default is direct. swapped can be used to reverse the connectors when -doublewide or -doublehigh is enabled. The streamA and streamB arguments are incompatible with stream-specific device names (for example, zulu0a or zulu0b). When the -res option selects an S-video (NTSC or PAL composite) video mode, the svideo output port is automatically selected, sometimes overriding -outputs selection.

- **master a | b**
  This option controls which stream drives the FIELD and FRAME_OUT pins on the device’s stereo/sync connector. This pin can drive stereo shutter glasses, and allow another device to framelock to this device’s output. The default is a.

  Independent of this option, the -slave external option allows a stream to sync to another card by means of this connector’s FIELD_IN pin.
Selects the overlay transparent color. This is the pixel value (color index) used by the transparent overlay visual to display the underlay (RGB) pixel contents. The default is 255 (all bits 1), but some applications require 0. All other color indices display a colormap color.

```
-clearpixel 0 | 255
```

The `video_mode` argument specifies resolution and timing information for the display (for example, `SUNW_STD_1280x1024x76`). The naming convention for the video mode specifier is:

`origin_type_widthxheightxrate`

The elements of the specifier are described as follows:

- `origin`
  - This can be one of:
    - `SUNW` Sun-derived resolution
    - `VESA` Video Electronics Standards Association-derived resolution
    - `other` other source

- `type`
  - This can be one or more of:
    - `STD` normal resolution, usable by most display devices
    - `DIG` resolution tuned only for LCD flat panels
    - `INT` interlaced
    - `STEREO` stereo

- `width`
  - screen width in pixels

- `height`
  - screen height in pixels

- `rate`
  - vertical frequency of the screen refresh (in hertz, that is, video frames per second)

Note that some video modes supported by the XVR-4000 might not be supported by the display device. The list of video modes supported by the device and the display device can be obtained by running `SUNWzulu_config` with the `-res` option.
The -res option also implicitly specifies the resolution of the X screen’s managed area. It is the same as the video mode resolution, or twice the width or height in the case of -doublewide or -doublehigh, respectively.

The -res option also accepts additional, optional arguments, listed below, immediately following the video mode specification. Either now or try (try subsumes now) and noconfirm can be present.

now
If present, not only is the video mode updated in the OWconfig file, but the device is immediately programmed to display this video mode. This is useful for testing the video mode before starting the window system.

It is recommended that you not use the try or now suboptions while the configured device is being used (for example, while running the window system). The best practice is to exit the window system beforehand. If these suboptions are used within a window system session, the video mode is changed immediately, but the width and height of the affected X window system’s screen do not change until the window system restarts. (The buffer may be scaled or cropped if the resolution is lowered; a black border may surround the buffer if it is increased. In addition, the system might not recognize changes in stereo mode.)

noconfirm
Using the -res option, the user can put the system into an unusable state, with no video output. To reduce the chance of this, the default behavior of SUNWzulu_config is to display a warning message and ask the user whether to continue. The noconfirm argument bypasses this confirmation. This option is useful when SUNWzulu_config is being run from a shell script.

try
If present, the specified video mode will be programmed on a trial basis. The user is asked to confirm the video mode by typing y within 10 seconds. Alternatively, the user can terminate the trial before 10 seconds elapse by typing any character other than y or return. Such input is considered a no and the previous video mode is restored. With a negative response, SUNWzulu_config does not change the video mode in the OWconfig file; other options specified still take effect. If a carriage return is typed, the user is asked (y or n) whether to keep the new video mode.

The try suboption implies the now suboption. See the warning note in the description of the now suboption, above. The try option can be used to test a video mode. Best practice is to then restart the window system or to reject the video mode and then set it again without the try or now suboptions (for the next time the window system starts).

-multisample available | disable | forceon
The -multisample option controls whether a multisample buffer is allocated by the window system and used by OpenGL applications. The suboptions are:
disable
No multisample rendering is possible. Only one sample per pixel is allocated, despite the -samples option value. Furthermore, display filtering is disabled.

available
Multisample is possible but is selected on a per-application basis. (Each process may choose whether to multisample at the density allocated when the window system started, or not to multisample at all. Intermediate densities are not possible.)

forceon
Sun OpenGL will use multisample rendering for all applications. There may be a minor performance penalty for rendering at higher sample densities.

Multisample allocation occurs when the window system starts up. This is the only allocation mode supported on the Sun XVR-4000 Graphics Accelerator.

-samples samples-per-pixel
Specifies the number of samples per pixel to allocate when multisample is not disable. Allowable choices are 1 to 16 or max, but a very high sample density can be allocated only at low resolution. Setting sample density to 1 is not equivalent to disabling multisampling; samples will still be subject to filtering and jitter. Sample resolutions (without frame rates) and their maximum sample densities follow.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Maximum Density</th>
<th>Maximum Balanced Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>width by height</td>
<td>(single stream)</td>
<td>(one stream + another)</td>
</tr>
<tr>
<td>1920 by 1200</td>
<td>4 samples</td>
<td>2 + 2 samples</td>
</tr>
<tr>
<td>1600 by 1200</td>
<td>5 samples</td>
<td>3 + 2 samples</td>
</tr>
<tr>
<td>1600 by 1024</td>
<td>6 samples</td>
<td>3 + 3 samples</td>
</tr>
<tr>
<td>1280 by 1024</td>
<td>8 samples</td>
<td>4 + 4 samples</td>
</tr>
<tr>
<td>1152 by 900</td>
<td>9 samples</td>
<td>5 + 4 samples</td>
</tr>
<tr>
<td>1024 by 800</td>
<td>11 samples</td>
<td>5 + 5 samples</td>
</tr>
<tr>
<td>800 by 600</td>
<td>15 samples</td>
<td>7 + 7 samples</td>
</tr>
<tr>
<td>768 by 575</td>
<td>15 samples</td>
<td>7 + 7 samples</td>
</tr>
<tr>
<td>640 by 480</td>
<td>16 samples</td>
<td>9 + 9 samples</td>
</tr>
</tbody>
</table>

The default is max, which means to use the maximum number of samples that can be supported with the amount of memory available, possibly dependent on the video timing (horizontal frequency).
For dual independent streams, if the first stream used by the window system (typically, the first in the Xservers file) chooses max, it takes most of the memory and video resources. The second stream can then use only a low sample density. If it also chooses max, X automatically finds the highest sample density remaining, such as 1 or 2 samples per pixel. To assign sample density more evenly, set each stream’s density explicitly. SUNWzulu_config allows a combination of resolutions and sample densities only if they will coexist successfully. You might have to reduce one stream’s sample density (or choose max) before you can increase the other stream’s.

\[-jitter regular | random | permuted | auto\]

Indirectly determines the subpixel (X,Y) locations of the samples stored in the sample buffer. (The sample density also affects the sample locations.) Choices are:

- **regular**
  - Samples are regularly-spaced both vertically and horizontally. The sample locations repeat every pixel or two in X and Y.

- **random**
  - Samples are pseudo-randomly (irregularly) spaced within the pixel. The sample locations repeat every 2 pixels in X and Y.

- **permuted**
  - Samples are pseudo-randomly spaced within the pixel, and also permuted (stirred) in hardware so that the sample locations repeat every 128 pixels in X and Y. At moderate to high sample density, this choice can improve visual quality. At low sample density, straight lines or edges can appear jagged.

- **auto**
  - Automatically selects the best jitter option for the current sample density. This is the default.

The same jitter selection must be used by OpenGL when rendering and by the display subsystem when refreshing the display from the sample buffer. The jitter value is changed immediately in hardware, but any multisamples already in the sample buffer were rendered using the prior jitter selection; that will look incorrect (for example, unstraight lines or edges) if the jitter selection is changed.

When a new OpenGL application starts up, it will render using the new jitter selection. (The window system need not be restarted.) The jitter value is also saved in the OWconfig file for the next time the window system starts.

\[-stream a | b\]

Determines whether stream options will be set for stream a or stream b. The "Device Usage and Invocation Forms" section, above, describes the usage and the default. The -stream option is required only to set different stream options for the two video streams enabled using card option -doublewide or -doublehigh.

\[-filter cylinder | gaussian | mitchell | catmull\]

\[-filter_file filter_filename\]

There are two ways to configure filtering. The -filter option is the simpler. It selects from these predefined filters:
cylinder
  Poorest visual quality, most like a box filter.

gaussian
  Blurriest; suitable for users who want to forgo detail to avoid all visible sampling
  artifacts.

mitchell
  The best photo-realistic compromise between sharp detail and noticeable
  blurriness. This filter is the default.

catmull
  The Catmull-Rom filter produces images a little sharper than Mitchell, but are
  more likely to have visible sampling artifacts, widely known as “jaggies”.

The -filter_file option allows a user to provide his own filter by producing a
filter file and copying or linking it into the directory
/etc/openwin/server/etc/filters or
/usr/openwin/server/etc/filters. (Both directories are writable by
super-user by default.) The filter_filename must not start with / or .. / nor contain
the substring /../, but can contain subdirectory components.

fbconfig and X search the directories above in the order listed. If the
filter_filename is present and valid, the file takes precedence over a predefined filter.

The format of the file is a sequence of floating-point radius and weight values, each
value separated by whitespace. Radius values must be monotonically increasing
from 0. Weight values must be between -1.0 and +1.0, inclusive. Though more
values can be present in the file, only values through radius 2.0 are used.
Whitespace and comment lines prefixed with a hash mark (#) are ignored.

Example files contain the (irregular) radius values for which the device uses weight
values. The file reader interpolates between existing values if the required radius is
not present.

A valid filter option is changed immediately in hardware and saved in the
OWconfig file for the next time the window system starts. However, when
multisample is disabled, no filtering occurs.

-offset xoff-value yoff-value
  Offsets the display of the stream (specified by -stream) relative to the adjoining
  edge of the other stream when doublewide or doublehigh is enabled. This can be
  used to cause an overlap.

  xoff-value
    Number of pixels offset in horizontal direction for the righthand stream when
doublewide is enabled. Positive direction is to the right (create a gap); negative is
to the left (overlap the streams). Default is 0, which means the two edges abut.

  yoff-value
    Number of pixels offset in vertical direction for the bottom stream when
doublehigh is enabled. Positive direction is down (create a gap); negative is up
(overlap the streams). Default is 0, which means the two edges touch.

```
-g gamma-correction-value
```

This option changes the gamma correction value. By default the gamma correction value is 2.22. Any value less than zero is illegal. This option can be used while the window system is running. Changing the gamma correction value will affect all the windows being displayed using gamma-corrected visuals. The gamma correction value is also saved in the OWconfig file for the next time the window system starts.

```
-slave [enable | disable]
[framelock [internal | external] | genlock | bothlock ]
```

This option allows you to enable a synchronization technique for the specified stream. Available techniques:

```
framelock [internal | external]
```

This provides "asynchronous frame reset": multiple streams all start a frame at roughly the same time. This allows stereo shutters to view the same eye's image from all the synchronized display devices. Using framelock requires the incoming synchronization signal have the same frame rate as the stream's video format.

When using framelock (or bothlock), you can also specify the synchronization source:

```
internal
```

Indicates that the sync source is the other stream of this device.

```
external
```

Indicates the sync is taken from a source outside the device. Using external requires a Frame Lock Cable (part number 530-2754) to be connected. If -slave enable is used without specifying a technique, framelock external is used.

```
genlock
```

This provides pixel-accurate horizontal synchronization, which is important in some video mixing situations. Use of genlock requires a genlock cable. Use of bothlock is recommended, when possible. Certain video formats are incompatible with genlock.

```
bothlock
```

This enables both framelock and genlock techniques, and requires both framelock (if external) and genlock cables.

```
-genlock [defaults] [hphase ±hphs][vphase ±vphs]
[sync [auto|tip|tri|slice]][pol [auto|pos|neg]]
```

When -slave is enabled and the genlock technique is selected, the selections chosen with the -genlock option determine genlock details. These details are used immediately by the hardware, and saved in the OWconfig file for future use. Note that they may no longer be desired after changing to a different video format.
defaults
Reset all genlock details to their defaults.

hphase ±hphs
The horizontal phase allows a pixel offset between the external video format and
the stream's output. It may be specified as an absolute integer ranging from 0 to
the total number of pixel clocks in a horizontal period (active video plus blanked
pixels). Or, if the hphs starts with a + or -, the value will be added to the current
horizontal phase and and saved, modulo the valid range. Small deltas can be
used repeatedly until the desired effect is observed.

vphase ±vphs
The vertical phase allows a scanline offset between the external video format
and the stream's output. It can be specified as an absolute integer ranging from 0
to the total number of scanlines in a frame (active video plus blanked scanlines).
Or, if the vphs starts with a + or -, the value will be added to the current vertical
phase and and saved, modulo the valid range. Small deltas can be used
repeatedly until the desired effect is observed.

sync[auto|tip|slice|tri]
This option controls the details of input sync signal sampling, if necessary:

auto
Sample the genlock input pulses as most appropriate for the (Sun) video
format. This is the default, and should be used whenever the sync master is
also a Sun video format.

tip
Consider the sync to have occurred at the minimum signal value. This can be
used with RS-170 (NTSC or PAL) or with TTL signals.
slice
Consider the frame sync to have occurred halfway between the minimum and
maximum value (sync tip and back porch "blank" levels). This can be used
with RS-170 (NTSC or PAL) or with TTL signals.
tri
Synchronize to a tri-level signal, used by HDTV analog formats.

pol[auto|pos|neg]
When the sync master is not a Sun video format, it might be necessary to choose
which edge of the genlock input sync pulse should be used for genlock.

auto
Choose rising or falling edge for sync pulse, whichever is most appropriate
for the video format. This is the default, and should be used whenever the
sync master is also a Sun video format.
pos
Synchronize with a rising edge of a sync pulse.

neg
Synchronize with a falling edge of a sync pulse.
For a given invocation of `SUNWzulu_config`, if an option does not appear on the command line, the corresponding `OWconfig` option is not updated. It retains its previous value.

When the window system starts, if an option has never been specified through `SUNWzulu_config`, a default value is used. The option defaults are as follows:

<table>
<thead>
<tr>
<th>Option Class</th>
<th>Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>-dev</td>
<td>/dev/fb</td>
</tr>
<tr>
<td>General</td>
<td>-file</td>
<td>machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(/etc/openwin/server/etc/OWconfig)</td>
</tr>
<tr>
<td>Card</td>
<td>-doublewide</td>
<td>disable</td>
</tr>
<tr>
<td>Card</td>
<td>-doublehigh</td>
<td>disable</td>
</tr>
<tr>
<td>Card</td>
<td>-master</td>
<td>a</td>
</tr>
<tr>
<td>Card</td>
<td>-outputs</td>
<td>direct</td>
</tr>
<tr>
<td>Card</td>
<td>-clearpixel</td>
<td>255</td>
</tr>
<tr>
<td>Managed Area</td>
<td>-res</td>
<td>SUNW_STD_1280x1024x76</td>
</tr>
<tr>
<td>Managed Area</td>
<td>-multisample</td>
<td>forceon</td>
</tr>
<tr>
<td>Managed Area</td>
<td>-samples</td>
<td>max</td>
</tr>
<tr>
<td>Managed Area</td>
<td>-jitter</td>
<td>auto</td>
</tr>
<tr>
<td>Stream</td>
<td>-offset</td>
<td>0,0</td>
</tr>
<tr>
<td>Stream</td>
<td>-filter</td>
<td>mitchell</td>
</tr>
<tr>
<td>Stream</td>
<td>-slave</td>
<td>disable/external/framelock</td>
</tr>
<tr>
<td>Stream</td>
<td>-genlock</td>
<td>hphase 0/vphase 0/auto/auto</td>
</tr>
<tr>
<td>Stream</td>
<td>-g</td>
<td>2.22</td>
</tr>
</tbody>
</table>

**EXAMPLE 1** Switching Resolution of a Monitor

The following example switches to the resolution of 1280 by 1024 at 76 hertz:

```
% fbconfig -dev zulu0 -res SUNW_STD_1280x1024x76
```

**EXAMPLE 2** Using Two Side-by-side Monitors with One Large X Screen

The following example enables use of two side-by-side monitors to display together a single large shared X window system "screen" (frame buffer managed area):

```
% fbconfig -dev zulu0 -doublewide enable
```

If the wrong monitor is on the left, they can be swapped in software:

```
% fbconfig -dev zulu0 -outputs swapped
```

A stream option selects a Gaussian (blurry) filter for video stream b:

```
% fbconfig -dev zulu0 -stream b -filter gaussian
```

For the two examples above, the factory-installed `/usr/dt/config/Xservers` file is sufficient (if `/dev/fb` is a link to the Sun XVR-4000 Graphics Accelerator device). If an `/etc/dt/config/Xservers` file exists, for Example 1 or 2, the file would refer to device `zulu0` (not `zulu0a` or `zulu0b`):

```
:0 Local local_uid@console root /usr/openwin/bin/Xsun -dev /dev/fbs/zulu0
```
EXAMPLE 2 Using Two Side-by-side Monitors with One Large X Screen  (Continued)

EXAMPLE 3 Using Two Displays as Independent X Screens

The following example enables use of two displays, each with their own X window system managed frame buffer area and resolution. The larger resolution is not multisampled or filtered, so the smaller resolution will have more samples available to it.

% fbconfig -dev zulu0a -res SUNW_STD_1920x1200x75 -multisample disable
% fbconfig -dev zulu0b -res SUNW_STD_1280x1024x76 -samples max

In this example, and assuming the display device for stream b is to the right of that for stream a, the /etc/dt/config/Xservers file might contain (as one long line):

:0 Local local_uid=console root /usr/openwin/bin/Xsun -nobanner
   -dev /dev/fbs/zulu0a -dev /dev/fbs/zulu0b right

FILES
/dev/fb
  default device file
/usr/lib/fbconfig/SUNWzulu_config
  device configuration program
/etc/openwin/server/etc/filters/
  root file system directory for filter files
/usr/openwin/server/etc/filters/
  /usr file system directory for filter files

An administrator might also have to edit /etc/dt/config/Xservers.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWzulu</td>
</tr>
</tbody>
</table>

SEE ALSO
fbconfig(1M), attributes(5)

See the dtlogin(1) man page in the CDE man page collection. Also useful is the Xsun(1) man page in the OpenWindows man page collection.
The `swap` utility provides a method of adding, deleting, and monitoring the system swap areas used by the memory manager.

### OPTIONS

The following options are supported:

- `-a swapname` Add the specified swap area. This option can only be used by the super-user. `swapname` is the name of the swap file: for example, `/dev/dsk/c0t0d0s1` or a regular file. `swaplow` is the offset in 512-byte blocks into the file where the swap area should begin. `swaplen` is the desired length of the swap area in 512-byte blocks. The value of `swaplen` can not be less than 16. For example, if `n` blocks are specified, then `(n-1)` blocks would be the actual swap length. `swaplen` must be at least one page in length. The size of a page of memory can be determined by using the `pagesize` command. See `pagesize(1)`. Since the first page of a swap file is automatically skipped, and a swap file needs to be at least one page in length, the minimum size should be a multiple of 2 pagesize bytes. The size of a page of memory is machine dependent.

`swaplow + swaplen` must be less than or equal to the size of the swap file. If `swaplen` is not specified, an area will be added starting at `swaplow` and extending to the end of the designated file. If neither `swaplow` nor `swaplen` are specified, the whole file will be used except for the first page. Swap areas are normally added automatically during system startup by the `/sbin/swapadd` script. This script adds all swap areas which have been specified in the `/etc/vfstab` file; for the syntax of these specifications, see `vfstab(4)`.

To use an NFS or local file-system `swapname`, you should first create a file using `mkfile(1M)`. A local file-system swap file can now be added to the running system by just running the `swap -a` command. For NFS mounted swap files, the server needs to export the file. Do this by performing the following steps:

1. Add the following line to `/etc/dfs/dfstab`:

   ```
   share -F nfs -o rw=clientname,root=clientname
   path-to-swap-file
   ```

   `swap(1M)`
swap(1M)

2. Run `shareall(1M)`.

3. Have the client add the following lines to `/etc/vfstab`:

```
server: path-to-swap-file  -  local-path-to-swap-file
  local-path-to-swap-file  -  swap  -  -
```

4. Have the client run `mount`:

```
# mount local-path-to-swap-file
```

5. The client can then run `swap -a` to add the swap space:

```
# swap -a local-path-to-swap-file
```

```
-d swapname
```

Delete the specified swap area. This option can only be used by the super-user. `swapname` is the name of the swap file: for example, `/dev/dsk/c0t0d0s1` or a regular file. `swaplow` is the offset in 512-byte blocks into the swap area to be deleted. If `swaplow` is not specified, the area will be deleted starting at the second page. When the command completes, swap blocks can no longer be allocated from this area and all swap blocks previously in use in this swap area have been moved to other swap areas.

```
-l
```

List the status of all the swap areas. The output has five columns:

```
path      The path name for the swap area.
dev       The major/minor device number in decimal if it is a block special device; zeroes otherwise.
swaplo    The `swaplow` value for the area in 512-byte blocks.
blocks    The `swaplen` value for the area in 512-byte blocks.
free      The number of 512-byte blocks in this area that are not currently allocated.
```

The list does not include swap space in the form of physical memory because this space is not associated with a particular swap area.

If `swap -l` is run while `swapname` is in the process of being deleted (by `swap -d`), the string INDEL will appear in a sixth column of the swap stats.

```
-s
```

Print summary information about total swap space usage and availability:

```
allocated  The total amount of swap space in bytes currently allocated for use as backing store.
```
The total amount of swap space in bytes not currently allocated, but claimed by memory mappings for possible future use.

The total amount of swap space in bytes that is either allocated or reserved.

The total swap space in bytes that is currently available for future reservation and allocation.

These numbers include swap space from all configured swap areas as listed by the -l option, as well swap space in the form of physical memory.

Only the first 2 Gbyte of a block device larger than 2 Gbyte in size can be used for swap in swapfs on a 32-bit operating system. With a 64-bit operating system, a block device larger than 2 Gbyte can be fully utilized for swap up to $2^{31} - 1$ bytes.

See environ(5) for descriptions of the following environment variables that affect the execution of swap: LC_CTYPE and LC_MESSAGE.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

See also pagesize(1), mkfile(1M), shareall(1M), getpagesize(3C), vfstab(4), attributes(5), largefile(5)

No check is done to determine if a swap area being added overlaps with an existing file system.
swmtool(1M)

NAME  swmtool – install, upgrade, and remove software packages

SYNOPSIS  swmtool [-d directory]

DESCRIPTION The swmtool command invokes the admintool(1M) application, which is preselected to add or remove software. Using the swmtool command, you can add software from a product CD or hard disk to an installed system, or you can remove software from an installed system.

Once logged in, you may run swmtool to examine the packages on your local system.

Membership in the sysadmin group (gid 14) is used to restrict access to administrative tasks. Members of the sysadmin group can use swmtool to add or remove software packages. Non-members have read-only permissions (where applicable).

Help is available by using the Help button.

OPTIONS  -d directory

Specify the directory containing the software to be installed.

EXAMPLES  EXAMPLE 1 A sample display of using swmtool command.

The following example starts the admintool() application and tells it to look for software packages in the local directory /cdrom/cdrom0/s0 (the default directory for a CD when running Volume Manager).

```
example$ /usr/sbin/swmtool -d /cdrom/cdrom0/s0
```

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmap</td>
</tr>
</tbody>
</table>

SEE ALSO  admintool(1M), pkgadd(1M), pkgrm(1M), attributes(5)

Solaris Advanced User’s Guide
NAME
sxconfig – configure contiguous memory for the SX video subsystem

SYNOPSIS
/usr/platform/platform-name/sbin/sxconfig -c
/usr/platform/platform-name/sbin/sxconfig -d
/usr/platform/platform-name/sbin/sxconfig [-f | -n] [-l limit]
        [-s size]

DESCRIPTION
The sxconfig command configures contiguous memory parameters for exclusive use
by the SX video system on the Desktop SPARCsystems with graphics option.
platform-name can be found using the -i option of uname(1).

After configuring the physically contiguous memory, using the various options
described below, the system must be rebooted for the changes to take effect. If this
command is being used to configure physically contiguous memory for the first time
after the system software has been installed, then the system must be rebooted using
the reconfiguration option (-r) of boot(1M).

The amount of memory to be reserved depends upon the type of application.
Applications that benefit from the availability of contiguous memory are those that are
written to the XGL and XIL graphics and imaging foundation library APIs.

The Platform Notes: SPARCstation 10SX System Configuration Guide provides more
detailed information regarding how much memory to reserve for various types of
graphics and imaging applications.

sxconfig is supported only on Desktop SPARCsystems with SX graphics option.

The interface, output, and command location are uncommitted and subject to change
in future releases.

OPTIONS
The following options are supported:

- c
  Display the current configuration parameters in the driver
  configuration file. If the system was not rebooted after previously
  changing the configuration parameters, then the displayed values
  do not reflect the actual system setup.

- d
  Restore all configuration parameters to the default values. By
  default, 0 megabytes of physically contiguous memory are
  reserved, fragmentation is not allowed, and 32 megabytes of
  memory are reserved for system use.

- f
  Allow fragmentation. If no single chunk of memory of at least the
  requested size is found, allow the request to span multiple chunks.
  This flag also specifies that less than size megabytes of data may
  be reserved if there are not enough contiguous chunks available. If
  this flag is not specified, then the memory reserved must be
  exactly one chunk of the requested size for the request to succeed.

- n
  Specify that fragmentation is not allowed.
**Examples**

**Example 1 Using sxconfig**

The following example reserves 16 megabytes of contiguous memory without fragmentation and indicates 32 megabytes of memory should remain for system use after reserving the contiguous memory:

```
example# sxconfig -s 16 -l 32
```

**Example 2 Using sxconfig with Fragmentation**

The following example reserves 16 megabytes of contiguous memory with fragmentation allowed and indicates 32 megabytes of memory should remain for system use after reserving the contiguous memory:

```
example# sxconfig -s 16 -f -l 32
```

**Example 3 Reporting Current Configuration Parameters**

The following example reports current configuration parameters in the driver configuration file:

```
example# sxconfig -c
```

**Example 4 Restoring Configuration Parameters to Default Values**

The following example restores all configuration parameters to the default values:

```
example# sxconfig -d
```

**Example 5 Disabling Fragmentation**

The following example disables fragmentation:

```
example# sxconfig -n
```

**Exit Status**

`sxconfig` returns 0 on success, and a positive integer on failure.

- 1: Permission denied. Only root can run this command.
- 2: Configuration file `sx_cmem.conf` does not exist.
- 3: Illegal option.
- 4: Illegal combination of options.
5 Illegal argument for -s option. Should be an integer.
6 Illegal argument for -l option. Should be an integer.

FILES
/platform/platform-name/kernel/drv/sx_cmem
Contiguous memory device driver

/platform/platform-name/kernel/drv/sx_cmem.conf
Configuration file for contiguous memory driver

/etc/init.d/sxcmem
Contiguous memory startup script

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkvm</td>
</tr>
</tbody>
</table>

SEE ALSO
uname(1), boot(1M), init(1M), attributes(5)

Platform Notes: SPARCstation 10SX System Configuration Guide
sync(1M)

NAME         sync – update the super block
SYNOPSIS     sync
DESCRIPTION sync executes the sync system primitive. If the system is to be stopped, sync must be called to insure file system integrity. It will flush all previously unwritten system buffers out to disk, thus assuring that all file modifications up to that point will be saved. See sync(2) for details.

ATTRIBUTES   See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO      sync(2), attributes(5)
NAME
syncinit – set serial line interface operating parameters

SYNOPSIS
/usr/sbin/syncinit device [ [baud_rate] | [keyword=value,...] [single-word option] ]

DESCRIPTION
The syncinit utility allows the user to modify some of the hardware operating
modes common to synchronous serial lines. This can be useful in troubleshooting a
link, or necessary to the operation of a communications package.

If run without options, syncinit reports the options as presently set on the port. If
options are specified, the new settings are reported after they have been made.

OPTIONS
Options to syncinit normally take the form of a keyword, followed by an equal sign
and a value. The exception is that a baud rate may be specified as a decimal integer by
itself. Keywords must begin with the value shown in the options table, but may
contain additional letters up to the equal sign. For example, loop= and loopback=
are equivalent.

The following options are supported:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>yes</td>
<td>Set the port to operate in internal loopback mode. The receiver is electrically disconnected from the DCE receive data input and tied to the outgoing transmit data line. Transmit data is available to the DCE. The Digital Phase-Locked Loop (DPLL) may not be used as a clock source in this mode. If no other clocking options have been specified, perform the equivalent of txc=baud and rxc=baud.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Disable internal loopback mode. If no other clocking options have been specified, perform the equivalent of txc=txc and rxc=rxc.</td>
</tr>
<tr>
<td>echo</td>
<td>yes</td>
<td>Set the port to operate in auto-echo mode. The transmit data output is electrically disconnected from the transmitter and tied to the receive data input. Incoming receive data is still visible. Use of this mode in combination with local loopback mode has no value, and should be rejected by the device driver. The auto-echo mode is useful to make a system become the endpoint of a remote loopback test.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Disable auto-echo mode.</td>
</tr>
<tr>
<td>nrzi</td>
<td>yes</td>
<td>Set the port to operate with NRZI data encoding.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Set the port to operate with NRZ data encoding.</td>
</tr>
<tr>
<td>txc</td>
<td>txc</td>
<td>Transmit clock source will be the TxC signal (pin 15).</td>
</tr>
<tr>
<td>rxc</td>
<td></td>
<td>Transmit clock source will be the RxC signal (pin 17).</td>
</tr>
</tbody>
</table>
**.syncinit(1M)**

- **baud**  Transmit clock source will be the internal baud rate generator.
- **pll**  Transmit clock source will be the output of the DPLL circuit.
- **rxc**  Receive clock source will be the RxC signal (pin 17).
- **txc**  Receive clock source will be the TxC signal (pin 15).
- **baud**  Receive clock source will be the internal baud rate generator.
- **pll**  Receive clock source will be the output of the DPLL circuit.
- **speed**  integer  Set the baud rate to integer bits per second.

There are also several single-word options that set one or more parameters at a time:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Equivalent to Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>external</td>
<td>txc=txc rxc=rxc loop=no</td>
</tr>
<tr>
<td>sender</td>
<td>txc=baud rxc=rxc loop=no</td>
</tr>
<tr>
<td>internal</td>
<td>txc=pll rxc=pll loop=no</td>
</tr>
<tr>
<td>stop</td>
<td>speed=0</td>
</tr>
</tbody>
</table>

**EXAMPLES**

**EXAMPLE 1 Using syncinit**

The following command sets the first CPU port to loop internally, using internal clocking and operating at 38400 baud:

```
example# syncinit zsh0 38400 loop=yes
device: /dev/zsh ppa: 0
speed=38400, loopback=yes, echo=no, nrzi=no, txc=baud, rxc=baud
```

The following command sets the same port’s clocking, local loopback and baud rate settings to their default values:

```
example# syncinit zsh0 stop loop=no
device: /dev/zsh ppa: 0
speed=0, loopback=no, echo=no, nrzi=no, txc=txc, rxc=rxc
```

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
syncloop(1M), syncstat(1M), intro(2), ioctl(2), attributes(5), zsh(7D)
DIAGNOSTICS

device missing minor device number
The name `device` does not end in a decimal number that can be used as a minor device number.

bad speed: `arg`
The string `arg` that accompanied the `speed=` option could not be interpreted as a decimal integer.

Bad arg: `arg`
The string `arg` did not make sense as an option.

ioctl failure code = `errno`
An ioctl(2) system call failed. The meaning of the value of `errno` may be found in intro(2).

WARNINGS

Do not use `syncinit` on an active serial link, unless needed to resolve an error condition. Do not use this command casually or without being aware of the consequences.
The `syncloop` command performs several loopback tests that are useful in exercising the various components of a serial communications link.

Before running a test, `syncloop` opens the designated port and configures it according to command line options and the specified test type. It announces the names of the devices being used to control the hardware channel, the channel number (ppa) corresponding to the `device` argument, and the parameters it has set for that channel. It then runs the loopback test in three phases.

The first phase is to listen on the port for any activity. If no activity is seen for at least four seconds, `syncloop` proceeds to the next phase. Otherwise, the user is informed that the line is active and that the test cannot proceed, and the program exits.

In the second phase, called the "first-packet" phase, `syncloop` attempts to send and receive one packet. The program will wait for up to four seconds for the returned packet. If no packets are seen after five attempts, the test fails with an excoriating message. If a packet is returned, the result is compared with the original. If the length and content do not match exactly, the test fails.

The final phase, known as the "multiple-packet" phase, attempts to send many packets through the loop. Because the program has verified the integrity of the link in the first-packet phase, the test will not fail after a particular number of timeouts. If a packet is not seen after four seconds, a message is displayed. Otherwise, a count of the number of packets received is updated on the display once per second. If it becomes obvious that the test is not receiving packets during this phase, the user may wish to stop the program manually. The number and size of the packets sent during this phase is determined by default values, or by command line options. Each returned packet is compared with its original for length and content. If a mismatch is detected, the test fails. The test completes when the required number of packets have been sent, regardless of errors.

After the multiple-packet phase has completed, the program displays a summary of the hardware event statistics for the channel that was tested. The display takes the following form:

```
CRC errors  Aborts  Overruns  Underruns  In<-Drops-> Out
  0        0        0       0          0            0
```

This is followed by an estimated line speed, which is an approximation of the bit rate of the line, based on the number of bytes sent and the actual time that it took to send them.

The options for `syncloop` are described in the following table:
### Option Parameter Default Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>packet_count</td>
<td>100</td>
<td>Specifies the number of packets to be sent in the multiple-packet phase.</td>
</tr>
<tr>
<td>-d</td>
<td>hex_data_byte</td>
<td>random</td>
<td>Specifies that each packet will be filled with bytes with the value of hex_data_byte.</td>
</tr>
<tr>
<td>-l</td>
<td>packet_length</td>
<td>100</td>
<td>Specifies the length of each packet in bytes.</td>
</tr>
<tr>
<td>-s</td>
<td>line_speed</td>
<td>9600</td>
<td>Bit rate in bits per second.</td>
</tr>
<tr>
<td>-v</td>
<td></td>
<td></td>
<td>Sets verbose mode. If data errors occur, the expected and received data is displayed.</td>
</tr>
<tr>
<td>-t</td>
<td>test_type</td>
<td>none</td>
<td>A number, from 1 to 4, that specifies which test to perform. The values for test_type are as follows: 1: Internal loopback test. Port loopback is on. Transmit and receive clock sources are internal (baud rate generator). 2: External loopback test. Port loopback is off. Transmit and receive clock sources are internal. Requires a loopback plug suitable to the port under test. 3: External loopback test. Port loopback is off. Transmit and receive clock sources are external (modem). Requires that one of the local modem, the remote modem, or the remote system be set in a loopback configuration. 4: Test using predefined parameters. User defines hardware configuration and may select port parameters using the syncinit(1M) command.</td>
</tr>
</tbody>
</table>

All numeric options except -d are entered as decimal numbers (for example, -s 19200). If you do not provide the -t test_type option, syncloop prompts for it.

**EXAMPLES**

**EXAMPLE 1** A sample display of using the `syncloop` command.

In the following command `syncloop` uses a packet length of 512 bytes over the first CPU port:

```
example# syncloop -l 512 zsh0
```

In response to the above command, `syncloop` prompts you for the test option you want.

The following command performs an internal loopback test on the first CPU port, using 5000 packets and a bit rate of 56Kbps:

```
example# syncloop -t 1 -s 56000 -c 5000 zsh0
```
syncloop(1M)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

syncinit(1M), syncstat(1M), attributes(5), zsh(7D)

DIAGNOSTICS

device missing minor device number

The name device does not end in a decimal number that can be used as a minor device number.

invalid packet length: nnn

The packet length was specified to be less than zero or greater than 4096.

poll: nothing to read

poll: nothing to read or write.

The poll(2) system call indicates that there is no input pending and/or that output would be blocked if attempted.

len xxx should be yyy

The packet that was sent had a length of yyy, but was received with a length of xxx.

nnn packets lost in outbound queueing

nnn packets lost in inbound queueing

A discrepancy has been found between the number of packets sent by syncloop and the number of packets the driver counted as transmitted, or between the number counted as received and the number read by the program.

WARNINGS

To allow its tests to run properly, as well as prevent disturbance of normal operations, syncloop should only be run on a port that is not being used for any other purpose at that time.
NAME

syncstat – report driver statistics from a synchronous serial link

SYNOPSIS

/usr/sbin/syncstat [-c] device [interval]

DESCRIPTION

The syncstat command reports the event statistics maintained by a synchronous serial device driver. The report may be a single snapshot of the accumulated totals, or a series of samples showing incremental changes. Prior to these it prints the device name being used to query a particular device driver, along with a number indicating the channel number (ppa) under control of that driver.

Event statistics are maintained by a driver for each physical channel that it supports. They are initialized to zero at the time the driver module is loaded into the system, which may be either at boot time or when one of the driver’s entry points is first called.

The device argument is the name of the serial device as it appears in the /dev directory. For example, zsh0 specifies the first on-board serial device.

The following is a breakdown of syncstat output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>The line speed the device has been set to operate at. It is the user’s responsibility to make this value correspond to the modem clocking speed when clocking is provided by the modem.</td>
</tr>
<tr>
<td>ipkts</td>
<td>The total number of input packets.</td>
</tr>
<tr>
<td>opkts</td>
<td>The total number of output packets.</td>
</tr>
<tr>
<td>undrun</td>
<td>The number of transmitter underrun errors.</td>
</tr>
<tr>
<td>ovrrun</td>
<td>The number of receiver overrun errors.</td>
</tr>
<tr>
<td>abort</td>
<td>The number of aborted received frames.</td>
</tr>
<tr>
<td>crc</td>
<td>The number of received frames with CRC errors.</td>
</tr>
<tr>
<td>isize</td>
<td>The average size (in bytes) of input packets.</td>
</tr>
<tr>
<td>osize</td>
<td>The average size (in bytes) of output packets.</td>
</tr>
</tbody>
</table>

OPTIONS

-c Clear the accumulated statistics for the device specified. This may be useful when it is not desirable to unload a particular driver, or when the driver is not capable of being unloaded.

interval syncstat samples the statistics every interval seconds and reports incremental changes. The output reports line utilization for input and output in place of average packet sizes. These are the relationships between bytes transferred and the baud rate, expressed as percentages. The loop repeats indefinitely, with a column heading printed every twenty lines for convenience.
EXAMPLES

EXAMPLE 1 Sample output from the syncstat command:

```
example# syncstat zsh0
speed ipkts opkts undrun ovrrun abort crc isize osize
9600 15716 17121 0 0 1 3 98 89
example# syncstat -c zsh0
```

In the following sample output a new line of output is generated every five seconds:

```
example# syncstat zsh0 5
```

```
ipkts opkts undrun ovrrun abort crc iutil outil
12 10 0 0 0 0 5% 4%
22 60 0 0 0 0 3% 90%
36 14 0 0 0 1 51% 2%
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

syncinit(1M), syncloop(1M), attributes(5), zsh(7D)

DIAGNOSTICS

bad interval: arg
- The argument arg is expected to be an interval and could not be understood.

device missing minor device number
- The name device does not end in a decimal number that can be used as a minor device number.

baud rate not set
- The interval option is being used and the baud rate on the device is zero. This would cause a divide-by-zero error when computing the line utilization statistics.

WARNINGS

Underrun, overrun, frame-abort, and CRC errors have a variety of causes.
Communication protocols are typically able to handle such errors and initiate recovery of the transmission in which the error occurred. Small numbers of such errors are not a significant problem for most protocols. However, because the overhead involved in recovering from a link error can be much greater than that of normal operation, high error rates can greatly degrade overall link throughput. High error rates are often caused by problems in the link hardware, such as cables, connectors, interface electronics or telephone lines. They may also be related to excessive load on the link or the supporting system.

The percentages for input and output line utilization reported when using the interval option may occasionally be reported as slightly greater than 100% because of inexact sampling times and differences in the accuracy between the system clock and the modem clock. If the percentage of use greatly exceeds 100%, or never exceeds 50%, then the baud rate set for the device probably does not reflect the speed of the modem.
sysdef(1M)

NAME  sysdef – output system definition

SYNOPSIS  
/usr/sbin/sysdef [-n namelist]

/usr/sbin/sysdef [-h] [-d] [-D]

DESCRIPTION  The sysdef utility outputs the current system definition in tabular form. It lists all hardware devices, as well as pseudo devices, system devices, loadable modules, and the values of selected kernel tunable parameters.

It generates the output by analyzing the named bootable operating system file (namelist) and extracting the configuration information from it.

The default system namelist is /dev/kmem.

OPTIONS  
-n namelist  Specifies a namelist other than the default (/dev/kmem). The namelist specified must be a valid bootable operating system.

-h  Prints the identifier of the current host in hexadecimal. This numeric value is unique across all Sun hosts.

-d  The output includes the configuration of system peripherals formatted as a device tree.

-D  For each system peripheral in the device tree, display the name of the device driver used to manage the peripheral.

EXAMPLES  

EXAMPLE 1  Sample output format

The following example displays the format of the sysdef -d output:

```bash
example% sysdef -d
Node 'Sun 4/60', unit #0 (no driver)
  Node 'options', unit #0 (no driver)
  Node 'zs', unit #0
  Node 'zs', unit #1
  Node 'fd', unit #0
  Node 'audio', unit #0
  Node 'sbus', unit #0
    Node 'dma', unit #0
    Node 'esp', unit #0
      Node 'st', unit #1 (no driver)
      Node 'st', unit #0
      Node 'sd', unit #2
      Node 'sd', unit #1
      Node 'sd', unit #0
    Node 'le', unit #0
    Node 'bwtwo', unit #0
  Node 'auxiliary-io', unit #0
  Node 'interrupt-enable', unit #0
  Node 'memory-error', unit #0
  Node 'counter-timer', unit #0
  Node 'eeprom', unit #0
```

FILES  
/dev/kmem  default operating system image
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO hostid(1), prtconf(1M), nlist(3ELF), attributes(5)
The `syseventadm` command is an administrative front-end to add, remove and list `sysevent` event handlers. `syseventadm` can only be run by root.

The `syseventadm add` command adds a handler for a `sysevent` event specified by at least one of vendor, publisher or class. If `class` is specified, it may be qualified with a `sub-class`. Only the values specified for `vendor`, `publisher`, `class` and `sub-class` when adding the handler are matched against `sysevent` events to determine if the specification matches the event and the handler should be run. `path` is the full pathname of the command to be run in response to matching events, with optional arguments (`args`). If `username` is specified, the command is invoked as user `username`, otherwise as root.

The `syseventadm remove` command removes handlers for matching `sysevent` event specifications. Event specifications may be matched by specifying at least one of `vendor`, `publisher`, `class`, `username` or `path`. If `class` is specified, it may be qualified with a `sub-class`. Any of `vendor`, `publisher`, `class`, `sub-class`, `username`, `path` or `args` not specified match the corresponding fields of all events. Handlers for all matching specifications are removed.

The `syseventadm list` command lists the handlers for matching `sysevent` event specifications using the same match criteria as the `remove` command but without the requirement that at least one of `vendor`, `publisher`, `class`, `username` or `path` be specified. With no match criteria, all specifications are listed. The list command output format is:

```
[vendor=vendor] [publisher=publisher] [class=class] [subclass=subclass] [username=username] path [args] where each of class, subclass, vendor, publisher and username is listed only if part of the match criteria for the listed specification.
```

The `syseventadm restart` command informs the `syseventd` daemon to reread the `sysevent` registry after a change has been made by adding or removing one or more `sysevent` handler specifications.

The `sysevent` handling facility provides extensive macro capability for constructing the command line arguments to be executed in response to an event. Macro expansion applies only to the command line `args` specified for an event handler, with macros expanded with data from the event itself. Pre-defined macros are provided for the
event class, subclass, publisher and vendor information. Macros not matching one of the
pre-defined macro names cause the attribute list attached to the event to be searched
for an attribute of that name, with the value of the matching attribute substituted on
the command line.

Macros are introduced by the $ character, with the macro name being the following
token separated by a SPACE or TAB character. If the macro name is embedded in text,
it may be delineated by $ { and }. A \ before the $ causes macro expansion not to
occur.

$class
   The class string defining the event

$publisher
   The publisher string defining the event

$sequence
   The sequence number of the event.

$subclass
   The subclass string defining the event

$timestamp
   The timestamp of the event.

$vendor
   The vendor string defining the event

Macro names other than those pre-defined are compared against the attribute list
provided with the event. An attribute with name matching the macro name causes the
value of the attribute to be substituted as ASCII text on the generated command line.

Use of a macro for which no attribute with that name is defined, or for which multiple
attributes with that name are provided, cause an error and the command is not
invoked.

Attributes with signed data types (DATA_TYPE_INT16, DATA_TYPE_INT32 and
DATA_TYPE_INT64) are expanded as decimal digits.

Attributes with unsigned data types (DATA_TYPE_BYTE, DATA_TYPE_UINT16,
DATA_TYPE_UINT32, DATA_TYPE_UINT64 and DATA_TYPE_HTTIME) are expanded
as hexadecimal digits with a 0x prefix.

Attributes with string data type (DATA_TYPE_STRING) are expanded with the string
data. The data is not quoted. If it desired that the quoted strings be generated on the
command line, put quotes around the macro call in the arguments.

Array types are expanded with each element expanded as defined for that scalar type,
with a space separating each element substitution.

OPTIONS
The following options are supported:

- c class The string specifying the event class.
The string specifying the event publisher.

-R rootdir

Cause syseventadm to use an alternate root path rootdir.

-s subclass

The string specifying the event subclass.

-u username

The user under which the command is to be invoked.

-v vendor

The string specifying the vendor defining the event. Events defined by third-party software should use the company’s stock symbol. Sun-defined events use SUNW.

**OPERANDS**

The following operands are supported:

**args**

Command arguments

**path**

Full path of command to be run in response to event

**EXAMPLES**

**EXAMPLE 1 Adding an Event Handler**

The following example adds an event handler for an event defined by vendor SUNW, class EC_ENV and sub-class ESC_ENV_TEMP. The command to be run is /opt/SUNWenv/bin/ec_env_temp, with arguments being the class name, sub-class name and pathname derived from the event attributes. The $ characters are preceded by a backslash to circumvent shell interpretation. There is no need to restart the service after the change since the registry is maintained on $ALTROOT.

```
# syseventadm add -R $ALTROOT -v SUNW -c EC_ENV -s ESC_ENV_TEMP /opt/SUNWenv/bin/ec_env_temp \${class} \${subclass} \${pathname}
```

**EXAMPLE 2 Removing an Event Handler**

The following example removes the event handler added in Example 1.

```
# syseventadm remove -R $ALTROOT -v SUNW -c EC_ENV -s ESC_ENV_TEMP /opt/SUNWenv/bin/ec_env_temp \${class} \${subclass} \${pathname}
```

**EXAMPLE 3 Listing Event Handlers**

The following example lists all event handlers for events of class EC_ENV, subclass ESC_ENV_TEMP, as defined by vendor SUNW:

```
# syseventadm list -v SUNW -c EC_ENV -s ESC_ENV_TEMP vendor=SUNW class=EC_ENV subclass=ESC_ENV_TEMP /opt/SUNWenv/bin/ec_env_temp \${class} \${subclass} \${pathname}
```

**EXAMPLE 4 Listing Event Handlers**

The following example lists all event handlers defined by vendor VRTS.

```
# syseventadm list -v VRTS
```
EXAMPLE 5 Removing Event Handlers

The following example removes all event handlers defined by vendor VRTS, and restarts service.

```
# syseventadm remove -v VRTS
# syseventadm restart
```

EXAMPLE 6 Listing All Event Handlers Specified to Run a Command

The following example lists all event handlers specified to run the command /opt/SUNWenv/bin/ec_env_temp:

```
# syseventadm list /opt/SUNWenv/bin/ec_env_temp
```

EXAMPLE 7 Removing Event Handlers and Restarting Service

The following example removes all event handlers specified to run the command /opt/SUNWenv/bin/ec_env_temp, and restarts service:

```
# syseventadm remove /opt/SUNWenv/bin/ec_env_temp
# syseventadm restart
```

EXIT STATUS

The following exit values are returned:

- 0  Successful completion.
- 1  No matching event specification found (remove or list commands only)
- 2  Incorrect command usage.
- 3  Permission denied.
- 4  Command failed.
- 5  Out of memory

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

syseventd(1M), attributes(5)

NOTES

To avoid upgrade problems, packages delivering a sysevent event handler should install the event handler by running syseventadm from the package’s postinstall script. The event handler can then be removed by running syseventadm from the package’s preremove script using the same arguments as when added.
NAME    syseventconfd – kernel system event command invocation daemon

SYNOPSIS /usr/lib/sysevent/syseventconfd [-r rootdir]

DESCRIPTION syseventconfd is the user-level daemon that invokes user-level commands in response to kernel system events received from syseventd(1M).

OPTIONS The following options are supported:

- \[ \text{-r rootdir} \]
  Cause syseventconfd to use an alternate root path when creating its door. The root path must match the root path used to invoke syseventd.

FILES /etc/init.d/devfsadm
  daemon start and stop script

/etc/rcS.d/S50devfsadm
  link to init.d script

/etc/rc0.d/K83devfsadm
  link to init.d script

/etc/sysevent/syseventconfd_event_service
  syseventconfd event service door file

/usr/lib/sysevent/modules/sysevent_conf_mod.so
  syseventd loadable module (SLM) managing sysevent.conf files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO syseventd(1M), attributes(5)
NAME
syseventd – kernel system event notification daemon

SYNOPSIS
/usr/lib/sysevent/syseventd [-d debug_level] [-r rootdir]

DESCRIPTION
syseventd is a user-level daemon that accepts delivery of system event buffers from the kernel. Once an event buffer has been delivered to syseventd, it, in turn, attempts to propagate the event to all interested end event subscribers.

Event subscribers take the form of a syseventd loadable module (SLM). syseventd passes the event buffer to each of its subscribers and in return expects a notification as to the successful or unsuccessful delivery attempt.

Upon successful delivery of the event buffer to all interested event subscribers, syseventd frees the event buffer from the kernel event queue.

OPTIONS
The following options are supported:
- `d debug_level` Enable debug mode. Messages are printed to the invoking user’s terminal.
- `r rootdir` Cause syseventd to use an alternate root path when creating its door and lock files. Modules continue to be loaded from the standard module directories.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/etc/init.d/devfsadm
daemon start and stop script
/etc/rcS.d/S50devfsadm
link to init.d script
/etc/rc0.d/K83devfsadm
link to init.d script
/etc/sysevent/syseventd_daemon.lock
daemon lock file
/etc/sysevent/sysevent_door
kernel to syseventd door file
/usr/lib/sysevent/modules
SLM directory repository
/usr/platform`uname -i`/lib/sysevent/modules
SLM directory repository
/usr/platform`uname -m`/lib/sysevent/modules
SLM directory repository
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO syseventconfd(1M), attributes(5)
NAME
sysidconfig – execute system configuration applications, or define set of system configuration applications

SYNOPSIS
sysidconfig [-lv] [-a application] [-b basedir] [-r application]

DESCRIPTION
Invoked without any options, the sysidconfig program executes a list of applications. An application on this list is referred to as a "system configuration application." Every application on this list will be passed one command-line argument, -c. This flag will cause the system configuration application to perform its configuration function. Without options, sysidconfig should only be invoked by startup scripts, which occurs during the initial installation and during a reconfigure reboot.

All applications on the list will be executed, if possible. All activity taken by the sysidconfig program is logged in the sysidconfig log file, /var/log/sysidconfig.log. If one or more of the applications on the list are either not present at execution time, are not executable, or execute but return a failure code upon completion, then that information will be logged as well. Successful completion of the program can be assumed if no error message is present in the log file. Programs are executed sequentially, with only one configuration application active at a time.

Executed with the -l, -a, or -r options, the sysidconfig program allows the super-user to list the defined configuration applications, and to add items to or remove items from that list. Running sysidconfig with options is the only way to view or manipulate the list. Only the super-user can execute the sysidconfig program with options.

The -b and -v options change the behavior of sysidconfig, and can be used with or without the list manipulation options discussed above. The -b basedir option is used to specify a reference root directory other than the default, / . The -v option duplicates the log file output on stdout.

By default, no SPARC based applications exist on this list. However, the x86 based systems are delivered with one application, kdmconfig(1M), on the list. kdmconfig is not delivered on SPARC based systems.

This application is an extension of the sysidtool(1M) suite of programs. It is executed during initial installation and during a reconfigure reboot, before the window system has been started. Graphical User Interface (GUI) applications will not execute successfully if they are added to the list of configuration applications via sysidconfig -a.

This program is referenced, but not fully described, in the sysidtool(1M) manual page.

OPTIONS
The valid options are:

-a application Add the named application to the list of defined applications.
When next invoked without arguments, sysidconfig will run
this newly added application after all previously defined applications. *application* must be a fully qualified path name that is not currently on the list of applications to execute.

- **b basedir** Specify an alternate base directory (/ is defined as the default base directory if no other is specified). The specified directory is used as the root directory when adding, listing, removing, or executing configuration applications. The log file where information is recorded is in /var/log, relative to the specified basedir. In the log file, the basedir is not noted. This means, for example, that if the super-user on a diskless client's server executes:

```
sysidconfig -b /export/root/client -a /sbin/someapp
```

then the diskless client client would have /sbin/someapp executed upon reconfigure reboot. The diskless client's log file would note that /sbin/someapp was added, not /export/root/client/sbin/someapp.

- **l** List defined configuration applications. Applications will be executed one at a time, in the order shown in the list.

- **r application** Remove the named application from the list of defined applications. *application* must be a fully qualified path name and it must be on the existing list of applications to execute.

- **v** Verbose mode. This option echoes all information sent to the log file to stdout. Such information includes timestamp information about when the program was executed, the names of applications being executed, and results of those executions.

**RETURN VALUES**
The sysidconfig program will return 0 if it completes successfully.

When executed with the -r or -a options, error conditions or warnings will be reported on stderr. If the requested action completes successfully, an exit code of 0 will be returned.

**ERRORS**
EPERM The program was executed by a user other than the super-user.
EINVAL Option -l, -a, or -r was passed and the action could not be completed successfully.

**FILES**
/var/log/sysidconfig.log sysidconfig log file

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmap</td>
</tr>
</tbody>
</table>

**SEE ALSO**
sys-unconfig(1M), sysidtool(1M), attributes(5)
When run without options, a log of the `sysidconfig` program's activity can be found in `/var/log/sysidconfig.log`. This file contains a timestamp log of each program executed, its resulting `stderr` output, and its exit code. If an application in the list was not found or is not executable, that will also be noted.
<table>
<thead>
<tr>
<th>NAME</th>
<th>sysidtool, sysidnet, sysidns, sysidsys, sysidroot, sysidpm – system configuration</th>
</tr>
</thead>
</table>
| SYNOPSIS| /usr/sbin/sysidnet
          | /usr/sbin/sysidns
          | /usr/sbin/sysidsys
          | /usr/sbin/sysidroot
          | /usr/sbin/sysidpm |
| DESCRIPTION| sysidtool is a suite of five programs that configure a new system, or one that has been unconfigured with sys-unconfig(1M). The sysidtool programs run automatically at system installation, or during the first boot after a machine has been successfully unconfigured. These programs have no effect except at such times, and should never be run manually. The sysidtool programs set up the appropriate information in the machine’s configuration files, in the kernel, and on the machine’s network interface. The following list shows the available commands and the information for which each of the commands lists.
          | sysidns: Name Service configuration | Name service choice: NIS, NIS+, DNS, LDAP, or none. Machine’s IP subnet mask (if no NIS/NIS+ server can automatically be located on the machine’s sub-network. Domain name for chosen name service. Hostname and IP address of name server(s). DNS search list (DNS name service only) |
          | sysidsys: miscellaneous system configuration | Machine’s IP subnet mask (if an NIS/NIS+ server was automatically located on the machine’s sub-network). Machine’s time zone. Date and time. |
          | sysidroot: control superuser information | Machine’s root password. |
          | sysidpm: Power Management configuration | Auto-shutdown confirmation if the system is Energystar-V2 compliant, that is, a new system model shipped after October 1, 1995. |
          | sysidconfig: host or platform-specific configuration | This command controls specification and execution of custom configuration applications that may be specified for a particular host or a particular platform. See sysidconfig(1M). |
The `sysidtool` programs attempt to obtain system configuration information from various name service databases, for example, NIS, or from the `sysidcfg(4)` file, and you are prompted to provide the information if it cannot be found. However, you can avoid one or more of the prompts by preconfiguring the appropriate configuration information in the name service databases or in the `sysidcfg(4)` file.

To preconfigure the information in the name service databases, you must use the name service commands or the Solstice AdminSuite tools. See *Solaris 9 12/03 Installation Guide* for more details about how to preconfigure the system configuration information.

The machine’s configuration information is set up in its `/etc` and `/var` files.

If a system has more than one network interface, you can use `sysidtool` to configure only the primary interface on the system. All other interfaces on the system must be configured manually.

You cannot use the name service databases or the `sysidcfg(4)` file to suppress the Power Management configuration prompt. However, you can suppress it by creating either the `/autoshutdown` or `/noautoshutdown` file before installation reboot. Accordingly, the auto-shutdown feature is silently configured. The `/autoshutdown` or `/noautoshutdown` files are removed by `sysidpm` before it exits.

**FILES**

/etc/.UNCONFIGURED
/etc/nodename
/etc/hostname.??[0-9]
/etc/default/init
/etc/defaultdomain
/etc/passwd  

Password file. See `passwd(4)`.  
/etc/shadow  

Shadow password file. See `shadow(4)`.  
/etc/inet/hosts
/etc/inet/netmasks
/etc/net/*/hosts
/var/nis/NIS_COLD_START
/var/yp/aliases
/var/yp/binding/*/ypservers
/etc/.sysIDtool.state
/etc/power.conf  

Power Management configuration file. See `power.conf(4)`.
If this file is present during system reboot, the `sysidpm` program will be run. This file will be removed by `sysidpm`.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmap</td>
</tr>
<tr>
<td></td>
<td>SUNWpmu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`powerd(1M), sys-unconfig(1M), sysidconfig(1M), passwd(4), power.conf(4), shadow(4), sysidcfg(4), attributes(5)`

Solaris 9 12/03 Installation Guide

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
syslogd reads and forwards system messages to the appropriate log files or users, depending upon the priority of a message and the system facility from which it originates. The configuration file `/etc/syslog.conf` controls where messages are forwarded. `syslogd` logs a mark (timestamp) message every `markinterval` minutes (default 20) at priority `LOG_INFO` to the facility whose name is given as mark in the `syslog.conf` file.

A system message consists of a single line of text, which may be prefixed with a priority code number enclosed in angle-brackets (`<>`); priorities are defined in `<sys/syslog.h>`.

`syslogd` reads from the STREAMS log driver, `/dev/log`, and from any transport provider specified in `/etc/netconfig`, `/etc/net/transport/hosts`, and `/etc/net/transport/services`.

`syslogd` reads the configuration file when it starts up, and again whenever it receives a `HUP` signal (see `signal(3HEAD)`), at which time it also closes all files it has open, re-reads its configuration file, and then opens only the log files that are listed in that file. `syslogd` exits when it receives a `TERM` signal.

As it starts up, `syslogd` creates the file `/etc/syslog.pid`, if possible, containing its process identifier (PID).

If message ID generation is enabled (see `log(7D)`), each message will be preceded by an identifier in the following format: `[ID msgid facility.priority]`. `msgid` is the message’s numeric identifier described in `msgid(1M)`. `facility` and `priority` are described in `syslog.conf(4)`.

If the message originated in a loadable kernel module or driver, the kernel module’s name (for example, `ufs`) will be displayed instead of `unix`. See EXAMPLES for sample output from `syslogd` with and without message ID generation enabled.

In an effort to reduce visual clutter, message IDs are not displayed when writing to the console; message IDs are only written to the log file. See EXAMPLES.

The `/etc/default/syslogd` file contains the following default parameter settings. See FILES.

`LOG_FROM_REMOTE`  
Specifies whether remote messages are logged. `LOG_FROM_REMOTE=NO` is equivalent to the `-t` command-line option. The default value for `LOG_FROM_REMOTE` is `YES`.

The following options are supported:
Turn on debugging. This option should only be used interactively in a root shell once the system is in multi-user mode. It should not be used in the system start-up scripts, as this will cause the system to hang at the point where syslogd is started.

- \( f \) config file  
Specify an alternate configuration file.

- \( m \) mark interval  
Specify an interval, in minutes, between mark messages.

- \( p \) path  
Specify an alternative log device name. The default is /dev/log.

- \( T \)  
Enable the syslogd UDP port to turn on logging of remote messages. This is the default behavior. See FILES

- \( t \)  
Disable the syslogd UDP port to turn off logging of remote messages. See FILES.

### EXAMPLES

#### EXAMPLE 1 syslogd Output Without Message ID Generation Enabled

The following example shows the output from syslogd when message ID generation is not enabled:

Sep 29 21:41:18 cathy unix: alloc /: file system full

#### EXAMPLE 2 syslogd Output with ID generation Enabled

The following example shows the output from syslogd when message ID generation is enabled. The message ID is displayed when writing to log file/var/adm/messages.

Sep 29 21:41:18 cathy ufs: [ID 845546 kern.notice]  
    alloc /: file system full

#### EXAMPLE 3 syslogd Output with ID Generation Enabled

The following example shows the output from syslogd when message ID generation is enabled when writing to the console. Even though message ID is enabled, the message ID is not displayed at the console.

Sep 29 21:41:18 cathy ufs: alloc /: file system full

### FILES

/etc/syslog.conf  
Configuration file

/etc/syslog.pid  
Process ID
syslogd(1M)

/etc/default/syslogd
Contains default settings. You can override some of the settings by command-line options.
/dev/log
STREAMS log driver
/etc/netconfig
Transport providers available on the system
/etc/net/transport/hosts
Network hosts for each transport
/etc/net/transport/services
Network services for each transport

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
logger(1), msgid(1M), syslog(3C), syslog.conf(4), attributes(5), signal(3HEAD), log(7D)

NOTES
The mark message is a system time stamp, and so it is only defined for the system on which syslogd is running. It can not be forwarded to other systems.

When syslogd receives a HUP signal, it attempts to complete outputting pending messages, and close all log files to which it is currently logging messages. If, for some reason, one (or more) of these files does not close within a generous grace period, syslogd discards the pending messages, forcibly closes these files, and starts reconfiguration. If this shutdown procedure is disturbed by an unexpected error and syslogd cannot complete reconfiguration, syslogd sends a mail message to the superuser on the current system stating that it has shut down, and exits.

Care should be taken to ensure that each window displaying messages forwarded by syslogd (especially console windows) is run in the system default locale (which is syslogd's locale). If this advice is not followed, it is possible for a syslog message to alter the terminal settings for that window, possibly even allowing remote execution of arbitrary commands from that window.
sys-unconfig(1M)

NAME
sys-unconfig – undo a system’s configuration

SYNOPSIS
/usr/sbin/sys-unconfig

DESCRIPTION
The sys-unconfig command is used to restore a system’s configuration to an “as-manufactured” state, ready to be reconfigured again. The system’s configuration consists of hostname, Network Information Service (NIS) domain name, timezone, IP address, IP subnet mask, and root password. This operation is the inverse of those performed by the sysidnet(1M), sysidns(1M), and sysidsys(1M) programs run at boot. See sysidtool(1M).

sys-unconfig does the following:

- Saves current /etc/inet/hosts file information in /etc/inet/hosts.saved.
- If the current /etc/vfstab file contains NFS mount entries, saves the /etc/vfstab file to /etc/vfstab.orig.
- Restores the default /etc/inet/hosts file.
- Removes the default hostname in /etc/hostname.interface files for all interfaces configured when this command is run. To determine which interfaces are configured, run the command ‘ifconfig-a’. The /etc/hostname.INTERFACE files corresponding to all of the interfaces listed in the resulting output, with the exception of the loopback interface (lo0), will be removed.
- Removes the default domainname in /etc/defaultdomain.
- Restores the timezone to PST8PDT in /etc/TIMEZONE.
- Disables the Network Information Service (NIS) and Network Information Service Plus (NIS+) if either NIS or NIS+ was configured.
- Removes the entries for this host in /etc/net/*/hosts.
- Removes the file /etc/inet/netmasks.
- Removes the file /etc/defaultrouter.
- Removes the password set for root in /etc/shadow.
- Removes the file /etc/.rootkey.
-Executes all system configuration applications. These applications are defined by prior executions of a sysidconfig -a application. (See sysidconfig(1M)). When sys-unconfig is run, all system configuration applications are passed one argument, -u.
- Removes the file /etc/resolv.conf.
- Regenerates keys for sshd(1M).

When sys-unconfig is finished, it performs a system shutdown. sys-unconfig is a potentially dangerous utility and can only be run by the super user.

FILES
/etc/default/init process control initialization

System Administration Commands 1839
sys-unconfig(1M)

/etc/defaultdomain
/etc/defaultrouter
/etc/hostname.interface
/etc/inet/hosts host name database
/etc/inet/netmasks network mask database
/etc/net/*/hosts
/etc/nodename
/etc/.rootkey super-user’s secret key
/etc/shadow shadow password file
/etc/vfstab virtual file system table
/var/nis/NIS_COLD_START
/var/yp/binding/*/ypservers

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWadmap</td>
</tr>
</tbody>
</table>

SEE ALSO init(1M), kdmconfig(1M), sshd(1M), sysidconfig(1M), sysidtool(1M), hosts(4), netmasks(4), shadow(4), attributes(5)

NOTES sys-unconfig is not available on diskless clients.
tapes(1M)  

NAME  
tapes – creates /dev entries for tape drives attached to the system

SYNOPSIS  
/usr/sbin/tapes [-r root_dir]

DESCRIPTION  
devfsadm(1M) is now the preferred command for /dev and /devices and should be used instead of tapes.

Tapes creates symbolic links in the /dev/rmt directory to the actual tape device special files under the /devices directory tree. Tapes searches the kernel device tree to see what tape devices are attached to the system. For each equipped tape drive, the following steps are performed:

1. The /dev/rmt directory is searched for a /dev/rmt/n entry that is a symbolic link to the /devices special node of the current tape drive. If one is found, this determines the logical controller number of the tape drive.
2. The rest of the special devices associated with the drive are checked, and incorrect symbolic links are removed and necessary ones added.
3. If none are found, a new logical controller number is assigned (the lowest-unused number), and new symbolic links are created for all the special devices associated with the drive.

Tapes does not remove links to non-existent devices; these must be removed by hand.

Tapes is run each time a reconfiguration-boot is performed, or when add_drv(1M) is executed.

Notice to Driver Writers  
tapes(1M) considers all devices with the node type DDI_NT_TAPE to be tape devices; these devices must have their minor name created with a specific format. The minor name encodes operational modes for the tape device and consists of an ASCII string of the form [ l,m,h,c,u ][ b ][ n ].

The first character set is used to specify the tape density of the device, and are named low (l), medium (m), high (h), compressed (c), and ultra (u). These specifiers only express a relative density; it is up to the driver to assign specific meanings as needed. For example, 9 track tape devices interpret these as actual bits-per-inch densities, where l means 800 BPI, m means 1600 BPI, and h means 6250 BPI, whereas 4mm DAT tapes defines l as standard format, and m, h, c and u as compressed format. Drivers may choose to implement any or all of these format types.

During normal tape operation (non-BSD behavior), once an EOF mark has been reached, subsequent reads from the tape device return an error. An explicit IOCTL must be issued to space over the EOF mark before the next file can be read. b instructs the device to observe BSD behavior, where reading at EOF will cause the tape device to automatically space over the EOF mark and begin reading from the next file.

n or no-rewind-on-close instructs the driver to not rewind to the beginning of tape when the device is closed. Normal behavior for tape devices is to reposition to BOT when closing. See mtio(7I).
The minor number for tape devices should be created by encoding the device’s instance number using the tape macro MTMINOR and ORing in the proper combination of density, BSD behavior, and no-rewind flags. See mtio(7I).

To prevent tapes from attempting to automatically generate links for a device, drivers must specify a private node type and refrain from using the node type string DDI_NT_TAPE when calling ddi_create_minor_node(9F).

OPTIONS
The following options are supported:

- \texttt{-r \textit{root\_dir}} Causes tapes to presume that the /dev/rmt directory tree is found under \textit{root\_dir}, not directly under /.

ERRORS
If tapes finds entries of a particular logical controller linked to different physical controllers, it prints an error message and exits without making any changes to the /dev directory, since it cannot determine which of the two alternative logical to physical mappings is correct. The links should be manually corrected or removed before another reconfiguration boot is performed.

EXAMPLES

EXAMPLE 1 Creating Tape Device Nodes From Within the Driver’s attach() Function

This example demonstrates creating tape device nodes from within the \texttt{xktape}\ driver’s attach() function.

```c
#include <sys/mtio.h>

struct tape_minor_info {
    char *minor_name;
    int minor_mode;
};

/* create all combinations of logical tapes */
static struct tape_minor_info example_tape[] = {
    {"", 0}, /* default tape */
    {"1", MT_DENSITY1},
    {"1b", MT_DENSITY1 | MT_BSD},
    {"1bn", MT_DENSITY1 | MT_BSD | MT_NOREWIND},
    {"m", MT_DENSITY2},
    {"mb", MT_DENSITY2 | MT_BSD},
    {"mbn", MT_DENSITY2 | MT_BSD | MT_NOREWIND},
    {"h", MT_DENSITY3},
    {"hb", MT_DENSITY3 | MT_BSD},
    {"hbn", MT_DENSITY3 | MT_BSD | MT_NOREWIND},
    {"c", MT_DENSITY4},
    {"cb", MT_DENSITY4 | MT_BSD},
    {"cbn", MT_DENSITY4 | MT_BSD | MT_NOREWIND},
    {NULL, 0}
};

int xktapeattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
    int instance;
    struct tape_minor_info *mdp;
```
EXAMPLE 1 Creating Tape Device Nodes From Within the Driver's attach() Function
(Continued)

    /* other stuff in attach... */
    instance = ddi_get_instance(dip);
    
    for (mdp = example_tape; mdp->minor_name != NULL; mdp++) {
        ddi_create_minor_node(dip, mdp->minor_name, S_IFCHR,
                             (MTMINOR(instance) | mdp->minor_mode), DDI_NT_TAPE, 0);
    }

Installing the xktape driver on a Sun Fire 4800, with the driver controlling a SCSI
tape (target 4 attached to an isp(7D) SCSI HBA) and performing a
reconfiguration-boot creates the following special files in /devices.

    # ls -l /devices/ssm@0,0/pci@18,700000/pci@1/SUNW,isptwo@4
    crw-rw-rw- 1 root sys 33,136 Aug 29 00:02 xktape@4,0:
    crw-rw-rw- 1 root sys 33,200 Aug 29 00:02 xktape@4,0:b
    crw-rw-rw- 1 root sys 33,204 Aug 29 00:02 xktape@4,0:bn
    crw-rw-rw- 1 root sys 33,152 Aug 29 00:02 xktape@4,0:c
    crw-rw-rw- 1 root sys 33,216 Aug 29 00:02 xktape@4,0:cb
    crw-rw-rw- 1 root sys 33,220 Aug 29 00:02 xktape@4,0:chn
    crw-rw-rw- 1 root sys 33,156 Aug 29 00:02 xktape@4,0:cn
    crw-rw-rw- 1 root sys 33,144 Aug 29 00:02 xktape@4,0:h
    crw-rw-rw- 1 root sys 33,208 Aug 29 00:02 xktape@4,0:hb
    crw-rw-rw- 1 root sys 33,212 Aug 29 00:02 xktape@4,0:hbn
    crw-rw-rw- 1 root sys 33,148 Aug 29 00:02 xktape@4,0:hn
    crw-rw-rw- 1 root sys 33,128 Aug 29 00:02 xktape@4,0:l
    crw-rw-rw- 1 root sys 33,152 Aug 29 00:02 xktape@4,0:lc
    crw-rw-rw- 1 root sys 33,196 Aug 29 00:02 xktape@4,0:lbn
    crw-rw-rw- 1 root sys 33,132 Aug 29 00:02 xktape@4,0:ln
    crw-rw-rw- 1 root sys 33,136 Aug 29 00:02 xktape@4,0:m
    crw-rw-rw- 1 root sys 33,200 Aug 29 00:02 xktape@4,0:mb
    crw-rw-rw- 1 root sys 33,204 Aug 29 00:02 xktape@4,0:mhn
    crw-rw-rw- 1 root sys 33,140 Aug 29 00:02 xktape@4,0:mm
    crw-rw-rw- 1 root sys 33,140 Aug 29 00:02 xktape@4,0:n

/dev/rmt will contain the logical tape devices (symbolic links to tape devices in
/devices).

    # ls -l /dev/rmt
    /dev/rmt/0 -> ../../devices/[....]/xktape@4,0:
    /dev/rmt/0b -> ../../devices/[....]/xktape@4,0:b
    /dev/rmt/0bn -> ../../devices/[....]/xktape@4,0:bn
    /dev/rmt/0c -> ../../devices/[....]/xktape@4,0:c
    /dev/rmt/0cb -> ../../devices/[....]/xktape@4,0:cb
    /dev/rmt/0cbn -> ../../devices/[....]/xktape@4,0:cbn
    /dev/rmt/0cn -> ../../devices/[....]/xktape@4,0:cn
    /dev/rmt/0h -> ../../devices/[....]/xktape@4,0:h
    /dev/rmt/0hb -> ../../devices/[....]/xktape@4,0:hb
    /dev/rmt/0hbn -> ../../devices/[....]/xktape@4,0:hbn
    /dev/rmt/0hn -> ../../devices/[....]/xktape@4,0:hn
    /dev/rmt/0l -> ../../devices/[....]/xktape@4,0:l
    /dev/rmt/0lb -> ../../devices/[....]/xktape@4,0:lb
    /dev/rmt/0lbn -> ../../devices/[....]/xktape@4,0:lb
    /dev/rmt/0ln -> ../../devices/[....]/xktape@4,0:ln
EXAMPLE 1 Creating Tape Device Nodes From Within the Driver’s `attach()` Function (Continued)

```
/dev/rmt/0m -> ../../devices/[....]/xktape@4,0:m
/dev/rmt/0mb -> ../../devices/[....]/xktape@4,0:mb
/dev/rmt/0mbn -> ../../devices/[....]/xktape@4,0:mbn
/dev/rmt/0mn -> ../../devices/[....]/xktape@4,0:mn
/dev/rmt/0n  -> ../../devices/[....]/xktape@4,0:n
```

FILES

- `/dev/rmt/*` logical tape devices
- `/devices/*` tape device nodes

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
```

SEE ALSO

- `add_drv(1M)`, `devfsadm(1M)`, `attributes(5)`, `isp(7D)`, `devfs(7FS)`, `mtio(7I)`,
- `attach(9E)`, `ddi_create_minor_node(9F)`

Writing Device Drivers

BUGS

tapes silently ignores malformed minor device names.
**NAME**

`taskstat` – prints ASET tasks status

**SYNOPSIS**

```
/usr/aset/util/taskstat [-d aset_dir]
```

**DESCRIPTION**

`taskstat` is located in the `/usr/aset/util` directory. `/usr/aset` is the default operating directory of the Automated Security Enhancement Tool (ASET). An alternative working directory can be specified by the administrators through the `aset -d` command or the `ASETDIR` environment variable. See `aset(1M)`. Because `aset` dispatches its tasks to run in the background, when it returns, these tasks may or may not have completed. `taskstat` prints the status of the tasks, listing those that are completed and those that are still executing.

The ASET reports, which are located in the `/usr/aset/reports` directory (see the `-d` option), are not complete until all the tasks finish executing.

**OPTIONS**

- `-d aset_dir` Specify the working directory for ASET. By default, this directory is `/usr/aset`. With this option, the `reports` directory will be located under `aset_dir`.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWast</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`aset(1M)`, `attributes(5)`

*System Administration Guide: Basic Administration*
tcxconfig(1M)

NAME  tcxconfig – configure the default linearity of the 24-bit TrueColor Visual for OpenWindows on a system with an S24 frame buffer (TCX)

SYNOPSIS  /usr/sbin/tcxconfig [linear | nonlinear]

DESCRIPTION  The tcxconfig script changes the default linearity of a 24-bit TrueColor Visual for OpenWindows on a system with an S24 frame buffer. When the S24 graphics driver for OpenWindows is installed, the default 24-bit TrueColor Visual is nonlinear. You can run tcxconfig with an argument that specifies the setting you want.

OpenWindows should not be running when you execute the tcxconfig script with an option. Start OpenWindows after tcxconfig has set the linearity you desire.

OPTIONS  If you specify no option, tcxconfig displays the current default setting.

You must become superuser before you can execute tcxconfig with one of the following options.

linear  Set linear visual to be the default 24-bit TrueColor Visual. This means colors will be gamma-corrected.

nonlinear  Set nonlinear visual to be the default 24-bit TrueColor Visual.

EXIT STATUS  The following exit values are returned:

0  success
1  an error has occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtcxow</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5)
NAME
th_define – create fault injection test harness error specifications

SYNOPSIS
or
or
th_define [-h]

DESCRIPTION
The th_define utility provides an interface to the bus_ops fault injection bofi device driver for defining error injection specifications (referred to as errdefs). An errdef corresponds to a specification of how to corrupt a device driver’s accesses to its hardware. The command line arguments determine the precise nature of the fault to be injected. If the supplied arguments define a consistent errdef, the th_define process will store the errdef with the bofi driver and suspend itself until the criteria given by the errdef become satisfied (in practice, this will occur when the access counts go to zero).

You use the th_manage(1M) command with the start option to activate the resulting errdef. The effect of th_manage with the start option is that the bofi driver acts upon the errdef by matching the number of hardware accesses—specified in count, that are of the type specified in acc_types, made by instance number instance—of the driver whose name is name, (or by the driver instance specified by path) to the register set (or DMA handle) specified by reg_number, that lie within the range offset to offset + length from the beginning of the register set or DMA handle. It then applies operator and operand to the next failcount matching accesses.

If acc_types includes log, th_define runs in automatic test script generation mode, and a set of test scripts (written in the Korn shell) is created and placed in a sub-directory of the current directory with the name <driver>.test.<id> (for example, glm.test.978177106). A separate, executable script is generated for each access handle that matches the logging criteria. The log of accesses is placed at the top of each script as a record of the session. If the current directory is not writable, file output is written to standard output. The base name of each test file is the driver name, and the extension is a number that discriminates between different access handles. A control script (with the same name as the created test directory) is generated that will run all the test scripts sequentially.

Executing the scripts will install, and then activate, the resulting error definitions. Error definitions are activated sequentially and the driver instance under test is taken offline and brought back online before each test (refer to the -e option for more information). By default, logging applies to all PIO accesses, all interrupts, and all
DMA accesses to and from areas mapped for both reading and writing. You can constrain logging by specifying additional `acc_types`, `reg_number`, `offset` and `length`. Logging will continue for `count` matching accesses, with an optional time limit of `collect_time` seconds.

Either the `-n` or `-P` option must be provided. The other options are optional. If an option (other than `-a`) is specified multiple times, only the final value for the option is used. If an option is not specified, its associated value is set to an appropriate default, which will provide maximal error coverage as described below.

**OPTIONS**

The following options are available:

- **-n name**
  - Specify the name of the driver to test. (String)

- **-i instance**
  - Test only the specified driver instance (-1 matches all instances of driver). (Numeric)

- **-P path**
  - Specify the full device path of the driver to test. (String)

- **-r reg_number**
  - Test only the given register set or DMA handle (-1 matches all register sets and DMA handles). (Numeric)

- **-a acc_types**
  - Only the specified access types will be matched. Valid values for the `acc_types` argument are `log`, `pio`, `pio_r`, `pio_w`, `dma`, `dma_r`, `dma_w` and `intr`. Multiple access types, separated by spaces, can be specified. The default is to match all hardware accesses.

If `acc_types` is set to `log`, logging will match all PIO accesses, interrupts and DMA accesses to and from areas mapped for both reading and writing. `log` can be combined with other `acc_types`, in which case the matching condition for logging will be restricted to the specified additional `acc_types`. Note that `dma_r` will match only DMA handles mapped for reading only; `dma_w` will match only DMA handles mapped for writing only; `dma` will match only DMA handles mapped for both reading and writing.

- **-l offset [length]**
  - Constrained the range of qualifying accesses. The `offset` and `length` arguments indicate that any access of the type specified with the `-a` option, to the register set or DMA handle specified with the `-r` option, lie at least `offset` bytes into the register set or DMA handle and at most `offset + length` bytes into it. The default for `offset` is 0. The default for `length` is the maximum value that can be placed in an `offset_t` C data type (see `types.h`). Negative values are converted into unsigned quantities. Thus, `th_define -l 0 -l` is maximal.

- **-c count [failcount]**
  - Wait for `count` number of matching accesses, then apply an operator and operand (see the `-o` option) to the next `failcount` number of matching accesses. If the access
type (see the -a option) includes logging, the number of logged accesses is given by \texttt{count + failcount - 1}. The -1 is required because the last access coincides with the first faulting access.

Note that access logging may be combined with error injection if \texttt{failcount} and \texttt{operator} are nonzero and if the access type includes logging and any of the other access types (\texttt{pio, dma and intr}). See the description of access types in the definition of the -a option, above.

When the \texttt{count} and \texttt{failcount} fields reach zero, the status of the errdef is reported to standard output. When all active errdefs created by the \texttt{th_define} process complete, the process exits. If \texttt{acc_types} includes \texttt{log}, \texttt{count} determines how many accesses to log. If \texttt{count} is not specified, a default value is used. If \texttt{failcount} is set in this mode, it will simply increase the number of accesses logged by a further \texttt{failcount - 1}.

\texttt{-o operator [operand]}

For qualifying PIO read and write accesses, the value read from or written to the hardware is corrupted according to the value of \texttt{operator}:

\texttt{EQ} \quad \texttt{operand} is returned to the driver.
\texttt{OR} \quad \texttt{operand} is bitwise ORed with the real value.
\texttt{AND} \quad \texttt{operand} is bitwise ANDed with the real value.
\texttt{XOR} \quad \texttt{operand} is bitwise XORed with the real value.

For PIO write accesses, the following operator is allowed:

\texttt{NO} \quad Simply ignore the driver's attempt to write to the hardware.

Note that a driver performs PIO via the \texttt{ddi_getX()}, \texttt{ddi_putX()}, \texttt{ddi_rep_getX()} and \texttt{ddi_rep_putX()} routines (where \texttt{X} is 8, 16, 32 or 64). Accesses made using \texttt{ddi_getX()} and \texttt{ddi_putX()} are treated as a single access, whereas an access made using the \texttt{ddi_rep_*(9F)} routines are broken down into their respective number of accesses, as given by the \texttt{repcount} parameter to these DDI calls. If the access is performed via a DMA handle, \texttt{operator} and \texttt{value} are applied to every access that comprises the DMA request. If interference with interrupts has been requested then the operator may take any of the following values:

\texttt{DELAY} \quad After \texttt{count} accesses (see the -c option), delay delivery of the next \texttt{failcount} number of interrupts for \texttt{operand} number of microseconds.
\texttt{LOSE} \quad After \texttt{count} number of interrupts, fail to deliver the next \texttt{failcount} number of real interrupts to the driver.
\texttt{EXTRA} \quad After \texttt{count} number of interrupts, start delivering \texttt{operand} number of extra interrupts for the next \texttt{failcount} number of real interrupts.

The default value for \texttt{operand} and \texttt{operator} is to corrupt the data access by flipping each bit (XOR with -1).
If the acc_chk parameter is set to 1 or pio, then the driver’s calls to 
ddi_check_acc_handle(9F) return DDI_FAILURE when the access count goes to 
1. If the acc_chk parameter is set to 2 or dma, then the driver’s calls to 
ddi_check_dma_handle(9F) return DDI_FAILURE when the access count goes to 
1.

-w max_wait_period [report_interval]
Constrain the period for which an error definition will remain active. The option 
applies only to non-logging errdefs. If an error definition remains active for 
max_wait_period seconds, the test will be aborted. If report_interval is set to a nonzero 
value, the current status of the error definition is reported to standard output every 
report_interval seconds. The default value is zero. The status of the errdef is reported 
parasable format (eight fields, each separated by a colon (:) character, the last of 
which is a string enclosed by double quotes and the remaining seven fields are 
integers):

ft:mt:ac:fc:chk:ec:s:"message" which are defined as follows:

ft       The UTC time when the fault was injected.
mt       The UTC time when the driver reported the fault.
ac       The number of remaining non-faulting accesses.
fc       The number of remaining faulting accesses.
chk      The value of the acc_chk field of the errdef.
ec       The number of fault reports issued by the driver against this 
         errdef (mt holds the time of the initial report).
s       The severity level reported by the driver.
         "message" Textual reason why the driver has reported a fault.

-h
Display the command usage string.

-s collect_time
If acc_types is given with the -a option and includes log, the errdef will log 
accesses for collect_time seconds (the default is to log until the log becomes full). 
Note that, if the errdef specification matches multiple driver handles, multiple 
logging errdefs are registered with the bofi driver and logging terminates when 
all logs become full or when collect_time expires or when the associated errdefs are 
cleared. The current state of the log can be checked with the th_manage(1M) 
command, using the broadcast parameter. A log can be terminated by running 
th_manage(1M) with the clear_errdefs option or by sending a SIGALRM signal 
to the th_define process. See alarm(2) for the semantics of SIGALRM.

-p policy
Applicable when the acc_types option includes log. The parameter modifies the 
policy used for converting from logged accesses to errdefs. All policies are 
inclusive:
- Use rare to bias error definitions toward rare accesses (default).
- Use operator to produce a separate error definition for each operator type (default).
- Use common to bias error definitions toward common accesses.
- Use median to bias error definitions toward median accesses.
- Use maximal to produce multiple error definitions for duplicate accesses.
- Use unbiased to create unbiased error definitions.
- Use onenbyte, twobyte, fourbyte, or eightbyte to select errdefs corresponding to 1, 2, 4 or 8 byte accesses (if chosen, the -xr option is enforced in order to ensure that ddi_rep_*() calls are decomposed into multiple single accesses).
- Use multibyte to create error definitions for multibyte accesses performed using ddi_rep_get*() and ddi_rep_put*().

Policies can be combined by adding together these options. See the NOTES section for further information.

-x flags
Applicable when the acc_types option includes log. The flags parameter modifies the way in which the bofi driver logs accesses. It is specified as a string containing any combination of the following letters:

- w Continuous logging (that is, the log will wrap when full).
- t Timestamp each log entry (access times are in seconds).
- r Log repeated I/O as individual accesses (for example, a ddi_rep_get16(9F) call which has a repcount of N is logged N times with each transaction logged as size 2 bytes. Without this option, the default logging behavior is to log this access once only, with a transaction size of twice the repcount).

-c comment_string
Applicable when the acc_types option includes log. It provides a comment string to be placed in any generated test scripts. The string must be enclosed in double quotes.

-e fixup_script [args]
Applicable when the acc_types option includes log. The output of a logging errdefs is to generate a test script for each driver access handle. Use this option to embed a command in the resulting script before the errors are injected. The generated test scripts will take an instance offline and bring it back online before injecting errors in order to bring the instance into a known fault–free state. The executable fixup_script will be called twice with the set of optional args— once just before the instance is taken offline and again after the instance has been brought online. The following variables are passed into the environment of the called executable:

DRIVER_PATH
Identifies the device path of the instance.

DRIVER_INSTANCE
Identifies the instance number of the device.
DRIVER_UNCONFIGURE
Has the value 1 when the instance is about to be taken offline.

DRIVER_CONFIGURE
Has the value 1 when the instance has just been brought online.

Typically, the executable ensures that the device under test is in a suitable state to
be taken offline (unconfigured) or in a suitable state for error injection (for example
configured, error free and servicing a workload). A minimal script for a network
driver could be:

```bash
#!/bin/ksh

driver=xyznetdriver
ifnum=$driver$DRIVER_INSTANCE

if [[ $DRIVER_CONFIGURE = 1 ]]; then
    ifconfig $ifnum plumb
    ifconfig $ifnum ...
    ifworkload start $ifnum
elif [[ $DRIVER_UNCONFIGURE = 1 ]]; then
    ifworkload stop $ifnum
    ifconfig $ifnum down
    ifconfig $ifnum unplumb
fi
exit $?*
```

The -e option must be the last option on the command line.

If the -a log option is selected but the -e option is not given, a default script is used.
This script repeatedly attempts to detach and then re-attach the device instance under
test.

**EXAMPLES**

Examples of Error Definitions

```
th_define -n foo -i 1 -a log
```

Logs all accesses to all handles used by instance 1 of the foo driver while running the
default workload (attaching and detaching the instance). Then generates a set of test
scripts to inject appropriate errdefs while running that default workload.

```
th_define -n foo -i 1 -a log pio
```

Logs PIO accesses to each PIO handle used by instance 1 of the foo driver while running the
default workload (attaching and detaching the instance). Then generates a set of test scripts to inject appropriate errdefs while running that default workload.

```
th_define -n foo -i 1 -p onebyte median -e fixup arg -now
```
Logs all accesses to all handles used by instance 1 of the foo driver while running the workload defined in the fixup script fixup with arguments arg and -now. Then generates a set of test scripts to inject appropriate errdefs while running that workload. The resulting error definitions are requested to focus upon single byte accesses to locations that are accessed a median number of times with respect to frequency of access to I/O addresses.

```
th_define -n se -l 0x20 1 -a pio_r -o OR 0x4 -c 10 1000
```
Simulates a stuck serial chip command by forcing 1000 consecutive read accesses made by any instance of the se driver to its command status register, thereby returning status busy.

```
th_define -n foo -i 3 -r 1 -a pio_r -c 0 1 -f 1 -o OR 0x100
```
Causes 0x100 to be ORed into the next physical I/O read access from any register in register set 1 of instance 3 of the foo driver. Subsequent calls in the driver to ddi_check_acc_handle() return DDI_FAILURE.

```
th_define -n foo -i 3 -r 1 -a pio_r -c 0 1 -o OR 0x0
```
Causes 0x0 to be ORed into the next physical I/O read access from any register in register set 1 of instance 3 of the foo driver. This is of course a no-op.

```
th_define -n foo -i 3 -r 1 -l 0x8100 1 -a pio_r -c 0 10 -o EQ 0x70003
```
Causes the next ten next physical I/O reads from the register at offset 0x8100 in register set 1 of instance 3 of the foo driver to return 0x70003.

```
th_define -n foo -i 3 -r 1 -l 0x8100 1 -a pio_w -c 100 3 -o AND 0xffffffffffffffff
```
The next 100 physical I/O writes to the register at offset 0x8100 in register set 1 of instance 3 of the foo driver take place as normal. However, on each of the three subsequent accesses, the 0x1000 bit will be cleared.

```
th_define -n foo -i 3 -r 1 -l 0x8100 0x10 -a pio_r -c 0 1 -f 1 -o XOR 7
```
Causes the bottom three bits to have their values toggled for the next physical I/O read access to registers with offsets in the range 0x8100 to 0x8110 in register set 1 of instance 3 of the foo driver. Subsequent calls in the driver to ddi_check_acc_handle() return DDI_FAILURE.

```
th_define -n foo -i 3 -a pio_w -c 0 1 -o NO 0
```
Prevents the next physical I/O write access to any register in any register set of instance 3 of the foo driver from going out on the bus.

```
th_define -n foo -i 3 -l 0 8192 -a dma_r -c 0 1 -o OR 7
```

System Administration Commands 1853
th_define(1M)

Causes 0x7 to be ORed into each long long in the first 8192 bytes of the next DMA read, using any DMA handle for instance 3 of the foo driver.

```
th_define -n foo -i 3 -r 2 -l 0 8 -a dma_r -c 0 1 -o OR 0x7070707070707070
```

Causes 0x70 to be ORed into each byte of the first long long of the next DMA read, using the DMA handle with sequential allocation number 2 for instance 3 of the foo driver.

```
th_define -n foo -i 3 -l 256 256 -a dma_w -c 0 1 -f 2 -o OR 7
```

Causes 0x7 to be ORed into each long long in the range from offset 256 to offset 512 of the next DMA write, using any DMA handle for instance 3 of the foo driver. Subsequent calls in the driver to `ddi_check_dma_handle()` return DDI_FAILURE.

```
th_define -n foo -i 3 -r 0 -l 0 8 -a dma_w -c 100 3 -o AND 0xfffffffffffffffefff
```

The next 100 DMA writes using the DMA handle with sequential allocation number 0 for instance 3 of the foo driver take place as normal. However, on each of the three subsequent accesses, the 0x1000 bit will be cleared in the first long long of the transfer.

```
th_define -n foo -i 3 -a intr -c 0 6 -o LOSE 0
```

Causes the next six interrupts for instance 3 of the foo driver to be lost.

```
th_define -n foo -i 3 -a intr -c 30 1 -o EXTRA 10
```

When the thirty-first subsequent interrupt for instance 3 of the foo driver occurs, a further ten interrupts are also generated.

```
th_define -n foo -i 3 -a intr -c 0 1 -o DELAY 1024
```

Causes the next interrupt for instance 3 of the foo driver to be delayed by 1024 microseconds.

NOTES

The policy option in the `th_define -p` syntax determines how a set of logged accesses will be converted into the set of error definitions. Each logged access will be matched against the chosen policies to determine whether an error definition should be created based on the access.

Any number of policy options can be combined to modify the generated error definitions.

Bytewise Policies

These select particular I/O transfer sizes. Specifying a byte policy will exclude other byte policies that have not been chosen. If none of the byte type policies is selected, all transfer sizes are treated equally. Otherwise, only those specified transfer sizes will be selected.
onebyte Create errdefs for one byte accesses (ddi_get8())
twobyte Create errdefs for two byte accesses (ddi_get16())
fourbyte Create errdefs for four byte accesses (ddi_get32())
eightbyte Create errdefs for eight byte accesses (ddi_get64())
multibyte Create errdefs for repeated byte accesses (ddi_rep_get*())

Frequency of Access Policies

The frequency of access to a location is determined according to the access type, location and transfer size (for example, a two-byte read access to address A is considered distinct from a four-byte read access to address A). The algorithm is to count the number of accesses (of a given type and size) to a given location, and find the locations that were most and least accessed (let maxa and mina be the number of times these locations were accessed, and mean the total number of accesses divided by total number of locations that were accessed). Then a rare access is a location that was accessed less than

\[(mean - mina) / 3 + mina\]
times. Similarly for the definition of common accesses:

\[maxa - (maxa - mean) / 3\]

A location whose access patterns lies within these cutoffs is regarded as a location that is accessed with median frequency.

rare Create errdefs for locations that are rarely accessed.

custom Create errdefs for locations that are commonly accessed.

median Create errdefs for locations that are accessed a median frequency.

Policies for Minimizing errdefs

If a transaction is duplicated, either a single or multiple errdefs will be written to the test scripts, depending upon the following two policies:

maximal Create multiple errdefs for locations that are repeatedly accessed.

unbiased Create a single errdef for locations that are repeatedly accessed.

operators For each location, a default operator and operand is typically applied. For maximal test coverage, this default may be modified using the operators policy so that a separate errdef is created for each of the possible corruption operators.

SEE ALSO kill(1), th manage(1M), alarm(2), ddi_check_acc_handle(9F),
ddi_check_dma_handle(9F)
th_manage(1M)

NAME
th_manage – manage the fault injection test harness

SYNOPSIS
th_manage name instance command

th_manage path command

DESCRIPTION
th_manage applies the action specified by command to the instance specified by
instance of the driver specified by name (or the driver instance specified by path). The
driver instance must be running fault injection specifications (errdefs) defined by
th_define(1M).

th_manage supports several commands that operate on the driver instance specified
by name and instance (or path). The commands are:

broadcast       Awaken all th_define processes, causing them to display their
current status and exit if the errdef is now defunct (that is, if count,
failcount , and acc_chk are all zero).

clear_acc_chk   Awaken all th_define processes. If count and failcount are
already zero, then set acc_chk to zero, so that th_define exits
once it has displayed its status.

clear_errdefs   Awaken all th_define processes. count, failcount and acc_chk
are all set to zero so that all th_define commands exit once they
have displayed their status.

clear_errors    Awaken all th_define processes. If count is already zero, set
failcount and acc.chk to zero, so that th_define exits once it has
displayed its status.

get_handles     List all the access handles.

start           Begin or resume execution of all errdefs.

stop            Suspend or resume execution of all errdefs.

EXAMPLES
EXAMPLE 1 Useful Commands

To begin the tests, enter:

# th_manage foo 0 start

To check the status of the errdefs, enter:

# th_manage foo 0 broadcast

This causes each th_define process to print out its current status.

If the driver has reported a fatal error, you can take the driver offline using
libdevice, clear the error condition by entering:

# th_manage foo 0 clear_acc_chk

or
EXAMPLE 1 Useful Commands  (Continued)

# th_manage foo 0 clear_errors
and bring the driver online again using libdevice.

To terminate testing, enter:

# th_manage foo 0 clear_errdefs

SEE ALSO  th_define(1M)
NAME      tic – terminfo compiler

SYNOPSIS  tic [-v [n]] [-c] file

DESCRIPTION The command tic translates a terminfo file from the source format into the compiled format. The results are placed in the directory /usr/share/lib/terminfo. The compiled format is necessary for use with the library routines in curses(3CURSES).

If the environment variable TERMINFO is set, the compiled results are placed there instead of /usr/share/lib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128 bytes. Terminal names exceeding 14 characters will be truncated to 14 characters and a warning message will be printed.

OPTIONS   The following options are supported:

- c      Specifies to check only file for errors. Errors in use= links are not detected.

- v[n]   Specify that (verbose) output be written to standard error trace information showing tic’s progress. The optional integer n is a number from 1 to 10, indicating the desired level of detail of information. If n is omitted, the default level is 1. If n is specified and greater than 1, the level of detail is increased.

OPERANDS  file

Contains one or more terminfo terminal descriptions in source format [see terminfo(4)]. Each description in the file describes the capabilities of a particular terminal. When a use=entry-name field is discovered in a terminal entry currently being compiled, tic reads in the binary from /usr/share/lib/terminfo to complete the entry. (Entries created from file will be used first. If the environment variable TERMINFO is set, that directory is searched instead of /usr/share/lib/terminfo.) tic duplicates the capabilities in entry-name for the current entry, with the exception of those capabilities that are explicitly defined in the current entry.

FILES     /usr/share/lib/terminfo/?/*    Compiled terminal description database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO   captinfo(1M), infocmp(1M), curses(3CURSES), terminfo(4), attributes(5)
When an entry, for example, `entry_name_1`, contains a `use=entry_name_2` field, any canceled capabilities in `entry_name_2` must also appear in `entry_name_1` before `use=` for these capabilities to be canceled in `entry_name_1`.
traceroute(1M)

NAME
 traceroute – print the route packets take to network host

SYNOPSIS
 traceroute [ -adFlnSvx ] [ -A addr_family ] [ -c traffic_class ] [ -t first_hop ]
 [-g gateway [ -g gateway... ] | -r ] [-i iface ] [ -L flow_label ] [ -m max_hop ]
 [ -P pause_sec ] [ -p port ] [ -Q max_timeout ] [ -q nqueries ] [ -a src_addr ]
 [ -t tos ] [ -w wait_time ] host [ packetlen ]

DESCRIPTION
 The Internet is a large and complex aggregation of network hardware, connected by
gateways. Tracking the route a packet follows can be difficult. The utility traceroute
traces the route that an IP packet follows to another internet host.

The traceroute utility utilizes the both the IPv4 and IPv6 protocols. Use the -A
option to override the default behavior. traceroute uses the IPv4 protocol ttl (time
to live) field or the IPv6 field hop limit. It attempts to elicit an ICMP or ICMP6
TIME_EXCEEDED response from each gateway along the path, and a
PORT_UNREACHABLE (or ECHO_REPLY if -I is used) response from the destination
host. It starts by sending probes with a ttl or hop limit of 1 and increases by 1 until it
either gets to the host, or it hits the maximum max_hop. The default maximum max_hop
is 30 hops, but this can be set by the -m option.

Three probes are sent at each ttl (hop limit) setting, and a line is printed showing the ttl
(hop limit), the hostname and the address of the gateway, and the rtt (round trip time)
of each probe. The number of probes may be specifically set using the -q option. If the
probe answers come from different gateways, the hostname and the address of each
responding system will be printed. If there is no response within a 5 second timeout
interval, a "*" is printed for that probe. The -w option may be used to set the timeout
interval. Other possible annotations that may appear after the time are:

! the ttl (hop limit) value in the received packet is <= 1.
!H host unreachable.
!X communication administratively prohibited.
<!N> ICMP (ICMP6) unreachable code N.

The following annotations appear only for IPv4:

!F fragmentation needed. This should never occur. If this is seen, the
associated gateway is broken.
!N network unreachable.
!P protocol unreachable.
!S source route failed. It is likely that the gateway does not support source
routing.
!T unreachable for the specified tos (type-of-service).
!U source host isolated or precedence problem.

The following annotations appear only for IPv6:
host unreachable for a reason other than lack of an entry in the routing table.

packet too big.

destination is not a neighbor.

unrecognized next header.

If almost all the probes result in some kind of unreachable code, then *traceroute* gives up and exits.

The destination *host* is not supposed to process the UDP probe packets, so the destination *port* default is set to an unlikely value. However, if some application on the destination is using that value, the value of *port* can be changed with the `-p` option.

The only mandatory parameter is the destination *host* name or IP number. The default probe datagram length is 40 bytes (60 bytes for IPv6), but this may be increased by specifying a packet length (in bytes) after the destination *host* name.

All integer arguments to *traceroute* can be specified in either decimal or hexadecimal notation. For example, *packetlen* can be specified either as **256** or **0x100**.

### OPTIONS

- `-A addr_family`

  Specify the address family of the target host. *addr_family* can be either *inet* or *inet6*. Address family determines which protocol to use. For an argument of *inet*, IPv4 is used. For *inet6*, IPv6 is used.

  By default, if the name of a host is provided, not the literal IP address, and a valid IPv6 address exists in the name service database, *traceroute* will use this address. Otherwise, if the name service database contains an IPv4 address, it will try the IPv4 address.

  Specify the address family *inet* or *inet6* to override the default behavior. If the argument specified is *inet*, *traceroute* will use the IPv4 address associated with the hostname. If none exists, *traceroute* will state that the host is unknown and exit. It will not try to determine if an IPv6 address exists in the name service database.

  If the specified argument is *inet6*, *traceroute* will use the IPv6 address that is associated with the hostname. If none exists, *traceroute* will state that the host is unknown and exit.

- `-a`

  Probe all of the addresses of a multi-homed destination. The output looks like *traceroute* has been run once for each IP address of the destination. If...
this option is used together with -A, traceroute probes only the addresses that are of the specified address family. While probing one of the addresses of the destination, user can skip to the next address by sending a SIGINT, or exit traceroute by sending a SIGQUIT signal. See signal(3C)

-c traffic_class
Specify the traffic class of probe packets. The value must be an integer in the range from 0 to 255. Gateways along the path may route the probe packet differently depending upon the value of traffic_class set in the probe packet. This option is valid only on IPv6.

-d
Set the SO_DEBUG socket option.

-F
Set the "don’t fragment" bit. This option is valid only on IPv4.

-f first_hop
Set the starting ttl (hop limit) value to first_hop, to override the default value. traceroute skips processing for those intermediate gateways which are less than first_hop hops away.

-g gateway
Specify a loose source route gateway. The user can specify more than one gateway by using -g for each gateway. The maximum number of gateways is 8 for IPv4 and 127 for IPv6. Note that some factors such as the link MTU can further limit the number of gateways for IPv6. This option cannot be used with the -r option.

-I
Use ICMP (ICMP6) ECHO instead of UDP datagrams.

-i iface
For IPv4, this option specifies a network interface to obtain the source IP address. This is normally only useful on a multi-homed host. The -s option is also another way to do this. For IPv6, it specifies the network interface on which probe packets are transmitted. The argument can be either an interface index, for example, 1, 2, or an interface name, for example, le0, hme0.

-L, flow_label
Specify the flow label of probe packets. The value must be an integer in the range from 0 to 1048575. This option is valid only on IPv6.

-l
Print the value of the ttl (hop limit) field in each packet received.

-m max_hop
Set the maximum ttl (hop limit) used in outgoing probe packets. The default is 30 hops, which is the same default used for TCP connections.
-n  
Print hop addresses numerically rather than symbolically and numerically. This saves a nameserver address-to-name lookup for each gateway found on the path.

-p pause_sec  
Specify a delay, in seconds, to pause between probe packets. This may be necessary if the final destination does not accept undeliverable packets in bursts. By default, traceroute sends the next probe as soon as it has received a reply. Note that pause_sec is a real number.

-p port  
Set the base UDP port number used in probes. The default is 33434. traceroute hopes that nothing is listening on UDP ports \((\text{base}+(\text{nhops}-1)\times\text{nqueries})\) to \((\text{base}+(\text{nhops}\times\text{nqueries})-1)\) at the destination host, so that an ICMP (ICMP6) PORT_UNREACHABLE message will be returned to terminate the route tracing. If something is listening on a port in the default range, this option can be used to select an unused port range. nhops is defined as the number of hops between the source and the destination.

-Q max_timeout  
Stop probing this hop after max_timeout consecutive timeouts are detected. The default value is 5. Useful in combination with the -q option if you have specified a large nqueries probe count.

-q nqueries  
Set the desired number of probe queries. The default is 3.

-r  
Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to send probes to a local host through an interface that has been dropped by the router daemon. See in.routed(1M). You cannot use this option if the -g option is used.

-s src_addr  
Use the following address, which usually is given as a literal IP address, not a hostname, as the source address in outgoing probe packets. On multi-homed hosts, those with more than one IP address, this option can be used to force the source address to be something other than the IP address traceroute picks by default. If the IP address is not one of this machine’s interface addresses, an error is returned and nothing is sent. For IPv4, when used together with the -i option, the given IP address should be configured on the specified
interface. Otherwise, an error will be returned. In the case of IPv6, the interface name and the source address do not have to match.

**-t tos**
Set the tos(type-of-service) in probe packets to the specified value. The default is zero. The value must be an integer in the range from 0 to 255. Gateways along the path may route the probe packet differently depending upon the tos value set in the probe packet. This option is valid only on IPv4.

**-v**
Verbose output. For each hop, the size and the destination of the response packets is displayed. Also ICMP (ICMP6) packets received other than TIME_EXCEEDED and UNREACHABLE are listed as well.

**-w waittime**
Set the time, in seconds, to wait for a response to a probe. The default is 5 seconds.

**-x**
Prevent traceroute from calculating checksums. Note that checksums are usually required for the last hop when using ICMP ECHO probes. This option is valid only on IPv4. See the -I option.

**OPERANDS**
The following operands are supported:

- **host**
The network host.

**EXAMPLES**

**EXAMPLE 1** Sample Output From the traceroute Utility

Some sample output from the traceroute utility might be:

```
istanbul% traceroute london
traceroute: Warning: london has multiple addresses; \
using 4::114:a00:20ff:ab3d:83ed
traceroute: Warning: Multiple interfaces found; \
using 4::56:a00:20ff:fe93:8dde @ le0:2
traceroute to london (4::114:a00:20ff:ab3d:83ed), 30 hops max, \
60 byte packets
1  frbldg7c-86 (4::56:a00:20ff:fe1f:65a1) 1.786 ms 1.544 ms 1.719 ms
2  frbldg7b-77 (4::255:0:0:c0a8:517) 2.587 ms 3.001 ms 2.988 ms
3  london (4::114:a00:20ff:ab3d:83ed) 3.122 ms 2.744 ms 3.356 ms
```

The target host, london, has both IPv4 and IPv6 addresses in the name service database. According to the default behavior, traceroute uses IPv6 address of the destination host.

**EXAMPLE 2** Using the traceroute Utility For a Host Which has Only IPv4 Addresses

In the following examples, traceroute is tracking the route to host sanfrancisco, which has only IPv4 addresses in the name service database. Therefore traceroute uses only IPv4 addresses. The following shows the 7-hop path that a packet would follow from the host istanbul to the host sanfrancisco.
EXAMPLE 2 Using the traceroute Utility For a Host Which has Only IPv4 Addresses
(Continued)

istanbul% traceroute sanfrancisco
traceroute: Warning: Multiple interfaces found; using 172.31.86.247 @ le0
trace route to sanfrancisco (172.29.64.39), 30 hops max, 40 byte packets
1 frbldg7c-86 (172.31.86.1) 1.516 ms 1.283 ms 1.362 ms
2 bldg1a-001 (172.31.1.211) 2.277 ms 1.773 ms 2.186 ms
3 bldg4-bldg1 (172.30.4.42) 1.978 ms 1.986 ms 13.996 ms
4 bldg6-bldg4 (172.30.4.49) 2.655 ms 3.042 ms 2.344 ms
5 ferbldg11a-001 (172.29.1.236) 2.636 ms 3.432 ms 3.830 ms
6 frbldg12b-153 (172.29.153.72) 3.452 ms 3.146 ms 2.962 ms
7 sanfrancisco (172.29.64.39) 3.430 ms 3.312 ms 3.451 ms

EXAMPLE 3 Using the traceroute Utility With Source Routing

The following example shows the path of a packet that goes from istanbul to sanfrancisco through the hosts cairo and paris, as specified by the \-g\ option. The \-I\ option makes traceroute send ICMP ECHO probes to the host sanfrancisco. The \-i\ option sets the source address to the IP address configured on the interface qe0.

istanbul% traceroute -g cairo -g paris -i qe0 -q 1 -I sanfrancisco
traceroute to sanfrancisco (172.29.64.39), 30 hops max, 56 byte packets
1 frbldg7c-86 (172.31.86.1) 2.012 ms
2 flrbldg7u (172.31.17.131) 4.960 ms
3 cairo (192.168.163.175) 4.894 ms
4 flrbldg7u (172.31.17.131) 3.475 ms
5 frbldg7c-017 (172.31.17.83) 4.126 ms
6 paris (172.31.86.31) 4.096 ms
7 frbldg7b-82 (172.31.82.1) 6.454 ms
8 bldg1a-001 (172.31.1.211) 6.541 ms
9 bldg6-bldg4 (172.30.4.49) 6.518 ms
10 ferbldg11a-001 (172.29.1.236) 9.108 ms
11 frbldg12b-153 (172.29.153.72) 9.634 ms
12 sanfrancisco (172.29.64.39) 14.631 ms

EXIT STATUS

The following exit values are returned:

0 Successful operation.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO netstat(1M), signal(3C), ping(1M), attributes(5)
This utility is intended for use in network testing, measurement and management. It should be used primarily for manual fault isolation. Because of the load it could impose on the network, it is unwise to use traceroute(1M) during normal operations or from automated scripts.
NAME

trapstat – report trap statistics

SYNOPSIS

/usr/platform/ platform-name /sbin/trapstat [-t | -T | -e entry]
   [-C processor_set_id | -c cpulist] [-P] [-a] [-r rate] [ [interval
   [count]] | command | [args]]

/usr/platform/ platform-name /sbin/trapstat -l

DESCRIPTION

The trapstat utility gathers and displays run-time trap statistics on
UltraSPARC-based systems. The default output is a table of trap types and CPU IDs,
with each row of the table denoting a trap type and each column of the table denoting
a CPU. If standard output is a terminal, the table contains as many columns of data as
can fit within the terminal width; if standard output is not a terminal, the table
contains at most six columns of data. By default, data is gathered and and displayed
for all CPUs; if the data cannot fit in a single table, it is printed across multiple tables.
The set of CPUs for which data is gathered and displayed can be optionally specified
with the -c or -C option.

Unless the -r option or the -a option is specified, the value displayed in each entry of
the table corresponds to the number of traps per second. If the -r option is specified,
the value corresponds to the number of traps over the interval implied by the specified
sampling rate; if the -a option is specified, the value corresponds to the accumulated
number of traps since the invocation of trapstat.

By default, trapstat displays data once per second, and runs indefinitely; both of
these behaviors can be optionally controlled with the interval and count parameters,
respectively. The interval is specified in seconds; the count indicates the number of
intervals to be executed before exiting. Alternatively, command can be specified, in
which case trapstat executes the provided command and continues to run until the
command exits. A positive integer is assumed to be an interval; if the desired command
cannot be distinguished from an integer, the full path of command must be specified.

UltraSPARC I, II and III handle translation lookaside buffer (TLB) misses by trapping
to the operating system. TLB miss traps can be a significant component of overall
system performance for some workloads; the -t option provides in-depth information
on these traps. When run with this option, trapstat displays both the rate of TLB
miss traps and the percentage of time spent processing those traps. Additionally, TLB
misses that hit in the translation storage buffer (TSB) are differentiated from TLB
misses that further miss in the TSB. (The TSB is a software structure used as a
translation entry cache to allow the TLB to be quickly filled; it is discussed in detail in
the UltraSPARC I&II User’s Manual.) The TLB and TSB miss information is further
broken down into user- and kernel-mode misses.

Workloads with working sets that exceed the TLB reach may spend a significant
amount of time missing in the TLB. To accommodate such workloads, the operating
system supports multiple page sizes; larger page sizes increase the effective TLB reach
and thereby reduce the number of TLB misses. To provide insight into the relationship
between page size and TLB miss rate, trapstat optionally provides in-depth TLB miss information broken down by page size using the \(-T\) option. The information provided by the \(-T\) option is a superset of that provided by the \(-t\) option; only one of \(-t\) and \(-T\) can be specified.

**OPTIONS**

The following options are supported:

- **\(-a\)** Displays the number of traps as accumulating, monotonically increasing values instead of per-second or per-interval rates.

- **\(-c\ cpulist\)** Enables trapstat only on the CPUs specified by `cpulist`.

  `cpulist` can be a single processor ID (for example, 4), a range of processor IDs (for example, 4-6), or a comma separated list of processor IDs or processor ID ranges (for example, 4, 5, 6 or 4, 6-8).

- **\(-C\ processor_set_id\)** Enables trapstat only on the CPUs in the processor set specified by `processor_set_id`.

  trapstat modifies its output to always reflect the CPUs in the specified processor set. If a CPU is added to the set, trapstat modifies its output to include the added CPU; if a CPU is removed from the set, trapstat modifies its output to exclude the removed CPU. At most one processor set can be specified.

- **\(-e\ entrylist\)** Enables trapstat only for the trap table entry or entries specified by `entrylist`. A trap table entry can be specified by trap number or by trap name (for example, the level-10 trap can be specified as 74, 0x4A, 0x4a, or level-10).

  `entrylist` can be a single trap table entry or a comma separated list of trap table entries. If the specified trap table entry is not valid, trapstat prints a table of all valid trap table entries and values. A list of valid trap table entries is also found in *The SPARC Architecture Manual, Version 9* and the *Sun Microelectronics UltraSPARC I&II User's Manual*. If the parsable option \((-P\) is specified in addition to the \(-e\) option, the format of the data is as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timestamp (nanoseconds since start)</td>
</tr>
</tbody>
</table>
Each field is separated with whitespace. If the format is modified, it will be modified by adding potentially new fields beginning with field 6; exant fields will remain unchanged.

Lists trap table entries. By default, a table is displayed containing all valid trap numbers, their names and a brief description. The trap name is used in both the default output and in the entrylist parameter for the -e argument. If the parsable option (-P) is specified in addition to the -l option, the format of the data is as follows:

```
Field         Contents
1             Trap number in hexadecimal
2             Trap number in decimal
3             Trap name
Remaining     Trap description
```

Generates parsable output. When run without other data gathering modifying options (that is, -e, -t or -T), trapstat's the parsable output has the following format:

```
Field         Contents
1             Timestamp (nanoseconds since start)
2             CPU ID
3             Trap number (in hexadecimal)
```
```

- **r rate**
  Explicitly sets the sampling rate to be rate samples per second. If this option is specified, `trapstat`'s output changes from a traps-per-second to traps-per-sampling-interval.

- **t**
  Enables TLB statistics.

A table is displayed with four principal columns of data: `itlb-miss`, `itsb-miss`, `dtlb-miss`, and `dtsb-miss`. The columns contain both the rate of the corresponding event and the percentage of CPU time spent processing the event. The percentage of CPU time is given only in terms of a single CPU. The rows of the table correspond to CPUs, with each CPU consuming two rows: one row for user-mode events (denoted with `u`) and one row for kernel-mode events (denoted with `k`). For each row, the percentage of CPU time is totalled and displayed in the rightmost column. The CPUs are delineated with a solid line. If the parsable option (`-P`) is specified in addition to the `-t` option, the format of the data is as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timestamp (nanoseconds since start)</td>
</tr>
<tr>
<td>2</td>
<td>CPU ID</td>
</tr>
<tr>
<td>3</td>
<td>Mode (k denotes kernel, u denotes user)</td>
</tr>
<tr>
<td>4</td>
<td>I-TLB misses</td>
</tr>
<tr>
<td>5</td>
<td>Percentage of time in I-TLB miss handler</td>
</tr>
<tr>
<td>6</td>
<td>I-TSB misses</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Percentage of time in I-TSB miss handler</td>
</tr>
<tr>
<td>8</td>
<td>D-TLB misses</td>
</tr>
<tr>
<td>9</td>
<td>Percentage of time in D-TLB miss handler</td>
</tr>
<tr>
<td>10</td>
<td>D-TSB misses</td>
</tr>
<tr>
<td>11</td>
<td>Percentage of time in D-TSB miss handler</td>
</tr>
</tbody>
</table>

Each field is separated with whitespace. If the format is modified, it will be modified by adding potentially new fields beginning with field 12; extant fields will remain unchanged.

-\texttt{T}

Enables TLB statistics, with page size information. As with the \texttt{-t} option, a table is displayed with four principal columns of data: \texttt{itlb-miss}, \texttt{itsb-miss}, \texttt{dtlb-miss}, and \texttt{dtsb-miss}. The columns contain both the absolute number of the corresponding event, and the percentage of CPU time spent processing the event. The percentage of CPU time is given only in terms of a single CPU. The rows of the table correspond to CPUs, with each CPU consuming two sets of rows: one set for user-level events (denoted with \texttt{u}) and one set for kernel-level events (denoted with \texttt{k}). Each set, in turn, contains as many rows as there are page sizes supported (see \texttt{getpagesizes(3C)}). For each row, the percentage of CPU time is totalled and displayed in the right-most column. The two sets are delineated with a dashed line; CPUs are delineated with a solid line. If the parsable option (\texttt{-P}) is specified in addition to the \texttt{-T} option, the format of the data is as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timestamp (nanoseconds since start)</td>
</tr>
<tr>
<td>2</td>
<td>CPU ID</td>
</tr>
<tr>
<td>3</td>
<td>Mode \texttt{k} denotes kernel, \texttt{u} denotes user</td>
</tr>
<tr>
<td>4</td>
<td>Page size, in decimal</td>
</tr>
</tbody>
</table>
EXAMPLE 1 Using `trapstat` Without Options

When run without options, `trapstat` displays a table of trap types and CPUs. At most six columns can fit in the default terminal width; if (as in this example) there are more than six CPUs, multiple tables are displayed:

```
  example# trapstat
   vct  name     | cpu0 | cpu1 | cpu4 | cpu5 | cpu8 | cpu9
------------------------+------------------------------------------------------
        24 cleanwin | 6446 | 4837 | 6368 | 2153 | 2623 | 1321
        41 level-1 | 100  | 0    | 0    | 1    | 0    | 0
        44 level-4 | 0    | 1    | 1    | 1    | 0    | 0
        45 level-5 | 0    | 0    | 0    | 0    | 0    | 0
        47 level-7 | 0    | 0    | 0    | 9    | 0    | 0
        49 level-9 | 100  | 100  | 100  | 100  | 100  | 100
        4a level-10| 100  | 0    | 0    | 0    | 0    | 0
        4d level-13| 6    | 10   | 7    | 16   | 13   | 11
        4e level-14| 100  | 0    | 0    | 1    | 0    | 0
        60 int-vec | 2607 | 2740 | 2642 | 2922 | 2920 | 3033
        64 itlb-miss| 3129 | 2475 | 3167 | 1037 | 1200 | 569
        68 dtlb-miss| 121061 | 86162 | 109838 | 37386 | 45639 | 20269
        6c dtlb-prot| 997  | 847  | 1061 | 379  | 406  | 184
        84 spill-user-32| 2809 | 2133 | 2739 | 200806 | 332776 | 454504
        88 spill-user-64| 45819 | 207856 | 93487 | 228529 | 68373 | 77590
        8c spill-user-32-cln| 784 | 561 | 767 | 274 | 353 | 215
        90 spill-user-64-cln| 9 | 37 | 17 | 39 | 12 | 13
        98 spill-kern-64| 62913 | 50145 | 63869 | 21916 | 28431 | 11738
        a4 spill-asuser-32| 1327 | 947 | 1288 | 460 | 572 | 335
        a8 spill-asuser-64| 26 | 48 | 18 | 54 | 10 | 14
```
EXAMPLE 1 Using trapstat Without Options (Continued)

<table>
<thead>
<tr>
<th></th>
<th>CPU1</th>
<th>CPU2</th>
<th>CPU3</th>
<th>CPU4</th>
<th>CPU5</th>
<th>CPU6</th>
<th>CPU7</th>
<th>CPU8</th>
<th>CPU9</th>
<th>CPU10</th>
<th>CPU11</th>
<th>CPU12</th>
<th>CPU13</th>
<th>CPU14</th>
<th>CPU15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac spill-asuser-32-cln</td>
<td>4580</td>
<td>3599</td>
<td>4555</td>
<td>1538</td>
<td>1978</td>
<td>857</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0 spill-asuser-64-cln</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4 fill-user-32</td>
<td>2862</td>
<td>2161</td>
<td>2798</td>
<td>19174</td>
<td>31815</td>
<td>435850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c8 fill-user-64</td>
<td>45813</td>
<td>19778</td>
<td>89179</td>
<td>217668</td>
<td>63905</td>
<td>7421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cc fill-user-32-cln</td>
<td>3802</td>
<td>2833</td>
<td>3733</td>
<td>10153</td>
<td>16419</td>
<td>19475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d0 fill-user-64-cln</td>
<td>329</td>
<td>10105</td>
<td>4873</td>
<td>10603</td>
<td>4235</td>
<td>3649</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d8 fill-kern-64</td>
<td>62519</td>
<td>49943</td>
<td>63611</td>
<td>21824</td>
<td>28328</td>
<td>11693</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 syscall-32</td>
<td>2285</td>
<td>1634</td>
<td>2278</td>
<td>737</td>
<td>957</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126 self-xcall</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 2 Using trapstat with CPU Filtering

The `-c` option can be used to limit the CPUs on which trapstat is enabled. This example limits CPU 1 and CPUs 12 through 15.

```
example# trapstat -c 1,12-15
```

<table>
<thead>
<tr>
<th></th>
<th>CPU1</th>
<th>CPU2</th>
<th>CPU3</th>
<th>CPU4</th>
<th>CPU5</th>
<th>CPU6</th>
<th>CPU7</th>
<th>CPU8</th>
<th>CPU9</th>
<th>CPU10</th>
<th>CPU11</th>
<th>CPU12</th>
<th>CPU13</th>
<th>CPU14</th>
<th>CPU15</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 cleanwin</td>
<td>5435</td>
<td>4232</td>
<td>6302</td>
<td>6104</td>
<td></td>
</tr>
<tr>
<td>41 level-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>44 level-4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>45 level-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>47 level-7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>49 level-9</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4a level-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4d level-13</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4e level-14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>60 int-vec</td>
<td>2813</td>
<td>2833</td>
<td>2738</td>
<td>2714</td>
<td></td>
</tr>
<tr>
<td>64 itlb-miss</td>
<td>2636</td>
<td>1925</td>
<td>3133</td>
<td>3029</td>
<td></td>
</tr>
<tr>
<td>68 dtlb-miss</td>
<td>90528</td>
<td>70639</td>
<td>107786</td>
<td>103425</td>
<td></td>
</tr>
<tr>
<td>6c dtlb-prot</td>
<td>819</td>
<td>675</td>
<td>988</td>
<td>954</td>
<td></td>
</tr>
<tr>
<td>84 spill-user-32</td>
<td>175768</td>
<td>39933</td>
<td>2811</td>
<td>2742</td>
<td></td>
</tr>
<tr>
<td>88 spill-user-64</td>
<td>0</td>
<td>241348</td>
<td>96907</td>
<td>118298</td>
<td></td>
</tr>
<tr>
<td>8c spill-user-32-cln</td>
<td>681</td>
<td>513</td>
<td>753</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>90 spill-user-64-cln</td>
<td>0</td>
<td>42</td>
<td>16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>98 spill-kern-64</td>
<td>52158</td>
<td>40914</td>
<td>62305</td>
<td>60141</td>
<td></td>
</tr>
<tr>
<td>a4 spill-asuser-32</td>
<td>1113</td>
<td>856</td>
<td>1251</td>
<td>1208</td>
<td></td>
</tr>
<tr>
<td>a8 spill-asuser-64</td>
<td>0</td>
<td>64</td>
<td>16</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>ac spill-asuser-32-cln</td>
<td>3816</td>
<td>2942</td>
<td>4515</td>
<td>4381</td>
<td></td>
</tr>
<tr>
<td>b0 spill-asuser-64-cln</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c4 fill-user-32</td>
<td>170744</td>
<td>38444</td>
<td>2876</td>
<td>2784</td>
<td></td>
</tr>
<tr>
<td>c8 fill-user-64</td>
<td>0</td>
<td>230381</td>
<td>92941</td>
<td>111694</td>
<td></td>
</tr>
<tr>
<td>cc fill-user-32-cln</td>
<td>8550</td>
<td>3790</td>
<td>3612</td>
<td>3553</td>
<td></td>
</tr>
<tr>
<td>d0 fill-user-64-cln</td>
<td>0</td>
<td>10726</td>
<td>4495</td>
<td>5845</td>
<td></td>
</tr>
<tr>
<td>d8 fill-kern-64</td>
<td>51968</td>
<td>40760</td>
<td>62053</td>
<td>59922</td>
<td></td>
</tr>
<tr>
<td>108 syscall-32</td>
<td>1839</td>
<td>1495</td>
<td>2144</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>126 self-xcall</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

System Administration Commands 1873
EXAMPLE 2 Using `trapset` with CPU Filtering (Continued)

<table>
<thead>
<tr>
<th></th>
<th>int-vec</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>2559</td>
<td>2699</td>
<td>2752</td>
<td>2688</td>
<td>2792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3296</td>
<td>1548</td>
<td>1174</td>
<td>1698</td>
<td>1087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>114788</td>
<td>54313</td>
<td>43040</td>
<td>58336</td>
<td>38057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>1046</td>
<td>549</td>
<td>417</td>
<td>545</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>66551</td>
<td>29480</td>
<td>30158</td>
<td>26522</td>
<td>21303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0</td>
<td>318652</td>
<td>111239</td>
<td>299829</td>
<td>221716</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>856</td>
<td>347</td>
<td>331</td>
<td>416</td>
<td>293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>55</td>
<td>21</td>
<td>59</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>66464</td>
<td>31803</td>
<td>24758</td>
<td>34004</td>
<td>22277</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a4</td>
<td>1423</td>
<td>569</td>
<td>560</td>
<td>698</td>
<td>483</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a8</td>
<td>0</td>
<td>74</td>
<td>32</td>
<td>98</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ac</td>
<td>4875</td>
<td>2250</td>
<td>1728</td>
<td>2384</td>
<td>1584</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>64193</td>
<td>28418</td>
<td>287516</td>
<td>27055</td>
<td>20293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>0</td>
<td>305016</td>
<td>106692</td>
<td>288542</td>
<td>210654</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cc</td>
<td>6733</td>
<td>3520</td>
<td>15185</td>
<td>2396</td>
<td>12035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d0</td>
<td>0</td>
<td>13226</td>
<td>3506</td>
<td>12933</td>
<td>11032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d8</td>
<td>66220</td>
<td>31680</td>
<td>24674</td>
<td>33892</td>
<td>22196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>2446</td>
<td>967</td>
<td>817</td>
<td>1196</td>
<td>755</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 3 Using `trapstat` with TLB Statistics

The `-t` option displays in-depth TLB statistics, including the amount of time spent performing TLB miss processing. The following example shows that the machine is spending 14.1 percent of its time just handling D-TLB misses:

```
example# trapstat -t
cpu m| itlb-miss %tim itsb-miss %tim | dtlb-miss %tim dtsb-miss %tim |%tim
-----+-------------------------------+-------------------------------+----
 0 u | 2571 0.3 0.0 | 10802 1.3 0.0 | 1.6
 0 k | 0 0.0 0.0 | 106420 13.4 0.1 |13.6
-----+-------------------------------+-------------------------------+----
 1 u | 3069 0.3 0.0 | 10983 1.2 100 0.0 | 1.6
 1 k | 27 0.0 0.0 | 106974 12.6 19 0.0 |12.7
-----+-------------------------------+-------------------------------+----
 2 u | 3033 0.3 0.0 | 11045 1.2 105 0.0 | 1.6
 2 k | 43 0.0 0.0 | 107842 12.7 108 0.0 |12.8
-----+-------------------------------+-------------------------------+----
 3 u | 2924 0.3 0.0 | 10380 1.2 121 0.0 | 1.6
 3 k | 54 0.0 0.0 | 102682 12.2 16 0.0 |12.2
-----+-------------------------------+-------------------------------+----
 4 u | 3064 0.3 0.0 | 10832 1.2 120 0.0 | 1.6
 4 k | 31 0.0 0.0 | 107977 13.0 236 0.1 |13.1
---------------------------------------------------------------------------
 ttl | 14816 0.3 0.0 | 585937 14.1 1009 0.0 |14.5
```

EXAMPLE 4 Using `trapstat` with TLB Statistics and Page Size Information

By specifying the `-T` option, `trapstat` shows TLB misses broken down by page size. In this example, CPU 0 is spending 7.9 percent of its time handling user-mode TLB misses on 8K pages, and another 2.3 percent of its time handling user-mode TLB misses on 64K pages.
EXAMPLE 4 Using `trapstat` with TLB Statistics and Page Size Information

```
example# trapstat -T -c 0
cpu m size| itlb-miss %tim itsb-miss %tim dtlb-miss %tim dtsb-miss %tim |%tim
----------+-------------------------------+-------------------------------+----
0 u 8k| 1300 0.1 15 0.0 | 104897 7.9 90 0.0 | 8.0
0 u 64k| 0 0.0 0 0.0 | 29935 2.3 7 0.0 | 2.3
0 u 512k| 0 0.0 0 0.0 | 3569 0.2 2 0.0 | 0.2
0 u 4m| 0 0.0 0 0.0 | 233 0.0 2 0.0 | 0.0
-----+---------------+---------------+--
0 k 8k| 13 0.0 0 0.0 | 71733 6.5 110 0.0 | 6.5
0 k 64k| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
0 k 512k| 0 0.0 0 0.0 | 0 0.0 206 0.1 | 0.1
0 k 4m| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
==========+===============================+===============================+====
ttl | 1313 0.1 15 0.0 | 210367 17.1 417 0.2 |17.5
```

EXAMPLE 5 Using `trapstat` with Entry Filtering

By specifying the `-e` option, `trapstat` displays statistics for only specific trap types. Using this option minimizes the probe effect when seeking specific data. This example yields statistics for only the `dtlb-prot` and `syscall-32` traps on CPUs 12 through 15:

```
example# trapstat -e dtlb-prot,syscall-32 -c 12-15
vct name | cpu12 cpu13 cpu14 cpu15
------------------------+------------------------------------
6c dtlb-prot | 817 754 1018 560
108 syscall-32 | 1426 1647 2186 1142

vct name | cpu12 cpu13 cpu14 cpu15
------------------------+------------------------------------
6c dtlb-prot | 1085 996 800 707
108 syscall-32 | 2578 2167 1638 1452
```

EXAMPLE 6 Using `trapstat` with a Higher Sampling Rate

The following example uses the `-r` option to specify a sampling rate of 1000 samples per second, and filter only for the level-10 trap. Additionally, specifying the `-P` option yields parsable output.

Notice the timestamp difference between the level-10 events: 9,998,000 nanoseconds and 10,007,000 nanoseconds. These level-10 events correspond to the system clock, which by default ticks at 100 hertz (that is, every 10,000,000 nanoseconds).

```
example# trapstat -e level-10 -P -r 1000
1070400 0 4a level-10 0
2048600 0 4a level-10 0
3030400 0 4a level-10 1
4035800 0 4a level-10 0
5027200 0 4a level-10 0
6027200 0 4a level-10 0
7027400 0 4a level-10 0
8028200 0 4a level-10 0
9026400 0 4a level-10 0
```
EXAMPLE 6 Using `trapstat` with a Higher Sampling Rate  

(Continued)

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Process</th>
<th>Level</th>
<th>Code</th>
<th>Probe Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>10029600</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>11028600</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>12024000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>13028400</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>1</td>
</tr>
<tr>
<td>14031200</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>15027200</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>16027600</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>17025000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>18026000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>19027800</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>20025600</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>21025200</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>22025000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>23035400</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>1</td>
</tr>
<tr>
<td>24027400</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>25026000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
<tr>
<td>26027000</td>
<td>0</td>
<td>4a</td>
<td>level-10</td>
<td>0</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td></td>
</tr>
<tr>
<td>Human Readable Output</td>
<td>Unstable</td>
</tr>
<tr>
<td>Parsable Output</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`lockstat(1M), pmap(1), psrset(1M), psrinfo(1M), pbind(1M), ppgsz(1), getpagesize(3C)`

*Sun Microelectronics UltraSPARC I&II User’s Manual*, January 1997, STP1031,


NOTES

When enabled, `trapstat` induces a varying probe effect, depending on the type of information collected. While the precise probe effect depends upon the specifics of the hardware, the following table can be used as a rough guide:

<table>
<thead>
<tr>
<th>Option</th>
<th>Approximate probe effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>3-5% per trap</td>
</tr>
<tr>
<td>-e</td>
<td>3-5% per specified trap</td>
</tr>
</tbody>
</table>

1876 man pages section 1M: System Administration Commands • Last Revised 3 Oct 2001
### trapstat(1M)

<table>
<thead>
<tr>
<th>Option</th>
<th>Approximate probe effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t, -T</td>
<td>40-45% per TLB miss trap hitting in the TSB,</td>
</tr>
<tr>
<td></td>
<td>25-30% per TLB miss trap missing in the TSB</td>
</tr>
</tbody>
</table>

These probe effects are *per trap* not for the system as a whole. For example, running `trapstat` with the default options on a system that spends 7% of total time handling traps induces a performance degradation of less than one half of one percent; running `trapstat` with the `-t` or `-T` option on a system spending 5% of total time processing TLB misses induce a performance degradation of no more than 2.5%.

When run with the `-t` or `-T` option, `trapstat` accounts for its probe effect when calculating the `%tim` fields. This assures that the `%tim` fields are a reasonably accurate indicator of the time a given workload is spending handling TLB misses — regardless of the perturbing presence of `trapstat`.

While the `%tim` fields include the explicit cost of executing the TLB miss handler, they do not include the implicit costs of TLB miss traps (for example, pipeline effects, cache pollution, etc). These implicit costs become more significant as the trap rate grows; if high `%tim` values are reported (greater than 50%), you can accurately infer that much of the balance of time is being spent on the implicit costs of the TLB miss traps.

Due to the potential system wide degradation induced, only the super-user can run `trapstat`.

Due to the limitation of the underlying statistics gathering methodology, only one instance of `trapstat` can run at a time.
ttyadm(1M)

NAME
ttyadm – format and output port monitor-specific information

SYNOPSIS
-s service

/usr/sbin/ttyadm -V

DESCRIPTION
The ttyadm command is an administrative command that formats
ttymon(1M)-specific information and writes it to standard output. The Service Access
Facility (SAF) requires each port monitor to provide such a command. Note that the
port monitor administrative file is updated by the Service Access Controller’s
administrative commands, sacadm(1M) and pmadm(1M). ttyadm provides a means of
presenting formatted port monitor-specific (ttymon-specific) data to these commands.

OPTIONS
The following options are supported:

- b
Set the “bi-directional port” flag. When this flag is set, the line can be
used in both directions. ttymon will allow users to connect to the
service associated with the port, but if the port is free, uucico(1M), cu(1C), or ct(1C) can use it for dialing out.

- c
Set the connect-on-carrier flag for the port. If the -c flag is set, ttymon
will invoke the port’s associated service immediately when a connect indication is received (that is, no prompt is printed
and no baud-rate searching is done).

- d device
device is the full pathname of the device file for the TTY port.

- h
Set the hangup flag for the port. If the -h flag is not set, ttymon
will force a hangup on the line by setting the speed to 0 before
setting the speed to the default or specified value.

- i message
Specify the inactive (disabled) response message. This message
will be sent to the TTY port if the port is disabled or the ttymon
monitoring the port is disabled.

- I
Initialize only. If the -I option is used, ttymon will invoke the
service only once. This can be used to configure a particular device
without actually monitoring it, as with software carrier.

- l ttylabel
Specify which ttylabel in the /etc/ttydefs file to use as the
starting point when searching for the proper baud rate.

- m modules
Specify a list of pushable STREAMS modules. The modules will be
pushed in the order in which they are specified before the service
is invoked. modules must be a comma-separated list of modules,
with no white space included. Any modules currently on the
stream will be popped before these modules are pushed.

- p prompt
Specify the prompt message, for example, “login:”.

1878  man pages section 1M: System Administration Commands • Last Revised 14 Sep 1992
-r count  When the -r option is invoked, ttymon will wait until it receives data from the port before it displays a prompt. If count is 0, ttymon will wait until it receives any character. If count is greater than 0, ttymon will wait until count newlines have been received.

-s service  service is the full pathname of the service to be invoked when a connection request is received. If arguments are required, the command and its arguments must be enclosed in double quotes (" ").

-s y|n  Set the software carrier value. y will turn software carrier on. n will turn software carrier off.

-t timeout  Specify that ttymon should close a port if the open on the port succeeds, and no input data is received in timeout seconds.

-T termtypet  Set the terminal type. The TERM environment variable will be set to termtypet.

-V  Display the version number of the current /usr/lib/saf/ttymon command.

OUTPUT  If successful, ttyadm will generate the requested information, write it to standard output, and exit with a status of 0. If ttyadm is invoked with an invalid number of arguments or invalid arguments, or if an incomplete option is specified, an error message will be written to standard error and ttymon will exit with a non-zero status.

FILES  /etc/ttydefs

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  ct(1C), cu(1C), pmadm(1M), sacadm(1M), ttymon(1M), uucico(1M), attributes(5)

System Administration Guide: Basic Administration
NAME | ttymon – port monitor for terminal ports
SYNOPSIS | /usr/lib/saf/ttymon

ttymon is a STREAMS-based TTY port monitor. Its function is to monitor ports, to set terminal modes, baud rates, and line disciplines for the ports, and to connect users or applications to services associated with the ports. Normally, ttymon is configured to run under the Service Access Controller, sac(1M), as part of the Service Access Facility (SAF). It is configured using the sacadm(1M) command. Each instance of ttymon can monitor multiple ports. The ports monitored by an instance of ttymon are specified in the port monitor’s administrative file. The administrative file is configured using the pmadm(1M) and ttyadm(1M) commands. When an instance of ttymon is invoked by the sac command, it starts to monitor its ports. For each port, ttymon first initializes the line disciplines, if they are specified, and the speed and terminal settings. For ports with entries in /etc/logindevperm, device owner, group and permissions are set. (See logindevperm(4).) The values used for initialization are taken from the appropriate entry in the TTY settings file. This file is maintained by the sttydefs(1M) command. Default line disciplines on ports are usually set up by the autopush(1M) command of the Autopush Facility.

ttymon then writes the prompt and waits for user input. If the user indicates that the speed is inappropriate by pressing the BREAK key, ttymon tries the next speed and writes the prompt again. When valid input is received, ttymon interprets the per-service configuration file for the port, if one exists, creates a utmpx entry if required (see utmpx(4)), establishes the service environment, and then invokes the service associated with the port. Valid input consists of a string of at least one non-newline character, terminated by a carriage return. After the service terminates, ttymon cleans up the utmpx entry, if one exists, and returns the port to its initial state.

If autobaud is enabled for a port, ttymon will try to determine the baud rate on the port automatically. Users must enter a carriage return before ttymon can recognize the baud rate and print the prompt. Currently, the baud rates that can be determined by autobaud are 110, 1200, 2400, 4800, and 9600.

If a port is configured as a bidirectional port, ttymon will allow users to connect to a service, and, if the port is free, will allow uucico(1M), cu(1C), or ct(1C) to use it for dialing out. If a port is bidirectional, ttymon will wait to read a character before it prints a prompt.

If the connect-on-carrier flag is set for a port, ttymon will immediately invoke the port’s associated service when a connection request is received. The prompt message will not be sent.

If a port is disabled, ttymon will not start any service on that port. If a disabled message is specified, ttymon will send out the disabled message when a connection request is received. If ttymon is disabled, all ports under that instance of ttymon will also be disabled.
The service `ttymon` invokes for a port is specified in the `ttymon` administrative file. `ttymon` will scan the character string giving the service to be invoked for this port, looking for a `%d` or a `%%` two-character sequence. If `%d` is found, `ttymon` will modify the service command to be executed by replacing those two characters by the full path name of this port (the device name). If `%%` is found, they will be replaced by a single `%`. When the service is invoked, file descriptor 0, 1, and 2 are opened to the port device for reading and writing. The service is invoked with the user ID, group ID and current home directory set to that of the user name under which the service was registered with `ttymon`. Two environment variables, `HOME` and `TTYPROMPT`, are added to the service's environment by `ttymon`. `HOME` is set to the home directory of the user name under which the service is invoked. `TTYPROMPT` is set to the prompt string configured for the service on the port. This is provided so that a service invoked by `ttymon` has a means of determining if a prompt was actually issued by `ttymon` and, if so, what that prompt actually was.

See `ttyadm(1M)` for options that can be set for ports monitored by `ttymon` under the Service Access Controller.

`ttymon` uses `pam(3PAM)` for session management. The PAM configuration policy, listed through `/etc/pam.conf`, specifies the modules to be used for `ttymon`. Here is a partial `pam.conf` file with entries for `ttymon` using the UNIX session management module.

```
ttymon session required /usr/lib/security/pam_unix.so.1
```

If there are no entries for the `ttymon` service, then the entries for the "other" service will be used.

### OPTIONS

- `-g` A special invocation of `ttymon` is provided with the `-g` option. This form of the command should only be called by applications that need to set the correct baud rate and terminal settings on a port and then connect to `login` service, but that cannot be pre-configured under the SAC. The following combinations of options can be used with `-g`:

- `-d device` `device` is the full path name of the port to which `ttymon` is to attach. If this option is not specified, file descriptor 0 must be set up by the invoking process to a TTY port.

- `-h` If the `-h` flag is not set, `ttymon` will force a hangup on the line by setting the speed to zero before setting the speed to the default or specified speed.

- `-l ttylabel` `ttylabel` is a link to a speed and TTY definition in the `ttydefs` file. This definition tells `ttymon` at what speed to run initially, what the initial TTY settings are, and what speed to try next if the user indicates that the speed is inappropriate by pressing the BREAK key. The default speed is 9600 baud.

- `-m modules` When initializing the port, `ttymon` will pop all modules on the port, and then push `modules` in the order specified. `modules` is a
comma-separated list of pushable modules. Default modules on
the ports are usually set up by the Autopush Facility.

-p prompt
Allows the user to specify a prompt string. The default prompt is
Login:

-t timeout
Specifies that ttymon should exit if no one types anything in
timeout seconds after the prompt is sent.

-T termtype
Sets the TERM environment variable to termtype.

ENVIRONMENT VARIABLES

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment,
the operational behavior of ttymon for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none of
the above variables is set in the environment, the "C" (U.S. style) locale determines
how ttymon behaves.

LC_CTYPE
Determines how ttymon handles characters. When LC_CTYPE is
set to a valid value, ttymon can display and handle text and
filenames containing valid characters for that locale. ttymon can
display and handle Extended Unix Code (EUC) characters where
any individual character can be 1, 2, or 3 bytes wide. ttymon can
also handle EUC characters of 1, 2, or more column widths. In the
"C" locale, only characters from ISO 8859-1 are valid.

FILES
/etc/logindevperm

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
c(1C), cu(1C), autopush(1M), pmadm(1M), sac(1M), sacadm(1M), sttydefs(1M),
ttyadm(1M), uucico(1M), pam(3PAM), logindevperm(4), utmpx(4),
attributes(5), environ(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

System Administration Guide: Basic Administration

NOTES
If a port is monitored by more than one ttymon, it is possible for the ttymons to send
out prompt messages in such a way that they compete for input.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
tunefs is designed to change the dynamic parameters of a file system which affect the layout policies. When using tunefs with filesystem, filesystem must be in /etc/vfstab. The parameters which are to be changed are indicated by the options given below.

Generally, one should optimize for time unless the file system is over 90% full.

The following options are supported:

- **-a maxcontig**
  Specifies the maximum number of contiguous logical blocks that will be laid out before forcing a rotational delay (see `-d`). The default value is determined from the disk drive’s maximum transfer rate.

  UFS supports no more than 1048576 byte (1MB) runs. With a logical block size of 4096, this gives a maxcontig limit of 256. With 8192, the limit is 128.

- **-d rotdelay**
  Specifies the expected time (in milliseconds) to service a transfer completion interrupt and initiate a new transfer on the same disk. It is used to decide how much rotational spacing to place between successive blocks in a file.

- **-e maxbpg**
  Indicates the maximum number of contiguous logical blocks any single file can allocate out of a cylinder group before it is forced to begin allocating blocks from another cylinder group. Typically this value is set to approximately one quarter of the total contiguous logical blocks in a cylinder group. The intent is to prevent any single file from using up all the blocks in a single cylinder group, thus degrading access times for all files subsequently allocated in that cylinder group. The effect of this limit is to cause big files to do long seeks more frequently than if they were allowed to allocate all the blocks in a cylinder group before seeking elsewhere. For file systems with exclusively large files, this parameter should be set higher.

- **-m minfree**
  Specifies the percentage of space held back from normal users; the minimum free space threshold. This value can be set to 0; however, up to a factor of three in throughput will be lost over the performance obtained at a 10% threshold. Note: If the value is raised above the current usage level, users will be unable to allocate files until enough files have been deleted to get under the higher threshold.

- **-o [space | time]**
  Changes optimization strategy for the file system.

  **space**: conserves space

  **time**: attempt to organize file layout to minimize access time
See largefile(5) for the description of the behavior of tunefs when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO mkfs(1M), attributes(5), largefile(5)
NAME  tzselect – select a time zone

SYNOPSIS  /usr/bin/tzselect

DESCRIPTION  The tzselect program asks you a series of questions about the current location and outputs the resulting time zone description to standard output. The output is suitable as a value for the TZ environment variable.

All user interaction is through standard input and standard error.

OPTIONS  The tzselect command has no options.

EXIT STATUS  The following exit values are returned:

0  Timezone information was successfully obtained.

>0  An error occurred.

FILES  /usr/share/lib/zoneinfo
directory containing timezone data files

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO  zdump(1M), zic(1M), ctime(3C), attributes(5)
NAME | uadmin – administrative control

SYNOPSIS | 
/usr/sbin/uadmin cmd fcn [mdep]

/sbin/uadmin cmd fcn [mdep]

DESCRIPTION | The uadmin command provides control for basic administrative functions. This command is tightly coupled to the system administration procedures and is not intended for general use. It may be invoked only by the super-user.

Both the cmd (command) and fcn (function) arguments are converted to integers and passed to the uadmin system call. The optional mdep (machine dependent) argument is only available for the cmd values of 1 (A_REBOOT), 2 (A_SHUTDOWN), or 5 (A_DUMP). For any other cmd value, no mdep command-line argument is allowed.

When passing an mdep value that contains whitespaces, the string must be grouped together as a single argument enclosed within quotes, for example:

uadmin 1 1 "-s kernel/unix"

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | uadmin(2), attributes(5)
NAME

ufsdump – incremental file system dump

SYNOPSIS

/usr/sbin/ufsdump [options] [arguments] files_to_dump

DESCRIPTION

ufsdump backs up all files specified by files_to_dump (normally either a whole file system or files within a file system changed after a certain date) to magnetic tape, diskette, or disk file. When running ufsdump, the file system must be inactive; otherwise, the output of ufsdump may be inconsistent and restoring files correctly may be impossible. A file system is inactive when it is unmounted or the system is in single user mode. A file system is not considered inactive if one tree of the file system is quiescent while another tree has files or directories being modified.

options is a single string of one-letter ufsdump options.

arguments may be multiple strings whose association with the options is determined by order. That is, the first argument goes with the first option that takes an argument; the second argument goes with the second option that takes an argument, and so on.

files_to_dump is required and must be the last argument on the command line. See OPERANDS for more information.

With most devices ufsdump can automatically detect the end-of-media. Consequently, the d, s, and t options are not necessary for multi-volume dumps, unless ufsdump does not understand the way the device detects the end-of-media, or the files are to be restored on a system with an older version of the restore command.

OPTIONS

The following options are supported:

0–9

The “dump level.” All files specified by files_to_dump that have been modified since the last ufsdump at a lower dump level are copied to the dump_file destination (normally a magnetic tape device). For instance, if a “level 2” dump was done on Monday, followed by a “level 4” dump on Tuesday, a subsequent “level 3” dump on Wednesday would contain all files modified or added since the “level 2” (Monday) backup. A “level 0” dump copies the entire file system to the dump_file.

a archive_file

Archive file. Archive a dump table-of-contents in the specified archive_file to be used by ufsrestore(1M) to determine whether a file is in the dump file that is being restored.

b factor

Blocking factor. Specify the blocking factor for tape writes. The default is 20 blocks per write for tapes of density less than 6250BPI (bytes-per-inch). The default blocking factor for tapes of density 6250BPI and greater is 64. The default blocking factor for cartridge tapes (c option) is 126. The highest blocking factor available
ufsdump(1M)

with most tape drives is 126. Note: the blocking factor is specified in terms of 512-byte blocks, for compatibility with tar(1).

c Cartridge. Set the defaults for cartridge instead of the standard half-inch reel. This sets the density to 1000BPI and the blocking factor to 126. Since ufsdump can automatically detect the end-of-media, only the blocking parameter normally has an effect. When cartridge tapes are used, and this option is not specified, ufsdump will slightly miscompute the size of the tape. If the b, d, s or c options are specified with this option, their values will override the defaults set by this option.

d bpi Tape density. Not normally required, as ufsdump can detect end-of-media. This parameter can be used to keep a running tab on the amount of tape used per reel. The default density is 6250BPI except when the c option is used for cartridge tape, in which case it is assumed to be 1000BPI per track. Typical values for tape devices are:

1/2 inch tape

6250 BPI

1/4 inch cartridge

1000 BPI

The tape densities and other options are documented in the st(7D) man page.

D Diskette. Dump to diskette.

dump_file Dump file. Use dump_file as the file to dump to, instead of /dev/rmt/0. If dump_file is specified as -, dump to standard output.

If the name of the file is of the form machine:device, the dump is done from the specified machine over the network using rmt(1M). Since ufsdump is normally run by root, the name of the local machine must appear in the / . rhosts file of the remote machine. If the file is specified as user@machine:device, ufsdump will attempt to execute as the specified user on the remote machine. The specified user must have a . rhosts file on the remote machine that allows the user invoking the command from the local machine to access the remote machine.

l Autoload. When the end-of-tape is reached before the dump is complete, take the drive offline and wait up to two minutes for the tape drive to be ready again. This
ufsdump(1M)

gives autoloading (stackloader) tape drives a chance to load a new tape. If the drive is ready within two minutes, continue. If it is not, prompt for another tape and wait.

L string

Sets the tape label to *string*, instead of the default *none*. *string* may be no more than sixteen characters long. If it is longer, it is truncated and a warning printed; the dump will still be done. The tape label is specific to the ufsdump tape format, and bears no resemblance to IBM or ANSI-standard tape labels.

n

Notify all operators in the *sys* group that ufsdump requires attention by sending messages to their terminals, in a manner similar to that used by the *wall* command. Otherwise, such messages are sent only to the terminals (such as the console) on which the user running ufsdump is logged in.

N device_name

Use *device_name* when recording information in /etc/dumpdates (see the *u* option) and when comparing against information in /etc/dumpdates for incremental dumps. The *device_name* provided can contain no white space as defined in *scanf*(3C) and is case-sensitive.

O

Offline. Take the drive offline when the dump is complete or the end-of-media is reached and rewind the tape, or eject the diskette. In the case of some autoloading 8mm drives, the tape is removed from the drive automatically. This prevents another process which rushes in to use the drive, from inadvertently overwriting the media.

S size

Specify the *size* of the volume being dumped to. Not normally required, as ufsdump can detect end-of-media. When the specified size is reached, ufsdump waits for you to change the volume. ufsdump interprets the specified size as the length in feet for tapes and cartridges, and as the number of 1024-byte blocks for diskettes. The values should be a little smaller than the actual physical size of the media (for example, 425 for a 450-foot cartridge). Typical values for tape devices depend on the *c* option, for cartridge devices, and the *D* option for diskettes:

1/2 inch tape
2300 feet
ufsdump(1M)

60-Mbyte 1/4 inch cartridge
   425 feet

150-Mbyte 1/4 inch cartridge
   700 feet
diskette
   1422 blocks (Corresponds to a 1.44-Mbyte diskette,
   with one cylinder reserved for bad block
   information.)

S Size estimate. Determine the amount of space that is
   needed to perform the dump without actually doing it,
   and display the estimated number of bytes it will take.
   This is useful with incremental dumps to determine
   how many volumes of media will be needed.

S tracks Specify the number of tracks for a cartridge tape. Not
   normally required, as ufsdump can detect
   end-of-media. The default is 9 tracks. The t option is
   not compatible with the D option. Values for
   Sun-supported tape devices are:
   60-Mbyte 1/4 inch cartridge 9 tracks
   150-Mbyte 1/4 inch cartridge 18 tracks

T time_wait [hms] Sets the amount of time to wait for an autoload
   command to complete. This option is ignored unless
   the l option has also been specified. The default time
   period to wait is two minutes. Specify time units with a
   trailing h (for hours), m (for minutes), or s (for
   seconds). The default unit is minutes.

u Update the dump record. Add an entry to the file
   /etc/dumpdates, for each file system successfully
   dumped that includes the file system name (or
   device_name as specified with the N option), date, and
   dump level.

v Verify. After each tape or diskette is written, verify the
   contents of the media against the source file system. If
   any discrepancies occur, prompt for new media, then
   repeat the dump/verification process. The file system
   must be unmounted. This option cannot be used to
   verify a dump to standard output.

w Warning. List the file systems that have not been
   backed up within a day. This information is gleaned
   from the files /etc/dumpdates and /etc/vfstab.
   When the w option is used, all other options are
   ignored. After reporting, ufsdump exits immediately.
Warning with highlight. Similar to the w option, except that the w option includes all file systems that appear in /etc/dumpdates, along with information about their most recent dump dates and levels. File systems that have not been backed up within a day are highlighted.

**OPERANDS**

The following operand is supported:

files_to_dump Specifies the files to dump. Usually it identifies a whole file system by its raw device name (for example, /dev/rdsk/c0t3d0s6). Incremental dumps (levels 1 to 9) of files changed after a certain date only apply to a whole file system. Alternatively, files_to_dump can identify individual files or directories. All named directories that may be examined by the user running ufsdump, as well as any explicitly-named files, are dumped. This dump is equivalent to a level 0 dump of the indicated portions of the filesystem, except that /etc/dumpdates is not updated even if the -u option has been specified. In all cases, the files must be contained in the same file system, and the file system must be local to the system where ufsdump is being run.

files_to_dump is required and must be the last argument on the command line.

If no options are given, the default is 9uf /dev/rmt/0 files_to_dump.

**USAGE**

See largefile(5) for the description of the behavior of ufsdump when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1** A sample display of the ufsdump command.

To make a full dump of a root file system on c0t3d0, on a 150-MByte cartridge tape unit 0, use:

```
example# ufsdump 0cfu /dev/rmt/0 /dev/rdsk/c0t3d0s0
```

To make and verify an incremental dump at level 5 of the usr partition of c0t3d0, on a 1/2 inch reel tape unit 1, use:

```
example# ufsdump 5fuv /dev/rmt/1 /dev/rdsk/c0t3d0s6
```

**EXIT STATUS**

While running, ufsdump emits many verbose messages. ufsdump returns the following exit values:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal exit.</td>
</tr>
<tr>
<td>1</td>
<td>Startup errors encountered.</td>
</tr>
<tr>
<td>3</td>
<td>Abort – no checkpoint attempted.</td>
</tr>
</tbody>
</table>

**FILES**

/dev/rmt/0 default unit to dump to


ufsdump(1M)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/dumpdates</td>
<td>dump date record</td>
</tr>
<tr>
<td>/etc/group</td>
<td>to find group sys</td>
</tr>
<tr>
<td>/etc/hosts</td>
<td>to gain access to remote system with drive</td>
</tr>
<tr>
<td>/etc/vfstab</td>
<td>list of file systems</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

cpio(1), tar(1), dd(1M), devnm(1M), prtvtoc(1M), rmt(1M), shutdown(1M), ufsrestore(1M), volcopy(1M), wall(1M), scanf(3C), attributes(5), largefile(5), st(7D)

NOTES

Read Errors

Fewer than 32 read errors on the file system are ignored.

Process Per Reel

Because each reel requires a new process, parent processes for reels that are already written hang around until the entire tape is written.

Operator Intervention

ufsdump requires operator intervention on these conditions: end of volume, end of dump, volume write error, volume open error or disk read error (if there are more than a threshold of 32). In addition to alerting all operators implied by the n option, ufsdump interacts with the operator on ufsdump's control terminal at times when ufsdump can no longer proceed, or if something is grossly wrong. All questions ufsdump poses must be answered by typing yes or no, as appropriate.

Since backing up a disk can involve a lot of time and effort, ufsdump checkpoints at the start of each volume. If writing that volume fails for some reason, ufsdump will, with operator permission, restart itself from the checkpoint after a defective volume has been replaced.

Suggested Dump Schedule

It is vital to perform full, “level 0”, dumps at regular intervals. When performing a full dump, bring the machine down to single-user mode using shutdown(1M). While preparing for a full dump, it is a good idea to clean the tape drive and heads. Incremental dumps should be performed with the system running in single-user mode.

Incremental dumps allow for convenient backup and recovery of active files on a more frequent basis, with a minimum of media and time. However, there are some tradeoffs. First, the interval between backups should be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure (a rare, but possible occurrence), capture active files on (at least) two sets of dump volumes. Another consideration is the desire to keep unnecessary duplication of files to a minimum to
save both operator time and media storage. A third consideration is the ease with
which a particular backed-up version of a file can be located and restored. The
following four-week schedule offers a reasonable tradeoff between these goals.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td>Full</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Week 2:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Week 3:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Week 4:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Although the Tuesday through Friday incrementals contain “extra copies” of files from
Monday, this scheme assures that any file modified during the week can be recovered
from the previous day’s incremental dump.

**ufsdump** uses multiple processes to allow it to read from the disk and write to
the media concurrently. Due to the way it synchronizes between these processes, any
attempt to run *dump* with a `nice` (process priority) of ‘−5’ or better will likely make
**ufsdump** run slower instead of faster.

Most disks contain one or more overlapping slices because slice 2 covers the entire
disk. The other slices are of various sizes and usually do not overlap. For example, a
common configuration places **root** on slice 0, **swap** on slice 1, **/opt** on slice 5 and
**/usr** on slice 6.

It should be emphasized that **ufsdump** dumps one **ufs** file system at a time. Given
the above scenario where slice 0 and slice 2 have the same starting offset, executing
**ufsdump** on slice 2 with the intent of dumping the entire disk would instead dump
only the root file system on slice 0. To dump the entire disk, the user must dump the
file systems on each slice separately.

**BUGS**

The `/etc/vfstab` file does not allow the desired frequency of backup for file systems
to be specified (as `/etc/fstab` did). Consequently, the `w` and `W` options assume file
systems should be backed up daily, which limits the usefulness of these options.
ufsrestore(1M)

NAME
ufsrestore – incremental file system restore

SYNOPSIS
/usr/sbin/ufsrestore i | r | R | t | x [abcdfhlmnostvyLT]
   [archive_file] [factor] [dumpfile] [n] [label] [timeout] [ filename...]

DESCRIPTION
The ufsrestore utility restores files from backup media created with the ufsdump command. ufsrestores’s actions are controlled by the key argument. The key is exactly one function letter (i, r, R, t, or x) and zero or more function modifiers (letters). The key string contains no SPACE characters. Function modifier arguments are listed on the command line in the same order as their corresponding function modifiers appear in the key string.

filename arguments which appear on the command line, or as arguments to an interactive command, are treated as shell glob patterns by the x and t functions; any files or directories matching the patterns are selected. The metacharacters *, ?, and [ ] must be protected from the shell if they appear on the command line. There is no way to quote these metacharacters to explicitly match them in a filename.

The temporary files rstdir* and rstmode* are placed in /tmp by default. If the environment variable TMPDIR is defined with a non-empty value, that location is used instead of /tmp.

OPTIONS

Function Letters
You must specify one (and only one) of the function letters listed below. Note that i, x, and r are intended to restore files into an empty directory. The R function is intended for restoring into a populated directory.

i
Interactive. After reading in the directory information from the media, ufsrestore invokes a shell-like interface that allows you to browse through the dump file’s directory hierarchy and select individual files to be extracted. Restoration has the same semantics as x (see below). See Interactive Commands, below, for a description of available commands.

r
Recursive. Starting with an empty directory and a level 0 dump, the r function recreates the filesystem relative to the current working directory, exactly as it appeared when the dump was made. Information used to restore incremental dumps on top of the full dump (for example, restoresymtable) is also included. Several ufsrestore runs are typical, one for each higher level of dump (0, 1, ..., 9). Files that were deleted between the level 0 and a subsequent incremental dump will not exist after the final restore. To completely restore a file system, use the r function restore the level 0 dump, and again for each incremental dump. Although this function letter is intended for a complete restore onto a new file system (one just created with newfs(1M)), if the file system contains files not on the backup media, they are preserved.
Resume restoring. If an r-mode ufsrestore was interrupted, this function prompts for the volume from which to resume restoring and continues the restoration from where it was left off. Otherwise identical to r.

Table of contents. List each filename that appears on the media. If no filename argument is given, the root directory is listed. This results in a list of all files on the media, unless the h function modifier is in effect. The table of contents is taken from the media or from the specified archive file, when the a function modifier is used. The a function modifier is mutually exclusive with the x and r function letters.

Extract the named files from the media. Files are restored to the same relative locations that they had in the original file system.

If the filename argument matches a directory whose contents were written onto the media, and the h modifier is not in effect, the directory is recursively extracted, relative to the current directory, which is expected to be empty. For each file, the owner, modification time, and mode are restored (if possible).

If you omit the filename argument or specify ., the root directory is extracted. This results in the entire tape being extracted, unless the h modifier is in effect. With the x function, existing files are overwritten and ufsrestore displays the names of the overwritten files. Overwriting a currently-running executable can have unfortunate consequences.

Use the x option to restore partial file system dumps, as they are (by definition) not entire file systems.

<table>
<thead>
<tr>
<th>Function Modifiers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>archive_file</td>
<td>Read the table of contents from archive_file instead of the media. This function modifier can be used in combination with the t, i, or x function letters, making it possible to check whether files are on the media without having to mount the media. When used with the x and interactive (i) function letters, it prompts for the volume containing the file(s) before extracting them.</td>
</tr>
<tr>
<td>factor</td>
<td>Blocking factor. Specify the blocking factor for tape reads. For variable length SCSI tape devices, unless the data was written with the default blocking factor, a blocking factor at least as great as that used to write the tape must be used; otherwise, an error will be generated. Note that a tape block is 512 bytes. Refer to the man page for your specific tape driver for the maximum blocking factor.</td>
</tr>
<tr>
<td>c</td>
<td>Convert the contents of the media in 4.1BSD format to the new ufs file system format.</td>
</tr>
<tr>
<td>d</td>
<td>Debug. Turn on debugging output.</td>
</tr>
</tbody>
</table>
f dump_file

Use dump_file instead of /dev/rmt/0 as the file to restore from. Typically dump_file specifies a tape or diskette drive. If dump_file is specified as `-', ufsrestore reads from the standard input. This allows ufsdump(1M) and ufsrestore to be used in a pipeline to copy a file system:

```
example# ufsdump 0f - /dev/rdsk/c0t0d0s7 |
   (cd /home; ufsrestore xf -)
```

If the name of the file is of the form

machine:device, the restore is done from the specified machine over the network using rmt(1M). Since ufsrestore is normally run by root, the name of the local machine must appear in the

/.rhosts file of the remote machine. If the file is specified as

user@machine:device, ufsrestore will attempt to execute as the
specified user on the remote machine. The specified user must have a .rhosts file on the remote machine that allows the user invoking the command from the local machine to access the remote machine.

h

Extract or list the actual directory, rather than the files that it references. This prevents hierarchical restoration of complete subtrees from the tape.

l

Autoload. When the end-of-tape is reached before the restore is complete, take the drive off-line and wait up to two minutes (the default, see the T function modifier) for the tape drive to be ready again. This gives autoloading (stackloader) tape drives a chance to load a new tape. If the drive is ready within two minutes, continue. If it is not, prompt for another tape and wait.

L label

The label that should appear in the header of the dump file. If the labels do not match, ufsrestore issues a diagnostic and exits. The tape label is specific to the ufsdump tape format, and bears no resemblance to IBM or ANSI-standard tape labels.

m

Extract by inode numbers rather than by filename to avoid regenerating complete pathnames. Regardless of where the files are located in the dump hierarchy, they are restored into the current directory and renamed with their inode number. This is useful if only a few files are being extracted.

o

Offline. Take the drive off-line when the restore is complete or the end-of-media is reached and rewind the tape, or eject the diskette. In the case of some autoloading 8mm drives, the tape is removed from the drive automatically.

s n

Skip to the n'th file when there are multiple dump files on the same tape. For example, the command:

```
example# ufsrestore xfs /dev/rmt/0hn 5
```
would position you to the fifth file on the tape when reading
volume 1 of the dump. If a dump extends over more than one
volume, all volumes except the first are assumed to start at
position 0, no matter what "s n" value is specified.

If "s n" is specified, the backup media must be at BOT (beginning
of tape). Otherwise, the initial positioning to read the table of
contents will fail, as it is performed by skipping the tape forward
n-1 files rather than by using absolute positioning. This is because
on some devices absolute positioning is very time consuming.

T timeout [hms] Sets the amount of time to wait for an autoload command to
complete. This function modifier is ignored unless the 1 function
modifier has also been specified. The default timeout period is two
minutes. The time units may be specified as a trailing h (hours), m
(minutes), or s (seconds). The default unit is minutes.

v Verbose. ufsrestore displays the name and inode number of
each file it restores, preceded by its file type.

y Do not ask whether to abort the restore in the event of tape errors.
ufsrestore tries to skip over the bad tape block(s) and continue
as best it can.

ufsrestore enters interactive mode when invoked with the 1 function letters.
Interactive commands are reminiscent of the shell. For those commands that accept an
argument, the default is the current directory. The interactive options are:

add [filename] Add the named file or directory to the list of files to
extract. If a directory is specified, add that directory
and its files (recursively) to the extraction list (unless
the h modifier is in effect).

cd directory Change to directory (within the dump file).
delete [filename] Delete the current directory, or the named file or
directory from the list of files to extract. If a directory is
specified, delete that directory and all its descendents
from the extraction list (unless the h modifier is in
effect). The most expedient way to extract a majority of
files from a directory is to add that directory to the
extraction list, and then delete specific files to omit.

extract Extract all files on the extraction list from the dump
media. ufsrestore asks which volume the user
wishes to mount. The fastest way to extract a small
number of files is to start with the last volume and
work toward the first. If "s n" is given on the command
line, volume 1 will automatically be positioned to file n
when it is read.
help | Display a summary of the available commands.

ls [directory] | List files in directory or the current directory, represented by a ‘.’ (period). Directories are appended with a ‘/’ (slash). Entries marked for extraction are prefixed with a ‘*’ (asterisk). If the verbose option is in effect, inode numbers are also listed.

marked [directory] | Like ls, except only files marked for extraction are listed.

pager | Toggle the pagination of the output from the ls and marked commands. The pager used is that defined by the PAGER environment variable, or more(1) if that envvar is not defined. The PAGER envvar may include white-space-separated arguments for the pagination program.

pwd | Print the full pathname of the current working directory.

quit | ufsrestore exits immediately, even if the extraction list is not empty.

setmodes | Prompts: set owner/mode for ‘.’ (period). Type y for yes to set the mode (permissions, owner, times) of the current directory ‘.’ (period) into which files are being restored equal to the mode of the root directory of the file system from which they were dumped. Normally, this is what you want when restoring a whole file system, or restoring individual files into the same locations from which they were dumped. Type n for no, to leave the mode of the current directory unchanged. Normally, this is what you want when restoring part of a dump to a directory other than the one from which the files were dumped.

setpager command | Sets the command to use for paginating output instead of the default or that inherited from the environment. The command string may include arguments in addition to the command itself.

verbose | Toggle the status of the v modifier. While v is in effect, the ls command lists the inode numbers of all entries, and ufsrestore displays information about each file as it is extracted.

what | Display the dump header on the media.

**OPERANDS** | The following operands are supported.
filename

Specifies the pathname of files (or directories) to be restored to disk. Unless the h function modifier is also used, a directory name refers to the files it contains, and (recursively) its subdirectories and the files they contain. filename is associated with either the x or t function letters, and must come last.

USAGE

See largefile(5) for the description of the behavior of ufsrestore when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 An error occurred. Verbose messages are displayed.

ENVIRONMENT VARIABLES

PAGER The command to use as a filter for paginating output. This can also be used to specify the options to be used. Default is more(1).

TMPDIR Selects the directory for temporary files. Defaults to /tmp if not defined in the environment.

FILES

/dev/rmt/0 the default tape drive
$TMPDIR/rstdir* file containing directories on the tape
$TMPDIR/rstmode* owner, mode, and timestamps for directories
./restoresymtable information passed between incremental restores

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

more(1), mkfs(1M), mount(1M), rmt(1M), ufsdump(1M), attributes(5), largefile(5)

DIAGNOSTICS

ufsrestore complains about bad option characters.

Read errors result in complaints. If y has been specified, or the user responds y, ufsrestore will attempt to continue.

If the dump extends over more than one tape, ufsrestore asks the user to change tapes. If the x or i function letter has been specified, ufsrestore also asks which volume the user wishes to mount. If the s modifier has been specified, and volume 1 is mounted, it is automatically positioned to the indicated file.

There are numerous consistency checks that can be listed by ufsrestore. Most checks are self-explanatory or can “never happen”. Common errors are given below.
Converting to new file system format
A dump tape created from the old file system has been loaded. It is automatically converted to the new file system format.

filename: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape. This is caused by tape read errors while looking for the file, using a dump tape created on an active file system, or restoring a partial dump with the r function.

expected next file inumber, got inumber
A file that was not listed in the directory showed up. This can occur when using a dump tape created on an active file system.

Incremental tape too low
When doing an incremental restore, a tape that was written before the previous incremental tape, or that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incremental tape left off, or one that has too high an incremental level has been loaded.

media read error: invalid argument
Blocking factor specified for read is smaller than the blocking factor used to write data.

Tape read error while restoring
Tape read error while skipping over inode inumber
Tape read error while trying to resynchronize
A tape read error has occurred
If a file name is specified, then its contents are probably partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted files have been corrupted, though files may not be found on the tape.

resync ufsrestore, skipped num
After a tape read error, ufsrestore may have to resynchronize itself. This message lists the number of blocks that were skipped over.

Incorrect tape label. Expected 'foo', got 'bar'.
The L option was specified, and its value did not match what was recorded in the header of the dump file.

NOTES
ufsrestore can get confused when doing incremental restores from dump tapes that were made on active file systems.

A level 0 dump must be done after a full restore. Because ufsrestore runs in user mode, it has no control over inode allocation. This means that ufsrestore repositions the files, although it does not change their contents. Thus, a full dump must be done to get a new set of directories reflecting the new file positions, so that later incremental dumps will be correct.
The `unshare` command makes a shared local resource unavailable as file system type `FSType`. If the option `-F FSType` is omitted, then the first file system type listed in file `/etc/dfs/fstypes` will be used as the default. Specific options, as well as the semantics of `resourcename`, are specific to particular distributed file systems.

**OPTIONS**

- `-F FSType` Specify the file system type.  
- `-o specific_options` Specify options specific to the file system provided by the `-F` option.

**FILES**

- `/etc/dfs/fstypes`
- `/etc/dfs/sharetab`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`share(1M), shareall(1M), attributes(5)`

**NOTES**

If `pathname` or `resourcename` is not found in the shared information, an error message will be sent to standard error.

When an `unshare` command completes successfully, a client mounting a file system specified in that `unshare` command no longer has access to that file system.
unshare_nfs(1M)

NAME  unshare_nfs – make local NFS file systems unavailable for mounting by remote systems

SYNOPSIS  unshare [-F nfs] pathname

DESCRIPTION  The unshare command makes local file systems unavailable for mounting by remote systems. The shared file system must correspond to a line with NFS as the FSType in the file /etc/dfs/sharetab.

OPTIONS  The following options are supported:

  -F  This option may be omitted if NFS is the first file system type listed in the file /etc/dfs/fstypes.

FILES  /etc/dfs/fstypes
       /etc/dfs/sharetab

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfssu</td>
</tr>
</tbody>
</table>

SEE ALSO  share(1M), attributes(5)

NOTES  If the file system being unshared is a symbolic link to a valid pathname, the canonical path (the path which the symbolic link follows) will be unshared.

For example, if /export/foo is a symbolic link to /export/bar (/export/foo -> /export/bar), the following unshare command will result in /export/bar as the unshared pathname (and not /export/foo):

example# unshare -F nfs /export/foo
update_drv – modify device driver attributes

**SYNOPSIS**

`update_drv [-f] [-v] device_driver`

`update_drv [-b basedir] [-f] [-v] -a -i 'identify-name' device_driver`

`update_drv [-b basedir] [-f] [-v] -a -m 'permission' device_driver`

`update_drv [-b basedir] [-f] [-v] -a -i 'identify-name' -m 'permission' device_driver`

`update_drv [-b basedir] [-f] [-v] -d -i 'identify-name' device_driver`

`update_drv [-b basedir] [-f] [-v] -d -m 'permission' device_driver`

`update_drv [-b basedir] [-f] [-v] -d -i 'identify-name' -m 'permission' device_driver`

**DESCRIPTION**

The `update_drv` command informs the system about attribute changes to an installed device driver. It can be used to re-read the `driver.conf(4)` file, or to add, modify, or delete a driver’s minor node permissions or aliases.

Without options, `update_drv` reloads the `driver.conf` file.

Upon successfully updating the aliases, the driver binding takes effect upon reconfig boot or hotplug of the device.

Upon successfully updating the permissions, only the new driver minor nodes get created with the modified set of file permissions. Existing driver minor nodes do not get modified.

**OPTIONS**

The following options are supported:

- **-a**

  Add a permission or aliases entry.

  With the `-a` option specified, a permission entry (using the `-m` option) or a driver’s aliases entry (using the `-i` option) can be added or updated. If a matching minor node permissions entry is encountered (having the same driver name and the minor node), it is replaced. If a matching aliases entry is encountered (having a different driver name and the same alias), an error is reported.

  The `-a` and `-d` options are mutually exclusive.

- **-b basedir**

  Installs or modifies the driver on the system with a root directory of `basedir` rather than installing on the system executing `update_drv`.

- **-d**

  Delete a permission or aliases entry.

  The `-m permission` or `-i identify-name` option needs to be specified with the `-d` option.
update_drv(1M)

The `-d` and `-a` options are mutually exclusive.

If the entry doesn’t exist, `update_drv` returns an error.

-`f`
Force the system to reread the `driver.conf` file even if the driver module cannot be unloaded. See NOTES.

-`i 'identify-name'`
A white-space separated list of aliases for the driver. If `-a` or `-d` option is not specified then this option is ignored. The `identify-name` string is mandatory. If all aliases need to be removed, `rem_drv(1M)` is recommended.

-`m 'permission'`
Specify a white-space separated list of file system permissions for the device node of the device driver. If `-a` or `-d` option is not specified then, this option is ignored. The permission string is mandatory.

**EXAMPLES**

**EXAMPLE 1** Adding or Modifying an Existing Minor Permissions Entry

The following command adds or modifies the existing minor permissions entry of the `clone` driver:

```
example# update_drv -a -m 'llc1 777 joe staff' clone
```

**EXAMPLE 2** Removing All Minor Permissions Entries

The following command removes all minor permission entries of the `usbprn` driver, the USB printer driver:

```
example# update_drv -d -m ' * 0666 root sys' usbprn
```

**EXAMPLE 3** Adding a Driver Aliases Entry

The following command adds a driver aliases entry of the `ugen` driver with the identity string of `usb459,20`:

```
example# update_drv -a -i '"usb459,20'" ugen
```

**EXAMPLE 4** Re-reading the `driver.conf` File For the `ohci` Driver

The following command re-reads the `driver.conf(4)` file.

```
example# update_drv ohci
```

**EXIT STATUS**

The following exit values are returned:

- 0  Successful completion.
- >0  An error occurred.
ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  add_drv(1M), modunload(1M), rem_drv(1M), driver.conf(4), attributes(5)

NOTES  If -a or -d options are specified, update_drv does not re-read the driver.conf file.

A forced update of the driver.conf file reloads the driver.conf file without reloading the driver binary module. In this case, devices which can not be detached reference driver global properties from the old driver.conf file, while the remaining driver instances reference global properties in the new driver.conf file.

It is possible to add an alias, which changes the driver binding of a device already being managed by a different driver. A force update (-f) with the -a option tries to bind the new driver and reports an error if it cannot. If you specify both the -m and -i option, a force update tries to modify the alias even if permissions modification fails and vice-versa. A force update with the -d option tries to delete entries and reports the error if it cannot.
useradd(1M)

NAME
useradd – administer a new user login on the system

SYNOPSIS
useradd [-c comment] [-d dir] [-e expire] [-f inactive] [-g group]
[-G group] [-m [-k skel_dir]] [-u uid] [-o] [-s shell]
[-R role] [-p projname]

useradd -D [-b base_dir] [-e expire] [-f inactive] [-g group] [-p projname]

DESCRIPTION
useradd adds a new user to the /etc/passwd and /etc/shadow and
/etc/user_attr files. The -A and -P options respectively assign authorizations and
profiles to the user. The -R option assigns roles to a user. The -p option associates a
project with a user.

useradd also creates supplementary group memberships for the user (-G option) and
creates the home directory (-m option) for the user if requested. The new login
remains locked until the passwd(1) command is executed.

Specifying useradd -D with the -g, -b, -f, -e, -A, -P, -p, or -R option (or any
combination of these options) sets the default values for the respective fields. See the
-D option, below. Subsequent useradd commands without the -D option use these
arguments.

The system file entries created with this command have a limit of 512 characters per
line. Specifying long arguments to several options can exceed this limit.

The login (login) and role (role) fields accept a string of no more than eight bytes
consisting of characters from the set of alphabetic characters, numeric characters,
period (.), underscore (_), and hyphen (-). The first character should be alphabetic
and the field should contain at least one lower case alphabetic character. A warning
message will be written if these restrictions are not met. A future Solaris release may
refuse to accept login and role fields that do not meet these requirements.

The login and role fields must contain at least one character and must not contain a
colon (:) or a newline (\n).

OPTIONS
The following options are supported:

-A authorization
One or more comma separated authorizations defined
in auth_attr(4). Only a user or role who has grant
rights to the authorization can assign it to an account.

-b base_dir
The default base directory for the system if -d dir is not
specified. base_dir is concatenated with the account
name to define the home directory. If the -m option is
not used, base_dir must exist.

-c comment
Any text string. It is generally a short description of the
login, and is currently used as the field for the user’s
full name. This information is stored in the user’s
/etc/passwd entry.
The home directory of the new user. It defaults to 
base_dir/account_name, where base_dir is the base
directory for new login home directories and
account_name is the new login name.

-D
Display the default values for group, base_dir,
skel_dir, shell, inactive, expire, proj and
projname. When used with the -g, -b, -f, -e, -A, -p,
-p, or -R options, the -D option sets the default values
for the specified fields. The default values are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>other (GID of 1)</td>
</tr>
<tr>
<td>base_dir</td>
<td>/home</td>
</tr>
<tr>
<td>skel_dir</td>
<td>/etc/skel</td>
</tr>
<tr>
<td>shell</td>
<td>/bin/sh</td>
</tr>
<tr>
<td>inactive</td>
<td>0</td>
</tr>
<tr>
<td>expire</td>
<td>null</td>
</tr>
<tr>
<td>auths</td>
<td>null</td>
</tr>
<tr>
<td>profiles</td>
<td>null</td>
</tr>
<tr>
<td>proj</td>
<td>3</td>
</tr>
<tr>
<td>projname</td>
<td>default</td>
</tr>
<tr>
<td>roles</td>
<td>null</td>
</tr>
</tbody>
</table>

-e expire
Specify the expiration date for a login. After this date,
no user will be able to access this login. The expire
option argument is a date entered using one of the date
formats included in the template file /etc/datemsk.
See getdate(3C).

If the date format that you choose includes spaces, it
must be quoted. For example, you can enter 10/6/90
or "October 6, 1990". A null value (" ") defeats
the status of the expired date. This option is useful for
creating temporary logins.

-f inactive
The maximum number of days allowed between uses
of a login ID before that ID is declared invalid. Normal
values are positive integers. A value of 0 defeats the
status.

-g group
An existing group’s integer ID or character-string
name. Without the -D option, it defines the new user’s
primary group membership and defaults to the default group. You can reset this default value by invoking `useradd -D -g group`.

- **G group**
  An existing group’s integer ID or character-string name. It defines the new user’s supplementary group membership. Duplicates between `group` with the `-g` and `-G` options are ignored. No more than `NGROUPS_MAX` groups can be specified.

- **k skel_dir**
  A directory that contains skeleton information (such as `.profile`) that can be copied into a new user’s home directory. This directory must already exist. The system provides the `/etc/skel` directory that can be used for this purpose.

- **m**
  Create the new user’s home directory if it does not already exist. If the directory already exists, it must have read, write, and execute permissions by `group`, where `group` is the user’s primary group.

- **o**
  This option allows a UID to be duplicated (non-unique).

- **P profile**
  One or more comma-separated execution profiles defined in `prof_attr(4)`.

- **p projname**
  Name of the project with which the added user is associated. See the `projname` field as defined in `project(4)`.

- **R role**
  One or more comma-separated execution profiles defined in `user_attr(4)`. Roles cannot be assigned to other roles.

- **s shell**
  Full pathname of the program used as the user’s shell on login. It defaults to an empty field causing the system to use `/bin/sh` as the default. The value of `shell` must be a valid executable file.

- **u uid**
  The UID of the new user. This UID must be a non-negative decimal integer below `MAXUID` as defined in `<sys/param.h>`. The UID defaults to the next available (unique) number above the highest number currently assigned. For example, if UIDs 100, 105, and 200 are assigned, the next default UID number will be 201. (UIDs from 0-99 are reserved for possible use in future applications.)

**FILES**

```
/etc/datemsk
/etc/passwd
```
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

passwd(1), profiles(1), roles(1), users(1B), groupadd(1M), groupdel(1M),
groupmod(1M), grpck(1M), login(1M), pwck(1M), userdel(1M), usermod(1M),
getdate(3C), auth_attr(4), passwd(4), prof_attr(4), project(4),
user_attr(4), attributes(5)

DIAGNOSTICS

In case of an error, useradd prints an error message and exits with a non-zero status.

The following indicates that login specified is already in use:
UX: useradd: ERROR: login is already in use. Choose another.

The following indicates that the uid specified with the -u option is not unique:
UX: useradd: ERROR: uid uid is already in use. Choose another.

The following indicates that the group specified with the -g option is already in use:
UX: useradd: ERROR: group group does not exist. Choose another.

The following indicates that the uid specified with the -u option is in the range of
reserved UIDs (from 0-99):
UX: useradd: WARNING: uid uid is reserved.

The following indicates that the uid specified with the -u option exceeds MAXUID as
defined in <sys/param.h>:
UX: useradd: ERROR: uid uid is too big. Choose another.

The following indicates that the /etc/passwd or /etc/shadow files do not exist:
UX: useradd: ERROR: Cannot update system files - login cannot be created.

NOTES

The useradd utility adds definitions to only the local /etc/group, etc/passwd,
/etc/passwd, /etc/shadow, /etc/project, and /etc/user_attr files. If a
network name service such as NIS or NIS+ is being used to supplement the local
/etc/passwd file with additional entries, useradd cannot change information supplied by the network name service. However useradd will verify the uniqueness of the user name (or role) and user id and the existence of any group names specified against the external name service.
userdel(1M)

NAME
userdel – delete a user’s login from the system

SYNOPSIS
userdel [-r] login

DESCRIPTION
The userdel utility deletes a user account from the system and makes the appropriate account-related changes to the system file and file system.

OPTIONS
The following options are supported:
  -r  Remove the user’s home directory from the system. This directory must exist. The files and directories under the home directory will no longer be accessible following successful execution of the command.

OPERANDS
The following operands are supported:
  login  An existing login name to be deleted.

EXIT STATUS
The following exit values are returned:
  0  Successful completion.
  2  Invalid command syntax. A usage message for the userdel command is displayed.
  6  The account to be removed does not exist.
  8  The account to be removed is in use.
 10  Cannot update the /etc/group or /etc/user_attr file but the login is removed from the /etc/passwd file.
 12  Cannot remove or otherwise modify the home directory.

FILES
/etc/passwd  system password file
/etc/shadow  system file contain users’ encrypted passwords and related information
/etc/group  system file containing group definitions
/etc/user_attr  system file containing additional user attributes

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
auths(1), passwd(1), profiles(1), roles(1), users(1B), groupadd(1M),
grouppriv(1M), groupdel(1M), groupmod(1M), logins(1M), roleadd(1M), rolemod(1M),
useradd(1M), userdel(1M), usermod(1M), passwd(4), prof_attr(4),
user_attr(4), attributes(5)
The `userdel` utility only deletes an account definition that is in the local
`/etc/group`, `/etc/passwd`, `/etc/shadow`, and `/etc/user_attr` file. If a
network name service such as NIS or NIS+ is being used to supplement the local
`/etc/passwd` file with additional entries, `userdel` cannot change information
supplied by the network name service.
usermod – modify a user’s login information on the system

**SYNOPSIS**

```
usermod [-u uid [-o]] [-g group] [-G group [ group...]] [-d dir [-m]]
  [-s shell] [-c comment] [-l new_name] [-f inactive] [-e expire]
  [-A authorization [, authorization]] [-p profile [, profile]]
  [-R role [, role]] login
```

**DESCRIPTION**

The `usermod` utility modifies a user’s login definition on the system. It changes the definition of the specified login and makes the appropriate login-related system file and file system changes.

The system file entries created with this command have a limit of 512 characters per line. Specifying long arguments to several options may exceed this limit.

**OPTIONS**

The following options are supported:

- `-A authorization`
  One or more comma separated authorizations as defined in `auth_attr(4)`. Only a user or role who has grant rights to the authorization can assign it to an account. This replaces any existing authorization setting.

- `-c comment`
  Specify a comment string. `comment` can be any text string. It is generally a short description of the login, and is currently used as the field for the user’s full name. This information is stored in the user’s `/etc/passwd` entry.

- `-d dir`
  Specify the new home directory of the user. It defaults to `base_dir/login`, where `base_dir` is the base directory for new login home directories, and `login` is the new login.

- `-e expire`
  Specify the expiration date for a login. After this date, no user will be able to access this login. The expire option argument is a date entered using one of the date formats included in the template file `/etc/datemsk`. See `getdate(3C)`.

  For example, you may enter `10/6/90` or `October 6, 1990`. A value of `' ' ' ' defeats the status of the expired date.

- `-f inactive`
  Specify the maximum number of days allowed between uses of a login ID before that login ID is declared invalid. Normal values are positive integers. A value of `0` defeats the status.

- `-g group`
  Specify an existing group’s integer ID or character-string name. It redefines the user’s primary group membership.
Specify an existing group’s integer "ID" "or character string name. It redefines the user’s supplementary group membership. Duplicates between group with the -g and -G options are ignored. No more than NGROUPS_UMAX groups may be specified as defined in <param.h>.

Specify the new login name for the user. The new_logname argument is a string no more than eight bytes consisting of characters from the set of alphabetic characters, numeric characters, period (.), underline (_), and hypen (−). The first character should be alphabetic and the field should contain at least one lower case alphabetic character. A warning message will be written if these restrictions are not met. A future Solaris release may refuse to accept login fields that do not meet these requirements. The new_logname argument must contain at least one character and must not contain a colon (:) or NEWLINE (\n).

Move the user’s home directory to the new directory specified with the -d option. If the directory already exists, it must have permissions read/write/execute by group, where group is the user’s primary group.

This option allows the specified UID to be duplicated (non-unique).

One or more comma-separated execution profiles defined in prof_attr(4). This replaces any existing profile setting.

One or more comma-separated execution profiles defined in auth_attr(4). This replaces any existing role setting.

Specify the full pathname of the program that is used as the user’s shell on login. The value of shell must be a valid executable file.

Specify a new UID for the user. It must be a non-negative decimal integer less than MAXUID as defined in <param.h>. The UID associated with the user’s home directory is not modified with this option; a user will not have access to their home directory until the UID is manually reassigned using chown(1M).

The following operands are supported:

login An existing login name to be modified.
**EXIT STATUS**

In case of an error, `usermod` prints an error message and exits with one of the following values:

- **2**: The command syntax was invalid. A usage message for the `usermod` command is displayed.
- **3**: An invalid argument was provided to an option.
- **4**: The `uid` given with the `-u` option is already in use.
- **5**: The password files contain an error. `pwconv(1M)` can be used to correct possible errors. See `passwd(4)`.
- **6**: The login to be modified does not exist, the `group` does not exist, or the login shell does not exist.
- **8**: The login to be modified is in use.
- **9**: The `new_logname` is already in use.
- **10**: Cannot update the `/etc/group` or `/etc/user_attr` file. Other update requests will be implemented.
- **11**: Insufficient space to move the home directory (`-m` option). Other update requests will be implemented.
- **12**: Unable to complete the move of the home directory to the new home directory.

**FILES**

- `/etc/group` system file containing group definitions
- `/etc/datemsk` system file of date formats
- `/etc/passwd` system password file
- `/etc/shadow` system file containing users’ encrypted passwords and related information
- `/etc/usr_attr` system file containing additional user and role attributes

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`passwd(1)`, `users(1B)`, `chown(1M)`, `groupadd(1M)`, `groupdel(1M)`, `groupmod(1M)`, `logins(1M)`, `pwconv(1M)`, `roleadd(1M)`, `roledel(1M)`, `rolemod(1M)`, `useradd(1M)`, `userdel(1M)`, `getdate(3C)`, `auth_attr(4)`, `passwd(4)`, `attributes(5)`
The `usermod` utility modifies `passwd` definitions only in the local `/etc/passwd` and `/etc/shadow` files. If a network nameservice such as NIS or NIS+ is being used to supplement the local files with additional entries, `usermod` cannot change information supplied by the network nameservice. However `usermod` will verify the uniqueness of user name and user ID against the external nameservice.

The `usermod` utility uses the `/etc/datemsk` file, available with SUNWacccr, for date formatting.
The utmpd daemon monitors the /var/adm/utmpx file. See utmpx(4) (and utmp(4) for historical information).

utmpd receives requests from pututxline(3C) by way of a named pipe. It maintains a table of processes and uses poll(2) on /proc files to detect process termination. When utmpd detects that a process has terminated, it checks that the process has removed its utmpx entry from /var/adm/utmpx. If the process’ utmpx entry has not been removed, utmpd removes the entry. By periodically scanning the /var/adm/utmpx file, utmpd also monitors processes that are not in its table.

OPTIONS
- debug Run in debug mode, leaving the process connected to the controlling terminal. Write debugging information to standard output.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/etc/default/utmpd You can set default values for the flags listed below. For example: SCAN_PERIOD=600

SCAN_PERIOD The number of seconds that utmpd sleeps between checks of /proc to see if monitored processes are still alive. The default is 300.

MAX_FDS The maximum number of processes that utmpd attempts to monitor. The default value is 4096.

/var/adm/utmpx File containing user and accounting information for commands such as who(1), write(1), and login(1).

/proc Directory containing files for processes whose utmpx entries are being monitored.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
poll(2), pututxline(3C), proc(4), utmp(4), utmpx(4), attributes(5)
NAME  uucheck – check the uucp directories and permissions file

SYNOPSIS  

   /usr/lib/uucp/uucheck  [-v]  [-x debug-level]

DESCRIPTION  uucheck checks for the presence of the uucp system required files and directories. uucheck also does error checking of the Permissions file (/etc/uucp/Permissions).

   uucheck is executed during package installation. uucheck can only be used by the super-user or uucp.

OPTIONS  The following options are supported:

   -v  Give a detailed (verbose) explanation of how the uucp programs will interpret the Permissions file.

   -x debug-level  Produce debugging output on the standard output. debug-level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES  /etc/uucp/Devices

   /etc/uucp/Limits

   /etc/uucp/Permissions

   /etc/uucp/Systems

   /var/spool/locks/*

   /var/spool/uucp/*

   /var/spool/uucppublic/*

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

   ATTRIBUTE TYPE | ATTRIBUTE VALUE
   ------------- | ---------------
   Availability   | SUNWbnuu

SEE ALSO  uucp(1C), uustat(1C), uux(1C), uucico(1M), uusched(1M), attributes (5)

BUGS  The program does not check file/directory modes or some errors in the Permissions file such as duplicate login or machine name.
uucico – file transport program for the uucp system

SYNOPSIS

```
/usr/lib/uucp/uucico [-f] [-c type] [-d spool-directory] [-i interface]
[-r role-number] [-s system-name] [-x debug-level]
```

DESCRIPTION

uucico is the file transport program for uucp work file transfers.

OPTIONS

The following options are supported:

- **-f**
  This option is used to "force execution" of uucico by ignoring the limit on the maximum number of uucicos defined in the `/etc/uucp/Limits` file.

- **-c type**
  The first field in the `Devices` file is the "Type" field. The `-c` option forces uucico to only use entries in the "Type" field that match the user specified type. The specified type is usually the name of a local area network.

- **-d spool-directory**
  This option specifies the directory `spool-directory` that contains the uucp work files to be transferred. The default spool directory is `/var/spool/uucp`.

- **-i interface**
  This option defines the `interface` used with uucico. The interface only affects slave mode. Known interfaces are UNIX (default), TLI (basic Transport Layer Interface), and TLIS (Transport Layer Interface with Streams modules, read/write).

- **-r role-number**
  The role-number is used for master mode. role-number 1 is used for master mode. role-number 0 is used for slave mode (default). When uucico is started by a program or `cron`, role-number 1 should be used for master mode.

- **-s system-name**
  The `-s` option defines the remote system (`system-name`) that uucico will try to contact. It is required when the role is master; `system-name` must be defined in the `Systems` file.

- **-x debug-level**
  Both `uux` and `uucp` queue jobs that will be transferred by uucico. These jobs are normally started by the `uusched` scheduler, for debugging purposes, and can be started manually. For example, the shell `Uutry` starts uucico with debugging turned on. The `debug-level` is a number between 0 and 9. Higher numbers give more detailed debugging information.
uucico(1M)

FILES

/etc/uucp/Devconfig
/etc/uucp/Devices
/etc/uucp/Limits
/etc/uucp/Permissions
/etc/uucp/Sysfiles
/etc/uucp/Systems
/var/spool/locks/*
/var/spool/uucp/*
/var/spool/uucppublic/*

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO

uucp(1C), uustat(1C), uux(1C), Uutry(1M), cron(1M), uusched(1M), attributes(5)
NAME  

uucleanup – uucp spool directory clean-up

SYNOPSIS  

```
```

DESCRIPTION  

uucleanup will scan the spool directories for old files and take appropriate action to remove them in a useful way:

- Inform the requester of send/receive requests for systems that can not be reached.
- Return undeliverable mail to the sender.
- Deliver rnews files addressed to the local system.
- Remove all other files.

In addition, there is a provision to warn users of requests that have been waiting for a given number of days (default 1 day). Note: uucleanup will process as if all option times were specified to the default values unless time is specifically set.

This program is typically started by the shell uudemon.cleanup, which should be started by cron(1M).

OPTIONS  

- `-C time`  
  Remove any C. files greater or equal to time days old and send appropriate information to the requester (default 7 days).

- `-D time`  
  Remove any D. files greater or equal to time days old, make an attempt to deliver mail messages, and execute rnews when appropriate (default 7 days).

- `-m string`  
  Include string in the warning message generated by the `-W` option. The default line is 'See your local administrator to locate the problem'.

- `-o time`  
  Delete other files whose age is more than time days (default 2 days).

- `-s system`  
  Execute for system spool directory only.

- `-W time`  
  Any C. files equal to time days old will cause a mail message to be sent to the requester warning about the delay in contacting the remote. The message includes the JOBID, and in the case of mail, the mail message. The administrator may include a message line telling whom to call to check the problem (-m option) (default 1 day).

- `-x debug-level`  
  Produce debugging output on standard output. debug-level is a single digit between 0 and 9; higher numbers give more detailed debugging information. (This option may not be available on all systems.)

- `-X time`  
  Any X. files greater or equal to time days old will be removed. The D. files are probably not present (if they were, the X. could get executed). But if there are D. files, they will be taken care of by D. processing (default 2 days).
uucleanup(1M)

FILES

/usr/lib/uucp directory with commands used by uucleanup internally
/var/spool/uucp spool directory

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO

uucp(1C), uux(1C), cron(1M), attributes(5)
uusched(1M)

NAME  | uusched – uucp file transport program scheduler

SYNOPSIS  | `/usr/lib/uucp/uusched [-u debug-level] [-x debug-level]`

DESCRIPTION  | uusched is the uucp(1C) file transport scheduler. It is usually started by the daemon `uudemon.hour` that is started by `cron(1M)` from an entry in user `uucp`'s crontab file:

```
11,41 * * * * /etc/uucp/uucp/uudemon.hour
```

OPTIONS  | The options are for debugging purposes only. `debug-level` is a number between 0 and 9. Higher numbers give more detailed debugging information:

The following options are supported:

- `-u debug-level` Passes the `-u debug-level` option `uucico(1M)` as `-x debug-level`.
- `-x debug-level` Outputs debugging messages from `uusched`.

FILES  | `/etc/uucp/Devices`

| `/etc/uucp/Permissions`

| `/etc/uucp/Systems`

| `/var/spool/locks/*`

| `/var/spool/uucp/*`

| `/var/spool/uucppublic/*`

ATTRIBUTES  | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO  | uucp(1C), uustat(1C), uux(1C), cron(1M), uucico(1M), attributes(5)
Uutry(1M)

NAME  Uutry, uutry – attempt to contact remote system with debugging on

SYNOPSIS  /usr/lib/uucp/Uutry [-r] [-c type] [-x debug-level] system-name

DESCRIPTION  Uutry is a shell script that is used to invoke uucico(1M) to call a remote site. Debugging is initially turned on and is set to the default value of 5. The debugging output is put in file /tmp/system-name.

OPTIONS  The following options are supported:

- **r**  This option overrides the retry time that is set in file /var/uucp/.Status/system-name.

- **c type**  The first field in the Devices file is the "Type" field. The -c option forces uucico to use only entries in the "Type" field that match the user-specified type. The specified type is usually the name of a local area network.

- **x debug-level**  debug-level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES  
/etc/uucp/Devices
/etc/uucp/Limits
/etc/uucp/Permissions
/etc/uucp/Systems
/tmp/system-name
/var/spool/locks/*
/var/spool/uucp/*
/var/spool/uucppublic/*

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO  uucp(1C), uux(1C), uucico(1M), attributes(5)
uuxqt – execute remote command requests

SYNOPSIS
/usr/lib/uucp/uuxqt [-s system] [-x debug-level]

DESCRIPTION
uuxqt is the program that executes remote job requests from remote systems
generated by the use of the uux command. (mail uses uux for remote mail requests).
uuxqt searches the spool directories looking for execution requests. For each request,
uuxqt checks to see if all the required data files are available, accessible, and the
requested commands are permitted for the requesting system. The Permissions file
is used to validate file accessibility and command execution permission.

There are two environment variables that are set before the uuxqt command is
executed:
- UU_MACHINE is the machine that sent the job (the previous one).
- UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can execute to provide
information, auditing, or restrictions.

OPTIONS
The following options are supported:
- -s system Specifies the remote system name.
- -x debug-level  
debug-level is a number from 0 to 9. Higher numbers give more
detailed debugging information.

FILES
/etc/uucp/Limits
/etc/uucp/Permissions
/var/spool/locks/*
/var/spool/uucp/*

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO
mail(1), uucp(1C), uustat(1C), uux(1C), uucico(1M), attributes(5)
vmstat(1M)

NAME  
vmstat – report virtual memory statistics

SYNOPSIS  
vmstat [-cips] [disks] [interval [count]]

DESCRIPTION  
vmstat reports virtual memory statistics regarding kernel thread, virtual memory,  
disk, trap, and CPU activity.

On MP (multi-processor) systems, vmstat averages the number of CPUs into the  
output. For per-processor statistics, see mpstat(1M).

vmstat only supports statistics for certain devices. For more general system statistics,  
use sar(1), iostat(1M), or sar(1M).

Without options, vmstat displays a one-line summary of the virtual memory activity  
since the system was booted.

During execution of this kernel status command, the "state" of the kernel can change.  
An example would be CPUs going online or offline. vmstat will report this as "<<State  
change>>".

See System Administration Guide: Advanced Administration for device naming  
conventions for disks.

OPTIONS  
The following options are supported:

- c   Report cache flushing statistics. By default, report the total number of each  
kind of cache flushed since boot time. The types are: user, context, region,  
segment, page, and partial-page.

- i   Report the number of interrupts per device. count and interval does not  
apply to the -i option.

- p   Report paging activity in details. This option will display the following,  
respectively:

epi    Executable page-ins.
epo    Executable page-outs.
epf    Executable page-frees.
api    Anonymous page-ins.
apo    Anonymous page-outs.
apf    Anonymous page-frees.
fpi    File system page-ins.
fpo    File system page-outs.
fpf    File system page-frees.

- s   Display the total number of various system events since boot. count and  
interval does not apply to the -s option.
Report on swapping rather than paging activity. This option will change two fields in \texttt{vmstat}'s "paging" display: rather than the "re" and "mf" fields, \texttt{vmstat} will report "si" (swap-ins) and "so" (swap-outs).

**OPERANDS**

The following operands are supported:

- \textit{count} Specifies the number of times that the statistics are repeated. \textit{count} does not apply to the -i and -s options.

- \textit{disks} Specifies which disks are to be given priority in the output (only four disks fit on a line). Common disk names are \textit{id}, \textit{sd}, \textit{xd}, or \textit{xy}, followed by a number (for example, \textit{sd2}, \textit{xd0}, and so forth).

- \textit{interval} Specifies the last number of seconds over which \texttt{vmstat} summarizes activity. This number of seconds repeats forever. \textit{interval} does not apply to the -i and -s options.

**EXAMPLES**

**EXAMPLE 1 Using \texttt{vmstat}**

The following command displays a summary of what the system is doing every five seconds.

```
example% vmstat 5
```

The fields of \texttt{vmstat}'s display are

- \textbf{kthr} Report the number of kernel threads in each of the three following states:
  - \texttt{r} in run queue
  - \texttt{b} blocked for resources I/O, paging, and so forth
  - \texttt{w} swapped

- \textbf{memory} Report on usage of virtual and real memory.
  - \texttt{swap} amount of swap space currently available (Kbytes)
  - \texttt{free} size of the free list (Kbytes)

- \textbf{page} Report information about page faults and paging activity. The information on each of the following activities is given in units per second.
EXAMPLE 1 Using `vmstat` *(Continued)*

- **re** page reclaims — but see the `-s` option for how this field is modified.
- **mf** minor faults — but see the `-s` option for how this field is modified.
- **pi** kilobytes paged in
- **po** kilobytes paged out
- **fr** kilobytes freed
- **de** anticipated short-term memory shortfall (Kbytes)
- **sr** pages scanned by clock algorithm

**disk**

Report the number of disk operations per second. There are slots for up to four disks, labeled with a single letter and number. The letter indicates the type of disk (s = SCSI, i = IPI, and so forth); the number is the logical unit number.

**faults**

Report the trap/interrupt rates (per second).

- **in** interrupts
- **sy** system calls
- **cs** CPU context switches

**cpu**

Give a breakdown of percentage usage of CPU time. On MP systems, this is an average across all processors.

- **us** user time
- **sy** system time
- **id** idle time

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO** `sar(1), iostat(1M), mpstat(1M), sar(1M), attributes(5)`

*System Administration Guide: Basic Administration*

*System Administration Guide: Advanced Administration*
The sum of CPU utilization might vary slightly from 100 because of rounding errors in the production of a percentage figure.
NAME | volcopy – make an image copy of file system

SYNOPSIS | `volcopy [-F FSType] [-V] [generic_options] [-o FSType-specific_options] operands`

DESCRIPTION | `volcopy` makes a literal copy of the file system. This command may not be supported for all `FSTypes`.

OPTIONS | The following options are supported:

- `-F FSType` Specify the `FSType` on which to operate. The `FSType` should either be specified here or be determinable from `/etc/vfstab` by matching the `operands` with an entry in the table. Otherwise, the default file system type specified in `/etc/default/fs` will be used.

- `-V` Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from `/etc/vfstab`. This option should be used to verify and validate the command line.

- `generic_options` Options that are commonly supported by most `FSType-specific` command modules. The following options are available:
  - `-a` Require the operator to respond “yes” or “no” instead of simply waiting ten seconds before the copy is made.
  - `-s` (Default) Invoke the DEL if wrong verification sequence.

- `-o FSType-specific_options` Specify `FSType-specific` options in a comma-separated (without spaces) list of suboptions and keyword-attribute pairs for interpretation by the `FSType-specific` module of the command.

OPERANDS | The following operands are supported:

- `operands` generally include the device and volume names and are file system specific. A detailed description of the `operands` can be found on the `FSType-specific` man pages of `volcopy`.

EXIT STATUS | The following exit values are returned:
Successful file system copy

1 An error has occurred.

**FILES**
/etc/vfstab list of default parameters for each file system
/etc/default/fs default local file system type. Default values can be set for the following flags in /etc/default/fs. For example: LOCAL=ufs.

**LOCAL:** The default partition for a command if no FSType is specified.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
labelit(1M), vfstab(4), attributes(5) Manual pages for the FSType-specific modules of volcopy.
volcopy_ufs(1M)

NAME   volcopy_ufs – make an image copy of a ufs file system

SYNOPSIS   volcopy [-F ufs] [generic_options] fsname srcdevice volname1 destdevice volname2

DESCRIPTION   volcopy makes a literal copy of the ufs file system using a blocksize matched to the device.

OPTIONS   The following option is supported:

generic_options   options supported by the generic volcopy command.

See volcopy(1M).

OPERANDS   The following operands are supported:

fsname   represents the mount point (for example, root, u1, etc.) of the file system being copied.

srcdevice or destdevice   the disk partition specified using the raw device (for example, /dev/rdsk/cld0s8, /dev/rdsk/cld1s8, etc.).

srcdevice and volname1   the device and physical volume from which the copy of the file system is being extracted.

destdevice and volname2   the target device and physical volume.

fsname and volname are limited to six or fewer characters and recorded in the superblock. volname may be ‘−’ to use the existing volume name.

EXIT STATUS   The following exit values are returned:

0   Successful file system copy.

non-zero   An error has occurred.

FILES   /var/adm/filesave.log  a record of file systems/volumes copied

ATTRIBUTES   See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO   cpio(1), dd(1M), labelit(1M), volcopy(1M), attributes(5), ufs(7FS)

NOTES   volcopy does not support copying to tape devices. Use dd(1M) for copying to and from tape devices.
NAME
vold – Volume Management daemon to manage CD-ROM and floppy, ZIP/JAZ, and DVD-ROM devices

SYNOPSIS
[-L debug-level]

DESCRIPTION
The Volume Management daemon, vold, creates and maintains a file system image rooted at root-dir that contains symbolic names for floppies, CD-ROMs and other removable devices. The default root-dir is set to /vol if no directory is specified by the -d option.

vold reads the /etc/vold.conf configuration file upon startup. If the configuration file is modified later, vold must be told to reread the /etc/vold.conf file. Do this by entering

example# kill -HUP vold_pid

To tell vold to clean up and exit, the SIGTERM signal is used:

example# kill -TERM vold_pid

where vold_pid is the process ID of vold.

OPTIONS
The following options are supported:

- n
  Never writeback. Volume Management updates media labels with unique information if labels are not unique. This flag keeps Volume Management from changing your media. The default setting is FALSE.

- t
  Dump NFS trace information to the log file. The default setting is FALSE.

- v
  Provide lots of status information to the log file. The default setting is FALSE (do not provide status info to log file).

- d root-dir
  Specify an alternate root directory. The default location is /vol. Setting this will also cause other Volume Management utilities to use this as the default root directory.

- f config-file
  Specify an alternate configuration file. The default file is /etc/vold.conf.

- l log-file
  Specify an alternate log file. The default log file is /var/adm/vold.log.

- L debug-level
  Change the level (verbosity) of debug messages sent to the log file. The range is 0 to 99 where 0 is nothing and 99 is everything. The default level is 0.

ENVIRONMENT VARIABLES
vold sets the following environment variables to aid programs which are called when events such as insert, notify, and eject occur:
vold(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME_ACTION</td>
<td>Event that caused this program to be executed.</td>
</tr>
<tr>
<td>VOLUME_PATH</td>
<td>Pathname of the matched regex from the vold.conf file.</td>
</tr>
<tr>
<td>VOLUME_DEVICE</td>
<td>Device (in /vol/dev) that applies to the media.</td>
</tr>
<tr>
<td>VOLUME_NAME</td>
<td>Name of the volume in question.</td>
</tr>
<tr>
<td>VOLUME_USER</td>
<td>User ID of the user causing the event to occur.</td>
</tr>
<tr>
<td>VOLUME_SYNMNAME</td>
<td>Symbolic name of a device containing the volume.</td>
</tr>
<tr>
<td>VOLUME_MEDIATYPE</td>
<td>Name of the type of media (CD-ROM, floppy or rmdisk)</td>
</tr>
</tbody>
</table>

**FILES**

/etc/vold.conf  Volume Management daemon configuration file. Directs the Volume Management daemon to control certain devices, and causes events to occur when specific criteria are met.

/usr/lib/vold/*.so.1  Shared objects called by Volume Management daemon when certain actions occur.

/var/adm/vold.log  the default log file location (see the -l option for a description).

/vol  the default Volume Management root directory.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

volcancel(1), volcheck(1), volmissing(1), rmmount(1M), rpc.smserverd(1M), rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

System Administration Guide: Basic Administration
NAME
wall - write to all users

SYNOPSIS
/usr/sbin/wall [-a] [-g grpname] [filename]

DESCRIPTION
wall reads its standard input until an end-of-file. It then sends this message to all
currently logged-in users preceded by:

Broadcast Message from . . .

If filename is given, then the message is read in from that file. Normally,
pseudo-terminals that do not correspond to rlogin sessions are ignored. Thus, when
using a window system, the message appears only on the console window. However,
-a will send the message even to such pseudo-terminals.

It is used to warn all users, typically prior to shutting down the system.

The sender must be superuser to override any protections the users may have invoked
See `mesg(1)`.

wall runs `setgid()` to the group ID tty, in order to have write permissions on
other user's terminals. See `setuid(2)`.

wall will detect non-printable characters before sending them to the user's terminal.
Control characters will appear as a "^" followed by the appropriate ASCII character;
characters with the high-order bit set will appear in "meta" notation. For example,
`\003` is displayed as "^C" and `\372` as "M–Z".

OPTIONS
The following options are supported:

- `-a` Broadcast message to the console and pseudo-terminals.
- `-g grpname` Broadcast to the users in a specified group only, per the group
database (see `group(4)`).

ENVIRONMENT VARIABLES
If the LC_* variables (LC_CTYPE, LC_TIME, LC_COLLATE, LC_NUMERIC, and
LC_MONETARY) are not set in the environment, the operational behavior of wall for
each corresponding locale category is determined by the value of the LANG
environment variable. See `environ(5)`. If LC_ALL is set, its contents are used to
override both the LANG and the other LC_* variables. If none of the above variables
are set in the environment, the "C" (U.S. style) locale determines how wall behaves.

FILES
/dev/tty*

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
`mesg(1), write(1), setuid(2), attributes(5), environ(5)`
NOTES  wall displays “Cannot send to . . .” when the open on a user’s tty file fails.
wanboot_keygen(1M)

NAME
wanboot_keygen – create and display client and server keys for WAN booting

SYNOPSIS
/usr/lib/inet/wanboot/keygen -c -o
   net=a.b.c.d ,cid=client_ID ,type=3des

/usr/lib/inet/wanboot/keygen -c -o net=a.b.c.d ,cid=client_ID ,type=aes

/usr/lib/inet/wanboot/keygen -m

/usr/lib/inet/wanboot/keygen -c -o
   net=a.b.c.d ,cid=client_ID ,type=sha1

/usr/lib/inet/wanboot/keygen -d -m

/usr/lib/inet/wanboot/keygen -c -o
   net=a.b.c.d ,cid=client_ID ,type=keytype

DESCRIPTION
The keygen utility has three purposes:

- Using the -c flag, to generate and store per-client 3DES/AES encryption keys, avoiding any DES weak keys.
- Using the -m flag, to generate and store a “master” HMAC SHA-1 key for WAN install, and to derive from the master key per-client HMAC SHA-1 hashing keys, in a manner described in RFC 3118, Appendix A.
- Using the -d flag along with either the -c or -m flag to indicate the key repository, to display a key of type specified by keytype, which must be one of 3des, aes, or sha1.

The net and cid arguments are used to identify a specific client. Both arguments are optional. If the cid option is not provided, the key being created or displayed will have a per-network scope. If the net option is not provided, then the key will have a global scope. Default net and code values are used to derive an HMAC SHA-1 key if the values are not provided by the user.

OPTIONS
The following options are supported:

- -c
  Generate and store per-client 3DES/AES encryption keys, avoiding any DES weak keys. Also generates and stores per-client HMAC SHA-1 keys. Used in conjunction with -o.

- -d
  Display a key of type specified by keytype, which must be one of 3des, aes, or sha1. Use -d with -m or with -c and -o.

- -m
  Generate and store a “master” HMAC SHA-1 key for WAN install.

- -o
  Specifies the WANboot client and/or keytype.

EXAMPLES
EXAMPLE 1 Generate a Master HMAC SHA-1 Key
# keygen -m
wanboot_keygen(1M)

**EXAMPLE 1** Generate a Master HMAC SHA-1 Key  (Continued)

**EXAMPLE 2** Generate and Then Display a Client-Specific Master HMAC SHA-1 Key

# keygen -c -o net=129.148.174.0,cid=010003BA0E6A36,type=sha1
# keygen -d -c -o net=129.148.174.0,cid=010003BA0E6A36,type=sha1

**EXAMPLE 3** Generate and Display a 3DES Key with a Per-Network Scope

# keygen -c -o net=129.148.174.0,type=3des
# keygen -d -o net=129.148.174.0,type=3des

**EXIT STATUS**

0  Successful operation.

>0  An error occurred.

**ATTRIBUTES**  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

**SEE ALSO**  attributes(5)
The keymgmt utility has two purposes:

- To take a raw key, stored in `key_file`, and insert it in the repository specified by `keystore`.
- To extract a key of a specified type from the repository specified by `keystore`, depositing it in `outfile`.

`outfile` will be created if it does not already exist. The type of key being added or extracted is specified by `keytype` and may have one of four values: `3des`, `aes`, `rsa`, or `sha1` (the last used by HMAC SHA-1). When extracting a key, the first key with an OID matching the supplied type is used.

The following arguments are supported:

- `-i` Used in conjunction with `-k` to insert a raw key in `keystore`.
- `-f outfile` Used to specify a file to receive an extracted key.
- `-k key_file` Used in conjunction with `-i` to specify the file in which a raw key is stored. This key will be inserted in `keystore`.
- `-o type=keytype` Specifies the type of key being inserted or extracted. Must be one of `3des`, `aes`, `rsa`, or `sha1`.
- `-s keystore` Specifies a repository in which a key will be inserted or from which a key will be extracted.
- `-x` Used in conjunction with `-f` to extract a key of a specified type and deposit it in `outfile`.

Successful operation.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:
wanboot_keymgmt(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

ITU-T Recommendation X.208
NAME  
wanboot_p12split – split a PKCS #12 file into separate certificate and key files

SYNOPSIS  
/usr/lib/inet/wanboot/p12split -i p12file -c out_cert -k out_key  
[-t out_trust -l id -v]

DESCRIPTION  
The `p12split` utility extracts a certificate and private key from the repository specified by `p12file`, depositing the certificate in `out_cert` and the key in `out_key`. If supplied, the `-l` option specifies the value for the `LocalKeyId` that will be used in the new certificate and key files. `p12split` can optionally extract a trust certificate into the `out_trust` file if the `-t` option is specified. Use the `-v` option to get a verbose description of the split displayed to standard output.

OPTIONS  
The following arguments and options are supported:

- `-c out_cert`  
  Specifies a repository that receives a extracted certificate.

- `-i p12file`  
  Specifies a repository from which a certificate and private key is extracted.

- `-k out_key`  
  Specifies a repository that receives a extracted private key.

- `-l id`  
  Specifies the value for the `LocalKeyId` that will be used in the new certificate and key files.

- `-t out_trust`  
  Specifies a file for receiving an extracted trust certificate.

- `-v`  
  Displays a verbose description of the split to sdtout.

EXIT STATUS  
0  
Successful operation.

>0  
An error occurred.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO  
attributes(5)
The `wanbootutil` command creates and manages WANboot encryption and hashing keys and manipulates PKCS #12 files for use by WAN boot.

`wanbootutil` has three subcommands, each covered in a separate man page:

- **wanboot_keygen(1M)**
  - Generates encryption and hashing keys.
- **wanboot_keymgmt(1M)**
  - Inserts and extracts keys from WAN boot key repositories.
- **wanboot_p12split(1M)**
  - Splits a PKCS #12 file into separate certificate and key files for use by WAN boot.

The options are supported for `wanbootutil` are the use of `keygen`, `keymgmt`, or `p12split`. The options for these subcommands are described in their respective man pages.

**EXAMPLES**

**EXAMPLE 1 Generate a 3DES Client Key**

```bash
# wanbootutil keygen -c -o net=129.148.174.0,cid=010003BA0E6A36,type=3des
```

**EXAMPLE 2 Insert an RSA Private Client Key**

```bash
wanbootutil keymgmt -i -k keyfile \
    -s /etc/netboot/129.148.174.0/010003BA0E6A36/keystore -o type=rsa
```

**EXAMPLE 3 Split a PKCS #12 File into Certificate and Key Components**

```bash
# wanbootutil p12split -i p12file -c out_cert -k out_key
```

**EXIT STATUS**

- **0**
  - Successful operation.
- **non-zero**
  - An error occurred. Writes an appropriate error message to standard error.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbsup</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO

wanboot_keygen(1M), wanboot_keymgmt(1M), wanboot_p12split(1M), attributes(5)
wbemadmin(1M)

NAME
wbemadmin – start Sun WBEM User Manager

SYNOPSIS
/usr/sadm/bin/wbemadmin

DESCRIPTION
The wbemadmin utility starts Sun WBEM User Manager, a graphical user interface
that enables you to add and delete authorized WBEM users and to set their access
privileges. Use this application to manage access to groups of managed resources,
such as disks and installed software, in the Solaris operating environment.

The wbemadmin utility allows you to perform the following tasks:

Manage user access rights
Use the wbemadmin utility to add, delete,
or modify an individual user’s access rights
to a namespace on a WBEM-enabled
system.

Manage namespace access rights
Use the wbemadmin utility to add, delete,
or modify access rights for all users to a
namespace.

The Sun WBEM User Manager displays a Login dialog box. You must log in as root or
a user with write access to the root\security namespace to grant access rights to
users. By default, Solaris users have guest privileges, which grants them read access
to the default namespaces.

Managed resources are described using a standard information model called Common
Information Model (CIM). A CIM object is a computer representation, or model, of a
managed resource, such as a printer, disk drive, or CPU. CIM objects can be shared by
any WBEM-enabled system, device, or application. CIM objects are grouped into
meaningful collections called schema. One or more schemas can be stored in
directory-like structures called namespaces.

All programming operations are performed within a namespace. Two namespaces are
created by default during installation:

- root\cimv2 — Contains the default CIM classes that represent objects on your
  system.
- root\security — Contains the security classes used by the CIM Object Manager
to represent access rights for users and namespaces.

When a WBEM client application connects to the CIM Object Manager in a particular
namespace, all subsequent operations occur within that namespace. When you
connect to a namespace, you can access the classes and instances in that namespace (if
they exist) and in any namespaces contained in that namespace.

When a WBEM client application accesses CIM data, the WBEM system validates the
user’s login information on the current host. By default, a validated WBEM user is
granted read access to the Common Information Model (CIM) Schema. The CIM
Schema describes managed objects on your system in a standard format that all
WBEM-enabled systems and applications can interpret.
You can set access privileges on individual namespaces or for a user-namespace combination. When you add a user and select a namespace, by default the user is granted read access to CIM objects in the selected namespace. An effective way to combine user and namespace access rights is to first restrict access to a namespace. Then grant individual users read, read and write, or write access to that namespace.

You cannot set access rights on individual managed objects. However you can set access rights for all managed objects in a namespace as well as on a per-user basis.

If you log in to the root account, you can set the following types of access to CIM objects:

- **Read Only** — Allows read-only access to CIM Schema objects. Users with this privilege can retrieve instances and classes, but cannot create, delete, or modify CIM objects.
- **Read/Write** — Allows full read, write, and delete access to all CIM classes and instances.
- **Write** — Allows write and delete, but not read access to all CIM classes and instances.
- **None** — Allows no access to CIM classes and instances.

Context help is displayed in the left side of the `wbemadmin` dialog boxes. When you click on a field, the help content changes to describe the selected field. No context help is available on the main User Manager window.

The `wbemadmin` security administration tool updates the following Java classes in the root\security namespace:

- **Solaris_UserAcl** — Updated when access rights are granted or changed for a user.
- **Solaris_namespaceAcl** — Updated when access rights are granted or changed for a namespace.

**USAGE**
The `wbemadmin` utility is not the tool for a distributed environment. It is used for local administration on the machine on which the CIM Object Manager is running.

**EXIT STATUS**
The `wbemadmin` utility terminates with exit status 0.

**WARNING**
The root\security namespace stores access privileges. If you grant other users access to the root\security namespace, those users can grant themselves or other users rights to all other namespaces.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcor</td>
</tr>
</tbody>
</table>
wbemadmin(1M)

SEE ALSO mofcomp(1M), wbemlogviewer(1M), init.wbem(1M), attributes(5)
wbemconfig – convert a JavaSpaces datastore to the newer Reliable Log datastore format

**SYNOPSIS**
/usr/sadm/lib/wbem/wbemconfig convert

**DESCRIPTION**
A Reliable Log directory is created that contains the converted data. This directory is named /var/sadm/wbem/logr.

The `convert` argument is the only supported option of this command. You should only run this command after stopping WBEM (CIM Object Manager) with the `init.wbem stop` command. Otherwise your data may be corrupted.

This command successfully converts any proprietary custom MOFs you have created in the datastore, but not any CIM or Solaris MOFs you have modified. These will be destroyed. To recompile any modified CIM or Solaris MOFs into the new datastore, run the `mofcomp` command on the MOF files containing the class definitions.

Because the `wbemconfig` `convert` command invokes the JVM (Java Virtual Machine) to perform conversion of the JavaSpaces datastore, you must be running the same version of the JVM as when the original JavaSpaces storage was created. After the `wbemconfig` `convert` command is completed, you can change to any version of the JVM you want.

To see what version of the JVM you are running, issue the `java -version` command.

**OPTIONS**
The following options are supported:

- **convert** Convert a JavaSpaces datastore to the newer Reliable Log datastore format.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcou</td>
</tr>
</tbody>
</table>

**SEE ALSO**
init.wbem(1M), wbemadmin(1M), wbemlogviewer(1M), mofcomp(1M), attributes(5)
wbemlogviewer(1M)

NAME
wbemlogviewer – start WBEM Log Viewer

SYNOPSIS
/usr/sadm/bin/wbemlogviewer

DESCRIPTION
The wbemlogviewer utility starts the WBEM Log Viewer graphical user interface, which enables administrators to view and maintain log records created by WBEM clients and providers. The WBEM Log Viewer displays a Login dialog box. You must log in as root or a user with write access to the root\cimv2 namespace to view and maintain log files. Namespaces are described in wbemadmin(1M).

Log events can have three severity levels.
- Errors
- Warnings
- Informational

The WBEM log file is created in the /var/sadm/wbem/log directory, with the name wbem_log. The first time the log file is backed up, it is renamed wbem_log.1, and a new wbem_log file is created. Each succeeding time the wbem_log file is backed up, the file extension number of each backup log file is increased by 1, and the oldest backup log file is removed if the limit, which in turn is specified in the log service settings, on the number of logfiles is exceeded. Older backup files have higher file extension numbers than more recent backup files.

The log file is renamed with a .1 file extension and saved when one of the following two conditions occur:
- The current file reaches the specified file size limit.
- A WBEM client application uses the clearLog() method in the Solaris_LogService class to clear the current log file.
- A WBEM client application uses the clearLog() method in the Solaris_LogService class to clear the current log file.
- A user chooses Action->Back Up Now in the Log Viewer application.

Help is displayed in the left panel of each dialog box. Context help is not displayed in the main Log Viewer window.

USAGE
The WBEM Log Viewer is not the tool for a distributed environment. It is used for local administration.

The WBEM Log Viewer allows you to perform the following tasks:

View the logs
Set properties of log files  Click Action->Log File Settings to specify log file parameters and the log file directory.

Back up a log file  Click Action->Back Up Now to back up and close the current log file and start a new log file.
Open historical log files Click Action->Open Log File to open a backed-up log file.

Delete an old log file Open the file and then click Action->Delete Log File. You can only delete backed-up log files.

View log record details Double-click a log entry or click View->Log Entry Details to display the details of a log record.

Sort the logs Click View->Sort By to sort displayed entries. You can also click any column heading to sort the list. By default, the log entries are displayed in reverse chronological order (new logs first).

EXIT STATUS The wbemlogviewer utility terminates with exit status 0.

FILES
/var/sadm/wbem/log/wbem_log
WBEM log file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwbcor</td>
</tr>
</tbody>
</table>

SEE ALSO wbemadmin(1M), init.wbem(1M), mofcomp(1M), attributes(5)
whodo(1M)

NAME  whodo – who is doing what

SYNOPSIS  /usr/sbin/whodo [-h] [-l] [user]

DESCRIPTION  The whodo command produces formatted and dated output from information in the /var/adm/utmpx and /proc/pid files.

The display is headed by the date, time, and machine name. For each user logged in, device name, user-ID and login time is shown, followed by a list of active processes associated with the user-ID. The list includes the device name, process-ID, CPU minutes and seconds used, and process name.

If user is specified, output is restricted to all sessions pertaining to that user.

OPTIONS  The following options are supported:

- h  Suppress the heading.
- l  Produce a long form of output. The fields displayed are: the user’s login name, the name of the tty the user is on, the time of day the user logged in (in hours:minutes), the idle time — that is, the time since the user last typed anything (in hours:minutes), the CPU time used by all processes and their children on that terminal (in minutes:seconds), the CPU time used by the currently active processes (in minutes:seconds), and the name and arguments of the current process.

EXAMPLES  EXAMPLE 1 Using the whodo Command

The command:

gj% whodo

produces a display like this:

Tue Mar 12 15:48:03 1985
bailey
tty09  mcn  8:51
   tty09  28158  0:29 sh
   tty52  bdr  15:23
   tty52  21688  0:05 sh
   tty52  22788  0:01 whodo
   tty52  22017  0:03 vi
   tty52  22549  0:01 sh

xt162  lee  10:20
   tty08  6748  0:01 layers
   xt162  6751  0:01 sh
   xt163  6761  0:05 sh
   tty08  6536  0:05 sh
EXAMPLE 1 Using the whodo Command  (Continued)

If any of the LC_* variables ( LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY ) (see environ(5)) are not set in the environment, the operational behavior of whodo(1) for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how whodo behaves.

**LC_CTYPE**  Determines how whodo handles characters. When LC_CTYPE is set to a valid value, whodo can display and handle text and filenames containing valid characters for that locale. The whodo command can display and handle Extended Unix code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. whodo can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

**LC_MESSAGES**  Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

**LC_TIME**  Determines how whodo handles date and time formats. In the "C" locale, date and time handling follow the U.S. rules.

**EXIT STATUS**  The following exit values are returned:

- **0**  Successful completion.
- **non-zero**  An error occurred.

**FILES**

- `/etc/passwd`  System password file
- `/var/adm/utmpx`  User access and administration information
- `/proc/pid`

**ATTRIBUTES**  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**  ps(1), who(1), attributes(5), environ(5)
NAME
wracct – write extended accounting records for active processes and tasks

SYNOPSIS
/usr/sbin/wracct [-t record_type] i id_list {task | process}

DESCRIPTION
The wracct utility allows the administrator to invoke the extended accounting system, if active, to write intermediate records representing the resource usage of a selected set of processes or tasks. For tasks, a record_type option is also supported, allowing the administrator to request the writing of a partial record, which leaves the current task usage unchanged, or an interval record, which resets the task usage to zero for that system task, with respect to the extended accounting subsystem. If interval records are used, the total task usage is the sum of all interval records and the final record written at the task's completion. If partial records are used, the completion record reflects the total resource usage.

OPTIONS
The following options are supported:

- **-i id_list**
  Select the IDs of the tasks or processes to write records for. Specify id_list as a comma- or space-separated list of IDs, presented as a single argument. For some shells, this requires appropriate quoting of the argument.

- **-t record_type**
  Select type of record to write for the selected task or process. For tasks, record_type can be partial or interval. partial is the default type, and the only type available for process records.

OPERANDS
The following operands are supported:

**process**
Treat the given ID as a process ID for the purposes of constructing and writing an extended accounting record.

**task**
Treat the given ID as a task ID for the purposes of constructing and writing an extended accounting record.

EXAMPLES
**EXAMPLE 1** Writing a partial record

Write a partial record for all active sendmail processes.

# /usr/sbin/wracct -i `pgrep sendmail` process

**EXAMPLE 2** Writing an interval record

Write an interval record for the task with ID 182.

# /usr/sbin/wracct -t interval -i 182 task

EXIT STATUS
The following exit values are returned:

0 Successful completion.
1 An error occurred.
2 Invalid command line options were specified.
Pertinent components of extended accounting facility are not active.

FILES
/var/adm/exacct/task
/var/adm/exacct/proc   Extended accounting data files.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
wrsmconf(1M)

NAME
wrsmconf – manage WCI RSM controller configurations

SYNOPSIS
/usr/platform/sun4u/sbin/wrsmconf create -c controller_id -f config_file
wrsmconf initial -f config_file [-c controller_id]
wrsmconf remove [-c controller_id]
wrsmconf topology [-c controller_id]
wrsmconf dump -c controller_id -f config_file

DESCRIPTION
wrsmconf provides a means to create, install, retrieve, and remove configurations for
WCI remote shared memory (RSM) controllers.

OPTIONS
The following options are supported:

create -c controller_id -f config_file
Create a set of per-node configurations for the specified controller and store them to
the file config_file. The created file contains a per-node configuration for each node
specified in the input for the specified controller. The file has a checksum on it and
cannot be modified directly. This file can be used in a wrsmconf initial call on
each node to install the node’s configuration into the local driver.

A list of nodes and WCI devices connected to those nodes is read from standard
input. For each connected pair of links, specify the nodename (uname -n), safari
port id, and link number on both sides of the connection. The format of the
information looks like this:

<nodename>.<wrsm-portid>.<linkno>=<nodename>.<wrsm-portid>.<linkno>
<nodename>.<wrsm-portid>.<linkno>=<nodename>.<wrsm-portid>.<linkno>

This interface is intended for installing configurations for testing (such as for
SunVTS). Only direct-connect, non-striped configurations for 1 to 3 nodes can be
specified. FM node ids and RSM hardware addresses are assigned to the specified
nodes contiguously and in order starting from 0.

initial -f config_file [-c controller_id]
Install the configuration for the local node stored in the file config_file into the driver
as the initial configuration for the specified controller. This command fails under
the following circumstances:

- If controller_id is specified and the configuration in the file is not for the specified
  controller.
- If the file does not contain a valid configuration for the local node or if the
  checksum in the file shows it has been modified.
- If a configuration has already been installed for the controller. If this happens,
  use wrsmconf remove to remove the existing configuration.

remove [-c controller_id]
Disable communication through the installed configuration for all controllers or the
specified controller and remove the configuration(s) from the driver.
For each installed controller (or for the specified controller), print to stdout the set of nodes this controller is configured to reach, including the nodename, FM node id, and RSM hardware address for each node. The following is example output:

<table>
<thead>
<tr>
<th>FM Node ID</th>
<th>Node Name</th>
<th>Controller Instance</th>
<th>Controller HW Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>hpc00</td>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>0</td>
<td>hpc00</td>
<td>1</td>
<td>333</td>
</tr>
<tr>
<td>1</td>
<td>hpc01</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>hpc01</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>1</td>
<td>hpc01</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>hpc03</td>
<td>0</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>hpc03</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>hpc03</td>
<td>2</td>
<td>103</td>
</tr>
</tbody>
</table>

dump -c controller-id -f config_file

Fetch the installed configuration for the specified controller from the driver and store it into the file config_file along with a checksum to protect the data. This configuration can later be installed with the command wrsmconf initial.

EXIT STATUS
This command returns 0 on successful completion, and a non-zero value if an error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwrsm</td>
</tr>
</tbody>
</table>

SEE ALSO
kstat(1M), wrsmstat(1M), attributes(5)
The `wrsmstat` command provides statistics on remote shared memory (RSM) controllers, routes to nodes, and WCI interfaces managed by the WCI RSM driver (`wrsm`). It also provides an interface for setting extended performance counter control registers that constrain the `wrsm` counters available through `busstat(1M)`.

### OPTIONS

The following options are supported:

- `controller [-c controller_id]`
  
  Displays information describing the state of the specified controller, or of all controllers if none is specified. The following is sample output:

  ```
  $ wrsmstat controller -c 5
  Controller 5 ------------
  Controller state: up
  Local RSM Hardware address: 0x4
  Exported segments: 0
  # published: 0
  # connections: 0
  total bound memory: 0
  Imported segments: 0
  Send Queues: 0
  Registered Handlers: 0
  Assigned WCIs: 4
  Available WCIs: 2
  ```

- `wrsm [-i wrsm_instance_num] [-v]`
  
  Displays information describing the state of the specified RSM WCI, or of all RSM WCIs if none is specified. The following is sample output:

  ```
  $ wrsmstat wrsm -i 2
  WCI instance 2
  ------------
  Portid: 5
  Controller ID: 0
  Config Version: 5
  Link Error Shutdown Trigger: 40000
  Link #0 is not present.
  Link #1
  Link Enabled: yes
  Link State: up
  Remote RSM HW addr: 1
  Remote wnode ID: 1
  Remote link num: 1
  Remote WCI port ID: 3
  Error takedowns: 0
  Bad Config takedowns: 0
  Failed bringups: 0
  Total link errors: 0
  Maximum link errors: 0
  Average link errors: 0
  Auto shutdown enabled: yes
  Link #2 is not present.
  ```

  If you specify the `-v` option, the following additional information is displayed:
route [-c controller_id] [-h nodename]

Displays the route to the specified node through the specified controller. If no node is specified, displays the routes to all nodes. If no controller is specified, displays the specified node’s route through all controllers. If neither is specified, displays the routes to all nodes through all controllers. The following is sample output:

```
$ wrsmstat -c 3 -h fred
Controller 3 - Route to fred
----------------------------
Config Version: 1
FM node id: 0x345543
RSM hardware address: 0x9
Route Changes: 3
Route Type: Passthrough
Number of WCIs: 2
Stripes: 4
WCI #0
   Port ID: 3
   Instance: 0
   Num of hops: 2
   Num of links: 2
   link# 1, first hop RSM HW addr: 0x4
   link# 2, first hop RSM HW addr: 0x2
WCI #1
   Port ID: 13
   Instance: 1
   Num of hops: 2
   Num of links: 2
   link# 0, first hop RSM HW addr: 0x4
   link# 2, first hop RSM HW addr: 0x2
```

set [-i wrsm_instance_num] -c cmmu -s <start> -e <end>

For the specified WCI (or for each RSM WCI if none specified), configure the specified range of CMMU entries so that transactions through them are counted by wrsm busstat kstats. Each call will cause transactions to be counted through the new ranges of cmmu entries in addition to the previously specified ranges. To count transactions through all CMMUs, specify a start value of 0 and end value of 0. To clear all ranges (and not count transactions through any cmmu entries), specify a start value of 0 and end value of -1.

EXIT STATUS
This command returns 0 on successful completion, and a non-zero value if an error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWwrsm</td>
</tr>
</tbody>
</table>
wrsmsstat(1M)

SEE ALSO  busstat(1M), kstat(1M), wrsmconf(1M), attributes(5)
NAME
xntpd – Network Time Protocol daemon

SYNOPSIS
/usr/lib/inet/xntpd [-aAbdm] [-c conffile] [-e authdelay] [-f driftfile]
[-k keyfile] [-l logfile] [-p pidfile] [-r broadcastdelay] [-s statsdir]
[-t trustedkey] [-v variable] [-V variable]

DESCRIPTION
xntpd is a daemon which sets and maintains a UNIX system time-of-day in
agreement with Internet standard time servers. xntpd is a complete implementation
of the Network Time Protocol (NTP) version 3 standard, as defined by RFC 1305. It
also retains compatibility with version 1 and 2 servers as defined by RFC 1059
and RFC 1119, respectively. The computations done in the protocol and clock adjustment
code are carried out with high precision and with attention to the details which might
introduce systematic bias into the computations. This is done to try to maintain an
accuracy suitable for synchronizing with even the most precise external time source.

Ordinarily, xntpd reads its configuration from a configuration file at startup time. The
default configuration file name is /etc/inet/ntp.conf, although this may be
overridden from the command line. It is also possible to specify a working, although
limited, xntpd configuration entirely on the command line, obviating the need for a
configuration file. This may be particularly appropriate when xntpd is to be
configured as a broadcast or multicast client, with all peers being determined by
listening to broadcasts at run time. Through the use of the ntpd(1M) program, various
internal xntpd variables can be displayed and configuration options altered while the
daemon is running.

The daemon can operate in any of several modes, including symmetric active/passive,
client/server and broadcast/multicast. A broadcast/multicast client can automatically
discover remote servers, compute one-way delay correction factors and configure itself
automatically. This makes it possible to deploy a fleet of workstations without
specifying a configuration file or configuration details specific to its environment.

OPTIONS
The following command line arguments are understood by xntpd. See
Configuration Commands for a more complete functional description:

- a        Run in authentication mode.
- A        Disable authentication mode.
- b        Listen for broadcast NTP and sync to this if available.
- c conffile        Specify an alternate configuration file.
- d        Specify debugging mode. This flag may occur multiple times, with
each occurrence indicating greater detail of display.
- e authdelay        Specify the time (in seconds) it takes to compute the NTP
encryption field on this computer.
- f driftfile        Specify the location of the drift file.
- k keyfile        Specify the location of the file which contains the NTP
authentication keys.
**xntpd(1M)**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-l logfile</code></td>
<td>Specify a log file instead of logging to syslog.</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Listen for multicast messages and synchronize to them if available</td>
</tr>
<tr>
<td><code>-p pidfile</code></td>
<td>Specify the name of the file to record the daemon’s process id.</td>
</tr>
<tr>
<td><code>-x broadcast</code></td>
<td>Ordinarily, the daemon automatically compensates for the network delay between the broadcast/multicast server and the client; if the calibration procedure fails, use the specified default delay (in seconds).</td>
</tr>
<tr>
<td><code>-s statdir</code></td>
<td>Specify the directory to be used for creating statistics files.</td>
</tr>
<tr>
<td><code>-t trustedkey</code></td>
<td>Add a key number to the trusted key list.</td>
</tr>
<tr>
<td><code>-v variable</code></td>
<td>Add a system variable.</td>
</tr>
<tr>
<td><code>-V variable</code></td>
<td>Add a system variable listed by default.</td>
</tr>
</tbody>
</table>

**Usage**

xntpd’s configuration file format is similar to other Unix configuration files. Comments begin with a ‘#’ character and extend to the end of the line. Blank lines are ignored. Configuration commands consist of an initial keyword followed by a list of arguments, separated by whitespace. Some arguments may be optional. These commands may not be continued over multiple lines. Arguments may be host names, host addresses written in dotted-decimal, integers, floating point numbers (when specifying times in seconds) and text strings.

In the following descriptions, optional arguments are delimited by ‘[]’, while alternatives are separated by ‘|’. The first three commands specify various time servers to be used and time services to be provided.

```
peer host_address [key |][version |][prefer]
```

Specifies that the local server is to operate in “symmetric active” mode with the remote server `host_address` named in the command. In this mode, the local server can be synchronized to the remote server. In addition, the remote server can be synchronized by the local server. This is useful in a network of servers where, depending on various failure scenarios, either the local or remote server host may be the better source of time. The `peer` command, and the `server` and `broadcast` commands that follow, can take the following arguments:

- **key**
  - Indicates that all packets sent to the address are to include authentication fields, encrypted using the specified key number. The range of this number is that of an unsigned 32 bit integer. By default, an encryption field is not included.

- **version**
  - Specifies the version number to be used for outgoing NTP packets. Versions 1, 2, and 3 are the choices; version 3 is the default.

- **prefer**
  - Marks the host as a preferred host. This host will be preferred for synchronization over other comparable hosts.
server host_address [ key # ] [ version f1# ]
[ prefer ] [ mode f1# ] server
Specifies that the local server is to operate in “client” mode with the remote server
named in the command. In this mode the local server can be synchronized to the
remote server, but the remote server can never be synchronized to the local server.

broadcast host_address [ key # ] [ version # ] [ ttl # ]
Specifies that the local server is to operate in “broadcast” mode where the local
server sends periodic broadcast messages to a client population at the
broadcast/multicast address named in the command. Ordinarily, this specification
applies only to the local server operating as a transmitter. For operation as a
broadcast client, see broadcastclient or multicastclient commands
elsewhere in this document. In broadcast mode the host_address is usually the
broadcast address on a local network or a multicast address assigned to NTP. The
IANA has assigned the network, 224.0.1.1 to NTP. This is presently the only
network that should be used. The following option is used only with the broadcast
mode:

ttl
Specifies the time-to-live (TTL) to use on multicast packets.
Selection of the proper value, which defaults to 127, is
something of a black art and must be coordinated with the
network administrator(s).

broadcastclient
Directs the local server to listen for broadcast messages on the local network, in
order to discover other servers on the same subnet. Upon hearing a broadcast
message for the first time, the local server measures the nominal network delay
using a brief client/server exchange with the remote server. Then the server enters
the “broadcastclient” mode, in which it listens for and synchronizes to succeeding
broadcast messages. In order to avoid accidental or malicious disruption in this
mode, both the local and remote servers must operate using authentication, with
the same trusted key and key identifier.

multicastclient
[ IP address . . . ] Used in the same way as the broadcastclient command, but
operates using IP multicasting. Support for this command requires the use of
authentication. If one or more IP addresses are given, the server joins the respective
multicast group(s). If none are given, the IP address assigned to NTP (224.0.1.1) is
assumed.

driftfile filename
Specifies the name of the file used to record the frequency offset of the local clock
oscillator. If the file exists, it is read at startup in order to set the initial frequency
offset. Then the file is updated once per hour with the current offset computed by
the daemon. If the file does not exist or this command is not given, the initial
frequency offset is assumed to be zero. In this case, it may take some hours for the
frequency to stabilize and the residual timing errors to subside. The file contains a
single floating point value equal to the offset in parts-per-million (ppm). The file is
updated by first writing the current drift value into a temporary file and then using
rename(2) to replace the old version. This implies that xntpd must have write
permission for the directory the drift file is located in, and that file system links, symbolic or otherwise, should probably be avoided.

```
enable auth | bclient | pll | monitor | stats [...]
disable auth | bclient | pll | monitor | stats [...]
```

Provides a way to enable or disable various server options. To do so, execute a two word command, where the first word is `enable` or `disable` and the second is the flag. Flags not mentioned are unaffected. Flags that can be changed are described below, along with their default values.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>disable</td>
<td>Causes the server to synchronize with unconfigured peers only if the peer has been correctly authenticated using a trusted key and key identifier.</td>
</tr>
<tr>
<td>bclient</td>
<td>disable</td>
<td>Causes the server to listen for a message from a broadcast or multicast server. After this occurs, an association is automatically instantiated for that server. Default for this flag is <code>disable</code> (off).</td>
</tr>
<tr>
<td>pll</td>
<td>enable</td>
<td>Enables the server to adjust its local clock. If not set, the local clock free-runs at its intrinsic time and frequency offset. This flag is useful in case the local clock is controlled by some other device or protocol and NTP is used only to provide synchronization to other clients.</td>
</tr>
<tr>
<td>monitor</td>
<td>disable</td>
<td>Enables the monitoring facility (see elsewhere).</td>
</tr>
<tr>
<td>stats</td>
<td>enable</td>
<td>Enables statistics facility filegen (see Monitoring Commands below).</td>
</tr>
</tbody>
</table>

```
slewalways [yes|no]
```

Force `xntpd` to always slew the time.

**Authentication Commands**

- **keys filename**: Specifies the name of a file which contains the encryption keys and key identifiers used by `xntpd` when operating in authenticated mode. The format of this file is described later in this document.

- **trustedkey**: # [ #... ] Specifies the encryption key identifiers which are trusted for the purposes of authenticating peers suitable for synchronization. The authentication procedures require that both the local and remote servers share the same key and key identifier, defined to be used for this purpose. However, different keys can be used with different servers. The arguments are 32 bit unsigned integers. Note, however, that key 0 is
fixed and globally known. If meaningful authentication is to be performed, the 0 key should not be trusted.

controlkey #

Specifies the key identifier to use with the ntpq(1M) program, which is useful to diagnose and repair problems that affect xntpd operation. The operation of the ntpq program and xntpd conform to those specified in RFC 1305. Requests from a remote ntpq program which affect the state of the local server must be authenticated. This requires that both the remote program and local server share a common key and key identifier. The argument to this command is a 32 bit unsigned integer. If no controlkey command is included in the configuration file, or if the keys don’t match. These requests are ignored.

restrict address [mask numeric_mask] [flag] [. . .]

xntpd implements a general purpose address–and–mask based restriction list. The list is sorted by IP address and mask, and the list is searched in this order for matches, with the last match found defining the restriction flags associated with the incoming packets. The source address of incoming packets is used for the match, with the 32 bit address being logically and-ed with the mask associated with the restriction entry and then compared with the entry’s address (which has also been and-ed with the mask) to look for a match. The “mask” argument defaults to 255.255.255.255, meaning that the “address” is treated as the address of an individual host. A default entry (address 0.0.0.0, mask 0.0.0.0) is always included and, given the sort algorithm, is always the first entry in the list. Note that, while “address” is normally given in dotted–quad format, the text string “default”, with no mask option, may be used to indicate the default entry.

In the current implementation, flags always restrict access, i.e., an entry with no flags indicates that free access to the server is to be given. The flags are not orthogonal, in that more restrictive flags often make less restrictive ones redundant. The flags can generally be classed into two categories, those which restrict time service and those which restrict informational queries and attempts to do run time reconfiguration of the server.

One or more of the following flags may be specified:

- ignore
  Ignore all packets from hosts which match this entry. If this flag is specified neither queries nor time server polls will be responded to.

- noquery
  Ignore all NTP mode 7 packets (i.e., information queries and
configuration requests) from the source. Time service is not affected.

**nomodify**
Ignore all NTP mode 7 packets which attempt to modify the state of the server (i.e., run time reconfiguration). Queries which return information are permitted.

**notrap**
Decline to provide mode 6 control message trap service to matching hosts. The trap service is a subsystem of the mode 6 control message protocol which is intended for use by remote event logging programs.

**lowpriotrap**
Declare traps set by matching hosts to be low priority. The number of traps a server can maintain is limited. The current limit is 3. Traps are usually assigned on a first come, first served basis, with later trap requestors being denied service. This flag modifies the assignment algorithm by allowing low priority traps to be overridden by later requests for normal priority traps.

**noserve**
Ignore NTP packets whose mode is other than 7. In effect, time service is denied, though queries may still be permitted.

**nopeer**
Provide stateless time service to polling hosts, but do not allocate peer memory resources to these hosts even if they otherwise might be considered useful as future synchronization partners.

**notrust**
Treat these hosts normally in other respects, but never use them as synchronization sources.

**limited**
These hosts are subject to a limitation on number of clients from the same net that will be accepted. Net in this context refers
to the IP notion of net (class A, class B, class C, etc.). Only the first
client_limit hosts that have shown up at the server and that have been
active during the last client_limit_period seconds are
accepted. Requests from other clients from the same net are
rejected. Only time request packets are taken into account. “Private”,
“control”, and “broadcast” packets are not subject to client limitation
and therefore do not contribute to client count. A history of clients is
kept using the monitoring capability of xntpd. Thus,
monitoring is active as long as there is
a restriction entry with the
limited flag. The default value for
client_limit is 3. The default value
for client_limit_period is 3600
seconds. Currently both variables
are not runtime configurable.

This is actually a match algorithm
modifier, rather than a restriction
flag. Its presence causes the
restriction entry to be matched only
if the source port in the packet is
the standard NTP UDP port (123).
Both ntpport and non-ntpport
may be specified. The ntpport is
considered more specific and is
sorted later in the list.

Default restriction list entries, with
the flags, ignore, ntpport, for
each of the local host’s interface
addresses are inserted into the table
at startup to prevent the server
from attempting to synchronize to
its own time. A default entry is also
always present, though if it is
otherwise unconfigured no flags are
associated with the default entry
(i.e., everything besides your own
NTP server is unrestricted).
The restriction facility was added to allow the current access policies of the time servers running on the NSF net backbone to be implemented with \texttt{xntpd} as well. This facility may be useful for keeping unwanted or broken remote time servers from affecting your own. However, it should not be considered an alternative to the standard NTP authentication facility.

\textbf{clientlimit limit} \hspace{1cm} \text{Sets client\_limit to limit; allows configuration of client limitation policy. This variable defines the number of clients from the same network that are allowed to use the server.}

\textbf{clientperiod period} \hspace{1cm} \text{Sets client\_limit\_period; allows configuration of client limitation policy. This variable specifies the number of seconds after which a client is considered inactive and thus no longer is counted for client limit restriction.}

\textbf{statsdir /directory path/} \hspace{1cm} \text{Indicates the full path of a directory where statistics files should be created (see below). This keyword allows the (otherwise constant) filegen filename prefix to be modified for file generation sets used for handling statistics logs (see filegen statement below).}

\textbf{statistics name ...} \hspace{1cm} \text{Enables writing of statistics records. Currently, three kinds of statistics are supported. Each type is described below by giving its name, a sample line of data, and an explanation of each field:}

\begin{itemize}
  \item \textbf{loopstats} \hspace{1cm} \text{enables recording of loop filter statistics information. Each update of the local clock outputs a line of the following form to the file generation set named "loopstats":}
  \begin{verbatim}
 48773 10847.650 0.0001307 17.3478 2
  \end{verbatim}
  \begin{itemize}
    \item Field No.
    \item Description
    \item 1 \hspace{1cm} The date (Modified Julian day)
  \end{itemize}
\end{itemize}
2  The time (seconds and fraction past UTC midnight)
3  Time offset in seconds
4  Frequency offset in parts-per-million
5  Time constant of the clock-discipline algorithm at each update of the clock

peerstats
  enables recording of peer statistics information. This includes statistics records of
  all peers of a NTP server and of the 1-pps signal, where present and configured.
  Each valid update appends a line similar to the one below, to the current element
  of a file generation set named "peerstats":

  48773  10847.650 127.127.4.1  9714  -0.001605  \\
    0.00000  0.00142

Field No.
  Description
1  The date (Modified Julian Day)
2  The time (seconds and fraction past UTC midnight)
3  The peer address in dotted-quad notation
4  peer status. The status field is encoded in hex in the format described in
   Appendix A of the NTP specification, RFC 1305.
5  Offset in seconds
6  Delay in seconds
7  Dispersion in seconds

clockstats
  enables recording of clock driver statistics information. Each update received
  from a clock driver outputs a line of the following form to the file generation set
  named "clockstats":

  49213  525.624 127.127.4.1  93    226  \\
    00:08:29.606  D

Field No.
  Description
1
The date (Modified Julian Day)

2
The time (seconds and fraction past UTC midnight)

3
The clock address in dotted-quad notation

4
The last timecode received from the clock in decoded ASCII format, where meaningful

In some clock drivers a good deal of additional information can be gathered and displayed as well.

Statistic files are managed using file generation sets (see filegen below). The information obtained by enabling statistics recording allows analysis of temporal properties of an ntpd server. It is usually only useful to primary servers or maybe main campus servers.

filegen name [ file filename ] [ type typename ] [ flag flagval ] [ link | nolink ] [ enable | disable ]

Configures setting of generation file set name. Generation file sets provide a means for handling files that are continuously growing during the lifetime of a server. Server statistics are a typical example for such files. Generation file sets provide access to a set of files used to store the actual data. At any time at most one element of the set is being written to. The type given specifies when and how data will be directed to a new element of the set. This way, information stored in elements of a file set that are currently unused are available for administrational operations without the risk of disturbing the operation of ntpd. (Most important: they can be removed to free space for new data produced.)

Filenames of set members are built from three elements:

prefix
This is a constant filename path. It is not subject to modifications via the filegen statement. It is defined by the server, usually specified as a compile time constant. It may, however, be configurable for individual file generation sets via other commands. For example, the prefix used with “loopstats” and “peerstats” filegens can be configured using the statsdir statement explained above.

filename
This string is directly concatenated to the prefix mentioned above (no intervening ‘/’ (slash)). This can be modified using the file argument to the filegen statement. No ‘.’ elements are allowed in this component to prevent filenames referring to parts outside the filesystem hierarchy denoted by prefix.

suffix
This part is reflects individual elements of a file set. It is generated according to the type of a file set as explained below. A file generation set is characterized by
its type. The following types are supported:

- **none**  
The file set is actually a single plain file.

- **pid**  
  One element of file set is used per incarnation of a xntpd server. This type does not perform any changes to file set members during runtime. However it provides an easy way of separating files belonging to different xntpd server incarnations. The set member filename is built by appending a ‘.’ (dot) to concatenated prefix and filename strings, and appending the decimal representation of the process id of the xntpd server process.

- **day**  
  One file generation set element is created per day. The term *day* is based on UTC. A day is defined as the period between 00:00 and 24:00 UTC. The file set member suffix consists of a ‘.’ (dot) and a day specification in the form, YYYYMMDD. YYYY is a 4 digit year number (e.g., 1992). MM is a two digit month number. DD is a two digit day number. Thus, all information written at December 10th, 1992 would end up in a file named, PrefixFilename.19921210.

- **week**  
  Any file set member contains data related to a certain week of a year. The term *week* is defined by computing “day of year” modulo 7. Elements of such a file generation set are distinguished by appending the following suffix to the file set filename base: a dot, a four digit year number, the letter ‘W’, and a two digit week number. For example, information from January, 5th 1992 would end up in a file with suffix “.1992W1”.

- **month**  
  One generation file element is generated per month. The file name suffix consists of a dot, a four digit year number, and a two digit month.

- **year**  
  One generation file element is generated per year. The filename suffix consists of a dot and a 4 digit year number.

- **age**  
  This type of file generation sets changes to a new element of the file set every 24 hours of server operation. The filename suffix consists of a dot, the letter ‘a’, and an eight digit number. This number is taken to be the number of seconds the server is running at the start of the corresponding 24 hour period.

Information is only written to a file generation set when this set is enabled. Output is prevented by specifying, disabled.

It is convenient to be able to access the current element of a file generation set by a fixed name. This feature is enabled by specifying link and disabled using nolink. If link is specified, a hard link from the current file set element to a file without suffix is created. When there is already a file with this name and the number of links of this file is one, it is renamed appending a dot, the letter, ‘C’, and the pid of the xntpd server process. When the number of links is greater than one, the file is unlinked. This allows the current file to be accessed by a constant name.
**Broadcast Delay**

The broadcast and multicast modes require a special calibration to determine the network delay between the local and remote servers. Ordinarily, this is done automatically by the initial protocol exchanges between the local and remote servers. In some cases, the calibration procedure may fail due to, for example, network or server access controls. This command specifies the default delay to be used under these circumstances. Typically (for Ethernet), a number between 0.003 and 0.007 is appropriate for `seconds`. When this command is not used, the default is 0.004 seconds.

**Trap**

```
trap host_address [ port port_number ]
[n interface interface_address ]
```

Configures a trap receiver at the given `host_address` and `port_number` for sending messages with the specified local `interface_address`. If the port number is unspecified, a value of 18447 is used. If the interface address is not specified, the message is sent with the source address of the local interface the message is sent through. On a multi-homed host, the interface used may change with routing changes.

C information from the server in a log file. While such monitor programs may also request their own trap dynamically, configuring a trap receiver ensures that no messages are lost when the server is started.

**Setvar**

```
setvar variable [ default ]
```

This command adds an additional system variable. Variables like this can be used to distribute additional information such as the access policy. If the variable of the form, `variable_name=value` is followed by the `default` keyword, the variable will be listed as one of the default system variables (see the `ntpq(1M)` command). Additional variables serve informational purposes only. They can be listed; but they are not related to the protocol. The known protocol variables always override any variables defined via the `setvar` mechanism.

Three special variables contain the names of all variable of the same group. `sys_var_list` holds the names of all system variables. `peer_var_list` holds the names of all peer variables. And `clock_var_list` hold the names of the reference clock variables.

**Monitor**

```
monitor [ yes | no ]
```

```
authenticate [ yes | no ]
```

These commands have been superseded by the `enable` and `disable` commands. They are listed here for historical purposes.

**Logconfig**

```
logconfig configkeyword
```

Controls the amount of output written to syslog or the log file. By default all output is turned on. `configkeyword` is formed by concatenating the message class with the event class. It is permissible to use the prefix, `all`, instead of a message class. A message class may also be followed by the keyword, `all`, meaning to enable/disable all of the respective message class. All `configkeywords` can be prefixed with the symbols, `=`, `+` and `−`. Here, `=` sets the syslogmask, `+` adds messages, and `−` removes messages. Syslog messages can be controlled in four classes: `sys`, `peer`, `clock`, `sync`. Within these classes four types of messages can be controlled. Each is described below, along with its `configkeyword`:
Config keyword
Message type

info
   Informational messages control configuration information.

events
   Event messages control logging of events (reachability, synchronization, alarm conditions).

statistics
   Statistical messages control statistical output.

status
   Status messages describe mainly the synchronization status.

A minimal log configuration might look like this:

logconfig =syncstatus +sysevents

A configuration like this lists, just the synchronization state of xntpd and the major system events. For a simple reference server, the following minimum message configuration could be useful:

logconfig =syncall +clockall

This configuration lists all clock information and synchronization information. All other events and messages about peers, system events and so on, is suppressed.

The NTP standard specifies an extension to allow verification of the authenticity of received NTP packets, and to provide an indication of authenticity in outgoing packets. This is implemented in xntpd using the DES or MD5 algorithms to compute a digital signature, or message-digest. The specification allows any one of possibly 4 billion keys, numbered with 32 bit key identifiers, to be used to authenticate an association. The servers involved in an association must agree on the key and key identifier used to authenticate their data. However they must each learn the key and key identifier independently. In the case of DES, the keys are 56 bits long with, depending on type, a parity check on each byte. In the case of MD5, the keys are 64 bits (8 bytes). xntpd reads its keys from a file specified using the -k command line option or the keys statement in the configuration file. While key number 0 is fixed by the NTP standard (as 56 zero bits) and may not be changed, one or more of the keys numbered 1 through 15 may be arbitrarily set in the keys file.

The key file uses the same comment conventions as the configuration file. Key entries use a fixed format of the form, keyno type key. Here, keyno is a positive integer, type is a single character which defines the format the key is given in, and key is the key itself.

The key may be given in one of several different formats, controlled by the type character. The different key types, and corresponding formats, are described below:

Key:        S
Format:     A 64 bit hexadecimal number in DES format
In this format, the high order 7 bits of each octet are used to form the 56 bit key while the low order bit of each octet is given a value such that odd parity is maintained for the octet. Leading zeroes must be specified (i.e., the key must be exactly 16 hex digits long) and odd parity must be maintained. Hence a zero key, in standard format, would be given as: 0101010101010101.

Key: N
Format: A 64 bit hexadecimal number in NTP format

This format is the same as the DES format except the bits in each octet have been rotated one bit right so that the parity bit is now the high order bit of the octet. Leading zeroes must be specified and odd parity must be maintained. A zero key in NTP format would be specified as: 8080808080808080.

Key: A
Format: A 1–to–8 character ASCII string

A key is formed from this by using the lower order 7 bits of the ASCII representation of each character in the string. Zeroes are added on the right when necessary to form a full width 56 bit key.

Key: M
Format: A 1–to–8 character ASCII string, using the MD5 authentication scheme.

Note that both the keys and the authentication schemes (DES or MD5) must be identical between a set of peers sharing the same key number.

xntpd has been built to be compatible with all supported types of reference clocks. A reference clock is generally (though not always) a radio timecode receiver which is synchronized to a source of standard time such as the services offered by the NRC in Canada and NIST in the U.S. The interface between the computer and the timecode receiver is device dependent and will vary, but it is often a serial port.

For the purposes of configuration, xntpd treats reference clocks in a manner analogous to normal NTP peers as much as possible. Reference clocks are referred to by address, much as a normal peer is. However, an invalid IP address is used to distinguish them from normal peers. Reference clock addresses are of the form 127.127.t.u where t is an integer denoting the clock type and u indicates the type–specific unit number. Reference clocks are configured using a server statement in the configuration file where the host_address is the clock address. The key, version and ttl options are not used for reference clock support. Some reference clocks require a mode option to further specify their operation. The prefer option can be useful to persuade the server to cherish a reference clock with somewhat more
enthusiasm than other reference clocks or peers. Clock addresses may generally be used anywhere in the configuration file that a normal IP address can be used. For example, they can be used in restrict statements, although such use would normally be considered strange.

Reference clock support provides the fudge command, which can be used to configure reference clocks in special ways. The generic format that applies to this command is,

```
fudge 127.127.t.u [ time1 secs] [ time2 secs] \ 
[ stratum int] [ refid int] \ 
[ flag1 0|1] [ flag2 0|1] [ flag3 0|1] [ flag4 0|1]
```

with options described as follows:

**time1**

Are specified in fixed point seconds and used in some clock drivers as calibration constants. By convention, and unless indicated otherwise, time1 is used as a calibration constant to adjust the nominal time offset of a particular clock to agree with an external standard, such as a precision PPS signal. The specified offset is in addition to the propagation delay provided by other means, such as internal DIP switches.

**stratum**

Is a number in the range zero to 15 and is used to assign a nonstandard operating stratum to the clock.

**refid**

Is an ASCII string in the range one to four characters and is used to assign a nonstandard reference identifier to the clock.

**flag1**

**flag2**

**flag3**

**flag4**

Are binary flags used for customizing the clock driver. The interpretation of these values, and whether they are used at all, is a function of the needs of the particular clock driver. However, by convention, and unless indicated otherwise, flag3 invokes the TIOCSPPS ioctl, while flag4 is used to enable recording verbose monitoring data to the clockstats file configured with the filegen command.

Ordinarily, the stratum of a reference clock is zero, by default. Since the xntpd daemon adds one to the stratum of each peer, a primary server ordinarily displays stratum one. In order to provide engineered backups, it is often useful to specify the reference clock stratum as greater than zero. The stratum option is used for this purpose. Also, in cases involving both a reference clock and a 1-pps discipline signal, it is useful to specify the reference clock identifier as other than the default, depending on the driver. The refid option is used for this purpose. Except where noted, these options apply to all clock drivers.
xntpd(1M)

xntpd on Unix machines currently supports several different types of clock hardware. It also supports a special pseudo–clock used for backup or when no other clock source is available. In the case of most of the clock drivers, support for a 1-pps precision timing signal is available as described in the README file in the ./doc directory of the xntp3 program distribution. The clock drivers, and the addresses used to configure them, are described in the file, README.refclocks, in the doc directory of the current program distribution.

Variables

Most variables used by the NTP protocol can be examined with ntpq (mode 6 messages). Currently very few variables can be modified via mode 6 messages. These variables are either created with the setvar directive or the leap warning variables. The leap warning bits that can be set in the leapwarning variable (up to one month ahead). Both, the leapwarning and in the leapindication variable, have a slightly different encoding than the usual leap bits interpretation:

00 The daemon passes the leap bits of its synchronization source (usual mode of operation).
01/10 A leap second is added/deleted (operator forced leap second).
11 Leap information from the synchronization source is ignored (thus LEAP_NOWARNING is passed on).

FILES

/etc/inet/ntp.conf Default name of the configuration file
/etc/ntp/ntp.drift Conventional name of the drift file
/etc/inet/ntp.keys Conventional name of the key file
/etc/inet/ntp.server Sample server configuration file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntpu</td>
</tr>
</tbody>
</table>

SEE ALSO

ntpdate(1M), ntpq(1M), ntptrace(1M), xntpd(1M), rename(2), attributes(5)
**NAME**

xntpd – special NTP query program

**SYNOPSIS**

```
xntpd [-ilnps] [-c command] [host] [...]
```

**DESCRIPTION**

xntpd queries the xntpd daemon about its current state and requests changes in that state. You can run xntpd in interactive mode or in controlled using command line arguments.

Extensive state and statistics information is available through the xntpd interface. In addition, nearly all the configuration options which can be specified at start up using xntpd's configuration file may also be specified at run time using xntpd.

If one or more request options is included on the command line when xntpd is executed, each of the requests is sent to the NTP servers running on each of the hosts given as command line arguments, or on the local host by default. If no request options are given, xntpd attempts to read commands from the standard input and execute these on the NTP server running on the first host specified on the command line, again defaulting to the local host when no other host is specified. xntpd prompts for commands if the standard input is a terminal device.

xntpd uses NTP mode 7 packets to communicate with the NTP server, and can be used to query any compatible server on the network which permits it. As NTP is a UDP protocol, this communication is somewhat unreliable, especially over large distances. xntpd does not attempt to re-transmit requests, and times requests out if the remote host is not heard from within a suitable timeout time.

The operation of xntpd is specific to the particular implementation of the xntpd daemon. You can expect xntpd to work only with this and maybe some previous versions of the daemon. Requests from a remote xntpd program that affect the state of the local server must be authenticated. This requires that both the remote program and local server share a common key and key identifier.

**OPTIONS**

xntpd reads interactive format commands from the standard input. If you specify the -c, -l, -p or -s option, the specified queries are sent to the hosts immediately.

The following command line options are supported:

- **-c command**
  
  Add command to the list of commands to execute on the specified hosts. command is interpreted as an interactive format command.

  Multiple -c options may be specified.

- **-i**

  Force xntpd to operate in interactive mode.

  Prompts are written to the standard output.
  Commands are read from the standard input.

- **-l**

  Obtain a list of peers which are known to the servers.

  This option is equivalent to -c listpeers. See listpeers in Control Message Commands.
Output all host addresses in dotted-quad numeric format rather than converting to the canonical host names.

Print a list of the peers known to the server as well as a summary of their state.

This option is equivalent to \( -c \) \texttt{peers}. See \texttt{peers} in Control Message Commands.

Print a list of the peers known to the server as well as a summary of their state, but in a slightly different format than the \( -p \) option. This option is equivalent to \( -c \) \texttt{dmpeers}. See \texttt{dmpeers} in Control Message Commands.

The following operands are supported:

The interactive commands consist of a keyword (\texttt{command_keyword}) followed by zero to four arguments. You need to entry only enough characters of the \texttt{command_keyword} to uniquely identify it. The output of an interactive command is sent to the standard output by default. You can send the output of an interactive command to a file by appending a \texttt{<}, followed by a file name, to the command line.

A number of interactive format commands are executed entirely within the \texttt{xntpd} program itself and do not result in NTP mode.

The following interactive commands are supported:

\texttt{delay} \texttt{milliseconds} Specify a time interval to add to timestamps included in requests which require authentication.

This enables (unreliable) server reconfiguration over long delay network paths or between machines whose clocks are unsynchronized. Because the server no longer requires timestamps in authenticated requests, this command may be obsolete.

Without an argument, print a list of \texttt{n}t\texttt{pq} command keywords. If \texttt{command_keyword} is specified, print function and usage information about the \texttt{command_keyword}.

Without an argument, print a list of \texttt{n}t\texttt{pq} command keywords. If \texttt{command_keyword} is specified, print function and usage information about the \texttt{command_keyword}. 
xntpd(1M)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host hostname</td>
<td>Set the host (hostname) to which future queries are sent. Specify hostname as a host name or a numeric address.</td>
</tr>
<tr>
<td>hostnames [ yes</td>
<td>Print hostnames or numeric addresses in information displays.</td>
</tr>
<tr>
<td>no ]</td>
<td></td>
</tr>
<tr>
<td>keyid keyid</td>
<td>Enable specification of a key number (keyid) to authenticate configuration requests. keyid must correspond to a key number the server has been configured to use for this purpose.</td>
</tr>
<tr>
<td>passwd</td>
<td>Prompt user to enter a password to authenticate configuration requests. The password is not displayed, and must correspond to the key configured for use by the NTP server for this purpose. Requests are not successful.</td>
</tr>
<tr>
<td>quit</td>
<td>Exit xntpd.</td>
</tr>
<tr>
<td>timeout miliseconds</td>
<td>Specify a timeout period for responses to server queries. The default is approximately 8000 milliseconds. As xntpd retries each query once after a timeout, the total waiting time for a timeout is twice the timeout value set.</td>
</tr>
</tbody>
</table>

**Control Message Commands**

Query commands result in NTP mode 7 packets containing requests for information being sent to the server. These control message commands are read-only commands in that they make no modification of the server configuration state.

The following control message commands are supported:

- **clkbug**: Obtain debugging information for a reference clock driver. This information is provided only by some clock drivers.

- **clockinfo clock_peer_address [...]**: Obtain and print information concerning a peer clock.
The values obtained provide information on the setting of fudge factors and other clock performance information.

dmpeers
Obtain a list of peers for which the sserver is maintaining state, along with a summary of that state.

The peer summary list is identical to the output of the peers command, except for the character in the leftmost column. Characters only appear beside peers which were included in the final stage of the clock selection algorithm. A . indicates that this peer was cast off in the false-ticker detection, while a + indicates that the peer made it through. A * denotes the peer with which the server is currently synchronizing.

iostats
Print statistics counters maintained in the input-output module.

kerninfo
Obtain and print kernel phase-lock loop operating parameters.

This information is available only if the kernel has been specially modified for a precision timekeeping function.

listpeers
Obtain and print a brief list of the peers for which the server is maintaining state.

These should include all configured peer associations as well as those peers whose stratum is such that they are considered by the server to be possible future synchronization candidates.

loopinfo [ oneline | multiline ]
Print the values of selected loop filter variables.

The loop filter is the part of NTP which deals with adjusting the local system clock.

The oneline and multiline options specify the format in which this information is printed. multiline is the default.

The offset is the last offset given to the loop filter by the packet processing code. The frequency is the frequency error of the local clock in parts-per-million (ppm). The time_conat controls the stiffness of the phase-lock loop and thus the speed at which it can adapt to oscillator drift. The watchdog timer value is the number of seconds which have elapsed since the last sample offset was given to the loop filter.

memstats
Print statistics counters related to memory allocation code.

monlist [version]
Obtain and print traffic counts collected and maintained by the monitor facility. The version number should not normally need to be specified.
peers

Obtain a list of peers for which the server is maintaining state, along with a summary of that state.

The following summary information is included:

- Address of the remote peer.
- Local interface address. If a local address has yet to be determined it is 0.0.0.0.
- Stratum of the remote peer. A stratum of 16 indicates the remote peer is unsynchronized.
- Polling interval, in seconds.
- Reachability register, in octal.
- Current estimated delay, offset and dispersion of the peer, in seconds.
- Mode in which the peer entry is operating.

This is represented by the character in the left margin. A + denotes symmetric active, a - indicates symmetric passive, a = means the remote server is being polled in client mode, a ^ indicates that the server is broadcasting to this address, a ~ denotes that the remote peer is sending broadcasts and a * marks the peer the server is currently synchronizing to.

- Host.

This field may contain a host name, an IP address, a reference clock implementation name with its parameter or REFCLK (implementation number, parameter). On hostnames no only IP-addresses is displayed.

pstats peer_address [...]  
Show the per-peer statistic counters associated with the specified peers.

reslist

Obtain and print the server’s restriction list.

Generally, this list is printed in sorted order.

showpeer peer_address [...]  
Show a detailed display of the current peer variables for one or more peers. Most of these values are described in the NTP Version 2 specification.

sysinfo

Print a variety of system state variables that are related to the local server.

The output from sysinfo is described in NTP Version 3 specification, RFC-1305. All except the last four lines are described in the NTP Version 3 specification, RFC-1305.

The system flags show various system flags, some of which can be set and cleared by the enable and disable configuration commands, respectively. These are the auth, bclient, monitor, pll, pps and stats flags. See the xntpd
documentation for the meaning of these flags. There are two additional flags which are read only, the kernel_pll and kernel_pps. These flags indicate the synchronization status when the precision time kernel modifications are in use. The kernel_pll indicates that the local clock is being disciplined by the kernel, while the kernel_pps indicates the kernel discipline is provided by the PPS signal. The stability is the residual frequency error remaining after the system frequency correction is applied and is intended for maintenance and debugging. In most architectures, this value initially decreases from as high as 500 ppm to a nominal value in the range .01 to 0.1 ppm. If it remains high for some time after starting the daemon, something may be wrong with the local clock, or the value of the kernel variable tick may be incorrect. The broadcastdelay shows the default broadcast delay, as set by the broadcastdelay configuration command. The authdelay shows the default authentication delay, as set by the authdelay configuration command.

sysstats
Print statistics counters maintained in the protocol module.

timerstats
Print statistics counters maintained in the timer/event queue support code.

The server authenticates all requests that cause state changes in the server. The server uses a configured NTP key to accomplish this. This facility can also be disabled by the server by not configuring a key.

You must make the key number and the corresponding key known to xntpd. Use the keyid or passwd commands to do so.

The passwd command prompts users for a password to use as the encryption key. It also prompts automatically for both the key number and password the first time a command which would result in an authenticated request to the server is given.
Authentication provides verification that the requester has permission to make such changes. It also gives an extra degree of protection against transmission errors.

Authenticated requests always include a time stamp in the packet data. The time stamp is included in the computation of the authentication code. This timestamp is compared by the server to its receive time stamp. If the time stamps differ by more than a small amount the request is rejected.

Time stamps are rejected for two reasons. First, it makes simple replay attacks on the server, by someone who might be able to overhear traffic on your LAN, much more difficult. Second, it makes it more difficult to request configuration changes to your server from topologically remote hosts.

While the reconfiguration facility works well with a server on the local host, and may work adequately between time-synchronized hosts on the same LAN, it works very poorly for more distant hosts. If reasonable passwords are chosen, care is taken in the distribution and protection of keys and appropriate source address restrictions are applied, the run time reconfiguration facility should provide an adequate level of security.
The following commands make authenticated requests.

addpeer peer_address [ keyid ] [ version ] [ prefer ]
Add a configured peer association at the given address and operating in symmetric active mode. An existing association with the same peer may be deleted when this command is executed, or may simply be converted to conform to the new configuration, as appropriate.

If the optional keyid is a non-zero integer, all outgoing packets to the remote server will have an authentication field attached encrypted with this key. If the keyid is 0 or omitted, no authentication is done.

Specify version as 1, 2 or 3. The default is 3.

The prefer keyword indicates a preferred peer. This keyword is used primarily for clock synchronisation if possible. The preferred peer also determines the validity of the PPS signal - if the preferred peer is suitable for synchronisation so is the PPS signal.

addserver peer_address [ keyid ] [ version ] [ prefer ]
Identical to the addpeer command, except that the operating mode is client.

addtrap [ address [ port ] [ interface ]
Set a trap for asynchronous messages.

authinfo
Return information concerning the authentication module, including known keys and counts of encryptions and decryptions which have been done.

broadcast peer_address [ keyid ] [ version ] [ prefer ]
Identical to the addpeer command, except that the operating mode is broadcast. In this case a valid key identifier and key are required. The peer_address parameter can be the broadcast address of the local network or a multicast group address assigned to NTP. If a multicast address, a multicast-capable kernel is required.

clrtrap [ address [ port ] [ interface]
Clear a trap for asynchronous messages.

delrestrict address mask [ ntpport ]
Delete the matching entry from the restrict list.

fudge peer_address [ time1 ] [ time2 ] [ stratum ] [ refid ]
Provide a way to set certain data for a reference clock.

readkeys
Cause the current set of authentication keys to be purged and a new set to be obtained by re-reading the keys file. The keys file must have been specified in the xntpd configuration file. This enables encryption keys to be changed without restarting the server.
xntpd(1M)

restrict address mask flag [ flag ]
   This command operates in the same way as the restrict configuration file
   commands of xntpd.

reset
   Clear the statistics counters in various modules of the server.

traps
   Display the traps set in the server.

trustkey keyid [...]
untrustkey keyid [...]
   These commands operate in the same way as the trustedkey and untrustkey
   configuration file commands of xntpd.

unconfig peer_address [...]  
   Cause the configured bit to be removed from the specified peers. In many cases this
   causes the peer association to be deleted. When appropriate, however, the
   association may persist in an unconfigured mode if the remote peer is willing to
   continue on in this fashion.

unrestrict address mask flag [ flag ]
   Unrestrict the matching entry from the restrict list.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWntpu</td>
</tr>
</tbody>
</table>

SEE ALSO ntpdate(1M), ntpq(1M), ntptrace(1M), xntpd(1M), rename(2), attributes(5)
ypbind(1M)

NAME
ypbind - NIS binder process

SYNOPSIS
/usr/lib/netsvc/yp/ypbind [-broadcast | -ypset | -ypsetme]

DESCRIPTION
NIS provides a simple network lookup service consisting of databases and processes.
The databases are stored at the machine that runs an NIS server process. The
programmatic interface to NIS is described in ypclnt(3NSL). Administrative tools are
described in ypinit(1M), ypwhich(1), and ypset(1M). Tools to see the contents of
NIS maps are described in ypcat(1), and ypmatch(1).

ypbind is a daemon process that is activated at system startup time from the startup
script /etc/init.d/rpc. By default, it is invoked as ypbind -broadcast. ypbind
runs on all client machines that are set up to use NIS. See sysidtool(1M). The
function of ypbind is to remember information that lets all NIS client processes on a
node communicate with some NIS server process. ypbind must run on every machine
which has NIS client processes. The NIS server may or may not be running on the
same node, but must be running somewhere on the network. If the NIS server is a
NIS+ server in NIS (YP) compatibility mode, see the NOTES section of the
ypfiles(4) man page for more information.

The information ypbind remembers is called a binding — the association of a domain
name with a NIS server. The process of binding is driven by client requests. As a
request for an unbound domain comes in, if started with the -broadcast option, the
ypbind process broadcasts on the net trying to find an NIS server, either a ypserv
process serving the domain or an rpc.nisd process in "YP-compatibility mode"
serving NIS+ directory with name the same as (case sensitive) the domain in the client
request. Since the binding is established by broadcasting, there must be at least one
NIS server on the net. If started without the -broadcast option, ypbind process
steps through the list of NIS servers that was created by ypinit -c for the requested
domain. There must be an NIS server process on at least one of the hosts in the NIS
servers file. All the hosts in the NIS servers file must be listed in either the
/etc/hosts or /etc/inet/ipnodes files along with their IP addresses. Once a
domain is bound by ypbind, that same binding is given to every client process on the
node. The ypbind process on the local node or a remote node may be queried for the
binding of a particular domain by using the ypwhich(1) command.

If ypbind is unable to speak to the NIS server process it is bound to, it marks the
domain as unbound, tells the client process that the domain is unbound, and tries to
bind the domain once again. Requests received for an unbound domain will wait until
the requested domain is bound. In general, a bound domain is marked as unbound
when the node running the NIS server crashes or gets overloaded. In such a case,
ypbind will try to bind to another NIS server using the process described
above. ypbind also accepts requests to set its binding for a particular domain. The
request is usually generated by the ypset(1M) command. In order for ypset to work,
ypbind must have been invoked with flags -ypset or -ypsetme.

OPTIONS
-broadcast Send a broadcast datagram using UDP/IP that requests
the information needed to bind to a specific NIS server.
ypbind(1M)

This option is analogous to ypbind with no options in earlier Sun releases and is recommended for ease of use.

-ypset
Allow users from any remote machine to change the binding by means of the ypset command. By default, no one can change the binding. This option is insecure.

-ypsetme
Only allow root on the local machine to change the binding to a desired server by means of the ypset command. ypbind can verify the caller is indeed a root user by accepting such requests only on the loopback transport. By default, no external process can change the binding.

FILES
/var/yp/binding/ypdomain/ypservers
/etc/inet/hosts
/etc/inet/ipnodes

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypcat(1), ypmatch(1), ypwhich(1), ifconfig(1M), rpc.nisd(1M), ypinit(1M), ypset(1M), ypclnt(3NSL), hosts(4), ipnodes(4), ypfiles(4), attributes(5)

NOTES
ypbind supports multiple domains. The ypbind process can maintain bindings to several domains and their servers, the default domain is the one specified by the domainname(1M) command at startup time.

The -broadcast option works only on the UDP transport. It is insecure since it trusts “any” machine on the net that responds to the broadcast request and poses itself as an NIS server.
ypinit can be used to set up an NIS client system. You must be the superuser to run this command. This script need not be used at all if ypbind(1M) is started with the -broadcast option (it is invoked with this option from the start up script /etc/init.d/rpc).

Normally, ypinit is run only once after installing the system. It may be run whenever a new NIS server is added to the network or an existing one is decommissioned.

ypinit prompts for a list of NIS servers to bind the client to; this list should be ordered from the closest to the furthest server. Each of these NIS servers must be listed in either the /etc/hosts or the /etc/inet/ipnodes file along with its IP address. ypinit stores the list in file /var/yp/binding/domain/ypservers. This file is used by ypbind when run without the -broadcast option.

**OPTIONS**
- `-c` Set up a ypclient system.
- `-m` Build a master ypserver data base.
- `-s master_server` Slave data base. `master_server` must be the same master configured in the YP maps and returned by the ypwhich -m command.

**FILES**
- `/etc/hosts`
- `/etc/inet/ipnodes`
- `/var/yp/binding/domain/ypservers`

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
ypbind(1M), sysinfo(2), hosts(4), ipnodes(4), attributes(5)

**BUGS**
ypinit sets up the list of NIS servers only for the current domain on the system when it is run, that is, the domain returned by the SI_SRPC_DOMAIN command to sysinfo(2). Care should be taken to ensure that this is the same as the desired domain for NIS client processes.
ypmake(1M)

NAME
ypmake – rebuild NIS database

SYNOPSIS
cd /var/yp ; make [map]

DESCRIPTION
The file called Makefile in /var/yp is used by make(1) to build the Network
Information Service (NIS) database. With no arguments, make creates dbm databases
for any NIS maps that are out-of-date, and then executes yppush(1M) to notify slave
databases that there has been a change.

If you supply a map on the command line, make will update that map only. Typing
make passwd will create and yppush the password database (assuming it is out of
date). Likewise, make ipnodes and make networks will create and yppush the
ipnodes and network files, $(INETDIR)/ipnodes and $(DIR)/networks.

There are four special variables used by make: DIR, which gives the directory of the
source files; NOPUSH, which when non-null inhibits doing a yppush of the new
database files; INETDIR, which gives the directory of the ipnodes source file; and DOM,
which is used to construct a domain other than the master’s default domain. The
default for DIR is /etc, and the default for INETDIR is /etc/inet. The default for
NOPUSH is the null string.

Refer to ypfiles(4) and ypserv(1M) for an overview of the NIS service.

If a NIS to LDAP (N2L) configuration file, /var/yp/NISLDAPmapping, is present,
the NIS server components run in N2L mode. In N2L mode, the server components
use a new set of map files with an LDAP-prefix, based on the LDAP DIT. In N2L
mode, authoritative NIS information is obtained from the DIT. The NIS source files
and ypmake have no role, and they should not be used. If ypmake is accidentally run,
then the server components will detect this, and will log a warning message. For
additional information, see ypfiles(4).

FILES
/var/yp Directory containing NIS configuration files.
/etc/inet/hosts System hosts file.
/etc/inet Default directory for ipnodes source file.
/etc Default directory for source files other than ipnodes.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
make(1), nis+(1), makedbm(1M), rpc.nisd(1M), ypbind(1M), yppush(1M),
ypserv(1M), ypclnt(3NSL), NISLDAPmapping(4), ipnodes(4), ypfiles(4),
ypserv(4)
The NIS makefile is only used when running the ypserv(1M) server to provide NIS services. If these are being provided by the NIS+ server running in NIS compatibility mode, see rpc.nisd(1M); this makefile is not relevant. See ypfiles(4) for more details.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same. Only the name has changed. The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications plc, and may not be used without permission.
ypmap2src(1M)

NAME
ypmap2src – convert NIS maps to NIS source files

SYNOPSIS
/usr/lib/netsvc/yp/ypmap2src [-t] [ [-c custom-map-name]...]
[-d domain] -o output-directory [ [ source-file]...]

DESCRIPTION
Use the ypmap2src utility to convert standard NIS maps to approximations of the
equivalent NIS source files. This utility functions like the reverse of ypmake(1M).

The primary use for ypmap2src is to convert from a NIS server that uses the NIS to
LDAP(N2L) transition mechanism, which does not use NIS source files, to traditional
NIS, where source files are required. The ypmap2src utility is also used by NIS
administrators who wish to discover the contents of NIS maps for which the sources
are not available.

Generally, this operation is not necessary. More often, administrators will switch from
traditional NIS to N2L in anticipation of the eventual transition to LDAP naming.
When this switch is made, authoritative information is moved into the LDAP DIT, and
the NIS sources have no further role. N2L supports NIS clients until such time as they
can be converted to LDAP, and the NIS service suspended.

The ypmap2src utility does not guarantee that the files that are generated are
identical to the original NIS source files. Some information might have been thrown
away by ypmake and cannot be recovered. N2L also might have updated the maps to
reflect changes made by LDAP clients. It is essential that the sources generated are
checked to confirm no problems have occurred.

Per entry comment fields, from existing source files, are not merged into source files
generated by ypmap2src. If a user wishes N2L to maintain comment information,
then the NISLDAPmapping configuration file should be modified so that the comment
fields are mapped into LDAP. This will ensure that the comments are visible to native
LDAP clients and present in the N2L map files.

When ypmap2src is run, it will take up-to-date comments from the map file and
insert them into the NIS source file generated.

Handling Custom
Maps

ypmap2src only knows about the standard NIS maps and standard source to map
conversion. If an advanced user has changed these, that is, the user has modified the
NIS makefile, the equivalent changes must also be made to the ypmap2src script.

OPTIONS
ypmap2src supports the following options:

-c Specifies that custom-map-name should be converted to a source file
by running madebm -u on it. This is a short cut so that simple
custom maps can be handled without editing ypmap2src.

-d domain-name Specifies the domain to convert. The domain-name can be a fully
qualified file path, such as /var/yp/a.b.c, or just a domain
name, a.b.c. In the latter case, ypmaptosrc looks in /var/yp for
the domain directory.
Specifies the destination directory for the converted files. A directory other than /etc should be specified. The maps generated are copied to the correct location, /etc, /etc/security or other source directory, as appropriate.

Specifies that traditional NIS maps, without N2L’s LDAP__ prefix, should be converted. By default, maps with the LDAP__ prefix are converted.

ypmap2src supports the following operands:

- source-file
  Lists the standard source files to convert. If this option is not given, then all the standard source files, plus any custom files specified by the -c option, are converted.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO

ypmake(1M), ypserv(1M), NISLDAPmapping(4), attributes(5)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)
NAME | yppoll – return current version of a NIS map at a NIS server host

SYNOPSIS | /usr/sbin/yppoll [-d ypdomain] [-h host] mapname

DESCRIPTION | The yppoll command asks a yperv() process what the order number is, and which host is the master NIS server for the named map.

OPTIONS | 
- d ypdomain | Use ypdomain instead of the default domain.
- h host | Ask the yperv process at host about the map parameters. If host is not specified, the NIS server for the local host is used. That is, the default host is the one returned by ypwhich(1).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO | ypwhich(1), ypfiles(4), attributes(5)
NAME
yppush – force propagation of changed NIS map

SYNOPSIS
/usr/lib/netsvc/yp/yppush [-v] [-h host] [-d domain] [-p #parallel-xfrs]
mapname

DESCRIPTION
yppush copies a new version of a Network Information Service (NIS) map from the
master NIS server to the slave NIS servers. It is normally run only on the master NIS
server by the Makefile in /var/yp after the master databases are changed. It first
constructs a list of NIS server hosts by reading the NIS ypservers map within the
domain. Keys within the ypservers map are the ASCII names of the machines on
which the NIS servers run.

A “transfer map” request is sent to the NIS server at each host, along with the
information needed by the transfer agent (the program that actually moves the map)
to call back the yppush. When the attempt has completed (successfully or not), and
the transfer agent has sent yppush a status message, the results can be printed to
stdout. Messages are also printed when a transfer is not possible, for instance, when
the request message is undeliverable, or when the timeout period on responses has
expired.

Refer to ypfiles(4) and ypserv(1M) for an overview of the NIS service.

OPTIONS
The following options are supported:
- -d domain Specifies a domain.
- -h host Propagates only to the named host.
- -p #parallel-xfrs Allows the specified number of map transfers to occur
  in parallel.
- -v Verbose. This prints messages when each server is
called, and for each response. If this flag is omitted,
only error messages are printed.

FILES
/var/yp
Directory where NIS configuration files reside.

/var/yp/domain/ypservers. {dir, pag }
Map containing list of NIS servers to bind to when running in server mode.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypserv(1M), ypfr(1M), ypfiles(4), attributes(5)
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications PLC, and must not be used without permission.

In the current implementation (version 2 NIS protocol), the transfer agent is `ypxfr(1M)`, which is started by the `ypserv` program. If `yppush` detects that it is speaking to a version 1 NIS protocol server, it uses the older protocol, sending a version 1 `YPPROC_GET` request and issues a message to that effect. Unfortunately, there is no way of knowing if or when the map transfer is performed for version 1 servers. `yppush` prints a message saying that an “old-style” message has been sent. The system administrator should later check to see that the transfer has actually taken place.
ypserv, ypbind – NIS server and binder processes

/usr/lib/netsvc/yp/ypserv [-dv] [-i | -I] [-r]
/usr/lib/netsvc/yp/ypxfrd

The Network Information Service (NIS) provides a simple network lookup service consisting of databases and processes. The databases are ndbm files in a directory tree rooted at /var/yp. See ndbm(3C). These files are described in ypfiles(4). The processes are /usr/lib/netsvc/yp/ypserv, the NIS database lookup server, and /usr/lib/netsvc/yp/ypbind, the NIS binder. The programmatic interface to the NIS service is described in ypclnt(3NSL). Administrative tools are described in yppoll(1M), yppush(1M), ypset(1M), ypxfr(1M), and ypwhich(1). Tools to see the contents of NIS maps are described in ypcat(1), and ypmatch(1). Database generation and maintenance tools are described in ypinit(1M), yppmake(1M), and makedbm(1M).

The ypwperv utility is a daemon process typically activated at system startup from /etc/init.d/rpc. Alternatively, you can, as the root user, start NIS services using ypstart(1M) from the command-line. ypwperv runs only on NIS server machines with a complete NIS database. You can halt all NIS services using the ypstop(1M) command.

The ypwperv daemon utility transfers entire NIS maps in an efficient manner. For systems that use this daemon, map transfers are 10 to 100 times faster, depending on the map. To use this daemon, be sure ypwperv is running on the master server. See /usr/lib/netsvc/yp/ypstart. ypxfr attempts to use ypwperv first. If that fails, it prints a warning, then uses the older transfer method.

The ypwperv daemon’s primary function is to look up information in its local database of NIS maps.

The operations performed by ypwperv are defined for the implementor by the YP Protocol Specification, and for the programmer by the header file <rpcsvc/yp_prot.h>.

Communication to and from ypwperv is by means of RPC calls. Lookup functions are described in ypclnt(3NSL), and are supplied as C-callable functions in the libnsl(3LIB) library. There are four lookup functions, all of which are performed on a specified map within some NIS domain: yp_match(3NSL), yp_first(3NSL), yp_next(3NSL), and yp_all(3NSL). The yp_match operation takes a key, and returns the associated value. The yp_first operation returns the first key-value pair from the map, and yp_next can be used to enumerate the remainder. yp_all ships the entire map to the requester as the response to a single RPC request.

A number of special keys in the DBM files can alter the way in which ypwperv operates. The keys of interest are:

YP_INTERDOMAIN

The presence of this key causes ypwperv to forward to a DNS server host lookups that cannot be satisfied by the DBM files.
YP_SECURE

This key causes ypseriv to answer only questions coming from clients on reserved ports.

YP_MULTI_hostname

This is a special key in the form, YP_MULTI_hostname addr1,...,addrN. A client looking for hostname receives the closest address.

Two other functions supply information about the map, rather than map entries: yp_order(3NSL) and yp_master(3NSL). In fact, both order number and master name exist in the map as key-value pairs, but the server will not return either through the normal lookup functions. If you examine the map with makedbm(1M), however, they are visible. Other functions are used within the NIS service subsystem itself, and are not of general interest to NIS clients. These functions include do_you_serve_this_domain?, transfer_map, and reinitialize_internal_state.

On start up, ypseriv checks for the existence of the NIS to LDAP (N2L) configuration file /var/yp/NISLDAPmapping. If it is present then a master server starts in N2L mode. If the file is not present it starts in “traditional” (non N2L) mode. Slave servers always start in traditional mode.

In N2L mode, a new set of map files, with an LDAP_prefix, are generated, based on the contents of the LDAP DIT. The old map files, NIS source files and ypmake(1M) are not used.

It is possible that ypmake(1M) can be accidentally run in N2L mode. If the occurs, the old style map files are overwritten. That the map files are overwritten is harmless. However, any resulting yppush(1M) operation will push information based on the DIT rather than the source files. The user may not expect information based on the DIT. ypseriv keeps track of the last modification date of the old style map files. If the map files have been updated, a warning is logged that suggests that the user call yppush directly instead of ypmake.

If a server attempts to run in N2L mode and a LDAP server cannot be contacted, it behaves as follows:
1. When ypseriv is started, a warning will be logged.
2. When a NIS read access is made and the TTL entry has expired, a warning is logged. Information that is returned from the cache has not been updated.
3. When a NIS write access is made, a warning is logged. The cache will not be updated, and a NIS failure will be returned.

If ypfrd is running in N2L mode and is asked to transfer a map, ypfrd first checks whether the map is out of date. If the map is out of date, ypfrd initiates an update from the DIT. ypfrd cannot wait for the update to complete. If ypfrd waited, the client end ypfr operation could time out. To prevent ypfrd from timing out, the existing map is transferred from the cache. The most up to date map will be transferred on subsequent ypfrd operations.
The NIS service should go to the DNS for more host information. This requires the existence of a correct /etc/resolv.conf file pointing at a machine running in.named(1M). This option turns on DNS forwarding regardless of whether or not the yp_interdomain flag is set in the hosts maps. See makedbm(1M). In the absence of an /etc/resolv.conf file, ypserv complains, but ignores the -d option.

- If in N2L mode, initialize the NIS related parts of the DIT based on the current, non LDAP_prefix, map files. The LDAP_prefix maps are not created or updated. If you require that LDAP_prefix maps be updated or created, then use the -ir option.

The -i option does not attempt to create any NIS domain or container objects. If any NIS domain or container objects have not already been created, then errors will occur, as entries are written to nonexistent containers.

- Identical to -i, except that any missing domain and container objects are created.

- If in N2L mode, then refresh the LDAP_prefix map files based on the contents of the DIT.

- If both -i and -r are specified in N2L mode, then the DIT will first be initialized from the current non LDAP_prefix map files. A new set of LDAP_prefix maps will then be generated from the contents of the DIT. A new set of LDAP_prefix maps is required when moving from traditional NIS to N2L mode NIS.

- Identical to -ir, except that any missing domain and container objects are created.

- Operate in the verbose mode, printing diagnostic messages to stderr.

When run with the -i, -r, -I, -ir or -Ir options, the ypserv command runs in the foreground and exits once map initialization has been completed. Once the ypserv command exits, the user knows the maps are ready and can restart ypserv and the other yp daemons by running ypstart(1M).

If there is a requirement to initialize the DIT from the NIS source files, which may have been modified since the maps were last remade), run yppmake before running ypserv -i or ypserv -ir. ypmake regenerated old style NIS maps. Then ypserv -ir dumps them into the DIT. When the -ir option is used, the LDAP_prefix maps are also generated or updated. Since these maps will be more recent than the old style maps, ypmake will not be reported as erroneous when it is run.

/var/yp/securenets Defines the hosts and networks that are granted access to information in the served domain. It is read at startup time by both ypserv and ypexdif.
ypserv(1M)

/etc/init.d/rpc

Startup file that starts up basic RPC services and NIS by calling ypstart(1M). If the
/var/yp/ypserv.log file exists when ypserv starts up, log information is written to it when error
conditions arise. The file
/var/yp/binding/domainname/ypservers is used to list the NIS server hosts that ypbind can bind
to.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
</tbody>
</table>

SEE ALSO

ypcat(1), ypmatch(1), ypwhich(1), domainname(1M), in.named(1M),
makedbm(1M), ypbind(1M), ypinit(1M), yppack(1M), yppush(1M),
ypset(1M), ypstart(1M), ypsstop(1M), ypfr(1M), ndbm(3C), ypclnt(3NSL),
libnsl(3LIB), NISLDAPmapping(4), securenets(4), ypfiles(4), ypserv(4),
attributes(5)

Network Interfaces Programmer's Guide

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

NOTES

ypserv supports multiple domains. The ypserv process determines the domains it
serves by looking for directories of the same name in the directory /var/yp. It replies
to all broadcasts requesting yp service for that domain.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two remains the same; only the name has changed. The
name Yellow Pages is a registered trademark in the United Kingdom of British
Telecommunications PLC, and must not be used without permission.

NIS uses ndbm() files to store maps. Therefore, it is subject to the 1024 byte limitations
described in the USAGE and NOTES sections of the ndbm(3C) man page.
NAME
ypset – point ypbind at a particular server

SYNOPSIS
/usr/sbin/ypset [-d ypdomain] [-h host] server

DESCRIPTION
In order to run ypset, ypbind must be initiated with the −ypset or −ypsetme options. See ypbind(1M). ypset tells ypbind to get NIS services for the specified ypdomain from the ypserve process running on server. If server is down, or is not running ypserve, this might not be discovered until an NIS client process tries to obtain a binding for the domain. At this point, the binding set by ypset is tested by ypbind. If the binding is invalid, ypbind attempts to rebind for the same domain.

ypset is useful for binding a client node that is not on a broadcast net, or is on a broadcast net that is not running an NIS server host. It is also useful for debugging NIS client applications, for instance, where an NIS map exists only at a single NIS server host.

Where several hosts on the local net are supplying NIS services, ypbind can rebind to another host, even while you attempt to find out if the ypset operation succeeded. For example, if you enter the ypset command below, you might get the subsequent response from ypwhich:

example% ypset host1
example% ypwhich
host2

The sequence shown above is a function of the NIS subsystem’s attempt to load-balance among the available NIS servers, and occurs when host1 does not respond to ypbind because it is not running ypserve (or is overloaded), and host2, running ypserve, obtains the binding.

server indicates which NIS server to bind to, and must be specified as a name or an IP address. This works only if the node has a current valid binding for the domain in question and ypbind has been set to allow use of ypset. In most cases, server should be specified as an IP address.

ypset tries to bind over a connectionless transport. The NIS library call, yp_all(), uses connection-oriented transport and derives the NIS server’s address based on the connectionless address supplied by ypset.

Refer to ypfiles(4) for an overview of the NIS name service.

OPTIONS
- d ypdomain Use ypdomain, instead of the default domain.
- h host Set ypbind’s binding on host, instead of locally. Specify host as a name.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
### ypset(1M)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

ypwhich(1), ypfiles(4), attributes(5)
ypstart(1M)

NAME
ypstart, ypstop – Start and stop NIS services

SYNOPSIS
/usr/lib/netsvc/yp/ypstart
/usr/lib/netsvc/yp/ypstop

DESCRIPTION
The ypstart command is used to start the Network Information Service (NIS). After
the host has been configured using the ypinit(1M) command, ypstart
automatically determines the NIS status of the machine and starts the appropriate
daemons.

The ypstop command is used to stop the Network Information Service (NIS).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypinit(1M), attributes(5)

System Administration Guide: Basic Administration

NOTES
The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two services remains the same; only the name has
changed. The name Yellow Pages is a registered trademark in the United Kingdom of
British Telecommunications PLC, and must not be used without permission.
The `ypxfr` command moves an NIS map in the default domain for the local host to the local host by making use of normal NIS services. It creates a temporary map in the directory `/var/yp/ypdomain` (this directory must already exist; `ypdomain` is the default domain for the local host), fills it by enumerating the map’s entries, fetches the map parameters (master and order number), and loads them. It then deletes any old versions of the map and moves the temporary map to the real name.

If run interactively, `ypxfr` writes its output to the terminal. However, if it is started without a controlling terminal, and if the log file `/var/yp/ypxfr.log` exists, it appends all its output to that file. Since `ypxfr` is most often run from the privileged user’s `crontab` file, or by `ypserv`, the log file can retain a record of what was attempted, and what the results were.

For consistency between servers, `ypxfr` should be run periodically for every map in the NIS database. Different maps change at different rates: a map might not change for months at a time, for instance, and can therefore be checked only once a day. Some maps might change several times per day. In such a case, you might want to check hourly for updates. A `crontab(1)` entry can be used to automatically perform periodic updates. Rather than having a separate `crontab` entry for each map, you can group commands to update several maps in a shell script. Examples (mnemonically named) are in `/usr/sbin/yp`: `ypxfr_1perday`, `ypxfr_2perday`, and `ypxfr_1perhour`.

Refer to `ypfiles(4)` for an overview of the NIS name service.

### OPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-c</code></td>
<td>Do not send a “Clear current map” request to the local <code>ypserv</code> process. Use this flag if <code>ypserv</code> is not running locally at the time you are running <code>ypxfr</code>. Otherwise, <code>ypxfr</code> complains that it cannot communicate with the local <code>ypserv</code>, and the transfer fails.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Force the transfer to occur even if the version at the master is not more recent than the local version.</td>
</tr>
<tr>
<td><code>-C tid prog server</code></td>
<td>This option is for use only by <code>ypserv</code>. When <code>ypserv</code> starts <code>ypxfr</code>, it specifies that <code>ypxfr</code> should call back a <code>yppush</code> process at the host <code>server</code>, registered as program number <code>prog</code>, and waiting for a response to transaction <code>tid</code>.</td>
</tr>
<tr>
<td><code>-d ypdomain</code></td>
<td>Specify a domain other than the default domain.</td>
</tr>
<tr>
<td><code>-h host</code></td>
<td>Get the map from <code>host</code>, regardless of the master. If <code>host</code> is not specified, <code>ypxfr</code> asks the NIS service for the name of the master, and tries to get the map from there. <code>host</code> must be a valid host name.</td>
</tr>
</tbody>
</table>
Specify a source domain from which to transfer a map that should be the same across domains.

FILES
/var/yp/ypxfr.log
Log file
/usr/lib/netsvc/yp/ypxfr_1perday
Script to run one transfer per day, for use with cron(1M)
/usr/lib/netsvc/yp/ypxfr_2perday
Script to run two transfer per day, for use with cron(1M)
/usr/lib/netsvc/yp/ypxfr_1perhour
Script for hourly transfers of volatile maps
/var/yp/ypdomain
NIS domain
/usr/spool/cron/crontabs/root
Privileged user’s crontab file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWypu</td>
</tr>
</tbody>
</table>

SEE ALSO
crontab(1), cron(1M), ypinit(1M), yppush(1M), ypserv(1M), ypfiles(4), attributes(5)
zdump(1M)

NAME
zdump – time zone dumper

SYNOPSIS
zdump [-v] [-c cutoffyear] [zonename...]

DESCRIPTION
The zdump command prints the current time for each time zone (zonename) listed on
the command line. Specify zonename as the name of the time zone database file relative
to /usr/share/lib/zoneinfo.

Specifying an invalid time zone (zonename) to zdump does not return an error; rather
zdump uses GMT. This is consistent with the behavior of the library calls; zdump
reflects the same behavior of the time routines in libc. See ctime(3C) and
mktime(3C).

OPTIONS
The following options are supported:

-v
Displays the entire contents of the time zone database file for
zonename. Prints the time at the lowest possible time value; the
time one day after the lowest possible time value; the times both
one second before and exactly at each time at which the rules for
computing local time change; the time at the highest possible time
value; and the time at one day less than the highest possible time
value. See mktime(3C) and ctime(3C) for information regarding
time value (time_t). Each line of output ends with isdst=1 if
the given time is Daylight Saving Time, or isdst=0 otherwise.

-c cutoffyear
Cuts off the verbose output near the start of the year cutoffyear.

EXIT STATUS
The following exit values are returned:

0 Successful completion.
1 An error occurred.

FILES
/usr/share/lib/zoneinfo Standard zone information directory

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
zic(1M), ctime(3C), mktime(3C), attributes(5), environ(5)
NAME  zic – time zone compiler


DESCRIPTION  zic reads text from the file(s) named on the command line and creates the time conversion information files specified in this input. If a filename is ‘−’, the standard input is read.

Input lines are made up of fields. Fields are separated by any number of white space characters. Leading and trailing white space on input lines is ignored. A pound sign (#) indicates a comment that extends to the end of the line. White space characters and pound signs can be enclosed within double quotes (" ") if they are to be used as part of a field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected to be of one of three types: rule lines, zone lines, or link lines.

Rule  A rule line has the form:

For example:

Rule NAME FROM TO TYPE IN ON AT SAVE LETTER/S

The fields that make up a rule line are:

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

NAME  Gives the (arbitrary) name of the set of rules this rule is part of.

FROM  Gives the first year in which the rule applies. The word minimum (or an abbreviation) means the minimum year with a representable time value. The word maximum (or an abbreviation) means the maximum year with a representable time value.

TO  Gives the final year in which the rule applies. In addition to minimum and maximum (as above), the word only (or an abbreviation) can be used to repeat the value of the FROM field.

TYPE  Gives the type of year in which the rule applies. If TYPE is:

‘−’  The rule applies in all years between FROM and TO, inclusive.

uspres  The rule applies in U.S. Presidential election years.

nonpres  The rule applies in years other than U.S. Presidential election years.

even  The rule applies to even-numbered years.

odd  The rule applies to odd-numbered years.
If `TYPE` is something else, then `zic` will attempt to execute the command:

```
yearistype year type
```

to check the type of a year: an exit status of 0 means that the year is of the given type; an exit status of 1 means that the year is not of the given type. The `yearistype` command is not currently provided in the Solaris environment.

**IN**
Names the month in which the rule takes effect. Month names can be abbreviated.

**ON**
Gives the day on which the rule takes effect. Recognized forms include:

- `5` - the fifth day of the month
- `lastSun` - The last Sunday in the month
- `lastMon` - The last Monday in the month
- `Sun>=8` - First Sunday on or after the eighth
- `Sun<=25` - Last Sunday on or before the 25th

Names of days of the week can be abbreviated or spelled out in full. Note: There cannot be spaces within the **ON** field.

**AT**
Gives the time of day at which the rule takes effect. Recognized forms include:

- `2` - Time in hours
- `2:00` - Time in hours and minutes
- `15:00` - 24-hour format time (for times after noon)
- `1:28:14` - Time in hours, minutes, and seconds, where hour 0 is midnight at the start of the day and hour 24 is midnight at the end of the day.

Any of these forms can be followed by the letter `w` if the given time is local “wall clock” time; `s` if the given time is local “standard” time; or `u` (or `g` or `z`) if the given time is universal time. In the absence of an indicator, wall clock time is assumed.

**SAVE**
Gives the amount of time to be added to local standard time when the rule is in effect. This field has the same format as the **AT** field (without the `w` and `s` suffixes).

**LETTER/S**
Gives the “variable part” (for example, the “S” or “D” in “EST” or “EDT” of time zone abbreviations to be used when this rule is in effect. If this field is ‘-’, the variable part is null.
A zone line has the form:

<table>
<thead>
<tr>
<th>Zone NAME</th>
<th>GMTOFF</th>
<th>RULES/SAVE</th>
<th>FORMAT</th>
<th>UNTIL</th>
</tr>
</thead>
</table>

For example:

Zone Australia/SouthWest 9:30 - CST 1992 Mar 15 12:00
8:30 Aus CST

The fields that make up a zone line are:

**NAME**
The name of the time zone. This is the name used in creating the time conversion information file for the zone.

**GMTOFF**
The amount of time to add to UTC to get standard time in this zone. This field has the same format as the AT and SAVE fields of rule lines; begin the field with a minus sign to subtract time from UTC.

**RULES/SAVE**
The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to local standard time. If this field is ‘−’, then standard time always applies in the time zone.

**FORMAT**
The format for time zone abbreviations in this time zone. The pair of characters %s is used to show where the “variable part” of the time zone abbreviation goes. Alternately, a slash (/) separates standard and daylight abbreviations.

**UNTIL**
The time at which the UTC offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a time of day. The time of day has the same format as the AT field of rule lines. If this is specified, the time zone information is generated from the given UTC offset and rule change until the time specified.

The month, day, and time of day have the same format as the IN, ON, and AT columns of a rule; trailing columns can be omitted, and default to the earliest possible value for the missing columns.

The next line must be a “continuation” line. This line has the same form as a zone line except that the string “Zone” and the name are omitted. The continuation line places information starting at the time specified as the UNTIL field in the previous line in the file used by the previous line. Continuation lines can contain an UNTIL field, just as zone lines do, indicating that the next line is a further continuation.

A link line has the form:

<table>
<thead>
<tr>
<th>Link LINK-FROM</th>
<th>LINK-TO</th>
</tr>
</thead>
</table>

**Zone**

System Administration Commands 2005
For example:

```
Link   Europe/Istanbul Asia/Istanbul
```

The LINK-FROM field should appear as the NAME field in some zone line; the LINK-TO field is used as an alternate name for that zone.

Except for continuation lines, lines can appear in any order in the input.

**OPTIONS**

```
-d directory       Creates time conversion information files in the directory directory rather than in the standard directory /usr/share/lib/zoneinfo.
-1 localtime       Uses the given time zone as local time localtime. zic acts as if the file contained a link line of the form:
                   Link localtime localtime
-p posixrules      Uses the rules of the given time zone posixrules when handling POSIX-format time zone environment variables. zic acts as if the input contained a link line of the form:
                   Link posixrules posixrules

This option is not used by ctime(3C) and mktime(3C) in the Solaris environment.
-s                  Limits time values stored in output files to values that are the same whether they are taken to be signed or unsigned. You can use this option to generate SVVS-compatible files.
-v                  Complains if a year that appears in a data file is outside the range of years representable by system time values (0:00:00 a.m. UTC, January 1, 1970, to 3:14:07 a.m. UTC, January 19, 2038).
-y yearistype      Uses the given command yearistype rather than yearistype when checking year types (see Rules under DESCRIPTION).
```

**OPERANDS**

```
filename          A file containing input lines that specify the time conversion information files to be created. If a filename is ‘-’, the standard input is read.
```

**FILES**

```
/usr/share/lib/zoneinfo       Standard directory used for created files
/usr/share/lib/zoneinfo/src   Directory containing source files
```
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

time(1), zdump(1M), ctime(3C), mktime(3C), attributes(5)

NOTES

For areas with more than two types of local time, you might need to use local standard time in the AT field of the earliest transition time’s rule to ensure that the earliest transition time recorded in the compiled file is correct.
zuludaemon(1M)

NAME  zuludaemon – load microcode for Sun XVR-4000 Graphics Accelerator device

SYNOPSIS  /usr/sbin/zuludaemon [-dev zulu_device]

DESCRIPTION  The zuludaemon is a daemon, started and stopped from a script in /etc/init.d, that loads the microcode and provides other support functions for the Sun XVR-4000 Graphics Accelerator device. Do not kill this process. This daemon is essential to the zulu(7D) driver.

The zuludaemon process is not configurable.

OPTIONS  
  -dev zulu_device
    name of the Sun XVR-4000 Graphics Accelerator device

FILES  
  /usr/sbin/zuludaemon  daemon executable
  /usr/lib/zulu.ucode  file containing microcode used by zuludaemon
  /etc/init.d/zuluinit  startup/kill script for zuludaemon

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWzuluc</td>
</tr>
</tbody>
</table>

SEE ALSO  SUNWzulu_config(1M), attributes(5), zulu(7D)

2008  man pages section 1M: System Administration Commands • Last Revised 4 Oct 2002
Index

**Numbers and Symbols**

24-bit TrueColor Visual for OpenWindows with an S24 frame buffer system (TCX) — tcxconfig, configure the default linearity, 1846

**A**

accept — accept print requests, 33
access system administration tools with a graphical user interface — solstice, 1737
accounting, run daily — runacct, 1517
accounting commands
  — acctcms, 41
  — acctcon, 43
  — acctdisk, 35
  —acctdusg, 35
  —acctmerg, 45
  — accton, 35
  — acctprc, 46
  —acctwtmp, 35
  — closwtmp, 35
  — fwtmp, 486
  — utmp2wtmp, 35
  — wtmpfix, 486
accounting shell procedures
  — chargefee, 48
  — ckpacct, 48
  — dodisk, 48
  — lastlogin, 48
  — monacct, 48
  — nulladm, 48
accounting shell procedures (Continued)
  — prctmp, 48
  — prdaily, 48
  — prtacct, 48
  — runacct, 48
  — shutacct, 48
  — startup, 48
  — turnacct, 48
acct — miscellaneous accounting commands, 35
acctadm — configure extended accounting facility, 38
acctcms — command summary from process accounting records, 41
acctcon — create summary of connect records, 43
acctcon1 — create summary of connect records, 43
acctcon2 — create summary of connect records, 43
acctdisk — create disk usage records, 35
acctdusg — compute disk usage by login, 35
acctmerg — merge or add total disk accounting files, 45
accton — turn on process accounting, 35
acctprc — summary of process accounting, 46
acctprc1 — summary of process accounting, 46
acctprc2 — summary of process accounting, 46
acctsh — shell procedures for accounting, 48
acctwtmp — create connect accounting record in /var/adm/wtmp, 35
adb scripts, generate — adbgen, 51
adbgen — generate adb script, 51
add (create) a new group definition on the system — groupadd, 500
add a new device driver to the system —
add_drv, 56
add_drv — add a new device driver to the system, 56
add_install_client — scripts used to install the Solaris software, 668
add_to_install_server — scripts used to install the Solaris software, 668
addbadsec — map out defective disk blocks, 54
address resolution display and control —
arp, 75
adds an application to the Solstice application registry —
soladdapp, 1735
administer a new project on the system —
projadd, 1394
administer a new role account on the system —
roleadd, 1462
administer disk space used for caching file systems with the Cache File-System (CacheFS) —
csfadmin, 217
administer files available as block devices through lofi —
lofiadm, 808
administer flash archives —
flar, 392
administer FTP Server enhanced group access file —
privatepw, 1374
administer NIS+ aliases, — aliasadm, 70
administer ramdisk pseudo device —
ramdiskadm, 1439
administration program for the Sun Enterprise Network Array (SENA), RSM, SPARCstorage Array (SSA) subsystems, Sun Fire 880 internal storage subsystem, and individual Fiber Channel Arbitrated Loop (FC_AL) devices —
luxadm, 914
admintool — system administration tool with a graphical interface, 60
afbconfig — configure the AFB Graphics Accelerator, 62
aliasadm — administer NIS+ aliases, 70
ancillary agent for inbound zone transfers —
named-xfer, 1118
answerbook2_admin — bring up AnswerBook2 administration tool GUI, 72
AnswerBook2 administration tool GUI —
answerbook2_admin, 72
apache — Apache hypertext transfer protocol server overview, 73
Apache hypertext transfer protocol server overview —
apache, 73
apply a patch package to a Solaris 2 system —
patchadd, 1253
arp — address resolution display and control, 75
ASET
monitors or restricts accesses to system files and directories —
aset, 77
prints tasks status —
taskstat, 1845
aset.restore — restore files and directories to the state before ASET was installed, 83
audit — maintain audit trail, 84
audit records, select or merge from audit trail files —
auditreduce, 93
audit_startup shell script, 101
audit statistics report —
auditstat, 102
audit trail file, select records from —
auditreduce, 93
audit_warn — audit daemon warning script, 104
auditconfig — get and set kernel audit parameters, 85
auditd — audit daemon, 91
auditreduce — select or merge audit records from audit trail files, 93
auditstat — display kernel audit statistics, 102
autoboot procedures — boot, 661
autofs, automatically mount file systems —
automount, 106
Autofs, mount/unmount request server —
automountd, 113
Automated conversational exchange tool —
chat, 223
Automated Security Enhancement Tool, See
ASET
automated volume creation utility to support Solaris Volume Manager —
metassist, 992
automount — automatically mount file systems, 106
automountd — Autofs mount/unmount request server, 113
autopush — configures lists of automatically pushed STREAMS modules, 114
backup NIS+ directories — nisbackup, 1168
Basic Security Module, enable — bsmconv, bsmunconv, 140
Basic Security Module commands
— audit, 84
— audit_startup, 101
— audit_warn, 104
— auditconfig, 85
— auditd, 91
— auditreduce, 93
— auditstat, 102
bdconfig — configures the bd (buttons and dials) stream, 116
become superuser or another user — su, 1764
snmpXwbemd — SNMP Adapter Subagent for WBEM, 1720
boot — bootstrap procedures, 118
boot parameter server — rpc.bootparamd, 1479
boot — system startup procedures, 661
bootconfchk — verify the integrity of a network boot configuration file, 139
BOOTP
DHCP network table management utility — pntadm, 1314
administration — dhtadm, 299
server — in.dhcpd, 590
service — dhcpconfig, 290
bootstrap procedures — boot, 661
bootstrap PROM monitor program — monitor, 1070
Bootstrap Protocol, See ‘DHCP’
Bourne shell, — rsh, 1512
broadcast message
— network wall server — rpc.rwalld, 1499
— write to all users — wall, 1935
— write to all users of a group — wall, 1935
— write to all users over a network — rwall, 1520
bsmconv — enable Solaris system to use Basic Security Module, 140
bsmrecord — display Solaris audit record formats, 142
bsmunconv — enable Solaris system to use Basic Security Module, 140
build class list and compile Solaris Management Console service beans for remote use — smccompile, 1620
busstat — report bus-related performance statistics, 145

C
Cache File System statistics — cachefsstat, 154
cachefs
— cachefslolg — Cache File System logging, 150
cachefswsize — Determine working set size for cachefs, 156
cfsadmin — administer disk space used for caching file systems with the Cache File-System (CacheFS), 217
fsck_cachefs — check integrity of data cached with CacheFS, 440
mount_cachefs — mount CacheFS file systems, 1087
CacheFS daemon — cachefs, 149
cachefs — CacheFS daemon, 149
cachefspack — pack files and file systems in the cache, 152
cachefsstat — Cache File System statistics, 154
captoinfo — convert termcap description to terminfo description, 158
catman — create formatted files for manual pages, 159
CD-ROM, packages on — pkgadd, 1289
CD-ROM, managing, — rmmount, 1457
CD-ROM, mounting, — rmmount, 1457
cfgadm — configuration administration, 163
cfgadm_ac — EXX00 memory system administration, 174
cfgadm_scsi — SCSI hardware specific commands for cfgadm, 197
cfgadm_sysctrl — EXX00 system board administration, 203
cfgadm_usb — USB hardware-specific commands for cfgadm, 207
cfs, See cachefs
cfsadmin — administer disk space used for caching file systems with the Cache File-System (CacheFS), 217
CacheFS Resource Parameters, 218
cgl4config — configure the cgfourteen device, 221
change processor operational status — psradm, 1413
chargefee — accounting shell procedure, 48
chat — Automated conversational exchange tool, 223
check — scripts used to install the Solaris software, 668
check-hostname — check if sendmail can determine the system’s fully-qualified host name, 231
check if sendmail can determine the system’s fully-qualified host name — check-hostname, 231
check integrity of data cached with CacheFS — fsck_cachefs, 440
check-permissions — check permissions on mail rerouting files, 232
check permissions on mail rerouting files — check-permissions, 232
chown — change owner of file, 233
chroot — change root directory for a command, 234
CIM Boot Manager, starting, 619
CIM Object Manager, stopping, 619
ckpacct — accounting shell procedure, 48
clear inode — clri, 239
dcopy, 239
clear_locks — clear locks held on behalf of an NFS client, 237
clear locks held on behalf of an NFS client — clear_locks, 237
client configuration daemon — dhcpagent, 286
cinfo — display cluster information, 238
close down the FTP Servers at a given time — ftpshut, 482
closewtmp — puts a false DEAD_PROCESS record in /var/adm/wtmpx file, 35
cli — clear inode, 239
command used to launch the MQ Administration Console, a graphical user interface for performing MQ administration tasks — imqadmin, 558
command utility for managing a Message Queue user repository — imqusermgr, 586
compile MOF files into CIM classes — mofcomp, 1064
configuration applications, execute or define — sysidconfig, 1830
configure the AFB Graphics Accelerator — afbconfig, 62
configure the FFB Graphics Accelerator — fbconfig, 383
configure the M64 Graphics Accelerator — m64config, 930
configure the PGX32 Graphics Accelerator — pgxconfig, 1277
configure the Raptor GFX Graphics Accelerator — GFXconfig, 1277
configure cgfourteen device — cg14config, 221
contiguous memory for sx video — sxconfig, 1809
undo system configuration — sys-unconfig, 1839
configure and administer a smart card — smartcard, 1603
configure extended accounting facility — acctadm, 38
configure Mobility IP Agent — mipagentconfig, 1036
configure operating system crash dump — dumpadm, 351
configure or unconfigure mouse, keyboard, display — kdmconfig, 748
configure resource capping daemon — rcapadm, 1441
configure shared disksets — metaset, 986
configure system wide IPsec policy — ipseconf, 700
Configure the power management system — pmconfig, 1312
configure the Solaris Management Console — smcconf, 1624
configure the XVR-1000 Graphics Accelerator — SUNWgfb_config, 1769
configure transport providers for use by sockets — soconfig, 1733
configures the bd (buttons and dials) stream — bdconfig, 116
connect accounting
— acctcon, 43
— fwtmp, 486
— utmp2wtmp, 35
— wtmpfix, 486
consadm — select or display devices used as auxiliary console devices, 240
construct a FAT file system — mkfs_pcfs, 1050
construct a udfs file system — mkfs_udfs, 1054
control and query bindings of processes to processors — pbind, 1270
conv_lp — convert LP configuration, 242
conv_lpd — convert LPD configuration, 243
convert a JavaSpaces datastore to the newer Reliable Log datastore format — wbemconfig, 1947
convert LP configuration — conv_lp, 242
convert LPD configuration — conv_lpd, 243
convert name server configuration files — named-bootconf, 1117
copy FNS contexts — fncopy, 409
coradm — core file administration, 245
core file administration — coradm, 245
CPU PROM monitor, program — monitor, 1070
cpustat — monitor system behavior using CPU performance counters, 249
create, NIS dbm file — makedbm, 937
create a new boot environment — lucreate, 871
create a temporary snapshot of a UFS file system — fssnap_ufs, 472
create an FNS context — fncreate, 411
create and delete replicas of the metadevice state database — metadb, 949
create and display client and server keys for WAN booting — wanboot_keygen, 1937
create FNS file system contexts — fncreate_fs, 418
create LDAP entries from corresponding /etc files — ldapaddent, 772
create new printers in the FNS namespace — fncreate_printer, 423
create or modify fixed disk partition table — fdisk, 375
create temporary snapshots of a file system — fssnap, 470
creates /dev entries for tape drives attached to the system — tapes, 1841
creation and management of processor sets — psrset, 1418
cron — clock daemon, 252
cvcd — virtual console daemon, 254
d daemon, distributed system administration — sadmind, 1528
d daemon for DHCP client configuration — dhcpagent, 286
daemon for the Internet Key Exchange (IKE) — in.iked, 612
daemon to monitor metadevices — mdmonitor, 943
daemons
clock daemon — cron, 252
Internet Trivial File Transfer Protocol — in.tftpd, 681
kernel statistics — rpc.rstatd, 1497
network router discovery daemon — in.rdisc, 638
network username server — rpc.rusersd, 1498
network wall server — rpc.rwall, 1499
network status monitor — statd, 1756
NFS — nfsd, 1145
NIS+ service — rpc.nisd, 1487
remote quota — rquotad, 1511
RPC-based remote execution — rpc.rexd, 1495
server which records packets sent by spray — rpc.sprayd, 1501
date, set system date from a remote host — rdate, 1447
dcopy — clear inode, 239
dcs — domain configuration server, 255
dd — convert and copy a file, 257
debug tools, generate adb script — adbgen, 51
delete a project from the system — projdel, 1396
delete a user’s login from the system — roledel, 1466
destroy an FNS context — fndestroy, 426
devattr — displays the values for a device’s attributes, 263
devfsadm — administration command for /dev and /devices, 265
devfsadmd — administration daemon for /dev and /devices, 265
device access, verifies accessibility — getvol, 496
device_maps, display entries — dminfo, 342
devices
- add, modify remove device entry from table — putdev, 1422
- add, remove and change device group table — putdgrp, 1425
- adds /dev entries for miscellaneous devices and pseudo-devices — devlinks, 268
cgfourteen — configure the cgfourteen device, 221
display access control entries from device_maps, 342
display attributes — devattr, 263
group list — getdgrp, 489
list — getdev, 487
lists members of a group — listdgrp, 788
name — devnm, 272
print information about disk devices — devinfo, 267
release from exclusive use — devfree, 264
remove a device driver from the system — rm_drv, 1450
reserve for exclusive use — devfree, 273
/devices directory, configure — drvconfig, 348
devinfo — print device specific information, 267
df — display amount of used and available disk space, 275
df_ufs — display amount of space occupied by ufs, 285
dfmounts — displays information on resources shared through DFS, 279
dfmounts_nfs — displays information on resources shared through NFS, 281
DFS
- display information on resources shared — dfmounts, 279
- list available resources from remote or local systems — dfshares, 282
dfshares — list available resources from remote or local systems, 282
dfshares_nfs — list available resources from remote systems, 283
DHCP
- network table management utility — pntadm, 1314
- administration — dhhtadm, 298
- server — in.dhcpd, 590
- service — dhcppconfig, 290
DHCP client configuration daemon — dhcppagent, 286
DHCP service lock daemon — dsvclockd, 350
dhcppagent — daemon for DHCP client configuration, 286
dhcppconfig — DHCP service configuration utility, 290
dhcpcmgr — graphical interface for managing DHCP service, 297
dhtadm — DHCP configuration table management utility, 299
Diffie-Hellman key pair, 1143
directories, move — mdvdir, 1116
directoryserver — front end for the Directory Server (DS), 313
disk accounting
- acctdisk, 35
- acctdusg, 35
- acctmerg, 45
disk blocks, display free ones — df, 275
disk quotas, remote quota daemon — rquotad, 1511
disk quotas and usage, display for a user’s ufs file system — quota, 1432
diskettes, packages on — pkgadd, 1289
disks — adds /dev entries for hard disks attached to the system, 329
disks, partitioning and maintenance utility — format, 430
diskscan — perform surface analysis, 333
display
- system configuration information — prtconf, 1405
- system diagnostic information — prtdiag, 1407
display cluster information — clinfo, 238
SNMP Adapter Subagent for WBEM — snmpXwbemd, 1720
display kernel statistics — kstat, 761
display or modify global state of system resource controls — rctladm, 1445
display or set boot environment description — lude, 890
display Solaris audit record formats — bsmrecord, 142
displays information about processors — psrinfo, 1416
Distributed File System, See DFS

2014 man pages section 1M: System Administration Commands • April 2004
dmesg — create error log from system diagnostic messages, 337
dmi_cmd — DMI command line interface utility, 338
DMI command line interface utility — dmi_cmd, 338
DMI command line retrieval utility — dmiget, 341
dmiget — DMI command line retrieval utility, 341
dminfo — display device_maps entries, 342
dmispd — Sun Solstice Enterprise DMI Service Provider, 344
DNS test shell — nstest, 1228
DoD Internet, host table — gettable, 493
DoD Internet format host table, convert — htable, 514
dodisk — accounting shell procedure, 48
domain configuration server — dcs, 255
domainname — display name of current domain, 347
domainname — set name of current domain, 347
driver statistics from a synchronous serial link, report — syncstat, 1819
drvconfig — configure /devices, 348
dsvlockd — DHCP service lock daemon, 350
dummpadm — configure operating system crash dump, 351
Dynamic Host Configuration Protocol, See ‘DHCP’

E
edquota — edit user quotas for ufs file system, 358
EEPROM display and load program — eeprom, 360
efdaemon — embedded FCode interpreter daemon, 369
embedded FCode interpreter daemon — efdaemon, 369
encryption keys, server for storing private keys — keyserv, 754
environment variables, convert termcap description into terminfo description — captinfo, 158
error log, create from system diagnostic messages — dmesg, 337
etrm — send ETRN commands to start mail queue, 370
EXX00 memory system administration — cfgadm_ac, 174
EXX00 system board administration — cfgadm_sysctrl, 203

F
fbconfig — Frame Buffer configuration utility, 372
fbconfig module for configuring Sun XVR-4000 Graphics Accelerator — SUNWzulu_config, 1791
fbconfig module for configuring XVR-100 Graphics Accelerator — SUNWpfb_config, 1785
fdetach — detach a name from STREAMS-based file descriptor, 374
fdisk — create or modify fixed disk partition table, 375
Menu Options, 375
ffbconfig — configure the FFB Graphics Accelerator, 383
FIFO, make FIFO special file — mknod, 1060
FIFO, make — mkfifo, 1046
File Transfer Protocol Server — ftpd, 604
File Transfer Protocol Server — in.ftpd, 604
file system
cache file systems
See cachefs
cache file systems
See cachefs
change the dynamic parameters —
tunefs, 1883
check and repair — fsck, 436
check and repair ufs — fsck_ufs, 446
construct — mkfs, 1048
construct ufs — mkfs_ufs, 1056
create new — newfs, 1137
debugger — fsdb, 450
display amount of used disk space occupied by ufs — df_ufs, 285
display amount of used and available disk space — df, 275
grow — growfs, 505
file system (Continued)
link and unlink files and directories — link, 787
list file names and statistics — ff, 381
list file names and statistics for ufs — ff_ufs, 391
loopback — mount, 1082
make literal copy — volcopy, 1930
mount — mount, 1082
mount ufs — mount_ufs, 1107
move directory — mvdir, 1116
provide labels — labelit, 766
provide labels for ufs — labelit_ufs, 771
report processes using file or file structure — fuser, 484
share multiple resources — shareall, 1588
ufs, make image copy — volcopy_ufs, 1932
unmount — umount, 1082
unmount — umountall, 1085
unshare multiple resources — unshareall, 1588
file system consistency check and interactive — fsck_pcfs, 441
file system type, determine — fstyp, 477
files
change ownership — chown, 233
convert and copy — dd, 257
flar — administer flash archives, 392
flarcreate — create a flash archive from a master system, 400
floppy, managing, — rmmount, 1457
floppy, mounting, — rmmount, 1457
flush disk activity — sync, 1812
FMLI-based interface to Live Upgrade functions — lu, 862
fmthard — populate Volume Table of Contents on hard disks, 405
fncreate — create an FNS context, 411
fncreate_fs — create FNS file system contexts, 411
fncreate_printer — create new printers in the FNS namespace, 423
fndestroy — destroy an FNS context, 426
FNS
copy FNS contexts — fncopy, 409
create context — fncreate, 411
FNS (Continued)
create FNS file system contexts — fncreate_fs, 418
select naming service for FNS Initial Context — fnselect, 427
fnselect — select naming service for FNS Initial Context, 427
format — disk partitioning and maintenance utility, 430
Frame Buffer configuration utility — fbconfig, 372
front end for the Directory Server (DS) — directoryserver, 313
fruadm — prints and updates customer data associated with FRUs, 434
fsck_caches — check integrity of data cached with CacheFS, 440
fsck — check and repair file systems, 436
fsck_pcfs — file system consistency check and interactive, 441
fsck_ufs — check and repair ufs, 446
fsdb — file system debugger, 450
fsdb_ufs — ufs file system debugger, 459
Commands, 462
Expressions, 460
Formatted Output, 465
Inode Commands, 464
fsirand — install random inode generation numbers, 469
fssnap — create temporary snapshots of a file system, 470
fssnap_ufs — create a temporary snapshot of a UFS file system, 472
fstyp — determine file system type, 477
ftpaddhost — set up a virtual FTP host, 478
ftpconfig — set up anonymous FTP, 480
ftp — File Transfer Protocol Server, 604
ftprestart — restart previously shutdown FTP Servers, 481
ftpsht — close down the FTP Servers at a given time, 482
fuser — identify processes using file or file structure, 484
fwtmp — convert connect accounting records to ASCII, 486
G

generate a self-signed certificate for secure communication — imqkeytool, 575
generate message IDs — msgid, 1115
get printer configuration — lpget, 850
getdev — lists devices that match given criteria, 487
getdgrp — lists device groups which contain devices that match given criteria, 489
getent — gets a list of entries from administrative databases, 491
getable — get DoD Internet host table, 493
getty — set terminal type, modes, speed, and line discipline, 494
getvol — verifies device accessibility, 496
GFXconfig — configure the Raptor GFX Graphics Accelerator, 1277
graphical interface for managing DHCP service — dhcpmgr, 297
group file, check for inconsistencies — gpc, 1427
groupadd — add (create) a new group definition on the system, 500
groupdel — delete a group definition on the system, 502
groupmod — modify a group definition on the system, 503
growfs — grow file system, 505

H

halt — stop the processor, 511
hard disks, populate Volume Table of Contents — fmthard, 405
hostconfig — configure a system’s host parameters, 512
hsfs — labels for hsfs file systems, provide and print — labelit_hsfs, 768
mount — mount hsfs, 1091
htable — convert DoD Internet format host table, 514

I

I/O statistics report — iostat, 686
ickey — install a client key for WAN boot, 515
ICMP, router discovery daemon — in.rdisc, 638
id — return user identity, 516
idsconfig — prepare an iPlanet Directory Server (iDS) to be populated with data and serve LDAP clients, 519
ifconfig — configure network interface parameters, 521
ikeadm — manipulate Internet Key Exchange (IKE) parameters and state, 543
ikecert — manipulates the machine’s on-filesystem public-key certificate databases, 551
imqadmin — command used to launch the MQ Administration Console, a graphical user interface for performing MQ administration tasks, 558
imqbrokerd — start a Message Queue broker instance, 559
imqcmd — manage Message Queue brokers, 563
imqdbmgr — manage a plugged-in JDBC-compliant Message Queue data store, 572
imqkeytool — generate a self-signed certificate for secure communication, 575
imqobjmgr — manage Message Queue administered objects, 577
imqusermgr — command utility for managing a Message Queue user repository, 586
in.comsat — biff server, 589
in.dhcpd — DHCP server, 590
in.fingerd — remote user information server, 599
in.ftpd — File Transfer Protocol Server, 604
in.iked — daemon for the Internet Key Exchange (IKE), 612
in.lpd — print job listener, 623
in.rarpd — Reverse Address Resolution Protocol server, 636
in.rdisc — ICMP router discovery daemon, 638
in.rexecd — remote execution server, 640
in.rpnd — network routing daemon for IPv6, 642
in.rlogind — remote login server, 645
in.routed — network routing daemon, 648
in.rshd — remote shell server, 654
in.rwhod — system status server, 657
Internet (Continued)
query domain name servers — nslookup, 1219
RARP server — in.rarpd, 636
remote user information server — in.fingerd, 599
send ICMP ECHO_REQUEST packets to network hosts — ping, 1284
server for talk program — in.talkd, 677
services daemon — inetd, 595
system status server — in.rwhod, 657
Trivial File Transfer Protocol server — in.tftpd, 681
Internet Control Message Protocol, See ICMP Internet Protocol, to Ethernet addresses — arp, 75
Interprocess Communication, make FIFO special file — mkfifo, 1046
ipstat — report I/O statistics, 686
ipsecconf — configure system wide IPsec policy, 700
ipseckey — manually manipulate an IPsec Security Association Database (SABD), 716

K
kadb — a kernel debugger, 725
kdb5_util — Kerberos Database maintenance utility, 746
kdmconfig — configure or unconfigure keyboard, display, and mouse options, 748
Kerberos Database maintenance utility — kdb5_util, 746
Kerberos warning daemon — ktkt_warnd, 765
kernel — UNIX system executable file containing basic operating system services, 751
kernel debugger — kadb, 725
display status of loaded modules — modload, 1061
load a module — modload, 1062
kernel — UNIX system executable file containing basic operating system services SPARC Only, 751. 753
kernel unload a module — modunload, 1063
LP print services
  administer filters — lpfilter, 837
  administer forms — lpforms, 843
  configure — lppadmin, 824
  register remote systems — lpsystem, 859
  set printing queue priorities — lpusers, 860
  lppadmin — configure LP print service, 824
  lpfilter — administer filters used with LP print service, 837
  lpforms — administer forms used with LP print service, 843
  lpforms — administer forms used with the LP print service
    Adding or Changing a Form, 843
    Allowing and Denying Access to a Form, 846
  lpget — get printer configuration, 850
  lpmove — moves print requests that are queued, 852
  lpsched — start the LP print service, 854
  lpset — set printing configuration, 855
  lpshut — stop the LP print service, 858
  lpsystem — register remote systems with LP print service, 859
  lpusers — set printing queue priorities, 860
  lu — FMLI-based interface to Live Upgrade functions, 862
  lu, 862
  luactivate, 865
  lucancel, 867
  lcompare, 868
  lucreate — create a new boot environment, 871
  lucurr, 886
  ludelete, 888
  ludesc — display or set boot environment description, 890
  ludesc, 890
  luflist, 893
  lumake, 895

Index 2019
lumount, 897
lurename, 900
lustatus, 902
luupgrade, 904
luxadm — administration program for the Sun Enterprise Network Array (SENA), RSM, SPARCstorage Array (SSA) subsystems, Sun Fire 880 internal storage subsystem, and individual Fiber Channel Arbitrated Loop (FC_AL) devices, 914
luxadm — administration program for the Sun Enterprise Network Array (SENA), RSM and SPARCstorage Array (SSA) subsystems Enclosure, 916
Enclosure Services Card Subcommands, 924
Other Expert Mode Subcommands, 925
Pathname, 914
SENA Expert Mode Subcommands, 924
SPARCstorage Array Subcommands, 923
Subcommands, 917
usr/sbin, 928

M
m64config — configure the M64 Graphics Accelerator, 930
mail delivery server — sendmail, 1562
mail.local — store mail in a mailbox, 935
mail utilities
biff server — in.comsat, 589
create aliases database — newaliases, 1135
make device_allocate entries — mkdevalloc, 1044
make device_maps entries — mkdevmaps, 1045
make FIFO — mknod, 1060
make FIFO special file — mkfifo, 1046
make local NFS file systems available for mounting by remote systems — share_nfs, 1589
make named pipe — mkfifo, 1046
make named pipe — mknod, 1060
make special file — mknod, 1060
makedbm — make NIS ndbm file, 937
manage a plugged-in JDBC-compliant Message Queue data store — imqdbmgr, 572
manage and view WBEM log files —
smlog, 1664
manage bulk operations on user accounts —
smmultiuser, 1672
manage diskless client support for a server —
smdiskless, 1650
manage email alias entries — smmaillist, 1668
manage endlessly growing log files —
logadm, 813
manage entries in the exec_attr database —
smexec, 1656
manage group entries — smgroup, 1660
manage jobs in the crontab database —
smcron, 1641
manage keys and certificates for WAN booting —
wanbootutil, 1942
manage Message Queue administered objects —
imqobjmgr, 577
manage Message Queue brokers —
imqcmd, 563
manage OS services — smoservice, 1677
manage packaging and patching system —
pkgadm, 1295
manage patches — smpatch, 1682
manage profiles in the prof_attr and exec_attr databases —
smprofile, 1689
manage roles and users in role accounts —
smrole, 1694
manage serial port — smserialport, 1701
manage user entries — smuser, 1707
manage WCI RSM controller configurations —
wrsrconf, 1954
manipulate Internet Key Exchange (IKE) parameters and state — ikeadm, 543
manipulates the machine’s on-filesystem public-key certificate databases —
ikecert, 551
manual pages, create formatted files for —
catman, 159
manually manipulate an IPsec Security Association Database (SABD) —
ipseckey, 716
map out defective disk blocks — addbadsec, 54
mdmonitor — daemon to monitor metadevices, 943
medstat command, 944
metaclear command, 946

2020 man pages section 1M: System Administration Commands • April 2004
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>metadb</td>
<td>create and delete replicas of the metadevice state database, 949</td>
</tr>
<tr>
<td>metadetach command</td>
<td>1003</td>
</tr>
<tr>
<td>metadevadm command</td>
<td>954</td>
</tr>
<tr>
<td>metahs command</td>
<td>957</td>
</tr>
<tr>
<td>metainit command</td>
<td>961</td>
</tr>
<tr>
<td>metaconline command</td>
<td>971</td>
</tr>
<tr>
<td>metanoonline command</td>
<td>971</td>
</tr>
<tr>
<td>metaparam command</td>
<td>973</td>
</tr>
<tr>
<td>metarecover</td>
<td>recover soft partition information, 975</td>
</tr>
<tr>
<td>metarename command</td>
<td>977</td>
</tr>
<tr>
<td>metareplace command</td>
<td>981</td>
</tr>
<tr>
<td>metaroot command</td>
<td>984</td>
</tr>
<tr>
<td>metaset</td>
<td>configure shared disksets, 986</td>
</tr>
<tr>
<td>metassist</td>
<td>automated volume creation utility to support Solaris Volume Manager, 992</td>
</tr>
<tr>
<td>metastat command</td>
<td>997</td>
</tr>
<tr>
<td>metatouch command</td>
<td>1003</td>
</tr>
<tr>
<td>mibiisa</td>
<td>Sun SNMP Agent, 1010</td>
</tr>
<tr>
<td>mipagent</td>
<td>Mobile IP Agent, 1033</td>
</tr>
<tr>
<td>mipagentconfig</td>
<td>configure Mobility IP Agent, 1036</td>
</tr>
<tr>
<td>mipagentstat</td>
<td>show Mobile IP Mobility Agent status, 1042</td>
</tr>
<tr>
<td>mkdevalloc</td>
<td>make device_allocate entries, 1044</td>
</tr>
<tr>
<td>mkdevmaps</td>
<td>make device_maps entries, 1045</td>
</tr>
<tr>
<td>mkfifo</td>
<td>make FIFO special file, 1046</td>
</tr>
<tr>
<td>mkfile</td>
<td>create a file, 1047</td>
</tr>
<tr>
<td>mkfs</td>
<td>make file system, 1048</td>
</tr>
<tr>
<td>mkfs_pcf5</td>
<td>construct a FAT file system, 1050</td>
</tr>
<tr>
<td>mkfs_udfs</td>
<td>construct a udfs file system, 1054</td>
</tr>
<tr>
<td>mkfs_ufs</td>
<td>construct ufs, 1056</td>
</tr>
<tr>
<td>mknod</td>
<td>make special file, 1060</td>
</tr>
<tr>
<td>Mobile IP agent</td>
<td>mipagent, 1033</td>
</tr>
<tr>
<td>mkprojmod</td>
<td>modify a project’s information on the system — projmod, 1397</td>
</tr>
<tr>
<td>mkrolemod</td>
<td>modify a role’s login information on the system — rolemod, 1468</td>
</tr>
<tr>
<td>mkupdate_drv</td>
<td>modify device driver attributes — update_drv, 1903</td>
</tr>
<tr>
<td>mkinstall_server</td>
<td>scripts used to install the Solaris software, 668</td>
</tr>
<tr>
<td>modinfo</td>
<td>display status of loaded kernel modules, 1061</td>
</tr>
<tr>
<td>modload</td>
<td>load a kernel module, 1062</td>
</tr>
<tr>
<td>modunload</td>
<td>unload a kernel module, 1063</td>
</tr>
<tr>
<td>mofcomp</td>
<td>compile MOF files into CIM classes, 1064</td>
</tr>
<tr>
<td>monacct</td>
<td>accounting shell procedure, 48</td>
</tr>
<tr>
<td>monitor program</td>
<td>monitor, 1070</td>
</tr>
<tr>
<td>monitor system behavior</td>
<td>using CPU performance counters — cpustat, 249</td>
</tr>
<tr>
<td>mount</td>
<td>mount filesystems and remote resources, 1082</td>
</tr>
<tr>
<td>mountall</td>
<td>mount multiple filesystems, 1085</td>
</tr>
<tr>
<td>mountd</td>
<td>NFS mount request server, 1090</td>
</tr>
<tr>
<td>mouse, keyboard, display</td>
<td>configure or unconfigure — kdmconfig, 748</td>
</tr>
<tr>
<td>mpstat</td>
<td>report per-processor statistics, 1113</td>
</tr>
<tr>
<td>msgid</td>
<td>generate message IDs, 1115</td>
</tr>
<tr>
<td>mvdir</td>
<td>move a directory, 1116</td>
</tr>
</tbody>
</table>

N
name service cache daemon — nscd, 1217
named-bootconf — convert name server configuration files, 1117
named pipe, make — mkfifo, 1046
named pipe, make — mknod, 1060
named-xfer — ancillary agent for inbound zone transfers, 1118
ncacnf — Solaris Network Cache and Accelerator (NCA) configuration daemon, 1120
ncheck — generate a list of path names vs i-numbers of all files on special, 1121
ncheck_ufs — generate a list of pathnames vs i-numbers for ufs, 1123
ndd — get and set driver configuration parameters, 1126
netstat — show network status, 1128
netstat — display network status
Active Sockets (First Form), 1131
DHCP Interface Information (Sixth Form), 1133
Interface Status (Third Form), 1132
Multicast Routing Tables (Fifth Form), 1133
Network Data Structures (Second Form), 1131
Routing Table (Fourth Form), 1133
TCP Sockets, 1131
network routing daemon — in.routed, 648
network listener daemon — listen, 789
lock daemon — lockd, 795
test connections to hosts using ICMP — ping, 1284
Network File System, See NFS
network interface parameters, configure — ifconfig, 521
network listener service, administration — nlsadmin, 1211
network packets capture and inspection — snoop, 1722
network routing daemon for IPv6 — in.ripngd, 642
Network Time Protocol daemon — xntpd, 1959
newaliases — make mail aliases database, 1135
newfs — make new file system, 1137
newkey — create a new key in publickey database, 1143
NFS
    crash and recovery functions for locking services — statd, 1756
    create files for use as NFS mounted swap areas — mksfile, 1047
daemon — nfsd, 1145
display information on resources shared — dfmounts_nfs, 281
display statistics — nfsstat, 1150
list available resources from remote systems — dfshares_nfs, 283
NFS (Continued)
    make local NFS filesystem unavailable for mounting by remote systems — unshare_nfs, 1902
    mount — mount_nfs, 1093
    mount request server — mountd, 1090
NFS, secure, create a new key in publickey database — newkey, 1143
NFS security, server for storing private encryption keys — keyserv, 754
nfsstat — display NFS statistics, 1150
NIS
    binder process — ypbind, 1983
    make ndbm file — makedbm, 937
    point binder process ypbind at a particular server — ypset, 1997
    rebuild database — ypmake, 1986
    return current version of a NIS map at a NIS server host — yppoll, 1990
    transfer NIS map from a NIS server to host — ypxfr, 2000
NIS+
    add /etc files and NIS maps into their corresponding NIS+ tables — nisaddent, 1161
    client and root server initialization utility — nisinit, 1178
    credential creation tool — nisaddcred, 1155
    display the contents of the NIS+ transaction log — nislog, 1186
    initialize a domain to store system administration information — nissetup, 1205
    nis ping — ping NIS+ servers, 1187
    nissetup — initialize a NIS+ domain to serve clients, 1205
    nisstat — report NIS+ server statistics, 1207
    service daemon — rpc.nisd, 1487
    update public keys in NIS+ directory object — nisupdkeys, 1209
    utility to cache location information about NIS+ servers — nis_cachemgr, 1171
    utility to print out the contents of the shared cache file — nisshowcache, 1206
NIS+ credentials for NIS+ principals, initialize — nisclient, 1173
NIS+ password update daemon — nispasswdd, 1493
PICL daemon — picld, 1282
picld — PICL daemon, 1282
pkgadd — transfer software packages to system, 1289
pkgadm — manage packaging and patching system, 1295
pkgask — stores answers to an interactive software package, 1299
pkgchk — check package installation accuracy, 1301
pkgdm — remove package from system, 1304
pkgadm — package administration utility, 1321
pkgadm — package administration utility, 1321
pkgbind — package binding command, 1323
pooladm — pool administration utility, 1321
pooladm — pool administration utility, 1321
poolbind — pool binding command, 1323
populate security attribute databases in a name service — smattrpop, 1611
populate the NIS+ tables in a NIS+ domain — nispopulate, 1190
ports — add or remove a service — pmadm, 1307
create /dev entries and inittab entries for serial lines — ports, 1329
enable or disable a service — pmadm, 1307
install or replace a service configuration script — pmadm, 1307
print requested service information — pmadm, 1307
service administration — pmadm, 1307
power manager daemon — powerd, 1333
powerd — power manager daemon, 1333
poweroff — stop the processor, 511
PPP tunneling driver utility — sppptun, 1738
pppd — Point to point protocol daemon, 1334
PPPoE chat utility — pppoe, 1359
PPPoE server daemon — pppoe, 1362
pppoe — PPPoE chat utility, 1359
pppoe — PPPoE server daemon, 1362
pppstats — Print PPP statistics, 1367
praudit — print contents of an audit trail file, 1370
prctmp — accounting shell procedure, 48
prdaily — accounting shell procedure, 48
prepare an iPlanet Directory Server (iDS) to be populated with data and serve LDAP clients — idsconfig, 519
print contents of an audit trail file — praudit, 1370
print device specific information — devinfo, 267
print FRUID-specific information about the FRUs on a system or domain — prtfru, 1408
print PICL tree — prtpicl, 1409
Print PPP statistics, 1367
print queue, accept or reject requests — accept, reject, 33
print requests, accept or reject — accept, reject, 33
print service, LP — lpmove, 852
printer filters
  add and change — lpfilter, 837
  list attributes — lpfilter, 837
  remove — lpfilter, 837
printer forms
  add or change — lpforms, 843
  delete — lpforms, 845
  list attributes — lpforms, 846
  listing the current alert — lpforms, 848
  provide access — lpforms, 846
  removing an alert definition — lpforms, 848
  setting an alert to mount a form — lpforms, 846
  terminating an active alert — lpforms, 848
printers
  add and change printers — lpadmin, 824
  define alerts for printer faults — lpadmin, 824
  mount printer wheels — lpadmin, 824
  remove printers — lpadmin, 824
  set or change system default destination — lpadmin, 824
  setting priorities — lpusers, 860
printmgr.1m — Solaris Print Manager is a graphical user interface for managing printers in a network, 1372
prints and updates customer data associated with FRUs — fruadm, 434
privatepw — administer FTP Server enhanced group access file, 1374
process accounting
  — acctcms, 41
process accounting (Continued)
   — accton, 35
   — acctprc, 46
process scheduler, administration —
   dispadmin, 334
processes
   initialization — init, 614
   kill all active processes — killall, 756
   using file or file structure — fuser, 484
program, standalone, load and execute —
   boot, 118
programming tools, install —
   install commands, 659
projadd — administer a new project on the
   system, 1394
projdel — delete a project from the
   system, 1396
projmod — modify a project’s information on
   the system, 1397
PROM monitor program — monitor, 1070
   PROM monitor program, display and load
   program — eeprom, 360
   prstat — report active process statistics, 1399
   prtacct — accounting shell procedure, 48
   prtconf — print system configuration
   information, 1405
   prtdiag — print system diagnostic
   information, 1407
   prtfri — print FRUID-specific information
   about the FRUs on a system or domain, 1408
   prtpicl — print PICL tree, 1409
   prtvtoc — report information about a disk
   geometry and partitioning, 1410
psradm — change processor operational
   status, 1413
psrinfo — displays information about
   processors, 1416
psrset — displays information about
   processors, 1418
putdev — add, modify remove device entry
   from table, 1422
putdgrep — add, remove and change device
   group table, 1425

Q
query routing daemons for their routing tables
   — rtquery, 1515
quick halt, — halt, 511
quota, remote quota daemon — rquotad, 1511
   quotas
   check file system quota for inconsistencies —
   quotacheck, 1433
   display a user’s disk quota and usage —
   quota, 1432
   displays number of blocks in filesystem
   currently owned by each user —
   quot, 1430
   summarize quotas for a file system —
   repquota, 1453
   turn off file system quotas — quotaoff, 1434
   turn on file system quotas — quotaon, 1434
   quotas, user, edit — edquota, 358

R
RAID hardware utility — raidctl, 1436
   raidctl — RAID hardware utility, 1436
   ramdiskadm — administer ramdisk pseudo
   device, 1439
RARP, server — in.rarpd, 636
rcapadm — configure resource capping
   daemon, 1441
rctladm — display or modify global state of
   system resource controls, 1445
re-preinstall — restore a system to its original
   factory condition, 1454
real-time clock and GMT-lag management,
   provide — rtc, 1514
reboot — restart the operating system, 1448
   rebuild NIS database — ypmake, 1986
recovery soft partition information —
   metarecover, 975
reject — reject print requests, 33
remote execution server — in.rexedc, 640
remote login server — in.rlogind, 645
remote shell server — in.rshd, 654
remote shell server — rshd, 654
remote system with debugging on, try to
   contact — Utry, 1924
   remote login server — in.rlogind, rlogind, 645
remote system with debugging on, try to contact — Uutry, uutry, 1924
remote magtape protocol server — rmt, 1460
Remote Program Load Server, See rpdl
remote resources
  mount or unmount — mount, 1082
  mount NFS — mount_nfs, 1093
remote system
  execute remote command requests — uuxqt, 1925
make local resource unavailable for mounting — unshare, 1901
register with LP print service — lpsystem, 859
set system date — rdate, 1447
user information server — in.fingerd, 599
removable media mounter for CD-ROM and floppy — rmmount, 1457
remove a Solaris patch package and restore previously saved files — patchrm, 1264
removef — remove a file from software database, 1451
removes an application from the Solstice application registry — soldelapp, 1736
report active process statistics — prstat, 1399
report bus-related performance statistics — busstat, 145
report I/O statistics — iostat, 686
report information about a disk geometry and partitioning — prtvtoc, 1410
report trap statistics — trapstat, 1867
report WCI RSM driver statistics — wrsmsstat, 1956
restart previously shutdown FTP Servers — ftprestart, 481
restore, incremental file system restore — ufsrestore, 1894
restore NIS+ directory backup — nisrestore, 1199
return user identity — id, 516
Reverse Address Resolution Protocol, See RARP
rlogind — remote login server, 645
rm_drv — remove a device driver from the system, 1450
rm_install_client — scripts used to install the Solaris software, 668
rmmount — removable media mounter for CD-ROM and floppy, 1457
rmt — remote magtape protocol server, 1460
roleadd — administer a new role account on the system, 1462
roledel — delete a user’s login from the system, 1466
rolemod — modify a role’s login information on the system, 1468
root directory, change for a command — chroot, 234
route — manually manipulate routing tables, 1471
RPC
  kernel statistics server — rpc.rstatd, 1497
  network username server — rpc.rusersd, 1498
  network wall server — rpc.rwall, 1499
  NIS+ service daemon — rpc.nisd, 1487
  program number to universal addresses mapping — rpcbind, 1477
  remote execution server — rpc.rexd, 1495
  remote quota daemon — rquotad, 1511
  report information — rpcinfo, 1480
  sends one-way stream of packets to host — spray, 1740
  server which records packets sent by spray — rpc.sprayd, 1501
  server, Autofs mount/unmount requests — automountd, 113
  server, NFS mount requests — mountd, 1090
  RPC, secure, create a new key in publickey database — newkey, 1143
  rpc.bootparamd — boot parameter server, 1479
  rpc.metad command, 1484
  rpc.metamedd command, 1485
  rpc.metamhd command, 1486
  rpc.nisd — NIS+ service daemon, 1487
  rpc.nisd_resolv, 1487, 1492
  rpc.nispasswd — NIS+ password update daemon, 1493
  rpc.rexd — remote execution daemon, 1495
  rpc.rstatd — kernel statistics server, 1497
  rpc.rusersd — network username server, 1498
  rpc.rwallld — network wall server, 1499
  rpc.smserverd — removable media device server, 1500
rpc.sprayd — records packets sent by spray, 1501
rpc.ypupdated — server for changing NIS information, 1505
rpcbind — converts RPC program numbers to universal addresses, 1477
rpcinfo — report RPC information, 1480
rpld — x86 Network Booting RPL (Remote Program Load) Server, 1506
quotad — remote quota server, 1511
rsh — the restricted shell command interpreter, 1512
rshd — remote shell server, 654
rtc — provide all real-time clock and GMT-lag management, 1514
rtquery — query routing daemons for their routing tables, 1515
runacct — run daily accounting, 1517
rwall — write to all users over a network, 1520
rwall daemon, network wall server — rpc.rwalld, 1499

S
sac — Service Access Controller (SAC), 1521
sacadm — Service Access Controller administration, 1524
sadmind — Distributed system administration daemon, 1528
saf — Service Access Facility (SAF), 1532
SAF
  format and output port monitor-specific information — ttyadm, 1878
  port monitor for terminal ports — ttymon, 1880
savecore — save OS core dump, 1551
scheduler, process, administration — dispadmin, 334
sckmd — Sun Fire High-End system key management daemon, 1560
scripts used to install the Solaris software —
  add_install_client, 668
  add_to_install_server, 668
  check, 668
scripts used to install the Solaris software —
  install_scripts, 668
scripts used to install the Solaris software —
  modify_install_server, 668
scripts used to install the Solaris software —
  rm_install_client, 668
scripts used to install the Solaris software —
  setup_install_server, 668
SCSI hardware specific commands for cfgadm — cfgadm_scsi, 197
secure shell daemon — sshd, 1748
select a time zone — tzselect, 1885
select naming service for FNS Initial Context — fnselect, 427
select or display devices used as auxiliary console devices — consadm, 240
sendmail — mail delivery system, 1562
set serial line interface, set operating parameters — syncinit, 1813
server for changing NIS information —
  rpc.ypupdated, 1505
  ypupdated, 1505
servers
  automountd — mount/unmount request server, 113
  biff server — in.comsat, 589
  DARPA TELNET virtual terminal protocol server — in.telnetd, 678
  DARPA trivial name server — in.tnamed, 683
  DHCP server — in.dhcpd, 590
  in.rexedc — remote execution server, 640
  in.uucpd — UUCP server, 684
  inetd — Internet services daemon, 595
  mountd — mount request server, 1090
  RARP server — in.rarpd, 636
  system status server — in.rwhod, 657
  talk program server — in.talkd, 677
  yppasswdd — NIS password server, 1502
servers, NIS+, location information —
  nis_cachemgr, 1171
Service Access Controller, See SAC
Service Access Facility, See SAF
Service Location Protocol Daemon — slpd, 1601
set printing configuration — lpsel, 855
set the date and time by way of NTP — ntpdate, 1235

Index  2027
set up a virtual FTP host — ftpaddhost, 478
set up anonymous FTP — ftpconfig, 480
setuname — changes machine
information, 1583
setup_install_server — scripts used to install the
Solaris software, 668
sf880drd — Sun Fire 880 Dynamic
Reconfiguration daemon, 1584
sftp-server — SFTP server subsystem, 1585
SFTP server subsystem — sftp-server, 1585
share — make local resource available for
mounting by remote systems, 1586
share_nfs — make local NFS file system
available for mounting by remote
systems, 1589
shareall — multiple resources, 1588
SHELL variable — rsh, 1512
shells, the restricted shell command interpreter
— rsh, 1512
show Mobile IP Mobility Agent status —
mipagentstat, 1042
show network status — netstat, 1128
showmount — display remote mounts, 1596
showrev — displays revision information for
current hardware and software, 1597
shutacct — accounting shell procedure, 48
shutdown — shutdown system, change system
state, 1599
slpd — Service Location Protocol
Daemon, 1601
smartcard — configure and administer a smart
card, 1603
smattrprop — populate security attribute
databases in a name service, 1611
smc — start the Solaris Management
Console, 1616
smcompile — build class list and compile
Solaris Management Console service beans
for remote use, 1620
smconf — configure the Solaris Management
Console, 1624
smcron — manage jobs in the crontab
database, 1641
smcwebserver — start the Sun Management
Center console web server, 1648
smdiskless — manage diskless client support
for a server, 1650
smexec — manage entries in the exec_attr
database, 1656
smgroup — manage group entries, 1660
smlog — manage and view WBEM log
files, 1664
smmaillist — manage email alias entries, 1668
smmultiuser — manage bulk operations on user
accounts, 1672
smosservice — manage OS services, 1677
smpatch — manage patches, 1682
smprofile — manage profiles in the prof_attr
and exec_attr databases, 1689
smrole — manage roles and users in role
accounts, 1694
smserialport — manage serial port, 1701
smuser — manage user entries, 1707
smmpdx — Sun Solstice Enterprise Master
Agent, 1715
snmpXdmid — Sun Solstice Enterprise
SNMP-DMI mapper subagent, 1718
snoop — capture and inspect network
packets, 1722
soconfig — configure transport providers for
use by sockets, 1733
software package
add a file to the software installation
database — installf, 664
check installation accuracy — pkgchk, 1301
remove a file from software database —
removef, 1451
remove package from system —
pkgrm, 1304
stores answers to an interactive package —
pkgask, 1299
soladdapp — adds an application to the Solstice
application registry, 1735
Solaris Network Cache and Accelerator (NCA)
configuration daemon — ncaconfd, 1120
Solaris Print Manager is a graphical user
interface for managing printers in a network
— printmgr1m, 1372
Solaris Web Start installer utility —
installer, 663
soldelapp — removes an application from the
Solstice application registry, 1736
solstice — access system administration tools
with a graphical user interface, 1737
SPARCstorage Array, administration program
— ssadm, 1741
special NTP query program — xntpd, 1975
split a PKCS #12 file into separate certificate and key files — wanboot_p12split, 1941
sppptun — PPP tunneling driver utility, 1738
spray — sends one-way stream of packets to host, 1740
ssaadm — administration program for the SPARCstorage Array, 1741
sshd — secure shell daemon, 1748
standard Network Time Protocol query program — ntq, 1238
start a Message Queue broker instance — imqbrokerd, 559
Start and stop NIS services, — ypstart, 1999
Start NIS services, — ypstart, 1999
start Sun WBEM User Manager — wbemadmin, 235, 1944
start the LP print service — lpsched, 854
start the Solaris Management Console — smc, 1616
start the Sun Management Center console web server — smcwebserver, 1648
start WBEM Log Viewer — wblemlogviewer, 1948
startup — accounting shell procedure, 48
startup procedures — boot, 661
statd — network status monitor, 1756
statistics
audit — auditstat, 102
for file system — ff, 381
for ufs file system — ff, 391
I/O — iostat, 686
NFS, display — nfsstat, 1150
per-processor — mpstat, 1113
stop the processor — halt, 511
stop the processor — poweroff, poweroff, 511
Stop NIS services, — ypstop, 1999
stop the LP print service — lpshut, 858
store mail in a mailbox — mail.local, 935
STREAMS
automatically pushed modules — autopush, 114
detach a name from file descriptor — fdetach, 374
error logger cleanup program — strclean, 1759

STREAMS (Continued)
error logger daemon — strerr, 1760
port monitor for terminal ports — ttymon, 1880
print trace messages — strace, 1757
su — become superuser or another user, 1764
sulogin — single-user mode automatically invoked when system is first started, 1767
Sun Fire 880 Dynamic Reconfiguration daemon — sf880drd, 1584
Sun Fire High-End system key management daemon — sckmd, 1560
Sun SNMP Agent — mibiisa, 1010
Sun Solstice Enterprise DMI Service Provider — dmispd, 344
Sun Solstice Enterprise Master Agent — snmpd, 1715
Sun Solstice Enterprise SNMP-DMI mapper subagent — snmpXdmid, 1718
SUNWgfb_config — configure the XVR-1000 Graphics Accelerator, 1769
suninstall — install SunOS/SVR4, 1768
SUNWpfb_config — fbconfig module for configuring XVR-1000 Graphics Accelerator, 1785
SUNWzulu_config — fbconfig module for configuring Sun XVR-4000 Graphics Accelerator, 1791
swap — administer the system swap areas, 1805
swmttool — install, upgrade and remove software packages, 1808
sxconfig — configure contiguous memory for sx video, 1809
sync — update super block, 1812
synchronous serial link, report driver statistics — syncstat, 1819
synchronous serial loopback test program — syncloop, 1816
syncinit — set serial line interface operating parameters, 1813
syncloop — synchronous serial loopback test program, 1816
syncstat — report driver statistics from a synchronous serial link, 1819
sys-unconfig — undo system configuration, 1839
sysdef — displays current system definition, 1821
sysevent event specification administration — syseventadm, 1823
syseventadm — sysevent event specification administration, 1823
syseventconfd — kernel system event command invocation daemon, 1827
syseventd — kernel system event notification daemon, 1828
sysidconfig — execute or define configuration applications, 1830
sysidnet — system configuration, 1833
sysidpm — system configuration, 1833
syisdroot — system configuration, 1833
sy sistool — system configuration, 1833
syslogd — system log message daemon, 1836
system activity reports — sar, 1549
system status server — in.rwhod, 657
system administration
   access control lists — admintool, 60
   add a file to the software installation database — install, 664
   control for basic administrative functions — uadmin, 1886
   create formatted files for manual pages — catman, 159
   get entries from administrative database — getent, 491
   install commands — install, 659
   NIS+ aliases — aliasadm, 70
   system databases — admintool, 60
system configuration
   print information — prtconf, 1405
   — syseventnet, 1833
   — syseventpm, 1833
   — syseventroot, 1833
   — syseventtool, 1833
   undo — sys-unconfig, 1839
system definition, display current — sysdef, 1821
system diagnostic, print information — prtdiag, 1407
system diagnostic messages, error log — dmesg, 337
system information, displays revision information for current hardware and software — showrev, 1597
system log daemon — syslog, 1836
system parameters, change value — setuname, 1583
System Performance Analysis Utilities Tools, system activity report package — sar, 1549
system PROM monitor program — monitor, 1070
system shutdown, — halt, 511

tapes — creates /dev entries for tape drives attached to the system, 1841
tcxconfig — configure the default linearity of the 24-bit TrueColor Visual for OpenWindows with an S24 frame buffer system (TCX), 1846
telinit — process control initialization, 614
terminal
   compare or print terminfo descriptions — infocmp, 600
   set type, modes, speed, and line discipline — getty, 494
terminfo, compiler — tic, 1858
test installation profiles — pfinstall, 1273
test NIS+ and LDAP mapping configuration files — nisldapmaptest, 1182
time zone
   compiler — zic, 2003
   print current time in each named on command line — zdump, 2002
timed event services, daemon for cron — cron, 252
tmpfs, mount — mount_tmpfs, 1103
trace a chain of NTP hosts back to their master time source — ntptrace, 1245
trace messages, STREAMS — strace, 1757
transfer software packages to system — pkgadd, 1289
trapstat — report trap statistics, 1867
TTY ports, maintain line settings and hunt sequences — stydefs, 1762
ttyadm — format and output port monitor-specific information, 1878
ttymon — port monitor for terminal ports, 1880
tunefs — tuneup an existing file system, 1883
turnacct — accounting shell procedure, 48

2030 man pages section 1M: System Administration Commands • April 2004
tzselect — select a time zone, 1885

U
ufs
  check and repair — fsck_ufs, 446
  construct file system — mkfs_ufs, 1056
  display amount of disk space — df_ufs, 285
  generate a list of pathnames vs i-numbers — ncheck_ufs, 1123
  incremental file system restore — ufsrestore, 1894
  make image copy of file system — volcopy_ufs, 1932
  mount — mount_ufs, 1107
  provide labels for ufs — labelit_ufs, 771
  ufs file system debugger — fsdb_ufs, 459
  ufsdump — incremental file system dump, 1887
  umount — umount file systems and remote resources, 1082
  umountall — umount multiple file systems, 1085
  unconfigure, undo system configuration — sys-unconfig, 1839
  UNIX system executable file containing basic operating system services — kernel, 751
  unshare — make local resource unavailable for mounting by remote systems, 1901
  unshare_nfs — make local NFS filesystem unavailable for mounting by remote systems, 1902
  unshareall — multiple resources, 1588
  update_drv — modify device driver attributes, 1903
  update Internet name servers interactively — nsupdate, 1232
  update super block — sync, 1812
  USB hardware-specific commands for cfgadm — cfgadm_usb, 207
  user IDs, administer a new user login on the system — useradd, 1906
  user information, server, remote — in.fingerd, 599
  user quotas, remote quota daemon — rquotad, 1511
useradd — administer a new user login on the system, 1906
userdel — delete a user’s login from the system, 1911
usermod — modify a user’s login information on the system, 1913
users
  list login information — logins, 822
  who is doing what — who, 1500
utmp2wttmp — create an entry for each user logged on in file /var/adm/wtmpx, 35
utmpd — utmpx monitoring daemon, 1917
utmpx monitoring daemon — utmp, 1917
uuchcheck — check the uucp directories and permissions file, 1918
uuccico — file transport program for uucp system, 1919
uucleanup — uucp spool directory clean-up, 1921
uucp
  check directories and permissions file — uucheck, 1918
  clean-up of spool directory — uucleanup, 1921
  file transport program — uucico, 1919
  scheduler for file transport program — uusched, 1923
  server — in.uucpd, 684
  uusched — scheduler for uucp transport program, 1923
Uutry — try to contact remote system with debugging on, 1924
uutry — try to contact remote system with debugging on, 1924
uuxqt — execute remote command requests, 1925

V
verify the integrity of a network boot configuration file — bootconfchk, 139
virtual console daemon — cvcd, 254
virtual memory, display statistics — vmstat, 1926
vmstat — display virtual memory statistics, 1926
vold — Volume Management daemon to manage CD-ROM and floppy devices, 1933
Volume Management
floppy and CD-ROM management daemon — vold, 1933
removable media mounter — rmmount, 1457

xntpd — Network Time Protocol daemon
(Continued)
  Configuration Commands, 1960
  Miscellaneous Commands, 1970
  Monitoring Commands, 1966
  Primary Clock Support, 1972

W
wall — write to all users, 1935
wanboot_keygen — create and display client and server keys for WAN booting, 1937
wanboot_keysymnt — insert and extract keys, 1939
wanboot_p12split — split a PKCS #12 file into separate certificate and key files, 1941
wanbootutil — manage keys and certificates for WAN booting, 1942
wbemadmin — start Sun WBEM User Manager, 235, 1944
wbemconfig — convert a JavaSpaces datastore to the newer Reliable Log datastore format, 1947
wbemlogviewer — start WBEM Log Viewer, 1948
whodo — who is doing what, 1950
wracct — write extended accounting records for active processes and tasks, 1952
write extended accounting records for active processes and tasks — wracct, 1952
wrsmconf — manage WCI RSM controller configurations, 1954
wrsmstat — report WCI RSM driver statistics, 1956
wtmpfix — correct connect accounting records date/time stamp, 486

X
x86 Network Booting RPL (Remote Program Load) Server — rpld, 1506
xntpd — Network Time Protocol daemon, 1959
Access Control Commands, 1963
Authentication Commands, 1962
Authentication Key File Format, 1971

Y
YP
  make ndbm file — makedbm, 937
  rebuild database — yppmake, 1986
  ypbond — NIS binder process, 1983
  ypinit — set up NIS client, 1985
  yppmake — rebuild NIS database, 1986
  yppoll — return current version of a NIS map at a NIS server host, 1990
  yppush — force propagation of changed NIS map, 1991
  ypserv — NIS server and binder processes, 1993
  ypserv, 1995
  ypset — point NIS binder process ypbond at a particular server, 1997
  ypstart — Start and stop NIS services, 1999
  ypstop — Start and stop NIS services, 1999
  ypxfr — server for changing NIS information, 1505
  ypxfr — transfer NIS map from a NIS server to host, 2000
  ypxfr — NIS server and binder processes, 1993
  yppasswdd — NIS password server, 1502

Z
zdump — prints the current time in each zonename named on command line, 2002
zic — time zone compiler, 2003
zuludaemon — load microcode for Sun XVR-4000 Graphics Accelerator device, 2008