Contents

Preface 19

Introduction 25
Intro(1) 26

User Commands 29
acctcom(1) 30
adb(1) 33
addbib(1) 34
alias(1) 36
allocate(1) 39
amt(1) 41
answerbook2(1) 42
appcert(1) 43
apptrace(1) 50
apropos(1) 55
ar(1) 57
arch(1) 61
as(1) 62
asa(1) 66
at(1) 68
atq(1) 75
atrm(1) 76
audioconvert(1) 77
audioplay(1) 81
echo(1) 312
echo(1B) 316
echo(1F) 317
ed(1) 318
edit(1) 330
egrep(1) 334
eject(1) 337
elfdump(1) 341
enable(1) 343
env(1) 345
eqn(1) 347
error(1) 352
ex(1) 356
exec(1) 366
exit(1) 368
expand(1) 370
exportfs(1B) 372
expr(1) 373
expr(1B) 376
exstr(1) 379
face(1) 383
factor(1) 384
fastboot(1B) 385
fdformat(1) 386
fgrep(1) 391
file(1) 393
file(1B) 395
filesync(1) 397
find(1) 404
finger(1) 411
fmlcut(1F) 414
fmlexpr(1F) 416
fmlgrep(1F) 419
fmlti(1) 421
fmt(1) 424
fmtmsg(1) 425
fnattr(1) 430
fnbind(1) 433
man pages section 1: User Commands • September 2004
llc2_autoconfig(1) 726
llc2_config(1) 727
llc2_stats(1) 729
ln(1) 737
ln(1B) 740
loadkeys(1) 743
locale(1) 744
localedef(1) 747
logger(1) 751
logger(1B) 753
login(1) 755
logname(1) 762
logout(1) 763
look(1) 764
lookbib(1) 765
lorder(1) 766
lp(1) 767
lp(1B) 774
lpq(1B) 778
lpr(1B) 780
lprm(1B) 784
lpstat(1) 786
lpptest(1B) 790
ls(1) 791
ls(1B) 797
m4(1) 800
mach(1) 805
machid(1) 806
madv.so.1(1) 808
mail(1) 812
mail(1B) 818
mailcompat(1) 819
mailp(1) 820
mailq(1) 822
mailstats(1) 824
mailx(1) 826
make(1S) 848
man(1) 883
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>nisopaccess(1)</td>
<td>1061</td>
</tr>
<tr>
<td>nispasswd(1)</td>
<td>1064</td>
</tr>
<tr>
<td>nisrm(1)</td>
<td>1068</td>
</tr>
<tr>
<td>nisrmdir(1)</td>
<td>1070</td>
</tr>
<tr>
<td>nistbladm(1)</td>
<td>1072</td>
</tr>
<tr>
<td>nistest(1)</td>
<td>1078</td>
</tr>
<tr>
<td>nl(1)</td>
<td>1080</td>
</tr>
<tr>
<td>nm(1)</td>
<td>1084</td>
</tr>
<tr>
<td>nohup(1)</td>
<td>1089</td>
</tr>
<tr>
<td>nroff(1)</td>
<td>1093</td>
</tr>
<tr>
<td>od(1)</td>
<td>1096</td>
</tr>
<tr>
<td>on(1)</td>
<td>1102</td>
</tr>
<tr>
<td>optisa(1)</td>
<td>1104</td>
</tr>
<tr>
<td>pack(1)</td>
<td>1105</td>
</tr>
<tr>
<td>pagesize(1)</td>
<td>1108</td>
</tr>
<tr>
<td>pargs(1)</td>
<td>1109</td>
</tr>
<tr>
<td>passwd(1)</td>
<td>1111</td>
</tr>
<tr>
<td>paste(1)</td>
<td>1117</td>
</tr>
<tr>
<td>patch(1)</td>
<td>1120</td>
</tr>
<tr>
<td>pathchk(1)</td>
<td>1125</td>
</tr>
<tr>
<td>pathconv(1F)</td>
<td>1128</td>
</tr>
<tr>
<td>pax(1)</td>
<td>1130</td>
</tr>
<tr>
<td>perl(1)</td>
<td>1139</td>
</tr>
<tr>
<td>pfexec(1)</td>
<td>1146</td>
</tr>
<tr>
<td>pg(1)</td>
<td>1147</td>
</tr>
<tr>
<td>pgrep(1)</td>
<td>1152</td>
</tr>
<tr>
<td>pkginfo(1)</td>
<td>1156</td>
</tr>
<tr>
<td>pkgmk(1)</td>
<td>1158</td>
</tr>
<tr>
<td>pkgparam(1)</td>
<td>1161</td>
</tr>
<tr>
<td>pkgproto(1)</td>
<td>1163</td>
</tr>
<tr>
<td>pkgtrans(1)</td>
<td>1165</td>
</tr>
<tr>
<td>plimit(1)</td>
<td>1168</td>
</tr>
<tr>
<td>plot(1B)</td>
<td>1170</td>
</tr>
<tr>
<td>pmap(1)</td>
<td>1172</td>
</tr>
<tr>
<td>postdaisy(1)</td>
<td>1179</td>
</tr>
<tr>
<td>postdmd(1)</td>
<td>1181</td>
</tr>
<tr>
<td>postio(1)</td>
<td>1183</td>
</tr>
<tr>
<td>postmd(1)</td>
<td>1186</td>
</tr>
</tbody>
</table>
uptime(1) 1657
users(1B) 1658
uucp(1C) 1659
uuencode(1C) 1663
uuglist(1C) 1666
uustat(1C) 1667
uuto(1C) 1671
uux(1C) 1674
vacation(1) 1678
vc(1) 1681
vgrind(1) 1685
vi(1) 1689
vipw(1B) 1699
volcancel(1) 1700
volcheck(1) 1701
volmissing(1) 1703
volrmmount(1) 1704
vsig(1F) 1706
w(1) 1707
wait(1) 1709
wc(1) 1712
what(1) 1714
whatis(1) 1716
whereis(1B) 1717
which(1) 1719
who(1) 1720
whoami(1B) 1723
whocalls(1) 1724
whois(1) 1725
write(1) 1726
xargs(1) 1729
xgettext(1) 1734
xstr(1) 1736
yacc(1) 1738
yes(1) 1742
ypcat(1) 1743
ypmatch(1) 1744
yppassword(1) 1745
ypwhich(1) 1746

Index 1747
Preface

Both novice users and those familiar with the SunOS operating system can use online man pages to obtain information about the system and its features. A man page is intended to answer concisely the question “What does it do?” The man pages in general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the information it references:

- Section 1 describes, in alphabetical order, commands available with the operating system.
- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.
- Section 2 describes all of the system calls. Most of these calls have one or more error returns. An error condition is indicated by an otherwise impossible returned value.
- Section 3 describes functions found in various libraries, other than those functions that directly invoke UNIX system primitives, which are described in Section 2.
- Section 4 outlines the formats of various files. The C structure declarations for the file formats are given where applicable.
- Section 5 contains miscellaneous documentation such as character-set tables.
- Section 6 contains available games and demos.
- Section 7 describes various special files that refer to specific hardware peripherals and device drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls are also described.
Section 9 provides reference information needed to write device drivers in the kernel environment. It describes two device driver interface specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

Section 9F describes the kernel functions available for use by device drivers.

Section 9S describes the data structures used by drivers to share information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally follow this order, but include only needed headings. For example, if there are no bugs to report, there is no BUGS section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME

This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full path name is shown. Options and arguments are alphabetized, with single letter arguments first, and options with arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values can be provided for the previous argument, or the previous argument can be specified multiple times, for example, "filename ...".

| Separator. Only one of the arguments separated by this character can be specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.
PROTOCOL

This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION

This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, and functions are described under USAGE.

IOCTL

This section appears on pages in Section 7 only. Only the device class that supplies appropriate parameters to the ioctl(2) system call is called ioctl and generates its own heading. ioctl calls for a specific device are listed alphabetically (on the man page for that specific device). ioctl calls are used for a particular class of devices all of which have an io ending, such as mtic(7I).

OPTIONS

This section lists the command options with a concise summary of what each option does. The options are listed literally and in the order they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.

OPERANDS

This section lists the command operands and describes how they affect the actions of the command.

OUTPUT

This section describes the output – standard output, standard error, or output files – generated by the command.

RETURN VALUES

If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or -1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared void do not return values, so they are not discussed in RETURN VALUES.

ERRORS

On failure, most functions place an error code in the global variable errno indicating why they failed. This section lists alphabetically all error codes a function can generate and describes the conditions that cause each error. When more than
one condition can cause the same error, each condition is described in a separate paragraph under the error code.

USAGE

This section lists special rules, features, and commands that require in-depth explanations. The subsections listed here are used to explain built-in functionality:

- Commands
- Modifiers
- Variables
- Expressions
- Input Grammar

EXAMPLES

This section provides examples of usage or of how to use a command or function. Wherever possible a complete example including command-line entry and machine response is shown. Whenever an example is given, the prompt is shown as `example%`, or if the user must be superuser, `example#`. Examples are followed by explanations, variable substitution rules, or returned values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES

This section lists any environment variables that the command or function affects, followed by a brief description of the effect.

EXIT STATUS

This section lists the values the command returns to the calling program or shell and the conditions that cause these values to be returned. Usually, zero is returned for successful completion, and values other than zero for various error conditions.

FILES

This section lists all file names referred to by the man page, files of interest, and files created or required by commands. Each is followed by a descriptive summary or explanation.

ATTRIBUTES

This section lists characteristics of commands, utilities, and device drivers by defining the attribute type and its corresponding value. See attributes(5) for more information.

SEE ALSO

This section lists references to other man pages, in-house documentation, and outside publications.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTICS</td>
<td>This section lists diagnostic messages with a brief explanation of the condition causing the error.</td>
</tr>
<tr>
<td>WARNINGS</td>
<td>This section lists warnings about special conditions which could seriously affect your working conditions. This is not a list of diagnostics.</td>
</tr>
<tr>
<td>NOTES</td>
<td>This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.</td>
</tr>
<tr>
<td>BUGS</td>
<td>This section describes known bugs and, wherever possible, suggests workarounds.</td>
</tr>
</tbody>
</table>
Introduction
Intro – introduction to commands and application programs

This section describes, in alphabetical order, commands available with this operating system.

Pages of special interest are categorized as follows:

1B Commands found only in the SunOS/BSD Compatibility Package.

1C Commands for communicating with other systems.

1F Commands associated with Form and Menu Language Interpreter (FMLI).

1S Commands specific to the SunOS system.

See these sections of the man pages section 1M: System Administration Commands for more information.

- Section 1M in this manual for system maintenance commands.
- Section 4 of this manual for information on file formats.
- Section 5 of this manual for descriptions of publicly available files and miscellaneous information pages.
- Section 6 in this manual for computer demonstrations.

For tutorial information about these commands and procedures, see:

- Solaris Advanced User’s Guide

Unless otherwise noted, commands described in the SYNOPSIS section of a manual page accept options and other arguments according to the following syntax and should be interpreted as explained below.

name [-option...] [cmdarg...] where:

[] Surround an option or cmdarg that is not required.

... Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

{ } The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.

option (Always preceded by a “−”) noargletter... or, argletter optarg[,...]

noargletter A single letter representing an option without an option-argument. Note that more than one noargletter option can be grouped after one “−” (Rule 5, below).

argletter A single letter representing an option requiring an option-argument.
optarg An option-argument (character string) satisfying a preceding argletter. Note that groups of optarg following an argletter must be separated by commas, or separated by a tab or space character and quoted (Rule 8, below).

cmdarg Path name (or other command argument) not beginning with “−”, or “−” by itself indicating the standard input.

These command syntax rules are not followed by all current commands, but all new commands will obey them. getopt(1) should be used by all shell procedures to parse positional parameters and to check for legal options. It supports Rules 3-10 below. The enforcement of the other rules must be done by the command itself.

1. Command names (name above) must be between two and nine characters long.
2. Command names must include only lower-case letters and digits.
3. Option names (option above) must be one character long.
4. All options must be preceded by “−”.
5. Options with no arguments may be grouped after a single “−”.
6. The first option-argument (optarg above) following an option must be preceded by a tab or space character.
7. Option-arguments cannot be optional.
8. Groups of option-arguments following an option must either be separated by commas or separated by tab or space character and quoted (“−o xxx, z, yy or −o “xxx z yy”).
9. All options must precede operands (cmdarg above) on the command line.
10. “−−” may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.
12. The relative order of the operands (cmdarg above) may affect their significance in ways determined by the command with which they appear.
13. “−” preceded and followed by a space character should only be used to mean standard input.

ATTRIBUTES See attributes(5) for a discussion of the attributes listed in this section.

SEE ALSO getopt(1), wait(1), exit(2), getopt(3C), wait(3UCB), attributes(5)

DIAGNOSTICS Upon termination, each command returns two bytes of status, one supplied by the system and giving the cause for termination, and (in the case of “normal” termination) one supplied by the program [see wait(3UCB) and exit(2)]. The former byte is 0 for normal termination; the latter is customarily 0 for successful execution and non-zero to indicate troubles such as erroneous parameters, or bad or inaccessible data. It is called variously “exit code”, “exit status”, or “return code”, and is described only where special conventions are involved.
Some commands produce unexpected results when processing files containing null characters. These commands often treat text input lines as strings and therefore become confused upon encountering a null character (the string terminator) within a line.
User Commands
acctcom(1)

NAME acctcom – search and print process accounting files

SYNOPSIS acctcom [-abfhikmqrtv] [-C sec] [-e time] [-E time] [-g group]
 [-s time] [-S time] [-u user] [filename...]

DESCRIPTION The acctcom utility reads filenames, the standard input, or /var/adm/acct, in the
form described by acct(3HEAD) and writes selected records to standard output. Each
record represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE
(K), and optionally, F (the fork() /exec() flag: 1 for fork() without exec()),
STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS
TRANSFD, and BLOCKS READ (total blocks read and written).

A ‘#’ is prepended to the command name if the command was executed with
super-user privileges. If a process is not associated with a known terminal, a ‘?’ is
printed in the TTYNAME field.

If no filename is specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using ‘&’ in the shell), /var/adm/acct is read;
otherwise, the standard input is read.

If any filename arguments are given, they are read in their respective order. Each file is
normally read forward, that is, in chronological order by process completion time. The
file /var/adm/acct is usually the current file to be examined; a busy system may
need several such files of which all but the current file are found in
/var/adm/acctincr.

OPTIONS The following options are supported:

- a Show some average statistics about the processes selected. The
 statistics will be printed after the output records.
- b Read backwards, showing latest commands first. This option has
 no effect when standard input is read.
- f Print the fork() /exec() flag and system exit status columns in
 the output. The numeric output for this option will be in octal.
- h Instead of mean memory size, show the fraction of total available
 CPU time consumed by the process during its execution. This “hog
 factor” is computed as (total CPU time)/(elapsed time).
- i Print columns containing the I/O counts in the output.
- k Instead of memory size, show total kcore-minutes.
- m Show mean core size (the default).
- q Do not print any output records, just print the average statistics as
 with the -a option.
- r Show CPU factor (user-time/(system-time + user-time)).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes with total CPU time (system-time + user-time) exceeding sec seconds.
Select processes existing at or before time.
Select processes ending at or before time. Using the same time for both -S and -E shows the processes that existed at time.
Show only processes belonging to group. The group may be designated by either the group ID or group name.
Show only processes that exceed factor, where factor is the “hog factor” as explained in option -h above.
Show only processes transferring more characters than the cutoff number given by chars.
Show only processes belonging to terminal /dev/term/line.
Show only commands matching pattern that may be a regular expression as in regcmp(3C), except + means one or more occurrences.
Copy selected process records in the input data format to output-file; suppress printing to standard output.
Show only processes with CPU system time exceeding sec seconds.
Select processes existing at or after time, given in the format hr [:min [:sec :]].
Select processes starting at or after time.
Show only processes belonging to user. The user may be specified by a user ID, a login name that is then converted to a user ID, ‘#’ (which designates only those processes executed with superuser privileges), or ‘?’ (which designates only those processes associated with unknown user IDs).
/etc/group system group file
/etc/passwd system password file
/var/adm/pacctincr active processes accounting file
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>
acctcom(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO
ps(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M), su(1M), acct(2), regcmp(3C), acct(3HEAD), utmp(4), attributes(5)

System Administration Guide: Basic Administration

NOTES
acctcom reports only on processes that have terminated; use ps(1) for active processes.
adb(1)

NAME adb – general-purpose debugger

SYNOPSIS adb [-kv] [-I dir] [-P prompt] [-V mode] [object [core]]

DESCRIPTION The adb utility is an interactive, general-purpose debugger. It can be used to examine files and provides a controlled environment for the execution of programs.

The adb utility is now implemented as a link to the mdb(1) utility in Solaris 9. mdb(1) is a low-level debugging utility that can be used to examine user processes as well as the live operating system or operating system crash dumps. The new mdb(1) utility provides complete backwards compatibility with the existing syntax and features of adb, including support for processing adb macro files. The Solaris Modular Debugger Guide and mdb(1) man page describes the features of mdb, including its adb compatibility mode. This mode will be activated by default when the adb link is executed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdb (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWmdbx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO mdb(1), attributes(5)

Solaris Modular Debugger Guide

User Commands 33
addbib(1)

NAME | addbib – create or extend a bibliographic database
SYNOPSIS | addbib [-a] [-p promptfile] database
DESCRIPTION | When addbib starts up, answering y to the initial Instructions? prompt yields directions. Typing n (or RETURN) skips the directions. addbib then prompts for various bibliographic fields, reads responses from the terminal, and sends output records to database. A null response (just RETURN) means to leave out that field. A ‘-’ (minus sign) means to go back to the previous field. A trailing backslash allows a field to be continued on the next line. The repeating Continue? prompt allows the user either to resume by typing y (or RETURN), to quit the current session by typing n or q, or to edit database with any system editor (see vi(1), ex(1), ed(1)).

OPTIONS | The following options are supported:
-a | Suppresses prompting for an abstract. Asking for an abstract is the default. Abstracts are ended with a Control--D.
-p promptfile | Uses a new prompting skeleton, defined in promptfile. This file should contain prompt strings, a TAB, and the key-letters to be written to the database.

USAGE | The most common key-letters and their meanings are given below. addbib insulates you from these key-letters, since it gives you prompts in English, but if you edit the bibliography file later on, you will need to know this information.

<table>
<thead>
<tr>
<th>Key Letter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A</td>
<td>Author’s name</td>
</tr>
<tr>
<td>%B</td>
<td>Book containing article referenced</td>
</tr>
<tr>
<td>%C</td>
<td>City (place of publication)</td>
</tr>
<tr>
<td>%D</td>
<td>Date of publication</td>
</tr>
<tr>
<td>%E</td>
<td>Editor of book containing article referenced</td>
</tr>
<tr>
<td>%F</td>
<td>Footnote number or label (supplied by refer)</td>
</tr>
<tr>
<td>%G</td>
<td>Government order number</td>
</tr>
<tr>
<td>%H</td>
<td>Header commentary, printed before reference</td>
</tr>
<tr>
<td>%I</td>
<td>Issuer (publisher)</td>
</tr>
<tr>
<td>%J</td>
<td>Journal containing article</td>
</tr>
<tr>
<td>%K</td>
<td>Keywords to use in locating reference</td>
</tr>
<tr>
<td>%L</td>
<td>Label field used by -k option of refer</td>
</tr>
<tr>
<td>%M</td>
<td>Bell Labs Memorandum (undefined)</td>
</tr>
<tr>
<td>%N</td>
<td>Number within volume</td>
</tr>
<tr>
<td>%O</td>
<td>Other commentary, printed at end of reference</td>
</tr>
</tbody>
</table>
EXAMPLE 1 Editing the bibliography file

Except for A, each field should be given just once. Only relevant fields should be supplied.

%A Mark Twain
%T Life on the Mississippi
%I Penguin Books
%C New York
%D 1978

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO ed(1), ex(1), indxbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), vi(1), attributes(5)
alias(1)

NAME
alias, unalias - create or remove a pseudonym or shorthand for a command or series of commands

SYNOPSIS
/usr/bin/alias [alias-name [= string...]]
/usr/bin/unalias alias-name...
/usr/bin/unalias -a
csh alias [name [def]]
unalias pattern
ksh alias [-tx] [name [= value]...]
unalias name...

description
The alias and unalias utilities create or remove a pseudonym or shorthand term for a command or series of commands, with different functionality in the C-shell and Korn shell environments.

/usr/bin/alias
The alias utility creates or redefines alias definitions or writes the values of existing alias definitions to standard output. An alias definition provides a string value that replaces a command name when it is encountered.

An alias definition affects the current shell execution environment and the execution environments of the subshells of the current shell. When used as specified by this document, the alias definition will not affect the parent process of the current shell nor any utility environment invoked by the shell.

/usr/bin/unalias
The unalias utility removes the definition for each alias name specified. The aliases are removed from the current shell execution environment.

csh alias assigns def to the alias name. def is a list of words that may contain escaped history-substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the alias name is displayed along with its current definition. If both name and def are omitted, all aliases are displayed.

Because of implementation restrictions, an alias definition must have been entered on a previous command line before it can be used.

unalias discards aliases that match (filename substitution) pattern. All aliases may be removed by 'unalias *'.

ksh alias with no arguments prints the list of aliases in the form name=value on standard output. An alias is defined for each name whose value is given. A trailing space in value causes the next word to be checked for alias substitution. The -t flag is used to set and list tracked aliases. The value of a tracked alias is the full pathname corresponding to the given name. The value becomes undefined when the value of PATH is reset but the aliases remained tracked. Without the -t flag, for each name in

36 man pages section 1: User Commands • Last Revised 28 Sep 2001
the argument list for which no value is given, the name and value of the alias is printed. The -x flag is used to set or print exported aliases. An exported alias is defined for scripts invoked by name. The exit status is non-zero if a name is given, but no value, and no alias has been defined for the name.

The aliases given by the list of names may be removed from the alias list with unalias.

OPTIONS

The following option is supported by unalias:

- **a**

 Removes all alias definitions from the current shell execution environment.

ksh

The following option is supported by alias:

- **t**

 Sets and lists tracked aliases.

OPERANDS

The following operands are supported:

- **alias**

 alias-name

 Write the alias definition to standard output.

- **unalias**

 alias-name

 The name of an alias to be removed.

 alias-name=<string>

 Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions will be written to standard output.

OUTPUT

The format for displaying aliases (when no operands or only name operands are specified) is:

```
"%s=%s
"
```

name, value

The value string will be written with appropriate quoting so that it is suitable for reinput to the shell.

EXAMPLES

EXAMPLE 1 Modifying a command’s output

This example specifies that the output of the ls utility is columnated and more annotated:

```
example$ alias ls="ls -CF"
```

EXAMPLE 2 Repeating previous entries in the command history file

This example creates a simple “redo” command to repeat previous entries in the command history file:

```
example$ alias r='fc -s'
```

EXAMPLE 3 Specifying a command’s output options

This example provides that the du utility summarize disk output in units of 1024 bytes:
EXAMPLE 3 Specifying a command’s output options (Continued)

example% alias du=du −k

EXAMPLE 4 Dealing with an argument that is itself an alias name

This example sets up the nohup utility so that it can deal with an argument that is itself an alias name:

example% alias nohup="nohup "

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of alias and unalias: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

 0 Successful completion.

 >0 One of the alias-name operands specified did not have an alias definition, or an error occurred.

unalias >0 One of the alias-name operands specified did not represent a valid alias definition, or an error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), ksh(1), shell_builtins(1), attributes(5), environ(5), standards(5)
allocate(1)

NAME
allocate – device allocation

SYNOPSIS
allocate [-g] [-U uname] device
allocate [-s] [-U uname] -g dev-type
allocate [-s] [-U uname] -F device

DESCRIPTION
The allocate utility manages the ownership of devices through its allocation mechanism. It ensures that each device is used by only one qualified user at a time.

The device argument specifies the device to be manipulated. To preserve the integrity of the device’s owner, the allocate operation is executed on all the device special files associated with that device.

The argument dev-type is the device type to be operated on and can only be used with the -g option.

The default allocate operation allocates the device special files associated with device to the uid of the current process.

If the -F option is specified, the device cleaning program is executed when allocation is performed. This cleaning program is found in /etc/security/lib. The name of this program is found in the device_allocate(4) entry for the device in the dev-exec field.

Only authorized users may allocate a device. The required authorizations are specified in device_allocate(4).

OPTIONS
The following options are supported:

-g dev-type Allocates a non–allocated device with a device–type matching dev-type.
-s Silent. Suppresses any diagnostic output.
-F device Reallocates the device allocated to another user. This option is often used with -U to reallocate a specific device to a specific user. Only a user with the solaris.devices.revoke authorization is permitted to use this option.
-U uname Uses the user ID uname instead of the user ID of the current process when performing the allocate operation. Only a user with the solaris.devices.revoke authorization is permitted to use this option.

EXIT STATUS
The following exit values are returned:

non—zero An error occurred.

FILES
/etc/security/device_allocate
/etc/security/device_maps

User Commands 39
allocate(1)

/etc/security/dev/*
/etc/security/lib/*

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
deallocate(1), list_devices(1), bsmconv(1M), dminfo(1M),
device_allocate(4), device_maps(4), attributes(5)

NOTES

The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

/etc/security/dev, mkdevalloc(1M), and mkdevmaps(1M) may not be supported in a future release of the Solaris operating environment.
NAME
amt – run abstract machine test

SYNOPSIS
amt [-s]

DESCRIPTION
The amt command is for use in a Common Criteria security certified system. The command is used to verify that the low level functions necessary to enforce the object reuse requirements of the Controlled Access Protection Profile are working correctly. /usr/bin/amt is a shell script that executes tests specific to your system. For a 32-bit system, the tests run as a 32-bit application. For a 64-bit system, the tests run twice; once as a 32-bit application and once as a 64-bit application.

amt lists test results with a "pass" or "fail" for each test it performs, unless output is suppressed with the -s option.

OPTIONS
The following option is supported:

s Suppresses output.

EXIT STATUS
The following error values are returned:

0 All tests passed.
>0 Count of the number of tests that failed.
<0 Incorrect command line argument.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu (32-bit), SUNWcsxu (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
answerbook2(1)

NAME answerbook2 – online documentation system

SYNOPSIS /usr/dt/bin/answerbook2 [-h]

DESCRIPTION The AnswerBook2 server product is no longer included with Solaris or the Solaris Documentation CD products. Solaris documentation is now provided in HTML and PDF format on the Documentation CD and does not require the AnswerBook2 server to be viewed.

The answerbook2 utility opens the default web browser and displays an HTML page that shows a link to locally installed documentation, and, if the AnswerBook2 server has been defined, a link to AnswerBook2 collections.

To define a default AnswerBook2 server, use the environment variable, AB2_DEFAULTSERVER.

This functionality is also accessible through the AnswerBook2 option on the CDE front panel Help menu.

If you need an AnswerBook2 server, you can download the AnswerBook2 server software from http://www.sun.com.

OPTIONS The following option is supported:

- h Displays a usage statement.

ENVIRONMENT VARIABLES AB2_DEFAULTSERVER Fully-qualified URL that identifies the default AnswerBook2 server to use. For example:

http://imaserver.eng.sun.com:8888/

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>http://www.sun.com</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)

NOTES Use the online Help system to find out more about the AnswerBook2 product, once the web browser is opened and the AnswerBook2 library can be viewed.
The `appcert` utility examines an application’s conformance to the Solaris Application Binary Interface (ABI). The Solaris ABI defines the runtime library interfaces in Solaris that are safe and stable for application use. More specifically, `appcert` identifies any dependencies on unstable runtime interfaces, as well as certain other risks that could cause the product to fail to work on a subsequent release of Solaris.

`appcert` checks for:

- **Private symbol usage in Solaris libraries.** These are private symbols, that is, functions or data, that are not intended for developer consumption. They are interfaces that Solaris libraries use to call one another. These symbols might change their semantic behavior or even disappear altogether (so-called "demoted" symbols), so it is a good practice to make sure your application does not depend upon any of them.

- **Static linking.** In particular, this refers to static linking of archives `libc.a`, `libsocket.a`, and `libnsl.a`, that is, instead of dynamically linking the corresponding shared object `.so`’s. Because the semantics of private symbol calls from one Solaris library to another can change from one release to another, it is not a good practice to "hardwire" library code into your binary objects.

- **Unbound symbols.** These are library symbols (that is, functions or data) that the dynamic linker could not resolve when `appcert` was run. This might be an environment problem (for example, `LD_LIBRARY_PATH`) or a build problem (for example, not specifying `-l` and/or `-z defs` with compiling). They are flagged to point these problems out and in case a more serious problem is indicated.

An entire product can be readily examined by `appcert` (that is, if the product is a collection of many programs and supporting shared objects) by referring `appcert` to the directories where the product is installed.

To perform its task, `appcert` constructs a profile of interface dependencies for each object file within the product (whether an executable object or shared object), to determine all the Solaris system interfaces that are depended upon. (Notice that `appcert` uses the Solaris runtime linker to make this determination.) These dependency profiles are then compared to a definition of the Solaris ABI to identify any interfaces that are Private (unsafe and unstable for application-level use).

`appcert` generates a simple roll-up report that indicates which of the product’s components, if any, had liabilities and what those liabilities were. The report aids developers who are examining their product’s release-to-release stability.

Notice that `appcert` produces complete interface dependency information, both the Public (safe and stable) Solaris interfaces and the Private (non-ABI) interfaces. This information can also be examined for each product component, if you want.

IMPORTANT: `appcert` must run in the same environment in which the application being checked runs. See NOTES.
The following options are supported:

- **B** If `appcert` is run in "batch" mode, the output report will contain one line per binary, beginning with `PASS` if no problems were detected for the binary, `FAIL` if any problems were found, or `INC` if the binary could not be completely checked. Do not interpret these labels too literally. For example, `PASS` just means that none of the `appcert` warnings were triggered. These strings are flush left and so can be selected via `grep` "FAIL . . .", and so forth.

- **f infile** Specifies the file `infile` that contains a list of files (one per line) to check. This list is appended to the list determined from the command line operands (see OPERANDS below).

- **h** Prints out the usage information.

- **L** `appcert` examines your product for the presence of shared objects. If it finds some, it appends the directories they reside in to `LD_LIBRARY_PATH`. Use this flag to prevent `appcert` from doing this.

- **n** When searching directories for binaries to check, this option does not follow symbolic links. See `find(1)`.

- **S** Appends Solaris library directories (that is, `/usr/openwin/lib:/usr/dt/lib`) to `LD_LIBRARY_PATH`.

- **w working_dir** Identifies the directory in which to run the library components and create temporary files (default is `/tmp`).

The following operands are supported:

```
{ obj | dir } ... A complete list of objects and/or directories that contain the objects constituting the product to be checked. `appcert` recursively searches directories looking for object files; non-object files are ignored.
```

The following exit values are returned:

```
0    `appcert` ran successfully and found no potential binary stability problems.
1    `appcert` failed to run successfully.
2    Some of the objects checked have potential binary stability problems.
3    No binary objects were located that could be checked.
```

If the object file to be examined depends on libraries, those dependencies must be recorded in it (by using the compiler’s `-l` switch).

If the object file to be examined depends on other shared libraries, those libraries must be accessible via `LD_LIBRARY_PATH` or `RPATH` when `appcert` is run.
To check 64-bit applications, the machine must be running the 64-bit Solaris kernel. See `isalist(1)`. Also, the checks for static linking are currently not done on 64-bit applications.

`appcert` cannot examine:
- Object files that are completely or partially statically linked.
- Completely statically linked objects are reported as unstable.
- Executable files that do not have execute permission set.
- These are skipped. Shared objects without execute permission are not skipped.
- Object files that are setuid root.
- Due to limitations in `ldd(1)`, these are skipped. Copy and/or change the permissions to check them.
- Non-ELF file executables such as shell scripts.
- Non-C language interfaces to Solaris; for example, C++ and Java.

The code itself need not be in C as long as the calls to Solaris libraries are in C.

OUTPUT FILES

`appcert` records its findings in the following files in the working directory (`/tmp/appcert.?????` by default):

- **Index**
 - A mapping between checked binaries and the subdirectory in the working directory in which the output specific to that binary can be found.

- **Report**
 - A copy of the rollup report that was displayed on stdout when `appcert` was run.

- **Skipped**
 - A list of binaries that `appcert` was asked to check but had to skip, along with a brief reason why each was skipped.

In addition, there is per-object information in the subdirectories under `appcert.?????/objects/`, in the following files:

- **check.demoted_symbols**
 - A list of symbols suspected to be demoted Solaris symbols.

- **check.dynamic.private**
 - A list of private Solaris symbols to which the object makes direct bindings.

- **check.dynamic.public**
 - A list of public Solaris symbols to which the object makes direct bindings.
<table>
<thead>
<tr>
<th>OUTPUT MESSAGES</th>
<th>Private Symbol Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Symbols</td>
<td>Functions or data variables in a Solaris library that are not intended for developer or external use. These symbols are interfaces that the Solaris libraries use to call and communicate with one another. They are marked in <code>pvs(1)</code> output with the symbol version name "SUNWprivate". Private symbols can change their semantic behavior or even disappear altogether ("demoted" or "deprecated" symbols), so your application should not depend upon any of them.</td>
</tr>
<tr>
<td>Demoted Symbols</td>
<td>Functions or data variables in a Solaris library that were once private to that library and have been removed (or possibly scoped local to the library) in a later Solaris release. If your application directly calls one of these demoted symbols, it will fail to run (relocation error) on the release in which the symbol was removed and releases thereafter. In some rare cases, a demoted symbol will return in a later release, but nevertheless there are still some releases on which the application will not run. Sun Microsystems Inc. performed most of the library scoping in the transition from Solaris 2.5.1 to 2.6. This action was done to increase binary stability. By making these completely internal interfaces invisible (that is, they cannot be dynamically linked against), a developer cannot accidently or intentionally call these interfaces. For more information, see the Linker and Libraries Guide, in particular the chapter on versioning. This document may be found online at http://docs.sun.com.</td>
</tr>
<tr>
<td>Unbound Symbols</td>
<td>Library symbols (that is, functions or data) referenced by the application that the dynamic linker could not resolve when <code>appcert</code> was run. Note: <code>appcert</code> does not actually run your application, so some aspect of the environment that affects dynamic linking might not be set properly. Unbound symbols do not necessarily indicate a potential binary stability problem. They only mean that when <code>appcert</code> was run, the runtime dynamic linker could not resolve these symbols. Unbound symbols might be due to <code>LD_LIBRARY_PATH</code> not being correctly set. Make sure it is set, so that all of your binary objects can find all of the libraries they depend on (either your product’s own libraries, Solaris libraries, or those of a third party). Then re-run <code>appcert</code>.</td>
</tr>
</tbody>
</table>
You might find it useful to write a shell script that sets up the environment correctly and then runs `appcert` on the binaries you want to check.

Another common cause for unbound symbols is when a shared object under test has not recorded its dynamic dependencies, that is, at build time the `-l` switch was not supplied to the compiler and `ldd(1)`. So the shared object requires that the executables that link against it have the correct dependencies recorded.

Notice that such a shared object can either be linked in the standard way (that is, specified at an executable’s build time) or dynamically opened (for example, an executable calls `dlopen(3DL)` on the shared object sometimes when running). Either case can give rise to unbound symbols when `appcert` is run. The former can usually be resolved by setting `LD_LIBRARY_PATH` appropriately before running `appcert`. The latter (`dlopen`) is usually difficult to resolve. Under some circumstances, you might be able to set `LD_PRELOAD` appropriately to preload the needed libraries, but this procedure does not always work.

How do you know if the environment has been set up correctly so that there will be no unbound symbols? It must be set up so that running `ldd -r` on the binary yields no “file not found” or “symbol not found” errors. See `ld.so.1(1)` and `ldd(1)` for more information on dynamic linking.

In any event, `appcert` flags unbound symbols as a warning in case they might indicate a more serious problem. Unbound symbols can be an indicator of dependencies on demoted symbols (symbols that have been removed from a library or scoped local to it). Dependencies on demoted symbols will lead to serious binary stability problems.

However, setting up the environment properly should remove most unbound symbols. In general, it is good practice to record library dependencies at build time whenever possible because it helps make the binary object better defined and self-contained. Also recommended is using the `-zdefs` flag when building shared objects, to force the resolution of all symbols during compilation. See `ld(1)` for more information.

`appcert` runs `/bin/ldd -r` on each binary object to be tested. It sets the environment variable `LD_DEBUG=files,bindings`. (See `ldd(1)` and `ld.so.1(1)` for more information). If that command fails for some reason, `appcert` will have no dynamic symbol binding information and will find “no bindings”.

`appcert` can fail if any of the following is true:

- The binary object does not have read permission.
- The binary object is SUID or SGID and the user does not have sufficient privileges.
- The binary object is an executable without the execute permission bit set.
- The binary object is a 64-bit application, but the kernel running on the current machine supports only 32-bit applications.
- The binary object is completely statically linked.
The binary object has no library dependency information recorded.

Other cases exist as well (for example, out of memory). In general, this flag means that appcert could not completely examine the object due to permissions or environment. Try to modify the permissions or environment so that the dynamic bindings can be recorded.

An obsolete library is one whose use is deprecated and that might, in some future release, be removed from Solaris altogether. appcert flags these because applications depending on them might not run in future releases of Solaris. All interfaces, including Private ones, in an obsolete library are frozen and will not change.

Direct use of the symbols sys_errlist or sys_nerr presents a risk in which reference might be made past the end of the sys_errlist array. These symbols are deprecated in 32-bit versions of Solaris and are absent altogether in 64-bit versions. Use strerror(3C) instead.

The “strong” symbols (for example, _socket) associated with “weak” symbols (for example, socket) are reserved as private (their behavior could change in the future). Your application should only directly reference the weak symbol (usually the strong symbols begin with “_”).

Note: Under certain build environments, the strong/private symbol dependency gets recorded into your binary instead of the weak/public one, even though the source code doesn’t appear to reference the private symbol. Nevertheless, steps should be taken to trace down why this is occurring and fix the dependency.

appcert needs to run in the same environment in which the application being checked runs. Otherwise it might not be able to resolve references correctly to interfaces in the Solaris libraries. Take the following steps:

1. Make sure that LD_LIBRARY_PATH and any other aspects of the environment are set to whatever settings are used when the application is run. Also make sure that it contains the directories containing any non-Solaris shared objects that are part of the product, so that they can be found when referenced.

2. Make sure that all the binaries to be checked:
 - Are dynamically linked ELF objects
 - Have execute permission set on executables (this is not necessary for shared objects)
 - Are not SUID root (otherwise you will have to be root to check them; make non-SUID copies and check those if necessary).

You might find it useful to write a shell script that sets up the environment correctly and then runs appcert.

Some potential problems that can be encountered are:

- appcert reports unbound symbols that appear to be part of Solaris libraries.
This is probably caused when the application uses `dlopen(3DL)` to access a shared object that does not have its Solaris dependencies recorded. `appcert` cannot resolve symbol use in such cases, since the dynamic linker is never invoked on the shared object, and there is no other dependency information that could be used to resolve the Solaris symbol bindings. This can also occur with non-Solaris symbols.

To avoid this problem, make sure that when a shared object is built, its dependencies on Solaris libraries are explicitly recorded by using the `-l` option on the compile line (see `cc(1)` and `ld(1)`).

- `appcert` reports that the application uses a Solaris private symbol that is not referenced in the application’s source code.

 This problem is most likely due to static linking of a Solaris library that references that symbol. Since `appcert` uses the dynamic linker to resolve symbols, statically linked libraries appear to `appcert` to be part of the application code (which, in a sense, they are). This can also sometimes happen as a result of macro substitution in a Solaris header file.

 To avoid this problem, whenever possible do not statically link Solaris library archives into your application.

- `appcert` does not recognize a library as part of Solaris.

 Some obsolete Solaris libraries are so old that they were obsoleted before their symbols could be versioned. Consequently, `appcert` cannot recognize them as being part of Solaris.

BUGS

The use of the terms “public” and “private” as equivalent to “stable” and “unstable” is unfortunately somewhat confusing. In particular, experimental or evolving interfaces are public in the sense that they are documented and their use is encouraged. But they are unstable, because an application built with them might not run on subsequent releases. Thus, they are classified as private for `appcert`’s purposes until they are no longer evolving. Conversely, obsolete interfaces will eventually disappear, and so are unstable, even though they have been public and stable in the past and are still treated as public by `appcert`. Fortunately, these two situations are rare.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWapct</td>
</tr>
<tr>
<td>Interface stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

`cc(1), find(1), isalist(1), ld(1), ldd(1), ld.so.1(1), pvs(1), dlopen(3DL), strerror(3C), intro(4), attributes(5)`

(Linker and Libraries Guide)
apptrace(1)

NAME apptrace – trace application function calls to Solaris shared libraries

SYNOPSIS apptrace [-f] [-F [!] tracefromlist] [-T [!] tracetolist] [-o outputfile]
 [[-tv] [!] call ,...] command [command arguments]

DESCRIPTION The apptrace utility runs the executable program specified by command and traces
 all calls that the program command makes to the Solaris shared libraries. Tracing means
 that for each call the program makes, apptrace reports the name of the library
 interface called, the values of the arguments passed, and the return value.

 By default, apptrace traces calls directly from the executable object to any of the
 shared objects it depends on. Indirect calls (that is, calls made between shared objects
 that the executable depends upon) are not reported by default.

 Calls from or to additional shared objects may be traced using the -F or -T options
 (see below).

 The default reporting format is a single line per call, with no formatted printing of
 arguments passed by reference or of data structures.

 Formatted printing providing additional argument details is obtained using the -v
 option (see below).

 By default, every interface provided by a shared object is traced if called. However, the
 set of interfaces to be traced can be restricted, using the -t and/or -v options.

 Since it is generally possible to trace calls between any of the dynamic objects linked at
 runtime (the executable object and any of the shared objects depended upon), the
 report of each traced call gives the name of the object from which the call was made.

 apptrace traces all of the procedure calls that occur between dynamic objects via the
 procedure linkage table, so only those procedure calls which are bound via the table
 will be traced. See the Linker and Libraries Guide.

OPTIONS The following options are supported:

 -f Follows all children created by fork(2). This option
 will also cause the process id to be printed at the
 beginning of each line.

 -F [!] tracefromlist Traces calls from a comma-separated list of shared
 objects. Only calls from these shared objects will be
 traced. The default is to trace calls from the main
 executable only. Only the basename of the shared object
 is required. For example, libc will match /usr/lib/libc.so.1.
 Additionally, shell style wildcard characters are
 supported as described in fnmatch(5). A list preceded
 by a “!” defines a list of objects from which calls should
 not be traced. If the tracing of calls from command is
 required, then command must be a member of
 tracefromlist.
apptrace output will be directed to the output file. By default, apptrace output is placed on the stderr stream of the process being traced.

- Traces or excludes function calls. Those calls specified in the comma-separated list call are traced. If the list begins with a !, the specified function calls are excluded from the trace output. The default is -t *. The use of shell style wildcards is allowed.

- Traces calls to a comma-separated list of shared objects. The default is to trace calls to all shared objects. As above, the basename is all that is required and wildcarding is allowed. A list preceded by a ‘!’ denotes a list of objects to which calls should not be traced.

- Provides verbose, formatted output of the arguments and return values of the function calls specified (as above in the -t option). Unlike truss(1), calls named by the -v option do not have to be named by the -t option. For example, apptrace -v open is equivalent to truss -t open -v open.

EXAMPLES

EXAMPLE 1 Tracing the date command

```bash
% apptrace date
date → libc.so.1:atexit(func = 0xff3ba1c8) = 0x0
date → libc.so.1:atexit(func = 0x117e4) = 0x0
date → libc.so.1:setlocale(category = 0x6, locale = "") = "C"
date → libc.so.1:time(tloc = 0x21ecc) = 0x371397c3
date → libc.so.1:nl_langinfo(item = 0x3a) = "%a %b %e %T %Z %Y"
date → libc.so.1:localtime(clock = 0x21ecc) = 0xff03c928
```

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set

```bash
% apptrace -v 'gid*' id -a
id → libc.so.1:getgid() = 0xa
return = (gid_t) 10 (0xa)
id → libc.so.1:getegid() = 0xa
return = (gid_t) 10 (0xa)
id → libc.so.1:getgrgid(gid = 0xa) = 0x2238c
```
EXAMPLE 2 Tracing a specific set of interfaces with verbosity set (Continued)

gid = (gid_t) 10 (0xa)
return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223a0 "staff"
gr_passwd: (char *) 0x223a6 ""
gr_gid: (gid_t) 10 (0xa)
gr_mem: (char **) 0x2239c
}

id → libc.so.1:getgrgid(gid = 0xa) = 0x2238c

 gid = (gid_t) 10 (0xa)
 return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223a0 "staff"
gr_passwd: (char *) 0x223a6 ""
gr_gid: (gid_t) 10 (0xa)
gr_mem: (char **) 0x2239c
}

id → libc.so.1:getgrgid(gid = 0x3) = 0x2238c

 gid = (gid_t) 3 (0x3)
 return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223b4 "sys"
gr_passwd: (char *) 0x223b8 ""
gr_gid: (gid_t) 3 (0x3)
gr_mem: (char **) 0x2239c
}

id → libc.so.1:getgrgid(gid = 0x29) = 0x2238c

 gid = (gid_t) 41 (0x29)
 return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223a4 "opcom"
gr_passwd: (char *) 0x223aa ""
gr_gid: (gid_t) 41 (0x29)
gr_mem: (char **) 0x2239c
}

id → libc.so.1:getgrgid(gid = 0xe) = 0x2238c

 gid = (gid_t) 14 (0xe)
 return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223a0 "sysadmin"
gr_passwd: (char *) 0x223a9 ""
gr_gid: (gid_t) 14 (0xe)
gr_mem: (char **) 0x2239c
}

id → libc.so.1:getgrgid(gid = 0xd3) = 0x2238c

 gid = (gid_t) 211 (0xd3)
 return = (struct group *) 0x2238c (struct group) {
gr_name: (char *) 0x223a8 "test"
gr_passwd: (char *) 0x223ad ""
gr_gid: (gid_t) 211 (0xd3)
gr_mem: (char **) 0x2239c
}

uid=44013(georgn) gid=10(staff) groups=10(staff),3(sys),
EXAMPLE 2 Tracing a specific set of interfaces with verbosity set

(Continued)

41(opcom),14(sysadmin),211(test)

FILES

Basic runtime support for apptrace is provided by the link auditing feature of the Solaris runtime linker (ld.so.1(1)) and the apptrace command’s use of this facility relies on an auditing object (apptrace.so.1) kept in /usr/lib/abi.

In order to perform formatted printing of arguments when tracing calls (as selected by the -v option), apptrace needs to know the number and data types of the arguments supplied to the called interface. Special runtime support shared objects are provided which apptrace relies upon to perform formatted printing. A runtime support object is provided for each Solaris shared library, which contains an "interceptor" function for each interface within the shared library. These supporting shared objects are kept in /usr/lib/abi.apptrace has a simple algorithm to map from the name of a library interface to the name of an interceptor function in the library’s supporting verbose-tracing shared object. If an interceptor is not found in the library’s supporting tracing shared object, apptrace cannot determine either the number or data types of the arguments for that interface. In this case, apptrace uses a default output format for the call-tracing report (hex-formatted printing of the first three arguments).

LIMITATIONS

In general, apptrace cannot trace calls to functions accepting variable argument lists. There has been some clever coding in several specific cases to work around this limitation, most notably in the printf and scanf families.

Functions that attempt to probe the stack or otherwise extract information about the caller cannot be traced. Some examples are [gs]etcontext(), [sig]longjmp(), [sig]setjmp(), and vfork().

Functions such as exit(2) that do not return may also produce strange output. Also, functions that call other traced functions before returning will produce slightly garbled output.

For security reasons, only root can apptrace setuid/setgid programs.

Tracing functions whose usage requires the inclusion of varargs.h, such as vwprintw(3XCURSES) and vwscanw(3XCURSES), will not provide formatted printing of arguments.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcstl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcstlx (64-bit)</td>
</tr>
</tbody>
</table>
apptrace(1)

SEE ALSO ld.so.1(1), truss(1), vwprintw(3XCURSES), vwscanw(3XCURSES),
attributes(5), fnmatch(5)

Linker and Libraries Guide
apropos – locate commands by keyword lookup

SYNOPSIS

apropos keyword...

DESCRIPTION

The `apropos` utility displays the man page name, section number, and a short description for each man page whose `NAME` line contains `keyword`. This information is contained in the `/usr/share/man/windex` database created by `catman(1M)`. If `catman(1M)` was not run, or was run with the `-n` option, `apropos` fails. Each word is considered separately and the case of letters is ignored. Words which are part of other words are considered; for example, when looking for `‘compile’`, `apropos` finds all instances of `‘compiler’` also.

`apropos` is actually just the `-k` option to the `man(1)` command.

EXAMPLES

EXAMPLE 1 To find a man page whose `NAME` line contains a keyword

Try

```
example$ apropos password
```

and

```
example$ apropos editor
```

If the line starts `‘filename(section) . . .’` you can run

```
man -s section filename
```
to display the man page for `filename`.

EXAMPLE 2 To find the man page for the subroutine `printf()`

Try

```
example$ apropos format
```

and then

```
example$ man -s 3s printf
```
to get the manual page on the subroutine `printf()`.

FILES

`/usr/share/man/windex` table of contents and keyword database

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

`man(1), whatis(1), catman(1M), attributes(5)`
/usr/share/man/windex: No such file or directory
This database does not exist. catman(1M) must be run to create it.
The `ar` utility maintains groups of files combined into a single archive file. Its main use is to create and update library files. However, it can be used for any similar purpose. The magic string and the file headers used by `ar` consist of printable ASCII characters. If an archive is composed of printable files, the entire archive is printable.

When `ar` creates an archive, it creates headers in a format that is portable across all machines. The portable archive format and structure are described in detail in `ar(3HEAD)`. The archive symbol table (described in `ar(3HEAD)`) is used by the link editor `ld(1)` to effect multiple passes over libraries of object files in an efficient manner. An archive symbol table is only created and maintained by `ar` when there is at least one object file in the archive. The archive symbol table is in a specially named file that is always the first file in the archive. This file is never mentioned or accessible to the user. Whenever the `ar` command is used to create or update the contents of such an archive, the symbol table is rebuilt. The `-s` option described below will force the symbol table to be rebuilt.

The following options are supported:

- `-a` Positions new files in `archive` after the file named by the `posname` operand.
- `-b` Positions new files in `archive` before the file named by the `posname` operand.
- `-c` Suppresses the diagnostic message that is written to standard error by default when `archive` is created.
Description

- `C` Prevents extracted files from replacing like-named files in the file system. This option is useful when `-T` is also used to prevent truncated file names from replacing files with the same prefix.

- `d` Deletes one or more files from archive.

- `i` Positions new files in archive before the file named by the `posname` operand (equivalent to `-b`).

- `m` Moves files. If `-a`, `-b`, or `-i` with the `posname` operand are specified, moves files to the new position; otherwise, moves files to the end of archive.

- `p` Prints the contents of files in archive to standard output. If no files are specified, the contents of all files in archive will be written in the order of the archive.

- `q` Quickly appends files to the end of archive. Positioning options `-a`, `-b`, and `-i` are invalid. The command does not check whether the added files are already in archive. This option is useful to avoid quadratic behavior when creating a large archive piece-by-piece.

- `r` Replaces or adds files in archive. If archive does not exist, a new archive file will be created and a diagnostic message will be written to standard error (unless the `-c` option is specified). If no files are specified and the archive exists, the results are undefined. Files that replace existing files will not change the order of the archive. If the `-u` option is used with the `-r` option, then only those files with dates of modification later than the archive files are replaced. If the `-a`, `-b`, or `-i` option is used, then the `posname` argument must be present and specifies that new files are to be placed after (`-a`) or before (`-b` or `-i`) `posname`; otherwise the new files are placed at the end.

- `s` Forces the regeneration of the archive symbol table even if `ar` is not invoked with an option that will modify the archive contents. This command is useful to restore the archive symbol table after the `strip(1)` command has been used on the archive.

- `t` Prints a table of contents of archive. The files specified by the `file` operands will be included in the written list. If no file operands are specified, all files in archive will be included in the order of the archive.

- `T` Allows file name truncation of extracted files whose archive names are longer than the file system can support. By default, extracting a file with a name that is too long is an error; a diagnostic message will be written and the file will not be extracted.

- `u` Updates older files. When used with the `-r` option, files within archive will be replaced only if the corresponding file has a modification time that is at least as new as the modification time of the file within archive.

- `V` Prints its version number on standard error.

- `/usr/ccs/bin/ar` Gives verbose output. When used with the option characters `-d`, `-r`, or `-x`, writes a detailed file-by-file description of the archive creation and the
constituent files, and maintenance activity. When used with -p, writes the name of the file to the standard output before writing the file itself to the standard output. When used with -t, includes a long listing of information about the files within the archive. When used with -x, prints the filename preceding each extraction. When writing to an archive, a message is written to the standard error.

/usr/xpg4/bin/ar

-\texttt{v} \quad \text{Same as /usr/ccs/bin/ar version, except when writing to an archive, no message is written to the standard error.} \\
-\texttt{x} \quad \text{Extracts the files named by the file operands from archive. The contents of archive will not be changed. If no file operands are given, all files in archive will be extracted. If the file name of a file extracted from archive is longer than that supported in the directory to which it is being extracted, the results are undefined. The modification time of each file extracted will be set to the time file is extracted from archive.}

OPERANDS The following operands are supported:

\begin{itemize}
\item \texttt{archive} \quad A path name of the archive file.
\item \texttt{file} \quad A path name. Only the last component will be used when comparing against the names of files in the archive. If two or more file operands have the same last path name component (basename(1)), the results are unspecified. The implementation's archive format will not truncate valid file names of files added to or replaced in the archive.
\item \texttt{posname} \quad The name of a file in the archive file, used for relative positioning; see options -m and -r.
\end{itemize}

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of ar: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

\begin{itemize}
\item \texttt{TMPDIR} \quad Determine the pathname that overrides the default directory for temporary files, if any.
\item \texttt{TZ} \quad Determine the timezone used to calculate date and time strings written by ar -tv. If TZ is unset or null, an unspecified default timezone shall be used.
\end{itemize}

EXIT STATUS The following exit values are returned:

\begin{itemize}
\item \texttt{0} \quad Successful completion.
\item \texttt{>0} \quad An error occurred.
\end{itemize}

ATTRIBUTES See attributes(5) for descriptions of the following attributes:
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

By convention, archives are suffixed with the characters .a.
NAME
arch – display the architecture of the current host

SYNOPSIS
arch [-k | archname]

DESCRIPTION
arch displays the application architecture of the current host system. Due to extensive
historical use of this command without any options, all SunOS 5.x SPARC based
systems will return “sun4” as their application architecture. Use of this command is
discouraged; see NOTES section below.

Systems can be broadly classified by their architectures, which define what executables
will run on which machines. A distinction can be made between kernel architecture
and application architecture (or, commonly, just “architecture”). Machines that run
different kernels due to underlying hardware differences may be able to run the same
application programs.

OPTIONS
-k
Display the kernel architecture, such as sun4m, sun4c, and so forth. This
defines which specific SunOS kernel will run on the machine, and has
implications only for programs that depend on the kernel explicitly (for
example, ps(1)).

OPERANDS
The following operand is supported:

archname
Use archname to determine whether the application binaries for
this application architecture can run on the current host system.
The archname must be a valid application architecture, such as
sun4, i86pc, and so forth.

If application binaries for archname can run on the current host
system, TRUE (0) is returned; otherwise, FALSE (1) is returned.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
mach(1), ps(1), uname(1), attributes(5)

NOTES
This command is provided for compatibility with previous releases and its use is
discouraged. Instead, the uname command is recommended. See uname(1) for usage
information.
as(1)

NAME as – assembler

SYNOPSIS

 [-Dname=def] [-I path] [-U name...] [-q] [-s] [-S [a | b | c | l | A | B | C | L]] [-T] [-V]
 [-xarch=v7 | -xarch=v8 | -xarch=v8a | -xarch=v8plus | -xarch=v8plusa | -xarch=v8pluslc | -xF] filename...

 [-Dname=def] [-I path] [-U name...] [-q] [-s] [-S [a | b | c | l | A | B | C | L]] [-T] [-V] filename...

DESCRIPTION The as command creates object files from assembly language source files.

OPTIONS The following flags are common to both SPARC and x86. They may be specified in any order:

- b Generates extra symbol table information for the Sun SourceBrowser.

- K PIC Generates position-independent code.

- L Saves all symbols, including temporary labels that are normally discarded to save space, in the ELF symbol table.

- m Runs the m4(1) macro processor on the input to the assembler.

- n Suppresses all the warnings while assembling.

- o outfile Puts the output of the assembly in outfile. By default, the output file name is formed by removing the .s suffix, if there is one, from the input file name and appending a .o suffix.

- P Runs cpp(1), the C preprocessor, on the files being assembled. The preprocessor is run separately on each input file, not on their concatenation. The preprocessor output is passed to the assembler.

- D Dname When the - P option is in effect, these options are passed to the cpp(1) preprocessor without interpretation by the as command; otherwise, they are ignored.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Ipath</td>
<td>When the -P option is in effect, this option is passed to the <code>cpp</code>(1) preprocessor without interpretation by the <code>as</code> command; otherwise, it is ignored.</td>
</tr>
<tr>
<td>-Uname</td>
<td>When the -P option is in effect, this option is passed to the <code>cpp</code>(1) preprocessor without interpretation by the <code>as</code> command; otherwise, it is ignored.</td>
</tr>
<tr>
<td>-Qy / n</td>
<td>If y is specified, this option produces the "assembler version" information in the comment section of the output object file. If n is specified, the information is suppressed.</td>
</tr>
<tr>
<td>-s</td>
<td>Places all stabs in the <code>.stabs</code> section. By default, stabs are placed in <code>.stabs.excl</code> sections, which are stripped out by the static linker, <code>ld</code>(1), during final execution. When the -s option is used, stabs remain in the final executable because <code>.stab</code> sections are not stripped by the static linker.</td>
</tr>
</tbody>
</table>
| -S[a|b|c|l|A|B|C|L] | Produces a disassembly of the emitted code to the standard output. Adding each of the following characters to the -S option produces:
| a | disassembling with address |
| b | disassembling with "bof" |
| c | disassembling with comments |
| l | disassembling with line numbers |
| Capital letters turn the switch off for the corresponding option. |
| -T | This is a migration option for 4.x assembly files to be assembled on 5.x systems. With this option, the symbol names in 4.x assembly files will be interpreted as 5.x symbol names. |
| -V | Writes the version number of the assembler being run on the standard error output. |
| -xF | Allows function reordering by the Performance Analyzer. If you compile with the -xF option, and then run the Performance Analyzer, you can generate a map file that shows an optimized order for the functions. The subsequent link to build the executable file can be directed to use that map file by using the linker -M `mapfile` option. It places each function from the executable file into a separate section. |
Options for SPARC only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-q</code></td>
<td>Performs a quick assembly. When the <code>-q</code> option is used, many error checks are not performed. Note: This option disables many error checks. Use of this option to assemble handwritten assembly language is not recommended.</td>
</tr>
<tr>
<td><code>-xarch=v7</code></td>
<td>This option instructs the assembler to accept instructions defined in the SPARC version 7 (V7) architecture. The resulting object code is in ELF format.</td>
</tr>
<tr>
<td><code>-xarch=v8</code></td>
<td>This option instructs the assembler to accept instructions defined in the SPARC-V8 architecture, less the quad-precision floating-point instructions. The resulting object code is in ELF format.</td>
</tr>
</tbody>
</table>
| `-xarch=v8a` | This option instructs the assembler to accept instructions defined in the SPARC-V8 architecture, less the quad-precision floating-point instructions and less the `fsmuld` instruction. The resulting object code is in ELF format. This is the default choice of the `-xarch=option`.
| `-xarch=v8plus` | This option instructs the assembler to accept instructions defined in the SPARC-V9 architecture, less the quad-precision floating-point instructions. The resulting object code is in ELF format. It will not execute on a Solaris V8 system (a machine with a V8 processor). It will execute on a Solaris V8+ system. This combination is a SPARC 64-bit processor and a 32-bit OS. |
| `-xarch=v8plusa` | This option instructs the assembler to accept instructions defined in the SPARC-V9 architecture, less the quad-precision floating-point instructions, plus the instructions in the Visual Instruction Set (VIS). The resulting object code is in V8+ ELF format. It will not execute on a Solaris V8 system (a machine with a V8 processor). It will execute on a Solaris V8+ system. |
| `-xarch=v9` | This option limits the instruction set to the SPARC-V9 architecture. The resulting `.o` object files are in 64-bit ELF format and can only be linked with other object files in the same format. The resulting executable can only be run on a 64-bit SPARC processor running 64-bit Solaris with the 64-bit kernel. |
| `-xarch=v9a` | This option limits the instruction set to the SPARC-V9 architecture, adding the Visual Instruction Set (VIS) and extensions specific to UltraSPARC processors. The resulting `.o` object files are in 64-bit ELF format and can only be linked with other object files in the same format. The resulting executable can only be run on a 64-bit SPARC processor running 64-bit Solaris with the 64-bit kernel. |
only be linked with other object files in the same format. The resulting executable can only be run on a 64-bit SPARC processor running 64-bit Solaris with the 64-bit kernel.

OPERANDS

The following operand is supported:

```
filename
```

Assembly language source file

ENVIRONMENT VARIABLES

```
TMPDIR
```

The `as` command normally creates temporary files in the directory `/tmp`. Another directory may be specified by setting the environment variable `TMPDIR` to the chosen directory. (If `TMPDIR` is not a valid directory, then `as` will use `/tmp`).

FILES

By default, `as` creates its temporary files in `/tmp`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO

`cc(1B)`, `cpp(1),ld(1), m4(1), nm(1), strip(1), tmpnam(3C), a.out(4), attributes(5)`

`dbx` and analyzer manual pages available with Forte Developer

NOTES

If the `-m` option, which invokes the `m4(1)` macro processor, is used, keywords for `m4` cannot be used as symbols (variables, functions, labels) in the input file, since `m4` cannot determine which keywords are assembler symbols and which keywords are real `m4` macros.

Whenever possible, access the assembler through a compilation system interface program such as `cc(1B)`.

All undefined symbols are treated as global.
asa(1)

NAME
asa – convert FORTRAN carriage-control output to printable form

SYNOPSIS
asa [-f] [file...]

DESCRIPTION
The asa utility will write its input files to standard output, mapping carriage-control characters from the text files to line-printer control sequences.

The first character of every line will be removed from the input, and the following actions will be performed.

If the character removed is:
SPACE The rest of the line will be output without change.
0 It is replaced by a newline control sequence followed by the rest of the input line.
1 It is replaced by a newpage control sequence followed by the rest of the input line.
+ It is replaced by a control sequence that causes printing to return to the first column of the previous line, where the rest of the input line is printed.

For any other character in the first column of an input line, asa skips the character and prints the rest of the line unchanged.

If asa is called without providing a filename, the standard input is used.

OPTIONS
The following option is supported:
- f Start each file on a new page.

OPERANDS
The following operand is supported:
file A pathname of a text file used for input. If no file operands are specified, or ’-’ is specified, then the standard input will be used.

EXAMPLES
The command
a.out | asa | lp

converts output from a.out to conform with conventional printers and directs it through a pipe to the printer.

The command
asa output

shows the contents of file output on a terminal as it would appear on a printer.

The following program is used in the next two examples:

write(*,'(" Blank")')
write(*,'("0Zero ")')
write(*,'("Plus ")')
Both of the following examples produce two pages of output:

Page 1:
Blank
ZeroPlus

Page 2:
One

EXAMPLE 1 Using actual files

```
a.out > MyOutputFile
asa < MyOutputFile | lp
```

EXAMPLE 2 Using only pipes

```
a.out | asa | lp
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `asa`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- 0 All input files were output successfully.
- >0 An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

lp(1), attributes(5), environ(5), standards(5)
at(1)

NAME
at, batch – execute commands at a later time

SYNOPSIS
at [-c | -k | -s] [-m] [-f file] [-p project] [-q queue name] -t time
at [-c | -k | -s] [-m] [-f file] [-p project] [-q queue name] timespec...
at -l [-p project] [-q queue name] [at_job_id ...]
batch [-p project]

DESCRIPTION
at
The at utility reads commands from standard input and groups them together as an
at-job, to be executed at a later time.

The at-job will be executed in a separate invocation of the shell, running in a separate
process group with no controlling terminal, except that the environment variables,
current working directory, file creation mask (see umask(1)), and system resource
limits (for sh and ksh only, see ulimit(1)) in effect when the at utility is executed
will be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time are written to standard
error. The at_job_id is an identifier that will be a string consisting solely of
alphanumeric characters and the period character. The at_job_id is assigned by the
system when the job is scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job's standard output and standard error
are described under the -m option.

Users are permitted to use at and batch (see below) if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only a user with the solaris.jobs.user
authorization is allowed to submit a job. If only at.deny exists and is empty, global
usage is permitted. The at.allow and at.deny files consist of one user name per
line.

cron and at jobs will be not be executed if the user's account is locked. Only accounts
which are not locked as defined in shadow(4) will have their job or process executed.

batch
The batch utility reads commands to be executed at a later time. It is the equivalent
of the command:

at -q b -m now
where queue b is a special at queue, specifically for batch jobs. Batch jobs will be
submitted to the batch queue for immediate execution.

OPTIONS
The following options are supported. If the -c, -k, or -s options are not specified, the
SHELL environment variable by default determines which shell to use.

-c C shell. csh(1) is used to execute the at-job.
at(1)

-# Korn shell. ksh(1) is used to execute the at-job.
-# Bourne shell. sh(1) is used to execute the at-job.
-# file Specifies the path of a file to be used as the source of the at-job, instead of standard input.
-# (The letter ell.) Reports all jobs scheduled for the invoking user if no at_job_id operands are specified. If at_job_ids are specified, reports only information for these jobs.
-# Sends mail to the invoking user after the at-job has run, announcing its completion. Standard output and standard error produced by the at-job will be mailed to the user as well, unless redirected elsewhere. Mail will be sent even if the job produces no output. If -m is not used, the job’s standard output and standard error will be provided to the user by means of mail, unless they are redirected elsewhere; if there is no such output to provide, the user is not notified of the job’s completion.
-# project Specifies under which project the at or batch job will be run. When used with the -l option, limits the search to that particular project. Values for project will be interpreted first as a project name, and then as a possible project ID, if entirely numeric. By default, the user’s current project is used.
-# queue Specifies in which queue to schedule a job for submission. When used with the -l option, limits the search to that particular queue. Values for queue are limited to the lower case letters a through z. By default, at-jobs will be scheduled in queue a. In contrast, queue b is reserved for batch jobs. Since queue c is reserved for cron jobs, it can not be used with the -q option.
-# at_job_id Removes the jobs with the specified at_job_id operands that were previously scheduled by the at utility.
-# time Submits the job to be run at the time specified by the time option-argument, which must have the format as specified by the touch(1) utility.

OPERANDS

The following operands are supported:

at_job_id The name reported by a previous invocation of the at utility at the time the job was scheduled.
timespec Submit the job to be run at the date and time specified. All of the timespec operands are interpreted as if they were separated by space characters and concatenated. The date and time are
interpreted as being in the timezone of the user (as determined by the TZ variable), unless a timezone name appears as part of time below.

In the "C" locale, the following describes the three parts of the time specification string. All of the values from the LC_TIME categories in the "C" locale are recognized in a case-insensitive manner.

time

The time can be specified as one, two or four digits. One- and two-digit numbers are taken to be hours, four-digit numbers to be hours and minutes. The time can alternatively be specified as two numbers separated by a colon, meaning hour:minute. An AM/PM indication (one of the values from the am_pm keywords in the LC_TIME locale category) can follow the time; otherwise, a 24-hour clock time is understood. A timezone name of GMT, UCT, or ZULU (case insensitive) can follow to specify that the time is in Coordinated Universal Time. Other timezones can be specified using the TZ environment variable. The time field can also be one of the following tokens in the "C" locale:

midnight Indicates the time 12:00 am (00:00).
noon Indicates the time 12:00 pm.
now Indicate the current day and time.
Invoking at now will submit an at-job for potentially immediate execution (that is, subject only to unspecified scheduling delays).

date

An optional date can be specified as either a month name (one of the values from the mon or abmon keywords in the LC_TIME locale category) followed by a day number (and possibly year number preceded by a comma) or a day of the week (one of the values from the day or abday keywords in the LC_TIME locale category). Two special days are recognized in the "C" locale:

today Indicates the current day.
tomorrow Indicates the day following the current day.
If no date is given, today is assumed if the given time is greater than the current time, and tomorrow is assumed if it is less. If the given month is less than the current month (and no year is given), next year is assumed.

increment

The optional increment is a number preceded by a plus sign (+) and suffixed by one of the following: minutes, hours, days, weeks, months, or years. (The singular forms will be also accepted.) The keyword next is equivalent to an increment number of + 1. For example, the following are equivalent commands:

`at 2pm + 1 week`
`at 2pm next week`

USAGE

The format of the at command line shown here is guaranteed only for the "C" locale. Other locales are not supported for midnight, noon, now, mon, abmon, day, abday, today, tomorrow, minutes, hours, days, weeks, months, years, and next.

Since the commands run in a separate shell invocation, running in a separate process group with no controlling terminal, open file descriptors, traps and priority inherited from the invoking environment are lost.

EXAMPLES

at

EXAMPLE 1 Typical sequence at a terminal

This sequence can be used at a terminal:

```
$ at -m 0730 tomorrow
sort < file > outfile
<EOT>
```

EXAMPLE 2 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a command procedure (the sequence of output redirection specifications is significant):

```
$ at now + 1 hour <<!
diff file1 file2 2>&1 > outfile | mailx mygroup
```

EXAMPLE 3 Self-rescheduling a job

To have a job reschedule itself, at can be invoked from within the at-job. For example, this "daily-processing" script named my.daily will run every day (although crontab is a more appropriate vehicle for such work):
EXAMPLE 3 Self-rescheduling a job (Continued)

my.daily runs every day
at now tomorrow < my.daily
daily-processing

EXAMPLE 4 Various time and operand presentations

The spacing of the three portions of the "C" locale timespec is quite flexible as long as there are no ambiguities. Examples of various times and operand presentations include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ 1day"
at 5 pm FRIday
at '17 utc+
 30minutes'

EXAMPLE 5 Typical sequence at a terminal

This sequence can be used at a terminal:

$ batch
sort <file >outfile
<EOT>

EXAMPLE 6 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a command procedure (the sequence of output redirection specifications is significant):

$ batch <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of at and batch: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, NLSPATH, and LC_TIME.

DATEMSK If the environment variable DATEMSK is set, at will use its value as the full path name of a template file containing format strings. The strings consist of format specifiers and text characters that are used to provide a richer set of allowable date formats in different languages by appropriate settings of the environment variable LANG or LC_TIME. The list of allowable format specifiers is located in the getdate(3C) manual page. The formats described in the OPERANDS section for the time and date arguments, the special names noon, midnight, now, next, today, tomorrow, and the increment argument are not recognized when DATEMSK is set.
SHELL

Determine a name of a command interpreter to be used to invoke the at-job. If the variable is unset or NULL, sh will be used. If it is set to a value other than sh, the implementation will use that shell; a warning diagnostic will be printed telling which shell will be used.

TZ

Determine the timezone. The job will be submitted for execution at the time specified by timespec or -t time relative to the timezone specified by the TZ variable. If timespec specifies a timezone, it will override TZ. If timespec does not specify a timezone and TZ is unset or NULL, an unspecified default timezone will be used.

EXIT STATUS

The following exit values are returned:

0 The at utility successfully submitted, removed or listed a job or jobs.

>0 An error occurred, and the job will not be scheduled.

FILES

/usr/lib/cron/at.allow names of users, one per line, who are authorized access to the at and batch utilities

/usr/lib/cron/at.deny names of users, one per line, who are denied access to the at and batch utilities

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>at</th>
<th>ATTACHMENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Not enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>batch</th>
<th>ATTACHMENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

auths(1), crontab(1), csh(1), date(1), ksh(1), sh(1), touch(1), ulimit(1), umask(1), cron(1M), getdate(3C), auth_attr(4), shadow(4), attributes(5), environ(5), standards(5)

NOTES

Regardless of queue used, cron(1M) has a limit of 100 jobs in execution at any time.
There can be delays in cron at job execution. In some cases, these delays can compound to the point that cron job processing appears to be hung. All jobs will be executed eventually. When the delays are excessive, the only workaround is to kill and restart cron.
NAME
atq – display the jobs queued to run at specified times

SYNOPSIS
atq [-c] [-n] [username...]

DESCRIPTION
The atq utility displays the at jobs queued up for the current user. at(1) is a utility that allows users to execute commands at a later date. If invoked by a user with the solaris.jobs.admin authorization, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When an authorized user invokes atq without specifying username, the entire queue is displayed; when a username is specified, only those jobs belonging to the named user are displayed.

OPTIONS
The following options are supported:

-
-c Displays the queued jobs in the order they were created (that is, the time that the at command was given).

-
-n Displays only the total number of jobs currently in the queue.

FILES
/var/spool/cron/atjobs spool area for at jobs.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
at(1), atrm(1), auths(1), cron(1M), auth_attr(4), attributes(5)
NAME

atrm – remove jobs spooled by at or batch

SYNOPSIS

atrm [-afi] [[job #] [user...]]

DESCRIPTION

The atrm utility removes delayed-execution jobs that were created with the at(1) command, but have not yet executed. The list of these jobs and associated job numbers can be displayed by using atq(1).

atrm removes each job-number you specify, and/or all jobs belonging to the user you specify, provided that you own the indicated jobs.

You can only remove jobs belonging to other users if you have solaris.jobs.admin privileges.

OPTIONS

The following options are supported:

-a All. Removes all unexecuted jobs that were created by the current user. If invoked by the privileged user, the entire queue will be flushed.

-f Force. All information regarding the removal of the specified jobs is suppressed.

-i Interactive. atrm asks if a job should be removed. If you respond with a y, the job will be removed.

FILES

/var/spool/cron/atjobs spool area for at jobs

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

at(1), atq(1), auths(1), cron(1M), auth_attr(4), attributes(5)
audioconvert(1)

NAME
audioconvert – convert audio file formats

SYNOPSIS
audioconvert [-pF] [-f outfmt] [-o outfile] [[-i infmt] [file...]] ...

DESCRIPTION
audioconvert converts audio data between a set of supported audio encodings and file formats. It can be used to compress and decompress audio data, to add audio file headers to raw audio data files, and to convert between standard data encodings, such as -law and linear PCM.

If no filenames are present, audioconvert reads the data from the standard input stream and writes an audio file to the standard output. Otherwise, input files are processed in order, concatenated, and written to the output file.

Input files are expected to contain audio file headers that identify the audio data format. If the audio data does not contain a recognizable header, the format must be specified with the -i option, using the rate, encoding, and channels keywords to identify the input data format.

The output file format is derived by updating the format of the first input file with the format options in the -f specification. If -p is not specified, all subsequent input files are converted to this resulting format and concatenated together. The output file will contain an audio file header, unless format=raw is specified in the output format options.

Input files may be converted in place by using the -p option. When -p is in effect, the format of each input file is modified according to the -f option to determine the output format. The existing files are then overwritten with the converted data.

The file(1) command decodes and prints the audio data format of Sun audio files.

OPTIONS
The following options are supported:

-p In Place: The input files are individually converted to the format specified by the -f option and rewritten. If a target file is a symbolic link, the underlying file will be rewritten. The -o option may not be specified with -p.

-F Force: This option forces audioconvert to ignore any file header for input files whose format is specified by the -i option. If -F is not specified, audioconvert ignores the -i option for input files that contain valid audio file headers.

-f outfmt Output Format: This option is used to specify the file format and data encoding of the output file. Defaults for unspecified fields are derived from the input file format. Valid keywords and values are listed in the next section.

-o outfile Output File: All input files are concatenated, converted to the output format, and written to the named output file. If -o and -p are not specified, the concatenated output is written to the standard output. The -p option may not be specified with -o.
Input Format: This option is used to specify the data encoding of raw input files. Ordinarily, the input data format is derived from the audio file header. This option is required when converting audio data that is not preceded by a valid audio file header. If -i is specified for an input file that contains an audio file header, the input format string will be ignored, unless -F is present. The format specification syntax is the same as the -f output file format.

Multiple input formats may be specified. An input format describes all input files following that specification, until a new input format is specified.

File Specification: The named audio files are concatenated, converted to the output format, and written out. If no file name is present, or if the special file name ‘-’ is specified, audio data is read from the standard input.

Help: Prints a command line usage message.

The syntax for the input and output format specification is:

\[
\text{keyword=value[,keyword=value \ldots]}
\]

with no intervening whitespace. Unambiguous values may be used without the preceding keyword=.

rate

The audio sampling rate is specified in samples per second. If a number is followed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100). Standard of the commonly used sample rates are: 8k, 16k, 32k, 44.1k, and 48k.

channels

The number of interleaved channels is specified as an integer. The words mono and stereo may also be used to specify one and two channel data, respectively.

encoding

This option specifies the digital audio data representation. Encodings determine precision implicitly (ulaw implies 8-bit precision) or explicitly as part of the name (for example, linear16). Valid encoding values are:

ulaw CCITT G.711 -law encoding. This is an 8-bit format primarily used for telephone quality speech.

alaw CCITT G.711 A-law encoding. This is an 8-bit format primarily used for telephone quality speech in Europe.

linear8, linear16,
Linear Pulse Code Modulation (PCM) encoding. The name identifies the number of bits of precision. linear16 is typically used for high quality audio data.

pcm Same as linear16.

g721 CCITT G.721 compression format. This encoding uses Adaptive Delta Pulse Code Modulation (ADPCM) with 4-bit precision. It is primarily used for compressing -law voice data (achieving a 2:1 compression ratio).

g723 CCITT G.723 compression format. This encoding uses Adaptive Delta Pulse Code Modulation (ADPCM) with 3-bit precision. It is primarily used for compressing -law voice data (achieving an 8:3 compression ratio). The audio quality is similar to G.721, but may result in lower quality when used for non-speech data.

The following encoding values are also accepted as shorthand to set the sample rate, channels, and encoding:

voice Equivalent to encoding=ulaw,rate=8k,channels=mono.

cd Equivalent to encoding=linear16,rate=44.1k,channels=stereo.

dat Equivalent to encoding=linear16,rate=48k,channels=stereo.

format This option specifies the audio file format. Valid formats are:

sun Sun compatible file format (the default).

raw Use this format when reading or writing raw audio data (with no audio header), or in conjunction with an offset to import a foreign audio file format.

offset (-i only) Specifies a byte offset to locate the start of the audio data. This option may be used to import audio data that contains an unrecognized file header.

Usage See largefile(5) for the description of the behavior of audioconvert when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

Examples

Example 1 Recording and compressing voice data before storing it

Record voice data and compress it before storing it to a file:

```bash
example% audiorecord | audioconvert -f g721 > mydata.au
```
EXEMPLARY 2 Concatenating two audio files

Concatenate two Sun format audio files, regardless of their data format, and output an 8-bit ulaw, 16 kHz, mono file:

```
example% audioconvert -f ulaw,rate=16k,mono -o outfile.au infile1 infile2
```

EXEMPLARY 3 Converting a directory to Sun format

Convert a directory containing raw voice data files, in place, to Sun format (adds a file header to each file):

```
example% audioconvert -p -i voice -f sun *.au
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SPARC, x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWauda</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

audioplay(1), audiorecord(1), file(1), attributes(5), largefile(5)

NOTES

The algorithm used for converting multi-channel data to mono is implemented by simply summing the channels together. If the input data is perfectly in phase (as would be the case if a mono file is converted to stereo and back to mono), the resulting data may contain some distortion.
The audioplay utility copies the named audio files (or the standard input if no filenames are present) to the audio device. If no input file is specified and standard input is a tty, the port, volume, and balance settings specified on the command line will be applied and the program will exit.

The input files must contain a valid audio file header. The encoding information in this header is matched against the capabilities of the audio device and, if the data formats are incompatible, an error message is printed and the file is skipped. Compressed ADPCM (G.721) monaural audio data is automatically uncompressed before playing.

Minor deviations in sampling frequency (that is, less than 1%) are ordinarily ignored. This allows, for instance, data sampled at 8012 Hz to be played on an audio device that only supports 8000 Hz. If the -V option is present, such deviations are flagged with warning messages.

The following options are supported:

- Immediate: If the audio device is unavailable (that is, another process currently has write access), audioplay ordinarily waits until it can obtain access to the device. When the -i option is present, audioplay prints an error message and exits immediately if the device is busy.

- Verbose: Prints messages on the standard error when waiting for access to the audio device or when sample rate deviations are detected.

- Volume: The output volume is set to the specified value before playing begins, and is reset to its previous level when audioplay exits. The vol argument is an integer value between 0 and 100, inclusive. If this argument is not specified, the output volume remains at the level most recently set by any process.

- Balance: The output balance is set to the specified value before playing begins, and is reset to its previous level when audioplay exits. The bal argument is an integer value between -100 and 100, inclusive. A value of -100 indicates left balance, 0 middle, and 100 right. If this argument is not specified, the output balance remains at the level most recently set by any process.

- Output Port: Selects the built-in speaker (the default), headphone jack, or line out as the destination of the audio output signal. If this argument is not specified, the output port will remain unchanged. Please note: Not all audio adapters support all of the output ports. If the named port does not exist, an appropriate substitute will be used.
audioplay(1)

-d dev
 Device: The dev argument specifies an alternate audio device to which output
 should be directed. If the -d option is not specified, the AUDIODEV environment
 variable is consulted (see below). Otherwise, /dev/audio is used as the default
 audio device.

-\? Help: Prints a command line usage message.

OPERANDS
 file File Specification: Audio files named on the command line are played
 sequentially. If no filenames are present, the standard input stream (if it is
 not a tty) is played (it, too, must contain an audio file header). The special
 filename ‘−’ may be used to read the standard input stream instead of a file.
 If a relative path name is supplied, the AUDIOPATH environment variable is
 consulted (see below).

USAGE
 See largefile(5) for the description of the behavior of audioplay when
 encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

ENVIRONMENT VARIABLES
 AUDIODEV The full path name of the audio device to write to, if no -d
 argument is supplied. If the AUDIODEV variable is not set,
 /dev/audio is used.

 AUDIOPATH A colon-separated list of directories in which to search for audio
 files whose names are given by relative pathnames. The current
 directory (".") may be specified explicitly in the search path. If the
 AUDIOPATH variable is not set, only the current directory will be
 searched.

ATTRIBUTES
 See attributes(5) for descriptions of the following attributes:

 ATTRIBUTE TYPE ATTRIBUTE VALUE
 Architecture SPARC, x86
 Availability SUNWauda
 Interface Stability Evolving

SEE ALSO
 audioconvert(1), audiorecord(1), mixerctl(1), attributes(5), largefile(5),
 usb_ac(7D), audio(7I), mixer(7I)

BUGS
 audioplay currently supports a limited set of audio format conversions. If the audio
 file is not in a format supported by the audio device, it must first be converted. For
 example, to convert to voice format on the fly, use the command:

 example% audioconvert -f voice myfile | audioplay

 The format conversion will not always be able to keep up with the audio output. If
 this is the case, you should convert to a temporary file before playing the data.
The audiorecord utility copies audio data from the audio device to a named audio file (or the standard output if no filename is present). If no output file is specified and standard output is a tty, the volume, balance, monitor volume, port, and audio format settings specified on the command line will be applied and the program will exit.

By default, monaural audio data is recorded at 8 kHz and encoded in -law format. If the audio device supports additional configurations, the -c, -s, and -e options may be used to specify the data format. The output file is prefixed by an audio file header that identifies the format of the data encoded in the file.

Recording begins immediately and continues until a SIGINT signal (for example, Ctrl-C) is received. If the -t option is specified, audiorecord stops when the specified quantity of data has been recorded.

If the audio device is unavailable (that is, another process currently has read access), audiorecord prints an error message and exits immediately.

The following options are supported:

-a
 Append: Appends the data on the end of the named audio file. The audio device must support the audio data format of the existing file.

-f
 Force: When the -a flag is specified, the sample rate of the audio device must match the sample rate at which the original file was recorded. If the -f flag is also specified, sample rate differences are ignored, with a warning message printed on the standard error.

-v vol
 Volume: The recording gain is set to the specified value before recording begins, and is reset to its previous level when audiorecord exits. The vol argument is an integer value between 0 and 100, inclusive. If this argument is not specified, the input volume will remain at the level most recently set by any process.

-b bal
 Balance: The recording balance is set to the specified value before recording begins, and is reset to its previous level when audiorecord exits. The bal argument is an integer value between -100 and 100, inclusive. A value of -100 indicates left balance, 0 middle, and 100 right. If this argument is not specified, the input balance will remain at the level most recently set by any process.

-m monvol
 Monitor Volume: The input monitor volume is set to the specified value before recording begins, and is reset to its previous level when audiorecord exits. The monval argument is an integer value between 0 and 100, inclusive. A non-zero value
allows a directly connected input source to be heard on the output speaker while recording is in-progress. If this argument is not specified, the monitor volume will remain at the level most recently set by any process.

```
-p mic | line | internal-cd
```

Input Port: Selects the mic, line, or internal-cd input as the source of the audio output signal. If this argument is not specified, the input port will remain unchanged. *Please note:* Some systems will not support all possible input ports. If the named port does not exist, this option is ignored.

```
-c channels
```

Channels: Specifies the number of audio channels (1 or 2). The value may be specified as an integer or as the string mono or stereo. The default value is mono.

```
-s rate
```

Sample Rate: Specifies the sample rate, in samples per second. If a number is followed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100). The default sample rate is 8 kHz.

```
-e encoding
```

Encoding: Specifies the audio data encoding. This value may be one of ulaw, alaw, or linear. The default encoding is ulaw.

```
-t time
```

Time: The time argument specifies the maximum length of time to record. Time can be specified as a floating-point value, indicating the number of seconds, or in the form: hh:mm:ss.dd, where the hour and minute specifications are optional.

```
-i info
```

Information: The ‘information’ field of the output file header is set to the string specified by the info argument. This option cannot be specified in conjunction with the -a argument.

```
-d dev
```

Device: The dev argument specifies an alternate audio device from which input should be taken. If the -d option is not specified, the AUDIODEV environment variable is consulted (see below). Otherwise, /dev/audio is used as the default audio device.

```
-? Help
```

Help: Prints a command line usage message.

OPERANDS

| File Specification: The named audio file is rewritten (or appended). If no filename is present (and standard output is not a tty), or if the special filename ‘–′ is specified, output is directed to the the standard output. |

USAGE

See largefile(5) for the description of the behavior of audiorecord when encountering files greater than or equal to 2 Gbyte (2³⁰ bytes).

ENVIRONMENT VARIABLES

| AUDIODEV |
| The full path name of the audio device to record from, if no -d argument is supplied. If the AUDIODEV variable is not set, /dev/audio is used. |
attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SPARC, x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWauda</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

See also audioconvert(1), audioplay(1), mixerctl(1), attributes(5), largefile(5), usb_ac(7D), audio(7I), mixer(7I)
The auths command prints on standard output the authorizations that you or the optionally-specified user or role have been granted. Authorizations are rights that are checked by certain privileged programs to determine whether a user may execute restricted functionality.

Each user may have zero or more authorizations. Authorizations are represented by fully-qualified names, which identify the organization that created the authorization and the functionality that it controls. Following the Java convention, the hierarchical components of an authorization are separated by dots (.), starting with the reverse order Internet domain name of the creating organization, and ending with the specific function within a class of authorizations.

An asterisk (*) indicates all authorizations in a class.

A user’s authorizations are looked up in user_attr(4) and in the /etc/security/policy.conf file (see policy.conf(4)). Authorizations may be specified directly in user_attr(4) or indirectly through prof_attr(4). Authorizations may also be assigned to every user in the system directly as default authorizations or indirectly as default profiles in the /etc/security/policy.conf file.

EXAMPLES

Example 1 Sample output

The auths output has the following form:

```
example% auths tester01 tester02
tester01 : com.sun.system.date,com.sun.jobs.admin
tester02 : com.sun.system.*
example%
```

Notice that there is no space after the comma separating the authorization names in tester01.

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- 1 An error occurred.

FILES

- /etc/user_attr
- /etc/security/auth_attr
- /etc/security/policy.conf
- /etc/security/prof_attr
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

profiles(1), roles(1), getauthattr(3SECDB), auth_attr(4), policy.conf(4), prof_attr(4), user_attr(4), attributes(5)
NAME awk – pattern scanning and processing language

SYNOPSIS

/usr/bin/awk [-f progfile] [-F c] [’ prog ’] [parameters] [filename...]

/usr/xpg4/bin/awk [-F ERE] [-v assignment...] ’program’ -f progfile...

Options The following options are supported:

- f progfile awk uses the set of patterns it reads from progfile.

- Fc Uses the character c as the field separator (FS) character. See the discussion of FS below.

DESCRIPTION The /usr/xpg4/bin/awk utility is described on the nawk(1) manual page.

The /usr/bin/awk utility scans each input filename for lines that match any of a set of patterns specified in prog. The prog string must be enclosed in single quotes (’) to protect it from the shell. For each pattern in prog there may be an associated action performed when a line of a filename matches the pattern. The set of pattern-action statements may appear literally as prog or in a file specified with the -f progfile option. Input files are read in order; if there are no files, the standard input is read. The file name ‘-’ means the standard input.

OPTIONS The following options are supported:

- f progfile awk uses the set of patterns it reads from progfile.

- Fc Uses the character c as the field separator (FS) character. See the discussion of FS below.

Usage Each input line is matched against the pattern portion of every pattern-action statement; the associated action is performed for each matched pattern. Any filename of the form var=value is treated as an assignment, not a filename, and is executed at the time it would have been opened if it were a filename. Variables assigned in this manner are not available inside a BEGIN rule, and are assigned after previously specified files have been read.

An input line is normally made up of fields separated by white spaces. (This default can be changed by using the FS built-in variable or the -Fc option.) The default is to ignore leading blanks and to separate fields by blanks and/or tab characters. However, if FS is assigned a value that does not include any of the white spaces, then leading blanks are not ignored. The fields are denoted $1, $2, . . . ; $0 refers to the entire line.

Pattern-action Statements A pattern-action statement has the form:

```
 pattern { action }
```

Either pattern or action may be omitted. If there is no action, the matching line is printed. If there is no pattern, the action is performed on every input line. Pattern-action statements are separated by newlines or semicolons.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of relational expressions and regular expressions. A relational expression is one of the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Entire line</td>
</tr>
<tr>
<td>$0</td>
<td>Entire line</td>
</tr>
<tr>
<td>$1</td>
<td>Field 1</td>
</tr>
<tr>
<td>$2</td>
<td>Field 2</td>
</tr>
</tbody>
</table>
expression relop expression
expression matchop regular_expression

where a relop is any of the six relational operators in C, and a matchop is either - (contains) or !- (does not contain). An expression is an arithmetic expression, a relational expression, the special expression

`var in array`

or a Boolean combination of these.

Regular expressions are as in egrep(1). In patterns they must be surrounded by slashes. Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all lines between the occurrence of the first pattern to the occurrence of the second pattern.

The special patterns BEGIN and END may be used to capture control before the first input line has been read and after the last input line has been read respectively. These keywords do not combine with any other patterns.

Built-in Variables

Built-in variables include:

- `FILENAME` name of the current input file
- `FS` input field separator regular expression (default blank and tab)
- `NF` number of fields in the current record
- `NR` ordinal number of the current record
- `OFMT` output format for numbers (default `% .6g`)
- `OFS` output field separator (default blank)
- `ORS` output record separator (default new-line)
- `RS` input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the following:

```plaintext
if ( expression ) statement [ else statement ]
while ( expression ) statement
do statement while ( expression )
for ( expression ; expression ; expression ) statement
for ( var in array ) statement
break
continue
{ { statement } . . . }
expression # commonly variable = expression
print [ expression-list ] [ >>expression ]
printf format [ , expression-list ] [ >>expression ]
next # skip remaining patterns on this input line
exit [ expr ] # skip the rest of the input; exit status is expr
```
Statements are terminated by semicolons, newlines, or right braces. An empty expression-list stands for the whole input line. Expressions take on string or numeric values as appropriate, and are built using the operators +, -, *, /, %, ^ and concatenation (indicated by a blank). The operators ++, --, +=, -=, *=, /=, %=, ^=, >=, <=, ==, !=, and ?: are also available in expressions. Variables may be scalars, array elements (denoted x[i]), or fields. Variables are initialized to the null string or zero. Array subscripts may be any string, not necessarily numeric; this allows for a form of associative memory. String constants are quoted (""), with the usual C escapes recognized within.

The print statement prints its arguments on the standard output, or on a file if >expression is present, or on a pipe if `| cmd` is present. The output resulted from the print statement is terminated by the output record separator with each argument separated by the current output field separator. The printf statement formats its expression list according to the format (see printf(3C)).

Built-in Functions

The arithmetic functions are as follows:

- **cos(x)** Return cosine of x, where x is in radians. (In /usr/xpg4/bin/awk only. See awk(1).)
- **sin(x)** Return sine of x, where x is in radians. (In /usr/xpg4/bin/awk only. See awk(1).)
- **exp(x)** Return the exponential function of x.
- **log(x)** Return the natural logarithm of x.
- **sqrt(x)** Return the square root of x.
- **int(x)** Truncate its argument to an integer. It will be truncated toward 0 when x > 0.

The string functions are as follows:

- **index(s, t)**
 - Return the position in string s where string t first occurs, or 0 if it does not occur at all.
- **int(s)**
 - truncates s to an integer value. If s is not specified, $0 is used.
- **length(s)**
 - Return the length of its argument taken as a string, or of the whole line if there is no argument.
- **split(s, a, fs)**
 - Split the string s into array elements a[1], a[2], ... a[n], and returns n. The separation is done with the regular expression fs or with the field separator FS if fs is not given.
\texttt{sprintf(} \texttt{fmt, expr, expr, ...)}

Format the expressions according to the \texttt{printf(3C)} format given by \texttt{fmt} and returns the resulting string.

\texttt{substr(s, m, n)}

returns the \texttt{n}-character substring of \texttt{s} that begins at position \texttt{m}.

The input/output function is as follows:

\texttt{getline}
Set \$0 to the next input record from the current input file.
\texttt{getline} returns 1 for successful input, 0 for end of file, and -1 for an error.

See \texttt{largefile(5)} for the description of the behavior of \texttt{awk} when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

\textbf{EXAMPLES}

\textbf{EXAMPLE 1} Printing lines longer than 72 characters

\texttt{example\% length > 72}

\textbf{EXAMPLE 2} Printing first two fields in opposite order

\texttt{example\% \{ \ print \$2, \$1 \}}

\textbf{EXAMPLE 3} Same, with input fields separated by comma and/or blanks and tabs

\texttt{example\% BEGIN \{ FS = ",[\t\]*|\[\t\]+\}
\{ \ print \$2, \$1 \}}

\textbf{EXAMPLE 4} Adding up first column, print sum and average

\texttt{example\% \{ s += \$1 \}
END \{ \ print "sum is", s, " average is", s/NR \}}

\textbf{EXAMPLE 5} Printing fields in reverse order

\texttt{example\% \{ for (i = NF; i > 0; --i) \ print \$i \}}

\textbf{EXAMPLE 6} Printing all lines between start/stop pairs

\texttt{example\% /start/, /stop/}

\textbf{EXAMPLE 7} Printing all lines whose first field is different from the previous one

\texttt{example\% \$1 != prev \{ \ print; prev = \$1 \}}

\textbf{EXAMPLE 8} Printing a file, filling in page numbers starting at 5

\texttt{example\% /Page/ \{ \$2 = n++; \}
\{ \ print \}}
EXAMPLE 9 Printing a file and numbering its pages, starting at 5

Assuming this program is in a file named `prog`, the following command line prints the file `input` numbering its pages starting at 5:

```
example% awk -f prog n=5 input
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `awk`: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, NLSPATH, and PATH.

- **LC_NUMERIC**: Determine the radix character used when interpreting numeric input, performing conversions between numeric and string values and formatting numeric output. Regardless of locale, the period character (the decimal-point character of the POSIX locale) is the decimal-point character recognized in processing `awk` programs (including assignments in command-line arguments).

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
```

SEE ALSO

`egrep(1), grep(1), nawk(1), sed(1), printf(3C), attributes(5), environ(5), largefile(5), standards(5)`

NOTES

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a number, add 0 to it. To force an expression to be treated as a string, concatenate the null string (""") to it.
NAME banner – make posters
SYNOPSIS banner strings
DESCRIPTION banner prints its arguments (each up to 10 characters long) in large letters on the standard output.
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO echo(1), attributes(5)
basename(1)

NAME basename, dirname – deliver portions of path names

SYNOPSIS
/usr/bin/basename string [suffix]

/usr/xpg4/bin/basename string [suffix]

dirname string

DESCRIPTION The basename utility deletes any prefix ending in / and the suffix (if present in string) from string, and prints the result on the standard output. It is normally used inside substitution marks (' ') within shell procedures.

/usr/bin The suffix is a pattern defined on the expr(1) manual page.
/usr/xpg4/bin The suffix is a string with no special significance attached to any of the characters it contains.

The dirname utility delivers all but the last level of the path name in string.

EXAMPLES EXAMPLE 1 Setting environment variables

The following example, invoked with the argument /home/sms/personal/mail sets the environment variable NAME to the file named mail and the environment variable MYMAILPATH to the string /home/sms/personal:

 example% NAME='basename $HOME/personal/mail'
 example% MYMAILPATH='dirname $HOME/personal/mail'

EXAMPLE 2 Compiling a file and moving the output

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles the named file and moves the output to cat in the current directory:

 example% cc $1
 example% mv a.out 'basename $1 .c'

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of basename and dirname: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

 0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

Table for /usr/bin

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
basename(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO expr(1), attributes(5), environ(5), standards(5)
basename(1B)

NAME basename – display portions of pathnames

SYNOPSIS /usr/ucb/basename string [suffix]

DESCRIPTION The basename utility deletes any prefix ending in ‘/’ and the suffix, if present in string. It directs the result to the standard output, and is normally used inside substitution marks (‘ ’) within shell procedures. The suffix is a string with no special significance attached to any of the characters it contains.

EXAMPLES EXAMPLE 1 Using the basename command.

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file and moves the output to cat in the current directory:

example% cc $1
example% mv a.out `basename $1 .c`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO sh(1), attributes(5)
NAME
bc – arbitrary precision arithmetic language

SYNOPSIS
```
bc [-c] [-l] [file...]
```

DESCRIPTION
The `bc` utility implements an arbitrary precision calculator. It takes input from any
files given, then reads from the standard input. If the standard input and standard
output to `bc` are attached to a terminal, the invocation of `bc` is *interactive*, causing
behavioral constraints described in the following sections. `bc` processes a language
that resembles C and is a preprocessor for the desk calculator program `dc`, which it
invokes automatically unless the `-c` option is specified. In this case the `dc` input is
sent to the standard output instead.

USAGE
The syntax for `bc` programs is as follows:

- **L** means a letter a–z,
- **E** means an expression: a (mathematical or logical) value, an operand that
takes a value, or a combination of operands and operators that evaluates to
a value,
- **S** means a statement.

Comments
Enclosed in /* and */.

Names (Operands)
Simple variables: **L**.
Array elements: **L[E]** (up to BC_DIM_MAX dimensions).
The words `ibase`, `obase` (limited to BC_BASE_MAX), and `scale` (limited to
BC_SCALE_MAX).

Other Operands
Arbitrarily long numbers with optional sign and decimal point. Strings of fewer than
BC_STRING_MAX characters, between double quotes ("). (E)

- `sqrt (E)` Square root
- `length (E)` Number of significant decimal digits.
- `scale (E)` Number of digits right of decimal point.
- `L(E,...,E)`

Operators
- `+ - * / % ^`
 (% is remainder; ^ is power)
- `++ --`
 (prefix and postfix; apply to names)
- `== <= >= != < >`
- `= += -= *= /= %= ^=`

Statements
- `E`
- `{ S ;...; S }`
- `if (E) S`
while \((E)\) \(S\)
for \((E ; E ; E)\) \(S\)
null statement
break
quit

.string

define \(L\left(L, \ldots, L\right)\) {
 auto \(L, \ldots, L\)
 \(S\);\(\ldots\) \(S\)
 return \((E)\)
}

Functions in -l Math Library

\(s(x)\) sine
\(c(x)\) cosine
\(e(x)\) exponential
\(l(x)\) log
\(a(x)\) arctangent
\(j(n,x)\) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment. Either semicolons or new-lines may separate statements. Assignment to \(scale\) influences the number of digits to be retained on arithmetic operations in the manner of \(dc\). Assignments to \(ibase\) or \(obase\) set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables are global to the program. \(auto\) variables are stacked during function calls. When using arrays as function arguments or defining them as automatic variables, empty square brackets must follow the array name.

OPTIONS
The following operands are supported:

- \(-c\) Compile only. The output is \(dc\) commands that are sent to the standard output.
- \(-l\) Define the math functions and initialize \(scale\) to 20, instead of the default zero.

OPERANDS
The following operands are supported:

- \(file\) A pathname of a text file containing \(bc\) program statements. After all cases of \(file\) have been read, \(bc\) will read the standard input.
EXAMPLE 1 Setting the precision of a variable

In the shell, the following assigns an approximation of the first ten digits of \(n \) to the variable \(x \):

```bash
x=$(printf "%s\n"  "scale = 10; 104348/33215" | bc)
```

EXAMPLE 2 Defining a computing function

Defines a function to compute an approximate value of the exponential function:

```bash
scale = 20
define e(x){
    auto a, b, c, i, s
    a = 1
    b = 1
    s = 1
    for(i=1; 1==1; i++){
        a = a*x
        b = b*i
        c = a/b
        if(c == 0) return(s)
        s = s+c
    }
}
```

EXAMPLE 3 Printing the approximate values of the function

Prints approximate values of the exponential function of the first ten integers:

```bash
for(i=1; i<=10; i++) e(i)
```

or

```bash
for (i = 1; i <= 10; ++i) { e(i) }
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of bc: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 All input files were processed successfully.
unspecified An error occurred.

FILES

/usr/lib/lib.b mathematical library
/usr/include/limits.h to define BC_ parameters

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
The `bc` command does not recognize the logical operators `&&` and `||`.

The `for` statement must have all three expressions (`E's`).
bdiff(1)

NAME
bdiff – big diff

SYNOPSIS
bdiff filename1 filename2 [n] [-s]

DESCRIPTION
bdiff is used in a manner analogous to diff to find which lines in filename1 and
filename2 must be changed to bring the files into agreement. Its purpose is to allow
processing of files too large for diff. If filename1 (filename2) is −, the standard input is
read.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been processed
whole). Note: Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

OPTIONS
n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too large
for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note: However, this does not suppress possible diagnostic messages from
diff, which bdiff calls.

USAGE See largefile(5) for the description of the behavior of bdiff when encountering
files greater than or equal to 2 Gbyte (2^31 bytes).

FILES /tmp/bd?????

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO diff(1), attributes(5), largefile(5)

DIAGNOSTICS Use help for explanations.
The **bfs** command is (almost) like **ed**(1) except that it is read-only and processes much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512 characters, including new-line, per line (255 for 16-bit machines). **bfs** is usually more efficient than **ed**(1) for scanning a file, since the file is not copied to a buffer. It is most useful for identifying sections of a large file where **csplit**(1) can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the **w** (write) command. The optional – suppresses printing of sizes. Input is prompted with * if **P** and a carriage return are typed, as in **ed**(1). Prompting can be turned off again by inputting another **P** and carriage return. Note that messages are given in response to errors if prompting is turned on.

All address expressions described under **ed**(1) are supported. In addition, regular expressions may be surrounded with two symbols besides / and ?:

- > indicates downward search without wrap-around, and
- < indicates upward search without wrap-around.

There is a slight difference in mark names; that is, only the letters a through z may be used, and all 26 marks are remembered.

bfs Commands

The e, g, v, k, p, q, w, =, !, and null commands operate as described under **ed**(1). Commands such as ——, ++++, ++++, —12, and +4p are accepted. Note that 1, 10p and 1, 10 will both print the first ten lines. The f command only prints the name of the file being scanned; there is no remembered file name. The w command is independent of output diversion, truncation, or crunching (see the xo, xt, and xc commands, below). The following additional commands are available:

- **xf file**
 Further commands are taken from the named file. When an end-of-file is reached, an interrupt signal is received or an error occurs, reading resumes with the file containing the xf. The xf commands may be nested to a depth of 10.

- **xn**
 List the marks currently in use (marks are set by the k command).

- **xo [file]**
 Further output from the p and null commands is diverted to the named file, which, if necessary, is created mode 666 (readable and writable by everyone), unless your **umask** setting (see **umask**(1)) dictates otherwise. If file is missing, output is diverted to the standard output. Note that each diversion causes truncation or creation of the file.
Example 1:label

This positions a *label* in a command file. The *label* is terminated by new-line, and blanks between the : (colon) and the start of the *label* are ignored. This command may also be used to insert comments into a command file, since labels need not be referenced.

(* . .)xb/regular expression/label

A jump (either upward or downward) is made to *label* if the command succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the specified range, including the first and last lines.

On success, . (dot) is set to the line matched and a jump is made to *label*. This command is the only one that does not issue an error message on bad addresses, so it may be used to test whether addresses are bad before other commands are executed. Note that the command, xb/^/ label, is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal. If it is read from a pipe, only a downward jump is possible.

Example 2:xt number

Output from the p and null commands is truncated to, at most, *number* characters. The initial number is 255.

Example 3:xv[digit] [spaces] [value]

The variable name is the specified *digit* following the xv. The commands xv5100 or xv5 100 both assign the value 100 to the variable 5. The command xv61,100p assigns the value 1,100p to the variable 6. To reference a variable, put a % in front of the variable name. For example, using the above assignments for variables 5 and 6:

```
1,%5p
1,%5
%6
```

will all print the first 100 lines.

Example 4:g/%5/p

would globally search for the characters 100 and print each line containing a match. To escape the special meaning of %, a \ must precede it.

Example 5:g/".*"/p

\[c[cds]/p\]
could be used to match and list \%c, \%d, or \%s formats (for example, "printf"-like statements) of characters, decimal integers, or strings. Another feature of the xv command is that the first line of output from a UNIX system command can be stored into a variable. The only requirement is that the first character of value be an !. For example:

```
.w junk
.xv5!cat junk
!rm junk
!echo \"%5\"  
.xv6!expr \%6 + 1
```

would put the current line into variable 35, print it, and increment the variable 36 by one. To escape the special meaning of ! as the first character of value, precede it with a \\.

```
xv7\!date
```

stores the value \!date into variable 7.

```
xbz label
xbn label
```

These two commands will test the last saved return code from the execution of a UNIX system command (\!command) or nonzero value, respectively, to the specified label. The two examples below both search for the next five lines containing the string size:

Example 1:

```
xv55
  : 1
  /size/
  xv5!expr \%5 - 1
  :if 0%5 != 0 exit 2
  xbn 1
```

Example 2:

```
xv45
  : 1
  /size/
  xv4!expr \%4 - 1
  :if 0%4 = 0 exit 2
  xbn 1
```

```
xc [switch]
```

If switch is 1, output from the p and null commands is crunched; if switch is 0, it is not. Without an argument, xc reverses switch. Initially, switch is set for no crunching. Crunched output has strings of tabs and blanks reduced to one blank and blank lines suppressed.

OPERANDS

The following operand is supported:
filename Any file up to 1024K bytes and 32K lines, with up to 512 characters, including new-line, per line (255 for 16-bit machines). filename can be a section of a larger file which has been divided into more manageable sections for editing by the use of csplit(1).

EXIT STATUS The following exit values are returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO csplit(1), ed(1), umask(1), attributes(5)

DIAGNOSTICS Message is “?” for errors in commands, if prompting is turned off. Self-explanatory error messages are displayed when prompting is on.
NAME biff – give notice of incoming mail messages

SYNOPSIS /usr/ucb/biff [y | n]

DESCRIPTION biff turns mail notification on or off for the terminal session. With no arguments, biff displays the current notification status for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and the first few lines of each arriving mail message. biff operates asynchronously. For synchronized notices, use the MAIL variable of sh(1) or the mail variable of csh(1).

A 'biff y' command can be included in your ~/.login or ~/.profile file for execution when you log in.

OPTIONS y Allow mail notification for the terminal.
 n Disable notification for the terminal.

FILES ~/.login User's login file
 ~/.profile User's profile file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWspcpu</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), mail(1), sh(1), attributes(5)
break, continue – shell built-in functions to escape from or advance within a controlling while, for, foreach, or until loop

NAME

sh	break [n]
	continue [n]
csh	break
	continue
ksh	*break [n]
	*continue [n]

DESCRIPTION

sh

break exits from the enclosing for or while loop, if any. If n is specified, break n levels.

continue resumes the next iteration of the enclosing for or while loop. If n is specified, resume at the n-th enclosing loop.

csh

break resumes execution after the end of the nearest enclosing foreach or while loop. The remaining commands on the current line are executed. This allows multilevel breaks to be written as a list of break commands, all on one line.

continue continues execution of the next iteration of the nearest enclosing while or foreach loop.

ksh

break exits from the enclosed for, while, until, or select loop, if any. If n is specified then break n levels.

continue resumes the next iteration of the enclosed for, while, until, or select loop. If n is specified then resume at the n-th enclosed loop.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

csh(1), exit(1), ksh(1), sh(1), attributes(5)
The `cal` utility writes a Gregorian calendar to standard output. If the `year` operand is specified, a calendar for that year is written. If no operands are specified, a calendar for the current month is written.

OPERANDS

The following operands are supported:

- `<month>` Specify the month to be displayed, represented as a decimal integer from 1 (January) to 12 (December). The default is the current month.
- `<year>` Specify the year for which the calendar is displayed, represented as a decimal integer from 1 to 9999. The default is the current year.

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `cal`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_TIME`, `LC_MESSAGES`, and `NLSPATH`.

- `TZ` Determine the timezone used to calculate the value of the current month.

EXIT STATUS

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`calendar(1), attributes(5), environ(5), standards(5)`

NOTES

An unusual calendar is printed for September 1752. That is the month 11 days were skipped to make up for lack of leap year adjustments. To see this calendar, type:

```
cal 9 1752
```

The command `cal 83` refers to the year 83, not 1983.

The year is always considered to start in January.
calendar(1)

NAME calendar - reminder service
SYNOPSIS calendar [-]
DESCRIPTION The calendar utility consults the file calendar in the current directory and writes
lines that contain today’s or tomorrow’s date anywhere in the line to standard output.
Most reasonable month-day dates such as Aug. 24, august 24, 8/24, and so forth,
are recognized, but not 24 August or 24/8. On Fridays and weekends “tomorrow”
extends through Monday. calendar can be invoked regularly by using the
crontab(1) or at(1) commands.

When the optional argument - is present, calendar does its job for every user who
has a file calendar in his or her login directory and sends them any positive results
by mail(1). Normally this is done daily by facilities in the UNIX operating system
(see crontab(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings. The strings consist of
conversion specifications and text characters and are used to provide a richer set of
allowable date formats in different languages by appropriate settings of the
environment variable LANG or LC_TIME; see environ(5). See strftime(3C) for the
list of allowable conversion specifications.

EXAMPLES EXAMPLE 1 Possible contents of a template

The following example shows the possible contents of a template:

```
%B %eth of the year %Y
```

%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file would be valid:

```
March 7th of the year 1989 <Reminder>
```

See environ(5) for descriptions of the following environment variables that affect the
execution of calendar: LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

EXIT STATUS

0 Successful completion.
>0 An error occurred.

FILES /etc/passwd system password file
/tmp/cal* temporary files used by calendar
/usr/lib/calprog program used to determine dates for today and tomorrow
ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO
at(1), crontab(1), mail(1), cron(1M), ypbind(1M), strftime(3C),
attributes(5), environ(5)

NOTES
Appropriate lines beginning with white space will not be printed.

Your calendar must be public information for you to get reminder service.

calendar’s extended idea of “tomorrow” does not account for holidays.

The - argument works only on calendar files that are local to the machine; calendar is intended not to work on calendar files that are mounted remotely with NFS. Thus, ‘calendar -’ should be run only on diskful machines where home directories exist; running it on a diskless client has no effect.

calendar is no longer in the default root crontab. Because of the network burden ‘calendar -’ can induce, it is inadvisable in an environment running ypbind(1M) with a large passwd.byname map. If, however, the usefulness of calendar outweighs the network impact, the super-user may run ‘crontab -e’ to edit the root crontab. Otherwise, individual users may wish to use ‘crontab -e’ to edit their own crontabs to have cron invoke calendar without the - argument, piping output to mail addressed to themselves.
cancel(1)

| NAME | cancel – cancel print request |
| SYNOPSIS | `cancel [request-ID...] [destination...]`
| | `cancel -u user... [destination...]`
| DESCRIPTION | The `cancel` utility cancels print requests. There are two forms of the `cancel` command.
| | The first form of `cancel` has two optional arguments: print requests (request-ID) and destinations (destination). Specifying request-ID with destination cancels request-ID on destination. Specifying only the destination cancels the current print request on destination. If destination is not specified, `cancel` cancels the requested print request on all destinations.
| | The second form of `cancel` cancels a user’s print requests on specific destinations.
| | Users can only cancel print requests associated with their username. By default, users can only cancel print requests on the host from which the print request was submitted. If a super-user has set `user-equivalence=true` in `/etc/printers.conf` on the print server, users can cancel print requests associated with their username on any host. Super-users can cancel print requests on the host from which the print request was submitted. Super-users can also cancel print requests from the print server.
| | The print client commands locate destination information using the “printers” database in the name service switch. See `nsswitch.conf(4)`, `printers(4)`, and `printers.conf(4)` for details.
| OPTIONS | The following options are supported:
| | `-u user` The name of the user for which print requests are to be cancelled. Specify `user` as a username.
| OPERANDS | The following operands are supported:
| | `destination` The destination on which the print requests are to be canceled. `destination` is the name of a printer or class of printers (see `lpadmin(1M)`). If destination is not specified, `cancel` cancels the requested print request on all destinations. Specify destination using atomic, POSIX-style (`server:destination`), or Federated Naming Service (FNS) (`./service/printer/...`) names. See `NOTES` for information regarding using POSIX-style destination names with `cancel`. See `printers.conf(4)` for information regarding the naming conventions for atomic and FNS names, and `standards(5)` for information regarding POSIX.
| | `request-ID` The print request to be canceled. Specify `request-ID` using LP-style request IDs (`destination-number`).
| | `user` The name of the user for which the print requests are to be cancelled. Specify `user` as a username.
The following exit values are returned:

0 Successful completion.
non-zero An error occurred.

FILES
/var/spool/print/* LP print queue.
$HOME/.printers User-configurable printer database.
/etc/printers.conf System printer configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
printers.org_dir NIS+ version of /etc/printers.conf.
fns.ctx_dir.domain FNS version of /etc/printers.conf.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4),
printers(4), printers.conf(4), attributes(5), standards(5)

NOTES
POSIX-style destination names (server:destination) are treated as print requests if
destination has the same format as an LP-style request-ID. See standards(5).
cat(1)

NAME

cat – concatenate and display files

SYNOPSIS

cat [-nbsuvet] [file...]

DESCRIPTION

The cat utility reads each file in sequence and writes it on the standard output. Thus:

e\text{example}\% \text{cat file}

prints file on your terminal, and:

e\text{example}\% \text{cat file1 file2 >file3}

concatenates file1 and file2, and writes the results in file3. If no input file is given, cat reads from the standard input file.

OPTIONS

The following options are supported:

- \text{-n} Precede each line output with its line number.
- \text{-b} Number the lines, as \text{-n}, but omit the line numbers from blank lines.
- \text{-u} The output is not buffered. (The default is buffered output.)
- \text{-s} cat is silent about non-existent files.
- \text{-v} Non-printing characters (with the exception of tabs, new-lines and form-feeds) are printed visibly. ASCII control characters (octal 000 – 037) are printed as "n, where n is the corresponding ASCII character in the range octal 100 – 137 (@, A, B, C, . . . , X, Y, Z, [, \,], ^, and _); the DEL character (octal 0177) is printed ^?. Other non-printable characters are printed as M-x, where x is the ASCII character specified by the low-order seven bits.

When used with the \text{-v} option, the following options may be used:

- \text{-e} A $ character will be printed at the end of each line (prior to the new-line).
- \text{-t} Tabs will be printed as ^I’s and formfeeds to be printed as ^L’s.

The \text{-e} and \text{-t} options are ignored if the \text{-v} option is not specified.

OPERANDS

The following operand is supported:

\text{file} A path name of an input file. If no file is specified, the standard input is used. If \text{file} is ‘’, \text{cat} will read from the standard input at that point in the sequence. \text{cat} will not close and reopen standard input when it is referenced in this way, but will accept multiple occurrences of ‘’ as \text{file}.

USAGE

See largefile(5) for the description of the behavior of cat when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

\text{EXAMPLE 1} Concatenating a file

The following command:

e\text{example}\% \text{cat myfile}
EXAMPLE 1 Concatenating a file (Continued)

writes the contents of the file myfile to standard output.

EXAMPLE 2 Concatenating two files into one

The following command:

```bash
example% cat doc1 doc2 > doc.all
```

concatenates the files doc1 and doc2 and writes the result to doc.all.

EXAMPLE 3 Concatenating two arbitrary pieces of input with a single invocation

The command:

```bash
example% cat start - middle - end > file
```

when standard input is a terminal, gets two arbitrary pieces of input from the terminal with a single invocation of `cat`. Note, however, that if standard input is a regular file, this would be equivalent to the command:

```bash
cat start - middle /dev/null end > file
```

because the entire contents of the file would be consumed by `cat` the first time `−` was used as a file operand and an end-of-file condition would be detected immediately when `−` was referenced the second time.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of `cat`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

touch(1), attributes(5), environ(5), largefile(5), standards(5)

NOTES

Redirecting the output of `cat` onto one of the files being read will cause the loss of the data originally in the file being read. For example,
example$ cat filename1 filename2 >filename1
causes the original data in filename1 to be lost.
cc – C compiler

/Synopsis

/usr/ucb/cc [options]

Description

/usr/ucb/cc is the interface to the BSD Compatibility Package C compiler. It is a script that looks for the link /usr/ccs/bin/ucbcc to the C compiler. The /usr/ccs/bin/ucbcc link is available only with the SPROcc package, whose default location is /opt/SUNWspro. The /usr/ucb/cc interface is identical to /usr/ccs/bin/ucbcc, except that BSD headers are used and BSD libraries are linked before base libraries. The /opt/SUNWspro/man/man1/acc.1 man page is available only with the SPROcc package.

Options

The /usr/ucb/cc interface accepts the same options as /usr/ccs/bin/ucbcc, with the following exceptions:

- **-I dir**
 Search dir for included files whose names do not begin with a slash (/) prior to searching the usual directories. The directories for multiple -I options are searched in the order specified. The preprocessor first searches for #include files in the directory containing sourcefile, and then in directories named with -I options (if any), then /usr/ucbinclude, and finally, in /usr/include.

- **-L dir**
 Add dir to the list of directories searched for libraries by /usr/ccs/bin/ucbcc. This option is passed to /usr/ccs/bin/ld and /usr/lib. Directories specified with this option are searched before /usr/ucb/lib and /usr/lib.

- **-Y P, dir**
 Change the default directory used for finding libraries.

Exit Status

The following exit values are returned:

0 Successful compilation or link edit.

>0 An error occurred.

Files

/usr/ccs/bin/ld link editor
/usr/lib/libc C library
/usr/ucbinclude BSD Compatibility directory for header files
/usr/ucb/lib BSD Compatibility directory for libraries
/usr/ucb/lib/libucb BSD Compatibility C library
/usr/lib/libsocket library containing socket routines
/usr/lib/libnsl library containing network functions
/usr/lib/libaio library containing asynchronous I/O routines
cc(1B)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO ld(1), a.out(4), attributes(5)

NOTES The -Y P, dir option may have unexpected results and should not be used.
cd, chdir, pushd, popd, dirs – change working directory

SYNOPSIS

/sh
 cd [argument]
 chdir [argument]

/csh
 cd [dir]
 chdir [dir]
 pushd [+-n | dir]
 popd [+ n]
 dirs [-l]

/ksh
 cd [arg]
 cd old new

DESCRIPTION

/usr/bin/cd

The /usr/bin/cd utility changes the current directory in the context of the cd utility only. This is in contrast to the version built into the shell, as described below. /usr/bin/cd has no effect on the invoking process but can be used to determine whether or not a given directory can be set as the current directory.

/sh

The Bourne shell built-in cd changes the current directory to argument. The shell parameter HOME is the default argument. The shell parameter CDPATH defines the search path for the directory containing argument. Alternative directory names are separated by a colon (:). The default path is <null> (specifying the current directory). Note: The current directory is specified by a null path name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in the path list. If argument begins with ‘/’, ‘.’, or ‘..’ , the search path is not used. Otherwise, each directory in the path is searched for argument. cd must have execute (search) permission in argument. Because a new process is created to execute each command, cd would be ineffective if it were written as a normal command; therefore, it is recognized by and is internal to the shell. (See pwd(1), sh(1), and chdir(2)).

chdir is just another way to call cd.

/csh

If dir is not specified, the C shell built-in cd uses the value of shell parameter HOME as the new working directory. If dir specifies a complete path starting with ‘/’, ‘.’, ‘..’, or ‘..’, dir becomes the new working directory. If neither case applies, cd tries to find the designated directory relative to one of the paths specified by the CDPATH shell variable. CDPATH has the same syntax as, and similar semantics to, the PATH shell variable. cd must have execute (search) permission in dir. Because a new process is created to execute each command, cd would be ineffective if it were written as a normal command; therefore, it is recognized by and is internal to the C-shell. (See pwd(1), sh(1), and chdir(2)).
chdir changes the shell’s working directory to directory dir. If no argument is given, change to the home directory of the user. If dir is a relative pathname not found in the current directory, check for it in those directories listed in the cdpath variable. If dir is the name of a shell variable whose value starts with a /, change to the directory named by that value.

pushd will push a directory onto the directory stack. With no arguments, exchange the top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.
dir Push the current working directory onto the stack and change to dir.

popd pops the directory stack and cd to the new top directory. The elements of the directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

dirs will print the directory stack, most recent to the left; the first directory shown is the current directory. With the -l argument, produce an unabbreviated printout; use of the - notation is suppressed.

The Korn shell built-in cd command can be in either of two forms. In the first form it changes the current directory to arg. If arg is – the directory is changed to the previous directory. The shell variable HOME is the default arg. The variable PWD is set to the current directory. The shell variable CDPATH defines the search path for the directory containing arg. Alternative directory names are separated by a colon (:) The default path is <null> (specifying the current directory). Note that the current directory is specified by a null path name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in the path list. If arg begins with a ‘/’ ‘/’, ‘.’, or ‘..’, then the search path is not used. Otherwise, each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old in the current directory name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh. Because a new process is created to execute each command, cd would be ineffective if it were written as a normal command; therefore, it is recognized by and is internal to the Korn shell. (See pwd(1), sh(1), and chdir(2)).

The following operands are supported:

directory An absolute or relative pathname of the directory that becomes the new working directory. The interpretation of a relative pathname by cd depends on the CDPATH environment variable.

OUTPUT If a non-empty directory name from CDPATH is used, an absolute pathname of the new working directory will be written to the standard output as follows:

"%s
", <new directory>
Otherwise, there will be no output.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of cd: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

CDPATH
A colon-separated list of pathnames that refer to directories. If the directory operand does not begin with a slash (/) character, and the first component is not dot or dot-dot, cd will search for directory relative to each directory named in the CDPATH variable, in the order listed. The new working directory will be set to the first matching directory found. An empty string in place of a directory pathname represents the current directory. If CDPATH is not set, it will be treated as if it were an empty string.

HOME
The name of the home directory, used when no directory operand is specified.

OLDPWD
A pathname of the previous working directory, used by cd-.

PWD
A pathname of the current working directory, set by cd after it has changed to that directory.

EXIT STATUS
The following exit values are returned by cd:
0 The directory was successfully changed.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), ksh(1), pwd(1), sh(1), chdir(2), attributes(5), environ(5), standards(5)
The `cdrw` command provides the ability to create data and audio CDs. It also provides the ability to extract audio tracks from an audio CD. Any MMC-compliant CD-R or CD-RW drive can be used with `cdrw`. `cdrw` will search for a CD writer device connected to the system, unless the user specifies a device with the `-d` option. If it finds a single such writer device, it will use that as the default CD writer device for the command.

When more than one CD writer is connected to the system, use the `-d` option to indicate which device is desired. The device name can be specified in one of the following ways: `/dev/rdsk/cNtNdNsN`, `cNtNdNsN`, `cNtNdN`, or a symbolic name used by volume manager, such as `cdrom` or `cdrom1`. The `-l` option will provide a list of CD writers.

For instructions on adding a USB-mass-storage-class-compliant CD-RW to your system, see `scsa2usb(7D)`.

Creating Data CDs

When creating data CDs, `cdrw` uses the track-at-once mode of writing. With the `-i` option, the user will specify a file that contains the data to write on CD media. In the absence of such a file, `cdrw` will read data from standard input.

In either case, the data will typically first have been prepared by using the `mkisofs(1M)` command to convert the file and file information into the High Sierra format used on CDs. See the examples that include use of this command.

Creating Audio CDs

For creating an audio CD, using the `-a` option, single or multiple audio files can be specified. All of the audio files should be in the supported audio formats. Currently approved formats are:

- `sun .au` files with data in Red Book CDDA form
- `wav` RIFF (.wav) files with data in Red Book CDDA form
- `cda .cda` files having raw CD audio data (that is, 16 bit PCM stereo at 44.1 KHz sample rate in little-endian byteorder)
aur .aur files having raw CD data in big-endian byteorder

If no audio format is specified, cdrw tries to understand the audio file format based on the file extension. The case of the characters in the extension is ignored. If a format is specified using the -T option, it will be assumed as the audio file type for all the files specified. Also, -cd rw will close the session after writing the audio tracks. Therefore, the tracks to be written should be specified in a single command line.

Extracting Audio

cdrw can also be used for extracting audio data from an audio CD with the -x option. The CD should have tracks in Red Book CDDA form. By default, the output format is based on the file extension. A user can specify a sun, wav, cda, or aur output format using the -T option.

Copying CDs

cdrw can be used to copy single session data CD-ROMs and Red Book audio CDs. For copying a CD, cdrw looks for a specified source device. If no source device is specified when using the -c option, the current CD writing device is assumed to be the source. cdrw will extract the track or tracks into a temporary file and will look for a blank writable CD-R/RW media in the current CD writing device. If no such media is found, the user will be asked to insert a blank writable CD media in the current CD writing device. If enough space is not available in the default temporary directory, an alternative directory can be specified using the -m option.

Erasing CD-RW Media

Users have to erase the CD-RW media before it can be re-written. With the -b option, the following flavors of erasing are currently supported:

session Erase the last session.
all Erase the entire media.

If the session erasing type is used, cdrw will erase the last session. If there is only one session recorded on the CD-RW (for example, a data/audio CD-RW created by this tool), then session erasing is useful as it will only erase the portion that is recorded, leaving behind a blank disk. This is faster than erasing the entire media.

The all erasing type should be used if it is a multisession disk, or the last session is not closed, or disk status is unknown, and the user wishes to erase the disk. With this type of erase, cdrw will erase the entire disk.

Checking device-list or media-status

The user can get a list of CD writing devices currently present in the system with the -l option. Also, for a particular media, the user can get the blanking status and table of contents through the -M option. The -M option also prints information about the last session start address and the next writable address. This information, along with the -o option, can be used to create multisession CDs. Please refer to mkisofs(1M) for more information.

OPTIONS

The following options are supported:

-a Creates an audio disk. At least one audio-file name must be specified. A CD can not have more than 99 audio tracks, so no more than 99 audio files can
be specified. Also, the maximum audio data that can be written to the
media by default is 74 minutes, unless -c is specified.

-b Blanks a CD-RW media. The type of erasing must be specified by the all
or session argument.

-c Copies a CD. If no other argument is specified, the default CD writing
device is assumed to be the source device as well. In this case, the copying
operation will read the source media into a temporary directory and will
prompt the user to place a blank media into the drive for copying to
proceed.

-C Uses media stated capacity. Without this option, cdrw will use a default
value for writable CD media, which is 74 minutes for an audio CD or
681984000 bytes for a data CD.

-d Specifies CD writing device.

-h Help. Prints usage message.

-i Specifies image file for creating data CDs. The file size should be less than
what can be written on a CD-R or CD-RW media, which is 681984000 bytes
by default or the media stated capacity if the -C option is used. Also, it is
better to have the file locally available instead of having it on an
NFS-mounted filesystem, because the CD writing process expects data to
be available continuously without interruptions.

-l Lists all the CD writers found in the system.

-m Uses an alternate temporary directory instead of system default temporary
directory for storing track data while copying a CD. An alternate
temporary directory might be required because the amount of data on a CD
can be huge (as much as 800 Mbytes for an 80 minute audio CD) and the
system default temporary directory might not have that much space.

-M Reports media status. cdrw will report if the media is blank or not, its table
of contents, the last session’s start address, and the next writable address if
the disk is open.

-O Keeps the disk open. cdrw will close the session, but it will keep the disk
open so that another session can be added later on to create a multisession
disk.

-p Sets the CD writing speed. For example, -p 4 will set the speed to 4X. If
this option is not specified, cdrw will use the default speed of the CD
writer. If this option is specified, cdrw will try to set the drive write speed
to this value, but there is no guarantee of the speed actually used by the
drive.

-s Specifies source device for copying CD.
Simulation mode. In this mode, cdrw will do everything with the drive laser turned off, so nothing will be written to the media. This can be used to verify if the system can provide data at a rate good enough for CD writing.

Audio format to use extracting audio files or reading audio files for audio CD creation. The audio-type can be sun, wav, cda, or aur.

Verbose mode.

Extracts audio data from an audio track.

EXAMPLES

EXAMPLE 1 Creating a data CD

```
example% cdrw -i /local/iso_image
```

EXAMPLE 2 Creating a CD from a directory

This example creates a CD from the directory tree `/home/foo`:

```
example% mkisofs -r /home/foo 2>/dev/null | cdrw -i -p1
```

EXAMPLE 3 Extracting an audio track number

This example extracts audio track number 1 to `/home/foo/song1.wav`:

```
example% cdrw -x -T wav 1 /home/foo/song1.wav
```

EXAMPLE 4 Using wav files

This example creates an audio CD from wav files on disk:

```
example% cdrw -a song1.wav song2.wav song3.wav song4.wav
```

EXAMPLE 5 Erasing a CD-RW media

This example erases a CD-RW media in a CD-RW drive:

```
example% cdrw -b all
```

EXAMPLE 6 Creating a data CD with multiple drives

This example creates a data CD on a system with multiple CD-R/RW drives:

```
example% cdrw -d clt6d0s2 -i /home/foo/iso-image
```

EXAMPLE 7 Checking data delivery rate

This example checks if the system can provide data to a CD-RW drive at a rate sufficient for the write operation:
EXAMPLE 7 Checking data delivery rate (Continued)

example$ cdrw -S -i /home/foo/iso-image

EXAMPLE 8 Running at a higher priority

This example runs cdrw at a higher priority (for root user only):

example$ priocntl -e -p 60 cdrw -i /home/foo/iso-image

EXAMPLE 9 Creating a multi-session disk

Create the first session image using mkisofs(1M) and record it onto the disk without closing the disk:

example$ cdrw -O -i /home/foo/iso-image

Additional sessions can be added to an open disk by creating an image with mkisofs(1M) using the session start and next writable address reported by cdrw.

example$ cdrw -M

<table>
<thead>
<tr>
<th>Track No.</th>
<th>Type</th>
<th>Start address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
<td>0</td>
</tr>
<tr>
<td>Leadout</td>
<td>Data</td>
<td>166564</td>
</tr>
</tbody>
</table>

Last session start address: 162140
Next writable address: 173464

example$ mkisofs -o /tmp/image2 -r -C 0,173464 -M /dev/rdsk/c0t2d0s2 /home/foo

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcdrw</td>
</tr>
</tbody>
</table>

SEE ALSO

audioconvert(1), mkisofs(1M), priocntl(1), attributes(5), rbac(5), scsa2usb(7D), sd(7D)

NOTES

The CD writing process requires data to be supplied at a constant rate to the drive. It is advised to keep I/O activity to a minimum and shut down the related applications while writing CDs.

When making copies or extracting audio tracks, it is better to use an MMC compliant source CD-ROM drive. The CD writing device can be used for this purpose.
Before writing a CD, ensure that the media is blank by using the -M option and use the -S simulation mode to test the system to make sure it can provide data at the required rate. In case the system is not able to provide data at the required rate, try simulation with a slower write speed set through the -p option. Users can also try to run `cdrw` at a higher priority using the `priocntl(1)` command.

The -p option is provided for users who are aware of the CD-R/RW drive and its capabilities to operate at different write speeds. Some commercially available drives handle the drive speed setting command differently, so use this option judiciously.

Most commercially available drives allow writing beyond 74 minutes as long as the media has the capacity (such as 80–minute media). However, such capability of writing beyond 74 minutes might not be supported by the drive in use. If the drive being used supports such capability, then use the -C option to indicate that the tool should rely on the capacity indicated by the media.

The `cdrw` command uses `rbac(5)` to control user access to the devices. By default, `cdrw` is accessible to all users but can be restricted to individual users. Please refer to "Administering CD-R/CD-RW devices" in the System Administration Guide: Basic Administration for more information.
checknr(1)

NAME checknr – check nroff and troff input files; report possible errors

SYNOPSIS checknr [-fs] [-a .x1 .y1 .x2 .y2 .xn .yn] [-c .x1 .x2 .x3xn] [filename...]

DESCRIPTION checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors
involving mismatched opening and closing delimiters and unknown commands. If no
files are specified, checknr checks the standard input. Delimiters checked are:

- Font changes using \fx.../fp.
- Size changes using \sx.../s0.
- Macros that come in open...close forms, for example, the .TS and .TE macros
 which must always come in pairs.

checknr knows about the ms(5) and me(5) macro packages.

checknr is intended to be used on documents that are prepared with checknr in
mind. It expects a certain document writing style for \f and \s commands, in that
each \fx must be terminated with \fp and each \sx must be terminated with \s0.
While it will work to directly go into the next font or explicitly specify the original font
or point size, and many existing documents actually do this, such a practice will
produce complaints from checknr. Since it is probably better to use the \fp and \s0
forms anyway, you should think of this as a contribution to your document
preparation style.

OPTIONS

- f Ignore \f font changes.
- s Ignore \s size changes.
- a .x1 .y1... Add pairs of macros to the list. The pairs of macros are assumed to
be those (such as .DS and .DE) that should be checked for
balance. The -a option must be followed by groups of six
characters, each group defining a pair of macros. The six characters
are a period, the first macro name, another period, and the second
macro name. For example, to define a pair .BS and .ES, use
’-a .BS .ES’
- c .x1... Define commands which checknr would otherwise complain
about as undefined.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO eqn(1), nroff(1), troff(1), attributes(5), me(5), ms(5)

BUGS There is no way to define a one-character macro name using the -a option.
NAME
chgrp – change file group ownership

SYNOPSIS
chgrp [-fhR] group file...

DESCRIPTION
The chgrp utility will set the group ID of the file named by each file operand to the
group ID specified by the group operand.

For each file operand, it will perform actions equivalent to the chown(2) function,
called with the following arguments:

- The file operand will be used as the path argument.
- The user ID of the file will be used as the owner argument.
- The specified group ID will be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and
set-group-ID bits of a regular file will be cleared upon successful completion; the
set-user-ID and set-group-ID bits of other file types may be cleared.

The operating system has a configuration option _POSIX_CHOWN_RESTRICTED, to
restrict ownership changes. When this option is in effect, the owner of the file may
change the group of the file only to a group to which the owner belongs. Only the
super-user can arbitrarily change owner IDs, whether or not this option is in effect. To
set this configuration option, include the following line in /etc/system:

```
set rstchown = 1
```

To disable this option, include the following line in /etc/system:

```
set rstchown = 0
```

_POSIX_CHOWN_RESTRICTED is enabled by default. See system(4) and
fpathconf(2).

OPTIONS
The following options are supported:

- `-f`
 Force. Do not report errors.

- `-h`
 If the file is a symbolic link, change the group of the symbolic link. Without
 this option, the group of the file referenced by the symbolic link is changed.

- `-R`
 Recursive. chgrp descends through the directory, and any subdirectories,
 setting the specified group ID as it proceeds. When a symbolic link is
 encountered, the group of the target file is changed (unless the -h option is
 specified), but no recursion takes place.

OPERANDS
The following operands are supported:

- `group`
 A group name from the group database or a numeric group ID. Either
 specifies a group ID to be given to each file named by one of the file
 operands. If a numeric group operand exists in the group database as a
 group name, the group ID number associated with that group name is used
 as the group ID.
chgrp(1)

file A path name of a file whose group ID is to be modified.

USAGE
See largefile(5) for the description of the behavior of chgrp when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of chgrp: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 The utility executed successfully and all requested changes were made.
>0 An error occurred.

FILES
/etc/group group file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
chmod(1), chown(1), id(1M), chown(2), fpathconf(2), group(4), passwd(4), system(4), attributes(5), environ(5), largefile(5), standards(5)

NOTES
chgrp is CSI-enabled except for the group name.
chkey(1)

NAME
 chkey – change user’s secure RPC key pair

SYNOPSIS
 chkey [-p] [-s nisplus | nis | files | ldap] [-m <mechanism>]

DESCRIPTION
 chkey is used to change a user’s secure RPC public key and secret key pair. chkey prompts for the old secure-rpc password and verifies that it is correct by decrypting the secret key. If the user has not already used keylogin(1) to decrypt and store the secret key with keyserv(1M), chkey registers the secret key with the local keyserv(1M) daemon. If the secure-rpc password does not match the login password, chkey prompts for the login password. chkey uses the login password to encrypt the user’s secret Diffie-Hellman (192 bit) cryptographic key. chkey can also encrypt other Diffie-Hellman keys for authentication mechanisms configured using nisauthconf(1M).

 chkey ensures that the login password and the secure-rpc password(s) are kept the same, thus enabling password shadowing. See shadow(4).

 The key pair can be stored in the /etc/publickey file (see publickey(4)), the NIS publickey map, or the NIS+ cred.org_dir table. If a new secret key is generated, it will be registered with the local keyserv(1M) daemon. However, only NIS+ can store Diffie-Hellman keys other than 192-bits.

 Keys for specific mechanisms can be changed or reencrypted using the -m option followed by the authentication mechanism name. Multiple -m options can be used to change one or more keys. However, only mechanisms configured using nisauthconf(1M) can be changed with chkey.

 If the source of the publickey is not specified with the -s option, chkey consults the publickey entry in the name service switch configuration file. See nsswitch.conf(4). If the publickey entry specifies one and only one source, then chkey will change the key in the specified name service. However, if multiple name services are listed, chkey can not decide which source to update and will display an error message. The user should specify the source explicitly with the -s option.

 Non root users are not allowed to change their key pair in the files database.

OPTIONS
 The following options are supported:

 -p
 Re-encrypt the existing secret key with the user’s login password.

 -s nisplus
 Update the NIS+ database.

 -s nis
 Update the NIS database.

 -s files
 Update the files database.

 -s ldap
 Update the LDAP database.

 -m <mechanism>
 Changes or re-encrypt the secret key for the specified mechanism.
chkey(1)

FILES

/etc/nsswitch.conf
/etc/publickey

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

keylogin(1), keylogout(1), keyserv(1M), newkey(1M), nisaddcred(1M), nisauthconf(1M), nsswitch.conf(4), publickey(4), shadow(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
The `chmod` utility changes or assigns the mode of a file. The mode of a file specifies its permissions and other attributes. The mode may be absolute or symbolic.

Absolute mode

An absolute mode specification has the following format:

```bash
chmod [options] absolute-mode file ... where absolute-mode is specified using octal numbers nnnn defined as follows:
```

- `n` a number from 0 to 7. An absolute mode is constructed from the OR of any of the following modes:
 - 4000 Set user ID on execution.
 - 20 # 0 Set group ID on execution if # is 7, 5, 3, or 1. Enable mandatory locking if # is 6, 4, 2, or 0.
 - 1000 Turn on sticky bit. See `chmod(2)`.
 - 0400 Allow read by owner.
 - 0200 Allow write by owner.
 - 0100 Allow execute (search in directory) by owner.
 - 0700 Allow read, write, and execute (search) by owner.
 - 0040 Allow read by group.
 - 0020 Allow write by group.
 - 0010 Allow execute (search in directory) by group.
 - 0070 Allow read, write, and execute (search) by group.
 - 0004 Allow read by others.
 - 0002 Allow write by others.
 - 0001 Allow execute (search in directory) by others.
 - 0007 Allow read, write, and execute (search) by others.
For directories, the setgid bit cannot be set (or cleared) in absolute mode; it must be set (or cleared) in symbolic mode using g+s (or g-s).

Symbolic mode

A symbolic mode specification has the following format:

```bash
chmod [options] symbolic-mode-list file . . .
```

where `symbolic-mode-list` is a comma-separated list (with no intervening whitespace) of symbolic mode expressions of the form:

```bash
[who] operator [permissions]
```

Operations are performed in the order given. Multiple `permissions` letters following a single operator cause the corresponding operations to be performed simultaneously.

who

zero or more of the characters `u`, `g`, `o`, and `a` specifying whose permissions are to be changed or assigned:

- `u` user’s permissions
- `g` group’s permissions
- `o` others’ permissions
- `a` all permissions (user, group, and other)

If `who` is omitted, it defaults to `a`, but the setting of the file mode creation mask (see `umask` in `sh(1)` or `csh(1)` for more information) is taken into account. When `who` is omitted, `chmod` will not override the restrictions of your user mask.

operator

either `+`, `−`, or `=`; signifying how permissions are to be changed:

- `+` Add permissions.

 If `permissions` is omitted, nothing is added.

 If `who` is omitted, add the file mode bits represented by `permissions`, except for the those with corresponding bits in the file mode creation mask.

 If `who` is present, add the file mode bits represented by the `permissions`.

- `−` Take away permissions.

 If `permissions` is omitted, do nothing.

 If `who` is omitted, clear the file mode bits represented by `permissions`, except for those with corresponding bits in the file mode creation mask.

 If `who` is present, clear the file mode bits represented by `permissions`.
chmod(1)

= Assign permissions absolutely.

If who is omitted, clear all file mode bits; if who is present, clear the file mode bits represented by who.

If permissions is omitted, do nothing else.

If who is omitted, add the file mode bits represented by permissions, except for the those with corresponding bits in the file mode creation mask.

If who is present, add the file mode bits represented by permissions.

Unlike other symbolic operations, = has an absolute effect in that it resets all other bits represented by who. Omitting permissions is useful only with = to take away all permissions.

Permissions to a file may vary depending on your user identification number (UID) or group identification number (GID). Permissions are described in three sequences each having three characters:

<table>
<thead>
<tr>
<th>User</th>
<th>Group</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>rwx</td>
<td>rwx</td>
<td>rwx</td>
</tr>
</tbody>
</table>

This example (user, group, and others all have permission to read, write, and execute a given file) demonstrates two categories for granting permissions: the access class and the permissions themselves.
The letter \textit{s} is only meaningful with \texttt{u} or \texttt{g}, and \texttt{t} only works with \texttt{u}.

Mandatory file and record locking (1) refers to a file’s ability to have its reading or writing permissions locked while a program is accessing that file.

In a directory which has the set-group-ID bit set (reflected as either \texttt{-s} or \texttt{-l} in the output of \texttt{ls -ld}), files and subdirectories are created with the group-ID of the parent directory—not that of current process.

It is not possible to permit group execution and enable a file to be locked on execution at the same time. In addition, it is not possible to turn on the set-group-ID bit and enable a file to be locked on execution at the same time. The following examples, therefore, are invalid and elicit error messages:

\begin{verbatim}
chmod g+x,+l file
chmod g+s,+l file
\end{verbatim}

Only the owner of a file or directory (or the super-user) may change that file’s or directory’s mode. Only the super-user may set the sticky bit on a non-directory file. If you are not super-user, \texttt{chmod} will mask the sticky-bit but will not return an error. In order to turn on a file’s set-group-ID bit, your own group ID must correspond to the file’s and group execution must be set.

\textbf{OPTIONS} The following options are supported:

\begin{itemize}
 \item \texttt{-f} Force. \texttt{chmod} will not complain if it fails to change the mode of a file.
 \item \texttt{-R} Recursively descends through directory arguments, setting the mode for each file as described above. When symbolic links are encountered, the mode of the target file is changed, but no recursion takes place.
\end{itemize}

\textbf{OPERANDS} The following operands are supported:

\begin{description}
 \item[\textit{absolute-mode}] Represents the change to be made to the file mode bits of each file named by one of the \textit{file} operands. See Absolute Mode above in the DESCRIPTION section for more information.
 \item[\textit{symbolic-mode-list}] A path name of a file whose file mode bits are to be modified.
 \item[\textit{file}] A path name of a file whose file mode bits are to be modified.
\end{description}

\textbf{USAGE} See \texttt{largefile(5)} for the description of the behavior of \texttt{chmod} when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

\textbf{EXAMPLES} \textbf{EXAMPLE 1} Denying execute permission to everyone

\begin{verbatim}
example\$ chmod a-x file
\end{verbatim}
EXAMPLE 2 Allowing only read permission to everyone
example% chmod 444 file

EXAMPLE 3 Making a file readable and writable by the group and others
example% chmod go+rw file
example% chmod 066 file

EXAMPLE 4 Causing a file to be locked during access
example% chmod +l file

EXAMPLE 5 Allowing everyone to read, write, and execute the file and turn on the set group-ID
example% chmod a=rwx,g+s file
example% chmod 2777 file

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of chmod: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
 0 Successful completion.
 >0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO getfacl(1), ls(1), setfacl(1), chmod(2), attributes(5), environ(5), largefile(5), standards(5)

NOTES Absolute changes do not work for the set-group-ID bit of a directory. You must use g+s or g-s.

chmod permits you to produce useless modes so long as they are not illegal (for instance, making a text file executable). chmod does not check the file type to see if mandatory locking is meaningful.

If the filesystem is mounted with the nosuid option, setuid execution is not allowed.
If you use chmod to change the file group owner permissions on a file with ACL entries, both the file group owner permissions and the ACL mask are changed to the new permissions. Be aware that the new ACL mask permissions may change the effective permissions for additional users and groups who have ACL entries on the file. Use the getfacl(1) command to make sure the appropriate permissions are set for all ACL entries.
NAME
chown – change file ownership

SYNOPSIS
chown [-fhR] owner [: group] file...

DESCRIPTION
The chown utility will set the user ID of the file named by each file to the user ID specified by owner, and, optionally, will set the group ID to that specified by group.

If chown is invoked by other than the super-user, the set-user-ID bit is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to restrict ownership changes. When this option is in effect the owner of the file is prevented from changing the owner ID of the file. Only the super-user can arbitrarily change owner IDs whether or not this option is in effect. To set this configuration option, include the following line in /etc/system:

```
set rstchown = 1
```

To disable this option, include the following line in /etc/system:

```
set rstchown = 0
```

{_POSIX_CHOWN_RESTRICTED} is enabled by default. See system(4) and fpathconf(2).

OPTIONS
The following options are supported:

- f Do not report errors.
- h If the file is a symbolic link, change the owner of the symbolic link. Without this option, the owner of the file referenced by the symbolic link is changed.
- R Recursive. chown descends through the directory, and any subdirectories, setting the ownership ID as it proceeds. When a symbolic link is encountered, the owner of the target file is changed (unless the -h option is specified), but no recursion takes place.

OPERANDS
The following operands are supported:

```
owner[: group]
```

A user ID and optional group ID to be assigned to file. The owner portion of this operand must be a user name from the user database or a numeric user ID. Either specifies a user ID to be given to each file named by file. If a numeric owner exists in the user database as a user name, the user ID number associated with that user name will be used as the user ID. Similarly, if the group portion of this operand is present, it must be a group name from the group database or a numeric group ID. Either specifies a group ID to be given to each file. If a numeric group operand exists in the
group database as a group name, the group ID number associated with that group name will be used as the group ID.

file

A path name of a file whose user ID is to be modified.

USAGE

See largefile(5) for the description of the behavior of chown when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

EXAMPLE 1 Changing ownership of all files in the hierarchy

To change ownership of all files in the hierarchy, including symbolic links, but not the targets of the links:

```bash
example% chown -R -h owner[:group] file...
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of chown: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- **0** The utility executed successfully and all requested changes were made.
- **>0** An error occurred.

FILES

/etc/passwd system password file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

chgrp(1), chmod(1), chown(2), fpathconf(2), passwd(4), system(4), attributes(5), environ(5), largefile(5), standards(5)

NOTES

chown is CSI-enabled except for the *owner* and *group* names.
NAME chown – change owner

SYNOPSIS /usr/ucb/chown [-fR] owner [.group] filename...

DESCRIPTION chown changes the owner of the filenames to owner. The owner may be either a decimal user ID (UID) or a login name found in the password file. An optional group may also be specified. The group may be either a decimal group ID (GID) or a group name found in the GID file.

Only the super-user can change owner, in order to simplify accounting procedures.

OPTIONS
- f Do not report errors.
- R Recursively descend into directories setting the ownership of all files in each directory encountered. When symbolic links are encountered, their ownership is changed, but they are not traversed.

USAGE See largefile(5) for the description of the behavior of chown when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

FILES
/etc/passwd password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO chgrp(1), chown(2), group(4), passwd(4), attributes(5), largefile(5)
ckdate utility prompts a user and validates the response. It defines, among other things, a prompt message whose response should be a date, text for help and error messages, and a default value (which will be returned if the user responds with a RETURN). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -W option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text will be inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate (which formats and displays an error message), helpdate (which formats and displays a help message), and valdate (which validates a response). These modules should be used in conjunction with FML objects. In this instance, the FML object defines the prompt. When format is defined in the errdate and helpdate modules, the messages will describe the expected format.

The following options are supported:

- `-d default` Defines the default value as `default`. The default does not have to meet the format criteria.
- `-e error` Defines the error message as `error`.
- `-f format` Specifies the format against which the input will be verified.

Possible formats and their definitions are:

- `%b` = abbreviated month name (jan, feb, mar)
- `%B` = full month name
- `%d` = day of month (01 - 31)
- `%D` = date as `%m/%d/%y` (the default format)
- `%e` = day of month (1 - 31; single digits are preceded by a blank)
- `%h` = abbreviated month name, identical to `%b`
- `%m` = month number (01 - 12)
ckdate(1)

%y = year within century (for instance, 89)
%Y = year as CCYY (for instance, 1989)

-h help
Defines the help messages as help.

-k pid
Specifies that process ID pid is to be sent a signal if the user chooses to abort.

-p prompt
Defines the prompt message as prompt.

-Q
Specifies that quit will not be allowed as a valid response.

-s signal
Specifies that the process ID pid defined with the -k option is to be sent signal signal when quit is chosen. If no signal is specified, SIGTERM is used.

-W width
Specifies that prompt, help and error messages will be formatted to a line length of width.

OPERANDS
The following operand is supported:

input
Input to be verified against format criteria.

EXIT STATUS
The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -W option, or usage error.
3 User termination (quit).
4 Garbled format argument.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

NOTES
The default prompt for ckdate is:

Enter the date [?,q]:

The default error message is:

ERROR - Please enter a date. Format is <format>.

The default help message is:

Please enter a date. Format is <format>.
When the quit option is chosen (and allowed), q is returned along with the return code 3. The validate module will not produce any output. It returns zero for success and non-zero for failure.
ckgid, errgid, helpgid, valgid – prompts for and validates a group id

SYNOPSIS

[-k pid [-s signal]]
/usr/sadm/bin/errgid [-W width] [-e error]
/usr/sadm/bin/helpgid [-W width] [-m] [-h help]
/usr/sadm/bin/valgid input

DESCRIPTION

ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and displays
a help message), and valgid (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt.

OPTIONS

The following options are supported:

- -d default
 Defines the default value as default. The default is not validated
 and so does not have to meet any criteria.

- -e error
 Defines the error message as error.

- -h help
 Defines the help messages as help.

- -k pid
 Specifies that process ID pid is to be sent a signal if the user
 chooses to abort.

- -m
 Displays a list of all groups when help is requested or when the
 user makes an error.

- -p prompt
 Defines the prompt message as prompt.

- -Q
 Specifies that quit will not be allowed as a valid response.

- -s signal
 Specifies that the process ID pid defined with the -k option is to be
 sent signal signal when quit is chosen. If no signal is specified,
 SIGTERM is used.
ckgid(1)

\[-W \textwidth\] Specifies that prompt, help and error messages will be formatted to a line length of \textwidth.

OPERANDS
The following operand is supported:

\textit{input} Input to be verified against /etc/group.

EXIT STATUS
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>1</td>
<td>EOF on input, or negative width on (-W) option, or usage error.</td>
</tr>
<tr>
<td>3</td>
<td>User termination (quit).</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

NOTES
The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR: Please enter one of the following group names: [List]

If the \(-m\) option of ckgid is used, a list of valid groups is displayed here.

The default help message is:

ERROR: Please enter one of the following group names: [List]

If the \(-m\) option of ckgid is used, a list of valid groups is displayed here.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valgid module will not produce any output. It returns 0 for success and non-zero for failure.
ckint, errint, helpint, valint – display a prompt; verify and return an integer value

 [-p prompt] [-k pid] [-s signal]
/usr/sadm/bin/errint [-W width] [-b base] [-e error]
/usr/sadm/bin/helpint [-W width] [-b base] [-h help]
/usr/sadm/bin/valint [-b base] input

DESCRIPTION

The ckint utility prompts a user, then validates the response. It defines, among other things, a prompt message whose response should be an integer, text for help and error messages, and a default value (which will be returned if the user responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -W option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text will be inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint (which formats and displays an error message), helpint (which formats and displays a help message), and valint (which validates a response). These modules should be used in conjunction with FML objects. In this instance, the FML object defines the prompt. When base is defined in the errint and helpint modules, the messages will include the expected base of the input.

OPTIONS

The following options are supported:

- **-b base**
 Defines the base for input. Must be 2 to 36, default is 10.

- **-d default**
 Defines the default value as default. The default is not validated and so does not have to meet any criteria.

- **-e error**
 Defines the error message as error.

- **-h help**
 Defines the help messages as help.

- **-k pid**
 Specifies that process ID pid is to be sent a signal if the user chooses to abort.

- **-p prompt**
 Defines the prompt message as prompt.

- **-Q**
 Specifies that quit will not be allowed as a valid response.

- **-s signal**
 Specifies that the process ID pid defined with the -k option is to be sent signal signal when quit is chosen. If no signal is specified, SIGTERM is used.
ckint(1)

-\w width Specifies that prompt, help and error messages will be formatted to a line length of width.

OPERANDS
The following operand is supported:

`input` Input to be verified against base criterion.

EXIT STATUS
The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -\w option, or usage error.
3 User termination (quit).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

NOTES
The default base 10 prompt for ckint is:

```
Enter an integer [?,q]:
```

The default base 10 error message is:

```
ERROR - Please enter an integer.
```

The default base 10 help message is:

```
Please enter an integer.
```

The messages are changed from "integer" to "base base integer" if the base is set to a number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valint module will not produce any output. It returns 0 for success and non-zero for failure.
NAME
ckitem, erritem, helpitem – build a menu; prompt for and return a menu item

SYNOPSIS
```
       [-m max] [-d default] [-h help] [-e error] [-p prompt] [-k pid]
       [-s signal] [ choice [,...] ]
```

```
/usr/sadm/bin/erritem [-W width] [-e error] [ choice [,...] ]
```

```
/usr/sadm/bin/helpitem [-W width] [-h help] [ choice [,...] ]
```

DESCRIPTION
The ckitem utility builds a menu and prompts the user to choose one item from a menu of items. It then verifies the response. Options for this command define, among other things, a prompt message whose response will be a menu item, text for help and error messages, and a default value (which will be returned if the user responds with a carriage return).

By default, the menu is formatted so that each item is prepended by a number and is printed in columns across the terminal. Column length is determined by the longest choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The `-W` option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text will be inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under **NOTES**) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem (which formats and displays an error message) and helpitem (which formats and displays a help message). These modules should be used in conjunction with FML objects. In this instance, the FML object defines the prompt. When choice is defined in these modules, the messages will describe the available menu choice (or choices).

OPTIONS
The following options are supported:

- `-d default` Define the default value as `default`. The default is not validated and so does not have to meet any criteria.
- `-e error` Define the error message as `error`.
- `[-f filename]` Define a file, `filename`, which contains a list of menu items to be displayed. (The format of this file is: `token<tab>description`. Lines beginning with a pound sign (`#`) are designated as comments and ignored.)
- `-h help` Define the help messages as `help`.
- `-i invis` Define invisible menu choices (those which will not be printed in the menu). (For example, “all” used as an invisible choice would mean it is a legal option but does not appear in the menu. Any
The number of invisible choices may be defined. Invisible choices should be made known to a user either in the prompt or in a help message.

-\(k \) pid

Specify that the process ID \(pid \) is to be sent a signal if the user chooses to abort.

-\(l \) label

Define a label, \(label \), to print above the menu.

-\(m \) max

Define the maximum number of menu choices that the user can choose. The default is 1.

-\(n \)

Specify that menu items should not be displayed in alphabetical order.

-\(o \)

Specify that only one menu token will be returned.

-\(p \) prompt

Define the prompt message as \(prompt \).

-\(Q \)

Specify that quit will not be allowed as a valid response.

-\(s \) signal

Specify that process ID \(pid \) defined with the \(-k \) option is to be sent signal \(signal \) when quit is chosen. If no signal is specified, \(SIGTERM \) is used.

-\(u \)

Specify that menu items should be displayed as an unnumbered list.

-\(w \) width

Specify that prompt, help and error messages will be formatted to a line length of \(width \).

OPERANDS

The following operand is supported:

choice

Define menu items. Items should be separated by white space or newline.

EXIT STATUS

The following exit values are returned:

0

Successful execution.

1

EOF on input, or negative width on \(-w \) option, or inability to open file on \(-f \) option, or usage error.

3

User termination (quit).

4

No choices from which to choose.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)
The user may input the number of the menu item if choices are numbered or as much of the string required for a unique identification of the item. Long menus are paged with 10 items per page.

When menu entries are defined both in a file (by using the -f option) and also on the command line, they are usually combined alphabetically. However, if the -n option is used to suppress alphabetical ordering, then the entries defined in the file are shown first, followed by the options defined on the command line.

The default prompt for ckitem is:

Enter selection [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two question marks will give a help message and then redisplay the menu label, the menu and the prompt.

The default error message if you typed a number is:

ERROR: Bad numeric choice specification

The default error message if you typed a string is:

ERROR: Entry does not match available menu selection. Enter the number of the menu item you wish to select, the token which is associated with the menu item, or a partial string which uniquely identifies the token for the menu item. Enter ?? to reprint the menu.

The default help message is:

Enter the number of the menu item you wish to select, the token which is associated with the menu item, or a partial string which uniquely identifies the token for the menu item. Enter ? to reprint the menu.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
ckkeywd(1)

NAME
ckkeywd – prompts for and validates a keyword

SYNOPSIS
[-k pid [-s signal]] keyword [. . .]

DESCRIPTION
ckkeywd prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be one of a list of keywords, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return). The answer returned from this command must match one of the
defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

OPTIONS
The following options are supported:

-d default
Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error
Defines the error message as error.

-h help
Defines the help messages as help.

-k pid
Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt
Defines the prompt message as prompt.

-Q
Specifies that quit will not be allowed as a valid response.

-s signal
Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width
Specifies that prompt, help and error messages will be formatted
to a line length of width.

OPERANDS
The following operand is supported:

keyword
Defines the keyword, or list of keywords, against which the
answer will be verified.

EXIT STATUS
The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -W option, or no keywords from which
to choose, or usage error.
User termination (quit).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

NOTES
The default prompt for ckkeywd is:

Enter appropriate value (keyword, [...], ?, q):

The default error message is:

ERROR: Please enter one of the following keywords: keyword, [...], q

The default help message is:

keyword, [...], q

When the quit option is chosen (and allowed), q is returned along with the return code 3.
ckpath utility prompts a user and validates the response. It defines, among other things, a prompt message whose response should be a pathname, text for help and error messages, and a default value (which is returned if the user responds with a RETURN).

The pathname must obey the criteria specified by the first group of options. If no criteria is defined, the pathname must be for a normal file that does not yet exist. If neither -a (absolute) or -l (relative) is given, then either is assumed to be valid.

All messages are limited in length to 79 characters and are formatted automatically. Tabs and newlines are removed after a single white space character in a message definition, but spaces are not removed. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath (which formats and displays an error message on the standard output), helppath (which formats and displays a help message on the standard output), and valpath (which validates a response). These modules should be used in conjunction with Framed Access Command Environment (FACE) objects. In this instance, the FACE object defines the prompt.

The following options are supported:

- **a** Pathname must be an absolute path.
- **b** Pathname must be a block special file.
- **c** Pathname must be a character special file.
- **d default** Defines the default value as default. The default is not validated and so does not have to meet any criteria.
- **e error** Defines the error message as error.
- **f** Pathname must be a regular file.
ckpath(1)

-\n help Defines the help message as help.
-\n k pid Specifies that process ID pid is to be sent a signal if the user
 chooses to quit.
-\n l Pathname must be a relative path.
-\n n Pathname must not exist (must be new).
-\n o Pathname must exist (must be old).
-\n p prompt Defines the prompt message as prompt.
-\n Q Specifies that quit is not allowed as a valid response.
-\n r Pathname must be readable.
-\n s signal Specifies that the process ID pid defined with the -\n k option is to be sent signal signal when quit is chosen. If no signal is specified, SIGTERM is used.
-\n t Pathname must be creatable (touchable). Pathname will be created
 if it does not already exist.
-\n w Pathname must be writable.
-\n w width Specify that prompt, help and error messages be formatted to a
 line length of width.
-\n x Pathname must be executable.
-\n y Pathname must be a directory.
-\n z Pathname must have a file having a size greater than zero bytes.

OPERANDS
The following operand is supported:

input Input to be verified against validation options.

EXAMPLES
The text of the default messages for ckpath depends upon the criteria options that
have been used.

EXAMPLE 1 Default prompt

An example default prompt for ckpath (using the -a option) is:

example\$ ckpath -a
Enter an absolute pathname [?,q]

EXAMPLE 2 Default error message

An example default error message (using the -a option) is:

example\$ /usr/sadm/bin/errpath -a
ERROR: A pathname is a filename, optionally preceded by parent directories.
The pathname you enter: - must begin with a slash (/)
EXAMPLE 3 Default help message

An example default help message (using the -a option) is:

example$ /usr/sadm/bin/helppath -a
A pathname is a filename, optionally preceded by parent directories.
The pathname you enter: - must begin with a slash (/)

EXAMPLE 4 The quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 5 Using the valpath module

The valpath module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example$ /usr/sadm/bin/valpath
usage: valpath [-a][b|c|f|y][n|o|z]rtwx] input

EXIT STATUS The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -w option, or usage error.
2 Mutually exclusive options.
3 User termination (quit).
4 Mutually exclusive options.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO face(1), signal(3HEAD), attributes(5)
The ckrange utility prompts a user for an integer between a specified range and determines whether this response is valid. It defines, among other things, a prompt message whose response should be an integer in the range specified, text for help and error messages, and a default value (which is returned if the user responds with a RETURN).

This command also defines a range for valid input. If either the lower or upper limit is left undefined, then the range is bounded on only one end.

All messages are limited in length to 79 characters and are formatted automatically. Tabs and newlines are removed after a single whitespace character in a message definition, but spaces are not removed. When a tilde is placed at the beginning or end of a message definition, the default text will be inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckrange command. They are errange (which formats and displays an error message on the standard output), helprange (which formats and displays a help message on the standard output), and valrange (which validates a response). These modules should be used in conjunction with Framed Access Command Environment (FACE) objects. In this instance, the FACE object defines the prompt.

Note: Negative "input" arguments confuse getopt in valrange. By inserting a "-" before the argument, getopt processing will stop. See getopt(1) and intro(1) about getopt parameter handling. getopt is used to parse positional parameters and to check for legal options.

The following options are supported:

-b base Defines the base for input. Must be 2 to 36, default is 10. Base conversion uses strtol(3C). Output is always base 10.
-d default Defines the default value as default. default is converted using strtol(3C) in the desired base. Any characters invalid in the specified base will terminate the strtol conversion without error.
ckrange(1)

- e error Defines the error message as error.
- h help Defines the help message as help.
- k pid Specifies that process ID pid is to be sent a signal if the user chooses to quit.
- l lower Defines the lower limit of the range as lower. Default is the machine’s largest negative long.
- p prompt Defines the prompt message as prompt.
- Q Specifies that quit will not be allowed as a valid response.
- s signal Specifies that the process ID pid defined with the -k option is to be sent signal signal when quit is chosen. If no signal is specified, SIGTERM is used.
- u upper Defines the upper limit of the range as upper. Default is the machine’s largest positive long.
- w width Specifies that prompt, help and error messages will be formatted to a line length of width.

OPERANDS The following operand is supported:

input Input to be verified against upper and lower limits and base.

EXAMPLES

EXAMPLE 1 Default base 10 prompt

The default base 10 prompt for ckrange is:

```bash
example$ ckrange
Enter an integer between lower_bound and upper_bound [lower_bound–upper_bound, ?, q]:
```

EXAMPLE 2 Default base 10 error message

The default base 10 error message is:

```bash
example$ /usr/sadm/bin/errange
ERROR: Please enter an integer between lower_bound and upper_bound.
```

EXAMPLE 3 Default base 10 help message

The default base 10 help message is:

```bash
example$ /usr/sadm/bin/helprange
Please enter an integer between lower_bound and upper_bound.
```
EXAMPLE 4 Changing messages for a base other than 10

The messages are changed from “integer” to “base base integer” if the base is set to a number other than 10. For example,

```
example% /usr/sadm/bin/helprange -b 36
```

EXAMPLE 5 Using the quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 6 Using the valrange module

The valrange module will produce a usage message on stderr. It returns 0 for
success and non-zero for failure.

```
example% /usr/sadm/bin/valrange
usage: valrange [-l lower] [-u upper] [-b base] input
```

EXIT STATUS The following exit values are returned:

- 0 Successful execution.
- 1 EOF on input, or negative width on -W option, or usage error.
- 2 Usage error.
- 3 User termination (quit).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO intro(1), face(1), getopt(1), strtol(3C), attributes(5), signal(3HEAD)
ckstr(1)

NAME
ckstr, errstr, helpstr, valstr – display a prompt; verify and return a string answer

SYNOPSIS
ckstr [-Q] [-w width] [-r regexp] [help] [error] [default] [-d default]
/usr/sadm/bin/errstr [-w width] [error] [length] [regexp]
/usr/sadm/bin/helpstr [-w width] [help] [length] [regexp]
/usr/sadm/bin/valstr [-l length] [regexp] [input]

DESCRIPTION
The ckstr utility prompts a user and validates the response. It defines, among other things, a prompt message whose response should be a string, text for help and error messages, and a default value (which are returned if the user responds with a RETURN).

The answer returned from this command must match the defined regular expression and be no longer than the length specified. If no regular expression is given, valid input must be a string with a length less than or equal to the length defined with no internal, leading or trailing white space. If no length is defined, the length is not checked.

All messages are limited in length to 79 characters and are formatted automatically. Tabs and newlines are removed after a single white space character in a message definition, but spaces are not removed. When a tilde is placed at the beginning or end of a message definition, the default text will be inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr (which formats and displays an error message on the standard output), helpstr (which formats and displays a help message on the standard output), and valstr (which validates a response). These modules should be used in conjunction with Framed Access Command Environment (FACE) objects. In this instance, the FACE object defines the prompt.

OPTIONS
The following options are supported:

- -d default
 Defines the default value as default. The default is not validated and so does not have to meet any criteria.

- -e error
 Defines the error message as error.

- -h help
 Defines the help message as help.

- -k pid
 Specifies that process ID pid is to be sent a signal if the user chooses to quit.

- -l length
 Specifies the maximum length of the input.
ckstr(1)

-\p prompt Defines the prompt message as prompt.
-Q Specifies that quit will not be allowed as a valid response.
-\r regexp Specifies a regular expression, regexp, against which the input
 should be validated. May include white space. If multiple
 expressions are defined, the answer need match only one of them.
-\s signal Specifies that the process ID pid defined with the -k option is to be
 sent signal signal when quit is chosen. If no signal is specified,
 SIGTERM is used.
-\W width Specifies that prompt, help and error messages will be formatted
 to a line length of width.

OPERANDS The following operand is supported:

input Input to be verified against format length and/or regular
 expression criteria.

EXAMPLES

EXAMPLE 1 Default prompt

The default prompt for ckstr is:

example ckstr
Enter an appropriate value [?,q]:

EXAMPLE 2 Default error message

The default error message is dependent upon the type of validation involved. The user
will be told either that the length or the pattern matching failed. The default error
message is:

example /usr/sadm/bin/errstr
ERROR: Please enter a string which contains no embedded,
leading or trailing spaces or tabs.

EXAMPLE 3 Default help message

The default help message is also dependent upon the type of validation involved. If a
regular expression has been defined, the message is:

example /usr/sadm/bin/helpstr -r regexp
Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.

EXAMPLE 4 Using the quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.
EXAMPLE 5 Using the valstr module

The valstr module will produce a usage message on stderr. It returns 0 for success and non-zero for failure.

 example% /usr/sadm/bin/valstr
 usage: valstr [-l length] [[-r regexp] [. . .]] input

EXIT STATUS The following exit values are returned:

 0 Successful execution.
 1 EOF on input, or negative width on -W option, or usage error.
 2 Invalid regular expression.
 3 User termination (quit).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO face(1), signal(3HEAD), attributes(5)
NAME
cksum – write file checksums and sizes

SYNOPSIS
cksum [file...]

DESCRIPTION
The cksum command calculates and writes to standard output a cyclic redundancy check (CRC) for each input file, and also writes to standard output the number of octets in each file.

For each file processed successfully, cksum will write in the following format:
"%u %d %s
<checksum>, <# of octets>, <path name>

If no file operand was specified, the path name and its leading space will be omitted.

The CRC used is based on the polynomial used for CRC error checking in the referenced Ethernet standard.

The encoding for the CRC checksum is defined by the generating polynomial:
G (x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^9 + x^7 + x^5 + x^4 + x^2 + x + 1

Mathematically, the CRC value corresponding to a given file is defined by the following procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial M(x) of degree n–1. These n bits are the bits from the file, with the most significant bit being the most significant bit of the first octet of the file and the last bit being the least significant bit of the last octet, padded with zero bits (if necessary) to achieve an integral number of octets, followed by one or more octets representing the length of the file as a binary value, least significant octet first. The smallest number of octets capable of representing this integer is used.

2. M(x) is multiplied by x^{32} (that is, shifted left 32 bits) and divided by G(x) using mod 2 division, producing a remainder R(x) of degree ≤ 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

OPERANDS
The following operand is supported:

file A path name of a file to be checked. If no file operands are specified, the standard input is used.

USAGE
The cksum command is typically used to quickly compare a suspect file against a trusted version of the same, such as to ensure that files transmitted over noisy media arrive intact. However, this comparison cannot be considered cryptographically secure. The chances of a damaged file producing the same CRC as the original are astronomically small; deliberate deception is difficult, but probably not impossible.
cksum(1)

Although input files to cksum can be any type, the results need not be what would be expected on character special device files. Since this document does not specify the block size used when doing input, checksums of character special files need not process all of the data in those files.

The algorithm is expressed in terms of a bitstream divided into octets. If a file is transmitted between two systems and undergoes any data transformation (such as moving 8-bit characters into 9-bit bytes or changing “Little Endian” byte ordering to “Big Endian”), identical CRC values cannot be expected. Implementations performing such transformations may extend cksum to handle such situations.

See largefile(5) for the description of the behavior of cksum when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of cksum: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 All files were processed successfully.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

sum(1), attributes(5), environ(5), largefile(5), standards(5)
NAME
cktime, errtime, helptime, valtime – display a prompt; verify and return a time of day

SYNOPSIS
/usr/sadm/bin/errtime [-W width] [-e error] [-f format]
/usr/sadm/bin/helptime [-W width] [-h help] [-f format]
/usr/sadm/bin/valtime [-f format] input

DESCRIPTION
The cktime utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a time, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including NEWLINE) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errtime and helptime
modules, the messages will describe the expected format.

OPTIONS
The following options are supported:

- d default Defines the default value as default. The default is not validated
 and so does not have to meet any criteria.
- e error Defines the error message as error.
- f format Specifies the format against which the input will be verified.
 Possible formats and their definitions are:
 %H = hour (00 - 23)
 %I = hour (00 - 12)
 %M = minute (00 - 59)
 %p = ante meridian or post meridian
 %r = time as %I:%M:%S %p
 %R = time as %H:%M (the default format)
 %S = seconds (00 - 59)
 %T = time as %H:%M:%S
- h help Defines the help messages as help.
cktime(1)

-\(k\) pid Specifies that process ID pid is to be sent a signal if the user chooses to abort.
-\(p\) prompt Defines the prompt message as prompt.
-\(Q\) Specifies that quit will not be allowed as a valid response.
-\(s\) signal Specifies that the process ID pid defined with the -\(k\) option is to be sent signal signal when quit is chosen. If no signal is specified, SIGTERM is used.
-\(W\) width Specifies that prompt, help and error messages will be formatted to a line length of width.

OPERANDS The following operand is supported:

input Input to be verified against format criteria.

EXIT STATUS The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -\(W\) option, or usage error.
3 User termination (quit).
4 Garbled format argument.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)

NOTES The default prompt for cftime is:

Enter a time of day [?,q]:

The default error message is:

ERROR: Please enter the time of day. Format is <format>.

The default help message is:

Please enter the time of day. Format is <format>.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valtime module will not produce any output. It returns 0 for success and non-zero for failure.
ckuid(1)

NAME
ckuid, erruid, helpuid, valuid – prompts for and validates a user ID

SYNOPSIS
 [-k pid] [-s signal]
/usr/sadm/bin/erruid [-W width] [-e error]
/usr/sadm/bin/helpuid [-W width] [-m] [-h help]
/usr/sadm/bin/valuid input

DESCRIPTION
The ckuid utility prompts a user and validates the response. It defines, among other things, a prompt message whose response should be an existing user ID, text for help and error messages, and a default value (which are returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including NEWLINE) is stripped. The -W option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

Three visual tool modules are linked to the ckuid command. They are erruid (which formats and displays an error message), helpuid (which formats and displays a help message), and valuid (which validates a response). These modules should be used in conjunction with FML objects. In this instance, the FML object defines the prompt.

OPTIONS
The following options are supported:

- `[-d default]` Defines the default value as `default`. The default is not validated and does not have to meet any criteria.
- `[-e error]` Defines the error message as `error`.
- `[-h help]` Defines the help messages as `help`.
- `[-k pid]` Specifies that process ID `pid` is to be sent a signal if the user chooses to abort.
- `[-m]` Displays a list of all logins when help is requested or when the user makes an error.
- `[-p prompt]` Defines the prompt message as `prompt`.
- `[-Q]` Specifies that quit will not be allowed as a valid response.
- `[-s signal]` Specifies that the process ID `pid` defined with the `-k` option is to be sent signal `signal` when quit is chosen. If no signal is specified, SIGTERM is used.

User Commands 167
ckuid(1)

-\(\text{\textit{width}} \)

Specifies that prompt, help and error messages will be formatted to a line length of \(\text{\textit{width}} \).

OPERANDS

The following operand is supported:

\textit{input}

Input to be verified against /etc/passwd.

EXIT STATUS

The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on \(-\text{\textit{width}} \) option, or usage error.
2 Usage error.
3 User termination (quit).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

NOTES

The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.

If the \(-\text{\textit{m}} \) option is used, the default error message is:

ERROR: Please enter one of the following login names: <List>

The default help message is:

Please enter the login name of an existing user.

If the \(-\text{\textit{m}} \) option is used, the default help message is:

Please enter one of the following login names: <List>

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valuid module will not produce any output. It returns 0 for success and non-zero for failure.
NAME
ckyorn, erryorn, helpyorn, valyorn – prompts for and validates yes/no

SYNOPSIS
 [-k pid] [-s signal]
/usr/sadm/bin/erryorn [-W width] [-e error]
/usr/sadm/bin/helpyorn [-W width] [-h help]
/usr/sadm/bin/valyorn input

DESCRIPTION
ckyorn prompts a user and validates the response. It defines, among other things, a
prompt message for a yes or no answer, text for help and error messages, and a
default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text is inserted at that point, allowing both custom text
and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

OPTIONS
The following options are supported:
-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.
-e error Defines the error message as error.
-h help Defines the help messages as help.
-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.
-p prompt Defines the prompt message as prompt.
-Q Specifies that quit will not be allowed as a valid response.
-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.
-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

OPERANDS
The following operand is supported:

ckyorn(1)
ckyorn(1)

input

Input to be verified as *y*, *yes*, or *n*, *no* (in any combination of upper- and lower-case letters).

EXIT STATUS

The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -W option, or usage error.
2 Usage error.
3 User termination (quit).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

NOTES

The default prompt for ckyorn is:

Yes or No [y,n,?,q]:

The default error message is:

ERROR - Please enter yes or no.

The default help message is:

To respond in the affirmative, enter *y*, *yes*, *Y*, or *YES*.

To respond in the negative, enter *n*, *no*, *N*, or *NO*.

When the quit option is chosen (and allowed), *q* is returned along with the return code 3. The valyorn module will not produce any output. It returns 0 for success and non-zero for failure.
NAME clear – clear the terminal screen

SYNOPSIS clear [term]

DESCRIPTION The clear utility clears the terminal screen if this is possible. It looks in the
environment for the terminal type, if this is not already specified by the term operand,
and then looks up the terminfo database to figure out how to clear the screen.

OPERANDS term Indicates the type of terminal. Normally, this operand is unnecessary
because the default is taken from the environment variable TERM.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO tput(1), attributes(5)
cmp(1)

NAME cmp – compare two files

SYNOPSIS cmp [-l] [-s] file1 file2 [skip1] [skip2]

DESCRIPTION The cmp utility compares two files. cmp will write no output if the files are the same. Under default options, if they differ, it writes to standard output the byte and line numbers at which the first difference occurred. Bytes and lines are numbered beginning with 1. If one file is an initial subsequence of the other, that fact is noted. skip1 and skip2 are initial byte offsets into file1 and file2 respectively, and may be either octal or decimal; a leading 0 denotes octal.

OPTIONS The following options are supported:

- l Write the byte number (decimal) and the differing bytes (octal) for each difference.

- s Write nothing for differing files; return exit statuses only.

OPERANDS The following operands are supported:

file1 A path name of the first file to be compared. If file1 is -, the standard input will be used.

file2 A path name of the second file to be compared. If file2 is -, the standard input will be used.

If both file1 and file2 refer to standard input or refer to the same FIFO special, block special or character special file, an error results.

USAGE See largefile(5) for the description of the behavior of cmp when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXAMPLES EXAMPLE 1 Comparing files byte for byte

The following example:

example% cmp file1 file2 0 1024

does a byte for byte comparison of file1 and file2. It skips the first 1024 bytes in file2 before starting the comparison.

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of cmp: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 The files are identical.

1 The files are different; this includes the case where one file is identical to the first part of the other.

>1 An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

comm(1), diff(1), attributes(5), environ(5), largefile(5), standards(5)
col utility reads from the standard input and writes to the standard output. It performs the line overlays implied by reverse line-feeds, and by forward and reverse half-line-feeds. Unless \(-x\) is used, all blank characters in the input will be converted to tab characters wherever possible. \texttt{col} is particularly useful for filtering multi-column output made with the .\texttt{rt} command of \texttt{nroff(1)} and output resulting from use of the \texttt{tbl(1)} preprocessor.

The ASCII control characters SO and SI are assumed by \texttt{col} to start and end text in an alternative character set. The character set to which each input character belongs is remembered, and on output SI and SO characters are generated as appropriate to ensure that each character is written in the correct character set.

On input, the only control characters accepted are space, backspace, tab, carriage-return and newline characters, SI, SO, VT, reverse line-feed, forward half-line-feed and reverse half-line-feed. The VT character is an alternative form of full reverse line-feed, included for compatibility with some earlier programs of this type. The only other characters to be copied to the output are those that are printable.

The ASCII codes for the control functions and line-motion sequences mentioned above are as given in the table below. ESC stands for the ASCII escape character, with the octal code 033; ESC– means a sequence of two characters, ESC followed by the character x.

<table>
<thead>
<tr>
<th>Control Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>reverse line-feed</td>
<td>ESC–7</td>
</tr>
<tr>
<td>reverse half-line-feed</td>
<td>ESC–8</td>
</tr>
<tr>
<td>forward half-line-feed</td>
<td>ESC–9</td>
</tr>
<tr>
<td>vertical-tab (VT)</td>
<td>013</td>
</tr>
<tr>
<td>start-of-text (SO)</td>
<td>016</td>
</tr>
<tr>
<td>end-of-text (SI)</td>
<td>017</td>
</tr>
</tbody>
</table>

\textbf{OPTIONS}

\texttt{-b} Assume that the output device in use is not capable of backspacing. In this case, if two or more characters are to appear in the same place, only the last one read will be output.

\texttt{-f} Although \texttt{col} accepts half-line motions in its input, it normally does not emit them on output. Instead, text that would appear between lines is moved to the next lower full-line boundary. This treatment can be suppressed by the \texttt{-f (fine)} option; in this case, the output from \texttt{col} may contain forward half-line-feeds (ESC–9), but will still never contain either kind of reverse line motion.
Normally, col will ignore any escape sequences unknown to it that are found in its input; the -p option may be used to cause col to output these sequences as regular characters, subject to overprinting from reverse line motions. The use of this option is highly discouraged unless the user is fully aware of the textual position of the escape sequences.

-x Prevent col from converting blank characters to tab characters on output wherever possible. Tab stops are considered to be at each column position n such that n modulo 8 equals 1.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of col: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following error values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO nroff(1), tbl(1), ascii(5), attributes(5), environ(5)

NOTES
The input format accepted by col matches the output produced by nroff with either the -T37 or -Tpl options. Use -T37 (and the -f option of col) if the ultimate disposition of the output of col will be a device that can interpret half-line motions, and -Tpl otherwise.

col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the document are ignored. As a result, the first line must not have any superscripts.
comm(1)

NAME comm – select or reject lines common to two files

SYNOPSIS comm [-123] file1 file2

DESCRIPTION The comm utility will read file1 and file2, which should be ordered in the current collating sequence, and produce three text columns as output: lines only in file1; lines only in file2; and lines in both files.

If the input files were ordered according to the collating sequence of the current locale, the lines written will be in the collating sequence of the original lines. If not, the results are unspecified.

OPTIONS The following options are supported:

-1 Suppress the output column of lines unique to file1.
-2 Suppress the output column of lines unique to file2.
-3 Suppress the output column of lines duplicated in file1 and file2.

OPERANDS The following operands are supported:

file1 A path name of the first file to be compared. If file1 is −, the standard input is used.

file2 A path name of the second file to be compared. If file2 is −, the standard input is used.

USAGE See largefile(5) for the description of the behavior of comm when encountering files greater than or equal to 2 Gbyte (2³⁵ bytes).

EXAMPLES EXAMPLE 1 Printing a list of utilities specified by files

If file1, file2, and file3 each contained a sorted list of utilities:

example% comm -23 file1 file2 | comm -23 - file3

would print a list of utilities in file1 not specified by either of the other files. The entry:

example% comm -12 file1 file2 | comm -12 - file3

would print a list of utilities specified by all three files. And the entry:

example% comm -12 file2 file3 | comm -23 - file1

would print a list of utilities specified by both file2 and file3, but not specified in file1.

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of comm: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were successfully output as specified.
An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5), standards(5)
command(1)

NAME command – execute a simple command

SYNOPSIS
command [-p] command_name [argument...]

command [-v | -V] command_name

DESCRIPTION The command utility causes the shell to treat the arguments as a simple command, suppressing the shell function lookup.

If the command_name is the same as the name of one of the special built-in utilities, the special properties will not occur. In every other respect, if command_name is not the name of a function, the effect of command will be the same as omitting command.

The command utility also provides information concerning how a command name will be interpreted by the shell; see -v and -V.

OPTIONS The following options are supported:

- p Perform the command search using a default value for PATH that is guaranteed to find all of the standard utilities.

- v Write a string to standard output that indicates the path or command that will be used by the shell, in the current shell execution environment to invoke command_name.

 - Utilities, regular built-in utilities, command_names including a slash character, and any implementation-provided functions that are found using the PATH variable will be written as absolute path names.
 - Shell functions, special built-in utilities, regular built-in utilities not associated with a PATH search, and shell reserved words will be written as just their names.
 - An alias will be written as a command line that represents its alias definition.
 - Otherwise, no output will be written and the exit status will reflect that the name was not found.

- V Write a string to standard output that indicates how the name given in the command_name operand will be interpreted by the shell, in the current shell execution environment. Although the format of this string is unspecified, it will indicate in which of the following categories command_name falls and include the information stated:

 - Utilities, regular built-in utilities, and any implementation-provided functions that are found using the PATH variable will be identified as such and include the absolute path name in the string.
 - Other shell functions will be identified as functions.
 - Aliases will be identified as aliases and their definitions will be included in the string.
 - Special built-in utilities will be identified as special built-in utilities.
 - Regular built-in utilities not associated with a PATH search will be identified as regular built-in utilities.
Shell reserved words will be identified as reserved words.

OPERANDS
The following operands are supported:

- **argument** One of the strings treated as an argument to `command_name`.
- **command_name** The name of a utility or a special built-in utility.

EXAMPLES

EXAMPLE 1 Make a version of `cd` that always prints out the new working directory exactly once:

```bash
cd() {
    command cd "$@" >/dev/null
    pwd
}
```

EXAMPLE 2 Start off a “secure shell script” in which the script avoids being spoofed by its parent:

```bash
IFS=''
# The preceding value should be <space><tab><newline>.
# Set IFS to its default value.
\unalias -a
# Unset all possible aliases.
# Note that unalias is escaped to prevent an alias being used for unalias.
unset -f command
# Ensure command is not a user function.
PATH="\$(command -p getconf _CS_PATH):$PATH"
# Put on a reliable PATH prefix.
# ...
```

At this point, given correct permissions on the directories called by `PATH`, the script has the ability to ensure that any utility it calls is the intended one. It is being very cautious because it assumes that implementation extensions may be present that would allow user functions to exist when it is invoked. This capability is not specified by this document, but it is not prohibited as an extension. For example, the `ENV` variable precedes the invocation of the script with a user startup script. Such a script could define functions to spoof the application.

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `command`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the search path used during the command search, except as described under the `-p` option.

EXIT STATUS

When the `-v` or `-V` options are specified, the following exit values are returned:

- **0** Successful completion.
- **>0** The `command_name` could not be found or an error occurred.

Otherwise, the following exit values are returned:
command(1)

126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by command_name could not be found.

Otherwise, the exit status of command will be that of the simple command specified by the arguments to command.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO sh(1), type(1), attributes(5), environ(5), standards(5)
NAME | compress, uncompress, zcat – compress, uncompress files or display expanded files
SYNOPSIS | `compress [-fv] [-b bits] [file...]`
| `compress [-cfv] [-b bits] [file]`
| `uncompress [-cfv] [file]`
| `zcat [file...]`
DESCRIPTION | **compress**
The `compress` utility will attempt to reduce the size of the named files by using adaptive Lempel-Ziv coding. Except when the output is to the standard output, each file will be replaced by one with the extension `.Z`, while keeping the same ownership modes, change times and modification times. If appending the `.Z` to the file pathname would make the pathname exceed 1023 bytes, the command will fail. If no files are specified, the standard input will be compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of `bits` per code, and the distribution of common substrings. Typically, text such as source code or English is reduced by 50–60%. Compression is generally much better than that achieved by Huffman coding (as used in `pack(1)`), and it takes less time to compute. The `bits` parameter specified during compression is encoded within the compressed file, along with a magic number to ensure that neither decompression of random data nor recompression of compressed data is subsequently allowed.

uncompress
The `uncompress` utility will restore files to their original state after they have been compressed using the `compress` utility. If no files are specified, the standard input will be uncompressed to the standard output.

This utility supports the uncompressing of any files produced by `compress`. For files produced by `compress` on other systems, `uncompress` supports 9- to 16-bit compression (see `-b`).

zcat
The `zcat` utility will write to standard output the uncompressed form of files that have been compressed using `compress`. It is the equivalent of `uncompress -c`. Input files are not affected.

OPTIONS | The following options are supported:
| `-c` | Writes to the standard output; no files are changed and no `.Z` files are created. The behavior of `zcat` is identical to that of `uncompress -c`.
| `-f` | When compressing, forces compression of `file`, even if it does not actually reduce the size of the file, or if the corresponding `file.Z` file already exists. If the `-f` option is not given, and the process is not running in the background, prompts to verify whether an existing `file.Z` file should be overwritten. When uncompressing, does not prompt for overwriting files. If the `-f` option is not given, and the process is not running in the background, prompts to verify whether an existing file should be...
overwritten. If the standard input is not a terminal and -f is not given, writes a diagnostic message to standard error and exits with a status greater than 0.

- v Verbose. Writes to standard error messages concerning the percentage reduction or expansion of each file.

- b bits Sets the upper limit (in bits) for common substring codes. bits must be between 9 and 16 (16 is the default). Lowering the number of bits will result in larger, less compressed files.

OPERANDS The following operand is supported:

file A path name of a file to be compressed by compress, uncompressed by uncompress, or whose uncompressed form is written to standard out by zcat. If file is -, or if no file is specified, the standard input will be used.

USAGE See largefile(5) for the description of the behavior of compress, uncompress, and zcat when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of compress, uncompress, and zcat: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 Successful completion.

1 An error occurred.

2 One or more files were not compressed because they would have increased in size (and the -f option was not specified).

>2 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO ln(1), pack(1), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS Usage: compress [-fvc] [-b maxbits] [file ...]

 Invalid options were specified on the command line.

 Missing maxbits
 Maxbits must follow -b, or invalid maxbits, not a numeric value.
compress(1)

file: not in compressed format
The file specified to `uncompress` has not been compressed.

file: compressed with xx bits, can only handle yy bits
file was compressed by a program that could deal with more bits than the compress code on this machine. Recompress the file with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the input file is corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

-- not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unaltered.

-- has xx other links: unchanged
The input file has links; it is left unchanged. See `ln(1)` for more information.

-- file unchanged
No savings are achieved by compression. The input remains uncompressed.

filename too long to tack on .Z
The path name is too long to append the .Z suffix.

NOTES
Although compressed files are compatible between machines with large memory, `-b 12` should be used for file transfer to architectures with a small process data space (64KB or less).

`compress` should be more flexible about the existence of the .Z suffix.
coproc(1F)

NAME
coproc, cocreate, cosend, cocheck, coreceive, codestroy – communicate with a process

SYNOPSIS
cocreate [-r rpath] [-w wpath] [-i id] [-R refname] [-s send_string] [-e expect_string] command
cosend [-n] proc_id string
cochecck proc_id
coreceive proc_id
codestroy [-R refname] proc_id [string]

DESCRIPTION
These co-processing functions provide a flexible means of interaction between FMLI and an independent process; especially, they enable FMLI to be responsive to asynchronous activity.

The cocreate function starts command as a co-process and initializes communications by setting up pipes between FMLI and the standard input and standard output of command. The argument command must be an executable and its arguments (if any). This means that command expects strings on its input (supplied by cosend) and sends information on its output that can be handled in various ways by FMLI.

The cosend function sends string to the co-process identified by proc_id via the pipe set up by cocreate (optionally wpath), where proc_id can be either the command or id specified in cocreate. By default, cosend blocks, waiting for a response from the co-process. Also by default, FMLI does not send a send_string and does not expect an expect_string (except a newline). That is, it reads only one line of output from the co-process. If -e expect_string was not defined when the pipe was created, then the output of the co-process is any single string followed by a newline; any other lines of output remain on the pipe. If the -e option was specified when the pipe was created, cosend reads lines from the pipe until it reads a line starting with expect_string. All lines except the line starting with expect_string become the output of cosend.

The cocheck function determines if input is available from the process identified by proc_id, where proc_id can be either the command or id specified in cocreate. It returns a Boolean value, which makes cocheck useful in if statements and in other backquoted expressions in Boolean descriptors. cocheck receives no input from the co-process; it simply indicates if input is available from the co-process. You must use coreceive to actually accept the input. The cocheck function can be called from a reread descriptor to force a frame to update when new data is available. This is useful when the default value of a field in a form includes coreceive.

The coreceive function is used to read input from the co-process identified by proc_id, where proc_id can be either the command or id specified in cocreate. It should only be used when it has been determined, using cocheck, that input is actually available. If the -e option was used when the co-process was created, coreceive will continue to return lines of input until expect_string is read. At this point, coreceive will terminate. The output of coreceive is all the lines that were read excluding the
The `codestroy` function terminates the read/write pipes to `proc-id`, where `proc_id` can be either the `command` or `id` specified in `cocreate`. It generates a SIGPIPE signal to the (child) co-process. This kills the co-process, unless the co-process ignores the SIGPIPE signal. If the co-process ignores the SIGPIPE, it will not die, even after the FMLI process terminates (the parent process id of the co-process will be 1).

The optional argument `string` is sent to the co-process before the co-process dies. If `string` is not supplied, a NULL string is passed, followed by the normal `send_string` (newline by default). That is, `codestroy` will call `cosend proc_id string`; this implies that `codestroy` will write any output generated by the co-process to `stdout`. For example, if an interactive co-process is written to expect a "quit" string when the communication is over, the `close` descriptor could be defined; `close=’codestroy ID ’quit ’ | message’ and any output generated by the co-process when the string `quit` is sent to it via `codestroy` (using `cosend`) would be redirected to the message line.

The `codestroy` function should usually be given the `-R` option, since you may have more than one process with the same name, and you do not want to kill the wrong one. `codestroy` keeps track of the number of `refnames` you have assigned to a process with `cocreate`, and when the last instance is killed, it kills the process (id) for you. `codestroy` is typically called as part of a `close` descriptor because `close` is evaluated when a frame is closed. This is important because the co-process will continue to run if `codestroy` is not issued.

When writing programs to use as co-processes, the following tips may be useful. If the co-process program is written in C language, be sure to flush output after writing to the pipe. (Currently, `awk(1)` and `sed(1)` cannot be used in a co-process program because they do not flush after lines of output.) Shell scripts are well-mannered, but slow. C language is recommended. If possible, use the default `send_string`, `rpath` and `wpath`. In most cases, `expect_string` will have to be specified. This, of course, depends on the co-process.

In the case where asynchronous communication from a co-process is desired, a co-process program should use `vsig` to force strings into the pipe and then signal FMLI that output from the co-process is available. This causes the `reread` descriptor of all frames to be evaluated immediately.

Options

`cocreate` options are:

- `-r rpath` If `-r` is specified, `rpath` is the pathname from which FMLI reads information. This option is usually used to set up communication with processes that naturally write to a certain path. If `-r` is not specified, `cocreate` will choose a unique path in `/var/tmp`.

User Commands 185
coproc(1F)

-w wpath
 If -w is specified, wpath is the pathname to which cosend writes information. This option is usually used so that one process can talk to many different FMLI processes through the same pipe. If -w is not specified, cocreate will choose a unique path in /var/tmp.

-i id
 If -i is specified, id is an alternative name for the co-process initialized by this cocreate. If -i is not specified, id defaults to command. The argument id can later be used with the other co-processing functions rather than command. This option is typically used, since it facilitates the creation of two or more co-processes generated from the same command. (For example, cocreate -i ID1 program args and cocreate -i ID2 program different_args).

-R refname
 If -R is specified, refname is a local name for the co-process. Since the cocreate function can be issued more than once, a refname is useful when the same co-process is referenced a second or subsequent time. With the -R option, if the co-process already exists a new one will not be created: the same pipes will be shared. Then, refname can be used as an argument to the -R option to codestroy when you want to end a particular connection to a co-process and leave other connections undisturbed. (The co-process is only killed after codestroy -R has been called as many times as cocreate -R was called.)

-s send_string
 The -s option specifies send_string as a string that will be appended to all output sent to the co-process using cosend. This option allows a co-process to know when input from FMLI has completed. The default send_string is a newline if -s is not specified.

-e expect_string
 The -e option specifies expect_string as a string that identifies the end of all output returned by the co-process. (Note: expect_string need only be the initial part of a line, and there must be a newline at the end of the co-process output.) This option allows FMLI to know when output from the co-process has completed. The default expect_string is a newline if -e is not specified.

cosend options are:

- n
 If the -n option is specified, cosend will not wait for a response from the co-process. It simply returns, providing no output. If the -n option is not used, a co-process that does not answer will cause FMLI to permanently hang, waiting for input from the co-process.
EXAMPLES

EXAMPLE 1 Sample commands

```
 初始化 = 'cocreate -i BIGPROCESS initialize'
  关闭 = 'codestroy BIGPROCESS'
  再读 = 'cocheck BIGPROCESS'

 name = 'cosend -n BIGPROCESS field1'
 name = "Receive field"
 inactive = TRUE
 value = 'coreceive BIGPROCESS'
```

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

`awk(1), cat(1), sed(1), vsig(1F), attributes(5)`

NOTES

If `cosend` is used without the `-n` option, a co-process that does not answer will cause FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process should be avoided because they may not get transferred correctly.
NAME
 cp – copy files

SYNOPSIS
 /usr/bin/cp [-fip@] source_file target_file
 /usr/bin/cp [-fip@] source_file... target
 /usr/bin/cp -r | -R [-fip@] source_dir... target
 /usr/xpg4/bin/cp [-fip@] source_file target_file
 /usr/xpg4/bin/cp [-fip@] source_file... target
 /usr/xpg4/bin/cp -r | -R [-fip@] source_dir... target

DESCRIPTION
 In the first synopsis form, neither source_file nor target_file are directory files, nor can they have the same name. The cp utility will copy the contents of source_file to the destination path named by target_file. If target_file exists, cp will overwrite its contents, but the mode (and ACL if applicable), owner, and group associated with it are not changed. The last modification time of target_file and the last access time of source_file are set to the time the copy was made. If target_file does not exist, cp creates a new file named target_file that has the same mode as source_file except that the sticky bit is not set unless the user is super-user. In this case, the owner and group of target_file are those of the user, unless the setgid bit is set on the directory containing the newly created file. If the directory’s setgid bit is set, the newly created file will have the group of the containing directory rather than of the creating user. If target_file is a link to another file, cp will overwrite the link destination with the contents of source_file; the link(s) from target_file will remain.

In the second synopsis form, one or more source_files are copied to the directory specified by target. For each source_file specified, a new file with the same mode (and ACL if applicable), is created in target; the owner and group are those of the user making the copy. It is an error if any source_file is a file of type directory, if target either does not exist or is not a directory.

In the third synopsis form, one or more directories specified by source_dir are copied to the directory specified by target. Either -r or -R must be specified. For each source_dir, cp will copy all files and subdirectories.

OPTIONS
 The following options are supported for both /usr/bin/cp and /usr/xpg4/bin/cp:

- f Unlink. If a file descriptor for a destination file cannot be obtained, attempt to unlink the destination file and proceed.

- i Interactive. cp will prompt for confirmation whenever the copy would overwrite an existing target. A y answer means that the copy should proceed. Any other answer prevents cp from overwriting target.

- r Recursive. cp will copy the directory and all its files, including any subdirectories and their files to target.

- R Same as - r, except pipes are replicated, not read from.
Preserves extended attributes. `cp` will attempt to copy all of the source file’s extended attributes along with the file data to the destination file.

The following option is supported for `/usr/bin/cp` only:

- `p` Preserve. `cp` duplicates not only the contents of `source_file`, but also preserves the owner and group id, permission modes, modification and access time, ACLs, and extended attributes, if applicable. Notice that the command may fail if ACLs are copied to a file system without appropriate support. The command will not fail if unable to preserve extended attributes, modification and access time, or permission modes. If unable to preserve owner and group id, `cp` will not fail, and it will clear S_ISUID and S_ISGID bits in the target. `cp` will print a diagnostic message to `stderr` and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and modification and access times, users must have the appropriate file access permissions. This includes being superuser or the same owner id as the destination file.

The following option is supported for `/usr/xpg4/bin/cp` only:

- `p` Preserve. `cp` duplicates not only the contents of `source_file`, but also preserves the owner and group id, permission modes, modification and access time, ACLs, and extended attributes, if applicable. Notice that the command may fail if ACLs or extended attributes are copied to a file system without appropriate support. If unable to duplicate the modification and access time or the permission modes, `cp` will print a diagnostic message to `stderr` and return a non-zero exit status. If unable to preserve owner and group id, `cp` will not fail, and it will clear S_ISUID and S_ISGID bits in the target. `cp` will print a diagnostic message to `stderr` and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and modification and access times, users must have the appropriate file access permissions. This includes being superuser or the same owner id as the destination file.

The following operands are supported:

- `source_file` A pathname of a regular file to be copied.
- `source_dir` A pathname of a directory to be copied.
- `target_file` A pathname of an existing or non-existing file, used for the output when a single file is copied.
- `target` A pathname of a directory to contain the copied files.

See `largefile(5)` for the description of the behavior of `cp` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).
EXAMPLES

EXAMPLE 1 Copying a file

```sh
eexample% cp goodies goodies.old

eexample% ls goodies

goodies goodies.old
```

EXAMPLE 2 Copying a list of files to a destination directory

```sh
eexample% cp -/src/* /tmp
```

EXAMPLE 3 Copying a directory, first to a new, and then to an existing destination directory

```sh
eexample% ls ~/bkup

/usr/example/fred/bkup not found

eexample% cp -r ~/src ~/bkup

eexample% ls -R ~/bkup

x.c y.c z.sh

example% cp -r ~/src ~/bkup

eexample% ls -R ~/bkup

src x.c y.c z.sh

tsrc:
x.c y.c z.s
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `cp`: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All files were copied successfully.</td>
</tr>
<tr>
<td>>0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
```

SEE ALSO

chmod(1), chown(1), setfacl(1), utime(2), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)

NOTES

The permission modes of the source file are preserved in the copy.

A -- permits the user to mark the end of any command line options explicitly, thus allowing cp to recognize filename arguments that begin with a -.
The `cpio` command copies files into and out of a `cpio` archive. The `cpio` archive may span multiple volumes. The `-i`, `-o`, and `-p` options select the action to be performed. The following list describes each of the actions. These actions are mutually exclusive.

Copy In Mode

`cpio -i` (copy in) extracts files from the standard input, which is assumed to be the product of a previous `cpio -o` command. Only files with names that match one of the patterns are selected. See `sh(1)` and OPERANDS for more information about pattern. Extracted files are conditionally copied into the current directory tree, based on the options described below. The permissions of the files will be those of the previous `cpio -o` command. The owner and group will be the same as the current user, unless the current user is the super-user. If this is the case, owner and group will be the same as those resulting from the previous `cpio -o` command. Notice that if `cpio -i` tries to create a file that already exists and the existing file is the same age or younger (newer), `cpio` will output a warning message and not replace the file. The `-u` option can be used to unconditionally overwrite the existing file.

Copy Out Mode

`cpio -o` (copy out) reads a list of file path names from the standard input and copies those files to the standard output, together with path name and status information in the form of a `cpio` archive. Output is padded to an 8192-byte boundary by default or to the user-specified block size (with the `-B` or `-C` options) or to some device-dependent block size where necessary (as with the CTC tape).

Pass Mode

`cpio -p` (pass) reads a list of file path names from the standard input and conditionally copies those files into the destination directory tree, based on the options described below.

Note: cpio assumes four-byte words.

If, when writing to a character device (`-o`) or reading from a character device (`-i`), `cpio` reaches the end of a medium (such as the end of a diskette), and the `-o` and `-i` options are not used, `cpio` prints the following message:

To continue, type device/file name when ready.

To continue, you must replace the medium and type the character special device name (`/dev/rdiskette` for example) and press RETURN. You may want to continue by directing `cpio` to use a different device. For example, if you have two floppy drives you may want to switch between them so `cpio` can proceed while you are changing the floppies. Press RETURN to cause the `cpio` process to exit.

OPTIONS

The following options are supported:
(copy in) Reads an archive from the standard input and conditionally extracts the files contained in it and places them into the current directory tree.

-copy out) Reads a list of file path names from the standard input and copies those files to the standard output in the form of a cpio archive.

-pass) Reads a list of file path names from the standard input and conditionally copies those files into the destination directory tree.

The following options can be appended in any sequence to the -i, -o, or -p options:

-Resets access times of input files after they have been copied, making cpio’s access invisible. Access times are not reset for linked files when cpio -pla is specified.

-Appends files to an archive. The -A option requires the -o option. Valid only with archives that are files, or that are on floppy diskettes or hard disk partitions. The effect on files that are linked in the existing portion of the archive is unpredictable.

-Reverses the order of the bytes within each word. Use only with the -i option.

-Blocks input/output 5120 bytes to the record. The default buffer size is 8192 bytes when this and the -C options are not used. -B does not apply to the -p (pass) option.

-Reads or writes header information in ASCII character form for portability. There are no UID or GID restrictions associated with this header format. Use this option between SVR4-based machines, or the -H option between unknown machines. The -c option implies the use of expanded device numbers, which are only supported on SVR4-based systems. When transferring files between SunOS 4 or Interactive UNIX and the Solaris 2.6 Operating environment or compatible versions, use -H.

-Blocks input/output bufsize bytes to the record, where bufsize is replaced by a positive integer. The default buffer size is 8192 bytes when this and -B options are not used. -C does not apply to the -p (pass) option.

-Creates directories as needed.

-Specifies an input file (file) that contains a list of filenames to be extracted from the archive (one filename per line).

-Copies in all files except those in patterns. See OPERANDS for a description of pattern.
-H header

Reads or writes header information in header format. Always use this option or the -c option when the origin and the destination machines are different types. This option is mutually exclusive with options -c and -6.

Valid values for header are:

bar bar head and format. Used only with the -i option (read only).

crc | CRC ASCII header with expanded device numbers and an additional per-file checksum. There are no UID or GID restrictions associated with this header format.

odc ASCII header with small device numbers. This is the IEEE/P1003 Data Interchange Standard cpio header and format. It has the widest range of portability of any of the header formats. It is the official format for transferring files between POSIX-conforming systems (see standards(5)). Use this format to communicate with SunOS 4 and Interactive UNIX. This header format allows UIDs and GIDs up to 262143 to be stored in the header.

tar | TAR tar header and format. This is an older tar header format that allows UIDs and GIDs up to 2097151 to be stored in the header. It is provided for the reading of legacy archives only, that is, in conjunction with option -i.

Specifying this archive format with option -o has the same effect as specifying the "ustar" format: the output archive is in ustar format, and must be read using -H ustar.

ustar | USTAR IEEE/P1003 Data Interchange Standard tar header and format. This header format allows UIDs and GIDs up to 2097151 to be stored in the header.

Files with UIDs and GIDs greater than the limit stated above will be archived with the UID and GID of 60001. To transfer a large file (8 Gb — 1 byte), the header format can be tar | TAR, ustar | USTAR, or odc only.

-I file

Reads the contents of file as an input archive, instead of the standard input. If file is a character special device, and the current
medium has been completely read, replace the medium and press RETURN to continue to the next medium. This option is used only with the -i option.

-k Attempts to skip corrupted file headers and I/O errors that may be encountered. If you want to copy files from a medium that is corrupted or out of sequence, this option lets you read only those files with good headers. For cpio archives that contain other cpio archives, if an error is encountered, cpio may terminate prematurely. cpio will find the next good header, which may be one for a smaller archive, and terminate when the smaller archive’s trailer is encountered. Use only with the -i option.

-l In pass mode, makes hard links between the source and destination whenever possible. If the -L option is also specified, the hard link will be to the file referred to by the symbolic link. Otherwise, the hard link will be to the symbolic link itself. Use only with the -p option.

-L Follows symbolic links. If a symbolic link to a directory is encountered, archives the directory referred to by the link, using the name of the link. Otherwise, archives the file referred to by the link, using the name of the link.

-m Retains previous file modification time. This option is ineffective on directories that are being copied.

-M message Defines a message to use when switching media. When you use the -O or -I options and specify a character special device, you can use this option to define the message that is printed when you reach the end of the medium. One %d can be placed in message to print the sequence number of the next medium needed to continue.

-O file Directs the output of cpio to file, instead of the standard output. If file is a character special device and the current medium is full, replace the medium and type a carriage return to continue to the next medium. Use only with the -o option.

-P Preserves ACLs. If the option is used for output, existing ACLs are written along with other attributes, except for extended attributes, to the standard output. ACLs are created as special files with a special file type. If the option is used for input, existing ACLs are extracted along with other attributes from standard input. The option recognizes the special file type. Notice that errors will occur if a cpio archive with ACLs is extracted by previous versions of cpio. This option should not be used with the -c option, as ACL support may not be present on all systems, and hence is not portable. Use ASCII headers for portability.
-r Interactively renames files. If the user types a carriage return alone, the file is skipped. If the user types a ‘.’, the original pathname will be retained. Not available with cpio -p.

-R id Reassigns ownership and group information for each file to user ID. (ID must be a valid login ID from /etc/passwd.) This option is valid only for the super-user.

-s Swaps bytes within each half word.

-S Swaps halfwords within each word.

-t Prints a table of contents of the input. If any file in the table of contents has extended attributes, these are also listed. No files are created. -t and -v are mutually exclusive.

-u Copies unconditionally. Normally, an older file will not replace a newer file with the same name.

-v Verbose. Prints a list of file and extended attribute names. When used with the -t option, the table of contents looks like the output of an ls -l command (see ls(1)).

-V Special verbose. Prints a dot for each file read or written. Useful to assure the user that cpio is working without printing out all file names.

-6 Processes a UNIX System Sixth Edition archive format file. Use only with the -i option. This option is mutually exclusive with -c and -H.

-@ Includes extended attributes in archive. By default, cpio does not place extended attributes in the archive. With this flag, cpio will look for extended attributes on the files to be placed in the archive and add them, as regular files, to the archive. The extended attribute files go in the archive as special files with special file types. When the -@ flag is used with -i or -p, it instructs cpio to restore extended attribute data along with the normal file data. Extended attribute files can only be extracted from an archive as part of a normal file extract. Attempts to explicitly extract attribute records are ignored.

OPERANDS The following operands are supported:

directory A path name of an existing directory to be used as the target of cpio -p.

pattern Expressions making use of a pattern-matching notation similar to that used by the shell (see sh(1)) for filename pattern matching, and similar to regular expressions. The following metacharacters are defined:

* Matches any string, including the empty string.
? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by ‘−’ matches any symbol between the pair (inclusive), as defined by the system default collating sequence. If the first character following the opening ‘[’ is a ‘!’ , the results are unspecified.

! The ! (exclamation point) means not. For example, the !abc* pattern would exclude all files that begin with abc.

In pattern, metacharacters ?, *, and [...] match the slash (/) character, and backslash (\) is an escape character. Multiple cases of pattern can be specified and if no pattern is specified, the default for pattern is * (that is, select all files).

Each pattern must be enclosed in double quotes. Otherwise, the name of a file in the current directory might be used.

USAGE

See largefile(5) for the description of the behavior of cpio when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

The following examples show three uses of cpio.

EXAMPLE 1 Using standard input

```
example$ ls | cpio -oc > ../newfile
```

When standard input is directed through a pipe to cpio -o, as in the example above, it groups the files so they can be directed (>) to a single file (. ./newfile). The -c option insures that the file will be portable to other machines (as would the -H option). Instead of ls(1), you could use find(1), echo(1), cat(1), and so on, to pipe a list of names to cpio. You could direct the output to a device instead of a file.

EXAMPLE 2 Extracting files into directories

```
example$ cat nwefile | cpio -ldc "memo/a1" "memo/b*"
```

In this example, cpio -i uses the output file of cpio -o (directed through a pipe with cat), extracts those files that match the patterns (memo/a1, memo/b*), creates directories below the current directory as needed (-d option), and places the files in the appropriate directories. The -c option is used if the input file was created with a portable header. If no patterns were given, all files from newfile would be placed in the directory.

EXAMPLE 3 Copying or linking files to another directory

```
example$ find . -depth -print | cpio -pdlmv newdir
```

User Commands 197

EXAMPLE 3 Copying or linking files to another directory
(Continued)

In this example, `cpio -p` takes the file names piped to it and copies or links (`-l` option) those files to another directory, `newdir`. The `-d` option says to create directories as needed. The `-m` option says to retain the modification time. (It is important to use the `-depth` option of `find(1)` to generate path names for `cpio`. This eliminates problems that `cpio` could have trying to create files under read-only directories.) The destination directory, `newdir`, must exist.

Notice that when you use `cpio` in conjunction with `find`, if you use the `-L` option with `cpio`, you must use the `-follow` option with `find` and vice versa. Otherwise, there will be undesirable results.

For multi-reel archives, dismount the old volume, mount the new one, and continue to the next tape by typing the name of the next device (probably the same as the first reel). To stop, type a RETURN and `cpio` will end.

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `cpio`: `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, `LC_TIME`, `TZ`, and `NLSPATH`.

- `TMPDIR`: `cpio` creates its temporary file in `/var/tmp` by default. Otherwise, it uses the directory specified by `TMPDIR`.

EXIT STATUS

The following exit values are returned:

- **0**: Successful completion.
- **>0**: An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

`ar(1), cat(1), echo(1), find(1), ls(1), setfacl(1), sh(1), tar(1), vold(IM), archives(4), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)`

NOTES

The maximum path name length allowed in a `cpio` archive is determined by the header type involved. The following table shows the proper value for each supported archive header type.
When the command line options “-o -H tar” are specified, the archive created is of type USTAR. This means that it is an error to read this same archive using the command line options “-i -H tar”. The archive should be read using the command line options “-i -H ustar”. The options “-i -H tar” refer to an older tar archive format.

An error message is output for files whose UID or GID are too large to fit in the selected header format. Use -H crc or -c to create archives that allow all UID or GID values.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is not root, the file will not be saved or restored.

The inode number stored in the header (/usr/include/archives.h) is an unsigned short, which is 2 bytes. This limits the range of inode numbers from 0 to 65535. Files which are hard linked must fall in this inode range. This could be a problem when moving cpio archives between different vendors’ machines.

When the Volume Management daemon is running, accesses to floppy devices through the conventional device names (for example, /dev/rdiskette) may not succeed. See vold(1M) for further details.

You must use the same blocking factor when you retrieve or copy files from the tape to the hard disk as you did when you copied files from the hard disk to the tape. Therefore, you must specify the -B or -C option.

During -p and -o processing, cpio buffers the file list presented on stdin in a temporary file.
cpp(1)

NAME | cpp – the C language preprocessor

DESCRIPTION | cpp is the C language preprocessor. It is invoked as the first pass of any C compilation started with the cc(1B) command. However, cpp can also be used as a first-pass preprocessor for other Sun compilers.

Although cpp can be used as a macro processor, this is not normally recommended, as its output is geared toward that which would be acceptable as input to a compiler’s second pass. Thus, the preferred way to invoke cpp is through the cc(1B) command, or some other compilation command. For general-purpose macro-processing, see m4(1).

cpp optionally accepts two filenames as arguments. input-file and output-file are, respectively, the input and output files for the preprocessor. They default to the standard input and the standard output.

OPTIONS | The following options are supported:

-B | Supports the C++ comment indicator ‘/ /’. With this indicator, everything on the line after the / / is treated as a comment.

-C | Passes all comments (except those that appear on cpp directive lines) through the preprocessor. By default, cpp strips out C-style comments.

-H | Prints the pathnames of included files, one per line on the standard error.

-M | Generates a list of makefile dependencies and write them to the standard output. This list indicates that the object file which would be generated from the input file depends on the input file as well as the include files referenced.

-P | Uses only the first eight characters to distinguish preprocessor symbols, and issue a warning if extra tokens appear at the end of a line containing a directive.

-P | Preprocesses the input without producing the line control information used by the next pass of the C compiler.

-R | Allows recursive macros.

-T | Uses only the first eight characters for distinguishing different preprocessor names. This option is included for backward compatibility with systems which always use only the first eight characters.

-undef | Removes initial definitions for all predefined symbols.
cpp(1)

-\texttt{Dname} \quad \textbf{Defines name} as 1 (one). This is the same as if a \texttt{-Dname=1} option appeared on the \texttt{cpp} command line, or as if a

\begin{verbatim}
#define name 1
\end{verbatim}

line appeared in the source file that \texttt{cpp} is processing.

-\texttt{Dname=def} \quad \textbf{Defines name} as if by a \texttt{#define} directive. This is the same as if a

\begin{verbatim}
#define name def
\end{verbatim}

line appeared in the source file that \texttt{cpp} is processing. The \texttt{-D} option has lower precedence than the \texttt{-U} option. That is, if the same name is used in both a \texttt{-U} option and a \texttt{-D} option, the name will be undefined regardless of the order of the options.

-\texttt{I\texttt{directory}} \quad \textbf{Inserts directory} into the search path for \texttt{#include} files with names not beginning with ‘/’. \texttt{directory} is inserted ahead of the standard list of “\texttt{include}” directories. Thus, \texttt{#include} files with names enclosed in double-quotes (") are searched for first in the directory of the file with the \texttt{#include} line, then in directories named with \texttt{-I} options, and lastly, in directories from the standard list. For \texttt{#include} files with names enclosed in angle-brackets (< >), the directory of the file with the \texttt{#include} line is not searched. See Details below for exact details of this search order.

-\texttt{Uname} \quad \textbf{Removes any initial definition of name}, where \texttt{name} is a symbol that is predefined by a particular preprocessor. Here is a partial list of symbols that may be predefined, depending upon the architecture of the system:

\begin{itemize}
 \item \texttt{Operating System:} \texttt{ibm, gcos, os, tss and unix}
 \item \texttt{Hardware:} \texttt{interdata, pdp11, u370, u3b, u3b2, u3b5, u3b15, u3b20d, vax, ns32000, iAPX286, i386, sparc, and sun}
 \item \texttt{UNIX system variant:} \texttt{RES, and RT}
 \item \texttt{The lint command:} \texttt{lint}
\end{itemize}

The symbols \texttt{sun}, \texttt{sparc} and \texttt{unix} are defined for all Sun systems.

-\texttt{Y\texttt{directory}} \quad \textbf{Uses directory} in place of the standard list of directories when searching for \texttt{#include} files.

\textbf{USAGE Directives}

\textbf{All \texttt{cpp} directives start with a hash symbol (#) as the first character on a line. White space (SPACE or TAB characters) can appear after the initial # for proper indentation.}
#define name token-string
Replace subsequent instances of name with token-string.

#define name (argument [, argument] ...) token-string
There can be no space between name and the '(' . Replace subsequent instances of name, followed by a parenthesized list of arguments, with token-string, where each occurrence of an argument in the token-string is replaced by the corresponding token in the comma-separated list. When a macro with arguments is expanded, the arguments are placed into the expanded token-string unchanged. After the entire token-string has been expanded, cpp re-starts its scan for names to expand at the beginning of the newly created token-string.

#undef name
Remove any definition for the symbol name. No additional tokens are permitted on the directive line after name.

#include "filename"
#include <filename>
Read in the contents of filename at this location. This data is processed by cpp as if it were part of the current file. When the <filename> notation is used, filename is only searched for in the standard "include" directories. See the -I and -Y options above for more detail. No additional tokens are permitted on the directive line after the final "" or '>'.

#line integer-constant "filename"
Generate line control information for the next pass of the C compiler. integer-constant is interpreted as the line number of the next line and filename is interpreted as the file from where it comes. If "filename" is not given, the current filename is unchanged. No additional tokens are permitted on the directive line after the optional filename.

#if constant-expression
Subsequent lines up to the matching #else, #elif, or #endif directive, appear in the output only if constant-expression yields a nonzero value. All binary non-assignment C operators, including ‘&&’, ‘||’, and ‘,’ are legal in constant-expression. The ‘?:’ operator, and the unary ‘-‘, ‘!’, and ‘~‘ operators, are also legal in constant-expression.

The precedence of these operators is the same as that for C. In addition, the unary operator defined, can be used in constant-expression in these two forms: ‘defined (name)’ or ‘defined name’. This allows the effect of #ifdef and ifndef directives (described below) in the #if directive. Only these operators, integer constants, and names that are known by cpp should be used within constant-expression. In particular, the sizeof operator is not available.

#ifdef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if name has been defined, either with a #define directive or a -D option, and in the absence of an intervening #undef directive. Additional tokens after name on the directive line will be silently ignored.
#ifndef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if name has not been defined, or if its definition has been removed with an #undef directive. No additional tokens are permitted on the directive line after name.

#elif constant-expression
Any number of #elif directives may appear between an #if, #ifdef, or ifndef directive and a matching #else or #endif directive. The lines following the #elif directive appear in the output only if all of the following conditions hold:

- The constant-expression in the preceding #if directive evaluated to zero, the name in the preceding #ifdef is not defined, or the name in the preceding ifndef directive was defined.
- The constant-expression in all intervening #elif directives evaluated to zero.
- The current constant-expression evaluates to non-zero.

If the constant-expression evaluates to non-zero, subsequent #elif and #else directives are ignored up to the matching #endif. Any constant-expression allowed in an #if directive is allowed in an #elif directive.

#else
This inverts the sense of the conditional directive otherwise in effect. If the preceding conditional would indicate that lines are to be included, then lines between the #else and the matching #endif are ignored. If the preceding conditional indicates that lines would be ignored, subsequent lines are included in the output. Conditional directives and corresponding #else directives can be nested.

#endif
End a section of lines begun by one of the conditional directives #if, #ifdef, or ifndef. Each such directive must have a matching #endif.

Macros

Formal parameters for macros are recognized in #define directive bodies, even when they occur inside character constants and quoted strings. For instance, the output from:

```c
#define abc(a)|`|a|
abc(xyz)
```

is:

```c
|`|xyz |
```

The second line is a NEWLINE. The last seven characters are “|`|xyz|” (vertical-bar, backquote, vertical-bar, x, y, z, vertical-bar). Macro names are not recognized within character constants or quoted strings during the regular scan. Thus:

```c
#define abc xyz
printf("abc");
```
cpp(1)

does not expand abc in the second line, since it is inside a quoted string that is not part of a #define macro definition.

Macros are not expanded while processing a #define or #undef. Thus:

```
#define abc zingo
#define xyz abc
#undef abc
xyz
```

produces abc. The token appearing immediately after an #ifdef or #ifndef is not expanded.

Macros are not expanded during the scan which determines the actual parameters to another macro call. Thus:

```
#define reverse(first,second) second first
#define greeting hello
reverse(greeting,
#define greeting goodbye
}
```

produces " #define hello goodbye hello".

Output

Output consists of a copy of the input file, with modifications, plus lines of the form:

```
#lineno * filename * level*
```

indicating the original source line number and filename of the following output line and whether this is the first such line after an include file has been entered (level=1), the first such line after an include file has been exited (level=2), or any other such line (level is empty).

Details

This section contains usage details.

Directory Search Order

#include files are searched for in the following order:

1. The directory of the file that contains the #include request (that is, #include is relative to the file being scanned when the request is made).
2. The directories specified by -I options, in left-to-right order.
3. The standard directory(s) (/usr/include on UNIX systems).

Special Names

Two special names are understood by cpp. The name __LINE__ is defined as the current line number (a decimal integer) as known by cpp, and __FILE__ is defined as the current filename (a C string) as known by cpp. They can be used anywhere (including in macros) just as any other defined name.

Newline Characters

A NEWLINE character terminates a character constant or quoted string. An escaped NEWLINE (that is, a backslash immediately followed by a NEWLINE) may be used in the body of a #define statement to continue the definition onto the next line. The escaped NEWLINE is not included in the macro value.
Comments
Comments are removed (unless the -C option is used on the command line).
Comments are also ignored, except that a comment terminates a token.

EXIT STATUS
The following exit values are returned:
 0 Successful completion.
 non-zero An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO
cc(1B), m4(1), attributes(5)

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The line number and filename where the error occurred are printed along with the diagnostic.

NOTES
When NEWLINE characters were found in argument lists for macros to be expanded, some previous versions of cpp put out the NEWLINE characters as they were found and expanded. The current version of cpp replaces them with SPACE characters.

Because the standard directory for included files may be different in different environments, this form of #include directive:

```
#include <file.h>
```

should be used, rather than one with an absolute path, like:

```
#include "/usr/include/file.h"
```

cpp warns about the use of the absolute pathname.

While the compiler allows 8-bit strings and comments, 8-bits are not allowed anywhere else.
The `cputrack` utility allows CPU performance counters to be used to monitor the behavior of a process or family of processes running on the system. If `interval` is specified with the `-T` option, `cputrack` samples activity every `interval` seconds, repeating forever. If a `count` is specified with the `-N` option, the statistics are repeated `count` times for each process tracked. If neither are specified, an interval of one second is used. If `command` and optional `args` are specified, `cputrack` runs the command with the arguments given while monitoring the specified CPU performance events. Alternatively, the process ID of an existing process can be specified using the `-p` option.

Because `cputrack` is an unprivileged program, it is subject to the same restrictions that apply to `truss(1)`. For example, `setuid(2)` executables cannot be tracked.

OPTIONS

The following options are supported:

- `-c eventspec` Specifies a set of events for the CPU performance counters to monitor. The list of available events and the syntax of the event specifications for the system can be determined using the `-h` option. The semantics of these event specifications can be determined by reading the CPU manufacturers documentation for the events. See `cpc_strtoevent(3CPC)` for a description of the syntax.

 Multiple `-c` options may be specified, in which case `cputrack` cycles between the different event settings on each sample.

- `-D` Enables debug mode.

- `-e` Follows all `exec(2)`, or `execve(2)` system calls. Without this option, `cputrack` terminates when the process image is overlaid with a new executable.

- `-f` Follows all children created by `fork(2), fork1(2), or vfork(2)` system calls.

- `-h` Prints an extended help message on how to use the utility and how to program the processor-dependent counters.

- `-n` Omits all header output (useful if `cputrack` is the beginning of a pipeline).

- `-N count` Specifies the maximum number of CPU performance counter samples to take before exiting.
cputrack(1)

- `o outfile` Specifies file to be used for the cputrack output.
- `p pid` Interprets the argument as the process ID of an existing process to which process counter context should be attached and monitored.
- `-t` Prints an additional column of processor cycle counts, if available on the current architecture.
- `-T interval` Specifies the interval between CPU performance counter samples in seconds. Very small intervals may cause some samples to be skipped. See WARNINGS.
- `-v` Enables more verbose output.

USAGE

The operating system enforces certain restrictions on the tracing of processes. In particular, a command whose object file cannot be read by a user cannot be tracked by that user; set-uid and set-gid commands can only be tracked by a privileged user. Unless it is run by a privileged user, cputrack loses control of any process that performs an `exec()` of a set-id or unreadable object file. Such processes continue normally, though independently of cputrack, from the point of the `exec()`.

The system may run out of per-user process slots when the `-f` option is used, since cputrack runs one controlling process for each process being tracked.

The times printed by cputrack correspond to the wallclock time when the hardware counters were actually sampled, instead of when the program told the kernel to sample them. The time is derived from the same timebase as `gethrtime(3C)`.

The cputrack utility attaches performance counter context to each process that it examines. The presence of this context allows the performance counters to be multiplexed between different processes on the system, but it cannot be used at the same time as the cpustat(1M) utility.

Once an instance of the cpustat utility is running, further attempts to run cputrack will fail until all instances of cpustat terminate.

Sometimes cputrack provides sufficient flexibility and prints sufficient statistics to make adding the event selection code to an application unnecessary. However, more control is occasionally desired. Because the same performance counter context is used by both the application itself and by the agent LWP injected into the application by cputrack, it is possible for an application to interact with the counter context to achieve some interesting capabilities. See `cpc_count_usr_events(3CPC)`.

The processor cycle counts enabled by the `-t` option always apply to both user and system modes, regardless of the settings applied to the performance counter registers.

The output of cputrack is designed to be readily parseable by `nawk(1)` and `perl(1)`, thereby allowing performance tools to be composed by embedding cputrack in scripts. Alternatively, tools may be constructed directly using the same APIs that cputrack is built upon, using the facilities of `libcpc(3LIB)` and `libpctx(3LIB)`. See `cpc(3CPC)`.
Although cputrack uses performance counter context to maintain separate performance counter values for each LWP, some of the events that can be counted will inevitably be impacted by other activities occurring on the system, particularly for limited resources that are shared between processes (for example, cache miss rates). For such events, it may also be interesting to observe overall system behavior with cpustat(1M).

For the \texttt{-T interval} option, if \textit{interval} is specified as zero, no periodic sampling is performed. The performance counters are only sampled when the process creates or destroys an LWP, or it invokes \texttt{fork(2)}, \texttt{exec(2)}, or \texttt{exit(2)}.

EXAMPLES

SPARC

EXAMPLE 1 Using performance counters to count clock cycles

In this example, the utility is being used on a machine containing an UltraSPARC 1 processor. The counters are set to count processor clock cycles and instructions dispatched in user mode while running the \texttt{sleep(1)} command.

```bash
example% cputrack -c pic0=Cycle_cnt,pic1=Instr_cnt sleep 10
```

```
time lwp event pic0  pic1
2.040 1  tick  377820  202593
4.028 1  tick  0  0
6.028 1  tick  0  0
8.028 1  tick  0  0
10.028 1  tick  6930  954
10.036 1  exit  410623  212137
```

EXAMPLE 2 Counting external cache references and hits

This example shows more verbose output while following the \texttt{fork()} and \texttt{exec()} of a simple shell script on an UltraSPARC machine. The counters are measuring the number of external cache references and external cache hits. Notice that the explicit \texttt{pic0} and \texttt{pic1} names can be omitted where there are no ambiguities.

```bash
example% cputrack -fev -c EC_ref,EC_hit /bin/ulimit
```

```
time pid lwp event pic0  pic1  pic0  pic1
0.032 101200 1 init_lwp 0 0
0.106 101200 1 fork # 101201
0.115 101201 1 init_lwp 0 0
0.179 101201 1 fini_lwp 5934  5031
0.179 101201 1 exec  5934  5031
0.399 101201 1 exec # ’basename /bin/ulimit’
0.413 101201 1 init_lwp 0 0
0.435 101201 1 fini_lwp 19780  17234
0.435 101201 1 exit  19780  17234 unlimited
0.454 101200 1 fini_lwp 63025  54583
0.454 101200 1 exit  63025  54583
```
EXAMPLE 3 Counting instructions

This example shows how many instructions were executed in the application and in the kernel to print the date on a Pentium machine:

```
example% cputrack –c inst_retired,inst_retired,nouser1,sys1 date
time lwp event pic0 pic1Fri Aug 20 20:03:08 PDT 19990.072 1 exit 246725 339666
```

WARNINGS

By running any instance of the `cpustat(1M)` utility, all existing performance counter context is forcibly invalidated across the machine. This may in turn cause all invocations of the `cputrack` command to exit prematurely with unspecified errors.

If `cputrack` is invoked on a system that has CPU performance counters, but on which the packages containing the kernel support for those counters is not installed, the following message appears:

```
cputrack: CPU performance counters are inaccessible on this machine
```

This error message implies that `cpc_access()` has failed and is documented in `cpc_access(3CPC)`. Review this documentation for more information about the problem and possible solutions.

If a short interval is requested, `cputrack` may not be able to keep up with the desired sample rate. In this case, some samples may be dropped.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcpcu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcpcux (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`nawk(1), perl(1), proc(1), truss(1), prstat(1M), cpustat(1M), exec(2), exit(2), fork(2), setuid(2), vfork(2), gethrtime(3C), cpc(3CPC), cpc_access(3CPC), cpc_count_usr_events(3CPC), cpc_strtoevent(3CPC), libcpc(3LIB), libpctx(3LIB), proc(4), attributes(5)`

Sun Microsystems UltraSPARC II and III Cu (v.2.2.1) User’s Manuals, 1997 and 2004, respectively

http://www.sun.comprocessors
NAME
crle – configure runtime linking environment

SYNOPSIS
 [-I name] [-g name] [-G name] [-l dir] [-o dir] [-s dir] [-t [ELF
 | AOUT]] [-u] [-v]

DESCRIPTION
The crle utility provides for the creation and display of a runtime linking
configuration file. Without any arguments, or with just the -c option, crle displays
the contents of a configuration file, any system defaults and the command-line
required to regenerate the configuration file. When used with any other options, a new
configuration file is created or updated. The configuration file is read and interpreted
by the runtime linker, ld.so.1(1), during process start-up.

The default configuration file is /var/ld/ld.config for 32-bit objects and
/var/ld/64/ld.config for 64-bit objects. Note: It is recommended that any new
configuration file is first created in a temporary location. The environment variable
LD_CONFIG can be set to this new configuration file to cause its use by the runtime
linker instead of any default. After verification, the new configuration file can be
moved to the default location if desired. Setting the environment variable
LD_NOCONFIG to any value results in the runtime linker ignoring any configura-
tion files, and may prove useful during experimentation.

The configuration file may contain the following information:

Default Search Paths
The runtime linker uses a prescribed search path for
locating the dynamic dependencies of an object. This
search path starts with the components of any
LD_LIBRARY_PATH definition, followed by the
components of an object’s runpath and finally any
defaults specific to the object’s type. This last
component of the search path can be expressed within
the configuration file. Note: Typical use of this facility
should augment any system defaults; see the -l
option.

Trusted Directories
When processing a secure application the runtime
linker restricts the use of LD_LIBRARY_PATH and the
directories from which preload and audit libraries may
be used to known trusted directories. These trusted
directories can be expressed within the configuration
file. Note: Typical use of this facility should augment
any system defaults; see the -s option.

Directory Cache
The location of shared objects within defined
directories can be maintained as a cache within the
configuration file. This directory cache can reduce the
overhead of searching for application dependencies.

Alternative Objects
In conjunction with the directory cache, shared objects
may have alternative objects specified for use at
runtime. These alternate objects may be supplied by
the user, or can be created by \texttt{crle} as copies of shared
objects fixed to known memory locations. These fixed
alternative objects can require less processing at
runtime than their original shared object counterpart.

Environment Variables

Any environment variable interpreted by the runtime
linker can be specified within the configuration file.

Defining alternative default search paths, or additional trusted directories can be
useful for administrators who wish to install third party software in a central location,
or otherwise alter the search path of applications that may not have been coded with
suitable runpaths.

Defining user supplied alternative objects provides a means of replacing dependencies
other than via symbolic links or requiring \texttt{LD_LIBRARY_PATH}
settings.

Defining runtime linker environment variables provides a means of centralizing their
definition for all applications.

The directory cache and \texttt{crle} generated alternate objects can provide a means of
reducing the runtime start-up overhead of applications that require many
dependencies, or whose dependencies are expensive to relocate (this may be the case
when shared objects contain position-dependent code).

When alternate objects generated by \texttt{crle} are specified within a configuration file,
\texttt{ld.so.1(1)} performs some minimal consistency verification of the alternative objects
against their originating objects. This verification is intended to avert application
failure should an applications configuration information become out-of-sync with the
underlying system components. When this situation arises the flexibility offered by
dynamic linking system components may be compromised, and diagnosing the
application failure may be difficult. \textit{Note}: No verification of directory cache
information is performed. Any changes to the directory structure will not be seen by a
process until the cache is rebuilt.

System shared objects are often well tuned and may have no benefit being cached. The
directory cache and alternative object features are typically applicable to user
applications and shared objects.

\texttt{crle} creates alternate objects for the shared objects discovered when using the \texttt{-I}
and \texttt{-G} options by calls to \texttt{dldump(3DL)}. The alternate object is created in the directory
specified by the preceding \texttt{-o} option, or defaults to the directory in which the
configuration file is created. The flags used for the \texttt{dldump()} are specified using the
\texttt{-f} option, or default to \texttt{RTLD_RELATIVE}.

\textbf{OPTIONS}

The following options are supported:

\begin{itemize}
 \item \texttt{-64} \hspace{1cm} Specifies to process 64-bit objects, the default is 32-bit.
\end{itemize}
This option adds an alternative to `name` to the configuration file. The actual alternative file must be supplied by the user. Multiple occurrences of this option are permitted. If `name` is a directory each shared object within the directory is added to the cache. If `name` does not exist, it is marked in the cache as a nonexistent file.

Specifies to use the configuration file name `conf`. If this option is not supplied the default configuration file is used.

This option specifies a `replaceable` environment variable, `env`. Only environment variables applicable to the runtime linker are meaningful. Multiple occurrences of this option are permitted. This option is similar to the `-E` option, but differs in how configuration file definitions and process environment definitions of the same name are resolved at runtime.

A definition established in a configuration file can be `overridden` by a process environment definition, or be `suppressed` by a null-value process environment definition.

In other words, these configuration file definitions can be replaced or removed by the process environment at runtime.

This option specifies a `permanent` environment variable, `env`. Only environment variables applicable to the runtime linker are meaningful. Multiple occurrences of this option are permitted. This option is similar to the `-e` option, but differs in how configuration file definitions and process environment definitions of the same name are resolved at runtime.

Environment variable definitions meaningful to the runtime linker fall into one of two categories, that is, singular definitions such as `LD_NOLAZYLOAD=1` and `LD_DEBUG_OUTPUT=file`, or list definitions which can take one or more values such as `LD_LIBRARY_PATH=path`, and `LD_DEBUG=files, details`.

A singular definition established in a configuration file will take precedence over a process environment definition. A list definition established in a configuration file will be `appended` to a process
environment definition. Any definition established in a
configuration file can not be suppressed by a null-value
process environment definition.

In other words, these configuration file definitions can
not be replaced or removed by the process environment
at runtime.

-flags

This option provides the symbolic flags argument to the
dldump(3DL) calls used to generate alternate objects.
Any of the RTLD_REL flags defined in
/usr/include/dlfcn.h can be used. Multiple flags
can be or’ed together using the ”|” character, and in
this case the string should be quoted to avoid
expansion by the shell. If no flags values are provided
the default flag is RTLD_REL_RELATIVE.

-i name

This option adds an individual name to the
configuration cache. Multiple occurrences of this option
are permitted. name may be a shared object or a
directory. If name is a directory each shared object
within the directory is added to the cache. Note: If name
does not exist, it is marked in the cache as a
nonexistent directory.

-I name

This option is the same as -i and in addition any
shared objects have alternatives created via
dldump(3DL). If the -f flag contains RTLD_REL_EXEC
then name may be a dynamic executable, for which an
alternative is created. Only one dynamic executable can
be specified in this manner as the cache created is
specific to this application.

-g name

This option adds the group name to the configuration
cache. Each object is expanded to determine its
dependencies. Multiple occurrences of this option are
permitted. name may be a dynamic executable, shared
object or a directory. The name itself, if it is a shared
object, and its dependencies are added to the cache. If
name is a directory each shared object within the
directory, and its dependencies, are added to the cache.

-G name

This option is the same as -g and in addition any
shared objects have alternatives created via
dldump(3DL). If name is a dynamic executable, and the
-f flag contains RTLD_REL_EXEC, then an alternative
for the dynamic executable is also created. Only one
dynamic executable can be specified in this manner as
the cache created is specific to this application.
This option specifies a new default search directory `dir` for ELF or AOUT objects. Multiple occurrences of this option are permitted. The type of object applicable to the search is specified by the preceding `-t` option, or defaults to ELF.

The system default search path for ELF objects is `/usr/lib` for 32-bit objects, and `/usr/lib/64` for 64-bit objects. The system default search paths for AOUT objects is `/usr/4lib`, `/usr/lib` and `/usr/local/lib`.

Use of this option replaces the system default search path, and thus it is normally required that a `-l` option be used to specify the original system default in relation to any new paths being applied. However, if the `-u` option is in effect, and a configuration file does not exist, the system defaults are added to the new configuration file before the new paths specified with the `-l` option.

This option specifies the directory `dir` in which any alternate objects must exist (in the case of using the `-a` option), or will be created (in the case of alternatives created by crle). Without this option, alternate objects will exist in the directory in which the configuration file is created. Multiple occurrences of this option are permitted, the directory `dir` being used to locate alternatives for any following command-line options. Alternative objects are not permitted to override their associated originals.

This option specifies a new trusted directory `dir` for secure ELF or AOUT objects. See SECURITY in `ld.so.1(1)` for a definition of secure objects.

Multiple occurrences of this option are permitted. The type of object applicable to the search is specified by the preceding `-t` option, or defaults to ELF.

The system default trusted directory for secure ELF objects is `/usr/lib/secure` for 32-bit objects and `/usr/lib/secure/64` for 64-bit objects. The system default trusted directories for secure AOUT objects are `/usr/4lib`, `/usr/lib`, `/usr/ucblib`, and `/usr/local/lib`.
Use of this option replaces the system default trusted directories, and thus it is normally required that a -s option be used to specify the original system default in relation to any new directories being applied. However, if the -u option is in effect, and a configuration file does not exist, the system defaults are added to the new configuration file before the new directories specified with the -s option.

-t ELF | AOUT

This option toggles the object type applicable to any -l or -s options that follow. The default object type is ELF.

-u

This option requests that a configuration file be updated, possibly with the addition of new information. Without other options any existing configuration file is inspected and its contents recomputed. Additional arguments allow information to be appended to the recomputed contents. See NOTES.

If a configuration file does not exist it will be created as directed by the other arguments. In the case of the -l and -s options any system defaults will first be applied to the configuration file before the directories specified with these options.

-v

Verbose mode. When creating a configuration file, a trace of the files being processed is written to the standard out. When printing the contents of a configuration file, more extensive directory and file information is provided.

By default, the runtime linker attempts to read the configuration file /var/ld/ld.config for each 32-bit application it processes or /var/ld/64/ld.config for each 64-bit application. When processing an alternative application, the runtime linker will use a $ORIGIN/ld.config.app-name configuration file if present (see NOTES). Applications may reference an alternative configuration file either by setting the LD_CONFIG environment variable (see ld.so.1(1)), or by recording a configuration file name in the application at the time it is built using the link-editors -c option (see ld(1)).

EXAMPLES

EXAMPLE 1 Update (and display) of a new default search path for ELF objects

```bash
example% crle -u -l /local/lib
```

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib
Trusted Directories (ELF): /usr/lib/secure (system default)
EXAMPLE 1 Update (and display) of a new default search path for ELF objects
(Continued)

Command line:
```
crle -l /usr/lib:/local/lib
```
```
example% crle -u -l /usr/local/lib
```
```
example% crle
```

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib:/usr/local/lib
Trusted Directories (ELF): /usr/lib/secure (system default)

Command line:
```
crle -l /usr/lib:/local/lib:/usr/local/lib
```

In this example, the default configuration file initially did not exist, and thus the new
search path /local/lib is appended to the system default. The next update appends
the search path /usr/local/lib to those already established in the configuration
file.

EXAMPLE 2 Creation (and display) of a new default search path and new trusted directory
for ELF objects

```
example% crle -l /local/lib -l /usr/lib -s /local/lib
```
```
example% crle
```

Configuration file [2]: /var/ld/ld.config
Default Library Path (ELF): /local/lib:/usr/lib
Trusted Directories (ELF): /local/lib

Command line:
```
crle -l /local/lib:/usr/lib -s /local/lib
```

With this configuration, third party applications may be installed in /local/bin and
their associated dependencies in /local/lib. The default search path allows the
applications to locate their dependencies without the need to set LD_LIBRARY_PATH.
Note: The system default trusted directory has been replaced with this example.

EXAMPLE 3 Creation of a directory cache for ELF objects

```
example% crle -i /usr/dt/lib -i /usr/openwin/lib -i /usr/lib -c config
```
```
example% ldd -s ./main
```
```
....
find object=libc.so.1; required by ./main
  search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
  trying path=/usr/dt/lib/libc.so.1
  trying path=/usr/openwin/lib/libc.so.1
  search path=/usr/lib (default)
  trying path=/usr/lib/libc.so.1
  libc.so.1 => /usr/lib/libc.so.1
```
```
example% LD_CONFIG=config ldd -s ./main
```

216 man pages section 1: User Commands • Last Revised 10 Oct 2001
EXAMPLE 3 Creation of a directory cache for ELF objects (Continued)

find object=libc.so.1; required by ./main
 search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
 search path=/usr/lib (default)
 trying path=/usr/lib/libc.so.1
 libc.so.1 => /usr/lib/libc.so.1

With this configuration, the cache reflects that the system library libc.so.1 does not exist in the directories /usr/dt/lib or /usr/openwin/lib. Therefore, the search for this system file ignores these directories even though the application’s runpath indicates they should be searched.

EXAMPLE 4 Creation of an alternative object cache for an ELF executable

```
EXAMPLE crle -c /local/$HOST/.xterm/ld.config.xterm \
   -f RTLD_REL_ALL -G /usr/openwin/bin/xterm
example ln -s /local/$HOST/.xterm/xterm /local/$HOST/xterm
example ldd /usr/local/$HOST/xterm
   libXaw.so.5 => /local/$HOST/.xterm/libXaw.so.5 (alternate)
   libXmu.so.4 => /local/$HOST/.xterm/libXmu.so.4 (alternate)
      libc.so.1 => /local/$HOST/.xterm/libc.so.1 (alternate)
```

With this configuration, a new xterm and its dependencies are created. These new objects are fully relocated to themselves and result in faster start-up than the originating objects. Note: The execution of this application uses its own specific configuration file. This model is generally more flexible than using the environment variable LD_CONFIG, as the configuration file will not be erroneously used by other applications such as ldd(1) or truss(1).

EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object

```
example ldd /usr/bin/vi
   libcurses.so.1 => /usr/lib/libcurses.so.1
```

```
example crle -a /usr/lib/libcurses.so.1 -o /usr/ucblib
example crle
```

```
Configuration file [3]: /var/ld/ld.config
   Default Library Path (ELF): /usr/lib (system default)
   Trusted Directories (ELF): /usr/lib/secure (system default)
Directory: /usr/lib
   libcurses.so.1 (alternate: /usr/ucblib/libcurses.so.1)
```

```
example ldd /usr/bin/vi
   libcurses.so.1 => /usr/ucblib/libcurses.so.1 (alternate)
```

User Commands 217
EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object
(Continued)

With this configuration, any dependency that would normally resolve to
/usr/lib/libcurses.so.1 will instead resolve to
/usr/ucblib/libcurses.so.1.

EXAMPLE 6 Setting replaceable and permanent environment variables
example% crle -e LD_LIBRARY_PATH=/local/lib
 -E LD_PRELOAD=preload.so.1
example% crle

......
Environment Variables:
LD_LIBRARY_PATH=/local/lib (replaceable)
LD_PRELOAD=preload.so.1 (permanent)

......
example% LD_DEBUG=files LD_PRELOAD=preload.so.2 ./main

......
18764: file=preload.so.2; preloaded
18764: file=/local/lib/preload.so.2 [ELF]; generating link map

......
18764: file=preload.so.1; preloaded
18764: file=/local/lib/preload.so.1 [ELF]; generating link map

......

With this configuration file, a replaceable search path has been specified together with
a permanent preload object which becomes appended to the process environment
definition.

EXIT STATUS
The creation or display of a configuration file results in a 0 being returned; otherwise
any error condition is accompanied with a diagnostic message and a non-zero value
being returned.

NOTES
Tagging an alternative application to use an application specific configuration file can
only be achieved if the original application contains one of the .dynamic tags
DT_FLAGS_1 or DT_FEATURE_1. Without these entries any application specific
configuration file must be specified using the LD_CONFIG environment variable. Care
should be exercised with this latter method as this environment variable will be visible
to any forked applications.

The use of the -u option requires at least version 2 of crle. This version level is
evident from displaying the contents of a configuration file:
example% crle

Configuration file [2]: /var/ld/ld.config

......
With a version 2 configuration file, \texttt{crle} is capable of constructing the command-line arguments required to regenerate the configuration file and to provide full update capabilities. Although the update of a version 1 configuration file is possible, the contents of the configuration file may be insufficient for \texttt{crle} to compute the entire update requirements.

FILES

<table>
<thead>
<tr>
<th>File Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/ld/ld.config</td>
<td>Default configuration file for 32-bit applications.</td>
</tr>
<tr>
<td>/var/ld/64/ld.config</td>
<td>Default configuration file for 64-bit applications.</td>
</tr>
<tr>
<td>/var/tmp</td>
<td>Default location for temporary configuration file (see \texttt{tempnam(3C)}).</td>
</tr>
<tr>
<td>/usr/lib/lddstub</td>
<td>Stub application employed to \texttt{dldump(3DL)} 32-bit objects.</td>
</tr>
<tr>
<td>/usr/lib/64/lddstub</td>
<td>Stub application employed to \texttt{dldump(3DL)} 64-bit objects.</td>
</tr>
<tr>
<td>/usr/lib/libcrle.so.1</td>
<td>Audit library employed to \texttt{dldump(3DL)} 32-bit objects.</td>
</tr>
<tr>
<td>/usr/lib/64/libcrle.so.1</td>
<td>Audit library employed to \texttt{dldump(3DL)} 64-bit objects.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See \texttt{attributes(5)} for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO

\texttt{ld(1), ld.so.1(1), dldump(3DL), tempnam(3C), attributes(5)}
The `crontab` utility manages a user’s access with `cron` (see `cron(1M)` by copying, creating, listing, and removing crontab files. If invoked without options, `crontab` copies the specified file, or the standard input if no file is specified, into a directory that holds all users’ crontabs.

If `crontab` is invoked with `filename`, this will overwrite an existing crontab entry for the user that invokes it.

Users: Access to crontab is allowed:
- if the user’s name appears in `/etc/cron.d/cron.allow`.
- if `/etc/cron.d/cron.allow` does not exist and the user’s name is not in `/etc/cron.d/cron.deny`.

Users: Access to crontab is denied:
- if `/etc/cron.d/cron.allow` exists and the user’s name is not in it.
- if `/etc/cron.d/cron.allow` does not exist and user’s name is in `/etc/cron.d/cron.deny`.
- if neither file exists, only a user with the `solaris.jobs.user` authorization is allowed to submit a job.
- If BSM audit is enabled, the user’s shell is not audited and the user is not the crontab owner. This can occur if the user logs in via a program, such as some versions of SSH, which does not set audit parameters.

Notice that the rules for `allow` and `deny` apply to `root` only if the `allow/deny` files exist.

The `allow/deny` files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or tabs. The first five are integer patterns that specify the following:

- minute (0-59),
- hour (0-23),
- day of the month (1-31),
- month of the year (1-12),
- day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of elements separated by commas. An element is either a number or two numbers separated by a minus sign (meaning an inclusive range). Notice that the specification of days may be made by two fields (day of the month and day of the week). Both are adhered to if specified as a list of elements. See EXAMPLES.
The sixth field of a line in a crontab file is a string that is executed by the shell at the specified times. A percent character in this field (unless escaped by \) is translated to a NEWLINE character.

Only the first line (up to a `\%` or end of line) of the command field is executed by the shell. Other lines are made available to the command as standard input. Any blank line or line beginning with a `\#` is a comment and will be ignored.

The shell is invoked from your `$HOME` directory with an `arg0` of `sh`. Users who desire to have their `.profile` executed must explicitly do so in the crontab file. `cron` supplies a default environment for every shell, defining `HOME`, `LOGNAME`, `SHELL(=/bin/sh)`, `TZ`, and `PATH`. The default `PATH` for user cron jobs is `/usr/bin`; while root cron jobs default to `/usr/sbin:/usr/bin`. The default `PATH` can be set in `/etc/default/cron` (see `cron(1M)`).

If you do not redirect the standard output and standard error of your commands, any generated output or errors will be mailed to you.

OPTIONS

The following options are supported:

- `-e` Edits a copy of the current user's crontab file, or creates an empty file to edit if `crontab` does not exist. When editing is complete, the file is installed as the user's crontab file. If a `username` is given, the specified user's crontab file is edited, rather than the current user's crontab file; this may only be done by a user with the `solaris.jobs.admin` authorization. The environment variable `EDITOR` determines which editor is invoked with the `-e` option. The default editor is `ed(1)`. Notice that all crontab jobs should be submitted using `crontab`. Do not add jobs by just editing the crontab file, because `cron` will not be aware of changes made this way.

 If all lines in the crontab file are deleted, the old crontab file will be restored. The correct way to delete all lines is to remove the crontab file via the `-r` option.

- `-l` Lists the crontab file for the invoking user. Only a user with the `solaris.jobs.admin` authorization can specify a `username` following the `-r` or `-l` options to remove or list the crontab file of the specified user.

- `-r` Removes a user's crontab from the crontab directory.

EXAMPLES

EXAMPLE 1 Cleaning up core files

This example cleans up core files every weekday morning at 3:15 am:

```
15 3 * * 1-5 find $HOME -name core 2>/dev/null | xargs rm -f
```

EXAMPLE 2 Mailing a birthday greeting

```
0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.
```
EXAMPLE 3 Specifying days of the month and week

This example

0 0 1,15 * 1

would run a command on the first and fifteenth of each month, as well as on every Monday.

To specify days by only one field, the other field should be set to *. For example:

0 0 * * 1

would run a command only on Mondays.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of crontab: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EDITOR

Determine the editor to be invoked when the -e option is specified. The default editor is vi(1).

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/etc/cron.d main cron directory
/etc/cron.d/cron.allow list of allowed users
/etc/default/cron contains cron default settings
/etc/cron.d/cron.deny list of denied users
/var/cron/log accounting information
/var/spool/cron/crontabs spool area for crontab

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

atq(1), atrm(1), auths(1), sh(1), vi(1), cron(1M), su(1M), auth_attr(4), attributes(5), environ(5), standards(5)

NOTES

If you inadvertently enter the crontab command with no argument(s), do not attempt to get out with Control-d. This removes all entries in your crontab file. Instead, exit with Control-c.
If an authorized user modifies another user’s crontab file, resulting behavior may be unpredictable. Instead, the super-user should first use `su(1M)` to become super-user to the other user’s login before making any changes to the crontab file.

When updating `cron`, check first for existing `crontab` entries that may be scheduled close to the time of the update. Such entries may be lost if the update process completes after the scheduled event. This can happen because, when `cron` is notified by `crontab` to update the internal view of a user’s crontab file, it first removes the user’s existing internal crontab and any internal scheduled events. Then it reads the new crontab file and rebuilds the internal crontab and events. This last step takes time, especially with a large crontab file, and may complete after an existing crontab entry is scheduled to run if it is scheduled too close to the update. To be safe, start a new job at least 60 seconds after the current date and time.
crypt(1)

NAME crypt – encode or decode a file

SYNOPSIS crypt [password]

DESCRIPTION The crypt utility encrypts and decrypts the contents of a file. crypt reads from the standard input and writes on the standard output. The password is a key that selects a particular transformation. If no password is given, crypt demands a key from the terminal and turns off printing while the key is being typed in. crypt encrypts and decrypts with the same key:

example% crypt key<clear.file> encrypted.file
example% crypt key<encrypted.file | pr

will print the contents of clear.file.

Files encrypted by crypt are compatible with those treated by the editors ed(1), ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve; direct search of the key space must be infeasible; “sneak paths” by which keys or cleartext can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-element rotor. Methods of attack on such machines are widely known, thus crypt provides minimal security.

The transformation of a key into the internal settings of the machine is deliberately designed to be expensive, that is, to take a substantial fraction of a second to compute. However, if keys are restricted to (say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or a derivative command. To minimize this possibility, crypt takes care to destroy any record of the key immediately upon entry. No doubt the choice of keys and key security are the most vulnerable aspect of crypt.

FILES /dev/tty for typed key

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO des(1), ed(1), ex(1), makekey(1), ps(1), vi(1), attributes (5)
csh(1)

NAME csh – shell command interpreter with a C-like syntax

SYNOPSIS csh [-bcefinstvVxX] [argument...]

DESCRIPTION csh, the C shell, is a command interpreter with a syntax reminiscent of the C language. It provides a number of convenient features for interactive use that are not available with the Bourne shell, including filename completion, command aliasing, history substitution, job control, and a number of built-in commands. As with the Bourne shell, the C shell provides variable, command and filename substitution.

Initialization and Termination

When first started, the C shell normally performs commands from the .cshrc file in your home directory, provided that it is readable and you either own it or your real group ID matches its group ID. If the shell is invoked with a name that starts with ‘−’, as when started by login(1), the shell runs as a login shell.

If the shell is a login shell, this is the sequence of invocations: First, commands in /etc/.login are executed. Next, commands from the .cshrc file your home directory are executed. Then the shell executes commands from the .login file in your home directory; the same permission checks as those for .cshrc are applied to this file. Typically, the .login file contains commands to specify the terminal type and environment. (For an explanation of file interpreters, see below "Command Execution" and exec(2)).

As a login shell terminates, it performs commands from the .logout file in your home directory; the same permission checks as those for .cshrc are applied to this file.

Interactive Operation

After startup processing is complete, an interactive C shell begins reading commands from the terminal, prompting with hostname% (or hostname# for the privileged user). The shell then repeatedly performs the following actions: a line of command input is read and broken into words. This sequence of words is placed on the history list and then parsed, as described under USAGE. Finally, the shell executes each command in the current line.

Noninteractive Operation

When running noninteractively, the shell does not prompt for input from the terminal. A noninteractive C shell can execute a command supplied as an argument on its command line, or interpret commands from a file, also known as a script.

OPTIONS

The following options are supported:

- **-b** Forced a “break” from option processing. Subsequent command line arguments are not interpreted as C shell options. This allows the passing of options to a script without confusion. The shell does not run set-user-ID or set-group-ID scripts unless this option is present.

- **-c** Executes the first argument, which must be present. Remaining arguments are placed in argv, the argument-list variable, and passed directly to csh.

- **-e** Exits if a command terminates abnormally or yields a nonzero exit status.
Fast start. Reads neither the .cshrc file, nor the .login file (if a login shell) upon startup.

Forced interactive. Prompts for command line input, even if the standard input does not appear to be a terminal (character-special device).

Parses (interprets), but does not execute commands. This option can be used to check C shell scripts for syntax errors.

Takes commands from the standard input.

Reads and executes a single command line. A ‘\’ (backslash) can be used to escape each newline for continuation of the command line onto subsequent input lines.

Verbose. Sets the verbose predefined variable. Command input is echoed after history substitution, but before other substitutions and before execution.

Sets verbose before reading .cshrc.

Echo. Sets the echo variable. Echoes commands after all substitutions and just before execution.

Sets echo before reading .cshrc.

Except with the options -c, -i, -s, or -t, the first nonoption argument is taken to be the name of a command or script. It is passed as argument zero, and subsequent arguments are added to the argument list for that command or script.

Filename Completion

When enabled by setting the variable filec, an interactive C shell can complete a partially typed filename or user name. When an unambiguous partial filename is followed by an ESC character on the terminal input line, the shell fills in the remaining characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as Control-d), the shell lists all filenames that match. It then prompts once again, supplying the incomplete command line typed in so far.

When the last (partial) word begins with a tilde (~), the shell attempts completion with a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches. This bell signal can be inhibited by setting the variable nobeep. You can exclude files with certain suffixes by listing those suffixes in the variable fignore. If, however, the only possible completion includes a suffix in the list, it is not ignored. fignore does not affect the listing of filenames by the EOF character.
Lexical Structure

The shell splits input lines into words at space and tab characters, except as noted below. The characters `&`, `|`, `;`, `<`, `>`, `,`, and `)` form separate words; if paired, the pairs form single words. These shell metacharacters can be made part of other words, and their special meaning can be suppressed by preceding them with a `'\'` (backslash). A newline preceded by a `\` is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-quotes (`'`), double-quotes (`"`), or backquotes (`'`), forms a partial word. Metacharacters in such a string, including any space or tab characters, do not form separate words. Within pairs of backquote (`'`) or double-quote (`"`) characters, a newline preceded by a `\` (backslash) gives a true newline character. Additional functions of each type of quote are described, below, under Variable Substitution, Command Substitution, andFilename Substitution.

When the shell’s input is not a terminal, the character `#` introduces a comment that continues to the end of the input line. Its special meaning is suppressed when preceded by a `\` or enclosed in matching quotes.

Command Line Parsing

A simple command is composed of a sequence of words. The first word (that is not part of an I/O redirection) specifies the command to be executed. A simple command, or a set of simple commands separated by `|` or `&` characters, forms a pipeline. With `|`, the standard output of the preceding command is redirected to the standard input of the command that follows. With `&`, both the standard error and the standard output are redirected through the pipeline.

Pipelines can be separated by semicolons (`;`), in which case they are executed sequentially. Pipelines that are separated by `&&` or `||` form conditional sequences in which the execution of pipelines on the right depends upon the success or failure, respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses (`'('`) to form a simple command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously or “in the background” by appending an `&`; rather than waiting for the sequence to finish before issuing a prompt, the shell displays the job number (see Job Control, below) and associated process IDs and prompts immediately.

History Substitution

History substitution allows you to use words from previous command lines in the command line you are typing. This simplifies spelling corrections and the repetition of complicated commands or arguments. Command lines are saved in the history list, the size of which is controlled by the `history` variable. The most recent command is retained in any case. A history substitution begins with a `!` (although you can change this with the `histchars` variable) and may occur anywhere on the command line; history substitutions do not nest. The `!` can be escaped with `\` to suppress its special meaning.
Input lines containing history substitutions are echoed on the terminal after being expanded, but before any other substitutions take place or the command gets executed.

Event Designators

An event designator is a reference to a command line entry in the history list.

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Start a history substitution, except when followed by a space character, tab, newline, = or .</td>
</tr>
<tr>
<td>!!</td>
<td>Refer to the previous command. By itself, this substitution repeats the previous command.</td>
</tr>
<tr>
<td>!n</td>
<td>Refer to command line n.</td>
</tr>
<tr>
<td>! -n</td>
<td>Refer to the current command line minus n.</td>
</tr>
<tr>
<td>!str</td>
<td>Refer to the most recent command starting with str.</td>
</tr>
<tr>
<td>! ?str?</td>
<td>Refer to the most recent command containing str.</td>
</tr>
<tr>
<td>! ?str? additional</td>
<td>Refer to the most recent command containing str and append additional to that referenced command.</td>
</tr>
<tr>
<td>! {command} additional</td>
<td>Refer to the most recent command beginning with command and append additional to that referenced command.</td>
</tr>
</tbody>
</table>
| ^previous_word^replacement^ | Repeat the previous command line replacing the string previous_word with the string replacement. This is equivalent to the history substitution:

```
!:n/previous_word/replacement/.
```

To re-execute a specific previous command AND make such a substitution, say, re-executing command #6,

```
!:6n/previous_word/replacement/.
```  

Word Designators

A ‘:’ (colon) separates the event specification from the word designator. It can be omitted if the word designator begins with a ^, $, *, - or %. If the word is to be selected from the previous command, the second ! character can be omitted from the event specification. For instance, ! ! :1 and ! :1 both refer to the first word of the previous command, while ! ! $ and ! $ both refer to the last word in the previous command. Word designators include:

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>The entire command line typed so far.</td>
</tr>
</tbody>
</table>
The first input word (command).

The \(n \)'th argument.

The first argument, that is, 1.

The last argument.

The word matched by the ?s search.

A range of words; \(-y\) abbreviates \(0-y\).

All the arguments, or a null value if there is just one word in the event.

Abbreviates \(x-$\).

Like \(x^*\) but omitting word \$.

Modifiers

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Remove a trailing pathname component, leaving the head.</td>
</tr>
<tr>
<td>r</td>
<td>Remove a trailing suffix of the form <code>'xxx'</code>, leaving the basename.</td>
</tr>
<tr>
<td>e</td>
<td>Remove all but the suffix, leaving the Extension.</td>
</tr>
<tr>
<td>s/l/r/</td>
<td>Substitute (r) for (l).</td>
</tr>
<tr>
<td>t</td>
<td>Remove all leading pathname components, leaving the tail.</td>
</tr>
<tr>
<td>&</td>
<td>Repeat the previous substitution.</td>
</tr>
<tr>
<td>g</td>
<td>Apply the change to the first occurrence of a match in each word, by prefixing the above (for example, (g&)).</td>
</tr>
<tr>
<td>p</td>
<td>Print the new command but do not execute it.</td>
</tr>
<tr>
<td>q</td>
<td>Quote the substituted words, escaping further substitutions.</td>
</tr>
<tr>
<td>x</td>
<td>Like (q), but break into words at each space character, tab or newline.</td>
</tr>
</tbody>
</table>

Unless preceded by a \(g\), the modification is applied only to the first string that matches \(l\); an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings. Any character can be used as the delimiter in place of `/`. A backslash quotes the delimiter character. The character \& in the right hand side, is replaced by the text from the left-hand-side. The \& can be quoted with a backslash. A null \(l\) uses the previous string either from a \(l\) or from a contextual scan string \(s\) from \(!s\). You can omit the rightmost delimiter if a newline immediately follows \(r\); the rightmost \? in a context scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous command, or to a previous history reference on the command line (if any).

Quick Substitution

\[^l^r^\] This is equivalent to the history substitution:
The C shell maintains a list of aliases that you can create, display, and modify using the alias and unalias commands. The shell checks the first word in each command to see if it matches the name of an existing alias. If it does, the command is reprocessed with the alias definition replacing its name; the history substitution mechanism is made available as though that command were the previous input line. This allows history substitutions, escaped with a backslash in the definition, to be replaced with actual command line arguments when the alias is used. If no history substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias. Nested aliases are expanded before any history substitutions is applied. This is useful in pipelines such as

```
alias lm 'ls -l \!* | more'
```

which when called, pipes the output of `ls(1)` through `more(1)`.

Except for the first word, the name of the alias may not appear in its definition, nor in any alias referred to by its definition. Such loops are detected, and cause an error message.

I/O Redirection

The following metacharacters indicate that the subsequent word is the name of a file to which the command’s standard input, standard output, or standard error is redirected; this word is variable, command, and filename expanded separately from the rest of the command.

- `<` Redirect the standard input.

 `< word

 Read the standard input, up to a line that is identical with `word`, and place the resulting lines in a temporary file. Unless `word` is escaped or quoted, variable and command substitutions are performed on these lines. Then, the pipeline is invoked with the temporary file as its standard input. `word` is not subjected to variable, filename, or command substitution, and each line is compared to it before any substitutions are performed by the shell.

- `>` Redirect the standard output to a file. If the file does not exist, it is created. If it does exist, it is overwritten; its previous contents are lost.

 When set, the variable `noclobber` prevents destruction of existing files. It also prevents redirection to terminals and `/dev/null`, unless one of the `!` forms is used. The `&` forms redirect both standard output and the standard error (diagnostic output) to the file.

 `>` Append the standard output. Like `>`, but places output at the end of the file rather than overwriting it. If `noclobber` is set, it is an error for the file not to exist, unless
Variable Substitution

one of the forms is used. The & forms append both the standard error and standard output to the file.

The C shell maintains a set of variables, each of which is composed of a name and a value. A variable name consists of up to 20 letters and digits, and starts with a letter (the underscore is considered a letter). A variable’s value is a space-separated list of zero or more words.

To refer to a variable’s value, precede its name with a ‘$’. Certain references (described below) can be used to select specific words from the value, or to display other information about the variable. Braces can be used to insulate the reference from other characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved, and I/O redirections are applied. Exceptions to this are variable references in I/O redirections (substituted at the time the redirection is made), and backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within double-quotes where it always occurs. Variable substitution is suppressed inside of single-quotes. A $ is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset commands. Some variables are maintained or used by the shell. For instance, the argv variable contains an image of the shell’s argument list. Of the variables used by the shell, a number are toggles; the shell does not care what their value is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in command). With numeric operations, an empty value is considered to be zero. The second and subsequent words of multiword values are ignored. For instance, when the verbose variable is set to any value (including an empty value), command input is echoed on the terminal.

Command and filename substitution is subsequently applied to the words that result from the variable substitution, except when suppressed by double-quotes, when noglob is set (suppressing filename substitution), or when the reference is quoted with the :q modifier. Within double-quotes, a reference is expanded to form (a portion of) a quoted string; multiword values are expanded to a string with embedded space characters. When the :q modifier is applied to the reference, it is expanded to a list of space-separated words, each of which is quoted to prevent subsequent command or filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var
$\{var\} These are replaced by words from the value of var, each separated by a space character. If var is an environment variable, its value is returned (but ‘:’ modifiers and the other forms given below are not available).
These select only the indicated words from the value of \texttt{var}. Variable substitution is applied to \texttt{index}, which may consist of (or result in) a either single number, two numbers separated by a `−', or an asterisk. Words are indexed starting from 1; a `*' selects all words. If the first number of a range is omitted (as with \texttt{$argv[-2]$}), it defaults to 1. If the last number of a range is omitted (as with \texttt{$argv[1-]$}), it defaults to \texttt{$#var$} (the word count). It is not an error for a range to be empty if the second argument is omitted (or within range).

These give the number of words in the variable.

This substitutes the name of the file from which command input is being read except for setuid shell scripts. An error occurs if the name is not known.

Equivalent to \texttt{$argv[n]$}.

Equivalent to \texttt{$argv[*]$}.

The modifiers :e, :h, :q, :r, :t, and :x can be applied (see History Substitution), as can :gh, :gt, and :gr. If \{\} (braces) are used, then the modifiers must appear within the braces. The current implementation allows only one such modifier per expansion.

The following references may not be modified with : modifiers.

Substitutes the string 1 if \texttt{var} is set or 0 if it is not set.

Substitutes 1 if the current input filename is known or 0 if it is not.

Substitutes the process number of the (parent) shell.

Substitutes a line from the standard input, with no further interpretation thereafter. It can be used to read from the keyboard in a C shell script.

Command and filename substitutions are applied selectively to the arguments of built-in commands. Portions of expressions that are not evaluated are not expanded. For non-built-in commands, filename expansion of the command name is done separately from that of the argument list; expansion occurs in a subshell, after I/O redirection is performed.

A command enclosed by backquotes (`...') is performed by a subshell. Its standard output is broken into separate words at each space character, tab and newline; null words are discarded. This text replaces the backquoted string on the current command.
line. Within double-quotes, only newline characters force new words; space and tab characters are preserved. However, a final newline is ignored. It is therefore possible for a command substitution to yield a partial word.

Unquoted words containing any of the characters *, ?, [or {, or that begin with ~, are expanded (also known as globbing) to an alphabetically sorted list of filenames, as follows:

* Match any (zero or more) characters.
? Match any single character.
[...] Match any single character in the enclosed list(s) or range(s). A list is a string of characters. A range is two characters separated by a dash (−), and includes all the characters in between in the ASCII collating sequence (see ascii(5)).
{ str, str, ... } Expand to each string (or filename-matching pattern) in the comma-separated list. Unlike the pattern-matching expressions above, the expansion of this construct is not sorted. For instance, {b,a} expands to 'b' 'a', (not 'a' 'b'). As special cases, the characters { and }, along with the string { }, are passed undisturbed.
~[user] Your home directory, as indicated by the value of the variable home, or that of user, as indicated by the password entry for user.

Only the patterns *, ?, and [...] imply pattern matching; an error results if no filename matches a pattern that contains them. The '.' (dot character), when it is the first character in a filename or pathname component, must be matched explicitly. The / (slash) must also be matched explicitly.

A number of C shell built-in commands accept expressions, in which the operators are similar to those of C and have the same precedence. These expressions typically appear in the @, exit, if, set and while commands, and are often used to regulate the flow of control for executing commands. Components of an expression are separated by white space.

Null or missing values are considered 0. The result of all expressions is a string, which may represent decimal numbers.

The following C shell operators are grouped in order of precedence:

(...) grouping
>= one's complement
! logical negation
multiplication, division, remainder. These are right associative, which can lead to unexpected results. Combinations should be grouped explicitly with parentheses.

addition, subtraction (also right associative)

bitwise shift left, bitwise shift right

less than, greater than, less than or equal to, greater than or equal to

equal to, not equal to, filename-substitution pattern match (described below), filename-substitution pattern mismatch

bitwise AND

bitwise XOR (exclusive or)

bitwise inclusive OR

logical AND

logical OR

The operators: ==, !=, =-, and !- compare their arguments as strings; other operators use numbers. The operators == and != check whether or not a string to the left matches a filename substitution pattern on the right. This reduces the need for switch statements when pattern-matching between strings is all that is required.

Also available are file inquiries:

Return true, or 1 if the user has read access. Otherwise it returns false, or 0.

True if the user has write access.

True if the user has execute permission (or search permission on a directory).

True if filename exists.

True if the user owns filename.

True if filename is of zero length (empty).

True if filename is a plain file.

True if filename is a directory.

If filename does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:
If *command* runs successfully, the expression evaluates to true, 1. Otherwise, it evaluates to false, 0. **Note:** Conversely, *command* itself typically returns 0 when it runs successfully, or some other value if it encounters a problem. If you want to get at the status directly, use the value of the *status* variable rather than this expression.

The shell contains a number of commands to regulate the flow of control in scripts and within limits, from the terminal. These commands operate by forcing the shell either to reread input (to *loop*), or to skip input under certain conditions (to *branch*).

Each occurrence of a foreach, switch, while, if...then and else built-in command must appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The shell performs seeks within the internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows, backward goto commands will succeed on nonseekable inputs.)

If the command is a C shell built-in command, the shell executes it directly. Otherwise, the shell searches for a file by that name with execute access. If the command name contains a /, the shell takes it as a pathname, and searches for it. If the command name does not contain a /, the shell attempts to resolve it to a pathname, searching each directory in the *path* variable for the command. To speed the search, the shell uses its hash table (see the *rehash* built-in command) to eliminate directories that have no applicable files. This hashing can be disabled with the -c or -t, options, or the *unhash* built-in command.

As a special case, if there is no / in the name of the script and there is an alias for the word *shell*, the expansion of the *shell* alias is prepended (without modification) to the command line. The system attempts to execute the first word of this special (late-occurring) alias, which should be a full pathname. Remaining words of the alias’s definition, along with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new process and passes it, along with its arguments, to the kernel using the execve() system call (see exec(2)). The kernel then attempts to overlay the new process with the desired program. If the file is an executable binary (in a.out(4) format) the kernel succeeds and begins executing the new process. If the file is a text file and the first line begins with #!, the next word is taken to be the pathname of a shell (or command) to interpret that script. Subsequent words on the first line are taken as options for that shell. The kernel invokes (overlays) the indicated shell, using the name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file and the execve() call fails (see exec(2)). The C shell then attempts to execute the file by spawning a new shell, as follows:

- If the first character of the file is a #, a C shell is invoked.
- Otherwise, a Bourne shell is invoked.
csh(1)

Signal Handling The shell normally ignores QUIT signals. Background jobs are immune to signals generated from the keyboard, including hangups (HUP). Other signals have the values that the C shell inherited from its environment. The shell’s handling of interrupt and terminate signals within scripts can be controlled by the onintr built-in command. Login shells catch the TERM signal. Otherwise, this signal is passed on to child processes. In no case are interrupts allowed when a login shell is reading the .logout file.

Job Control The shell associates a numbered job with each command sequence to keep track of those commands that are running in the background or have been stopped with TSTP signals (typically Control-z). When a command or command sequence (semicolon separated list) is started in the background using the & metacharacter, the shell displays a line with the job number in brackets and a list of associated process numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently stopped (or put into the background if none are stopped) is referred to as the current job and is indicated with a ‘+’. The previous job is indicated with a ‘−’. When the current job is terminated or moved to the foreground, this job takes its place (becomes the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop, and % built-in commands.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current job.

% %+ %% The current job.
%− The previous job.
%j Refer to job j as in: ‘kill -9 %j’. j can be a job number, or a string that uniquely specifies the command line by which it was started; ‘fg %vi’ might bring a stopped vi job to the foreground, for instance.

%?string Specify the job for which the command line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Background jobs can normally produce output, but this can be suppressed using the ‘stty tostop’ command.

Status Reporting While running interactively, the shell tracks the status of each job and reports whenever the job finishes or becomes blocked. It normally displays a message to this effect as it issues a prompt, in order to avoid disturbing the appearance of your input. When set, the notify variable indicates that the shell is to report status changes immediately. By default, the notify command marks the current process; after starting a background job, type notify to mark it.
Commands

Built-in commands are executed within the C shell. If a built-in command occurs as any component of a pipeline except the last, it is executed in a subshell.

:
 Null command. This command is interpreted, but performs no action.

alias [name [def]]
 Assign def to the alias name. def is a list of words that may contain escaped history-substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the current definition for the alias name is displayed. If both name and def are omitted, all aliases are displayed with their definitions.

bg [%job ...]
 Run the current or specified jobs in the background.

break
 Resume execution after the end of the nearest enclosing foreach or while loop. The remaining commands on the current line are executed. This allows multilevel breaks to be written as a list of break commands, all on one line.

breaksw
 Break from a switch, resuming after the endsw.

case label:
 A label in a switch statement.

cd [dir]

chdir [dir]
 Change the shell’s working directory to directory dir. If no argument is given, change to the home directory of the user. If dir is a relative pathname not found in the current directory, check for it in those directories listed in the cdpath variable. If dir is the name of a shell variable whose value starts with a /, change to the directory named by that value.

continue
 Continue execution of the next iteration of the nearest enclosing while or foreach loop.

default:
 Labels the default case in a switch statement. The default should come after all case labels. Any remaining commands on the command line are first executed.

dirs [-l]
 Print the directory stack, most recent to the left. The first directory shown is the current directory. With the -l argument, produce an unabbreviated printout; use of the ~ notation is suppressed.

echo [-n] list
 The words in list are written to the shell’s standard output, separated by space characters. The output is terminated with a newline unless the -n option is used. csh will, by default, invoke its built-in echo, if echo is called without the full pathname of a Unix command, regardless of the configuration of your PATH (see echo(1)).
eval argument . . .
 Reads the arguments as input to the shell and executes the resulting command(s).
 This is usually used to execute commands generated as the result of command or variable substitution. See \texttt{tset}(1B) for an example of how to use eval.

exec command
 Execute \textit{command} in place of the current shell, which terminates.

exit \[(\text{expr})\]
 The calling shell or shell script exits, either with the value of the status variable or with the value specified by the expression \textit{expr}.

fg \[\%job\]
 Bring the current or specified \textit{job} into the foreground.

foreach \textit{var} (wordlist)
 ...
 end
 The variable \textit{var} is successively set to each member of \textit{wordlist}. The sequence of commands between this command and the matching \texttt{end} is executed for each new value of \textit{var}. Both \texttt{foreach} and \texttt{end} must appear alone on separate lines.

 The built-in command \texttt{continue} may be used to terminate the execution of the current iteration of the loop and the built-in command \texttt{break} may be used to terminate execution of the \texttt{foreach} command. When this command is read from the terminal, the loop is read once prompting with \texttt{?} before any statements in the loop are executed.

glob wordlist
 Perform filename expansion on \textit{wordlist}. Like \texttt{echo}, but no \texttt{\textbackslash} escapes are recognized. Words are delimited by \texttt{NULL} characters in the output.

goto label
 The specified \textit{label} is a filename and a command expanded to yield a label. The shell rewinds its input as much as possible and searches for a line of the form \texttt{label:}
 possibly preceded by space or tab characters. Execution continues after the indicated line. It is an error to jump to a label that occurs between a \texttt{while} or \texttt{for} built-in command and its corresponding \texttt{end}.

hashstat
 Print a statistics line indicating how effective the internal hash table for the \textit{path} variable has been at locating commands (and avoiding \texttt{exec}s). An \texttt{exec} is attempted for each component of the \textit{path} where the hash function indicates a possible hit and in each component that does not begin with a \texttt{/}. These statistics only reflect the effectiveness of the \textit{path} variable, not the \texttt{cdpath} variable.

history \[-hr][n]
 Display the history list; if \textit{n} is given, display only the \textit{n} most recent events.
 -r
 Reverse the order of printout to be most recent first rather than oldest first.
-h Display the history list without leading numbers. This is used to produce files suitable for sourcing using the -h option to source.

if (expr) command
If the specified expression evaluates to true, the single command with arguments is executed. Variable substitution on command happens early, at the same time it does for the rest of the if command. command must be a simple command, not a pipeline, a command list, or a parenthesized command list. Note: I/O redirection occurs even if expr is false, when command is not executed (this is a bug).

if (expr) then
...
else if (expr2) then
...
else
...
endif
If expr is true, commands up to the first else are executed. Otherwise, if expr2 is true, the commands between the else if and the second else are executed. Otherwise, commands between the else and the endif are executed. Any number of else if pairs are allowed, but only one else. Only one endif is needed, but it is required. The words else and endif must be the first nonwhite characters on a line. The if must appear alone on its input line or after an else.

jobs [-l]
List the active jobs under job control.

 -l List process IDs, in addition to the normal information.

kill [-sig] [pid] [%job] ...
kill -l
Send the TERM (terminate) signal, by default, or the signal specified, to the specified process ID, the job indicated, or the current job. Signals are either given by number or by name. There is no default. Typing kill does not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as well.

 -l List the signal names that can be sent.

limit [-h] [resource [max-use]]
Limit the consumption by the current process or any process it spawns, each not to exceed max-use on the specified resource. If max-use is omitted, print the current limit. If resource is omitted, display all limits. Run the sysdef(1M) command to obtain the maximum possible limits for your system. The values reported are in hexadecimal, but can be translated into decimal numbers using the bc(1) command.

 -h Use hard limits instead of the current limits. Hard limits impose a ceiling on the values of the current limits. Only the privileged user may raise the hard limits.

resource is one of:
cputime Maximum CPU seconds per process.
filesize Largest single file allowed. Limited to the size of the filesystem. (See df(1M)).
datasize (heapsize) Maximum data size (including stack) for the process. This is the size of your virtual memory See swap(1M).
stacksize Maximum stack size for the process. See swap(1M).
coredumpsize Maximum size of a core dump (file). This limited to the size of the filesystem.
descriptors Maximum number of file descriptors. Run sysdef().
memorysize Maximum size of virtual memory.

max-use is a number, with an optional scaling factor, as follows:
nh Hours (for cputime).
nk n kilobytes. This is the default for all but cputime.

nm n megabytes or minutes (for cputime).
nm:ss Minutes and seconds (for cputime).

Example of limit: to limit the size of a core file dump to 0 Megabytes, type the following:

 limit coredumpsize 0M

login [username | -p]
 Terminate a login shell and invoke login(). The .logout file is not processed. If username is omitted, login prompts for the name of a user.

-p Preserve the current environment (variables).

logout
 Terminate a login shell.

nice [+$n | -$n] [command]
 Increment the process priority value for the shell or for command by n. The higher the priority value, the lower the priority of a process, and the slower it runs. When given, command is always run in a subshell, and the restrictions placed on commands in simple if commands apply. If command is omitted, nice increments the value for the current shell. If no increment is specified, nice sets the process priority value to 4. The range of process priority values is from −20 to 20. Values of n outside this range set the value to the lower, or to the higher boundary, respectively.

+n Increment the process priority value by n.
-n Decrement by n. This argument can be used only by the privileged user.
nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs throughout the remainder of a script. When given, command is always run in a subshell, and the restrictions placed on commands in simple if statements apply. All processes detached with & are effectively nohup’d.

notify [%job]...
Notify the user asynchronously when the status of the current job or specified jobs changes.

onintr [− | label]
Control the action of the shell on interrupts. With no arguments, onintr restores the default action of the shell on interrupts. (The shell terminates shell scripts and returns to the terminal command input level). With the − argument, the shell ignores all interrupts. With a label argument, the shell executes a goto label when an interrupt is received or a child process terminates because it was interrupted.

popd [+n]
Pop the directory stack and cd to the new top directory. The elements of the directory stack are numbered from 0 starting at the top.

+ n Discard the n’th entry in the stack.

pushd [+n | dir]
Push a directory onto the directory stack. With no arguments, exchange the top two elements.

+ n Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

rehash
Recompute the internal hash table of the contents of directories listed in the path variable to account for new commands added. Recompute the internal hash table of the contents of directories listed in the cdpath variable to account for new directories added.

repeat count command
Repeat command count times. command is subject to the same restrictions as with the one-line if statement.

set [var [= value]]
set var [n] = word
With no arguments, set displays the values of all shell variables. Multiword values are displayed as a parenthesized list. With the var argument alone, set assigns an empty (null) value to the variable var. With arguments of the form var = value set assigns value to var, where value is one of:

word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set var [n] = word replaces the n’th word in a multiword value with word.
setenv [VAR [word]]
With no arguments, setenv displays all environment variables. With the VAR argument, setenv sets the environment variable VAR to have an empty (null) value. (By convention, environment variables are normally given upper-case names.) With both VAR and word arguments, setenv sets the environment variable NAME to the value word, which must be either a single word or a quoted string. The most commonly used environment variables, USER, TERM, and PATH, are automatically imported to and exported from the csh variables user, term, and path. There is no need to use setenv for these. In addition, the shell sets the PWD environment variable from the csh variable cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the C shell.

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the operational behavior of csh for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how csh behaves.

LC_CTYPE Determines how csh handles characters. When LC_CTYPE is set to a valid value, csh can display and handle text and filenames containing valid characters for that locale.

LC_MESSAGES Determines how diagnostic and informative messages are presented. This includes the language and style of the messages and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S./English).

LC_NUMERIC Determines the value of the radix character (decimal point (".")) in the "C" locale and thousand separator (empty string ("")) in the "C" locale.

shift [variable]
The components of argv, or variable, if supplied, are shifted to the left, discarding the first component. It is an error for the variable not to be set or to have a null value.

source [-h] name
Reads commands from name. source commands may be nested, but if they are nested too deeply the shell may run out of file descriptors. An error in a sourced file at any level terminates all nested source commands.

-h Place commands from the file name on the history list without executing them.
stop %jobid . . .
Stop the current or specified background job.

stop pid . . .
Stop the specified process, pid. (see ps(1)).

suspend
Stop the shell in its tracks, much as if it had been sent a stop signal with ^z. This is most often used to stop shells started by su.

switch (string)
case label:
... breaksw
... default:
... breaksw
endsw
Each label is successively matched, against the specified string, which is first command and filename expanded. The file metacharacters *, ?, and [...] may be used in the case labels, which are variable expanded. If none of the labels match before a "default" label is found, execution begins after the default label. Each case statement and the default statement must appear at the beginning of a line. The command breaksw continues execution after the endsw. Otherwise control falls through subsequent case and default statements as with C. If no label matches and there is no default, execution continues after the endsw.

time [command]
With no argument, print a summary of time used by this C shell and its children. With an optional command, execute command and print a summary of the time it uses. As of this writing, the time built-in command does NOT compute the last 6 fields of output, rendering the output to erroneously report the value "0" for these fields.

example %time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

(See below the “Environment Variables and Predefined Shell Variables” sub-section on the time variable.)

umask [value]
Display the file creation mask. With value, set the file creation mask. With value given in octal, the user can turn off any bits, but cannot turn on bits to allow new permissions. Common values include 077, restricting all permissions from everyone else; 002, giving complete access to the group, and read (and directory search) access to others; or 022, giving read (and directory search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed by ‘unalias *’.
unhash
 Disable the internal hash tables for the *path* and *cdpath* variables.

unlimit [-h] [resource]
 Remove a limitation on *resource*. If no *resource* is specified, then all
 resource limitations are removed. See the description of the *limit* command
 for the list of resource names.
 -h Remove corresponding hard limits. Only the privileged user may do
 this.

unset pattern
 Remove variables whose names match (filename substitution) *pattern*. All
 variables are removed by `unset *`; this has noticeably distasteful side effects.

unsetenv variable
 Remove *variable* from the environment. As with unset, pattern matching is
 not performed.

wait
 Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)
 ...
end
 While *expr* is true (evaluates to nonzero), repeat commands between the
 while and the matching end statement. break and continue may be used to
 terminate or continue the loop prematurely. The while and end must appear
 alone on their input lines. If the shell’s input is a terminal, it prompts for
 commands with a question-mark until the end command is entered and then
 performs the commands in the loop.

% [job] [&]
 Bring the current or indicated *job* to the foreground. With the ampersand,
 continue running *job* in the background.

@ [var =expr]
@ [var[n] =expr]
 With no arguments, display the values for all shell variables. With
 arguments, set the variable *var*, or the *n*’th word in the value of *var*, to
 the value that *expr* evaluates to. (If *n* is supplied, both *var* and its
 n’th component must already exist.)

 If the expression contains the characters >, <, & or |, then at least this part
 of *expr* must be placed within parentheses.

 The operators *=, +=, and so forth, are available as in C. The space
 separating the name from the assignment operator is optional. Spaces are,
 however, mandatory in separating components of *expr* that would otherwise
 be single words.

 Special postfix operators, + + and - -, increment or decrement *name*, respectively.
Unlike the Bourne shell, the C shell maintains a distinction between environment variables, which are automatically exported to processes it invokes, and shell variables, which are not. Both types of variables are treated similarly under variable substitution. The shell sets the variables `argv`, `cwd`, `home`, `path`, `prompt`, `shell`, and `status` upon initialization. The shell copies the environment variable `USER` into the shell variable `user`, `TERM` into `term`, and `HOME` into `home`, and copies each back into the respective environment variable whenever the shell variables are reset. `PATH` and `path` are similarly handled. You need only set `path` once in the `.cshrc` or `.login` file. The environment variable `PWD` is set from `cwd` whenever the latter changes. The following shell variables have predefined meanings:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argv</code></td>
<td>Argument list. Contains the list of command line arguments supplied to the current invocation of the shell. This variable determines the value of the positional parameters <code>$1</code>, <code>$2</code>, and so on.</td>
</tr>
<tr>
<td><code>cdpath</code></td>
<td>Contains a list of directories to be searched by the <code>cd</code>, <code>chdir</code>, and <code>popd</code> commands, if the directory argument each accepts is not a subdirectory of the current directory.</td>
</tr>
<tr>
<td><code>cwd</code></td>
<td>The full pathname of the current directory.</td>
</tr>
<tr>
<td><code>echo</code></td>
<td>Echo commands (after substitutions) just before execution.</td>
</tr>
<tr>
<td><code>fignore</code></td>
<td>A list of filename suffixes to ignore when attempting filename completion. Typically the single word <code>.</code>.</td>
</tr>
<tr>
<td><code>filec</code></td>
<td>Enable filename completion, in which case the Control-d character <code>EOT</code> and the <code>ESC</code> character have special significance when typed in at the end of a terminal input line: <code>EOT</code> Print a list of all filenames that start with the preceding string. <code>ESC</code> Replace the preceding string with the longest unambiguous extension.</td>
</tr>
<tr>
<td><code>hardpaths</code></td>
<td>If set, pathnames in the directory stack are resolved to contain no symbolic-link components.</td>
</tr>
<tr>
<td><code>histchars</code></td>
<td>A two-character string. The first character replaces <code>!</code> as the history-substitution character. The second replaces the carat (<code>^</code>) for quick substitutions.</td>
</tr>
<tr>
<td><code>history</code></td>
<td>The number of lines saved in the history list. A very large number may use up all of the C shell’s memory. If not set, the C shell saves only the most recent command.</td>
</tr>
<tr>
<td><code>home</code></td>
<td>The user’s home directory. The filename expansion of <code>~</code> refers to the value of this variable.</td>
</tr>
<tr>
<td><code>ignoreeof</code></td>
<td>If set, the shell ignores <code>EOF</code> from terminals. This protects against accidentally killing a C shell by typing a Control-d.</td>
</tr>
</tbody>
</table>
mail A list of files where the C shell checks for mail. If the first word of
 the value is a number, it specifies a mail checking interval in
 seconds (default 5 minutes).

nobeep Suppress the bell during command completion when asking the C
 shell to extend an ambiguous filename.

noclobber Restrict output redirection so that existing files are not destroyed
 by accident. > redirections can only be made to new files. >>
 redirections can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts
 once filenames (if any) are obtained and no further expansion is
 desired.

nonomatch Return the filename substitution pattern, rather than an error, if
 the pattern is not matched. Malformed patterns still result in
 errors.

notify If set, the shell notifies you immediately as jobs are completed,
 rather than waiting until just before issuing a prompt.

path The list of directories in which to search for commands. path is
 initialized from the environment variable PATH, which the C shell
 updates whenever path changes. A null word ('') specifies the
 current directory. The default is typically (/usr/bin .). One
 may override this initial search path upon csh start-up by setting
 it in .cshrc or .login (for login shells only). If path becomes
 unset, only full pathnames will execute. An interactive C shell will
 normally hash the contents of the directories listed after reading
 .cshrc, and whenever path is reset. If new commands are
 added, use the rehash command to update the table.

prompt The string an interactive C shell prompts with. Noninteractive
 shells leave the prompt variable unset. Aliases and other
 commands in the .cshrc file that are only useful interactively, can
 be placed after the following test ‘if ($?prompt == 0) exit’,
 to reduce startup time for noninteractive shells. A ! in the prompt
 string is replaced by the current event number. The default prompt
 is hostname% for mere mortals, or hostname# for the privileged user.

 The setting of $prompt has three meanings:

 $prompt not set non-interactive shell, test $?prompt.
 $prompt set but == "" .cshrc called by the which(1)
 command.
 $prompt set and != "" normal interactive shell.
savehist	The number of lines from the history list that are saved in ~/.history when the user logs out. Large values for savehist slow down the C shell during startup.
shell	The file in which the C shell resides. This is used in forking shells to interpret files that have execute bits set, but that are not executable by the system.
status	The status returned by the most recent command. If that command terminated abnormally, 0200 is added to the status. Built-in commands that fail return exit status 1; all other built-in commands set status to 0.
time	Control automatic timing of commands. Can be supplied with one or two values. The first is the reporting threshold in CPU seconds. The second is a string of tags and text indicating which resources to report on. A tag is a percent sign (%) followed by a single upper-case letter (unrecognized tags print as text): %D Average amount of unshared data space used in Kilobytes. %E Elapsed (wallclock) time for the command. %F Page faults. %I Number of block input operations. %K Average amount of unshared stack space used in Kilobytes. %M Maximum real memory used during execution of the process. %O Number of block output operations. %P Total CPU time — U (user) plus S (system) — as a percentage of E (elapsed) time. %S Number of seconds of CPU time consumed by the kernel on behalf of the user’s process. %U Number of seconds of CPU time devoted to the user’s process. %W Number of swaps. %X Average amount of shared memory used in Kilobytes. The default summary display outputs from the %U, %S, %E, %P, %X, %D, %I, %O, %F, and %W tags, in that order.
csh(1)

Large File Behavior
See largefile(5) for the description of the behavior of csh when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

FILES
- ~/.cshrc: Read at beginning of execution by each shell.
- ~/.login: Read by login shells after .cshrc at login.
- ~/.logout: Read by login shells at logout.
- ~/.history: Saved history for use at next login.
- /usr/bin/sh: The Bourne shell, for shell scripts not starting with a ‘#’.
- /tmp/sh*: Temporary file for ‘<<’.
- /etc/passwd: Source of home directories for ‘~name’.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO
b(1), echo(1), login(1), ls(1), more(1), ps(1), sh(1), shell_builtins(1),
tset(1B), which(1), df(1M), swap(1M), sysdef(1M), access(2), exec(2), fork(2),
pipe(2), a.out(4), environ(4), ascii(5), attributes(5), environ(5),
largefile(5), termio(7I)

DIAGNOSTICS
You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An immediate second attempt to exit will succeed, terminating the stopped jobs.

WARNINGS
The use of setuid shell scripts is strongly discouraged.

NOTES
Words can be no longer than 1024 bytes. The system limits argument lists to 1,048,576 bytes. However, the maximum number of arguments to a command for which filename expansion applies is 1706. Command substitutions may expand to no more characters than are allowed in the argument list. To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in if this is different from the current directory; this can be misleading (that is, wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form a ; b ; c are also not handled gracefully when stopping is attempted. If you suspend b, the shell never executes c. This is especially noticeable if the expansion results from an alias. It can be avoided by placing the sequence in parentheses to force it into a subshell.

248 man pages section 1: User Commands • Last Revised 19 Aug 2002
Control over terminal output after processes are started is primitive; use the Sun Window system if you need better output control.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in commands. This would allow control commands to be placed anywhere, to be combined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. There are two problems with : modifier usage on variable substitutions: not all of the modifiers are available, and only one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each word, rather than all matches in all words. The common text editors consistently do the latter when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable substitutions within double quotes is counterintuitive and inconsistent with the Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

It is up to the user to manually remove all duplicate pathnames accrued from using built-in commands as

```
set path = pathnames
```

or

```
setenv PATH = pathnames
```

more than once. These often occur because a shell script or a .cshrc file does something like

```
'set path=/usr/local /usr/hosts $path'
```

to ensure that the named directories are in the pathname list.

The only way to direct the standard output and standard error separately is by invoking a subshell, as follows:

```
command > outfile ) >& errorfile
```

Although robust enough for general use, adventures into the esoteric periphery of the C shell may reveal unexpected quirks.

If you start csh as a login shell and you do not have a .login in your home directory, then the csh reads in the /etc/.login.

When the shell executes a shell script that attempts to execute a non-existent command interpreter, the shell returns an erroneous diagnostic message that the shell script file does not exist.
BUGS | As of this writing, the time built-in command does NOT compute the last 6 fields of output, rendering the output to erroneously report the value "0" for these fields:

```
example $time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w
```
NAME csplit – split files based on context

SYNOPSIS csplit [-ks] [-f prefix] [-n number] file arg1... argn

DESCRIPTION The csplit utility reads the file named by the file operand, writes all or part of that file into other files as directed by the arg operands, and writes the sizes of the files.

OPTIONS The following options are supported:

- `f prefix` Names the created files prefix00, prefix01, ..., prefixxn. The default is xx00 ... xxn. If the prefix argument would create a file name exceeding 14 bytes, an error results. In that case, csplit exits with a diagnostic message and no files are created.

- `k` Leaves previously created files intact. By default, csplit removes created files if an error occurs.

- `n number` Uses number decimal digits to form filenames for the file pieces.
 The default is 2.

- `s` Suppresses the output of file size messages.

OPERANDS The following operands are supported:

`file` The path name of a text file to be split. If file is -, the standard input will be used.

The operands arg1 ... argn can be a combination of the following:

`/rexp/[offset]` Create a file using the content of the lines from the current line up to, but not including, the line that results from the evaluation of the regular expression with offset, if any, applied. The regular expression rexp must follow the rules for basic regular expressions. The optional offset must be a positive or negative integer value representing a number of lines. The integer value must be preceded by + or -. If the selection of lines from an offset expression of this type would create a file with zero lines, or one with greater than the number of lines left in the input file, the results are unspecified. After the section is created, the current line will be set to the line that results from the evaluation of the regular expression with any offset applied. The pattern match of rexp always is applied from the current line to the end of the file.

`%rexp%[offset]` This operand is the same as /rexp/[offset], except that no file will be created for the selected section of the input file.

`line_no` Create a file from the current line up to (but not including) the line number line_no. Lines in the file will be numbered starting at one. The current line becomes line_no.

`{num}` Repeat operand. This operand can follow any of the operands described previously. If it follows a rexp type operand, that operand will be applied num more times. If it follows a line_no
operand, the file will be split every line_no lines, num times, from that point.

An error will be reported if an operand does not reference a line between the current position and the end of the file.

USAGE

See largefile(5) for the description of the behavior of **csplit** when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

EXAMPLE 1 Splitting and combining files

This example creates four files, cobol00...cobol03.

```bash
example% csplit -f cobol filename '/procedure division/ /par5./ /par16./
```

After editing the “split” files, they can be recombined as follows:

```bash
example% cat cobol0[0-3] > filename
```

Note: This example overwrites the original file.

EXAMPLE 2 Splitting a file into equal parts

This example splits the file at every 100 lines, up to 10,000 lines. The `-k` option causes the created files to be retained if there are less than 10,000 lines; however, an error message would still be printed.

```bash
example% csplit -k filename 100 {99}
```

EXAMPLE 3 Creating a file for separate C routines

If `prog.c` follows the normal C coding convention (the last line of a routine consists only of a `}` in the first character position), this example creates a file for each separate C routine (up to 21) in `prog.c`.

```bash
example% csplit -k prog.c '%main(\%)' '/\}/+1' {20}
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of **csplit**: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>>0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

sed(1), split(1), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS

The diagnostic messages are self-explanatory, except for the following:

arg – out of range

The given argument did not reference a line between the current position and the end of the file.
NAME ct – spawn login to a remote terminal

SYNOPSIS ct [options] telno...

DESCRIPTION The ct utility dials the telephone number of a modem that is attached to a terminal and spawns a login process to that terminal. The telno is a telephone number, with equal signs for secondary dial tones and minus signs for delays at appropriate places. (The set of legal characters for telno is 0 through 9, _, =, *, and #. The maximum length telno is 31 characters). If more than one telephone number is specified, ct will try each in succession until one answers; this is useful for specifying alternate dialing paths.

ct will try each line listed in the file /etc/uucp/Devices until it finds an available line with appropriate attributes, or runs out of entries.

After the user on the destination terminal logs out, there are two things that could occur depending on what type of port monitor is monitoring the port. In the case of no port monitor, ct prompts: Reconnect? If the response begins with the letter n, the line will be dropped; otherwise, ttymon will be started again and the login: prompt will be printed. In the second case, where a port monitor is monitoring the port, the port monitor reissues the login: prompt.

The user should log out properly before disconnecting.

OPTIONS The following options are supported:

- h Normally, ct will hang up the current line so that it can be used to answer the incoming call. The -h option will prevent this action. The -h option will also wait for the termination of the specified ct process before returning control to the user’s terminal.

- sspeed The data rate may be set with the -s option. speed is expressed in baud rates. The default baud rate is 1200.

- v If the -v (verbose) option is used, ct will send a running narrative to the standard error output stream.

- wnn If there are no free lines ct will ask if it should wait, and for how many minutes, before it gives up. ct will continue to try to open the dialers at one-minute intervals until the specified limit is exceeded. This dialogue may be overridden by specifying the -wn option. n is the maximum number of minutes that ct is to wait for a line.

- xnn This option is used for debugging; it produces a detailed output of the program execution on stderr. n is a single number between 0 and 9. As n increases to 9, more detailed debugging information is given.

FILES /etc/uucp/Devices
 /var/adm/ctlog
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO

cu(1C), login(1), uucp(1C), ttymon(1M), attributes(5)

NOTES

The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program running on the line must have the -r and -b options specified (see ttymon(1M)).
NAME
ctags – create a tags file for use with ex and vi

SYNOPSIS
/usr/bin/ctags [-aBFTuvwx] [-f tagsfile] file...

/usr/xpg4/bin/ctags [-aBFTuvwx] [-f tagsfile] file...

DESCRIPTION
The ctags utility makes a tags file for ex(1) from the specified C, C++, Pascal, FORTRAN, yacc(1), and lex(1) sources. A tags file gives the locations of specified objects (in this case functions and typedefs) in a group of files. Each line of the tags file contains the object name, the file in which it is defined, and an address specification for the object definition. Functions are searched with a pattern, typedefs with a line number. Specifiers are given in separate fields on the line, separated by SPACE or TAB characters. Using the tags file, ex can quickly find these objects’ definitions.

Normally, ctags places the tag descriptions in a file called tags; this may be overridden with the -f option.

Files with names ending in .c or .h are assumed to be either C or C++ source files and are searched for C/C++ routine and macro definitions. Files with names ending in .cc, .C, or .cxx are assumed to be C++ source files. Files with names ending in .y are assumed to be yacc source files. Files with names ending in .i are assumed to be lex files. Others are first examined to see if they contain any Pascal or FORTRAN routine definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C or C++ programs. The tag formed is created by prepending M to file, with a trailing .c, .cc .C, or .cxx removed, if any, and leading path name components also removed. This makes use of ctags practical in directories with more than one program.

OPTIONS
The precedence of the options that pertain to printing is -x, -v, then the remaining options. The following options are supported:

- **-a** Appends output to an existing tags file.
- **-B** Uses backward searching patterns (?..?).
- **-f tagsfile** Places the tag descriptions in a file called tagsfile instead of tags.
- **-F** Uses forward searching patterns (/.../) (default).
- **-t** Creates tags for typedefs. /usr/xpg4/bin/ctags creates tags for typedefs by default.
- **-u** Updates the specified files in tags, that is, all references to them are deleted, and the new values are appended to the file. Beware: this option is implemented in a way that is rather slow; it is usually faster to simply rebuild the tags file.
- **-v** Produces on the standard output an index listing the function name, file name, and page number (assuming 64 line pages). Since the output will be sorted into lexicographic order, it may be desired to run the output through sort -f.

256 man pages section 1: User Commands • Last Revised 18 Mar 1997
Suppresses warning diagnostics.

-\texttt{x}

Produces a list of object names, the line number and file name on which each is defined, as well as the text of that line and prints this on the standard output. This is a simple index which can be printed out as an off-line readable function index.

\textbf{OPERANDS}

The following file operands are supported:

\texttt{file.c}

Files with basenames ending with the .c suffix are treated as C-language source code.

\texttt{file.h}

Files with basenames ending with the .h suffix are treated as C-language source code.

\texttt{file.f}

Files with basenames ending with the .f suffix are treated as FORTRAN-language source code.

\textbf{USAGE}

The \texttt{-v} option is mainly used with \texttt{vgrind} which will be part of the optional BSD Compatibility Package.

\textbf{EXAMPLES}

\textbf{EXAMPLE 1} Producing entries in alphabetical order

Using \texttt{ctags} with the \texttt{-v} option produces entries in an order which may not always be appropriate for \texttt{vgrind}. To produce results in alphabetical order, you may want to run the output through \texttt{sort -f}.

\begin{verbatim}
example% ctags -v filename.c filename.h | sort -f > index
example% vgrind -x index
\end{verbatim}

\textbf{EXAMPLE 2} Building a tags file

To build a tags file for C sources in a directory hierarchy rooted at \texttt{sourcedir}, first create an empty tags file, and then run \texttt{find}.

\begin{verbatim}
example% cd sourcedir ; rm -f tags ; touch tags
example% find . -name SCCS -prune -name \
"*.c" -o -name "*.h" \ -exec ctags -u {} \;
\end{verbatim}

Notice that spaces must be entered exactly as shown.

\textbf{ENVIRONMENT VARIABLES}

See \texttt{environ(5)} for descriptions of the following environment variables that affect the execution of \texttt{ctags}: \texttt{LANG}, \texttt{LC_ALL}, \texttt{LC_COLLATE}, \texttt{LC_CTYPE}, \texttt{LC_MESSAGES}, and \texttt{NLSPATH}.

\textbf{EXIT STATUS}

The following exit values are returned:

\begin{verbatim}
0 Successful completion.
>0 An error occurred.
\end{verbatim}

\textbf{FILES}

\texttt{tags} output tags file
Recognition of functions, subroutines, and procedures for FORTRAN and Pascal is done in a very simpleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures in different blocks with the same name, you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.

The `ctags` utility does not know about `#ifdefs`.

The `ctags` utility should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of `-tx` shows only the last line of typedefs.
cu(1C)

NAME
cu – call another UNIX system

SYNOPSIS

DESCRIPTION
The command cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers of
files. It is
convenient to think of cu as operating in two phases. The first phase is the connection
phase in which the connection is established. cu then enters the conversation phase.
The -d option is the only one that applies to both phases.

OPTIONS
cu accepts many options. The -c, -l, and -s options play a part in selecting the
medium. The remaining options are used in configuring the line.

-b bits
Forces bits to be the number of bits processed on the line. bits is
either 7 or 8. This allows connection between systems with
different character sizes. By default, the character size of the line is
set to the same value as the current local terminal, but the
character size setting is affected by LC_CTYPE also.

-c device
Forces cu to use only entries in the "Type" field (the first field in
the /etc/uucp/Devices file) that match the user specified
device, usually the name of a local area network.

-c
Runs the local-cmd specified at the end of the command line
instead of entering interactive mode. The stdin and stdout of
the command that is run refer to the remote connection.

-d
Prints diagnostic traces.

-e
Sets an EVEN data parity. This option designates that EVEN parity
is to be generated for data sent to the remote system.

-h
Sets communication mode to half-duplex. This option emulates
local echo in order to support calls to other computer systems that
expect terminals to be set to half-duplex mode.

-H
Ignores one hangup. This allows the user to remain in cu while the
remote machine disconnects and places a call back to the local
machine. This option should be used when connecting to systems
with callback or dialback modems. Once the callback occurs
subsequent hangups will cause cu to terminate. This option can be
specified more than once. For more information about dialback
configuration, see remote(4) and System Administration Guide: IP
Services

-l line
Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -l option
is used without the -s option, the speed of a line is taken from the
/etc/uucp/Devices file record in which line matches the second
field (the Line field). When the -l and -s options are both used
cu(1C) together, cu will search the /etc/uucp/Devices file to check if the requested speed for the requested line is available. If so, the connection will be made at the requested speed, otherwise, an error message will be printed and the call will not be made. In the general case where a specified device is a directly connected asynchronous line (for instance, /dev/term/a), a telephone number (telno) is not required. The specified device need not be in the /dev directory. If the specified device is associated with an auto dialer, a telephone number must be provided.

-L Goes through the login chat sequence specified in the /etc/uucp/Systems file. For more information about the chat sequence, see System Administration Guide: IP Services

-n Requests user prompt for telephone number. For added security, this option will prompt the user to provide the telephone number to be dialed, rather than taking it from the command line.

-o Sets an ODD data parity. This option designates that ODD parity is to be generated for data sent to the remote system.

-s speed Specifies the transmission speed (300, 1200, 2400, 4800, 9600, 19200, 38400). The default value is "Any" speed which will depend on the order of the lines in the /etc/uucp/Devices file.

-t Dials a terminal which has been set to auto answer. Appropriate mapping of carriage-return to carriage-return-line-feed pairs is set.

OPERANDS The following operands are supported:

telno When using an automatic dialler, specifies the telephone number with equal signs for secondary dial tone or minus signs placed appropriately for delays of 4 seconds.

systemname Specifies a uucp system name, which can be used rather than a telephone number; in this case, cu will obtain an appropriate direct line or telephone number from a system file.

cu uses the same mechanism that uucp(1C) does to establish a connection. This means that it will use the uucp control files /etc/uucp/Devices and /etc/uucp/Systems. This gives cu the ability to choose from several different media to establish the connection. The possible media include telephone lines, direct connections, and local area networks (LAN). The /etc/uucp/Devices file contains a list of media that are available on your system. The /etc/uucp/Systems file contains information for connecting to remote systems, but it is not generally readable.
cu(1C)

Note: cu determines which /etc/uucp/Systems and /etc/uucp/Devices files to use based upon the name used to invoke cu. In the simple case, this name will be "cu", but you could also have created a link to cu with another name, such as "pppcu", in which case cu would then look for a "service=pppcu" entry in the /etc/uucp/Sysfiles file to determine which /etc/uucp/Systems file to use.

The telno or systemname parameter from the command line is used to tell cu what system you wish to connect to. This parameter can be blank, a telephone number, a system name, or a LAN specific address.

telephone number
A telephone number is a string consisting of the tone dial characters (the digits 0 through 9, *, and #) plus the special characters = and -. The equal sign designates a secondary dial tone and the minus sign creates a 4 second delay.

system name
A system name is the name of any computer that uucp can call; the uuname(1C) command prints a list of these names.

LAN address
The documentation for your LAN will show the form of the LAN specific address.

If cu’s default behavior is invoked (not using the -c or -l options), cu will use the telno or systemname parameter to determine which medium to use. If a telephone number is specified, cu will assume that you wish to use a telephone line and it will select an automatic call unit (ACU). Otherwise, cu will assume that it is a system name. cu will follow the uucp calling mechanism and use the /etc/uucp/Systems and /etc/uucp/Devices files to obtain the best available connection. Since cu will choose a speed that is appropriate for the medium that it selects, you may not use the -s option when this parameter is a system name.

The -c and -l options modify this default behavior. -c is most often used to select a LAN by specifying a Type field from the /etc/uucp/Devices file. You must include either a telno or systemname value when using the -c option. If the connection to systemname fails, a connection will be attempted using systemname as a LAN specific address. The -l option is used to specify a device associated with a direct connection. If the connection is truly a direct connection to the remote machine, then there is no need to specify a systemname. This is the only case where a telno or systemname parameter is unnecessary. On the other hand, there may be cases in which the specified device connects to a dialer, so it is valid to specify a telephone number. The -c and -l options should not be specified on the same command line.

After making the connection, cu runs as two processes. The transmit process reads data from the standard input and, except for lines beginning with ~, passes it to the remote system. The receive process accepts data from the remote system and, except for lines beginning with ~, passes it to the standard output. Normally, an automatic DC3/DC1 protocol is used to control input from the remote so the buffer is not overrun. Lines beginning with ~ have special meanings.
The `transmit` process interprets the following user initiated commands:

- . Terminates the conversation.
- ! Escapes to an interactive shell on the local system.
- !cmd... Runs `cmd` on the local system (via `sh -c`).
- $cmd... Runs `cmd` locally and send its output to the remote system.
- %cd Changes the directory on the local system. Note: `%cd` will cause the command to be run by a sub-shell, probably not what was intended.
- %take from [to] Copies file `from` (on the remote system) to file `to` on the local system. If `to` is omitted, the `from` argument is used in both places.
- %put from [to] Copies file `from` (on local system) to file `to` on remote system. If `to` is omitted, the `from` argument is used in both places.
- -- line Sends the line `-- line` to the remote system.
- %break Transmits a BREAK to the remote system (which can also be specified as `-%b`).
- %debug Toggles the `-d` debugging option on or off (which can also be specified as `-%d`).
- % Print the values of the termio structure variables for the user’s terminal (useful for debugging).
- % Print the values of the termio structure variables for the remote communication line (useful for debugging).
- %ifc Toggles between DC3/DC1 input control protocol and no input control. This is useful when the remote system does not respond properly to the DC3 and DC1 characters (can also be specified as `%nostop`).
- %ofc Toggles the output flow control setting. When enabled, outgoing data may be flow controlled by the remote host (can also be specified as `%noostop`).
- %divert Allows/disallows unsolicited diversions. That is, diversions not specified by `-%take`.
- %old Allows/disallows old style syntax for received diversions.
- %nostop Same as `-%ifc`.
The `receive` process normally copies data from the remote system to the standard output of the local system. It may also direct the output to local files.

The use of `~%put` requires `stty(1)` and `cat(1)` on the remote side. It also requires that the current erase and kill characters on the remote system be identical to these current control characters on the local system. Backslashes are inserted at appropriate places.

The use of `~%take` requires the existence of `echo(1)` and `cat(1)` on the remote system, and that the remote system must be using the Bourne shell, `sh`. Also, `tabs` mode (see `stty(1)`) should be set on the remote system if tabs are to be copied without expansion to spaces.

When `cu` is used on system X to connect to system Y and subsequently used on system Y to connect to system Z, commands on system Y can be executed by using `~`. Executing a tilde command reminds the user of the local system `uname`. For example, `uname` can be executed on Z, X, and Y as follows:

```
uname
Z
~[X]!uname
X
~[Y]!uname
Y
```

In general, `~` causes the command to be executed on the original machine. `~~` causes the command to be executed on the next machine in the chain.

EXAMPLE 1 Dialling a system

To dial a system whose telephone number is 912015551234 using 1200 baud (where dialtone is expected after the 9):

```
examle% cu -s 1200 9=12015551234
```

If the speed is not specified, "Any" is the default value.

EXAMPLE 2 Logging in to a system on a direct line

To login to a system connected by a direct line:

```
examle% cu -l /dev/term/b
or
examle% cu -l term/b
```

EXAMPLE 3 Dialling a system with specified line and speed

To dial a system with a specific line and speed:

```
examle% cu -s 1200 -l term/b
```
cu(1C)

EXAMPLE 3 Dialling a system with specific line and speed (Continued)

EXAMPLE 4 Using a system name

To use a system name:

example@ cu systemname

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of cu: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/etc/uucp/Devices device file
/etc/uucp/Sysfiles system file
/etc/uucp/Systems system file
/var/spool/locks/* lock file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO

cat(1), echo(1), stty(1), tip(1), uname(1), ct(1C), uuname(1C), uucp(1C), remote(4), attributes(5), environ(5)

System Administration Guide: IP Services

NOTES

The cu utility takes the default action upon receipt of signals, with the exception of:

SIGHUP Close the connection and terminate.
SIGINT Forward to the remote system.
SIGQUIT Forward to the remote system.
SIGUSR1 Terminate the cu process without the normal connection closing sequence.

The cu command does not do any integrity checking on data it transfers. Data fields with special cu characters may not be transmitted properly. Depending on the interconnection hardware, it may be necessary to use a - . to terminate the conversion,
even if `stty 0` has been used. Non-printing characters are not dependably transmitted using either the `~%put` or `~%take` commands. `~%put` and `~%take` cannot be used over multiple links. Files must be moved one link at a time.

There is an artificial slowing of transmission by `cu` during the `~%put` operation so that loss of data is unlikely. Files transferred using `~%take` or `~%put` must contain a trailing newline, otherwise, the operation will hang. Entering a Control-D command usually clears the hang condition.
cut(1)

NAME
cut – cut out selected fields of each line of a file

SYNOPSIS
cut -b list [-n] [file...]
cut -c list [file...]
cut -d list [-d delim] [-s] [file...]

DESCRIPTION
Use the cut utility to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as specified by
list can be fixed length, that is, character positions as on a punched card (-c option) or
the length can vary from line to line and be marked with a field delimiter character
like TAB (-d option). cut can be used as a filter.

Either the -b, -c, or -d option must be specified.

Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1) to put
files together column-wise (that is, horizontally). To reorder columns in a table, use
cut and paste.

OPTIONS
The following options are supported:

list A comma-separated or blank-character-separated list of integer
field numbers (in increasing order), with optional – to indicate
ranges (for instance, 1, 4, 7; 1-3, 8; -5, 10 (short for 1-5, 10); or
3- (short for third through last field)).

-b list The list following -b specifies byte positions (for instance, -b1-72
would pass the first 72 bytes of each line). When -b and -n are
used together, list is adjusted so that no multi-byte character is
split.

-c list The list following -c specifies character positions (for instance,
-c1-72 would pass the first 72 characters of each line).

-d delim The character following -d is the field delimiter (-d option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted. delim can be a multi-byte character.

-f list The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); for instance, -f1, 7
copies the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table
subheadings), unless -s is specified.

-n Do not split characters. When -b list and -n are used together, list
is adjusted so that no multi-byte character is split.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

OPERANDS
The following operands are supported:

NAME
SYNOPSIS
DESCRIPTION
OPTIONS
OPERANDS
266
file A path name of an input file. If no file operands are specified, or if a file operand is ~, the standard input will be used.

USAGE

See largefile(5) for the description of the behavior of cut when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES

EXAMPLE 1 Mapping user IDs

A mapping of user IDs to names follows:
```
example% cut -d: -f1,5 /etc/passwd
```

EXAMPLE 2 Setting current login name

To set name to current login name:
```
example$ name=`who am i | cut -f1 -d ''`
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of cut: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- **0** All input files were output successfully.
- **>0** An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

grep(1), paste(1), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS

cut: -n may only be used with -b
cut: -d may only be used with -f
cut: -s may only be used with -f
cut: cannot open <file>
 Either file cannot be read or does not exist. If multiple files are present, processing continues.
cut: no delimiter specified
 Missing delim on -d option.
cut(1)

cut: invalid delimiter

cut: no list specified
 Missing list on -b, -c, or -f option.

cut: invalid range specifier

cut: too many ranges specified

cut: range must be increasing

cut: invalid character in range

cut: internal error processing input

cut: invalid multibYTE character

cut: unable to allocate enough memory
NAME date – write the date and time

SYNOPSIS
/usr/bin/date [-u] [+format]
/usr/bin/date [-a [-] sss.fff]
/usr/bin/date [-u] [[mmdd] HHMM | mmddHHMM [cc] yy] [.SS]
/usr/xpg4/bin/date [-u] [+format]
/usr/xpg4/bin/date [-a [-] sss.fff]
/usr/xpg4/bin/date [-u] [[mmdd] HHMM | mmddHHMM [cc] yy] [.SS]

DESCRIPTION The date utility writes the date and time to standard output or attempts to set the system date and time. By default, the current date and time will be written.

Specifications of native language translations of month and weekday names are supported. The month and weekday names used for a language are based on the locale specified by the environment variable LC_TIME. See environ(5).

The following is the default form for the "C" locale:

%a %b %e %T %Z %Y

For example,

Fri Dec 23 10:10:42 EST 1988

OPTIONS The following options are supported:

-a [-] sss.fff Slowly adjust the time by sss.fff seconds (fff represents fractions of a second). This adjustment can be positive or negative. The system’s clock will be sped up or slowed down until it has drifted by the number of seconds specified. Only the super-user may adjust the time.

-u Display (or set) the date in Greenwich Mean Time (GMT—universal time), bypassing the normal conversion to (or from) local time.

OPERANDS The following operands are supported:

+format If the argument begins with +, the output of date is the result of passing format and the current time to strftime(). date uses the conversion specifications listed on the strftime(3C) manual page, with the conversion specification for %C determined by whether /usr/bin/date or /usr/xpg4/bin/date is used:

/usr/bin/date Locale’s date and time representation. This is the default output for date.

/usr/xpg4/bin/date Century (a year divided by 100 and truncated to an integer) as a
The string is always terminated with a NEWLINE. An argument containing blanks must be quoted; see the EXAMPLES section.

- **mm**: Month number
- **dd**: Day number in the month
- **HH**: Hour number (24 hour system)
- **MM**: Minute number
- **SS**: Second number
- **cc**: Century (a year divided by 100 and truncated to an integer) as a decimal number [00-99]. For example, \(cc\) is 19 for the year 1988 and 2 for the year 2007.
- **yy**: Last two digits of the year number. If century \((cc)\) is not specified, then values in the range 69–99 shall refer to years 1969 to 1999 inclusive, and values in the range 00–68 shall refer to years 2000 to 2068, inclusive.

The month, day, year number, and century may be omitted; the current values are applied as defaults. For example, the following entry:

```
example$ date 10080045
```

sets the date to Oct 8, 12:45 a.m. The current year is the default because no year is supplied. The system operates in GMT. \texttt{date} takes care of the conversion to and from local standard and daylight time. Only the super-user may change the date. After successfully setting the date and time, \texttt{date} displays the new date according to the default format. The \texttt{date} command uses \texttt{TZ} to determine the correct time zone information; see \texttt{environ(5)}.

EXAMPLES

EXAMPLE 1 Generating output

The command

```
example$ date \'+DATE: %m/%d/%y\nTIME: %H:%M:%S\'
```

generates as output

```
DATE: 08/01/76
TIME: 14:45:05
```

EXAMPLE 2 Setting the current time

The command

```
example# date 1234.56
```
EXAMPLE 2 Setting the current time (Continued)

sets the current time to 12:34:56.

EXAMPLE 3 Setting another time and date in Greenwich Mean Time

The command

date -u 010100302000

sets the date to January 1st, 12:30 am, 2000, which will be displayed as

Thu Jan 01 00:30:00 GMT 2000

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of date: LANG, LC_ALL, LC_CTYPE, LC_TIME, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone in which the time and date are written, unless the -u option is specified. If the TZ variable is not set and the -u is not specified, the system default timezone is used.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTES

<table>
<thead>
<tr>
<th>/usr/bin/date</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/date</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO strftime(3C), attributes(5), environ(5), standards(5)

DIAGNOSTICS no permission You are not the super-user and you tried to change the date.

bad conversion The date set is syntactically incorrect.
If you attempt to set the current date to one of the dates that the standard and alternate time zones change (for example, the date that daylight time is starting or ending), and you attempt to set the time to a time in the interval between the end of standard time and the beginning of the alternate time (or the end of the alternate time and the beginning of standard time), the results are unpredictable.

Using the `date` command from within windowing environments to change the date can lead to unpredictable results and is unsafe. It may also be unsafe in the multi-user mode, that is, outside of a windowing system, if the date is changed rapidly back and forth. The recommended method of changing the date is ``date -a`'.
NAME
dc – desk calculator

SYNOPSIS
dc [filename]

DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may specify an input base, output base, and a number of fractional digits to be maintained. The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file until its end, then from the standard input.

bc is a preprocessor for dc that provides infix notation and a C-like syntax that implements functions. bc also provides reasonable control structures for programs. See bc(1).

USAGE
The following constructions are recognized:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The value of the number is pushed on the stack. A number is an unbroken string of the digits 0–9. It may be preceded by an underscore (_) to input a negative number. Numbers may contain decimal points.</td>
</tr>
<tr>
<td>+, -, /, *, %, ^</td>
<td>The top two values on the stack are added (+), subtracted (−), multiplied (*), divided (/), remaindered (%), or exponentiated (^). The two entries are popped off the stack; the result is pushed on the stack in their place. Any fractional part of an exponent is ignored.</td>
</tr>
<tr>
<td>sx</td>
<td>The top of the stack is popped and stored into a register named x, where x may be any character. If the s is capitalized, x is treated as a stack and the value is pushed on it.</td>
</tr>
<tr>
<td>lx</td>
<td>The value in register x is pushed on the stack. The register x is not altered. All registers start with zero value. If the l is capitalized, register x is treated as a stack and its top value is popped onto the main stack.</td>
</tr>
<tr>
<td>d</td>
<td>The top value on the stack is duplicated.</td>
</tr>
<tr>
<td>p</td>
<td>The top value on the stack is printed. The top value remains unchanged.</td>
</tr>
<tr>
<td>P</td>
<td>Interprets the top of the stack as an ASCII string, removes it, and prints it.</td>
</tr>
<tr>
<td>f</td>
<td>All values on the stack are printed.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>q</td>
<td>Exits the program. If executing a string, the recursion level is popped by two.</td>
</tr>
<tr>
<td>Q</td>
<td>Exits the program. The top value on the stack is popped and the string execution level is popped by that value.</td>
</tr>
<tr>
<td>x</td>
<td>Treats the top element of the stack as a character string and executes it as a string of dc commands.</td>
</tr>
<tr>
<td>X</td>
<td>Replaces the number on the top of the stack with its scale factor.</td>
</tr>
<tr>
<td>[...]</td>
<td>Puts the bracketed ASCII string onto the top of the stack.</td>
</tr>
<tr>
<td><X >X =x</td>
<td>The top two elements of the stack are popped and compared. Register x is evaluated if they obey the stated relation.</td>
</tr>
<tr>
<td>v</td>
<td>Replaces the top element on the stack by its square root. Any existing fractional part of the argument is taken into account, but otherwise the scale factor is ignored.</td>
</tr>
<tr>
<td>!</td>
<td>Interprets the rest of the line as a shell command.</td>
</tr>
<tr>
<td>c</td>
<td>All values on the stack are popped.</td>
</tr>
<tr>
<td>i</td>
<td>The top value on the stack is popped and used as the number radix for further input.</td>
</tr>
<tr>
<td>I</td>
<td>Pushes the input base on the top of the stack.</td>
</tr>
<tr>
<td>o</td>
<td>The top value on the stack is popped and used as the number radix for further output.</td>
</tr>
<tr>
<td>O</td>
<td>Pushes the output base on the top of the stack.</td>
</tr>
<tr>
<td>k</td>
<td>The top of the stack is popped, and that value is used as a non-negative scale factor: the appropriate number of places are printed on output, and maintained during multiplication, division, and exponentiation. The interaction of scale factor, input base, and output base will be reasonable if all are changed together.</td>
</tr>
</tbody>
</table>
K
Pushes the current scale factor on the top of the stack.

z
The stack level is pushed onto the stack.

Z
Replaces the number on the top of the stack with its length.

?
A line of input is taken from the input source (usually the terminal) and executed.

Y
Displays dc debugging information.

; :
are used by bc(1) for array operations.

EXAMPLES
EXAMPLE 1 Printing the first ten values of n!
This example prints the first ten values of n!:

```
[1a1+dsa*pla100y]sy
0sal
lyx
```

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO bc(1), attributes(5)

DIAGNOSTICS
x is unimplemented
x is an octal number.

out of space
The free list is exhausted (too many digits).

out of stack space
Too many pushes onto the stack (stack overflow).

empty stack
Too many pops from the stack (stack underflow).

nesting depth
Too many levels of nested execution.

divide by 0
Division by zero.

sqrt of neg number
Square root of a negative number is not defined (no imaginary numbers).

exp not an integer
dc only processes integer exponentiation.

exp too big
The largest exponent allowed is 999.

input base is too large
The input base x: 2 <= x <= 16.
<table>
<thead>
<tr>
<th>Error Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input base is too small</td>
<td>The input base x: 2 <= x <= 16.</td>
</tr>
<tr>
<td>output base is too large</td>
<td>The output base must be no larger than BC_BASE_MAX.</td>
</tr>
<tr>
<td>invalid scale factor</td>
<td>Scale factor cannot be less than 1.</td>
</tr>
<tr>
<td>scale factor is too large</td>
<td>A scale factor cannot be larger than BC_SCALE_MAX.</td>
</tr>
<tr>
<td>symbol table overflow</td>
<td>Too many variables have been specified.</td>
</tr>
<tr>
<td>invalid index</td>
<td>Index cannot be less than 1.</td>
</tr>
<tr>
<td>index is too large</td>
<td>An index cannot be larger than BC_DIM_MAX.</td>
</tr>
</tbody>
</table>
The `deallocate` utility deallocates a device allocated to the evoking user. `device` can be a device defined in `device_allocate(4)` or one of the device special files associated with the device. It resets the ownership and the permission on all device special files associated with `device`, disabling the user's access to that device. This option can be used by an authorized user to remove access to the device by another user. The required authorization is `solaris.device.allocate`.

When deallocation or forced deallocation is performed, the appropriate device cleaning program is executed, based on the contents of `device_allocate(4)`. These cleaning programs are normally stored in `/etc/security/lib`.

The following options are supported:

- `device` - Deallocate the device associated with the device special file specified by `device`.
- `-s` - Silent. Suppresses any diagnostic output.
- `-F device` - Forces deallocation of the device associated with the file specified by `device`. Only a user with the `solaris.devices.revoke` authorization is permitted to use this option.
- `-I` - Forces deallocation of all allocatable devices. Only a user with the `solaris.devices.revoke` authorization is permitted to use this option. This option should only be used at system initialization.

The following exit values are returned:

- non—zero - An error occurred.

The following files are referenced:

- `/etc/security/device_allocate`
- `/etc/security/device_maps`
- `/etc/security/dev/*`
- `/etc/security/lib/*`

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See `bsmconv(1M)` for more information.

/etc/security/dev, `mkdevalloc(1M)`, and `mkdevmaps(1M)` may not be supported in a future release of the Solaris operating environment.
NAME
deroff – remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-m [m | s | l]] [-w] [-i] [filename...]

DESCRIPTION
deroff reads each of the filenames in sequence and removes all troff(1) requests, macro calls, backslash constructs, eqn(1) constructs (between .EQ and .EN lines, and between delimiters), and tbl(1) descriptions, perhaps replacing them with white space (blanks and blank lines), and writes the remainder of the file on the standard output. deroff follows chains of included files (.so and .nx troff commands); if a file has already been included, a .so naming that file is ignored and a .nx naming that file terminates execution. If no input file is given, deroff reads the standard input.

OPTIONS
-m The -m option may be followed by an m, s, or l. The -mm option causes the macros to be interpreted so that only running text is output (that is, no text from macro lines.) The -ml option forces the -mm option and also causes deletion of lists associated with the mm macros.

-w If the -w option is given, the output is a word list, one “word” per line, with all other characters deleted. Otherwise, the output follows the original, with the deletions mentioned above. In text, a “word” is any string that contains at least two letters and is composed of letters, digits, ampersands (&), and apostrophes (’); in a macro call, however, a “word” is a string that begins with at least two letters and contains a total of at least three letters. Delimiters are any characters other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and ampersands are removed from “words.”

-i The -i option causes deroff to ignore .so and .nx commands.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
eqn(1), nroff(1), tbl(1), troff(1), attributes(5)

NOTES
deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most such errors result in too much rather than too little output.

The -ml option does not handle nested lists correctly.
df(1B)

NAME
df – display status of disk space on file systems

SYNOPSIS
/usr/ucb/df [-a] [-i] [-t type] [filesystem...] [filename...]

DESCRIPTION
The df utility displays the amount of disk space occupied by currently mounted file systems, the amount of used and available space, and how much of the file system’s total capacity has been used.

If arguments to df are path names, df produces a report on the file system containing the named file. Thus ‘df .’ shows the amount of space on the file system containing the current directory.

OPTIONS
The following options are supported:

- a Report on all filesystems including the uninteresting ones which have zero total blocks (that is, auto-mounter).
- i Report the number of used and free inodes. Print ‘*’ if no information is available.
- t type Report on filesystems of a given type (for example, nfs or ufs).

USAGE
When a UFS file system is mounted with logging enabled, file system transactions that free blocks from files might not actually add those freed blocks to the file system’s free list until some unspecified time in the future. This behavior improves file system performance but does not conform to the POSIX, Single UNIX Specification, SPARC Conformance Definition, System V Application Binary Interface, System V Interface Definition, and X/Open Portability Guide Standards, which require that freed space be available immediately. To enable standards conformance regarding file deletions or to address the problem of not being able to grow files on a relatively full UFS file system even after files have been deleted, disable UFS logging (see mount_ufs(1M)).

EXAMPLES
EXAMPLE 1 Output sample

A sample of output for df looks like:

 example% df
 Filesystem kbytes used avail capacity Mounted on
 sparky:/ 7445 4714 1986 70% /
 sparky:/usr 42277 35291 2758 93% /usr

Note that used+avail is less than the amount of space in the file system (kbytes); this is because the system reserves a fraction of the space in the file system to allow its file system allocation routines to work well. The amount reserved is typically about 10%; this may be adjusted using tunefs (see tunefs(1M)). When all the space on a file system except for this reserve is in use, only the super-user can allocate new files and data blocks to existing files. When a file system is overallocated in this way, df may report that the file system is more than 100% utilized.

FILES
/etc/mnttab list of file systems currently mounted
/etc/vfstab list of default parameters for each file system
ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO `du(1M), mount_ufs(1M), quot(1M), tunefs(1M), mnttab(4), attributes(5)`
The `dhcpinfo` utility prints the DHCP-supplied value(s) of the parameter requested on the command line. The parameter may be identified either by its numeric code in the DHCP specification, or by its mnemonic identifier, as listed in `dhcp_inittab(4)`. This command is intended to be used in command substitutions in the shell scripts invoked by `init(1M)` at system boot. It first contacts the DHCP client daemon `dhcapagent(1M)` to verify that DHCP has successfully completed on the requested interface. If DHCP has successfully completed on the requested interface, `dhcpinfo` retrieves the values for the requested parameter. Parameter values echoed by `dhcpinfo` should not be used without checking its exit status. See `EXIT STATUS`.

See `dhcp_inittab(4)` for the list of mnemonic identifier codes for all DHCP parameters. See RFC 2132, DHCP Options and BOOTP Vendor Extensions for more detail.

Output Format
The output from `dhcpinfo` consists of one or more lines of ASCII text; the format of the output depends upon the requested parameter. The number of values returned per line and the total number of lines output for a given parameter are determined by the parameter’s granularity and maximum values, respectively, as defined by `dhcp_inittab(4)`.

The format of each individual value is determined by the data type of the option, as determined by `dhcp_inittab(4)`. The possible data types and their formats are listed below:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Format</th>
<th><code>dhcp_inittab(4)</code> type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned Number</td>
<td>One or more decimal digits</td>
<td><code>UNUMBER8</code>, <code>UNUMBER16</code>, <code>UNUMBER32</code>, <code>UNUMBER64</code></td>
</tr>
<tr>
<td>Signed Number</td>
<td>One or more decimal digits, optionally preceded by a minus sign</td>
<td><code>SNUMBER8</code>, <code>SNUMBER16</code>, <code>SNUMBER32</code>, <code>SNUMBER64</code></td>
</tr>
<tr>
<td>IP Address</td>
<td>Dotted-decimal notation</td>
<td>IP</td>
</tr>
<tr>
<td>Octet</td>
<td>The string "0x" followed by a two-digit hexadecimal value</td>
<td>OCTET</td>
</tr>
<tr>
<td>String</td>
<td>Zero or more ASCII characters</td>
<td>ASCII</td>
</tr>
</tbody>
</table>

OPTIONS
The following options are supported:

- `-c` Displays the output in a canonical format. This format is identical to the OCTET format with a granularity of 1.
-i interface Specifies the interface to retrieve values for DHCP parameters from. If this option is not specified, the primary interface is used.

-n limit Limits the list of values displayed to limit lines.

OPERANDS The following operands are supported:

code Numeric code for the requested DHCP parameter, as defined by the DHCP specification. Vendor options are specified by adding 256 to the actual vendor code.

identifier Mnemonic symbol for the requested DHCP parameter, as listed in dhcp_inittab(4).

EXIT STATUS The following exit values are returned:

0 Successful operation.

2 The operation was not successful. The DHCP client daemon may not be running, the interface might have failed to configure, or no satisfactory DHCP responses were received.

3 Bad arguments.

4 The operation timed out.

6 Some system error (should never occur).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsr</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO dhcpagent(1M), ifconfig(1M), init(1M), dhcp_inittab(4), attributes(5)

NAME
diff – compare two files

SYNOPSIS
diff [-bitw] [-c | -e | -f | -h | -n | -u] file1 file2

diff [-bitw] [-C number | -U number] file1 file2

diff [-bitw] [-D string] file1 file2

directory1 directory2

DESCRIPTION
The diff utility will compare the contents of file1 and file2 and write to standard output a list of changes necessary to convert file1 into file2. This list should be minimal. Except in rare circumstances, diff finds a smallest sufficient set of file differences. No output will be produced if the files are identical.

The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

where n1 and n2 represent lines file1 and n3 and n4 represent lines in file2. These lines resemble ed(1) commands to convert file1 to file2. By exchanging a for d and reading backward, file2 can be converted to file1. As in ed, identical pairs, where n1=n2 or n3=n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’, then all the lines that are affected in the second file flagged by ‘>’.

OPTIONS
The following options are supported:

-b Ignores trailing blanks (spaces and tabs) and treats other strings of blanks as equivalent.
-i Ignores the case of letters. For example, ‘A’ will compare equal to ‘a’.
-t Expands TAB characters in output lines. Normal or -c output adds character(s) to the front of each line that may adversely affect the indentation of the original source lines and make the output lines difficult to interpret. This option will preserve the original source’s indentation.
-w Ignores all blanks (SPACE and TAB characters) and treats all other strings of blanks as equivalent. For example, ‘if (a = = b)’ will compare equal to ‘if (a= =b)’.

The following options are mutually exclusive:
-c Produces a listing of differences with three lines of context. With this option, output format is modified slightly. That is, output begins with identification of the files involved and their creation dates, then each change is separated by a line with a dozen *'s.
The lines removed from file1 are marked with ‘—’. The lines added to file2 are marked ‘+’. Lines that are changed from one file to the other are marked in both files with ‘!’.

-\texttt{C number} Produces a listing of differences identical to that produced by \texttt{-c} with \textit{number} lines of context.

-\texttt{D string} Creates a merged version of file1 and file2 with C preprocessor controls included so that a compilation of the result without defining \textit{string} is equivalent to compiling file1, while defining \textit{string} will yield file2.

-\texttt{e} Produces a script of only a, c, and d commands for the editor \texttt{ed}, which will recreate file2 from file1. In connection with the \texttt{-e} option, the following shell program may help maintain multiple versions of a file. Only an ancestral file (1) and a chain of version-to-version \texttt{ed} scripts (2, 3, ...) made by \texttt{diff} need be on hand. A “latest version” appears on the standard output.

\begin{verbatim}
(shift; cat $*; echo \`1,$p) | ed - $1
\end{verbatim}

-\texttt{f} Produces a similar script, not useful with \texttt{ed}, in the opposite order.

-\texttt{h} Does a fast, half-hearted job. It works only when changed stretches are short and well separated, but does work on files of unlimited length. Options \texttt{-c}, \texttt{-C}, \texttt{-D}, \texttt{-e}, \texttt{-f}, and \texttt{-n} are unavailable with \texttt{-h}. \texttt{diff} does not descend into directories with this option.

-\texttt{n} Produces a script similar to \texttt{-e}, but in the opposite order and with a count of changed lines on each insert or delete command.

-\texttt{u} Produces a listing of differences with three lines of context. The output is similar to that of the \texttt{-c} option, except that the context is “unified”. Removed and changed lines in file1 are marked by a ‘—’ while lines added or changed in file2 are marked by a ‘+’. Both versions of changed lines appear in the output, while added, removed, and context lines appear only once. The identification of file1 and file2 is different, with “——” and “+++” being printed where “***” and “——” would appear with the \texttt{-c} option. Each change is separated by a line of the form

\begin{verbatim}
** -n1,n2 +n3,n4 **
\end{verbatim}

-\texttt{U number} Produces a listing of differences identical to that produced by \texttt{-u} with \textit{number} lines of context.

The following options are used for comparing directories:

-\texttt{l} Produces output in long format. Before the \texttt{diff}, each text file is piped through \texttt{pr(1)} to paginate it. Other differences are remembered and summarized after all text file differences are reported.
Applies diff recursively to common subdirectories encountered.

Reports files that are the identical. These identical files would not otherwise be mentioned.

Starts a directory diff in the middle, beginning with the file name.

The following operands are supported:

file1 A path name of a file or directory to be compared. If either file1 or file2 is -, the standard input will be used in its place.

directory1 A path name of a directory to be compared.

directory2 A path name of a directory to be compared.

If only one of file1 and file2 is a directory, diff will be applied to the non-directory file and the file contained in the directory file with a filename that is the same as the last component of the non-directory file.

See largefile(5) for the description of the behavior of diff when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

Typical output of the diff command

In the following command, dir1 is a directory containing a directory named x, dir2 is a directory containing a directory named x, dir1/x and dir2/x both contain files named date.out, and dir2/x contains a file named y:

```bash
example$ diff -r dir1 dir2
Common subdirectories: dir1/x and dir2/x

Only in dir2/x: y

diff -r dir1/x/date.out dir2/x/date.out

1c1
< Mon Jul 2 13:12:16 PDT 1990
---
> Tue Jun 19 21:41:39 PDT 1990
```

See environ(5) for descriptions of the following environment variables that affect the execution of diff: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

TZ Determines the locale for affecting the timezone used for calculating file timestamps written with the -C and -c options.

The following exit values are returned:
0 No differences were found.
1 Differences were found.
>1 An error occurred.

FILES
/tmp/d????? temporary file used for comparison
/usr/lib/diffh executable file for -h option

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
bdiff(1), cmp(1), comm(1), dircmp(1), ed(1), pr(1), sdiff(1), attributes(5), environ(5), largefile(5), standards(5)

NOTES
Editing scripts produced under the -e or -f options are naive about creating lines consisting of a single period (.)

Missing NEWLINE at end of file indicates that the last line of the file in question did not have a NEWLINE. If the lines are different, they will be flagged and output, although the output will seem to indicate they are the same.
diff3(1)

NAME
diff3 – 3-way differential file comparison

SYNOPSIS
diff3 [-eEX3] filename1 filename2 filename3

DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these codes:

==== all three files differ
====1 filename1 is different
====2 filename2 is different
====3 filename3 is different

The type of change suffered in converting a given range of a given file to some other is indicated in one of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where f = 1, 2, or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2, the range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the contents of two files are identical, the contents of the lower-numbered file is suppressed.

The following command will apply the resulting script to filename1.

(cat script; echo `1,$p`) | ed - filename1

OPTIONS
- e Produce a script for the ed(1) editor that will incorporate into filename1 all changes between filename2 and filename3 (that is, the changes that normally would be flagged ==== and ====3).

- x Produce a script to incorporate only changes flagged ====.

- 3 Produce a script to incorporate only changes flagged ====3.

- E Produce a script that will incorporate all changes between filename2 and filename3, but treat overlapping changes (that is, changes that would be flagged with ==== in the normal listing) differently. The overlapping lines from both files will be inserted by the edit script, bracketed by <<<<< and >>>>> lines.

- X Produce a script that will incorporate only changes flagged ====, but treat these changes in the manner of the - E option.

USAGE See largefile(5) for the description of the behavior of diff3 when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES
/tmp/d3*
/usr/lib/diff3prog
Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

See Also

diff(1), attributes(5), largefile(5)

Notes

Text lines that consist of a single `.` will defeat `-e`

Files longer than 64 Kbytes will not work.
NAME
diffmk – mark differences between versions of a troff input file

SYNOPSIS
diffmk oldfile newfile markedfile

DESCRIPTION
diffmk compares two versions of a file and creates a third version that includes
“change mark” (.mc) commands for nroff(1) and troff(1). oldfile and newfile are the
old and new versions of the file. diffmk generates markedfile, which, contains the text
from newfile with troff(1) “change mark” requests (.mc) inserted where newfile
differs from oldfile. When markedfile is formatted, changed or inserted text is shown by
| at the right margin of each line. The position of deleted text is shown by a single *.

USAGE
See largefile(5) for the description of the behavior of diffmk when encountering
files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES
EXAMPLE 1 An example of the diffmk command.

diffmk can also be used in conjunction with the proper troff requests to produce
program listings with marked changes. In the following command line:
example% diffmk old.c new.c marked.c ; nroff reqs marked.c | pr

the file reqs contains the following troff requests:

.pl 1
.il 77
.nf
.eo
.nh

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape
characters, and turn off hyphenation, respectively.

If the characters | and * are inappropriate, you might run markedfile through sed(1) to
globally change them.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
diff(1), nroff(1), sed(1), troff(1), attributes(5), largefile(5)

BUGS
Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, that
is, replacing .sp by .sp 2 will produce a “change mark” on the preceding or
following line of output.
The `dircmp` command examines `dir1` and `dir2` and generates various tabulated information about the contents of the directories. Listings of files that are unique to each directory are generated for all the options. If no option is entered, a list is output indicating whether the file names common to both directories have the same contents.

The following options are supported:

- `-d` Compares the contents of files with the same name in both directories and output a list telling what must be changed in the two files to bring them into agreement. The list format is described in `diff(1)`.
- `-s` Suppresses messages about identical files.
- `-w n` Changes the width of the output line to `n` characters. The default width is 72.

The following operands are supported:

- `dir1` A path name of a directory to be compared.
- `dir2` A path name of a directory to be compared.

See `largefile(5)` for the description of the behavior of `dircmp` when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

See `environ(5)` for descriptions of the following environment variables that affect the execution of `dircmp`: `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred. (Differences in directory contents are not considered errors.)

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

See also `cmp(1), diff(1), attributes(5), environ(5), largefile(5)`
NAME

dis – object code disassembler

SYNOPSIS

```
[-l string] [-t sec] file...
```

DESCRIPTION

The `dis` command produces an assembly language listing of `file`, which may be an object file or an archive of object files. The listing includes assembly statements and an octal or hexadecimal representation of the binary that produced those statements. However, the IA64 listing is limited to assembly statements only.

OPTIONS

The following options are interpreted by the disassembler and may be specified in any order.

- `-C`
 Displays demangled C++ symbol names in the disassembly.

- `-d sec`
 Disassembles the named section as data, printing the offset of the data from the beginning of the section.

- `-D sec`
 Disassembles the named section as data, printing the actual address of the data.

- `-F function`
 Disassembles only the named function in each object file specified on the command line. The `-F` option may be specified multiple times on the command line.

- `-l string`
 Disassembles the archive file specified by `string`. For example, one would issue the command `dis -l x -l z` to disassemble `libx.a` and `libz.a`, which are assumed to be in `LIBDIR`.

- `-L`
 Invokes a lookup of C-language source labels in the symbol table for subsequent writing to standard output.

- `-o`
 Prints numbers in octal. The default is hexadecimal.

- `-t sec`
 Disassembles the named section as text.

- `-V`
 Prints, on standard error, the version number of the disassembler being executed.

If the `-d`, `-D`, or `-t` options are specified, only those named sections from each user-supplied file will be disassembled. Otherwise, all sections containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as `[5]`, indicates that the break-pointable line number starts with the following instruction. These line numbers will be printed only if the file was compiled with additional debugging information, for example, the `-g` option of `cc(1B)`. An expression such as `<40>` in the operand field or in the symbolic disassembly, following a relative displacement for control transfer instructions, is the computed address within the section to which control will be transferred. A function name will appear in the first column, followed by `()` if the object file contains a symbol table.

OPERANDS

The following operand is supported:

<table>
<thead>
<tr>
<th>OPERANDS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-l string</code></td>
<td>Disassembles the archive file specified by <code>string</code>. For example, one would issue the command <code>dis -l x -l z</code> to disassemble <code>libx.a</code> and <code>libz.a</code>, which are assumed to be in <code>LIBDIR</code>.</td>
</tr>
</tbody>
</table>

292 man pages section 1: User Commands • Last Revised 28 Jun 1999
file

A path name of an object file or an archive (see ar(1)) of object files.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of dis: LC_CTYPE, LC_MESSAGES, and NLSPATH.

LIBDIR
If this environment variable contains a value, use this as the path to search for the library. If the variable contains a null value, or is not set, it defaults to searching for the library under /usr/lib.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/usr/lib default LIBDIR

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO

ar(1), as(1), cc(1B), ld(1), a.out(4), attributes(5), environ(5)

DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or problems encountered with the specified files.
NAME

disp gid – displays a list of all valid group names

SYNOPSIS

disp gid

DESCRIPTION

disp gid displays a list of all group names on the system (one group per line).

EXIT STATUS
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>1</td>
<td>Cannot read the group file.</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
NAME dispuid – displays a list of all valid user names

SYNOPSIS dispuid

DESCRIPTION dispuid displays a list of all user names on the system (one line per name).

EXIT STATUS The following exit values are returned:

0 Successful execution.
1 Cannot read the password file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
NAME
dos2unix – convert text file from DOS format to ISO format

SYNOPSIS
originalfile convertedfile

DESCRIPTION
The dos2unix utility converts characters in the DOS extended character set to the
(corresponding ISO standard characters.

This command can be invoked from either DOS or SunOS. However, the filenames
must conform to the conventions of the environment in which the command is
invoked.

If the original file and the converted file are the same, dos2unix will rewrite the
original file after converting it.

OPTIONS
The following options are supported:

-ascii Removes extra carriage returns and converts end of file characters
 in DOS format text files to conform to SunOS requirements.
-iso This is the default. It converts characters in the DOS extended
 character set to the corresponding ISO standard characters.
-7 Converts 8 bit DOS graphics characters to 7 bit space characters so
 that SunOS can read the file.

On non-i386 systems, dos2unix will attempt to obtain the keyboard type to
determine which code page to use. Otherwise, the default is US. The user may
override the code page with one of the following options:

-437 Use US code page
-850 Use multilingual code page
-860 Use Portuguese code page
-863 Use French Canadian code page
-865 Use Danish code page

OPERANDS
The following operands are required:

originalfile The original file in DOS format that is being converted to ISO
 format.
convertedfile The new file in ISO format that has been converted from the
 original DOS file format.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>
File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission.
Check with the SunOS command, ls -l (see ls(1)).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permission for that file or the directory that contains it. Check also that the drive or diskette is not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not enough space on the current drive. Check the amount of space on the current drive using the DIR command. Also be certain that the default diskette or drive is write-enabled (not write-protected). Notice that when this error occurs, the original file remains intact.

Translated temporary file name = filename.

Could not rename temporary file to filename.
The program could not perform the final step in converting your file. Your converted file is stored under the name indicated on the second line of this message.
download(1)

NAME download – host resident PostScript font downloader

SYNOPSIS download [-f] [-p printer] [-m name] [-H directory] [file...]

/usr/lib/lp/postscript/download

DESCRIPTION download prepends host resident fonts to files and writes the results on the standard output. If no files are specified, or if – is one of the input files, the standard input is read. download assumes the input files make up a single PostScript job and that requested fonts can be included at the start of each input file.

Requested fonts are named in a comment (marked with %%DocumentFonts:) in the input files. Available fonts are the ones listed in the map table selected using the -m option.

The map table consists of fontname–file pairs. The fontname is the full name of the PostScript font, exactly as it would appear in a %%DocumentFonts: comment. The file is the pathname of the host resident font. A file that begins with a / is used as is. Otherwise the pathname is relative to the host font directory. Comments are introduced by % (as in PostScript) and extend to the end of the line.

The only candidates for downloading are fonts listed in the map table that point download to readable files. A font is downloaded once, at most. Requests for unlisted fonts or inaccessible files are ignored. All requests are ignored if the map table can not be read.

OPTIONS
 -f Force a complete scan of each input file. In the absence of an explicit comment pointing download to the end of the file, the default scan stops immediately after the PostScript header comments.

 -p printer Check the list of printer-resident fonts in /etc/lp/printers/printer/residentfonts before downloading.

 -m name Use name as the font map table. A name that begins with / is the full pathname of the map table and is used as is. Otherwise name is appended to the pathname of the host font directory.

 -H directory Use dir as the host font directory. The default is /usr/lib/lp/postscript.

EXAMPLES

EXAMPLE 1 Examples of the download command.

The following map table could be used to control the downloading of the Bookman font family:

```%
% The first string is the full PostScript font name. The second string
% is the file name - relative to the host font directory unless it begins
% with a /.
%
```
EXAMPLE 1 Examples of the download command. (Continued)

<table>
<thead>
<tr>
<th>Font Name</th>
<th>Font Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bookman-Light</td>
<td>bookman/light</td>
</tr>
<tr>
<td>Bookman-LightItalic</td>
<td>bookman/lightitalic</td>
</tr>
<tr>
<td>Bookman-Demi</td>
<td>bookman/demi</td>
</tr>
<tr>
<td>Bookman-DemiItalic</td>
<td>bookman/demiitalic</td>
</tr>
</tbody>
</table>

Using the file myprinter/map (in the default host font directory) as the map table, you could download fonts by issuing the following command:

```
example% download -m myprinter/map file
```

EXIT STATUS The following exit values are returned:

0 Successfull completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1), posttek(1), attributes(5)

NOTES The download program should be part of a more general program.

download does not look for $%%PageFonts: comments and there is no way to force multiple downloads of a particular font.

Using full pathnames in either map tables or the names of map tables is not recommended.
dpost(1)

NAME
dpost – troff postprocessor for PostScript printers

SYNOPSIS

/usr/lib/lp/postscript/dpost

DESCRIPTION
dpost translates files created by troff(1) into PostScript and writes the results on the standard output. If no files are specified, or if – is one of the input files, the standard input is read.

The files should be prepared by troff. The default font files in /usr/lib/font/devpost produce the best and most efficient output. They assume a resolution of 720 dpi, and can be used to format files by adding the -T post option to the troff call. Older versions of the eqn and pic preprocessors need to know the resolution that troff will be using to format the files. If those are the versions installed on your system, use the -r720 option with eqn and -T720 with pic.

dpost makes no assumptions about resolutions. The first xres command sets the resolution used to translate the input files, the DESC.out file, usually /usr/lib/font/devpost/DESC.out, defines the resolution used in the binary font files, and the PostScript prologue is responsible for setting up an appropriate user coordinate system.

OPTIONS
- c num
 Print num copies of each page. By default only one copy is printed.

- e num
 Sets the text encoding level to num. The recognized choices are 0, 1, and 2. The size of the output file and print time should decrease as num increases. Level 2 encoding will typically be about 20 percent faster than level 0, which is the default and produces output essentially identical to previous versions of dpost.

- m num
 Magnify each logical page by the factor num. Pages are scaled uniformly about the origin, which is located near the upper left corner of each page. The default magnification is 1.0.

- n num
 Print num logical pages on each piece of paper, where num can be any positive integer. By default, num is set to 1.

- o list
 Print those pages for which numbers are given in the comma-separated list. The list contains single numbers N and ranges N1–N2. A missing N1 means the lowest numbered page, a missing N2 means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of 4, then two sheets of paper would print, containing four page layouts. If you specified a page range of 3–4, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.
-p mode Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.

-w num Set the line width used to implement troff graphics commands to num points, where a point is approximately 1/72 of an inch. By default, num is set to 0.3 points.

-x num Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed near the upper left corner of the page, with positive x to the right and positive y down the page. Positive num moves everything right. The default offset is 0 inches.

-y num Translate the origin num inches along the positive y axis. Positive num moves text up the page. The default offset is 0.

-F dir Use dir as the font directory. The default dir is /usr/lib/font, and dpost reads binary font files from directory /usr/lib/font/devpost.

-H dir Use dir as the host resident font directory. Files in this directory should be complete PostScript font descriptions, and must be assigned a name that corresponds to the appropriate two-character troff font name. Each font file is copied to the output file only when needed and at most once during each job. There is no default directory.

-L file Use file as the PostScript prologue which, by default, is /usr/lib/lp/postscript/dpost.ps.

-O Disables PostScript picture inclusion. A recommended option when dpost is run by a spooler in a networked environment.

-T name Use font files for device name as the best description of available PostScript fonts. By default, name is set to post and dpost reads binary files from /usr/lib/font/devpost.

EXAMPLE 1 Examples of the dpost command.

If the old versions of eqn and pic are installed on your system, you can obtain the best possible looking output by issuing a command line such as the following:

```bash
example% pic -T720 file | tbl | eqn -r720 | troff -mm -Tpost | dpost
```

Otherwise,

```bash
example% pic file | tbl | eqn | troff -mm -Tpost | dpost
```

should give the best results.

EXIT STATUS The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
</tbody>
</table>
dpost(1)

non-zero An error occurred.

FILES
/usr/lib/font/devpost/*.out
/usr/lib/font/devpost/charlib/*
/usr/lib/lp/postscript/color.ps
/usr/lib/lp/postscript/draw.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests
/usr/lib/macros/pictures
/usr/lib/macros/color

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO
download(1), postdaisy(1), postmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1), troff(1), attributes(5)

NOTES
Output files often do not conform to Adobe’s file structuring conventions. Piping the
output of dpost through postreverse(1) should produce a minimally conforming
PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive
and can easily double the print time and the size of the output file. No attempt has
been made to implement the character sets or fonts available on all devices supported
by troff. Missing characters will be replaced by white space, and unrecognized fonts
will usually default to one of the Times fonts (that is, R, I, B, or BI).

An x res command must precede the first x init command, and all the input files
should have been prepared for the same output device.

Use of the -T option is not encouraged. Its only purpose is to enable the use of other
PostScript font and device description files, that perhaps use different resolutions,
character sets, or fonts.

Although level 0 encoding is the only scheme that has been thoroughly tested, level 2
is fast and may be worth a try.
du – summarize disk usage

/usr/bin/du [-adLr] [-k | -h] [-o | -s] [file ...]
/usr/xpg4/bin/du [-a | -s] [-k | -h] [-rx] [file ...]

The `du` utility writes to standard output the size of the file space allocated to, and the size of the file space allocated to each subdirectory of, the file hierarchy rooted in each of the specified files. The size of the file space allocated to a file of type directory is defined as the sum total of space allocated to all files in the file hierarchy rooted in the directory plus the space allocated to the directory itself. This sum will include the space allocated to any extended attributes encountered.

Files with multiple links will be counted and written for only one entry. The directory entry that is selected in the report is unspecified. By default, file sizes are written in 512-byte units, rounded up to the next 512-byte unit.

When `du` cannot obtain file attributes or read directories (see `stat(2)`), it will report an error condition and the final exit status will be affected.

The following options are supported for `/usr/bin/du` and `/usr/xpg4/bin/du`:

- `-a` In addition to the default output, report the size of each file not of type directory in the file hierarchy rooted in the specified file. Regardless of the presence of the `-a` option, non-directories given as file operands will always be listed.

- `-h` All sizes are scaled to a human readable format, for example, `14K`, `234M`, `2.7G`, or `3.0T`. Scaling is done by repetitively dividing by `1024`.

- `-k` Write the files sizes in units of 1024 bytes, rather than the default 512-byte units.

- `-s` Instead of the default output, report only the total sum for each of the specified files.

The following options are supported for `/usr/bin/du` only:

- `-d` Do not cross filesystem boundaries. For example, `du -d /` reports usage only on the root partition.

- `-L` Process symbolic links by using the file or directory which the symbolic link references, rather than the link itself.

- `-o` Do not add child directories' usage to a parent's total. Without this option, the usage listed for a particular directory is the space taken by the files in that directory, as well as the files in all directories beneath it. This option does nothing if `-s` is used.

- `-r` Generate messages about directories that cannot be read, files that cannot be opened, and so forth, rather than being silent (the default).

The following options are supported for `/usr/xpg4/bin/du` only:
du(1)

-x By default, generate messages about directories that cannot be read, files that cannot be opened, and so forth.

- x When evaluating file sizes, evaluate only those files that have the same device as the file specified by the file operand.

OPERANDS The following operand is supported:

file The path name of a file whose size is to be written. If no file is specified, the current directory is used.

OUTPUT The output from du consists of the amount of the space allocated to a file and the name of the file.

USAGE See largefile(5) for the description of the behavior of du when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of du: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/du</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/du</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO ls(1), stat(2), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)

System Administration Guide: Basic Administration
A file with two or more links is counted only once. If, however, there are links between files in different directories where the directories are on separate branches of the file system hierarchy, `du` will count the excess files more than once.

Files containing holes will result in an incorrect block count.
The `du` utility gives the number of kilobytes contained in all files and, recursively, directories within each specified directory or file `filename`. If `filename` is missing, `.` (the current directory) is used.

A file that has multiple links to it is only counted once.

The following options are supported:

- `-a` Generates an entry for each file.
- `-d` Does not cross file system boundaries. For example, `du -d /` reports usage only on the root partition.
- `-k` Writes the files sizes in units of 1024 bytes, rather than the default 512-byte units.
- `-L` Processes symbolic links by using the file or directory that the symbolic link references, rather than the link itself.
- `-o` Does not add child directories' usage to a parent's total. Without this option, the usage listed for a particular directory is the space taken by the files in that directory, as well as the files in all directories beneath it. This option does nothing if the `-s` option is used.
- `-r` Generates messages about directories that cannot be read, files that cannot be opened, and so forth, rather than being silent (the default).
- `-s` Only displays the grand total for each of the specified `filenames`.

Entries are generated only for each directory in the absence of options.

EXAMPLE 1 Showing usage of all subdirectories in a directory

This example uses `du` in a directory. The `pwd(1)` command was used to identify the directory, then `du` was used to show the usage of all the subdirectories in that directory. The grand total for the directory is the last entry in the display:

```bash
example$ pwd
/usr/ralph/misc
example$ du
  5 ./jokes
  33 ./squash
  44 ./tech.papers/lpr.document
  217 ./tech.papers/new.manager
  401 ./tech.papers
  144 ./memos
  80 ./letters
  388 ./window
  93 ./messages
   15 ./useful.news
 1211 .
```
If any of the `LC_*` variables, that is, `LC_CTYPE`, `LC_MESSAGES`, `LC_TIME`, `LC_COLLATE`, `LC_NUMERIC`, and `LC_MONETARY` (see `environ(5)`), are not set in the environment, the operational behavior of `du` for each corresponding locale category is determined by the value of the `LANG` environment variable. If `LC_ALL` is set, its contents are used to override both the `LANG` and the other `LC_*` variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how `du` behaves.

LC_CTYPE
Determines how `du` handles characters. When `LC_CTYPE` is set to a valid value, `du` can display and handle text and filenames containing valid characters for that locale. `du` can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. `du` can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

LC_MESSAGES
Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
`pwd(1)`, `df(1M)`, `du(1)`, `quot(1M)`, `attributes(5)`, `environ(5)`

NOTES
Filename arguments that are not directory names are ignored, unless you use `-a`. If there are too many distinct linked files, `du` will count the excess files more than once.
dump(1)

NAME
dump – dump selected parts of an object file

SYNOPSIS
dump [-aCcfghLorstV [-p]] [-T index [, indexn]] filename...
dump [-afhorstL [-p] [v]] filename...
dump [-hsr [-p] [-d number [, numbern]]] filename...
dump [-hsrt [-p] [-n name]] filename...

DESCRIPTION
The dump utility dumps selected parts of each of its object file arguments.

The dump utility is best suited for use in shell scripts, whereas the elfdump(1) command is recommended for more human-readable output.

OPTIONS
This utility will accept both object files and archives of object files. It processes each file argument according to one or more of the following options:

- a Dumps the archive header of each member of an archive.
- c Dumps the string table(s).
- C Dumps decoded C++ symbol table names.
- f Dumps each file header.
- g Dumps the global symbols in the symbol table of an archive.
- h Dumps the section headers.
- L Dumps dynamic linking information and static shared library information, if available.
- o Dumps each program execution header.
- r Dumps relocation information.
- s Dumps section contents in hexadecimal.
- t Dumps symbol table entries.
- T index
- T index1,index2 Dumps only the indexed symbol table entry defined by index or a range of entries defined by index1 , index2.
- V Prints version information.

The following modifiers are used in conjunction with the options listed above to modify their capabilities.

- d number Dumps the section number indicated by number or the range of sections starting at number1 and ending at number2. This modifier can be used with -h, -s, and -r. When -d is used with -h or -s, the argument is
When -d is used with -r, the argument is treated as the number of the section or range of sections to which the relocation applies. For example, to print out all relocation entries associated with the .text section, specify the number of the section as the argument to -d. If .text is section number 2 in the file, dump -r -d 2 will print all associated entries. To print out a specific relocation section, use dump -s -n name for raw data output, or dump -sv -n name for interpreted output.

-n name

Dumps information pertaining only to the named entity. This modifier can be used with -h, -s, -r, and -t. When -n is used with -h or -s, the argument will be treated as the name of a section. When -n is used with -t or -r, the argument will be treated as the name of a symbol. For example, dump -t -n .text will dump the symbol table entry associated with the symbol whose name is .text, where dump -h -n .text will dump the section header information for the .text section.

-p

Suppresses printing of the headings.

-v

Dumps information in symbolic representation rather than numeric. This modifier can be used with

-a (date, user id, group id)
-f (class, data, type, machine, version, flags)
-h (type, flags)
-L (value)
-o (type, flags)
-r (name, type)
-s (interpret section contents wherever possible)
-t (type, bind)

When -v is used with -s, all sections that can be interpreted, such as the string table or symbol table, will be interpreted. For example, dump -sv -n .symtab filename... will produce the same formatted output as dump -tv filename..., but dump -s -n .symtab filename... will print raw data in hexadecimal. Without additional modifiers, dump -sv filename... will dump all
sections in the files, interpreting all those that it can
and dumping the rest (such as .text or .data) as raw
data.

The dump utility attempts to format the information it dumps in a meaningful way,
printing certain information in character, hexadecimal, octal, or decimal representation
as appropriate.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbttool</td>
</tr>
</tbody>
</table>

SEE ALSO elfdump(1), nm(1), ar(3HEAD), a.out(4), attributes(5)
dumpcs(1)

NAME
dumpcs – show codeset table for the current locale

SYNOPSIS
dumpcs [-012vw]

DESCRIPTION
dumpcs shows a list of printable characters for the user’s current locale, along with their hexadecimal code values. The display device is assumed to be capable of displaying characters for a given locale. With no option, dumpcs displays the entire list of printable characters for the current locale.

With one or more numeric options specified, it shows EUC codeset(s) for the current locale according to the numbers specified, and in order of codeset number. Each non-printable character is represented by an asterisk “*” and enough ASCII space character(s) to fill that codeset’s column width.

OPTIONS
-0 Show ASCII (or EUC primary) codeset.
-1 Show EUC codeset 1, if used for the current locale.
-2 Show EUC codeset 2, if used for the current locale.
-3 Show EUC codeset 3, if used for the current locale.
-v “Verbose”. Normally, ranges of non-printable characters are collapsed into a single line. This option produces one line for each non-printable character.
-w Replace code values with corresponding wide character values (process codes).

ENVIRONMENT VARIABLES
The environment variables LC_CTYPE and LANG control the character classification throughout dumpcs. On entry to dumpcs, these environment variables are checked in that order. This implies that a new setting for LANG does not override the setting of LC_CTYPE. When none of the values is valid, the character classification defaults to the POSIX.1 “C” locale.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
localedef(1), attributes(5)

NOTES
dumpcs can only handle EUC locales.
echo(1)

NAME echo – echo arguments

SYNOPSIS /usr/bin/echo [string...]

DESCRIPTION The echo utility writes its arguments, separated by BLANKs and terminated by a
NEWLINE, to the standard output. If there are no arguments, only the NEWLINE
character will be written.

echo is useful for producing diagnostics in command files, for sending known data
into a pipe, and for displaying the contents of environment variables.

The C shell, the Korn shell, and the Bourne shell all have echo built-in commands,
which, by default, will be invoked if the user calls echo without a full pathname. See
shell builtins(1). sh’s echo, ksh’s echo, and /usr/bin/echo understand the
back-slashed escape characters, except that sh’s echo does not understand \a as the
alert character. In addition, ksh’s echo, does not have an -n option. sh’s echo and
/usr/bin/echo only have an -n option if the SYSV3 environment variable is set (see
ENVIRONMENT VARIABLES below). If it is, none of the backslashed characters
mentioned above are available. csh’s echo and /usr/ucb/echo, on the other hand,
have an -n option, but do not understand the back-slashed escape characters.

OPERANDS The following operand is supported:

string A string to be written to standard output. If any operand is ”-n”, it will be
treated as a string, not an option. The following character sequences will be
recognized within any of the arguments:
\a Alert character.
\b Backspace.
\c Print line without new-line. All characters following the \c in
 the argument are ignored.
\f Form-feed.
\n New-line.
\r Carriage return.
\t Tab.
\v Vertical tab.
\ Backslash.
\0n Where n is the 8-bit character whose ASCII code is the 1-, 2- or
 3-digit octal number representing that character.

USAGE Portable applications should not use -n (as the first argument) or escape sequences.

The printf(1) utility can be used portably to emulate any of the traditional behaviors
of the echo utility as follows:
The Solaris 2.6 operating environment or compatible version’s /usr/bin/echo is equivalent to:

```
printf "%b\n" "$*
```

The /usr/ucb/echo is equivalent to:

```
if [ "X$1" = "X-n" ]
then
    shift
    printf "%s" "$*
else
    printf "%s\n" "$*
fi
```

New applications are encouraged to use `printf` instead of `echo`.

EXAMPLE 1 Finding how far below root your current directory is located

You can use `echo` to determine how many subdirectories below the root directory (\/) is your current directory, as follows:

- Echo your current-working-directory’s full pathname.
- Pipe the output through `tr` to translate the path’s embedded slash-characters into space-characters.
- Pipe that output through `wc -w` for a count of the names in your path.

```
example$ /usr/bin/echo $PWD | tr '/' ' ' | wc -w
```

See `tr(1)` and `wc(1)` for their functionality.

Below are the different flavors for echoing a string without a NEWLINE:

EXAMPLE 2 /usr/bin/echo

```
example$ /usr/bin/echo "$USER’s current directory is $PWD"
```

EXAMPLE 3 sh/ksh shells

```
example$ echo "$USER’s current directory is $PWD"
```

EXAMPLE 4 csh shell

```
example$ echo -n "$USER’s current directory is $PWD"
```
echo(1)

EXAMPLE 5 /usr/ucb/echo

echo? /usr/ucb/echo -n "$USER's current directory is $PWD"

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of echo: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

SYSV3 This environment variable is used to provide compatibility with INTERACTIVE UNIX System and SCO UNIX installation scripts. It is intended for compatibility only and should not be used in new scripts.

EXIT STATUS

The following error values are returned:

- 0 Successful completion.
- >0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

echo(1B), printf(1), shell_builtins(1), tr(1), wc(1), ascii(5), attributes(5), environ(5), standards(5)

NOTES

When representing an 8-bit character by using the escape convention \0n, the n must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\ 07' will print the phrase WARNING: and sound the “bell” on your terminal. The use of single (or double) quotes (or two backslashes) is required to protect the “ \" that precedes the “07”.

Following the \0, up to three digits are used in constructing the octal output character. If, following the \0n, you want to echo additional digits that are not part of the octal representation, you must use the full 3-digit n. For example, if you want to echo “ESC 7” you must use the three digits “033” rather than just the two digits “33” after the \0.

<table>
<thead>
<tr>
<th>2 digits Incorrect:</th>
<th>echo"0337"</th>
<th>od -xc</th>
</tr>
</thead>
<tbody>
<tr>
<td>produces:</td>
<td>df0a</td>
<td>(hex)</td>
</tr>
<tr>
<td></td>
<td>337</td>
<td>(ascii)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 digits Correct:</th>
<th>echo "00337"</th>
<th>od -xc</th>
</tr>
</thead>
</table>
For the octal equivalents of each character, see ascii(5).
NAME echo – echo arguments to standard output

SYNOPSIS /usr/ucb/echo [-n] [argument]

DESCRIPTION echo writes its arguments, separated by BLANKs and terminated by a NEWLINE, to the standard output.

echo is useful for producing diagnostics in command files and for sending known data into a pipe, and for displaying the contents of environment variables.

For example, you can use echo to determine how many subdirectories below the root directory (/) is your current directory, as follows:

- echo your current-working-directory’s full pathname
- pipe the output through tr to translate the path’s embedded slash-characters into space-characters
- pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo "$PWD | tr '/' ' ' | wc -w"

See tr(1) and wc(1) for their functionality.

The shells csh(1), ksh(1), and sh(1), each have an echo built-in command, which, by default, will have precedence, and will be invoked if the user calls echo without a full pathname. /usr/ucb/echo and csh’s echo() have an -n option, but do not understand back-slashed escape characters. sh’s echo(), ksh’s echo(), and /usr/bin/echo, on the other hand, understand the black-slashed escape characters, and ksh’s echo() also understands \a as the audible bell character; however, these commands do not have an -n option.

OPTIONS -n Do not add the NEWLINE to the output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), echo(1), ksh(1), sh(1), tr(1), wc(1), attributes(5)

NOTES The -n option is a transition aid for BSD applications, and may not be supported in future releases.
NAME echo – put string on virtual output
SYNOPSIS echo [string...]
DESCRIPTION The echo function directs each string it is passed to the standard output. If no argument is given, echo looks to the standard input for input. It is often used in conditional execution or for passing a string to another command.
EXAMPLES EXAMPLE 1 A sample of the echo command.
Set the done descriptor to help if a test fails:

```
done=’if [ -s $F1 ];
    then echo close;
    else echo help;
fi’
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO echo(1), attributes(5)
The `ed` utility is the standard text editor. If `file` is specified, `ed` simulates an `e` command (see below) on the named file; that is to say, the file is read into `ed`'s buffer so that it can be edited.

The `ed` utility operates on a copy of the file it is editing; changes made to the copy have no effect on the file until a `w` (write) command is given. The copy of the text being edited resides in a temporary file called the `buffer`. There is only one buffer.

The `red` utility is a restricted version of `ed`. It will only allow editing of files in the current directory. It prohibits executing shell commands via `!shell command`. Attempts to bypass these restrictions result in an error message (`restricted shell`).

Both `ed` and `red` support the `fspec(4)` formatting capability. The default terminal mode is either `stty -tabs` or `stty tab3`, where tab stops are set at eight columns (see `stty(1)`). If, however, the first line of `file` contains a format specification, that specification will override the default mode. For example, if the first line of `file` contains

```
<$:t5,10,15 s72:>
```

tab stops would be set at 5, 10, and 15, and a maximum line length of 72 would be imposed.

Commands to `ed` have a simple and regular structure: zero, one, or two `addresses` followed by a single-character `command`, possibly followed by parameters to that command. These addresses specify one or more lines in the buffer. Every command that requires addresses has default addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This text is placed in the appropriate place in the buffer. While `ed` is accepting text, it is said to be in `input mode`. In this mode, no commands are recognized; all input is merely collected. Leave input mode by typing a period (`.`) at the beginning of a line, followed immediately by a carriage return.

If `ed` executes commands with arguments, it uses the default shell `/usr/bin/sh` (see `sh(1)`).

If `ed` executes commands with arguments, it uses `/usr/xpg4/bin/sh` (see `ksh(1)`).

The `ed` utility supports a limited form of `regular expression` notation. Regular expressions are used in addresses to specify lines and in some commands (for example, `s`) to specify portions of a line that are to be substituted. To understand
addressing in ed, it is necessary to know that at any time there is a current line. Generally speaking, the current line is the last line affected by a command; the exact effect on the current line is discussed under the description of each command.

Internationalized Basic Regular Expressions are used for all system-supplied locales. See regex(5).

ed Commands

Commands may require zero, one, or two addresses. Commands that require no addresses regard the presence of an address as an error. Commands that accept one or two addresses assume default addresses when an insufficient number of addresses is given; if more addresses are given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be separated by a semicolon (;). In the latter case, the first address is calculated, the current line is set to that value, and then the second address is calculated. This feature can be used to determine the starting line for forward and backward searches (see Rules 5 and 6, above). The second address of any two-address sequence must correspond to a line in the buffer that follows the line corresponding to the first address.

In the following list of ed commands, the parentheses shown prior to the command are not part of the address; rather, they show the default address(es) for the command.

Each address component can be preceded by zero or more blank characters. The command letter can be preceded by zero or more blank characters. If a suffix letter (l, n, or p) is given, it must immediately follow the command.

The e, E, f, r, and w commands take an optional file parameter, separated from the command letter by one or more blank characters.

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed will warn the user if an attempt is made to destroy the editor buffer via the e or q commands. The ed utility will write the string:

`*?: \n*`

(followed by an explanatory message if help mode has been enabled via the H command) to standard output and will continue in command mode with the current line number unchanged. If the e or q command is repeated with no intervening command, it will take effect.

If an end-of-file is detected on standard input when a command is expected, the ed utility acts as if a q command had been entered.

It is generally illegal for more than one command to appear on a line. However, any command (except e, f, r, or w) may be suffixed by l, n, or p in which case the current line is either listed, numbered or written, respectively, as discussed below under the l, n, and p commands.
The append command accepts zero or more lines of text and appends it after the addressed line in the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this command: it causes the “appended” text to be placed at the beginning of the buffer. The maximum number of characters that may be entered from a terminal is 256 per line (including the new-line character).

The change command deletes the addressed lines from the buffer, then accepts zero or more lines of text that replaces these lines in the buffer. The current line (.) is left at the last line input, or, if there were none, at the first line that was not deleted; if the lines deleted were originally at the end of the buffer, the current line number will be set to the address of the new last line; if no lines remain in the buffer, the current line number will be set to 0.

Same as the X command, described later, except that ed assumes all text read in for the e and r commands is encrypted unless a null key is typed in.

The delete command deletes the addressed lines from the buffer. The line after the last line deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the new last line becomes the current line. If no lines remain in the buffer, the current line number will be set to 0.

The edit command deletes the entire contents of the buffer and then reads the contents of file into the buffer. The current line (.) is set to the last line of the buffer. If file is not given, the currently remembered file name, if any, is used (see the f command). The number of bytes read will be written to standard output, unless the -s option was specified, in the following format:

"%d\n" <number of bytes read>

file is remembered for possible use as a default file name in subsequent e, E, r, and w commands. If file is replaced by !, the rest of the line is taken to be a shell (sh(1)) command whose output is to be read. Such a shell command is not remembered as the current file name. See also DIAGNOSTICS below. All marks will be discarded upon the completion of a successful e command. If the buffer has changed since the last time the entire buffer was written, the user will be warned, as described previously.

The Edit command is like e, except that the editor does not check to see if any changes have been made to the buffer since the last w command.
file
If file is given, the $ command will change the currently remembered path name to file; whether the name is changed or not, it then will write the (possibly new) currently remembered path name to the standard output in the following format:

"%s
pathname"

The current line number is unchanged.

(1, $) g /RE/command list
In the global command, the first step is to mark every line that matches the given RE. Then, for every such line, the given command list is executed with the current line (.) initially set to that line. When the g command completes, the current line number will have the value assigned by the last command in the command list. If there were no matching lines, the current line number will not be changed. A single command or the first of a list of commands appears on the same line as the global command. All lines of a multi-line list except the last line must be ended with a backslash (\); a, i, and c commands and associated input are permitted. The . terminating input mode may be omitted if it would be the last line of the command list. An empty command list is equivalent to the p command. The g, G, v, V, and ! commands are not permitted in the command list. See also the NOTES and the last paragraph before FILES below. Any character other than space or newline can be used instead of a slash to delimit the RE. Within the RE, the RE delimiter itself can be used as a literal character if it is preceded by a backslash.

(1, $) G /RE/
In the interactive global command, the first step is to mark every line that matches the given RE. Then, for every such line, that line is written to standard output, the current line (.) is changed to that line, and any one command (other than one of the a, c, i, g, G, v, and V commands) may be input and is executed. After the execution of that command, the next marked line is written, and so on; a new-line acts as a null command; an & causes the re-execution of the most recent non-null command executed within the current invocation of G. Note: The commands input as part of the execution of the G command may address and affect any lines in the buffer. The final value of the current line number will be the value set by the last command successfully executed. (Notice that the last command successfully executed will be the G command itself if a command fails or the null command is specified.) If there were no matching lines, the current line number will not be changed. The G command can be terminated by a SIGINT signal. The G command can be terminated by an interrupt signal (ASCII DEL or BREAK). Any character other than space or newline can be used instead of a slash to delimit the RE. Within the RE, the RE delimiter itself can be used as a literal character if it is preceded by a backslash.

h
The help command gives a short error message that explains the reason for the most recent ? diagnostic. The current line number is unchanged.
The `Help` command causes `ed` to enter a mode in which error messages are written for all subsequent `?` diagnostics. It will also explain the previous `?` if there was one. The `H` command alternately turns this mode on and off; it is initially off. The current line number is unchanged.

The `i` command accepts zero or more lines of text and inserts it before the addressed line in the buffer. The current line (`.`) is left at the last inserted line, or, if there were none, at the addressed line. This command differs from the `a` command only in the placement of the input text. Address 0 is not legal for this command. The maximum number of characters that may be entered from a terminal is 256 per line (including the new-line character).

The `j` command joins contiguous lines by removing the appropriate new-line characters. If exactly one address is given, this command does nothing. If lines are joined, the current line number will be set to the address of the joined line. Otherwise, the current line number is unchanged.

The `m` command repositions the addressed line(s) after the line addressed by `a`. Address 0 is legal for `a` and causes the addressed line(s) to be moved to the beginning of the file. It is an error if address `a` falls within the range of moved lines; the current line (`.`) is left at the last line moved.
The \texttt{n} command writes the addressed lines, preceding each line by its line number and a tab character; the current line (.) is left at the last line written. The \texttt{n} command may be appended to any command other than \texttt{e, E, f, q, Q, r, w, or !}.

The \texttt{p} command writes the addressed lines to standard output; the current line (.) is left at the last line written. The \texttt{p} command may be appended to any command other than \texttt{e, E, f, q, Q, r, w, or !}. For example, \texttt{dp} deletes the current line and writes the new current line.

The \texttt{P} command causes \texttt{ed} to prompt with an asterisk (*) (or string, if \texttt{-P} is specified) for all subsequent commands. The \texttt{P} command alternatively turns this mode on and off; it is initially on if the \texttt{-p} option is specified, otherwise off. The current line is unchanged.

The \texttt{q} command causes \texttt{ed} to exit. If the buffer has changed since the last time the entire buffer was written, the user will be warned. See DIAGNOSTICS.

The editor exits without checking if changes have been made in the buffer since the last \texttt{w} command.

The \texttt{r} command reads the contents of \texttt{file} into the buffer. If \texttt{file} is not given, the currently remembered file name, if any, is used (see the \texttt{e} and \texttt{f} commands). The currently remembered file name is \textit{not} changed unless \texttt{file} is the very first file name mentioned since \texttt{ed} was invoked. Address 0 is legal for \texttt{r} and causes the file to be read in at the beginning of the buffer. If the read is successful and the \texttt{-s} option was not specified, the number of characters read is written to standard output in the following format:

\texttt{%d\ n, <number of bytes read>}

The current line (.) is set to the last line read. If \texttt{file} is replaced by \texttt{!}, the rest of the line is taken to be a shell command (see \texttt{sh(1)}) whose output is to be read. For example, \texttt{$xr !ls} appends the current directory to the end of the file being edited. Such a shell command is \textit{not} remembered as the current file name.

The substitute command searches each addressed line for an occurrence of the specified \texttt{RE}. Zero or more substitution commands can be specified. In each line in which a match is found, all (non-overlapped) matched strings are replaced by the \texttt{replacement} if the global replacement indicator \texttt{g} appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is replaced. If a number \textit{count} appears after the command, only the \textit{count}-th occurrence of the matched string on each addressed line is replaced. It is an error if the substitution fails on all addressed lines. Any character other than space or new-line may be used instead of the slash (/) to delimit the \textit{RE} and the \textit{replacement}; the current line (.) is left at the last line on which a substitution occurred. Within the \textit{RE}, the \textit{RE} delimiter itself can be used as a literal character if it is preceded by a backslash. See also the last paragraph before FILES below.

An ampersand (\&) appearing in the \textit{replacement} is replaced by the string matching the \textit{RE} on the current line. The special meaning of \& in this context may be suppressed by preceding it by \textbackslash. As a more general feature, the characters \textbackslash\textit{n}, where \textit{n} is a digit, are replaced by the text matched by the \textit{n}-th regular subexpression of the specified \textit{RE} enclosed between \textbackslash (and \textbackslash). When nested parenthesized subexpressions are present, \textit{n} is determined by counting occurrences of \textbackslash (starting from the left. When the character \% is the only character in the \textit{replacement}, the \textit{replacement} used in the most recent substitute command is used as the \textit{replacement} in the current substitute command; if there was no previous substitute command, the use of \% in this manner is an error. The \% loses its special meaning when it is in a replacement string of more than one character or is preceded by a \textbackslash. For each backslash (\textbackslash) encountered in scanning \textit{replacement} from beginning to end, the following character loses its special meaning (if any). It is unspecified what special meaning is given to any character other than \&, \textbackslash, \%, or digits.

A line may be split by substituting a new-line character into it. The new-line in the \textit{replacement} must be escaped by preceding it by \textbackslash. Such substitution cannot be done as part of a \textit{g} or \textit{n} command list. The current line number will be set to the address of the last line on which a substitution is performed. If no substitution is performed, the current line number is unchanged. If a line is split, a substitution is considered to have been performed on each of the new lines for the purpose of determining the new current line number. A substitution is considered to have been performed even if the replacement string is identical to the string that it replaces.

The substitute command supports the following indicators:

- \textit{count} Substitute for the \textit{count}th occurrence only of the \textit{RE} found on each addressed line. \textit{count} must be between 1-512.
- \textit{g} Globally substitute for all non-overlapping instances of the \textit{RE} rather than just the first one. If both \textit{g} and \textit{count} are specified, the results are unspecified.
- \textit{l} Write to standard output the final line in which a substitution was made. The line will be written in the format specified for the \textit{l} command.
- \textit{n} Write to standard output the final line in which a substitution was made. The line will be written in the format specified for the \textit{n} command.
- \textit{p} Write to standard output the final line in which a substitution was made. The line will be written in the format specified for the \textit{p} command.
\(\cdot, \cdot \) \texttt{ta}

This command acts just like the \texttt{m} command, except that a \texttt{copy} of the addressed lines is placed after address a (which may be 0); the current line (.) is left at the last line copied.

\texttt{u}

The \texttt{undo} command nullifies the effect of the most recent command that modified anything in the buffer, namely the most recent \texttt{a}, \texttt{c}, \texttt{d}, \texttt{g}, \texttt{i}, \texttt{j}, \texttt{m}, \texttt{r}, \texttt{s}, \texttt{t}, \texttt{u}, \texttt{v}, \texttt{G}, \texttt{or V} command. All changes made to the buffer by a \texttt{g}, \texttt{G}, \texttt{v}, \texttt{or V} global command will be undone as a single change; if no changes were made by the global command (such as with \texttt{g/ RE /p}), the \texttt{u} command will have no effect. The current line number will be set to the value it had immediately before the command being undone started.

\(1, \$, \$\) \texttt{v/RE/command list}

This command is the same as the global command \texttt{g}, except that the lines marked during the first step are those that do not match the \texttt{RE}.

\(1, \$, \$\) \texttt{v/RE/}

This command is the same as the interactive global command \texttt{G}, except that the lines that are marked during the first step are those that do not match the \texttt{RE}.

\(1, \$, \$\) \texttt{w file}

The \texttt{write} command writes the addressed lines into \texttt{file}. If \texttt{file} does not exist, it is created with mode 666 (readable and writable by everyone), unless your file creation mask dictates otherwise; see the description of the \texttt{umask} special command on \texttt{sh(1)}. The currently remembered file name \texttt{is not} changed unless \texttt{file} is the very first file name mentioned since \texttt{ed} was invoked. If no file name is given, the currently remembered file name, if any, is used (see the \texttt{e} and \texttt{f} commands); the current line (.) is unchanged. If the command is successful, the number of characters written is printed, unless the \texttt{-s} option is specified in the following format:

"%d\n", <number of bytes written>

If \texttt{file} is replaced by \texttt{!}, the rest of the line is taken to be a shell (see \texttt{sh(1)}) command whose standard input is the addressed lines. Such a shell command is not remembered as the current path name. This usage of the \texttt{write} command with \texttt{!} is to be considered as a “last \texttt{w} command that wrote the entire buffer’’.

\(1, \$, \$\) \texttt{w file}

This command is the same as the \texttt{write} command above, except that it appends the addressed lines to the end of \texttt{file} if it exists. If \texttt{file} does not exist, it is created as described above for the \texttt{w} command.

\texttt{X}

An educated guess is made to determine whether text read for the \texttt{e} and \texttt{r} commands is encrypted. A null key turns off encryption. Subsequent \texttt{e}, \texttt{r}, and \texttt{w} commands will use this key to encrypt or decrypt the text. An explicitly empty key turns off encryption. Also, see the \texttt{-x} option of \texttt{ed}.
The line number of the addressed line will be written to standard output in the following format:

```
%d
```

The current line number is unchanged by this command.

Shell command

The remainder of the line after the `!` is sent to the UNIX system shell (see `sh(1)`) to be interpreted as a command. Within the text of that command, the unescaped character `%` is replaced with the remembered file name; if a `!` appears as the first character of the shell command, it is replaced with the text of the previous shell command. Thus, `!!` will repeat the last shell command. If any replacements of `%` or `!` are performed, the modified line will be written to the standard output before *command* is executed. The `!` command will write:

```
"!\ n"
```

to standard output upon completion, unless the `-s` option is specified. The current line number is unchanged.

(.+1) <new-line>

An address alone on a line causes the addressed line to be written. A new-line alone is equivalent to `.+1p`; it is useful for stepping forward through the buffer. The current line number will be set to the address of the written line.

If an interrupt signal (ASCII DEL or BREAK) is sent, *ed* writes a `"?\ n"` and returns to its command level.

The *ed* utility will take the standard action for all signals with the following exceptions:

SIGINT The *ed* utility will interrupt its current activity, write the string `"?\ n"` to standard output, and return to command mode.

SIGHUP If the buffer is not empty and has changed since the last write, the *ed* utility will attempt to write a copy of the buffer in a file. First, the file named `ed.hup` in the current directory will be used; if that fails, the file named `ed.hup` in the directory named by the HOME environment variable will be used. In any case, the *ed* utility will exit without returning to command mode.

Some size limitations are in effect: 512 characters in a line, 256 characters in a global command list, and 255 characters in the path name of a file (counting slashes). The limit on the number of lines depends on the amount of user memory; each line takes 1 word.

When reading a file, *ed* discards ASCII and NUL characters.
If a file is not terminated by a new-line character, ed adds one and puts out a message explaining what it did.

If the closing delimiter of an RE or of a replacement string (for example, /) would be the last character before a new-line, that delimiter may be omitted, in which case the addressed line is written. The following pairs of commands are equivalent:

```
s/s1/s2  s/s1/s2/p
g/s1     g/s1/p
?s1      ?s1?
```

If an invalid command is entered, ed will write the string:

```
"?\ n"
```

(followed by an explanatory message if help mode has been enabled by the H command) to standard output and will continue in command mode with the current line number unchanged.

Options

- **-C** Encryption option; the same as the -x option, except that ed simulates a C command. The C command is like the X command, except that all text read in is assumed to have been encrypted.

- **-p string** Allows the user to specify a prompt string. By default, there is no prompt string.

- **-s | -;** Suppresses the writing of character counts by e, r, and w commands, of diagnostics from e and q commands, and of the! prompt after a!shellcommand.

- **-x** Encryption option; when used, ed simulates an X command and prompts the user for a key. The X command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the -x option. See NOTES.

Operands

The following operand is supported:

```
file
```

If file is specified, ed simulates an e command on the file named by the path name file before accepting commands from the standard input.

Usage

See largefile(5) for the description of the behavior of ed and red when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

Environment Variables

See environ(5) for descriptions of the following environment variables that affect the execution of ed: HOME, LANG, LC_ALL, LC_CTYPE, LC_COLLATE, LC_MESSAGES, and NLSPATH.

Exit Status

The following exit values are returned:
Successful completion without any file or command errors.

>0 An error occurred.

FILES

$TMPDIR If this environment variable is not NULL, its value is used in place of /var/tmp as the directory name for the temporary work file.

/var/tmp If /var/tmp exists, it is used as the directory name for the temporary work file.

/tmp If the environment variable TMPDIR does not exist or is NULL, and if /var/tmp does not exist, then /tmp is used as the directory name for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

DIAGNOSTICS

? for command errors.

?file for an inaccessible file. (use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or q commands. It writes ? and allows one to continue editing. A second e or q command at this point will take effect. The -s command-line option inhibits this feature.

NOTES

The - option, although it continues to be supported, has been replaced in the documentation by the -s option that follows the Command Syntax Standard (see intro(1)).

A ! command cannot be subject to a g or a v command.
The `!` command and the `!` escape from the `e`, `r`, and `w` commands cannot be used if the editor is invoked from a restricted shell (see `sh(1)`).

The sequence `\n` in an RE does not match a new-line character.

If the editor input is coming from a command file (for example, `ed file < ed_cmd_file`), the editor exits at the first failure.
The edit utility is a variant of the text editor ex recommended for new or casual users who wish to use a command-oriented editor. It operates precisely as ex with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

The following brief introduction should help you get started with edit. If you are using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to the shell. edit makes a copy of the file that you can then edit, and tells you how many lines and characters are in the file. To create a new file, you also begin with the command edit with a filename: edit name; the editor will tell you it is a [New File].

The edit command prompt is the colon (:), which you should see after starting the editor. If you are editing an existing file, then you will have some lines in edit’s buffer (its name for the copy of the file you are editing). When you start editing, edit makes the last line of the file the current line. Most commands to edit use the current line if you do not tell them which line to use. Thus if you say print (which can be abbreviated p) and type carriage return (as you should after all edit commands), the current line will be printed. If you delete (d) the current line, edit will print the new current line, which is usually the next line in the file. If you delete the last line, then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines, then the append (a) command can be used. After you execute this command (typing a carriage return after the word append), edit will read lines from your terminal until you type a line consisting of just a dot (.); it places these lines after the current line. The last line you type then becomes the current line. The insert (i) command is like append, but places the lines you type before, rather than after, the current line.

The edit utility numbers the lines in the buffer, with the first line having number 1. If you execute the command 1, then edit will type the first line of the buffer. If you then execute the command d, edit will delete the first line, line 2 will become line 1, and edit will print the current line (the new line 1) so you can see where you are. In general, the current line will always be the last line affected by a command.
You can make a change to some text within the current line by using the substitute (s) command: s/old/new/ where old is the string of characters you want to replace and new is the string of characters you want to replace old with.

The filename (f) command will tell you how many lines there are in the buffer you are editing and will say [Modified] if you have changed the buffer. After modifying a file, you can save the contents of the file by executing a write (w) command. You can leave the editor by issuing a quit (q) command. If you run edit on a file, but do not change it, it is not necessary (but does no harm) to write the file back. If you try to quit from edit after modifying the buffer without writing it out, you will receive the message No write since last change (:quit! overrides), and edit will wait for another command. If you do not want to write the buffer out, issue the quit command followed by an exclamation point (!). The buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file, you can make any changes you want. You should learn at least a few more things, however, if you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply (as in append, you type lines up to a line consisting of only a dot .). You can tell change to change more than one line by giving the line numbers of the lines you want to change, that is, 3, 5c. You can print lines this way too: 1, 23p prints the first 23 lines of the file.

The undo (u) command reverses the effect of the last command you executed that changed the buffer. Thus if you execute a substitute command that does not do what you want, type u and the old contents of the line will be restored. You can also undo an undo command. edit will give you a warning message when a command affects more than one line of the buffer. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number of lines, type ^D (while holding down the control key, press d) rather than carriage return. This will show you a half-screen of lines on a CRT or 12 lines on a hardcopy terminal. You can look at nearby text by executing the z command. The current line will appear in the middle of the text displayed, and the last line displayed will become the current line; you can get back to the line where you were before you executed the z command by typing ‘‘. The z command has other options: z− prints a screen of text (or 24 lines) ending where you are; z+ prints the next screenful. If you want less than a screenful of lines, type z.11 to display five lines before and five lines after the current line. (Typing z.n, when n is an odd number, displays a total of n lines, centered about the current line; when n is an even number, it displays n-1 lines, so that the lines displayed are centered around the current line.) You can give counts after other commands; for example, you can delete 5 lines starting with the current line with the command d5.
To find things in the file, you can use line numbers if you happen to know them; since the line numbers change when you insert and delete lines this is somewhat unreliable. You can search backwards and forwards in the file for strings by giving commands of the form /text/ to search forward for text or ?text? to search backward for text. If a search reaches the end of the file without finding text, it wraps around and continues to search back to the line where you are. A useful feature here is a search of the form /^text/ which searches for text at the beginning of a line. Similarly /text$/ searches for text at the end of a line. You can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (;); this is most useful in a range of lines as in .,$p which prints the current line plus the rest of the lines in the file. To move to the last line in the file, you can refer to it by its symbolic name $. Thus the command $d deletes the last line in the file, no matter what the current line is. Arithmetic with line references is also possible. Thus the line $-5 is the fifth before the last and .+20 is 20 lines after the current line.

You can find out the current line by typing `.=`. This is useful if you wish to move or copy a section of text within a file or between files. Find the first and last line numbers you wish to copy or move. To move lines 10 through 20, type 10,20d a to delete these lines from the file and place them in a buffer named a. edit has 26 such buffers named a through z. To put the contents of buffer a after the current line, type put a. If you want to move or copy these lines to another file, execute an edit command after copying the lines; following the e command with the name of the other file you wish to edit, that is, edit chapter2. To copy lines without deleting them, use yank (y) in place of d. If the text you wish to move or copy is all within one file, it is not necessary to use named buffers. For example, to move lines 10 through 20 to the end of the file, type 10,20m $.

OPTIONS

These options can be turned on or off using the set command in ex(1).

- l -s Suppress all interactive user feedback. This is useful when processing editor scripts.
- l Set up for editing LISP programs.
- L List the name of all files saved as the result of an editor or system crash.
- R Readonly mode; the readonly flag is set, preventing accidental overwriting of the file.
- x filename Edit filename after an editor or system crash. (Recovers the version of filename that was in the buffer when the crash occurred.)
- t tag Edit the file containing the tag and position the editor at its definition.
- v Start up in display editing state using vi. You can achieve the same effect by simply typing the vi command itself.
Verbose. When `ex` commands are read by means of standard input, the input will be echoed to standard error. This may be useful when processing `ex` commands within shell scripts.

`-x` Encryption option; when used, `edit` simulates the `X` command of `ex` and prompts the user for a key. This key is used to encrypt and decrypt text using the algorithm of the `crypt` command. The `X` command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the `-x` option.

`-wn` Set the default window size to `n`. This is useful when using the editor over a slow speed line.

`-C` Encryption option; same as the `-x` option, except that `vi` simulates the `C` command of `ex`. The `C` command is like the `X` command of `ex`, except that all text read in is assumed to have been encrypted.

`+command | -c command` Begin editing by executing the specified editor command (usually a search or positioning command).

The `filename` argument indicates one or more files to be edited.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th><code>ATTRIB TYPE</code></th>
<th><code>ATTRIB VALUE</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>ATTRIB TYPE</code></th>
<th><code>ATTRIB VALUE</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

`ed(1), ex(1), vi(1), attributes(5), XPG4(5)`

NOTES

The encryption options are provided with the Security Administration Utilities package, which is available only in the United States.

The `/usr/xpg4/bin/edit` utility is identical to `/usr/bin/edit`.
NAME

egrep – search a file for a pattern using full regular expressions

SYNOPSIS

```
/usr/bin/egrep [-bchilsv] [-e pattern_list] [-f file] [strings] [file...]
```

```
/usr/xpg4/bin/egrep [-bchilsvx] [-e pattern_list] [-f file] [strings]
```

DESCRIPTION

The `egrep` (expression grep) utility searches files for a pattern of characters and prints all lines that contain that pattern. `egrep` uses full regular expressions (expressions that have string values that use the full set of alphanumeric and special characters) to match the patterns. It uses a fast deterministic algorithm that sometimes needs exponential space.

If no files are specified, `egrep` assumes standard input. Normally, each line found is copied to the standard output. The file name is printed before each line found if there is more than one input file.

/usr/bin/egrep

The `/usr/bin/egrep` utility accepts full regular expressions as described on the `regexp(5)` manual page, except for `\(` and `\)`, `\{` and `\}`, `\{` and `\}`, `\<` and `\>`, and `\n`, and with the addition of:

1. A full regular expression followed by `+` that matches one or more occurrences of the full regular expression.
2. A full regular expression followed by `?` that matches 0 or 1 occurrences of the full regular expression.
3. Full regular expressions separated by `|` or by a NEWLINE that match strings that are matched by any of the expressions.
4. A full regular expression that may be enclosed in parentheses `()` for grouping.

Be careful using the characters `$`, `*`, `[`, `^`, `\`, `(`, and `)` in full regular expression, because they are also meaningful to the shell. It is safest to enclose the entire full regular expression in single quotes ‘...’.

The order of precedence of operators is `[]`, then `*` `?` `+`, then concatenation, then `|` and NEWLINE.

/usr/xpg4/bin/egrep

The `/usr/xpg4/bin/egrep` utility uses the regular expressions described in the EXTENDED REGULAR EXPRESSIONS section of the `regex(5)` manual page.

OPTIONS

The following options are supported for both `/usr/bin/egrep` and `/usr/xpg4/bin/egrep`:

- `-b` Precede each line by the block number on which it was found. This can be useful in locating block numbers by context (first block is 0).
- `-c` Print only a count of the lines that contain the pattern.
- `-e pattern_list` Search for a pattern_list (full regular expression that begins with a –).
- `-f file` Take the list of full regular expressions from file.
egrep(1)

-h Suppress printing of filenames when searching multiple files.
-i Ignore upper/lower case distinction during comparisons.
-l Print the names of files with matching lines once, separated by NEWLINEs. Does not repeat the names of files when the pattern is found more than once.
-n Precede each line by its line number in the file (first line is 1).
-s Work silently, that is, display nothing except error messages. This is useful for checking the error status.
-v Print all lines except those that contain the pattern.

/usr/xpg4/bin/egrep The following option is supported for /usr/xpg4/bin/egrep only:
-x Consider only input lines that use all characters in the line to match an entire fixed string or regular expression to be matching lines.

OPERANDS The following operands are supported:

file A path name of a file to be searched for the patterns. If no file operands are specified, the standard input will be used.

/usr/bin/egrep pattern Specify a pattern to be used during the search for input.

/usr/xpg4/bin/egrep pattern Specify one or more patterns to be used during the search for input. This operand is treated as if it were specified as -epattern_list.

USAGE See largefile(5) for the description of the behavior of egrep when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of egrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 If any matches are found.
1 If no matches are found.
2 For syntax errors or inaccessible files (even if matches were found).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/egrep</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td></td>
<td>enabled</td>
</tr>
</tbody>
</table>
See Also

fgrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
regex(5), regexp(5), XPG4(5)

Notes

Ideally there should be only one `grep` command, but there is not a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The `/usr/xpg4/bin/egrep` utility is identical to `/usr/xpg4/bin/grep -E` (see `grep(1)`). Portable applications should use `/usr/xpg4/bin/grep -E`.

egrep(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

The `/usr/xpg4/bin/egrep` utility is identical to `/usr/xpg4/bin/grep -E` (see `grep(1)`). Portable applications should use `/usr/xpg4/bin/grep -E`.

336 man pages section 1: User Commands • Last Revised 12 May 1997
The `eject` utility is used for those removable media devices that do not have a manual eject button, or for those that do, but are managed by Volume Management (see `vold(1M)`). The device may be specified by its name or by a nickname; if Volume Management is running and no device is specified, the default device is used.

Only devices that support `eject` under program control respond to this command. `eject` responds differently, depending on whether or not Volume Management is running.

With Volume Management

When `eject` is used on media that can only be ejected manually, it will do everything except remove the media, including unmounting the file system if it is mounted. In this case, `eject` displays a message that the media can now be manually ejected. If a window system is running, the message is displayed as a pop-up window, unless the `-p` option is supplied. If no window system is running or the `-p` option is supplied, a message is displayed both to `stderr` and to the system console that the media can now be physically removed.

Volume Management has the concept of a default device, which `eject` uses if no pathname or nickname is specified. Use the `-d` option to check what default device will be used.

Without Volume Management

When Volume Management is not running and a pathname is specified, `eject` sends the eject command to that pathname. If a nickname is supplied instead of a pathname, `eject` will recognize the following list:

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>fd0</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>fd1</td>
<td>/dev/rdiskette1</td>
</tr>
<tr>
<td>diskette</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>diskette0</td>
<td>/dev/rdiskette0</td>
</tr>
<tr>
<td>diskette1</td>
<td>/dev/rdiskette1</td>
</tr>
<tr>
<td>rdiskette</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>rdiskette0</td>
<td>/dev/rdiskette0</td>
</tr>
<tr>
<td>rdiskette1</td>
<td>/dev/rdiskette1</td>
</tr>
<tr>
<td>floppy</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>floppy0</td>
<td>/dev/rdiskette0</td>
</tr>
</tbody>
</table>
The list above can be reproduced with the -n option.

Do not physically eject media from a device which contains mounted file systems. eject automatically searches for any mounted file systems which reside on the device and attempts to umount them prior to ejecting the media (see mount(1M)). If the umount operation fails, eject prints a warning message and exits. The -f option may be used to specify an eject even if the device contains mounted partitions; this option works only if Volume Management is not running.

eject can also display its default device and a list of nicknames.

If you have inserted a floppy diskette, you must use volcheck(1) before ejecting the media to inform Volume Management of the floppy’s presence.

OPTIONS

The following options are supported:

- `-d` Displays the name of the default device to be ejected.
- `-f` Forces the device to eject even if it is busy, if Volume Management is *not* running.
- `-n` Displays the nickname to device name translation table.
- `-p` Does not try to call the eject_popup program.
- `-q` Queries to see if the media is present.

OPERANDS

The following operands are supported:

- `device` Specifies which device to eject, by the name it appears in the directory `/dev`.
- `nickname` Specifies which device to eject, by its nickname as known to this command.

EXAMPLES

EXAMPLE 1 Ejecting a CD while Volume Management is running

To eject a CD from its drive, while Volume Management is running (assuming only one CD-ROM drive):

```
example> eject cdrom0
```

EXAMPLE 2 Ejecting a CD-ROM without running Volume Management

To eject a CD-ROM drive with pathname `/dev/dsk/c0t3d0s2`, without Volume Management running:

```
example> eject /dev/dsk/c0t3d0s2
```
EXAMPLE 3 Ejecting a floppy disk

To eject a floppy disk (whether or not Volume Management is running):

```
example> eject floppy0
```

EXIT STATUS
The following exit codes are returned:

- **0**: The operation was successful or, with the -q option, the media is in the drive.
- **1**: The operation was unsuccessful or, with the -q option, the media is not in the drive.
- **2**: Invalid options were specified.
- **3**: An ioctl() request failed.
- **4**: Manually ejectable media is now okay to remove.

FILES
- `/dev/diskette0`: default diskette file
- `/dev/sr0`: default CD-ROM file (deprecated)
- `/dev/dsk/c0t6d0s2`: default CD-ROM file
- `/usr/lib/vold/eject_popup`: popup used for manually ejected media

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
volcancel(1), volcheck(1), volmissing(1), mount(1M), rmmount(1M), vold(1M), ioctl(2), rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

DIAGNOSTICS
A short help message is printed if an unknown option is specified. A diagnostic is printed if the device name cannot be opened or does not support eject.

- **Device Busy**: An attempt was made to eject a device that has a mounted file system. A warning message is printed when doing a forced eject of a mounted device.

BUGS
There should be a way to change the default on a per-user basis.

If Volume Management is not running, it is possible to eject a volume that is currently mounted (see mount(1M)). For example, if you have a CD-ROM drive at `/dev/dsk/c0t3d0s2` mounted on `/mnt`, the following command (without Volume Management running) will work:

```
example> eject /dev/dsk/c0t3d0s0
```
since both slices s_0 and s_2 reference the whole CD-ROM drive.
elfdump – dump selected parts of an object file

SYNOPSIS
elfdump [-CcdeGghikmnprsvy] [-N name] [-w file] filename...

DESCRIPTION
The elfdump utility symbolically dumps selected parts of the specified object file(s). The options allow specific portions of the file to be displayed.

The elfdump utility is similar in function to the dump(1) utility, which offers an older and less user-friendly interface than elfdump, although dump may be more appropriate for certain uses such as in shell scripts.

Archive files, produced by ar(1), can also be inspected with elfdump. In this case each object within the archive is processed using the options supplied.

For a complete description of the displayed information, refer to the Linker and Libraries Guide.

OPTIONS
The following options are supported:

- c Dumps section header information.
- C Demangles C++ symbol names.
- d Dumps the contents of the .dynamic section.
- e Dumps the ELF header.
- g Dumps the contents of the .group section.
- G Dumps the contents of the .got section.
- h Dumps the contents of the .hash section.
- i Dumps the contents of the .interp section.
- k Calculates the ELF checksum (see gelf_checksum(3ELF)).
- m Dumps the contents of the .SUNW_move section.
- n Dumps the contents of the .note section.
- N name Qualifies an option with a specific name. For example, in a file that contains more than one symbol table, the .dynsym table can be displayed using:

eample% elfdump -s -N .dynsym filename

- p Dumps the program headers.
- r Dumps the contents of the relocation sections (that is, .rel[a]).
- s Dumps the contents of the symbol table sections (that is, .dynsym and/or .symtab) and, in the case of archives, dumps the archive symbol table. Individual sections can be specified with the -N option, or an archive symbol table can be specified using the special section name -N ARSYM.
In addition to the standard symbol table information, the version definition index of the symbol is also provided under the ver heading.

-v
Dumps the contents of the version sections (that is, .SUNW_version).

-w file
Writes the contents of a section specified with the -N option to the named file. This is useful for extracting an individual section’s data for additional processing. For example, extracting the .text section of a file can be carried out with:

example% elfdump -w text.out -N .text filename

-γ
Dumps the contents of the .SUNW_syminfo section.

OPERANDS
The following operand is supported:

filename
The name of the specified object file.

FILES
liblddbg.so linker debugging library

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbttool</td>
</tr>
</tbody>
</table>

SEE ALSO
ar(1), dump(1), nm(1), pvs(1), elf(3ELF), attributes(5)

Linker and Libraries Guide
enable, disable – enable/disable LP printers

/usr/bin/enable printer...

/usr/bin/disable [-c | -W] [-r [reason]] printer...

DESCRIPTION

The enable command activates printers, enabling them to print requests submitted by the lp command. enable must be run on the printer server.

The disable command deactivates printers, disabling them from printing requests submitted by the lp command. By default, any requests that are currently printing on printer will be reprinted in their entirety either on printer or another member of the same class of printers. The disable command must be run on the print server.

Use lpsstat -p to check the status of printers.

enable and disable only effect queueing on the print server’s spooling system. Executing these commands from a client system will have no effect on the server.

OPTIONS

The following options are supported for use with disable:

- -c Cancels any requests that are currently printing on printer. This option cannot be used with the -W option. If the printer is remote, the -c option will be silently ignored.

- -W Waits until the request currently being printed is finished before disabling printer. This option cannot be used with the -c option. If the printer is remote, the -W option will be silently ignored.

- -r [reason] Assigns a reason for the disabling of the printer(s). This reason applies to all printers specified. This reason is reported by lpsstat -p. Enclose reason in quotes if it contains blanks. The default reason is "unknown reason" for the existing printer, and "new printer" for a printer added to the system but not yet enabled.

OPERANDS

The following operand is supported for both enable and disable:

printer The name of the printer to be enabled or disabled. Specify printer using atomic name. See printers.conf(4) for information regarding the naming conventions for atomic names.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

FILES

/var/spool/lp/* LP print queue.
enable(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

lp(1), lpstat(1), printers.conf(4), attributes(5)
env(1)

NAME
env – set environment for command invocation

SYNOPSIS
/usr/bin/env [-i | -] [name=value...] [utility [arg...]]
/usr/xpg4/bin/env [-i | -] [name=value...] [utility [arg...]]

DESCRIPTION
The env utility obtains the current environment, modifies it according to its arguments, then invokes the utility named by the utility operand with the modified environment.

Optional arguments are passed to utility. If no utility operand is specified, the resulting environment is written to the standard output, with one name=value pair per line.

/usr/bin
If env executes commands with arguments, it uses the default shell /usr/bin/sh (see sh(1)).

/usr/xpg4/bin
If env executes commands with arguments, it uses /usr/xpg4/bin/sh (see ksh(1)).

OPTIONS
The following options are supported:

-i | -I
Ignores the environment that would otherwise be inherited from the current shell. Restricts the environment for utility to that specified by the arguments.

OPERANDS
The following operands are supported:

name=value
Arguments of the form name=value modify the execution environment, and are placed into the inherited environment before utility is invoked.

utility
The name of the utility to be invoked. If utility names any of the special shell built-in utilities, the results are undefined.

arg
A string to pass as an argument for the invoked utility.

EXAMPLES
EXAMPLE 1 Invoking utilities with new PATH values

The following utility:

eexample$ env -i PATH=/mybin mygrep xyz myfile

invokes the utility mygrep with a new PATH value as the only entry in its environment. In this case, PATH is used to locate mygrep, which then must reside in /mybin.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of env: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH
Determine the location of the utility. If PATH is specified as a name=value operand to env, the value given shall be used in the search for utility.

EXIT STATUS
If utility is invoked, the exit status of env is the exit status of utility. Otherwise, the env utility returns one of the following exit values:
Successful completion.

1-125 An error occurred.

126 utility was found but could not be invoked.

127 utility could not be found.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
ksh(1), sh(1), exec(2), profile(4), attributes(5), environ(5), standards(5)
NAME eqn, neqn, checkeq – typeset mathematics test

SYNOPSIS

```
eqn  [-d  xy]  [-f  n]  [-p  n]  [-s  n]  [file...]
neqn  [file...]
checkeq  [file...]
```

DESCRIPTION eqn and neqn are language processors to assist in describing equations. eqn is a preprocessor for troff(1) and is intended for devices that can print troff’s output. neqn is a preprocessor for nroff(1) and is intended for use with terminals. Usage is almost always:

```
example%  eqn  file ...  |  troff
example%  neqn  file ...  |  nroff
```

If no files are specified, eqn and neqn read from the standard input. A line beginning with .EQ marks the start of an equation. The end of an equation is marked by a line beginning with .EN. Neither of these lines is altered, so they may be defined in macro packages to get centering, numbering, and so on. It is also possible to set two characters as “delimiters”; subsequent text between delimiters is also treated as eqn input.

checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

OPTIONS The following options are supported:

```
-dxy  Sets equation delimiters set to characters x and y with the command-line argument. The more common way to do this is with delim xy between .EQ and .EN. The left and right delimiters may be identical. Delimiters are turned off by delim off appearing in the text. All text that is neither between delimiters nor between .EQ and .EN is passed through untouched.

-fn  Changes font to n globally in the document. The font can also be changed globally in the body of the document by using the gfont n directive, where n is the font specification.

-pn  Reduces subscripts and superscripts by n point sizes from the previous size. In the absence of the -p option, subscripts and superscripts are reduced by 3 point sizes from the previous size.

-sn  Changes point size to n globally in the document. The point size can also be changed globally in the body of the document by using the gsize n directive, where n is the point size.
```

OPERANDS The following operands are supported:

```
file  The nroff or troff file processed by eqn or neqn.
```

EQN LANGUAGE The nroff version of this description depicts the output of neqn to the terminal screen exactly as neqn is able to display it. To see an accurate depiction of the output, view the printed version of this page.
Tokens within eqn are separated by braces, double quotes, tildes, circumflexes, SPACE, TAB, or NEWLINE characters. Braces { } are used for grouping. Generally speaking, anywhere a single character like \(x \) could appear, a complicated construction enclosed in braces may be used instead. A tilde (~) represents a full SPACE in the output; a circumflex (^) half as much.

Subscripts and superscripts:
These are produced with the keywords sub and sup.
\[x \text{ sub } i \quad \text{makes } x_i \]
\[a \text{ sub } i \text{ sup } 2 \quad \text{produces } a_i^2 \]
\[e \text{ sup } \{x \text{ sup } 2 + y \text{ sup } 2\} \quad \text{gives } e^{x^2+y^2} \]

Fractions:
Fractions are made with over.
\[a \text{ over } b \]
yields
\[\frac{a}{b} \]

Square Roots:
These are made with sqrt
\[1 \text{ over } \sqrt{ax^{2}+bx+c} \]
results in
\[\frac{1}{\sqrt{ax^{2}+bx+c}} \]

Limits:
The keywords from and to introduce lower and upper limits on arbitrary things:
\[\lim_{n \to \inf} \sum_{0}^{n} x_i \]
makes
\[\lim_{n \to \inf} \sum_{0}^{n} x_i \]
Brackets and Braces:
Left and right brackets, braces, and the like, of the right height are made with `left` and `right`.

```
left [ x^{sup \ 2} + y^{sup \ 2} over alpha right ] = -1
```
produces

\[
\left[\frac{x^2 + y^2}{\alpha} \right] = 1
\]

The right clause is optional. Legal characters after `left` and `right` are braces, brackets, bars, `c` and `f` for ceiling and floor, and `""` for nothing at all (useful for a right-side-only bracket).

Vertical piles:
Vertical piles of things are made with `pile`, `lpile`, `cpile`, and `rpile`.

```
pile \{ a \ above \ b \ above \ c \}
```
produces

\[
a \\
b \\
c
\]

There can be an arbitrary number of elements in a pile. `lpile` left-justifies, `pile` and `cpile` center, with different vertical spacing, and `rpile` right-justifies.

Matrices:
Matrices are made with `matrix`.

```
matrix \{ lcol \{ x^{\ sub \ i} \ above \ y^{\ sub \ 2} \} ccol \{ 1 \ above \ 2 \} \}
```
produces

\[
x_i \ 1 \\
y_2 \ 2
\]

In addition, there is `rcol` for a right-justified column.

Diacritical marks:
Diacritical marks are made with `dot`, `dotdot`, `hat`, `tilde`, `bar`, `vec`, `dyad`, and `under`.

\[eqn(1)\]
\[x \, \text{dot} = f(t) \, \text{bar} \]
is
\[\dot{x} = f(t) \]

\[y \, \text{dotdot} \, \text{bar} \, \text{under} \]
is
\[\ddot{y} = n \]

\[x \, \text{vec} \, \text{-=} \, y \, \text{dyad} \]
is
\[\vec{x} = \vec{y} \]

Sizes and Fonts:
Sizes and font can be changed with size \(n \) or size \(\pm n \), roman, italic, bold, and font \(n \). Size and fonts can be changed globally in a document by gsize \(n \) and gfont \(n \), or by the command-line arguments -s \(n \) and -f \(n \).

Successive display arguments:
Successive display arguments can be lined up. Place mark before the desired lineup point in the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands:
Shorthands may be defined or existing keywords redefined with define:

\[
define \, \text{thing} \, % \, \text{replacement} \%
\]
Defines a new token called \text{thing} which will be replaced by \text{replacement} whenever it appears thereafter. The \% may be any character that does not occur in \text{replacement}.

Keywords and Shorthands:
Keywords like sum int inf and shorthands like \(\geq \rightarrow \) and \(! = \) are recognized.

Greek letters:
Greek letters are spelled out in the desired case, as in \text{alpha} or \text{GAMMA}.
Mathematical words:
Mathematical words like \textit{sin}, \textit{cos}, and \textit{log} are made Roman automatically.

\texttt{troff} four-character escapes like \texttt{	extbackslash bu} (\textbullet) can be used anywhere. Strings enclosed in double quotes "..." are passed through untouched; this permits keywords to be entered as text, and can be used to communicate with \texttt{troff} when all else fails.

\textbf{ATTRIBUTES} See \texttt{attributes(5)} for descriptions of the following attributes:

\begin{tabular}{|l|c|}
\hline
\textbf{ATTRIBUTE TYPE} & \textbf{ATTRIBUTE VALUE} \\
\hline
Availability & SUNWdoc \\
\hline
\end{tabular}

\textbf{SEE ALSO} \texttt{nroff(1)}, \texttt{tbl(1)}, \texttt{troff(1)}, \texttt{attributes(5)}, \texttt{ms(5)}

\textbf{BUGS} To embolden characters such as digits and parentheses, it is necessary to quote them, as in \texttt{\textbf{bold 12.3}}.
error(1)

NAME
ter - insert compiler error messages at right source lines

SYNOPSIS
ter [-n] [-q] [-s] [-v] [-t suffixlist] [-I ignorefile] [filename]

DESCRIPTION
ter analyzes error messages produced by a number of compilers and language processors. It replaces the painful, traditional methods of scribbling abbreviations of errors on paper, and permits error messages and source code to be viewed simultaneously.

ter looks at error messages, either from the specified file filename or from the standard input, and:

■ Determines which language processor produced each error message.
■ Determines the file name and line number of the erroneous line.
■ Inserts the error message into the source file immediately preceding the erroneous line.

Error messages that can’t be categorized by language processor or content are not inserted into any file, but are sent to the standard output. ter touches source files only after all input has been read.

ter is intended to be run with its standard input connected with a pipe to the error message source. Some language processors put error messages on their standard error file; others put their messages on the standard output. Hence, both error sources should be piped together into ter. For example, when using the csh syntax, the following command analyzes all the error messages produced by whatever programs make(1S) runs when making lint:

example% make -s lint | & ter -q -v

ter knows about the error messages produced by: as(1), cpp(1), ld(1), cc(1B), make(1S) and other compilers. For all languages except Pascal, error messages are restricted to one line. Some error messages refer to more than one line in more than one file, in which case ter duplicates the error message and inserts it in all the appropriate places.

OPTIONS
- n
 Do not touch any files; all error messages are sent to the standard output.
- q
ter asks whether the file should be touched. A ‘y’ or ‘n’ to the question is necessary to continue. Absence of the -q option implies that all referenced files (except those referring to discarded error messages) are to be touched.
- s
 Print out statistics regarding the error categorization.
- v
 After all files have been touched, overlay the visual editor vi with it set up to edit all files touched, and positioned in the first touched file at the first error. If vi(1) can’t be found, try ex(1) or ed(1) from standard places.
error(1)

-t suffixlist
Take the following argument as a suffix list. Files whose suffices do
not appear in the suffix list are not touched. The suffix list is dot
separated, and ‘*’ wildcards work. Thus the suffix list:

.c.y.f*.h

allows error to touch files ending with ‘.c’, ‘.y’, ‘.f*’ and ‘.h’.

error catches interrupt and terminate signals, and terminates in an orderly fashion.

EXAMPLES
EXAMPLE 1 Examples of the error command.
In the following C shell (/usr/bin/csh) example, error takes its input from the
FORTRAN compiler:
exampler f77 -c any.f |& error options

Here is the same example using the Korn shell (/usr/bin/ksh):
exampler f77 -c any.f 2>&1 | error options

USAGE
error does one of six things with error messages.
synchronize Some language processors produce short errors
descrribing which file they are processing. error uses
these to determine the file name for languages that do
not include the file name in each error message. These
synchronization messages are consumed entirely by
error.
discard Error messages from lint that refer to one of the two
lint libraries, /usr/lib/lint/lllib-lc and
/usr/lib/lint/lllib-port are discarded, to
prevent accidentally touching these libraries. Again,
these error messages are consumed entirely by error.
nullify Error messages from lint can be nullified if they refer
to a specific function, which is known to generate
diagnostics which are not interesting. Nullified error
messages are not inserted into the source file, but are
written to the standard output. The names of functions
to ignore are taken from either the file named
.errorrc in the user’s home directory, or from the file
named by the -I option. If the file does not exist, no
error messages are nullified. If the file does exist, there
must be one function name per line.
not file specific

Error messages that can’t be intuited are grouped together, and written to the standard output before any files are touched. They are not inserted into any source file.

file specific

Error messages that refer to a specific file but to no specific line are written to the standard output when that file is touched.

true errors

Error messages that can be intuited are candidates for insertion into the file to which they refer.

Only true error messages are inserted into source files. Other error messages are consumed entirely by error or are written to the standard output. error inserts the error messages into the source file on the line preceding the line number in the error message. Each error message is turned into a one line comment for the language, and is internally flagged with the string ### at the beginning of the error, and ### at the end of the error. This makes pattern searching for errors easier with an editor, and allows the messages to be easily removed. In addition, each error message contains the source line number for the line the message refers to. A reasonably formatted source program can be recompiled with the error messages still in it, without having the error messages themselves cause future errors. For poorly formatted source programs in free format languages, such as C or Pascal, it is possible to insert a comment into another comment, which can wreak havoc with a future compilation. To avoid this, format the source program so there are no language statements on the same line as the end of a comment.

FILES

~/.errorrc function names to ignore for lint error messages
/dev/tty user’s teletype

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO

as(1), cc(1B), cpp(1), csh(1), ed(1), ex(1), make(1S), ld(1), vi(1), attributes(5)

BUGS

Opens the tty-device directly for user input.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s error message format may cause error to not understand the error message.

error, since it is purely mechanical, will not filter out subsequent errors caused by “floodgating” initiated by one syntactically trivial error. Humans are still much better at discarding these related errors.
Pascal error messages belong after the lines affected, error puts them before. The alignment of the ‘|’ marking the point of error is also disturbed by error.

error was designed for work on CRT’s at reasonably high speed. It is less pleasant on slow speed terminals, and was not designed for use on hardcopy terminals.
ex(1)

NAME
ex – text editor

SYNOPSIS

```
```

```
```

DESCRIPTION

The `ex` utility is the root of a family of editors: `ex` and `vi`. `ex` is a superset of `ed(1)`, with the most notable extension being a display editing facility. Display based editing is the focus of `vi`.

If you have a CRT terminal, you may wish to use a display based editor; in this case see `vi(1)`, which is a command which focuses on the display-editing portion of `ex`.

If you have used `ed` you will find that, in addition to having all of the `ed` commands available, `ex` has a number of additional features useful on CRT terminals. Intelligent terminals and high speed terminals are very pleasant to use with `vi`. Generally, the `ex` editor uses far more of the capabilities of terminals than `ed` does, and uses the terminal capability data base (see `terminfo(4)`) and the type of the terminal you are using from the environment variable `TERM` to determine how to drive your terminal efficiently. The editor makes use of features such as insert and delete character and line in its `visual` command (which can be abbreviated `vi`) and which is the central mode of editing when using the `vi` command.

The `ex` utility contains a number of features for easily viewing the text of the file. The `z` command gives easy access to windows of text. Typing `^D` (CTRL-D) causes the editor to scroll a half-window of text and is more useful for quickly stepping through a file than just typing return. Of course, the screen-oriented `visual` mode gives constant access to editing context.

The `ex` utility gives you help when you make mistakes. The `undo` (`u`) command allows you to reverse any single change which goes astray. `ex` gives you a lot of feedback, normally printing changed lines, and indicates when more than a few lines are affected by a command so that it is easy to detect when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited them, so that you do not accidentally overwrite a file other than the one you are editing. If the system (or editor) crashes, or you accidentally hang up the telephone, you can use the editor `recover` command (or `-r file` option) to retrieve your work. This will get you back to within a few lines of where you left off.

The `ex` utility has several features for dealing with more than one file at a time. You can give it a list of files on the command line and use the `next` (`n`) command to deal with each in turn. The `next` command can also be given a list of file names, or a pattern as used by the shell to specify a new set of files to be dealt with. In general, file names in the editor may be formed with full shell metasyntax. The metacharacter `%` is also available in forming file names and is replaced by the name of the current file.
The editor has a group of buffers whose names are the ASCII lower-case letters (a-z). You can place text in these named buffers where it is available to be inserted elsewhere in the file. The contents of these buffers remain available when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In addition, there is a confirmed substitute command. You give a range of substitutions to be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex also allows regular expressions which match words to be constructed. This is convenient, for example, in searching for the word “edit” if your document also contains the word “editor.”

ex has a set of options which you can set to tailor it to your liking. One option which is very useful is the autoindent option that allows the editor to supply leading white space to align text automatically. You can then use ^D as a backtab and space or tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join(j) command that supplies white space between joined lines automatically, commands < and > which shift groups of lines, and the ability to filter portions of the buffer through commands such as sort.

OPTIONS

The following options are supported:

- -s
 Suppress all interactive user feedback. This is useful when processing editor scripts.

- l
 Set up for editing LISP programs.

- L
 List the name of all files saved as the result of an editor or system crash.

- R
 Readonly mode; the readonly flag is set, preventing accidental overwriting of the file.

- r file
 Edit file after an editor or system crash. (Recovers the version of file that was in the buffer when the crash occurred.)

- t tag
 Edit the file containing the tag and position the editor at its definition.

- v
 Start up in display editing state using vi. You can achieve the same effect by simply typing the vi command itself.

- V
 Verbose. When ex commands are read by means of standard input, the input will be echoed to standard error. This may be useful when processing ex commands within shell scripts.
Encryption option. Simulates the \texttt{X} command and prompts the user for a key. This key is used to encrypt and decrypt text using the algorithm of the \texttt{crypt} command. The \texttt{X} command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the \texttt{-x} option.

\texttt{-wn} Set the default window size to \textit{n}. This is useful when using the editor over a slow speed line.

\texttt{-C} Encryption option. Same as the \texttt{-x} option, except simulates the \texttt{C} command. The \texttt{C} command is like the \texttt{X} command, except that all text read in is assumed to have been encrypted.

\texttt{+command | -c command} Begin editing by executing the specified editor \textit{command} (usually a search or positioning command).

If both the \texttt{-t tag} and the \texttt{-c command} options are given, the \texttt{-t tag} will be processed first. That is, the file containing the tag is selected by \texttt{-t} and then the command is executed.

\textbf{OPERANDS} The following operand is supported:

\textit{file} A path name of a file to be edited.

\textbf{USAGE} This section defines the \texttt{ex} states, commands, initializing options, and scanning pattern formations.

\textbf{ex States} Command Normal and initial state. Input prompted for by ".". Your line kill character cancels a partial command.

Insert Entered by \texttt{a}, \texttt{i}, or \texttt{c}. Arbitrary text may be entered. Insert state normally is terminated by a line having only "." on it, or, abnormally, with an interrupt.

Visual Entered by typing \texttt{vi}; terminated by typing \texttt{Q} or \texttt{\^\} (CTRL-\}).

\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Command Name} & \textbf{Abbreviation} & \textbf{Command Name} & \textbf{Abbreviation} & \textbf{Command Name} & \textbf{Abbreviation} \\
\hline
\texttt{abbrev} & \texttt{ab} & \texttt{map} & \texttt{set} & \texttt{se} \\
\hline
\texttt{append} & \texttt{a} & \texttt{mark} & \texttt{ma} & \texttt{shell} & \texttt{sh} \\
\hline
\texttt{args} & \texttt{ar} & \texttt{move} & \texttt{m} & \texttt{source} & \texttt{so} \\
\hline
\texttt{change} & \texttt{c} & \texttt{next} & \texttt{n} & \texttt{substitute} & \texttt{s} \\
\hline
\texttt{copy} & \texttt{co} & \texttt{number} & \texttt{nu} & \texttt{unabbrev} & \texttt{unab} \\
\hline
\texttt{delete} & \texttt{d} & \texttt{preserve} & \texttt{pre} & \texttt{undo} & \texttt{u} \\
\hline
\end{tabular}

\texttt{/usr/xpg4/bin/ex}

358 man pages section 1: User Commands • Last Revised 18 Mar 1997
For all of the `ex` commands listed below, if both a count and a range are specified for a command that uses them, the number of lines affected will be taken from the count value rather than the range. The starting line for the command is taken to be the first line addressed by the range.

<table>
<thead>
<tr>
<th>Command</th>
<th>Abbreviation</th>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edit</td>
<td>e</td>
<td>p</td>
<td>unmap</td>
</tr>
<tr>
<td>file</td>
<td>f</td>
<td>put</td>
<td>version</td>
</tr>
<tr>
<td>global</td>
<td>g</td>
<td>quit</td>
<td>visual</td>
</tr>
<tr>
<td>insert</td>
<td>i</td>
<td>read</td>
<td>write</td>
</tr>
<tr>
<td>join</td>
<td>j</td>
<td>recover</td>
<td>x</td>
</tr>
<tr>
<td>list</td>
<td>l</td>
<td>rewind</td>
<td>yank</td>
</tr>
</tbody>
</table>

Abbreviate ab[brev] word rhs
Append [line]a[ppend][!] Arguments ar[gs]
Change [range] c[change][!] [count] Change Directory chd[ir][!] [directory]; cd[!] [directory]
Copy [range] co[py] line [flags]; [range] t line [flags]
Delete [range] d[elte] [buffer] [count] [flags]
Edit e[dit][!] [+line][file]; ex[!] [+line] [file]
File f[ile] [file]
Global [range] g[lobal] /pattern/ [commands]; [range] v /pattern/ [commands]
Insert [line] i[nsert][!] Join [range] j[oin][!] [count] [flags]
List [range] l[ist] [count] [flags]
Map map[!] [x rhs]
Mark [line] ma[rk] x; [line] k x
Move [range] m[ove] line
Next n[ext][!] [file ...]
Number [range] nu[mer] [count] [flags]; [range] # [count] [flags]
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>[line] o[pen] /pattern/ [flags]</td>
</tr>
<tr>
<td>Preserve</td>
<td>pre[serve]</td>
</tr>
<tr>
<td>Print</td>
<td>[range] p[rint] [count] [flags]</td>
</tr>
<tr>
<td>Put</td>
<td>[line] pu[t] [buffer]</td>
</tr>
<tr>
<td>Quit</td>
<td>q[uit][!]</td>
</tr>
<tr>
<td>Read</td>
<td>[line] r[ead][!] [file]</td>
</tr>
<tr>
<td>Recover</td>
<td>rec[over] file</td>
</tr>
<tr>
<td>Rewind</td>
<td>rew[ind][!]</td>
</tr>
<tr>
<td>Set</td>
<td>se[t] [option]=[value][...] [nooption...][option?...][all]</td>
</tr>
<tr>
<td>Shell</td>
<td>sh[ell]</td>
</tr>
<tr>
<td>Source</td>
<td>so[rce] file</td>
</tr>
<tr>
<td>Substitute</td>
<td>[range] s[substitute] [/pattern/repl/[options] [count] [flags]]</td>
</tr>
<tr>
<td>Suspend</td>
<td>su[spend][!]; st[op][!]</td>
</tr>
<tr>
<td>Tag</td>
<td>ta[g][!] tagstring</td>
</tr>
<tr>
<td>Unabbreviate</td>
<td>una[bbrev] word</td>
</tr>
<tr>
<td>Undo</td>
<td>u[ndo]</td>
</tr>
<tr>
<td>Unmap</td>
<td>unm[ap][!] x</td>
</tr>
<tr>
<td>Visual</td>
<td>[line] v[isual] [type] [count] [flags]</td>
</tr>
<tr>
<td>Write</td>
<td>[range] w[rite][!] [range] w[r]ite[!] [file]; [range] wq[!][>] [file]</td>
</tr>
<tr>
<td>Write and Exit</td>
<td>[range] x[it][!] [file]</td>
</tr>
<tr>
<td>Yank</td>
<td>[range] y[a]nk [buffer] [count]</td>
</tr>
<tr>
<td>Adjust Window</td>
<td>[line] z [type] [count] [flags]</td>
</tr>
<tr>
<td>Escape</td>
<td>! command [range]! command</td>
</tr>
<tr>
<td>Shift Left</td>
<td>[range] < [count] [flags]</td>
</tr>
<tr>
<td>Shift Right</td>
<td>[range] > [count] [flags]</td>
</tr>
<tr>
<td>Resubstitute</td>
<td>[range] & [options] [count] [flags]; [range] s[substitute] [options] [count] [flags]; [range] ~ [options] [count] [flags]</td>
</tr>
<tr>
<td>Scroll</td>
<td>EOF</td>
</tr>
<tr>
<td>Write Line Number</td>
<td>[line] = [flags]</td>
</tr>
<tr>
<td>Execute</td>
<td>@ buffer; * buffer</td>
</tr>
</tbody>
</table>
ex Commands

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>forced encryption</td>
</tr>
<tr>
<td>X</td>
<td>heuristic encryption</td>
</tr>
<tr>
<td>&</td>
<td>resubst</td>
</tr>
<tr>
<td>CR</td>
<td>print next</td>
</tr>
<tr>
<td>></td>
<td>rshift</td>
</tr>
<tr>
<td><</td>
<td>lshift</td>
</tr>
<tr>
<td>^D</td>
<td>scroll</td>
</tr>
<tr>
<td>z</td>
<td>window</td>
</tr>
<tr>
<td>!</td>
<td>shell escape</td>
</tr>
</tbody>
</table>

ex Command Addresses

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>line n</td>
</tr>
<tr>
<td>.</td>
<td>current</td>
</tr>
<tr>
<td>$</td>
<td>last</td>
</tr>
<tr>
<td>+</td>
<td>next</td>
</tr>
<tr>
<td>-</td>
<td>previous</td>
</tr>
<tr>
<td>+n</td>
<td>n forward</td>
</tr>
<tr>
<td>%</td>
<td>1,$</td>
</tr>
<tr>
<td>/pat</td>
<td>next with pat</td>
</tr>
<tr>
<td>?pat</td>
<td>previous with pat</td>
</tr>
<tr>
<td>x-n</td>
<td>n before x</td>
</tr>
<tr>
<td>x,y</td>
<td>x through y</td>
</tr>
<tr>
<td>'x</td>
<td>marked with x</td>
</tr>
<tr>
<td>"</td>
<td>previous context</td>
</tr>
</tbody>
</table>

Initializing options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXINIT</td>
<td>place set’s here in environment variable</td>
</tr>
<tr>
<td>$HOME/.exrc</td>
<td>editor initialization file</td>
</tr>
<tr>
<td>./exrc</td>
<td>editor initialization file</td>
</tr>
<tr>
<td>set x</td>
<td>enable option x</td>
</tr>
<tr>
<td>set nox</td>
<td>disable option x</td>
</tr>
<tr>
<td>set x=val</td>
<td>give value val to option x</td>
</tr>
</tbody>
</table>
Most useful options and their abbreviations

<table>
<thead>
<tr>
<th>Option</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoindent</td>
<td>ai</td>
<td>Supply indent</td>
</tr>
<tr>
<td>autowrite</td>
<td>aw</td>
<td>Write before changing files</td>
</tr>
<tr>
<td>directory</td>
<td></td>
<td>Pathname of directory for temporary work files</td>
</tr>
<tr>
<td>exrc</td>
<td>ex</td>
<td>Allow vi/ex to read the .exrc in the current directory. This option is set in the EXINIT shell variable or in the .exrc file in the $HOME directory.</td>
</tr>
<tr>
<td>ignorecase</td>
<td>ic</td>
<td>Ignore case of letters in scanning</td>
</tr>
<tr>
<td>list</td>
<td></td>
<td>Print ^I for tab, $ at end</td>
</tr>
<tr>
<td>magic</td>
<td></td>
<td>Treat . *[* special in patterns</td>
</tr>
<tr>
<td>modelines</td>
<td></td>
<td>First five lines and last five lines executed as vi/ex commands if they are of the form ex:command: or vi:command:</td>
</tr>
<tr>
<td>number</td>
<td>nu</td>
<td>Number lines</td>
</tr>
<tr>
<td>paragraphs</td>
<td>para</td>
<td>Macro names that start paragraphs</td>
</tr>
<tr>
<td>redraw</td>
<td></td>
<td>Simulate smart terminal</td>
</tr>
<tr>
<td>report</td>
<td></td>
<td>Informs you if the number of lines modified by the last command is greater than the value of the report variable</td>
</tr>
<tr>
<td>scroll</td>
<td></td>
<td>Command mode lines</td>
</tr>
<tr>
<td>sections</td>
<td>sect</td>
<td>Macro names that start sections</td>
</tr>
<tr>
<td>shiftwidth</td>
<td>sw</td>
<td>For < >, and input ^D</td>
</tr>
<tr>
<td>showmatch</td>
<td>sm</td>
<td>To) and } as typed</td>
</tr>
<tr>
<td>showmode</td>
<td>smd</td>
<td>Show insert mode in vi</td>
</tr>
<tr>
<td>slowopen</td>
<td>slow</td>
<td>Stop updates during insert</td>
</tr>
<tr>
<td>term</td>
<td></td>
<td>Specifies to vi the type of terminal being used (the default is the value of the environment variable TERM)</td>
</tr>
<tr>
<td>window</td>
<td></td>
<td>Visual mode lines</td>
</tr>
<tr>
<td>wrapmargin</td>
<td>wm</td>
<td>Automatic line splitting</td>
</tr>
<tr>
<td>wrapscan</td>
<td>ws</td>
<td>Search around end (or beginning) of buffer</td>
</tr>
</tbody>
</table>
Scanning pattern
formation

^ beginning of line
$ end of line
. any character
\< beginning of word
\> end of word
[str] any character in str
[^str] any character not in str
[xy] any character between x and y
* any number of preceding characters

ENVIRONMENT
VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of ex: HOME, LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, NLSPATH, PATH, SHELL, and TERM.

- COLUMNS: Override the system-selected horizontal screen size.
- EXINIT: Determine a list of ex commands that are executed on editor start-up, before reading the first file. The list can contain multiple commands by separating them using a vertical-line (|) character.
- LINES: Override the system-selected vertical screen size, used as the number of lines in a screenful and the vertical screen size in visual mode.

EXIT STATUS

The following exit values are returned:

- 0: Successful completion.
- >0: An error occurred.

FILES

- /var/tmp/Exnnnnn: editor temporary
- /var/tmp/Rxnnnnn: named buffer temporary
- /usr/lib/expreserve: preserve command
- /usr/lib/exrecover: recover command
- /usr/lib/exstrings: error messages
- /usr/share/lib/terminfo/*: describes capabilities of terminals
- /var/preserve/login: preservation directory (where login is the user’s login)
- $HOME/.exrc: editor startup file
- ./.exrc: editor startup file
ex(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

ed(1), edit(1), grep(1), sed(1), sort(1), vi(1), curses(3CURSES), term(4),
terminfo(4), attributes(5), environ(5), standards(5)

Solaris Advanced User’s Guide

AUTHOR

The vi and ex utilities are based on software developed by The University of
California, Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

NOTES

Several options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard (see intro(1)).
The – option has been replaced by -s, a -r option that is not followed with an
option-argument has been replaced by -L, and +command has been replaced by -c
command.

The message file too large to recover with -r option, which is seen when
a file is loaded, indicates that the file can be edited and saved successfully, but if the
editing session is lost, recovery of the file with the -r option will not be possible.

The z command prints the number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line -s option is used.

The editing environment defaults to certain configuration options. When an editing
session is initiated, ex attempts to read the EXINIT environment variable. If it exists,
the editor uses the values defined in EXINIT, otherwise the values set in
$HOME/.exrc are used. If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc
option in EXINIT or $HOME/.exrc. Options set in EXINIT can be turned off in a
local .exrc only if exrc is set in EXINIT or $HOME/.exrc.
There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

The standard Solaris version of ex will be replaced by the POSIX.2-conforming version (see `standards(5)`) in the future. Scripts which use the ex family of addressing and features should use the `/usr/xpg4/bin` version of these utilities.
exec(1)

NAME
exec, eval, source – shell built-in functions to execute other commands

SYNOPSIS

```bash
sh
exec [argument...]
eval [argument...]
csh
exec command
eval argument...
source [-h] name
ksh
*exec [arg...]
*eval [arg...]
```

DESCRIPTION

sh
The `exec` command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and, if no other arguments are given, cause the shell input/output to be modified.

The arguments to the `eval` built-in are read as input to the shell and the resulting command(s) executed.

csh
The `exec` command specified by the arguments is executed in place of this shell, which terminates.

The `eval` command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and affect the current process. If no arguments are given the effect of this command is to modify file descriptors as prescribed by the input/output redirection list. In this case, any file descriptor numbers greater than 2 that are opened with this mechanism are closed when invoking another program.

The arguments to `eval` are read as input to the shell and the resulting command(s) executed.

With the `exec` built-in, if `arg` is given, the command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and affect the current process. If no arguments are given the effect of this command is to modify file descriptors as prescribed by the input/output redirection list. In this case, any file descriptor numbers greater than 2 that are opened with this mechanism are closed when invoking another program.

The arguments to `eval` are read as input to the shell and the resulting command(s) executed.

On this man page, `ksh(1)` commands that are preceded by one or two * (asterisks) are treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), ksh(1), sh(1), attributes(5)
NAME
exit, return, goto – shell built-in functions to enable the execution of the shell to
advance beyond its sequence of steps

SYNOPSIS

sh
 exit [n]
 return [n]

csh
 exit [(expr)]
 goto label

ksh
 *exit [n]
 *return [n]

DESCRIPTION

sh
exit will cause the calling shell or shell script to exit with the exit status specified by
n. If n is omitted the exit status is that of the last command executed (an EOF will also
cause the shell to exit.)

return causes a function to exit with the return value specified by n. If n is omitted,
the return status is that of the last command executed.

csh
exit will cause the calling shell or shell script to exit, either with the value of the
status variable or with the value specified by the expression expr.

The goto built-in uses a specified label as a search string amongst commands. The
shell rewinds its input as much as possible and searches for a line of the form label:
possibly preceded by space or tab characters. Execution continues after the indicated
line. It is an error to jump to a label that occurs between a while or for built-in
command and its corresponding end.

ksh
exit will cause the calling shell or shell script to exit with the exit status specified by
n. The value will be the least significant 8 bits of the specified status. If n is omitted
then the exit status is that of the last command executed. When exit occurs when
executing a trap, the last command refers to the command that executed before the
trap was invoked. An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

return causes a shell function or ’.’ script to return to the invoking script with the
return status specified by n. The value will be the least significant 8 bits of the
specified status. If n is omitted then the return status is that of the last command
executed. If return is invoked while not in a function or a ’.’ script, then it is the
same as an exit.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
 command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by `*` that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the `=` sign and word splitting and file name generation are not performed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

break(1), csh(1), ksh(1), sh(1), attributes(5)
The `expand` utility copies files (or the standard input) to the standard output, with TAB characters expanded to SPACE characters. BACKSPACE characters are preserved into the output and decrement the column count for TAB calculations. `expand` is useful for pre-processing character files (before sorting, looking at specific columns, and so forth) that contain TAB characters.

`unexpand` copies files (or the standard input) to the standard output, putting TAB characters back into the data. By default, only leading SPACE and TAB characters are converted to strings of tabs, but this can be overridden by the `-a` option (see the OPTIONS section below).

The following options are supported for `expand`:

- `-t tablist` Specifies the tab stops. The argument `tablist` must consist of a single positive decimal integer or multiple positive decimal integers, separated by blank characters or commas, in ascending order. If a single number is given, tabs will be set `tablist` column positions apart instead of the default 8. If multiple numbers are given, the tabs will be set at those specific column positions.

 Each tab-stop position \(N \) must be an integer value greater than zero, and the list must be in strictly ascending order. This is taken to mean that, from the start of a line of output, tabbing to position \(N \) causes the next character output to be in the \((N+1)\)th column position on that line.

 In the event of `expand` having to process a tab character at a position beyond the last of those specified in a multiple tab-stop list, the tab character is replaced by a single space character in the output.

- `-tabstop` Specifies as a single argument, sets TAB characters \(\text{tabstop} \) SPACE characters apart instead of the default 8.

- `-tab1, tab2, ..., tabn` Sets TAB characters at the columns specified by \(-\text{tab1,tab2, ..., tabn} \)

The following options are supported for `unexpand`:

- `-a` Inserts TAB characters when replacing a run of two or more SPACE characters would produce a smaller output file.
Specifies the tab stops. The option-argument `tablist` must be a single argument consisting of a single positive decimal integer or multiple positive decimal integers, separated by blank characters or commas, in ascending order. If a single number is given, tabs will be set `tablist` column positions apart instead of the default 8. If multiple numbers are given, the tabs will be set at those specific column positions. Each tab-stop position \(N \) must be an integer value greater than zero, and the list must be in strictly ascending order. This is taken to mean that, from the start of a line of output, tabbing to position \(N \) will cause the next character output to be in the \((N+1)\)th column position on that line. When the `-t` option is not specified, the default is the equivalent of specifying `-t 8` (except for the interaction with `-a`, described below).

No space-to-tab character conversions occur for characters at positions beyond the last of those specified in a multiple tab-stop list.

When `-t` is specified, the presence or absence of the `-a` option is ignored; conversion will not be limited to the processing of leading blank characters.

```
OPERANDS

file

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of `expand` and `unexpand`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion
>0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
`tabs(1)`, attributes(5), environ(5), standards(5)`
exportfs(1B)

NAME      exportfs – translates exportfs options to share/unshare commands

SYNOPSIS  /usr/sbin/exportfs [-aluv] [-o options] [pathname]

DESCRIPTION exportfs translates SunOS 4.x exportfs options to the corresponding share/unshare options and invokes share/unshare with the translated options.

With no options or arguments, exportfs invokes share to print out the list of all currently shared NFS filesystems.

exportfs is the BSD/Compatibility Package command of share(1M) and unshare(1M). Use share(1M)/unshare(1M) whenever possible.

OPTIONS
- a        Invokes shareall(1M), or if -u is specified, invokes unshareall(1M).
- i        Ignore options in /etc/dfs/dfstab.
- u        Invokes unshare(1M) on pathname.
- v        Verbose.
- o options Specify a comma-separated list of optional characteristics for the filesystems being exported. exportfs translates options to share-equivalent options. (see share(1M) for information about individual options).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnfssu</td>
</tr>
</tbody>
</table>

SEE ALSO share(1M), shareall(1M), unshare(1M), unshareall(1M), attributes(5)
The `expr` utility evaluates the expression and writes the result to standard output. The character 0 is written to indicate a zero value and nothing is written to indicate a null string.

The `argument` operand is evaluated as an expression. Terms of the expression must be separated by blanks. Characters special to the shell must be escaped (see `sh(1)`). Strings containing blanks or other special characters should be quoted. The length of the expression is limited to `LINE_MAX` (2048 characters).

The operators and keywords are listed below. The list is in order of increasing precedence, with equal precedence operators grouped within `{ }` symbols. All of the operators are left-associative.

- `expr \| expr`  
  Returns the evaluation of the first `expr` if it is neither NULL nor 0; otherwise, returns the evaluation of the second `expr` if it is not NULL; otherwise, 0.

- `expr \& expr`  
  Returns the first `expr` if neither `expr` is NULL or 0, otherwise returns 0.

- `expr [ =, \>, \>=, \<, \=<, !=] expr`  
  Returns the result of an integer comparison if both arguments are integers, otherwise returns the result of a string comparison using the locale-specific coalition sequence. The result of each comparison will be 1 if the specified relationship is TRUE, 0 if the relationship is FALSE.

- `expr [ +, - ] expr`  
  Addition or subtraction of integer-valued arguments.

- `expr [ \*, /, \%] expr`  
  Multiplication, division, or remainder of the integer-valued arguments.

- `expr : expr`  
  The matching operator : (colon) compares the first argument with the second argument, which must be an internationalized basic regular expression (BRE). See `regex(5)` and NOTES. Normally, the `/usr/bin/expr` matching operator returns the number of bytes matched and the `/usr/xpg4/bin/expr` matching operator returns the number of characters matched (0 on failure). If the second argument contains at least one BRE sub-expression `[\( . \)]`, the matching operator returns the string corresponding to `\1`.

- `integer`  
  An argument consisting only of an (optional) unary minus followed by digits.

- `string`  
  A string argument that cannot be identified as an `integer` argument or as one of the expression operator symbols.
The following operators are included for compatibility with INTERACTIVE UNIX System only and are not intended to be used by non-INTERACTIVE UNIX System scripts:

- **index string character-list**
  Report the first position in which any one of the bytes in `character-list` matches a byte in `string`.

- **length string**
  Return the length (that is, the number of bytes) of `string`.

- **substr string integer-1 integer-2**
  Extract the substring of `string` starting at position `integer-1` and of length `integer-2` bytes. If `integer-1` has a value greater than the number of bytes in `string`, `expr` returns a null string. If you try to extract more bytes than there are in `string`, `expr` returns all the remaining bytes from `string`. Results are unspecified if either `integer-1` or `integer-2` is a negative value.

**EXAMPLES**

**EXAMPLE 1** Adding an integer to a shell variable

Add 1 to the shell variable `a`:

```
example$ a='expr $a + 1'
```

**EXAMPLE 2** Returning a path name segment

The following example emulates `basename(1)`, returning the last segment of the path name `a`. For `a` equal to either `/usr/abc/file` or just `file`, the example returns `file`. (Watch out for `/` alone as an argument: `expr` takes it as the division operator. See NOTES below.)

```
example$ expr $a : '.*/\(.\)'
```

**EXAMPLE 3** Using `//` characters to simplify the expression

Here is a better version of the previous example. The addition of the `//` characters eliminates any ambiguity about the division operator and simplifies the whole expression.

```
example$ expr //$a : '.*/\(.\)'
```

**EXAMPLE 4** Returning the number of bytes in a variable

```
example$ expr "$VAR" : '.*'
```

**EXAMPLE 5** Returning the number of characters in a variable

```
example$ expr "$VAR" : '.*'
```

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `expr`: `LANG`, `LC_ALL`, `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

**MAN PAGES SECTION 1: USER COMMANDS**

Last Revised 6 Jun 2000
As a side effect of expression evaluation, `expr` returns the following exit values:

- **0** If the expression is neither `NULL` nor 0.
- **1** If the expression is either `NULL` or 0.
- **2** For invalid expressions.
- **>2** An error occurred.

### ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

### SEE ALSO
basename(1), ed(1), sh(1), Intro(3), attributes(5), environ(5), regex(5), standards(5)

### DIAGNOSTICS
- **syntax error** Operator and operand errors.
- **non-numeric argument** Arithmetic is attempted on such a string.

### NOTES
After argument processing by the shell, `expr` cannot tell the difference between an operator and an operand except by the value. If `$a` is an `=`, the command:

```bash
echo $a = '=
```

looks like:

```bash
echo expr $a = =
```

as the arguments are passed to `expr` (and they are all taken as the `=` operator). The following works:

```bash
echo expr X$a = X=
```

### Regular Expressions
Unlike some previous versions, `expr` uses Internationalized Basic Regular Expressions for all system-provided locales. Internationalized Regular Expressions are explained on the `regex(5)` manual page.
The `expr` utility evaluates expressions as specified by its arguments. After evaluation, the result is written on the standard output. Each token of the expression is a separate argument, so terms of the expression must be separated by blanks. Characters special to the shell must be escaped. Note: 0 is returned to indicate a zero value, rather than the null string. Strings containing blanks or other special characters should be quoted. Integer-valued arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, two’s-complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by `\`. The list is in order of increasing precedence, with equal precedence operators grouped within `{ }` symbols.

- `expr \| expr`: Returns the evaluation of the first `expr` if it is neither NULL nor 0; otherwise, returns the evaluation of the second `expr` if it is not NULL; otherwise, 0.
- `expr \& expr`: Returns the first `expr` if neither `expr` is NULL or 0, otherwise returns 0.
- `expr \{ =, \, , <, \, <=, != \} expr`: Returns the result of an integer comparison if both arguments are integers, otherwise returns the result of a lexical comparison.
- `expr \{ +, - \} expr`: Addition or subtraction of integer-valued arguments.
- `expr \{ \, , /, % \} expr`: Multiplication, division, or remainder of the integer-valued arguments.

The two forms of the matching operator above are synonymous. The matching operators `:` and `match` compare the first argument with the second argument which must be a regular expression. Regular expression syntax is the same as that of `regexp(5)`, except that all patterns are “anchored” (treated as if they begin with `^`) and therefore `^` is not a special character, in that context. Normally, the matching operator returns the number of characters matched (0 on failure). Alternatively, the `\ . . . \` pattern symbols can be used to return a portion of the first argument.

`substr string integer-1 integer-2` Extracts the substring of `string` starting at position `integer-1` and of length `integer-2` characters. If `integer-1` has a value greater than the length of `string`, `expr` returns a null string. If you try to extract more characters than there are in `string`, `expr` returns all the remaining characters from `string`. Beware of using negative values for either `integer-1` or `integer-2` as `expr` tends to run forever in these cases.
index string character-list
   Reports the first position in string at which any one of the characters in character-list
   matches a character in string.

length string
   Returns the length (that is, the number of characters) of string.

(expr)
   Parentheses may be used for grouping.

EXAMPLES

EXAMPLE 1 Adding an integer to a shell variable
   Add 1 to the shell variable a.
   a='expr $a + 1'

EXAMPLE 2 Returning a path name segment
   Return the last segment of a path name (that is, the filename part). Watch out for / alone as an argument: expr will take it as the division operator (see BUGS below).
   # 'For $a equal to either "/usr/abc/file" or just "file"
   expr $a : '.*/ \ $a

EXAMPLE 3 Using // characters to simplify the expression
   The addition of the // characters eliminates any ambiguity about the division operator and simplifies the whole expression.
   # A better representation of example 2.
   expr //$a : '.*\'

EXAMPLE 4 Returning the value of a variable
   Returns the number of characters in $VAR.
   expr $VAR : '.*'

EXIT STATUS
   expr returns the following exit codes:
   0       If the expression is neither NULL nor 0.
   1       If the expression is NULL or 0.
   2       For invalid expressions.

ATTRIBUTES
   See attributes(5) for descriptions of the following attributes:
expr(1B)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

### SEE ALSO
sh(1), test(1), attributes(5), regexp(5)

### DIAGNOSTICS

- **syntax error** for operator/operand errors
- **non-numeric argument** if arithmetic is attempted on such a string
- **division by zero** if an attempt to divide by zero is made

### BUGS
After argument processing by the shell, `expr` cannot tell the difference between an operator and an operand except by the value. If `$a` is an `=` the command:

```
expr $a =
```

looks like:

```
expr = =
```

as the arguments are passed to `expr` (and they will all be taken as the `=` operator). The following works:

```
expr X$a = X=
```

Note: the `match`, `substr`, `length`, and `index` operators cannot themselves be used as ordinary strings. That is, the expression:

```
example$ expr index expurgatorious length
```

`syntax error` message as shown instead of the value 1 as you might expect.
The `exstr` utility is used to extract strings from C-language source files and replace them by calls to the message retrieval function (see `gettext(3C)`). This utility will extract all character strings surrounded by double quotes, not just strings used as arguments to the `printf` command or the `printf` routine. In the first form, `exstr` finds all strings in the source files and writes them on the standard output. Each string is preceded by the source file name and a colon (:).

The first step is to use `exstr -e` to extract a list of strings and save it in a file. Next, examine this list and determine which strings can be translated and subsequently retrieved by the message retrieval function. Then, modify this file by deleting lines that can’t be translated and, for lines that can be translated, by adding the message file names and the message numbers as the fourth (`msgfile`) and fifth (`msgnum`) entries on a line. The message files named must have been created by `mkmsgs(1)` and exist in `/usr/lib/locale/locale/LC_MESSAGES`. (The directory `locale` corresponds to the language in which the text strings are written; see `setlocale(3C)`). The message numbers used must correspond to the sequence numbers of strings in the message files.

Now use this modified file as input to `exstr -r` to produce a new version of the original C-language source file in which the strings have been replaced by calls to the message retrieval function `gettext()`. The `msgfile` and `msgnum` fields are used to construct the first argument to `gettext()`. The second argument to `gettext()` is printed if the message retrieval fails at run-time. This argument is the null string, unless the `-d` option is used.

This utility cannot replace strings in all instances. For example, a static initialized character string cannot be replaced by a function call. A second example is that a string could be in a form of an escape sequence which could not be translated. In order not to break existing code, the files created by invoking `exstr -e` must be examined and lines containing strings not replaceable by function calls must be deleted. In some cases the code may require modifications so that strings can be extracted and replaced by calls to the message retrieval function.

**OPTIONS**

The following options are supported:

- `e` Extract a list of strings from the named C-language source files, with positional information. This list is produced on standard output in the following format:

  file:line:position:msgfile:msgnum:string

  file the name of a C-language source file
Normally you would redirect this output into a file. Then you would edit this file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace string. A file with this name must be created and installed in the appropriate place by the mkmsgs(1) utility.

msgnum the sequence number of the string in msgfile.

The next step is to use exstr -r to replace strings in file.

-exstr -r Replace strings in a C-language source file with function calls to the message retrieval function gettxt().

exstr -d This option is used together with the -r option. If the message retrieval fails when gettxt() is invoked at run-time, then the extracted string is printed. You would use the capability provided by exstr on an application program that needs to run in an international environment and have messages print in more than one language. exstr replaces text strings with function calls that point at strings in a message data base. The data base used depends on the run-time value of the LC_MESSAGES environment variable (see environ(5)).

EXAMPLES

**EXAMPLE 1** The following examples show uses of exstr

Assume that the file example.c contains two strings:

```c
main()
{
 printf("This is an example\n");
 printf("Hello world!\n");
}
```

The exstr utility, invoked with the argument example.c extracts strings from the named file and prints them on the standard output.

```
example% exstr example.c
```

produces the following output:
The following examples show uses of exstr

```c
example.c:This is an example
example.c:Hello world!
```

The `exstr` utility, invoked with the `-e` option and the argument `example.c`, and redirecting output to the file `example.stringsout`

```bash
example$ exstr -e example.c > example.stringsout
```

produces the following output in the file `example.stringsout`

```c
example.c:3:8:::This is an example
example.c:4:8:::Hello world!
```

You must edit `example.stringsout` to add the values you want to use for the `msgfile` and `msgnum` fields before these strings can be replaced by calls to the retrieval function. If `UX` is the name of the message file, and the numbers 1 and 2 represent the sequence number of the strings in the file, here is what `example.stringsout` looks like after you add this information:

```c
example.c:3:8:UX:1:This is an example
example.c:4:8:UX:2:Hello world!
```

The `exstr` utility can now be invoked with the `-r` option to replace the strings in the source file by calls to the message retrieval function `gettxt()`.

```bash
example$ exstr -r example.c <example.stringsout >intlexample.c
```

produces the following output:

```c
extern char *gettxt();
main()
{
 printf(gettxt("UX:1", ""));
 printf(gettxt("UX:2", ""));
}
```

The following example:

```bash
example$ exstr -rd example.c <example.stringsout >intlexample.c
```

uses the extracted strings as a second argument to `gettxt()`:

```c
extern char *gettxt();
main()
{
```
EXAMPLE 1 The following examples show uses of exstr  

(Continued)

    printf(gettxt("UX:1", "This is an example\n");
    printf(gettxt("UX:2", "Hello world!\n");
}

FILES
/usr/lib/locale/locale/LC_MESSAGES/*
files created by mkmsgs(1)

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO
gettext(1), mkmsgs(1), printf(1), srchtxt(1), gettext(3C), printf(3C), 
setlocale(3C), attributes(5), environ(5)

DIAGNOSTICS
The error messages produced by exstr are intended to be self-explanatory. They 
indicate errors in the command line or format errors encountered within the input file.
NAME
face – executable for the Framed Access Command Environment Interface

SYNOPSIS
face [-i init_file] [-c command_file] [-a alias_file] [filename...]

DESCRIPTION
The Framed Access Command Environment Interface (FACE) presents your files and file folders on the screen through a system of menus and forms if you are properly set up as a FACE user.

filename must follow the naming convention Menu.xxx for a menu, Form.xxx for a form, and Text.xxx for a text file, where xxx is any string that conforms to the UNIX system file naming conventions. The Form and Menu Language Interpreter (FMLI) descriptor lifetime will be ignored for all frames opened by argument to face. These frames have a lifetime of immortal by default. If filename is not specified on the command line, the FACE Menu will be opened along with those objects specified by the LOGINWIN environment variables. These variables are found in the user’s .environ file.

OPTIONS
The following options are supported:
- -a alias_file Alias file
- -c command_file Command file
- -i init_file Initial file

OPERANDS
The following operand is supported:
filename The full pathname of the file describing the object to be opened initially.

EXIT STATUS
The face command will return a non-zero exit value if the user is not properly set up as a FACE user.

FILES
$HOME/pref/.environ

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfac</td>
</tr>
</tbody>
</table>

SEE ALSO
env(1), attributes(5)
NAME  
factor – obtain the prime factors of a number

SYNOPSIS  
factor [integer]

DESCRIPTION  
factor writes to standard input all prime factors for any positive integer less than or equal to 10^{14}. The prime factors are written the proper number of times.

If factor is used without an argument, it waits for an integer to be entered. After entry of the integer, it factors it, writes its prime factors the proper number of times, and then waits for another integer. factor exits if a 0 or any non-numeric character is entered.

If factor is invoked with an argument (integer), it writes the integer, factors it and writes all the prime factors as described above, and then exits. If the argument is 0 or non-numeric, factor writes a 0 and then exits.

The maximum time to factor an integer is proportional to sqrt(n), where n is the integer which is entered. factor will take this time when n is prime or the square of a prime.

OPERANDS  
integer Any positive integer less than or equal to 10^{14}.

EXIT STATUS  
0 Successful completion.
1 An error occurred.

DIAGNOSTICS  
factor prints the error message Ouch! for input out of range or for garbage input.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO  
attributes(5)
NAME  fastboot, fasthalt – reboot/halt the system without checking the disks

SYNOPSIS  
/usr/ucb/fastboot [boot-options]
/usr/ucb/fasthalt [halt-options]

DESCRIPTION  fastboot and fasthalt are shell scripts that invoke reboot and halt with the proper arguments.

These commands are provided for compatibility only.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO  fsck(1M), halt(1M), init(1M), reboot(1M), init.d(4), attributes(5)
fdformat(1)

NAME
fdformat – format floppy diskette or PCMCIA memory card

SYNOPSIS
fdformat [-dDeEfHlLmMUqvx] [-b label] [-B filename] [-t dostype]
          [devname]

DESCRIPTION
The fdformat utility has been superseded by rmformat(1), which provides most but
not all of fdformat’s functionality.

fdformat is used to format diskettes and PCMCIA memory cards. All new blank
diskettes or PCMCIA memory cards must be formatted before they can be used.

fdformat formats and verifies the media and indicates whether any bad sectors were
encountered. All existing data on the diskette or PCMCIA memory card, if any, is
destroyed by formatting. If no device name is given, fdformat uses the diskette as a
default.

By default, fdformat uses the configured capacity of the drive to format the diskette.
A 3.5 inch high-density drive uses diskettes with a formatted capacity of 1.44MB. A
5.25 inch high-density drive uses diskettes with a formatted capacity of 1.2MB. In
either case, a density option does not have to be specified to fdformat. However, a
density option must be specified when using a diskette with a lower capacity than the
drive’s default. Use the -H option to format high-density diskettes (1.44MB capacity)
in an extra-high-density (ED) drive. Use the -D option, the -L option, or the -l option
to format double-density (or low-density) diskettes (720KB capacity) in an HD or ED
drive. To format medium-density diskettes (1.2MB capacity), use the -M option with
-t nec (this is the same as using the -m option with -t nec).

Extended density uses double-sided, extended-density or extra-high-density (DS/ED)
diskettes. Medium and high densities use the same media: double-sided, high-density
(DS/HD) diskettes. Double (low) density uses double-sided, double-density (DS/DD
D) diskettes. Substituting diskettes of one density for diskettes of either a higher or
lower density generally does not work. Data integrity cannot be assured whenever a
diskette is formatted to a capacity not matching its density.

A PCMCIA memory card with densities from 512KB to 64MB may be formatted.

fdformat writes new identification and data fields for each sector on all tracks unless
the -x option is specified. For diskettes, each sector is verified if the -v option is
specified.

After formatting and verifying, fdformat writes an operating-system label on block
0. Use the -t dos option (same as the -d option) to put an MS-DOS file system on the
diskette or PCMCIA memory card after the format is done. Use the -t nec option with
the -M option (same as the -m option) to put an NEC-DOS file system on a diskette.
Otherwise, fdformat writes a SunOS label in block 0.

OPTIONS
The following options are supported:
## OPERANDS

The following operands are supported:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-b label</code></td>
<td>Labels the media with volume label. A SunOS volume label is restricted to 8 characters. A DOS volume label is restricted to 11 upper-case characters.</td>
</tr>
<tr>
<td><code>-B filename</code></td>
<td>Installs special boot loader in filename on an MS-DOS diskette. This option is only meaningful when the <code>-d</code> option (or <code>-tdos</code>) is also specified.</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>Formats a <code>720KB (3.5 inch)</code> or <code>360KB (5.25 inch)</code> double-density diskette (same as the <code>-l</code> or <code>-L</code> options). This is the default for double-density type drives. It is needed if the drive is a high- or extended-density type.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Ejects the diskette when done. This feature is not available on all systems.</td>
</tr>
<tr>
<td><code>-E</code></td>
<td>Formats a <code>2.88MB (3.5 inch)</code> extended-density diskette. This is the default for extended-density type drives.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Forces formatting, that is, this option does not ask for confirmation before starting format.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Formats a <code>1.44MB (3.5 inch)</code> or <code>1.2MB (5.25 inch)</code> high-density diskette. This is the default for high-density type drives; it is needed if the drive is the extended-density type.</td>
</tr>
<tr>
<td><code>-M</code></td>
<td>Writes a <code>1.2MB (3.5 inch)</code> medium-density format on a high-density diskette (use only with the <code>-t nec</code> option). This is the same as using <code>-m</code>. This feature is not available on all systems.</td>
</tr>
<tr>
<td><code>-q</code></td>
<td>Quiet; does not print status messages.</td>
</tr>
<tr>
<td><code>-tdos</code></td>
<td>Installs an MS-DOS file system and boot sector formatting. This is equivalent to the DOS format command or the <code>-d</code> option.</td>
</tr>
<tr>
<td><code>-tnec</code></td>
<td>Installs an NEC-DOS file system and boot sector on the disk after formatting. This should be used only with the <code>-M</code> option. This feature is not available on all systems.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Performs <code>umount</code> on any file systems and then formats. See <code>mount(1M)</code>.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Verifies each block of the diskette after the format.</td>
</tr>
<tr>
<td><code>-x</code></td>
<td>Skips the format and only writes a SunOS label or an MS-DOS file system.</td>
</tr>
</tbody>
</table>

### User Commands

- `label`: Represents labels for media.
- `filename`: Represents filenames for special boot loaders.
- `devname`: Represents device names for diskettes.
Management) or floppy1 (systems with Volume Management) to use the second drive. If devname is omitted, the first drive, if one exists, is used. For PCMCIA memory cards, replace devname with the device name for the PCMCIA memory card which resides in /dev/rdsk/cNdNsN or /dev/dsk/cNdNsN. If devname is omitted, the default diskette drive, if one exists, is used.

If devname is omitted, the default diskette drive, if one exists, will be used. N represents a decimal number and can be specified as follows:

- cN Controller N
- tN Technology type N:
  - 0x1 ROM
  - 0x2 OTPROM
  - 0x3 EPROM
  - 0x4 EEPROM
  - 0x5 FLASH
  - 0x6 SRAM
  - 0x7 DRAM
- dN Technology region in type N.
- sN Slice N.

The following options are provided for compatibility with previous versions of fdformat. Their use is discouraged.

- -d Formats an MS-DOS floppy diskette or PCMCIA memory card (same as -tdos). This is equivalent to the MS-DOS FORMAT command.
- -l Formats a 720KB (3.5 inch) or 360KB (5.25 inch) double-density diskette (same as -D or -L). This is the default for double-density type drives; it is needed if the drive is the high- or extended-density type.
- -L Formats a 720KB (3.5 inch) or 360KB (5.25 inch) double-density diskette (same as -1 or -D). This is the default for double-density type drives.
- -m Writes a 1.2 MB (3.5 inch) medium-density format on a high-density diskette (use only with the -t nec option). This is the same as using -M. This feature is not available on all systems.

FILES

- /vol/dev/diskette0 Directory providing block device access for the media in floppy drive 0.
- /vol/dev/diskette0 Directory providing character device access for the media in floppy drive 0.
Symbolic link to the character device for the media in floppy drive 0.

Directory providing character device access for the media in the primary floppy drive, usually drive 0.

Directory providing block device access for the PCMCIA memory card. See OPERANDS for a description of N.

Directory providing character device access for the PCMCIA memory card. See OPERANDS for a description of N.

Symbolic link to the character device for the PCMCIA memory card in socket S where S represents a PCMCIA socket number.

Directory providing character device access for the PCMCIA memory card. See OPERANDS for a description of N.

Directory providing block device access for the PCMCIA memory card. See OPERANDS for a description of N.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
cpio(1), eject(1), rmformat(1), tar(1), volcancel(1), volcheck(1), volmissing(1), volrmmount(1), mount(1M), newfs(1M), prtvtoc(1M), vold(1M), rmmount.conf(4), vold.conf(4), attributes(5), pcfs(7FS), volfs(7FS)

fd(7D)

x86 Only

NOTES

A diskette or PCMCIA memory card containing a ufs file system created on a SPARC based system (by using fdformat and newfs(1M)), is not identical to a diskette or PCMCIA memory card containing a ufs file system created on an x86 based system. Do not interchange ufs diskettes or memory cards between these platforms. Use cpio(1) or tar(1) to transfer files on diskettes or memory cards between them. A diskette or PCMCIA memory card formatted using the -t dos option (or -d) for MS-DOS does not have the necessary system files, and is therefore not bootable. Trying to boot from it on a PC produces the following message:

Non-System disk or disk error.
Replace and strike any key when ready
Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA memory cards. Therefore, a diskette or memory card is unusable if `fdformat` finds an error (bad sector).
The `fgrep` utility searches files for a character string and prints all lines that contain that string. `fgrep` is different from `grep(1)` and from `egrep(1)` because it searches for a string, instead of searching for a pattern that matches an expression. `fgrep` uses a fast and compact algorithm.

The characters $, *, [, ^, |, (, ), and \ are interpreted literally by `fgrep`, that is, `fgrep` does not recognize full regular expressions as does `egrep`. These characters have special meaning to the shell. Therefore, to be safe, enclose the entire `string` within single quotes (').

If no files are specified, `fgrep` assumes standard input. Normally, each line that is found is copied to the standard output. The file name is printed before each line that is found if there is more than one input file.

### OPTIONS

The following options are supported:

- `-b` Precedes each line by the block number on which the line was found. This can be useful in locating block numbers by context.
  The first block is 0.
- `-c` Prints only a count of the lines that contain the pattern.
- `-e pattern_list` Searches for a string in `pattern-list`. This is useful when the `string` begins with a −.
- `-f pattern-file` Takes the list of patterns from `pattern-file`.
- `-h` Suppresses printing of files when searching multiple files.
- `-i` Ignores upper/lower case distinction during comparisons.
- `-l` Prints the names of files with matching lines once, separated by new-lines. Does not repeat the names of files when the pattern is found more than once.
- `-n` Precedes each line by its line number in the file. The first line is 1.
- `-s` Works silently, that is, displays nothing except error messages.
  This is useful for checking the error status.
- `-v` Prints all lines except those that contain the pattern.
- `-x` Prints only lines that are matched entirely.

### OPERANDS

The following operands are supported:
fgrep(1)

file

Specifies a path name of a file to be searched for the patterns. If no
file operands are specified, the standard input will be used.

/usr/bin/fgrep

pattern

Specifies a pattern to be used during the search for input.

/usr/xpg4/bin/fgrep

pattern

Specifies one or more patterns to be used during the search for
input. This operand is treated as if it were specified as -e
pattern_list.

USAGE

See largefile(5) for the description of the behavior of fgrep when encountering
files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT

VARIABLES

See environ(5) for descriptions of the following environment variables that affect the
execution of fgrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 If any matches are found
1 If no matches are found
2 For syntax errors or inaccessible files, even if matches were found.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

/usr/bin/fgrep

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

/usr/xpg4/bin/fgrep

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

ed(1), egrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
XPG4(5)

NOTES

Ideally, there should be only one grep command, but there is not a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The /usr/xpg4/bin/fgrep utility is identical to /usr/xpg4/bin/grep -F (see
grep(1)). Portable applications should use /usr/xpg4/bin/grep -F.
file(1)

NAME
file – determine file type

SYNOPSIS
file [-h] [-m mfile] [-f ffile] file...
file [-h] [-m mfile] -f ffile
file -c [-m mfile]

DESCRIPTION
The file utility performs a series of tests on each file supplied by file and, optionally, on each file listed in ffile in an attempt to classify it. If the file is not a regular file, its file type is identified. The file types directory, FIFO, block special, and character special are identified as such. If the file is a regular file and the file is zero-length, it is identified as an empty file.

If file appears to be a text file, file examines the first 512 bytes and tries to determine its programming language. If file is an executable a.out, file prints the version stamp, provided it is greater than 0. If file is a symbolic link, by default the link is followed and file tests the file to which the symbolic link refers.

By default, file will try to use the localized magic file
/usr/lib/locale/locale/LC_MESSAGES/magic, if it exists, to identify files that have a magic number. For example, in the Japanese locale, file will try to use
/usr/lib/locale/ja/LC_MESSAGES/magic. If a localized magic file does not exist, file will utilize /etc/magic. A magic number is a numeric or string constant that indicates the file type. See magic(4) for an explanation of the format of /etc/magic.

If file does not exist, cannot be read, or its file status could not be determined, it is not considered an error that affects the exit status. The output will indicate that the file was processed, but that its type could not be determined.

OPTIONS
The following options are supported:
- c
  Checks the magic file for format errors. For reasons of efficiency, this validation is normally not carried out.
- h
  Does not follow symbolic links.
- f ffile
  ffile contains a list of the files to be examined.
- m mfile
  Uses mfile as an alternate magic file, instead of /etc/magic.

OPERANDS
The following operands are supported:
file
  A path name of a file to be tested.

USAGE
See largefile(5) for the description of the behavior of file when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXAMPLES
EXAMPLE 1 Binary executable files
Determine if an argument is a binary executable file:
EXAMPLE 1 Binary executable files  (Continued)

```
file "$1" | grep −Fq executable && printf "%s is executable.\n" "$1"
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of file: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/etc/magic  file’s magic number file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
ls(1), magic(4), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS
If the -h option is specified and file is a symbolic link, file prints the error message:
symbolic link to file
NAME  
file – determine the type of a file by examining its contents

SYNOPSIS  
/usr/ucb/file [-f file] [-cL] [-m mfile] filename...

DESCRIPTION  
file performs a series of tests on each filename in an attempt to determine what it contains. If the contents of a file appear to be ASCII text, file examines the first 512 bytes and tries to guess its language.

file uses the file /etc/magic to identify files that have some sort of magic number, that is, any file containing a numeric or string constant that indicates its type.

OPTIONS  
- C  Check for format errors in the magic number file. For reasons of efficiency, this validation is not normally carried out. No file type-checking is done under -c.
- f file  Get a list of filenames to identify from file.
- L  If a file is a symbolic link, test the file the link references rather than the link itself.
- m mfile  Use mfile as the name of an alternate magic number file.

EXAMPLES  
EXAMPLE 1 Using file on all the files in a specific user’s directory.

This example illustrates the use of file on all the files in a specific user’s directory:

example$ pwd
/usr/blort/misc
example$ /usr/ucb/file *

code:     mc68020 demand paged executable
code.c:    c program text
counts:    ascii text
doc:       roff,nroff, or eqn input text
empty.file: empty
libz:      archive random library
memos:     directory
project:   symbolic link to /usr/project
script:    executable shell script
titles:    ascii text
s5.stuff:  cpio archive
example$

ENVIRONMENT VARIABLES  
The environment variables LC_CTYPE, LANG, and LC_default control the character classification throughout file. On entry to file, these environment variables are checked in the following order: LC_CTYPE, LANG, and LC_default. When a valid value is found, remaining environment variables for character classification are ignored. For example, a new setting for LANG does not override the current valid character classification rules of LC_CTYPE. When none of the values is valid, the shell character classification defaults to the POSIX.1 “C” locale.

FILES  
/etc/magic
file(1B)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO

magic(4), attributes(5)

BUGS

file often makes mistakes. In particular, it often suggests that command files are C programs.

does not recognize Pascal or LISP.
**NAME**
filesync – synchronize ordinary, directory or special files

**SYNOPSIS**
```
filesync [-aeHmnqvy] [-o src | dst] [-f src | dst | old | new]
 [-r directory...]
```
```
filesync [-aeHmnqvy] -s source-dir -d dest-dir filename...
```

**DESCRIPTION**
The `filesync` utility synchronizes files between multiple computer systems, typically a server and a portable computer. `filesync` synchronizes ordinary, directory or special files. Although intended for use on nomadic systems, `filesync` is useful for backup and file replication on more permanently connected systems.

If files are synchronized between systems, the corresponding files on each of the systems are *identical*. Changing a file on one or both of the systems causes the files to become different (not synchronized). In order to make the files identical again, the differences between the files must be reconciled. See **Reconciling and Synchronizing Files** for specific details about how `filesync` reconciles and synchronizes files.

There are two forms of the `filesync` command. The first form of `filesync` is invoked without file arguments. This form of `filesync` reconciles differences between the files and systems specified in the `$HOME/.packingrules` file. `$HOME/.packingrules` is a packing rules list for `filesync` and `cachefspack`, and contains a list of files to be kept synchronized. See `packingrules(4)` and `cachefspack(1M)`.

The second form of `filesync` copies specific files from a directory on the source system to a directory on the destination system. In addition, this form of `filesync` adds the file or files specified as arguments (`filename`) to `$HOME/.packingrules` file. See `-s` and `-d` for information about specifying directories on source and destination systems. See `OPERANDS` for details about specifying file (`filename`) arguments.

Multiple `filesync` commands are cumulative (that is, the specified files are added to the already existing packing rules file list). See **Multiple `filesync` Commands**.

`filesync` synchronizes files between computer systems by performing the following two tasks:

1. `filesync` examines the directories and files specified in the packing rules file on both systems, and determines whether or not they are identical. Any file that differs requires reconciliation.
   `filesync` also maintains a baseline summary in the `$HOME/.filesync-base` file for all of the files that are being monitored. This file lists the names, types, and sizes of all files as of the last reconciliation.

2. Based on the information contained in the baseline file and the specified options (see **Resolving `filesync` Conflicts**), `filesync` determines which of the various copies is the correct one, and makes the corresponding changes to the other system. Once this has been done, the two copies are, again, identical (synchronized).
If a source file has changed and the destination file has not, the changes on the source system are propagated to the destination system. If a destination file has changed and the corresponding source file has not, the changes on the destination file are propagated to the source system. If both systems have changed (and the files are not still identical) a warning message will be printed out, asking the user to resolve the conflict manually. See Resolving filesync Conflicts.

Resolving filesync Conflicts

In cases where files on both sides have changed, filesync attempts to determine which version should be chosen. If filesync cannot automatically determine which version should be selected, it prints out a warning message and leaves the two incompatible versions of the file unreconciled.

In these cases, you must either resolve the differences manually, or tell filesync how to choose which file should win. Use the -o and -f options to tell filesync how to resolve conflicts (see OPTIONS).

Alternatively, for each conflicting file, you can examine the two versions, determine which one should be kept, and manually bring the two versions into agreement (by copying, deleting, or changing the ownership or protection to be correct). You can then re-run filesync to see whether or not any other conflicts remain.

Packing Rules File

The packing rules file $HOME/.packingrules contains a list of files to be kept synchronized. The syntax of this file is described in packingrules(4).

The $HOME/.packingrules file is automatically created if users invoke filesync with filename arguments. By using filesync options, users can augment the packing rules in $HOME/.packingrules.

Many users choose to create the packing rules file manually and edit it by hand. Users can edit $HOME/.packingrules (using any editor) to permanently change the $HOME/.packingrules file, or to gain access to more powerful options that are not available from the command line (such as IGNORE commands). It is much easier to enter complex wildcard expressions by editing the $HOME/.packingrules file.

Baseline File

$HOME/filesync-base is the filesync baseline summary file. filesync uses the information in $HOME/filesync-base to identify the differences between files during the reconciliation and synchronization process. Users do not create or edit the baseline file. It is created automatically by filesync and records the last known state of agreement between all of the files being maintained.

Multiple filesync Commands

Over a period of time, the set of files you want to keep synchronized can change. It is common, for instance, to want to keep files pertaining to only a few active projects on your notebook. If you continue to keep files associated with every project you have ever worked on synchronized, your notebook's disk will fill up with old files. Each filesync command will waste a lot of time updating files you no longer care about.

If you delete the files from your notebook, filesync will want to perform the corresponding deletes on the server, which would not be what you wanted. Rather, you would like a way to tell filesync to stop synchronizing some of the files. There are two ways to do this:
1. Edit $HOME/.packingrules. Delete the rules for the files that you want to delete.
2. Delete $HOME/.packingrules. Use the filesync command to specify the files
that you want synchronized.

Either way works, and you can choose the one that seems easiest to you. For minor
changes, it is probably easier to just edit $HOME/.packingrules. For major changes
it is probably easier to start from scratch.

Once filesync is no longer synchronizing a set of files, you can delete them from
your notebook without having any effect on the server.

When using filesync to keep files synchronized between nomadic machines and a
server, store the packing rules and baseline files on the nomadic machines, not the
server. If, when logged into your notebook, the HOME environment variable does not
normally point to a directory on your notebook, you can use the FILESYNC
environment variable to specify an alternate location for the packing rules and
baseline files.

Each nomadic machine should carry its own packing rules and baseline file. Incorrect
file synchronization can result if a server carries a baseline file and multiple nomadic
machines attempt to reconcile against the server's baseline file. In this case, a nomadic
machine could be using a baseline file that does not accurately describe the state of its
files. This might result in incorrect reconciliations.

To safeguard against the dangers associated with a single baseline file being shared by
more than two machines, filesync adds a default rule to each new packing rules
file. This default rule prevents the packing rules and baseline files from being copied.

OPTIONS
The following options are supported:

-a
Force the checking of Access Control Lists (ACLs) and attempt to make them agree
for all new and changed files. If it is not possible to set the ACL for a particular file,
filesync stops ACL synchronization for that file.

Some file systems do not support ACLs. It is not possible to synchronize ACLs
between file systems that support ACLs and those that do not; attempting to do so
will result in numerous error messages.

-d dest-dir
Specify the directory on the destination system into which filename is to be copied.
Use with the -s source-dir option and the filename operand. See -s and OPERANDS.

-e
Flag all differences. It may not be possible to resolve all conflicts involving modes
and ownership (unless filesync is being run with root privileges). If you cannot
change the ownership or protections on a file, filesync will normally ignore
conflicts in ownership and protection. If you specify the -e (everything must agree)
flag, however, filesync will flag these differences.
The `-f` option tells `filesync` how to resolve conflicting changes. If a file has been changed on both systems, and an `-f` option has been specified, `filesync` will retain the changes made on the favored system and discard the changes made on the unfavored system.

Specify `-f src` to favor the source-system file. Specify `-f dst` to favor the destination-system file. Specify `-f old` to favor the older version of the file. Specify `-f new` to favor the newer version of the file.

It is possible to specify the `-f` and `-o` options in combination if they both specify the same preference (`src` and `dst`). If `-f` and `-o` conflict, the `-f` option is ignored. See the `-o` option description.

- `h`
  Halt on error. Normally, if `filesync` encounters a read or write error while copying files, it notes the error and the program continues, in an attempt to reconcile other files. If the `-h` option is specified, `filesync` will immediately halt when one of these errors occurs and will not try to process any more files.

- `m`
  Ensure that both copies of the file have the same modification time. The modification time for newly copied files is set to the time of reconciliation by default. File changes are ordered by increasing modification times so that the propagated files have the same relative modification time ordering as the original changes. Users should be warned that there is usually some time skew between any two systems, and transferring modification times from one system to another can occasionally produce strange results.

There are instances in which using `filesync` to update some (but not all) files in a directory will confuse the `make` program. If, for instance, `filesync` is keeping `.c` files synchronized, but ignoring `.o` files, a changed `.c` file may show up with a modification time prior to a `.o` file that was built from a prior version of the `.c` file.

- `n`
  Do not really make the changes. If the `-n` option is specified, `filesync` determines what changes have been made to files, and what reconciliations are required and displays this information on the standard output. No changes are made to files, including the packing rules file.

Specifying both the `-n` and `-o` options causes `filesync` to analyze the prevailing system and report the changes that have been made on that system. Using `-n` and `-o` in combination is useful if your machine is disconnected (and you cannot access the server) but you want to know what changes have been made on the local machine. See the `-o` option description.

- `o src | dst`
  The `-o` option forces a one-way reconciliation, favoring either the source system (`src`) or destination system (`dst`).
Specify `-o src` to propagate changes only from the source system to the destination system. Changes made on the destination system are ignored. `filesync` aborts if it cannot access a source or destination directory.

Specify `-o dst` to propagate changes only from the destination system to the source system. Changes made on the source system are ignored. `filesync` aborts if it cannot access a source or destination directory.

Specifying `-n` with the `-o` option causes `filesync` to analyze the prevailing system and reports on what changes have been made on that system. Using `-n` and `-o` in combination is useful if a machine is disconnected (and there is no access to the server), but you want to know what changes have been made on the local machine. See the `-n` option description.

It is possible to specify the `-o` and `-f` options in combination if they both specify the same preference (`src` or `dst`). If `-o` and `-f` options conflict, the `-f` option will be ignored. See the `-f` option description.

```
-q
```

Suppress the standard `filesync` messages that describe each reconciliation action as it is performed.

The standard `filesync` message describes each reconciliation action in the form of a UNIX shell command (for example, `mv`, `ln`, `cp`, `rm`, `chmod`, `chown`, `chgrp`, `setfacl`, and so forth).

```
-r directory
```

Limit the reconciliation to `directory`. Specify multiple directories with multiple `-r` specifications.

```
-s source-dir
```

Specify the directory on the source system from which the `filename` to be copied is located. Use with the `-a dest-dir` option and the `filename` operand. See the `-a` option description and OPERANDS.

```
-v
```

Display additional information about each file comparison as it is made on the standard output.

```
-y
```

Bypass safety check prompts. Nomadic machines occasionally move between domains, and many of the files on which `filesync` operates are expected to be accessed by NFS. There is a danger that someday `filesync` will be asked to reconcile local changes against the wrong file system or server. This could result in a large number of inappropriate copies and deletions. To prevent such a mishap, `filesync` performs a few safety checks prior to reconciliation. If large numbers of files are likely to be deleted, or if high level directories have changed their I-node numbers, `filesync` prompts for a confirmation before reconciliation. If you know that this is likely, and do not want to be prompted, use the `-y` (yes) option to automatically confirm these prompts.
The following operands are supported:

filename

The name of the ordinary file, directory, symbolic link, or special
file in the specified source directory (source-dir) to be synchronized.
Specify multiple files by separating each filename by spaces. Use
the filename operand with the -s and -d options. See OPTIONS.

If filename is an ordinary file, that ordinary file will be replicated
(with the same filename) in the specified destination directory
(dest-dir).

If filename is a directory, that directory and all of the files and
subdirectories under it will be replicated (recursively) in the
specified destination directory (dest-dir).

If filename is a symbolic link, a copy of that symbolic link will be
replicated in the specified destination directory (dest-dir).

If filename is a special file, a special file with the same major or
minor device numbers will be replicated in the specified
destination directory. (dest-dir). Only super-users can use
filesystem to create special files.

Files created in the destination directory (dest-dir) will have the
same owner, group and other permissions as the files in the source
directory.

If filename contains escaped shell wildcard characters, the wildcard
characters are stored in $HOME/.packingrules and evaluated
each time filesystem is run.

For example, the following would make sure that the two specified
files, currently in $RHOME, were replicated in $HOME:

filesystem -s $RHOME -d $HOME a.c b.c

The following example would ensure that all of the *.c files in
$RHOME were replicated in $HOME, even if those files were not
created until later.

filesystem -s $RHOME -d $HOME ‘*.c’

If any of the destination files already exist, filesystem ensures that
they are identical and issues warnings if they are not.

Once files have been copied, the distinction between the source
and destination is a relatively arbitrary one (except for its use in
the -o and -f switches).

filesystem(1)
variable is $HOME. The suffixes .packingrules and .filesync-base will be appended to form the names of the packing rules and baseline files.

**LC_MESSAGES**

Determines how diagnostic and informative messages are presented. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

**EXIT STATUS**

Normally, if all files are already up-to-date, or if all files were successfully reconciled, `filesync` will exit with a status of 0. However, if either the -n option was specified or any errors occurred, the exit status will be the logical OR of the following:

- 0: No conflicts, all files up to date.
- 1: Some resolvable conflicts.
- 2: Some conflicts requiring manual resolution.
- 4: Some specified files did not exist.
- 8: Insufficient permission for some files.
- 16: Errors accessing packing rules or baseline file.
- 32: Invalid arguments.
- 64: Unable to access either or both of the specified src or dst directories.
- 128: Miscellaneous other failures.

**FILES**

- $HOME/.packingrules: list of files to be kept synchronized
- $HOME/.filesync-base: baseline summary file

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

**SEE ALSO**
cachefspack(1M), packingrules(4), attributes(5)
find(1)

NAME  find – find files

SYNOPSIS  /usr/bin/find  path… expression
           /usr/xpg4/bin/find  path… expression

DESCRIPTION  The find utility recursively descends the directory hierarchy for each path seeking files that match a Boolean expression written in the primaries given below.

find will be able to descend to arbitrary depths in a file hierarchy and will not fail due to path length limitations (unless a path operand specified by the application exceeds PATH_MAX requirements).

OPERANDS  The following operands are supported:

  path     A path name of a starting point in the directory hierarchy.

  expression     The first argument that starts with a −, or is a ! or a :, and all subsequent arguments will be interpreted as an expression made up of the following primaries and operators. In the descriptions, wherever n is used as a primary argument, it will be interpreted as a decimal integer optionally preceded by a plus (+) or minus (−) sign, as follows:

                     +n     more than n
                     n     exactly n
                    -n     less than n

Expressions  Valid expressions are:

  -atime n     True if the file was accessed n days ago. The access time of directories in path is changed by find itself.

  -cpio device     Always true. Writes the current file on device in cpio format (5120-byte records).

  -ctime n     True if the file’s status was changed n days ago.

  -depth     Always true. Causes descent of the directory hierarchy to be done so that all entries in a directory are acted on before the directory itself. This can be useful when find is used with cpio(1) to transfer files that are contained in directories without write permission.

  -exec command     True if the executed command returns a zero value as exit status. The end of command must be punctuated by an escaped semicolon (;). A command argument { } is replaced by the current path name. If the last argument to -exec is { } and you specify + rather than the semicolon (;), the command will be invoked fewer times, with { } replaced by groups of pathnames.
Always true. Causes symbolic links to be followed. When following symbolic links, `find` keeps track of the directories visited so that it can detect infinite loops. For example, such a loop would occur if a symbolic link pointed to an ancestor. This expression should not be used with the `-type l` expression.

- `fstype type`: True if the filesystem to which the file belongs is of type `type`.

- `group gname`: True if the file belongs to the group `gname`. If `gname` is numeric and does not appear in the `/etc/group` file, or in the NIS/NIS+ tables, it is taken as a group ID.

- `inum n`: True if the file has inode number `n`.

- `links n`: True if the file has `n` links.

- `local`: True if the file system type is not a remote file system type as defined in the `/etc/dfs/fstypes` file. `nfs` is used as the default remote filesystem type if the `/etc/dfs/fstypes` file is not present. Note that `-local` will descend the hierarchy of non-local directories. See EXAMPLES for an example of how to search for local files without descending.

- `ls`: Always true. Prints current path name together with its associated statistics. These include (respectively):
  - inode number
  - size in kilobytes (1024 bytes)
  - protection mode
  - number of hard links
  - user
  - group
  - size in bytes
  - modification time.

  If the file is a special file, the size field will instead contain the major and minor device numbers.

  If the file is a symbolic link, the pathname of the linked-to file is printed preceded by ‘→’. The format is identical to that of `ls -gilds` (see `ls(1B)`). Note: Formatting is done internally, without executing the `ls` program.

- `mount`: Always true. Restricts the search to the file system containing the directory specified. Does not list mount points to other file systems.

- `mtime n`: True if the file’s data was modified `n` days ago.

- `name pattern`: True if `pattern` matches the current file name. Normal shell file name generation characters (see `sh(1)`) may be used. A backslash
( \ ) is used as an escape character within the pattern. The pattern should be escaped or quoted when `find` is invoked from the shell.

Unless the character ‘.’ is explicitly specified in the beginning of `pattern`, a current file name beginning with ‘.’ will not match `pattern` when using `/usr/bin/find`. `/usr/xpg4/bin/find` does not make this distinction; wildcard file name generation characters can match file names beginning with ‘.’.

- `ncpio device` Always true. Writes the current file on `device` in `cpio -c` format (5120 byte records).

- `newer file` True if the current file has been modified more recently than the argument `file`.

- `nogroup` True if the file belongs to a group not in the `/etc/group` file, or in the NIS/NIS+ tables.

- `nouser` True if the file belongs to a user not in the `/etc/passwd` file, or in the NIS/NIS+ tables.

- `ok command` Like `-exec`, except that the generated command line is printed with a question mark first, and is executed only if the user responds by typing `y`.

- `perm [-]mode` The `mode` argument is used to represent file mode bits. It will be identical in format to the symbolic mode operand, `symbolic_mode_list`, described in `chmod(1)`, and will be interpreted as follows. To start, a template will be assumed with all file mode bits cleared. An `op` symbol of:

  + Will set the appropriate mode bits in the template
  - Will clear the appropriate bits
  = Will set the appropriate mode bits, without regard to the contents of the file mode creation mask of the process

The `op` symbol of – cannot be the first character of `mode`, to avoid ambiguity with the optional leading hyphen. Since the initial mode is all bits off, there are no symbolic modes that need to use – as the first character.

If the hyphen is omitted, the primary will evaluate as true when the file permission bits exactly match the value of the resulting template.

Otherwise, if `mode` is prefixed by a hyphen, the primary will evaluate as true if at least all the bits in the resulting template are set in the file permission bits.

406  man pages section 1: User Commands  •  Last Revised 6 Jun 2001
-perm [-]onum  True if the file permission flags exactly match the octal number onum (see chmod(1)). If onum is prefixed by a minus sign (−), only the bits that are set in onum are compared with the file permission flags, and the expression evaluates true if they match.

-print  Always true. Causes the current path name to be printed.

-prune  Always yields true. Does not examine any directories or files in the directory structure below the pattern just matched. (See EXAMPLES). If -depth is specified, -prune will have no effect.

-size n[c]  True if the file is n blocks long (512 bytes per block). If n is followed by a c, the size is in bytes.

-type c  True if the type of the file is c, where c is b, c, d, D, f, l, p, or s for block special file, character special file, directory, door, plain file, symbolic link, fifo (named pipe), or socket, respectively.

-user uname  True if the file belongs to the user uname. If uname is numeric and does not appear as a login name in the /etc/passwd file, or in the NIS/NIS+ tables, it is taken as a user ID.

-xdev  Same as the -mount primary.

-xattr  True if the file has extended attributes.

The primaries may be combined using the following operators (in order of decreasing precedence):

1) ( expression )  True if the parenthesized expression is true (parentheses are special to the shell and must be escaped).

2) ! expression  The negation of a primary (! is the unary not operator).

3) expression [-a] expression  Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

4) expression -o expression  Alternation of primaries (-o is the or operator).

Note: When you use find in conjunction with cpio, if you use the -L option with cpio then you must use the -follow expression with find and vice versa. Otherwise there will be undesirable results.

If no expression is present, -print will be used as the expression. Otherwise, if the given expression does not contain any of the primaries -exec, -ok or -print, the given expression will be effectively replaced by:

(given_expression) -print
The -user, -group, and -newer primaries each will evaluate their respective arguments only once. Invocation of command specified by -exec or -ok does not affect subsequent primaries on the same file.

**USAGE**

See largefile(5) for the description of the behavior of find when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

**EXAMPLES**

**EXAMPLE 1** Writing out the hierarchy directory

The following commands are equivalent:

```
example$ find .
exmple$ find . -print
```

They both write out the entire directory hierarchy from the current directory.

**EXAMPLE 2** Removing files

Remove all files in your home directory named a.out or *.o that have not been accessed for a week:

```
exmple$ find $HOME \(-name a.out -o -name "*.o" \) \n -atime +7 -exec rm {} \;
```

**EXAMPLE 3** Printing all file names but skipping SCCS directories

Recursively print all file names in the current directory and below, but skipping SCCS directories:

```
exmple$ find . -name SCCS -prune -o -print
```

**EXAMPLE 4** Printing all file names and the SCCS directory name

Recursively print all file names in the current directory and below, skipping the contents of SCCS directories, but printing out the SCCS directory name:

```
exmple$ find . -print -name SCCS -prune
```

**EXAMPLE 5** Testing for the newer file

The following command is basically equivalent to the -nt extension to test(1):

```
exmple$ if \[-n "$\$(find file1 -prune -newer file2)" \]; then
 printf %s\n "file1 is newer than file2"
```

408  man pages section 1: User Commands  •  Last Revised 6 Jun 2001
EXAMPLE 6 Selecting a file using 24-hour mode

The descriptions of -atime, -ctime, and -mtime use the terminology "24-hour periods". For example, a file accessed at 23:59 will be selected by:

```bash
example% find . -atime -1 print
```

at 00:01 the next day (less than 24 hours later, not more than one day ago). The midnight boundary between days has no effect on the 24-hour calculation.

EXAMPLE 7 Printing files matching a user's permission mode

Recursively print all file names whose permission mode exactly matches read, write, and execute access for user, and read and execute access for group and other:

```bash
example% find . -perm u=rwx,g=rx,o=rx
```

The above could alternatively be specified as follows:

```bash
example% find . -perm a=rwx,g-w,o-w
```

EXAMPLE 8 Printing files with write access for other

Recursively print all file names whose permission includes, but is not limited to, write access for other:

```bash
example% find . -perm -o+w
```

EXAMPLE 9 Printing local files without descending non-local directories

```bash
example% find . ! -local -prune -o -print
```

EXAMPLE 10 Printing the files in the name space possessing extended attributes

```bash
example% find . -xattr
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of find: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH

Determine the location of the utility_name for the -exec and -ok primaries.

EXIT STATUS

The following exit values are returned:

0 All path operands were traversed successfully.

>0 An error occurred.

FILES

/etc/passwd password file
/etc/group group file
find(1)

/etc/dfs/fstypes file that registers distributed file system packages

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO
chmod(1), cpio(1), ls(1B), sh(1), test(1), stat(2), umask(2), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)

WARNINGS
The following options are obsolete and will not be supported in future releases:

- `cpio device` Always true. Writes the current file on `device` in cpio format (5120-byte records).
- `ncpio device` Always true. Writes the current file on `device` in cpio-c format (5120-byte records).

NOTES
When using `find` to determine files modified within a range of time, use the `mtime` argument before the `print` argument. Otherwise, `find` will give all files.

Some files that may be under the Solaris root file system are actually mount points for virtual file systems, such as `mntfs` or `namefs`. When comparing against a ufs file system, they will not be selected if `-mount` or `-xdev` is specified in the `find` expression.
finger(1)

NAME
finger – display information about local and remote users

SYNOPSIS
finger [-bfhilmpqsw] [username...]
finger [-l] [ username@hostname 1 [ @hostname 2 .. @hostname n...]]
finger [-l] [ @hostname 1 [ @hostname 2 .. @hostname n...]]

DESCRIPTION
By default, the finger command displays in multi-column format the following
information about each logged-in user:

- user name
- user’s full name
- terminal name (prepended with a ‘*’ (asterisk) if write-permission is denied)
- idle time
- login time
- host name, if logged in remotely

Idle time is in minutes if it is a single integer, in hours and minutes if a ‘:’ (colon) is
present, or in days and hours if a ‘d’ is present.

When one or more username arguments are given, more detailed information is given
for each username specified, whether they are logged in or not. username must be that
of a local user, and may be a first or last name, or an account name. Information is
presented in multi-line format as follows:

- the user name and the user’s full name
- the user’s home directory and login shell
- time the user logged in if currently logged in, or the time the user last logged in;
  and the terminal or host from which the user logged in
- last time the user received mail, and the last time the user read mail
- the first line of the $HOME/.project file, if it exists
- the contents of the $HOME/.plan file, if it exists

Note: when the comment (GECOS) field in /etc/passwd includes a comma, finger
does not display the information following the comma.

If the arguments username@hostname1[@hostname2 ...@hostnamen] or
@hostname1[@hostname2 ...@hostnamen] are used, the request is sent first to
hostnamen and forwarded through each hostnamen-1 to hostname1. The program
uses the finger user information protocol (see RFC 1288) to query that
remote host for information about the named user (if username is specified), or about
each logged-in user. The information displayed is server dependent.
finger(1)

As required by RFC 1288, finger passes only printable, 7-bit ASCII data. This behavior may be modified by a system administrator by using the PASS option in /etc/default/finger. Specifying PASS=low allows all characters less than decimal 32 ASCII. Specifying PASS=high allows all characters greater than decimal 126 ASCII. PASS=low,high or PASS=high,low allows both characters less than 32 and greater than 126 to pass through.

OPTIONS

The following options are supported, except that the username@hostname form supports only the -l option:

- **b**
  Suppresses printing the user’s home directory and shell in a long format printout.
- **f**
  Suppresses printing the header that is normally printed in a non-long format printout.
- **h**
  Suppresses printing of the .project file in a long format printout.
- **i**
  Forces “idle” output format, which is similar to short format except that only the login name, terminal, login time, and idle time are printed.
- **l**
  Forces long output format.
- **m**
  Matches arguments only on user name (not first or last name).
- **p**
  Suppresses printing of the .plan file in a long format printout.
- **q**
  Forces quick output format, which is similar to short format except that only the login name, terminal, and login time are printed.
- **s**
  Forces short output format.
- **w**
  Suppresses printing the full name in a short format printout.

FILES

$HOME/.plan user’s plan
$HOME/.project user’s projects
/etc/default/finger finger options file
/etc/passwd password file
/var/adm/lastlog time of last login
/var/adm/utmpx accounting

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO

passwd(1), who(1), whois(1), passwd(4), attributes(5)

412 man pages section 1: User Commands • Last Revised 6 Nov 2000

**NOTES**

The *finger user information protocol* limits the options that may be used with the remote form of this command.
fmlcut(1F)

NAME  
fmlcut – cut out selected fields of each line of a file

SYNOPSIS  
fmlcut -clist [filename...]

fmlcut -flist [-dchar] [-s] [filename...]

DESCRIPTION  
The fmlcut function cuts out columns from a table or fields from each line in filename; in database parlance, it implements the projection of a relation. fmlcut can be used as a filter; if filename is not specified or is ~, the standard input is read. list specifies the fields to be selected. Fields can be fixed length (character positions) or variable length (separated by a field delimiter character), depending on whether -c or -f is specified.

Note: Either the -c or the -f option must be specified.

OPTIONS  
list  
A comma-separated list of integer field numbers (in increasing order), with optional – to indicate ranges. For example: 1, 4, 7; 1-3, 8; -5, 10 (short for 1-5, 10); or 3- (short for third through last field).

-clist  
If -c is specified, list specifies character positions (for instance, -c1-72 would pass the first 72 characters of each line). Note: No space intervenes between -c and list.

-flist  
If -f is specified, list is a list of fields assumed to be separated in the file by the default delimiter character, TAB, or by char if the -d option is specified. For example, -f1, 7 copies the first and seventh field only. Lines with no delimiter characters are passed through intact (useful for table subheadings), unless -s is specified. Note: No space intervenes between -f and list. The following options can be used if you have specified -f.

- dchar  
If -d is specified, char is the field delimiter. Space or other characters with special meaning to FMLI must be quoted. Note: No space intervenes between -d and char. The default field delimiter is TAB.

-s  
Suppresses lines with no delimiter characters. If -s is not specified, lines with no delimiters will be passed through untouched.

EXAMPLES  
EXAMPLE 1 Getting login IDs and names
The following example gets the login IDs and names.

eexample$ fmlcut -d: -f1,5 /etc/passwd

EXAMPLE 2 Getting the current login name
The next example gets the current login name.

eexample$ 'who am i | fmlcut -f1 -d" "'
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

fmlgrep(1F), attributes(5)

DIAGNOSTICS

fmlcut returns the following exit values:

0 when the selected field is successfully cut out
2 on syntax errors

The following error messages may be displayed on the FMLI message line:

ERROR: line too long
A line has more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for c / f option
Missing -c or -f option or incorrectly specified list. No error occurs if a line has fewer fields than the list calls for.

ERROR: no fields
The list is empty.

ERROR: no delimiter
Missing char on -d option.

NOTES

fmlcut cannot correctly process lines longer than 1023 characters, or lines with no newline character.
fmlexpr(1F)

NAME
fmlexpr – evaluate arguments as an expression

SYNOPSIS
fmlexpr arguments

DESCRIPTION
The fmlexpr function evaluates its arguments as an expression. After evaluation, the result is written on the standard output. Terms of the expression must be separated by blanks. Characters special to FMLI must be escaped. Note that 30 is returned to indicate a zero value, rather than the null string. Strings containing blanks or other special characters should be quoted. Integer-valued arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by \\. The list is in order of increasing precedence, with equal precedence operators grouped within \{ \} symbols.

USAGE
Expressions

expr \| expr
Returns the first expr if it is neither NULL nor 0, otherwise returns the second expr.

expr \& expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr \{ =, \>, \>=, \<, \<=, \!= \} expr
Returns the result of an integer comparison if both arguments are integers, otherwise returns the result of a lexical comparison.

expr \{ +, - \} expr
Addition or subtraction of integer-valued arguments.

expr \{ *, /, \% \} expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : (colon) compares the first argument with the second argument which must be a regular expression. Regular expression syntax is the same as that of ed(1), except that all patterns are "anchored" (that is, begin with ^) and, therefore, ^ is not a special character, in that context. Normally, the matching operator returns the number of bytes matched (0 on failure). Alternatively, the \{ . . . \} pattern symbols can be used to return a portion of the first argument.

EXAMPLES
EXAMPLE 1 Incrementing a variable

Add 1 to the variable a:

example% fmlexpr $a + 1 | set -l a

EXAMPLE 2 Setting a variable equal to a filename

For $a equal to either /usr/abc/file or just file:

example% fmlexpr $a : .*/(.*) | $a
EXAMPLE 2 Setting a variable equal to a filename (Continued)

returns the last segment of a path name (that is, file). Watch out for / alone as an argument: fmlexpr will take it as the division operator (see NOTES below).

EXAMPLE 3 A better representation of Example 2

eample% fmlexpr //a : .*/\(.\)

The addition of the // characters eliminates any ambiguity about the division operator (because it makes it impossible for the left-hand expression to be interpreted as the division operator), and simplifies the whole expression.

EXAMPLE 4 Counting characters in a variable

Return the number of characters in $VAR:

eample% fmlexpr $VAR : .

EXIT STATUS

As a side effect of expression evaluation, fmlexpr returns the following exit values:

0 if the expression is neither NULL nor 0 (that is, TRUE)
1 if the expression is NULL or 0 (that is, FALSE)
2 for invalid expressions (that is, FALSE).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
ed(1), expr(1), set(1F), sh(1), attributes(5)

DIAGNOSTICS

syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string

In the case of syntax errors and non-numeric arguments, an error message will be printed at the current cursor position. Use refresh to redraw the screen.

NOTES

After argument processing by FMLI, fmlexpr cannot tell the difference between an operator and an operand except by the value. If $a is an =, the command:

eample% fmlexpr $a = =

looks like:

eample% fmlexpr = = =

as the arguments are passed to fmlexpr (and they will all be taken as the = operator).

The following works, and returns TRUE:
example:\> fmlexpr \$a = X\>
fmlgrep(1F)

NAME  fmlgrep – search a file for a pattern

            [filename...]

DESCRIPTION  fmlgrep searches filename for a pattern and prints all lines that contain that pattern.
fmlgrep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those described
on the regexp(5) manual page to match the patterns. It uses a compact
non-deterministic algorithm.

Be careful when using FMLI special characters (for instance, $, ‘, ’, ”) in
limited_regular_expression. It is safest to enclose the entire limited_regular_expression in
single quotes ‘ . . . ’.

If filename is not specified, fmlgrep assumes standard input. Normally, each line
matched is copied to standard output. The file name is printed before each line
matched if there is more than one input file.

OPTIONS  The following options are supported:

- b  Precede each line by the block number on which it was found. This can be
      useful in locating block numbers by context (first block is 0).
- c  Print only a count of the lines that contain the pattern.
- i  Ignore upper/lower case distinction during comparisons.
- l  Print only the names of files with matching lines, separated by new-lines.
      Does not repeat the names of files when the pattern is found more than
      once.
- n  Precede each line by its line number in the file (first line is 1).
- s  Suppress error messages about nonexistent or unreadable files.
- v  Print all lines except those that contain the pattern.

EXIT STATUS  The following exit values are returned:

0  if the pattern is found (that is, TRUE)
1  if the pattern is not found (that is, FALSE)
2  if an invalid expression was used or filename is inaccessible

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  egrep(1), fgrep(1), fmlcut(1F), grep(1), attributes(5), regexp(5)
NOTES

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.

If there is a line with embedded nulls, fmlgrep will only match up to the first null; if it matches, it will print the entire line.
The `fmli` command invokes the Form and Menu Language Interpreter and opens the frame(s) specified by the `filename` argument. The `filename` argument is the pathname of the initial frame definition file(s), and must follow the naming convention `Menu.xxx`, `Form.xxx`, or `Text.xxx` for a menu, form or text frame respectively, where `xxx` is any string that conforms to UNIX system file naming conventions. The FMLI descriptor lifetime will be ignored for all frames opened by argument to `fmli`. These frames have a lifetime of immortal by default.

**OPTIONS**

The following options are supported:

- `-a alias_file`
  - If `-a` is specified, `alias_file` is the name of a file which contains lines of the form `alias=pathname`. Thereafter, `$alias` can be used in definition files to simplify references to objects or devices with lengthy pathnames, or to define a search path (similar to `$PATH` in the UNIX system shell).

- `-c command_file`
  - If `-c` is specified, `command_file` is the name of a file in which default FMLI commands can be disabled, and new application-specific commands can be defined. The contents of `command_file` are reflected in the FMLI Command Menu.

- `-i initialization_file`
  - If `-i` is specified, `initialization_file` is the name of a file in which the following characteristics of the application as a whole can be specified:
    - A transient introductory frame displaying product information
    - A banner, its position, and other elements of the banner line
    - Color attributes for all elements of the screen
    - Screen Labeled Keys (SLKs) and their layout on the screen.

**EXAMPLES**

**EXAMPLE 1** Examples of the `fmli` command.

To invoke `fmli`:

```
example$ fmli Menu.start
```

where `Menu.start` is an example of `filename` named according to the file name conventions for menu definition files explained above.

To invoke `fmli` and name an initialization file:
EXAMPLE 1  Examples of the fmli command.  (Continued)

example% fmli -i init.myapp Menu.start

where init.myapp is an example of initialization_file.

ENVIRONMENT VARIABLES

LOADPFK  Leaving this environment variable unset tells FMLI, for certain terminals like the AT&T 5620 and 630, to download its equivalent character sequences for using function keys into the terminal’s programmable function keys, wiping out any settings the user may already have set in the function keys. Setting LOADPFK=NO in the environment will prevent this downloading.

COLUMNS  Can be used to override the width of the logical screen defined for the terminal set in TERM. For terminals with a 132-column mode, for example, invoking FMLI with the line

    COLUMNS=132 fmli frame-file

will allow this wider screen width to be used.

LINES  Can be used to override the length of the logical screen defined for the terminal set in TERM.

FILES  /usr/bin/fmli

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:


<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  vsig(1F), attributes(5)

DIAGNOSTICS  If filename is not supplied to the fmli command, fmli returns the message:

    Initial object must be specified.

If filename does not exist or is not readable, fmli returns an error message and exits. The example command line above returns the following message and exits:

    Can’t open object "Menu.start"
If *filename* exists, but does not start with one of the three correct object names (*Menu*, *Form*, or *Text*) or if it is named correctly but does not contain the proper data, *fml* starts to build the screen by putting out the screen labels for function keys, after which it flashes the message:

I do not recognize that kind of object

and then exits.
fmt(1)

NAME
fmt – simple text formatters

SYNOPSIS
fmt [-cs] [-w width | -width] [infile...]

DESCRIPTION
fmt is a simple text formatter that fills and joins lines to produce output lines of (up to) the number of characters specified in the -w width option. The default width is 72. fmt concatenates the inputfiles listed as arguments. If none are given, fmt formats text from the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt does not fill nor split lines beginning with a '.' (dot), for compatibility with nroff(1). Nor does it fill or split a set of contiguous non-blank lines which is determined to be a mail header, the first line of which must begin with “From”.

Indentation is preserved in the output, and input lines with differing indentation are not joined (unless -c is used).

fmt can also be used as an in-line text filter for vi(1). The vi command:

\texttt{!}fmt

reformats the text between the cursor location and the end of the paragraph.

OPTIONS
- c Crown margin mode. Preserve the indentation of the first two lines within a paragraph, and align the left margin of each subsequent line with that of the second line. This is useful for tagged paragraphs.

- s Split lines only. Do not join short lines to form longer ones. This prevents sample lines of code, and other such formatted text, from being unduly combined.

- w width | -width Fill output lines to up to width columns.

OPERANDS
infile Input file.

ENVIRONMENT VARIABLES
See environ(5) for a description of the LC_CTYPE environment variable that affects the execution of fmt.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
nroff(1), vi(1), attributes(5), environ(5)

NOTES
The -width option is acceptable for BSD compatibility, but it may go away in future releases.
fmtmsg(1)

NAME
fmtmsg – display a message on stderr or system console

SYNOPSIS

DESCRIPTION
Based on a message’s classification component, the fmtmsg utility either writes a formatted message to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components (see environment variable MSGVERB in the ENVIRONMENT VARIABLES section of this page). The classification and subclass components are not displayed as part of the standard message, but rather define the source of the message and direct the display of the formatted message.

OPTIONS
The following options are supported:

- `-c class`
  Describes the source of the message. Valid keywords are:
  - hard
    The source of the condition is hardware.
  - soft
    The source of the condition is software.
  - firm
    The source of the condition is firmware.

- `-u subclass`
  A list of keywords (separated by commas) that further defines the message and directs the display of the message. Valid keywords are:
  - appl
    The condition originated in an application. This keyword should not be used in combination with either util or opsys.
  - util
    The condition originated in a utility. This keyword should not be used in combination with either appl or opsys.
  - opsys
    The message originated in the kernel. This keyword should not be used in combination with either appl or util.
  - recov
    The application will recover from the condition. This keyword should not be used in combination with nrecov.
  - nrecov
    The application will not recover from the condition. This keyword should not be used in combination with recov.
  - print
    Print the message to the standard error stream stderr.
  - console
    Write the message to the system console. print, console, or both may be used.
| **-l label** | Identifies the source of the message. |
| **-s severity** | Indicates the seriousness of the error. The keywords and definitions of the standard levels of severity are: |
| **halt** | The application has encountered a severe fault and is halting. |
| **error** | The application has detected a fault. |
| **warn** | The application has detected a condition that is out of the ordinary and might be a problem. |
| **info** | The application is providing information about a condition that is not in error. |
| **-t tag** | The string containing an identifier for the message. |
| **-a action** | A text string describing the first step in the error recovery process. This string must be written so that the entire action argument is interpreted as a single argument. \(\text{fmtmsg}\) precedes each action string with the TO FIX: prefix. |
| **text** | A text string describing the condition. Must be written so that the entire text argument is interpreted as a single argument. |

### EXAMPLES

#### EXAMPLE 1 Standard message format

The following example of \(\text{fmtmsg}\) produces a complete message in the standard message format and displays it to the standard error stream.

```bash
example% fmtmsg -c soft -u recov,print,appl -l UX:cat \
 -s error -t UX:cat:001 -a "refer to manual" "invalid syntax"
```

produces:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:138

#### EXAMPLE 2 Using MSGVERB

When the environment variable MSGVERB is set as follows:

`MSGVERB=severity:text:action`

and Example 1 is used, \(\text{fmtmsg}\) produces:

ERROR: invalid syntax
TO FIX: refer to manual
EXAMPLE 2 Using MSGVERB  (Continued)

EXAMPLE 3 Using SEV_LEVEL

When the environment variable SEV_LEVEL is set as follows:

```
SEV_LEVEL=note,5,NOTE
```

the following fmtmsg command:

```
example% fmtmsg -c soft -u print -l UX:cat -s note \
 -a "refer to manual" "invalid syntax"
```

produces:

```
NOTE: invalid syntax
TO FIX: refer to manual
```

and displays the message on stderr.

The environment variables MSGVERB and SEV_LEVEL control the behavior of fmtmsg. MSGVERB is set by the administrator in the /etc/profile for the system. Users can override the value of MSGVERB set by the system by resetting MSGVERB in their own .profile files or by changing the value in their current shell session. SEV_LEVEL can be used in shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages to stderr. The value of MSGVERB is a colon-separated list of optional keywords. MSGVERB can be set as follows:

```
MSGVERB= [keyword[:keyword]:...]
```

export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains a keyword for a component and the component’s value is not the component’s null value, fmtmsg includes that component in the message when writing the message to stderr. If MSGVERB does not include a keyword for a message component, that component is not included in the display of the message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the null string, if its value is not of the correct format, or if it contains keywords other than the valid ones listed above, fmtmsg selects all components.

MSGVERB affects only which message components are selected for display. All message components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by fmtmsg. The standard severity levels shown below cannot be modified. Additional severity levels can be defined, redefined, and removed.

```
0 (no severity is used)
```
SEV_LEVEL is set as follows:

description is a comma-separated list containing three fields:

 Sebastopol

import SEV_LEVEL

description=severity_keyword, level, printstring

severity_keyword is a character string used as the keyword with the -s severity option to fmtmsg.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or 4, which are reserved for the standard severity levels). If the keyword severity_keyword is used, level is the severity value passed on to fmtmsg(3C).

printstring is the character string used by fmtmsg in the standard message format whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the defaults are available. If a description in the colon separated list is not a comma separated list containing three fields, or if the second field of a comma separated list does not evaluate to a positive integer, that description in the colon separated list is ignored.

EXIT STATUS The following exit values are returned:

0 All the requested functions were executed successfully.

1 The command contains a syntax error, an invalid option, or an invalid argument to an option.

2 The function executed with partial success, however the message was not displayed on stderr.

4 The function executed with partial success; however, the message was not displayed on the system console.

32 No requested functions were executed successfully.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  addseverity(3C), fmtmsg(3C), attributes(5)
NAME

fnattr – update and examine attributes associated with an FNS named object

SYNOPSIS

fnattr [-AL] composite_name [ [-O | -U] identifier...]

fnattr [-L] composite_name { -a [-s] [-O | -U] identifier [value...]
| { -d [ [-O | -U] identifier [value...] ] } | { -m [-O | -U] identifier old_value new_value...}

DESCRIPTION

The fnattr command is for updating and examining attributes associated with an FNS named object. There are four uses for this command: add an attribute or value, delete an attribute or value, modify an attribute’s value, and list the contents of an attribute.

OPTIONS

The options for adding, modifying, and deleting attributes and their values can be combined in the same command line. The modifications will be executed in the order that they are specified.

Any unsuccessful modification will abort all subsequent modifications specified in the command line; any modifications already carried out will remain. The unsuccessful modifications are displayed as output of fnattr.

-a      Add an attribute or add a value to an attribute associated with object named by composite_name. identifier is the identifier of the attribute to manipulate; its format is FN_ID_STRING unless the -O or -U option is given. value ... represents the attribute values to add. The attribute syntax used for storing value is fn_attr_syntax_ascii.

-A      Consult the authoritative source to get attribute information.

-d      Delete attributes associated with object named by composite_name. If identifier is not specified, all attributes associated with the named object are deleted. If identifier is specified without accompanying values (value ...), the entire attribute identified by identifier is removed. If individual attribute values (value ... ) are specified, then only these are removed from the attribute. Removal of the last value of an attribute entails removal of the attribute as well. The format of identifier is FN_ID_STRING unless the -O or -U option is given.

-L      If the composite name is bound to an XFN link, manipulate the attributes associated with the object pointed to by the link. If -L is not used, the attributes associated with the XFN link are manipulated.

-m      Modify the values of the attribute identified by identifier associated with the object named by composite_name. old_value is replaced by new_value in the specified attribute. Other attributes and values associated with composite_name are not affected. The format of identifier is FN_ID_STRING unless the -O or -U option is given.

-O      The format of identifier is FN_ID_ISO_OID_STRING, an ASN.1 dot-separated integer list string.
**OPERANDS**

The following operand is supported:

```
composite_name An FNS named object.
```

**EXAMPLES**

**Adding**

The `-a` option is used for adding attributes and values. This following command replaces the value of the `shoesize` attribute of `user/jane` with the value `7.5`:

```
eg% fnattr user/jane -as shoesize 7.5
```

The following command adds the value `Chameleo` to the `project` attribute of `user/jane`:

```
eg% fnattr user/jsmith -a project Chameleo
```

**Deleting**

The `-d` option is used for deleting attributes and values. The following command deletes all the attributes associated with `user/jane`:

```
eg% fnattr user/jane -d
```

The following command deletes the attribute `shoesize` associated with `user/jane`:

```
eg% fnattr user/jane -d shoesize
```

The following command deletes the attribute value `old_project` from the `projects` attribute associated with `user/jane`:

```
eg% fnattr user/jane -d projects old_project
```

**Modifying**

The `-m` option is for modifying an attribute value. The following command replaces the value `Chameleo` by `Dungeon` in the `projects` attribute associated with `user/jsmith`:

```
eg% fnattr user/jsmith -m projects Chameleo Dungeon
```
fnattr(1)

The following command is an example of unsuccessful modification attempts. The user executing this command does not have permission to update user/jane’s attributes but is allowed to add new attributes. Executing the command will add the attribute hatsize but will not delete shoesize or modify dresssize because -d shoesize will fail and cause the command to stop:

```
 eg% fnattr user/jane -a hatsize medium -d shoesize -m dresssize
```

Listing

No options are required to list attributes and their values. The following command lists all the attributes associated with user/jane:

```
 eg% fnattr user/jane
```

The following command lists the values of the project attribute of user/jane:

```
 eg% fnattr user/jane project
```

The following command lists the values of the project and shoesize attributes of user/jane:

```
 eg% fnattr user/jane project shoesize
```

EXIT STATUS

0 Operation was successful.
1 Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

fnlookup(1), attributes(5), fns(5)

NOTES

Built-in attributes, such as onc_unix_passwd for users, cannot be updated using the fnattr command. Their contents are affected by updates to the underlying naming service, such as NIS+ or NIS.
fnbind – Bind a reference to an FNS name

SYNOPSIS

fnbind [-s] [-v] [-L] name new_name
fnbind -r [-s] [-v] new_name [-O | -U] ref_type { [-O | -U] addr_type [-c | -x] addr_contents }...

DESCRIPTION

The fnbind utility binds the reference named by name to the name new_name. The second synopsis of fnbind (uses the -r option) allows the binding of new_name to the reference constructed using arguments supplied in the command line.

OPTIONS

The following options are supported:

- **-s**
  Bind to new_name even if it is already bound. If this option is omitted, fnbind fails if new_name is already bound.

- **-v**
  Display the reference being bound to new_name.

- **-L**
  Create an XFN link using name and bind it to new_name.

- **-r**
  Create a reference using ref_type as the reference’s type, and one or more pairs of addr_type and addr_contents as the reference’s list of addresses, and bind this reference to new_name. Unless the -O or -U options are used, FN_ID_STRING is used as the identifier format for ref_type and addr_type. Unless the -c or -x options are used, addr_contents is stored as an XDR-encoded string.

- **-c**
  Store addr_contents in the given form; do not use XDR-encoding.

- **-x**
  addr_contents specifies a hexadecimal string. Convert it to its hexadecimal representation and store it; do not use XDR-encoding.

- **-O**
  The identifier format is FN_ID_ISO_OID_STRING, an ASN.1 dot-separated integer list string.

- **-U**
  The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

EXAMPLES

**EXAMPLE 1** Binding a service to a printer

The command

```bash
example% fnbind -s thisorgunit/service/printer thisorgunit/service/pr
```

binds the name thisorgunit/service/pr to the reference named by thisorgunit/service/printer. Any reference bound to thisorgunit/service/printer is overwritten.

**EXAMPLE 2** Binding to an XFN link

The command

```bash
example% fnbind -L thisorgunit/service/printer thisorgunit/service/pr
```
EXAMPLE 2 Binding to an XFN link  (Continued)

binds the name thisorgunit/service/pr to the XFN link constructed using the name thisorgunit/service/printer.

EXAMPLE 3 Binding to an address type

The command

eexample$ fnbind -r thisorgunit/service/calendar SUNW_cal SUNW_cal_deskset_onc staff@exodus

binds the name thisorgunit/service/calendar to the reference with reference type SUNW_cal and address type SUNW_cal_deskset_onc, and address contents of staff@exodus.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO

fnlookup(1), fnrename(1), fnunbind(1), FN_identifier_t(3XFN), xdr(3NSL), attributes (5), fns(5), xfn_links(3XFN)
fnlist(1)

NAME
fnlist – display the names and references bound in an FNS context

SYNOPSIS
fnlist [-Alv] [composite_name]

DESCRIPTION
fnlist displays the names and references bound in the context of composite_name.
If composite_name is not provided, the default initial context is displayed.

OPTIONS
The following options are supported:
-A Consult the authoritative source for information.
-l Display the references as well as the names bound in the context of composite_name. Without this option, only the names are displayed.
-v Display the references in detail. For onc_fn_* references, this option is useful to derive the name of the NIS+ table that stores the reference for every name bound in the context of composite_name.

OPERANDS
The following operand is supported:
composite_name
An FNS named object. Composite names, like UNIX file names, depend on the subcontexts created.
Examples of commands with valid composite_name operands are:

    eg! fnlist thisorgunit
    eg! fnlist thisorgunit/service
    eg! fnlist thisorgunit/service/printer

When FNS is deployed, the composite name is specific to the deployed site.

EXAMPLES
EXAMPLE 1 Examples of the fnlist command.
In the following example, the command with no operand provides the listing with reference and address types for the initial context:

    eg! fnlist -l

In the following examples, where a user context is given (that is, composite_name = user/), FNS must first be deployed via fncreate(1M), using one of the naming services NIS, NIS+, or files. If FNS is not deployed, there are no user contexts and the commands will fail with the "Name not found" error message.

The following command shows the names bound in the context of user/:

    eg! fnlist user/

The following command displays the names and references bound in the context of user/:

    eg! fnlist -l user/
EXAMPLE 1 Examples of the fnlist command.  (Continued)

EXIT STATUS

0 Operation was successful.

1 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO fnbind(1), fnlookup(1), fnunbind(1), fncreate(1M), fndestroy(1M), attributes(5), fns(5), fns_references(5)
fnlookup(1)

NAME
fnlookup – display the reference bound to an FNS name

SYNOPSIS
fnlookup [-ALv] composite_name

DESCRIPTION
fnlookup displays the binding of composite_name.

OPTIONS
-A Consult the authoritative source for information.
-L If the composite name is bound to an XFN link, display the reference that
the link is bound to. Without the -L option, fnlookup displays the XFN
link.
-v Display the binding in detail. For onc_fn_* references, this option is
useful to derive the name of the NIS+ table that stores the reference for
composite_name and a string representation of the reference, if applicable.

OPERANDS
The following operand is supported:

  composite_name  An FNS named object.

EXAMPLES
EXAMPLE 1 Examples of the fnlookup command.

In the following example, the command

eg% fnlookup user/jsmith/service/calendar

shows the reference to which the name user/jsmith/service/calendar, that
refers to the calendar of user jsmith, is bound.

In the next example, the command

eg% fnlookup user/jsmith/service

shows the reference to which the name user/jsmith/service, that refers to the
service context of user jsmith, is bound. If this is bound to an XFN link, then

eg% fnlookup -L user/jsmith/service

displays the reference to which this link is bound.

EXIT STATUS
0 Operation was successful.
1 Operation failed.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO
fnbind(1), fnlist(l), fnunbind(1), fncreate(1M), fndestroy(1M),
xfn_links(3XFN), attributes(5), fns(5), fns_references(5)
fnrename(1)

NAME
fnrename – rename the binding of an FNS name

SYNOPSIS
fnrename [-s] [-v] context_name old_atomic_name new_atomic_name

DESCRIPTION
fnrename renames the binding of old_atomic_name to new_atomic_name in the context of context_name. Both old_atomic_name and new_atomic_name must be atomic names, to be resolved in the context named by context_name.

OPTIONS
- s Overwrite any reference already bound to new_atomic_name. If this option is omitted, fnrename fails if new_atomic_name is already bound.
- v Display the binding being renamed.

EXAMPLES
EXAMPLE 1 An example of the fnrename command.

For example, the command

eg% fnrename user/jsmith/service/ clendar calendar

binds calendar to the reference bound to clendar in the context named by user/jsmith/service/ and unbinds clendar.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO
fnbind(1), fnlist(1), fnunbind(1), fncreate(1M), fndestroy(1M), xfn_links(3XFN), attributes(5), fns(5), fns_references(5)
The `fnsearch` command operation displays the names and, optionally, the attributes and references of objects bound at or below `composite_name` whose attributes satisfy a given filter expression. The filter expression is given in terms of logical expressions involving the identifiers and values of the attributes and references of objects examined during the search.

For general information about FNS, see `fns(5)`.

The following options are supported:

- `-a ident` Display the given attribute of each object that satisfies the filter expression. If the `-a` option is not used, all attributes are displayed. An empty `ident` ("" from the shell) indicates that no attributes are to be displayed. Multiple `-a` options may be given. The syntax of `ident` is described fully under Displaying Selected Attributes below.

- `-A` Consult the authoritative source(s) for information.

- `-l` Display the reference of each object that satisfies the filter expression.

- `-L` Follow XFN links during the search.

- `-n max` Restrict the maximum number of objects displayed to the given number (a positive integer). There is no limit by default.

- `-s scope` Set the scope of the search. `scope` is one of:
  - `object` Only the object `composite_name` is searched.
  - `context` Objects bound directly to `composite_name` are searched.
  - `subtree` Objects bound to `composite_name` or any of its subcontexts are searched.
  - `constrained_subtree` Like `subtree`, but the search may be restricted to a set of subcontexts defined in a context-implementation-defined manner
scope may be abbreviated to any unambiguous prefix, such as o or cont. If this option is not given, the default behavior is -s context.

-v Display in detail the reference of each object that satisfies the filter expression. This option takes precedence over -l.

OPERANDS
The following operand is supported:

```
composite_name
```
An FNS named object.

USAGE

Simple Filter Expressions
The simplest form of filter expression is one that tests for the existence of an attribute. This expression is formed simply by giving the attribute’s name. To search for objects having an attribute named for_sale, for example:

```
% fnsearch composite_name for_sale
```

Another simple filter expression is one that tests the value of a particular attribute. To find objects whose ages are less than 17:

```
% fnsearch *age < 17
```

String values are indicated by enclosing the string in single quotes. To find all red objects:

```
% fnsearch *color == 'red'
```

Note that the double quotes (" ") in this example are not part of the filter expression. Instead, they prevent the shell from interpreting the white-space and single quotes that are part of the expression.

Logical Operators
Simple filter expressions may be composed using the logical operators and, or, and not. For example:

```
% fnsearch *age >= 35 and us_citizen
```

Parentheses may be used to group expressions:

```
% fnsearch *not (make == 'olds' and year == 1973)
```

The precedence of operators is, in order of increasing precedence:

```
or
and
not
```

The logical operators and and or are left-associative.

Relational Operators
The following are the relational operators that may be used to compare an attribute to a supplied value:

```
OPERANDS
```

440 man pages section 1: User Commands • Last Revised 21 Jul 1996
True if at least one value of the attribute is equal to the supplied value.

!= True if none of the attribute’s values are equal to the supplied value.

< True if at least one value of the attribute is less than the supplied value.

<= True if at least one value of the attribute is less than or equal to the supplied value.

> True if at least one value of the attribute is greater than the supplied value.

>= True if at least one value of the attribute is greater than or equal to the supplied value.

~= True if at least one value of the attribute matches the supplied value according to some context-specific approximate matching criterion. This criterion must subsume strict equality.

Comparisons and ordering are specific to the syntax or rules of the attribute being tested.

By default, the fnsearch command displays the names and all of the attributes of each object matching the search criteria. The list of attributes displayed may be restricted by using the -a command line option. In the following example, only the color and shape attributes of small objects are displayed:

```
% fnsearch composite_name -a color -a shape "size == 'small'"
```

The format of an attribute identifier is taken to be FN_ID_STRING (an ASCII string) by default. To name an attribute identifier that is an OSI OID or a DCE UUID, the attribute name is prefixed by -O or -U, respectively:

```
-O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1 dot-separated integer list string.
-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.
```

For example:

```
% fnsearch composite_name -a -O 2.5.4.0 "shoe_size < 9"
```

and

```
% fnsearch composite_name -a -U 0006a446-5e97-105f-9828-8190285baa77 "bowling_avg > 200"
```

Some parts of a filter expression may be replaced by a substitution token: a percent sign (%) followed by a single character. The value of this portion of the expression is then given in a filter argument that follows the filter expression, in much the same way as is done in printf(1). The available substitution tokens are:

```
%a attribute
%s string
%i identifier
```
attribute value (the only syntax currently supported is `fn_attr_syntax_ascii`)

For example, the command:
```
% fnsearch composite_name "color == 'red'"
```
could equivalently be written:
```
% fnsearch composite_name "%a == 'red'" color
```
or:
```
% fnsearch composite_name "%a == %s" color red
```

The use of substitution tokens is helpful when writing shell scripts in which the values of the filter arguments are generated at run-time.

By default, the format of the identifier of an attribute such as the `color` attribute above is taken to be `FN_ID_STRING` (an ASCII string). Substitution tokens enable the use of OSI OIDs and DCE UUIDs instead. The filter argument is prefixed by `-O` or `-U`, with the same meaning as in the `-a` command line option described above:

```
-0 The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
 dot-separated integer list string.

-1 The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.
```

For example:
```
% fnsearch composite_name "%a -O 2.5.4.0
```
and
```
% fnsearch composite_name "%a == 'red'" \
-0 0006a446-5e97-105f-9828-8190285baa77
```

Wildcarded Strings

A wildcarded string consists of a sequence of alternating wildcard specifiers and strings. The wildcard specifiers is denoted by the asterisk (*) and means zero or more occurrences of any character.

Wildcarded strings are used to specify substring matches. The following are some examples of wildcarded strings and their meanings.

- `*` any string
- `'tom'` the string "tom"
- `'harv'` any string starting with "harv"
- `'ing'` any string ending with "ing"
- `'a' '*''b'` any string starting with "a" and ending with "b"
Extended Operations

<table>
<thead>
<tr>
<th>Filter Expression Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'jo'<strong>'ph'</strong>'ne'**'er'</td>
<td>any string starting with &quot;jo&quot; and containing the substring &quot;ph&quot;, and which contains the substring &quot;ne&quot; in the portion of the string following &quot;ph&quot;, and which ends with &quot;er&quot;</td>
</tr>
<tr>
<td>%s*</td>
<td>any string starting with the string supplied as a filter argument</td>
</tr>
<tr>
<td>'bix'*%s</td>
<td>any string starting with &quot;bix&quot; and ending with the string supplied as a filter argument</td>
</tr>
</tbody>
</table>

Extended operators are predicates (functions that return TRUE or FALSE) that may be freely mixed with other operators in a filter expression.

An extended operation is specified by giving the operation name as a quoted string, followed by an argument in parentheses. The following three extended operations are currently defined:

- `'name' (WildcardedString)`: TRUE if the name of the object matches the supplied wildcarded string.
- `'reftype' (Identifier)`: TRUE if the reference type of the object is equal to the supplied identifier.
- `'addrtype' (Identifier)`: TRUE if any of the address types in the reference of the object are equal to the supplied identifier.

The following example shows a search for objects whose names start with bill and having IQ attributes over 80:

```
% fnsearch composite_name "'name'('bill*) and IQ > 80"
```

The complete grammar of filter expressions is given below. It is based on the grammar defined by the XFN specification (see FN_search_filter_t(3XFN)).

String literals in this grammar are enclosed in double quotes; the quotes are not themselves part of the expression. Braces are used for grouping; brackets indicate optional elements. An unquoted asterisk (*) signifies zero or more occurrences of the preceding element; a plus sign (+) signifies one or more occurrences.

```plaintext
FilterExpr : : = [Expr]
Expr : : =
 Expr "or" Expr | Expr "and" Expr | "not" Expr | "(" Expr ")"
 | Attribute [RelOp Value]
 | Ext
RelOp : : =
 "==" | "!=" | "<" | "<=" | ">" | ">=" | "~="
```

User Commands 443
fnsearch(1)

**Attribute** : : =

Char* | %a

**Value** : : =

Integer | WildcardedString | %v

**WildcardedString** : : =

"*" | String | [String "*"]+ [String]

| {"*" String}+ ["*"]

(that is, an alternating sequence of String and "]")

**String** : : =

"", Char*, ","

| "," %s

**Ext** : : =

"", name (" WildcardedString ")"

| ",", reftype (" Identifier ")"

| ",", addrtype (" Identifier ")"

**Identifier** : : =

"", Char*, ","

| ",", %i

**Char** : : =

an element of the Portable Character Set (ASCII)

| a character in the repertoire

| of a string representation

**EXIT STATUS**

0 Operation was successful.

1 Operation failed.

**ATTRIBUTES** See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfnS</td>
</tr>
</tbody>
</table>

**SEE ALSO** printf(1), FN_search_control_t(3XFN), FN_search_filter_t(3XFN), fn_attr_ext_search(3XFN), fn_attr_search(3XFN), attributes(5), fns(5)

**NOTES** If the filter expression is empty, it evaluates to TRUE (all objects satisfy it).
If the identifier in any subexpression of the filter expression does not exist as an attribute of an object, then the innermost logical expression containing that identifier evaluates to FALSE.
fnunbind(1)

NAME fnunbind – unbind the reference from an FNS name

SYNOPSIS fnunbind composite_name

DESCRIPTION fnunbind unbinds the reference of composite_name.

For example,

```bash
eg% fnunbind user/jsmith/fs/
```

unbinds the reference to which the name user/jsmith/fs/ was bound.

Note that an fnunbind on a name of a context will fail because such a context cannot be unbound without destroying it first with the command fndestroy.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWfns</td>
</tr>
</tbody>
</table>

SEE ALSO fnbind(1), fnlist(1), fnlookup(1), fnrename(1), fncreate(1M), fndestroy(1M), attributes(5), fns(5)
fold(1)

NAME
fold – filter for folding lines

SYNOPSIS
fold [-bs] [-w width | -width] [file...]

DESCRIPTION
The fold utility is a filter that will fold lines from its input files, breaking the lines to
have a maximum of width column positions (or bytes, if the -b option is specified).
Lines will be broken by the insertion of a NEWLINE character such that each output
line (referred to later in this section as a segment) is the maximum width possible that
does not exceed the specified number of column positions (or bytes). A line will not be
broken in the middle of a character. The behavior is undefined if width is less than the
number of columns any single character in the input would occupy.

If the CARRIAGE-RETURN, BACKSPACE, or TAB characters are encountered in the
input, and the -b option is not specified, they will be treated specially:

BACKSPACE
The current count of line width will be decremented by
one, although the count never will become negative.
fold will not insert a NEWLINE character
immediately before or after any BACKSPACE
character.

CARRIAGE-RETURN
The current count of line width will be set to 0. fold
will not insert a NEWLINE character immediately
before or after any CARRIAGE-RETURN character.

TAB
Each TAB character encountered will advance the
column position pointer to the next tab stop. Tab stops
will be at each column position n such that n modulo 8
equals 1.

OPTIONS
The following options are supported:

- b
Counts width in bytes rather than column positions.

- s
If a segment of a line contains a blank character within the first
width column positions (or bytes), breaks the line after the last such
blank character meeting the width constraints. If there is no blank
character meeting the requirements, the -s option will have no
effect for that output segment of the input line.

- w width | -width
Specifies the maximum line length, in column positions (or bytes if
- b is specified). If width is not a positive decimal number, an error
is returned. The default value is 80.

OPERANDS
The following operand is supported:

file
A path name of a text file to be folded. If no file operands are specified, the
standard input will be used.
EXAMPLES

EXAMPLE 1 Submitting a file of possibly long lines to the line printer

An example invocation that submits a file of possibly long lines to the line printer (under the assumption that the user knows the line width of the printer to be assigned by lp(1)):

example% fold -w 132 bigfile | lp

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of fold: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 All input files were processed successfully.
>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

cut(1), pr(1), attributes(5), environ(5), standards(5)

NOTES

fold and cut(1) can be used to create text files out of files with arbitrary line lengths. fold should be used when the contents of long lines need to be kept contiguous. cut should be used when the number of lines (or records) needs to remain constant.

fold is frequently used to send text files to line printers that truncate, rather than fold, lines wider than the printer is able to print (usually 80 or 132 column positions).

fold may not work correctly if underlining is present.
The `from` utility prints out the mail header lines in your mailbox file to show you who your mail is from. If `username` is specified, then `username`'s mailbox is examined instead of your own.

**OPTIONS**

- `-s sender` Only display headers for mail sent by `sender`.

**USAGE**

See `largefile(5)` for the description of the behavior of `from` when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**FILES**

`/var/spool/mail/*`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`biff(1B), mail(1B), attributes(5), largefile(5)`
ftp(1)

NAME
ftp – file transfer program

SYNOPSIS
ftp [-dglnptv] [-T timeout] [hostname [port]]

DESCRIPTION
The `ftp` command is the user interface to the Internet standard File Transfer Protocol (FTP). `ftp` transfers files to and from a remote network site.

The host and optional port with which `ftp` is to communicate may be specified on the command line. If this is done, `ftp` immediately attempts to establish a connection to an FTP server on that host. Otherwise, `ftp` enters its command interpreter and awaits instructions from the user. When `ftp` is awaiting commands from the user, it displays the prompt `ftp>`.

OPTIONS
The following options may be specified at the command line, or to the command interpreter:

- `-d` Enables debugging.
- `-g` Disables filename “globbing”.
- `-i` Turns off interactive prompting during multiple file transfers.
- `-n` Does not attempt “auto-login” upon initial connection. If auto-login is not disabled, `ftp` checks the `.netrc` file in the user’s home directory for an entry describing an account on the remote machine. If no entry exists, `ftp` will prompt for the login name of the account on the remote machine (the default is the login name on the local machine), and, if necessary, prompts for a password and an account with which to login.
- `-p` Enables passive mode for data transfers. This command is useful when connecting to a remote host from behind a connection filtering firewall.
- `-t` Enables packet tracing (unimplemented).
- `-T timeout` Enables global connection timer, specified in seconds (decimal). There is a timer for the control connection that is reset when anything is sent to the server and disabled while the client is prompting for user input. Another independent timer is used to monitor incoming or outgoing data connections.
- `-v` Shows all responses from the remote server, as well as report on data transfer statistics. This is turned on by default if `ftp` is running interactively with its input coming from the user’s terminal.

The following commands can be specified to the command interpreter:

`!` [command] Runs command as a shell command on the local machine. If no command is given, invokes an interactive shell.
Executes the macro macro-name that was defined with the macrodef command. Arguments are passed to the macro unexpanded.

Supplies a supplemental password required by a remote system for access to resources once a login has been successfully completed. If no argument is included, the user will be prompted for an account password in a non-echoing input mode.

Appends a local file to a file on the remote machine. If remote-file is not specified, the local file name is used, subject to alteration by any ntrans or nmap settings. File transfer uses the current settings for "representation type", "file structure", and "transfer mode".

Sets the “representation type” to “network ASCII”. This is the default type.

Sounds a bell after each file transfer command is completed.

Sets the “representation type” to “image”.

Terminates the FTP session with the remote server and exit ftp. An EOF will also terminate the session and exit.

Toggles remote computer file name case mapping during mget commands. When case is on (default is off), remote computer file names with all letters in upper case are written in the local directory with the letters mapped to lower case.

Changes the working directory on the remote machine to remote-directory.

Changes the remote machine working directory to the parent of the current remote machine working directory.

Terminates the FTP session with the remote server, and return to the command interpreter. Any defined macros are erased.

Toggles RETURN stripping during “network ASCII” type file retrieval. Records are denoted by a RETURN/LINEFEED sequence during “network ASCII” type file transfer. When cr is on (the default), RETURN characters are stripped from this sequence to conform with the UNIX system single LINEFEED record delimiter. Records on non-UNIX-system remote hosts may contain single LINEFEED characters; when an “network ASCII” type transfer is made, these LINEFEED characters may be distinguished from a record delimiter only when cr is off.
delete remote-file
    Deletes the file remote-file on the remote machine.

debug
    Toggles debugging mode. When debugging is on, ftp prints each command sent to
    the remote machine, preceded by the string →.

dir [ remote-directory ] [ local-file ]
    Prints a listing of the directory contents in the directory, remote-directory, and,
    optionally, placing the output in local-file. If no directory is specified, the current
    working directory on the remote machine is used. If no local file is specified, or
    local-file is −, output is sent to the terminal.

disconnect
    A synonym for close.

form [ format-name ]
    Sets the carriage control format subtype of the “representation type” to format-name.
    The only valid format-name is non-print, which corresponds to the default
    “non-print” subtype.

get remote-file [ local-file ]
    Retrieves the remote-file and store it on the local machine. If the local file name is not
    specified, it is given the same name it has on the remote machine, subject to
    alteration by the current case, ntrans, and nmap settings. The current settings for
    “representation type”, “file structure”, and “transfer mode” are used while
    transferring the file.

glob
    Toggles filename expansion, or “globbing”, for mdelete, mget and mput. If
    globbing is turned off, filenames are taken literally.

    Globbing for mput is done as in sh(1). For mdelete and mget, each remote file
    name is expanded separately on the remote machine, and the lists are not merged.

    Expansion of a directory name is likely to be radically different from expansion of
    the name of an ordinary file: the exact result depends on the remote operating
    system and FTP server, and can be previewed with the command, mls remote-files −.

    mget and mput are not meant to transfer entire directory subtrees of files. You can
    do this by transferring a tar(1) archive of the subtree (using a “representation
    type” of “image” as set by the binary command).

hash
    Toggles hash-sign (#) printing for each data block transferred. The size of a data
    block is 8192 bytes.

help [ command ]
    Prints an informative message about the meaning of command. If no argument is
    given, ftp prints a list of the known commands.
lcd [ directory ]
Changes the working directory on the local machine. If no directory is specified, the
user's home directory is used.

ls [ remote-directory | -al ] [ local-file ]
Prints an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used.

The -a option lists all entries, including those that begin with a dot (.), which are
normally not listed. The -l option lists files in long format, giving mode, number
of links, owner, group, size in bytes, and time of last modification for each file. If
the file is a special file, the size field instead contains the major and minor device
numbers rather than a size. If the file is a symbolic link, the filename is printed
followed by "→" and the pathname of the referenced file.

If no local file is specified, or if local-file is −, the output is sent to the terminal.

macdef macro-name
Defines a macro. Subsequent lines are stored as the macro macro-name. A null line
(consecutive NEWLINE characters in a file or RETURN characters from the terminal)
terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a close command is
executed.

The macro processor interprets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that
the executing macro is to be looped. On the first pass, $i is replaced by the first
argument on the macro invocation command line; on the second pass, it is replaced
by the second argument, and so on. A \ followed by any character is replaced by
that character. Use the \ to prevent special treatment of the $.

mdelete remote-files
Deletes the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mdir output.

mget remote-files
Expands the remote-files on the remote machine and do a get for each file name
thus produced. See glob for details on the filename expansion. Resulting file
names will then be processed according to case, ntrans, and nmap settings. Files
are transferred into the local working directory, which can be changed with lcd
directory. New local directories can be created with ! mkdir directory.

mkdir directory-name
Makes a directory on the remote machine.
mls remote-files local-file
Like \( \text{ls}(1) \), except multiple remote files may be specified. If interactive prompting is on, \( \text{ftp} \) will prompt the user to verify that the last argument is indeed the target local file for receiving mls output.

mode [ mode-name ]
Sets the "transfer mode" to mode-name. The only valid mode-name is \( \text{stream} \), which corresponds to the default "stream" mode. This implementation only supports \( \text{stream} \), and requires that it be specified.

mput local-files
Expands wild cards in the list of local files given as arguments and do a put for each file in the resulting list. See \( \text{glob} \) for details of filename expansion. Resulting file names will then be processed according to ntrans and nmap settings.

nmap [ inpattern outpattern ]
Sets or unsets the filename mapping mechanism. If no arguments are specified, the filename mapping mechanism is unset. If arguments are specified, remote filenames are mapped during mput commands and put commands issued without a specified remote target filename. If arguments are specified, local filenames are mapped during mget commands and get commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with different file naming conventions or practices. The mapping follows the pattern set by inpattern and outpattern. inpattern is a template for incoming filenames (which may have already been processed according to the ntrans and case settings). Variable templating is accomplished by including the sequences \( \$1, \$2, \ldots, \$9 \) in inpattern. Use \( \backslash \) to prevent this special treatment of the \$ character. All other characters are treated literally, and are used to determine the nmap inpattern variable values.

For example, given inpattern \( \$1.\$2 \) and the remote file name mydata.data, \$1 would have the value mydata, and \$2 would have the value data.

The outpattern determines the resulting mapped filename. The sequences \( \$1, \$2, \ldots, \$9 \) are replaced by any value resulting from the inpattern template. The sequence \$0 is replaced by the original filename. Additionally, the sequence \( [ \text{seq1, seq2} ] \) is replaced by seq1 if seq1 is not a null string; otherwise it is replaced by seq2.

For example, the command nmap \$1.$2.$3 [\$1,\$2].[\$2,\text{file}] would yield the output filename myfile.data.data for input filenames myfile.data and myfile.data.old, myfile.file for the input filename myfile, and myfile.myfile for the input filename .myfile. SPACE characters may be included in outpattern, as in the example nmap \$1 | sed "s/ *$/" > \$1. Use the \( \backslash \) character to prevent special treatment of the \$, \( \[ \), and \( \, \), characters.

ntrans [ inchars [ outchars ]]
Sets or unsets the filename character translation mechanism. If no arguments are specified, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during `mput` commands and `put` commands issued without a specified remote target filename, and characters in local filenames are translated during `mget` commands and `get` commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with different file naming conventions or practices. Characters in a filename matching a character in `inchars` are replaced with the corresponding character in `outchars`. If the character's position in `inchars` is longer than the length of `outchars`, the character is deleted from the file name.

Only 16 characters can be translated when using the `ntrans` command under `ftp`. Use `case` (described above) if needing to convert the entire alphabet.

`open host [ port ]`
Establishes a connection to the specified `host` FTP server. An optional port number may be supplied, in which case, `ftp` will attempt to contact an FTP server at that port. If the `auto-login` option is on (default setting), `ftp` will also attempt to automatically log the user in to the FTP server.

`passive`
Toggles passive mode. When passive mode is turned on, the ftp client sends the `PASV` command requesting that the FTP server open a port for the data connection and return the address of that port. The remote server listens on that port and the client connects to it. When passive mode is turned off, the ftp client sends the `PORT` command to the server specifying an address for the remote server to connect back to. Passive mode is useful when the connections to the ftp client are controlled, for example, when behind a firewall. When connecting to an IPv6–enabled FTP server, `EPSV` may be used in place of `PASV` and `EPRT` in place of `PORT`.

`prompt`
Toggles interactive prompting. Interactive prompting occurs during multiple file transfers to allow the user to selectively retrieve or store files. By default, prompting is turned on. If prompting is turned off, any `mget` or `mput` will transfer all files, and any `mdelete` will delete all files.

`proxy ftp-command`
Executes an FTP command on a secondary control connection. This command allows simultaneous connection to two remote FTP servers for transferring files between the two servers. The first `proxy` command should be an `open`, to establish the secondary control connection. Enter the command `proxy ?` to see other FTP commands executable on the secondary connection.

The following commands behave differently when prefaced by `proxy`: `open` will not define new macros during the auto-login process, `close` will not erase existing macro definitions, `get` and `mget` transfer files from the host on the primary control connection to the host on the secondary control connection, and `put`, `mput`, and `append` transfer files from the host on the secondary control connection to the host on the primary control connection.
Third party file transfers depend upon support of the PASV command by the server on the secondary control connection.

**put local-file [ remote-file ]**
Stores a local file on the remote machine. If remote-file is left unspecified, the local file name is used after processing according to any ntrans or nmap settings in naming the remote file. File transfer uses the current settings for “representation type”, “file structure”, and “transfer mode”.

**pwd**
Prints the name of the current working directory on the remote machine.

**quit**
A synonym for bye.

**quote arg1 arg2 ...**
Sends the arguments specified, verbatim, to the remote FTP server. A single FTP reply code is expected in return. (The remotehelp command displays a list of valid arguments.)

**quote** should be used only by experienced users who are familiar with the FTP protocol.

**recv remote-file [ local-file ]**
A synonym for get.

**reget remote-file [ local-file ]**
The reget command acts like get, except that if local-file exists and is smaller than remote-file, local-file is presumed to be a partially transferred copy of remote-file and the transfer is continued from the apparent point of failure. This command is useful when transferring large files over networks that are prone to dropping connections.

**remotehelp [ command-name ]**
Requests help from the remote FTP server. If a command-name is specified it is supplied to the server as well.

**rename from to**
 Renames the file from on the remote machine to have the name to.

**reset**
Clears reply queue. This command re-synchronizes command/reply sequencing with the remote FTP server. Resynchronization may be necessary following a violation of the FTP protocol by the remote server.

**restart [ marker ]**
Restarts the immediately following get or put at the indicated marker. On UNIX systems, marker is usually a byte offset into the file. When followed by an mget, the restart applies to the first get performed. Specifying a marker of 0 clears the restart marker. If no argument is specified, the current restart status is displayed.

**rmdir directory-name**
Deletes a directory on the remote machine.
**runique**

Toggles storing of files on the local system with unique filenames. If a file already exists with a name equal to the target local filename for a `get` or `mget` command, a .1 is appended to the name. If the resulting name matches another existing file, a .2 is appended to the original name. If this process continues up to .99, an error message is printed, and the transfer does not take place. The generated unique filename will be reported. `runique` will not affect local files generated from a shell command. The default value is off.

**send local-file [ remote-file ]**

A synonym for `put`.

**sendport**

Toggles the use of `PORT` commands. By default, `ftp` will attempt to use a `PORT` command when establishing a connection for each data transfer. The use of `PORT` commands can prevent delays when performing multiple file transfers. If the `PORT` command fails, `ftp` will use the default data port. When the use of `PORT` commands is disabled, no attempt will be made to use `PORT` commands for each data transfer. This is useful when connected to certain FTP implementations that ignore `PORT` commands but incorrectly indicate they have been accepted.

**site arg1 [ arg2 ] ...**

Sends the arguments specified, verbatim, to the remote FTP server as a `SITE` command.

**status**

Show the current status of `ftp`.

**struct [ struct-name ]**

Sets the file structure to `struct-name`. The only valid `struct-name` is `file`, which corresponds to the default “file” structure. The implementation only supports `file`, and requires that it be specified.

**sunique**

Toggles storing of files on remote machine under unique file names. The remote FTP server must support the `STOU` command for successful completion. The remote server will report the unique name. Default value is off.

**tcpwindow [ size ]**

Sets the TCP window size to be used for data connections. Specifying a size of 0 stops the explicit setting of the TCP window size on data connections. If no argument is specified, the current setting is displayed.

**tenex**

Sets the “representation type” to that needed to talk to TENEX machines.

**trace**

Toggles packet tracing (unimplemented).

**type [ type-name ]**

Sets the “representation type” to `type-name`. The valid `type-names` are `ascii` for “network ASCII”, `binary` or `image` for “image”, and `tenex` for “local byte size”
with a byte size of 8 (used to talk to TENEX machines). If no type is specified, the current type is printed. The default type is “network ASCII”.

user user-name [ password ] [ account ]
   Identify yourself to the remote FTP server. If the password is not specified and the server requires it, ftp will prompt the user for it (after disabling local echo). If an account field is not specified, and the FTP server requires it, the user will be prompted for it. If an account field is specified, an account command will be relayed to the remote server after the login sequence is completed if the remote server did not require it for logging in. Unless ftp is invoked with “auto-login” disabled, this process is done automatically on initial connection to the FTP server.

verbose
   Toggles verbose mode. In verbose mode, all responses from the FTP server are displayed to the user. In addition, if verbose mode is on, when a file transfer completes, statistics regarding the efficiency of the transfer are reported. By default, verbose mode is on if ftp’s commands are coming from a terminal, and off otherwise.

? [ command ]
   A synonym for help.

Command arguments which have embedded spaces may be quoted with quote ("), marks.

If any command argument which is not indicated as being optional is not specified, ftp will prompt for that argument.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key. Sending transfers will be immediately halted. Receiving transfers will be halted by sending an FTP protocol ABOR command to the remote server, and discarding any further data received. The speed at which this is accomplished depends upon the remote server’s support for ABOR processing. If the remote server does not support the ABOR command, an ftp> prompt will not appear until the remote server has completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is awaiting a reply from the remote server. A long delay in this mode may result from the ABOR processing described above, or from unexpected behavior by the remote server, including violations of the ftp protocol. If the delay results from unexpected remote server behavior, the local ftp program must be killed by hand.

FILE NAMING CONVENTIONS
Local files specified as arguments to ftp commands are processed according to the following rules.

1) If the file name – is specified, the standard input (for reading) or standard output (for writing) is used.

2) If the first character of the file name is |, the remainder of the argument is interpreted as a shell command. ftp then forks a shell, using popen(3C)
with the argument supplied, and reads (writes) from the standard output (standard input) of that shell. If the shell command includes SPACE characters, the argument must be quoted; for example "| ls -lt". A particularly useful example of this mechanism is: "dir | more".

3) Failing the above checks, if globbing is enabled, local file names are expanded according to the rules used in the sh(1); see the glob command. If the ftp command expects a single local file (for example, put), only the first filename generated by the globbing operation is used.

4) For mget commands and get commands with unspecifed local file names, the local filename is the remote filename, which may be altered by a case, ntrans, or nmap setting. The resulting filename may then be altered if sunique is on.

5) For mput commands and put commands with unspecified remote file names, the remote filename is the local filename, which may be altered by a ntrans or nmap setting. The resulting filename may then be altered by the remote server if sunique is on.

The FTP specification specifies many parameters which may affect a file transfer.

The “representation type” may be one of “network ASCII”, “EBCDIC”, “image”, or “local byte size” with a specified byte size (for PDP-10’s and PDP-20’s mostly). The “network ASCII” and “EBCDIC” types have a further subtype which specifies whether vertical format control (NEWLINE characters, form feeds, etc.) are to be passed through (“non-print”), provided in TELNET format (“TELNET format controls”), or provided in ASA (FORTRAN) (“carriage control (ASA)”) format. ftp supports the “network ASCII” (subtype “non-print” only) and “image” types, plus “local byte size” with a byte size of 8 for communicating with TENEX machines.

The “file structure” may be one of file (no record structure), record, or page. ftp supports only the default value, which is file.

The “transfer mode” may be one of stream, block, or compressed. ftp supports only the default value, which is stream.

See largefile(5) for the description of the behavior of ftp when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

The ftp command is IPv6-enabled. See ip6(7P).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbip</td>
</tr>
</tbody>
</table>
### ATTRIBUTE TYPE

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

### SEE ALSO

ls(1), rcp(1), sh(1), tar(1), in.ftpd(1M), popen(3C), ftpusers(4), netrc(4), attributes(5), largefile(5), ip6(7P)


### NOTES

Failure to log in may arise from an explicit denial by the remote FTP server because the account is listed in `/etc/ftpusers`. See `in.ftpd(1M)` and `ftpusers(4)`.

Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers with a “representation type” of “network ASCII” has been corrected. This correction may result in incorrect transfers of binary files to and from 4.2 BSD servers using a “representation type” of “network ASCII”. Avoid this problem by using the “image” type.
NAME
ftpcount – show current number of users in each FTP Server class

SYNOPSIS
ftpcount [-V]

DESCRIPTION
Use the ftpcount command to show the current number of users logged in and the login limit for each FTP Server class defined in the ftpaccess(4) file.

OPTIONS
The ftpcount command supports the following options:
- V  Display program copyright and version information, then terminate.

EXIT STATUS
The following exit values are returned:
0  Successful completion.
>0  An error occurred.

FILES
/var/run/ftp.pids-classnames
/etc/ftpd/ftpaccess

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftp</td>
</tr>
</tbody>
</table>

SEE ALSO
ftpwho(1), in.ftpd(1M), ftpaccess(4), attributes(5)
ftpwho(1)

NAME       ftpwho – show current process information for each FTP Server user

SYNOPSIS   ftpwho [-V]

DESCRIPTION Use the ftpwho command to show the current process information for each user
logged in to the FTP Server. This information is in addition to information displayed
by the ftpcount(1) command.

OPTIONS    The ftpwho command supports the following options:
              -V              Display the program copyright and version information, then terminate.

EXIT STATUS The following exit values are returned:
              0              Successful completion.
              >0             An error occurred.

FILES       /etc/ftpd/ftpaccess
              /var/run/ftp.pids-classname

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWftpu</td>
</tr>
</tbody>
</table>

SEE ALSO     ftpcount(1), ps(1), in.ftpd(1M), ftpaccess(4), attributes(5)
NAME

gcore – get core images of running processes

SYNOPSIS

gcore [-o filename] process-id...

DESCRIPTION

The gcore utility creates a core image of each specified process. By default, the name of the core image file for the process whose process ID is process-id will be core.process-id.

OPTIONS

-o filename Substitutes filename in place of core as the first part of the name of the core image files.

OPERANDS

process-id process ID

EXIT STATUS

0 On success.

non-zero On failure, such as non-existent process ID.

FILES

core.process-id core images

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtwo (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWtwox (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

kill(1), core(4), proc(4), attributes(5)
gencat – generate a formatted message catalog

gencat catfile msgfile...

The gencat command merges the message text source file(s) msgfile into a formatted message database catfile. The database catfile is created if it does not already exist. If catfile does exist, its messages are included in the new catfile. If set and message numbers collide, the new message-text defined in msgfile replaces the old message text currently contained in catfile. The message text source file (or set of files) input to gencat can contain either set and message numbers or simply message numbers, in which case the set NL_SETD (see nl_types(3HEAD)) is assumed.

The format of a message text source file is defined as follows. Note that the fields of a message text source line are separated by a single ASCII space or tab character. Any other ASCII spaces or tabs are considered as part of the subsequent field.

$set n comment Where n specifies the set identifier of the following messages until the next $set, $delset, or end-of-file appears. n must be a number in the range (1–{NL_SETMAX}). Set identifiers within a single source file need not be contiguous. Any string following the set identifier is treated as a comment. If no $set directive is specified in a message text source file, all messages are located in the default message set NL_SETD.

$delset n comment Deletes message set n from an existing message catalog. Any string following the set number is treated as a comment. (Note: if n is not a valid set it is ignored.)

$comment A line beginning with a dollar symbol $ followed by an ASCII space or tab character is treated as a comment.

m message-text The m denotes the message identifier, a number in the range (1–{NL_MSGMAX}). The message-text is stored in the message catalog with the set identifier specified by the last $set directive, and with message identifier m. If the message-text is empty, and an ASCII space or tab field separator is present, an empty string is stored in the message catalog. If a message source line has a message number, but neither a field separator nor message-text, the existing message with that number (if any) is deleted from the catalog. Message identifiers need not be contiguous. The length of message-text must be in the range (0–{NL_TEXTMAX}).

$quote c This line specifies an optional quote character c, which can be used to surround message-text so that trailing spaces or null (empty) messages are visible in a message source line. By default, or if an empty $quote
directive is supplied, no quoting of message-text will be recognized.

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the following table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>newline</td>
<td>NL(LF)</td>
<td>\n</td>
</tr>
<tr>
<td>horizontal tab</td>
<td>HT</td>
<td>\t</td>
</tr>
<tr>
<td>vertical tab</td>
<td>VT</td>
<td>\v</td>
</tr>
<tr>
<td>backspace</td>
<td>BS</td>
<td>\b</td>
</tr>
<tr>
<td>carriage return</td>
<td>CR</td>
<td>\r</td>
</tr>
<tr>
<td>form feed</td>
<td>FF</td>
<td>\f</td>
</tr>
<tr>
<td>backslash</td>
<td>\</td>
<td>\ \</td>
</tr>
<tr>
<td>bit pattern</td>
<td>ddd</td>
<td>\ddd</td>
</tr>
</tbody>
</table>

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits, which are taken to specify the value of the desired character. If the character following a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on the following line. Thus, the following two lines describe a single message string:

```
1 This line continues \ to the next line
```

which is equivalent to:

```
1 This line continues to the next line
```

**OPERANDS**

The following operands are supported:

- **catfile**  
  A path name of the formatted message catalog. If – is specified, standard output is used.

- **msgfile**  
  A path name of a message text source file. If – is specified for an instance of msgfile, standard input is used. The format of message text source files is defined in Message Text Source File Format.

**ENVIRONMENT VARIABLES**

See environ(5) for descriptions of the following environment variables that affect the execution of gencat: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.
The following exit values are returned:

0  Successful completion.
>0  An error occurred.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

mkmsgs(1), catgets(3C), catopen(3C), gettext(3C), nl_types(3HEAD), attributes(5), environ(5), standards(5)
The `geniconvtbl` utility accepts code conversion rules defined in flat text file(s) and writes code conversion binary table file(s) that can be used to support user-defined `iconv` code conversions (see `iconv(1)` and `iconv(3C)` for more detail on the `iconv` code conversion).

**OPTIONS**

The following options are supported:

- `-f` Overwrites output file if the output file exists.
- `-n` Does not generate an output file. This is useful to check the contents of the input file.
- `-p preprocessor` Uses specified `preprocessor` instead of the default preprocessor, `/usr/lib/cpp`.
- `-q` Quiet option. It suppresses warning and error messages.
- `-W arg` Passes the argument `arg` to the preprocessor. If this option is specified more than once, all arguments are passed to the preprocessor.
- `-D name` `geniconvtbl` recognizes these options and passes them and their arguments to the preprocessor.

**OPERANDS**

The following operand is supported:

- `in` A path name of an input file. If no input file is specified, `geniconvtbl` reads from the standard input stream. The user can specify more than one input file if necessary.

**OUTPUT**

If input is from the standard input stream, `geniconvtbl` writes output to the standard output stream. If one or more input files are specified, `geniconvtbl` reads from each input file and writes to a corresponding output file. Each of the output file names will be the same as the corresponding input file with `.bt` appended.

The generated output files must be moved to the following directory prior to using the code conversions at `iconv(1)` and `iconv(3C)`: `/usr/lib/iconv/geniconvtbl/binarytables/`. The output file name should start with one or more printable ASCII characters as the ‘fromcode’ name followed by a percentage character (%), followed by one or more printable ASCII characters as the ‘tocode’ name, followed by the suffix ‘.bt’. The ‘fromcode’ and ‘tocode’
names are used to identify the **iconv** code conversion at **iconv(1)** and **iconv_open(3C)**. The properly named output file should be placed in the directory, `/usr/lib/iconv/geniconvtbl/binarytables/`.

**EXAMPLE 1** Generating an **iconv** code conversion binary table

The following example generates a code conversion binary table with output file name **convertA2B.bt**:

```
example% geniconvtbl convertA2B
```

**EXAMPLE 2** Generating multiple **iconv** code conversion binary tables

The following example generates two code conversion binary tables with output files **test1.bt** and **test2.bt**:

```
example% geniconvtbl test1 test2
```

**EXAMPLE 3** Using another preprocessor

The following example generates a code conversion binary table once the specified preprocessor has processed the input file:

```
example% geniconvtbl -p /opt/SUNWspro/bin/cc -W -E convertB2A
```

**EXAMPLE 4** Placing a binary table

To use the binary table created in the first example above as the engine of the conversion ‘*fromcode*’ **ABC** to ‘*tocode*’ **DEF**, become super-user and then rename it and place it like this:

```
example# mv convertA2B.bt /
/usr/lib/iconv/geniconvtbl/binarytables/ABC%DEF.bt
```

**EXAMPLE 5** Providing modified ISO8859-1 to UTF-8 code conversion

Write a **geniconvtbl** source file that defines the code conversion. For instance, you can copy over `/usr/lib/iconv/geniconvtbl/srcs/ISO8859-1_to_UTF-8.src` into your directory and make necessary changes at the source file. Once the modifications are done, generate the binary table:

```
example% geniconvtbl ISO8859-1_to_UTF-8.src
```

As super-user, place the generated binary table with a unique name at the system directory where **iconv_open(3C)** can find the binary table:

```
exaple su
Password:
example% cp ISO8859-1_to_UTF-8.bt /
/usr/lib/iconv/geniconvtbl/binarytables/my-iso-8859-1%utf-8.bt
```
EXAMPLE 5 Providing modified ISO8859-1 to UTF-8 code conversion (Continued)

After that, you can do the `iconv` code conversion. For instance:

```bash
eample: iconv -f my-iso-8859-1 -t utf-8 testfile.txt
```

ENVIRONMENT VARIABLES
See `environ(5)` for descriptions of the following environment variables that affect the execution of `geniconvtbl`: `LANG` and `LC_CTYPE`.

EXIT STATUS
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No errors occurred and the output files were successfully created.</td>
</tr>
<tr>
<td>1</td>
<td>Command line options are not correctly used or an unknown command line option was specified.</td>
</tr>
<tr>
<td>2</td>
<td>Invalid input or output file was specified.</td>
</tr>
<tr>
<td>3</td>
<td>Conversion rules in input files are not correctly defined.</td>
</tr>
<tr>
<td>4</td>
<td>Conversion rule limit of input files has been reached. See NOTES section of <code>geniconvtbl(4)</code>.</td>
</tr>
<tr>
<td>5</td>
<td>No more system resource error.</td>
</tr>
<tr>
<td>6</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>

FILES
`/usr/lib/iconv/geniconvtbl/binarytables/*.bt` conversion binary tables
`/usr/lib/iconv/geniconvtbl/srcs/*` conversion source files for user reference

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
`cpp(1)`, `iconv(1)`, `iconv(3C)`, `iconv_close(3C)`, `iconv_open(3C)`, `geniconvtbl(4)`, `attributes(5)`, `environ(5)`, `iconv(5)`

*Solaris Internationalization Guide for Developers*

NOTES
The generated and correctly placed output files, `/usr/lib/iconv/geniconvtbl/binarytables/*.bt`, are used in both 32-bit and 64-bit environments.
The `genlayouttbl` utility accepts a locale's layout definition in a flat text file and writes a binary layout table file that can be used in the complex text layout of the locale.

The following option is supported:

```
-o outfile
```

Writes output binary layout table to the `outfile`.

The following operand is supported:

```
infile
```

A path name of an input file. If no input file is specified, `genlayouttbl` reads from the standard input stream.

If no `outfile` is specified, `genlayouttbl` writes output to the standard output stream.

The generated output file must be moved to the following directory prior to the use at the system and the file name should be `layout.dat`:

```
/usr/lib/locale/LO_LTYPE/layout.dat
```

The locale should also have a symbolic link,

```
/usr/lib/locale/LO_LTYPE/locale.layout.so.1
```

to the 32-bit Universal Multiscript Layout Engine (UMLE),

```
/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1
```

For proper 64-bit platform operations, the locale should also have a symbolic link, as for instance, in 64-bit SPARC platform,

```
/usr/lib/locale/LO_LTYPE/sparcv9/locale.layout.so.1
```

to the 64-bit UMLE,

```
/usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1
```

The `locale` is the locale that you want to provide and to use the layout functionality you defined.

A layout definition file to `genlayouttbl` contains three different sections of definitions:

- Layout attribute definition
- Bidirectional data and character type data definition
- Shaping data definition

For appropriate complex text layout support, all three sections need to be defined in the layout definition file.

The following lexical conventions are used in the layout definition:

**NAME**

A string of characters that consists of printable ASCII characters. It includes DECIMAL and HEXADECIMAL also. Examples: `test`, `a1_src`, `b32`, `123`.
HEXADECIMAL_BYTE Two-digit hexadecimal number. The number starts with a hexadecimal digit followed by another hexadecimal digit. Examples: e0, E1, a7, fe.

HEXADECIMAL A hexadecimal number. The hexadecimal representation consists of an escape character, '0' followed by the constant 'X' or 'X' and one or more hexadecimal digits. Examples: 0x0, 0xl, 0xla, 0xA, 0x1b3.

DECIMAL A decimal number, represented by one or more decimal digits. Examples: 0, 123, 2165.

Each comment must start with '#'. The comment ends at the end of the line.

The following keywords are reserved:

- active_directional, active_shape_editing, AL,
- ALGORITHM_BASIC, ALGORITHM_IMPLICIT, AN, BN, check_mode,
- context, CONTEXT_LTR, CONTEXT_RTL, CS, EN, END, ES, ET, FALSE,
- FILE_CODE_REPRESENTATION, implicit_algorithm, keep, L,
- LAYOUT_ATTRIBUTES, LAYOUT_BIDI_CHAR_TYPE_DATA,
- LAYOUT_SHAPE_DATA, LRE, LRO, MODE_EDIT, MODE_STREAM, NSM,
- national_numerals, numerals, NUMERALS_CONTEXTUAL,
- NUMERALS_NATIONAL, NUMERALS_NOMINAL, ON, orientation,
- ORIENTATION_CONTEXTUAL, ORIENTATION_LTR, ORIENTATION_RTL,
- ORIENTATION_TTBLR, ORIENTATION_TTBRL, PDF,
- PROCESS_CODE_REPRESENTATION, PS, R, repeat*, repeat+, RLE, RLO, S,
- shape_charset, shape_charset_size, shape_context_size, swapping,
- SWAPPING_NO, swapping_pairs, SWAPPING_YES, TEXT_EXPLICIT,
- TEXT_IMPLICIT, TEXT_NOMINAL, TEXT_SHAPED, text_shaping, TEXT_VISUAL,
- TRUE, type_of_text, WS

Additionally, the following symbols are also reserved as tokens:

( ) [ ] , : ; . . . = -> +

The layout attribute definition section defines the layout attributes and their associated values.

The definition starts with a keyword, LAYOUT_ATTRIBUTES, and ends with END LAYOUT_ATTRIBUTES:

LAYOUT_ATTRIBUTES

# Layout attributes here.
:
:

END LAYOUT_ATTRIBUTES
There are a total of eight layout attribute value trios that can be defined in this section:

- orientation
- context
- type_of_text
- implicit_algorithm
- swapping
- numerals
- text_shaping
- shape_context_size

Additionally, there are five layout attribute value pairs that also can be defined in this section:

- active_directional
- active_shape_editing
- shape_charset
- shape_charset_size
- check_mode

Each attribute value trio will have an attribute name, an attribute value for the input buffer, and an attribute value for the output buffer, as in the following example:

```bash
Orientation layout attribute value trio. The input and output attribute values are separated by a colon and the left one is the input attribute value:
orientation ORIENTATION_LTR:ORIENTATION_LTR
```

Each attribute value pair will have an attribute name and an associated attribute value, as in the following example:

```bash
Shape charset attribute value pair:
shape_charset ISO8859-6
```

The orientation value trio defines the global directional text orientation. The possible values are:

- **ORIENTATION_LTR**  Left-to-right horizontal rows that progress from top to bottom.
- **ORIENTATION_RTL**  Right-to-left horizontal rows that progress from top to bottom.
- **ORIENTATION_TTBRL**  Top-to-bottom vertical columns that progress from right to left.
- **ORIENTATION_TTBLR**  Top-to-bottom vertical columns that progress from left to right.
- **ORIENTATION_CONTEXTUAL**  The global orientation is set according to the direction of the first significant (strong) character. If there are no strong characters in
the text and the attribute is set to this value, the global orientation of the text is set according to the value of the attribute context. This value is meaningful only for bidirectional text.

If no value or value trio is defined, the default is ORIENTATION_LTR.

The context value trio is meaningful only if the attribute orientation is set to ORIENTATION_CONTEXTUAL. It defines what orientation is assumed when no strong character appears in the text. The possible values are:

- **CONTEXT_LTR**: In the absence of characters with strong directionality in the text, orientation is assumed to be left-to-right rows progressing from top to bottom.
- **CONTEXT_RTL**: In the absence of characters with strong directionality in the text, orientation is assumed to be right-to-left rows progressing from top to bottom.

If no value or value trio is specified, the default is CONTEXT_LTR.

The type_of_text value trio specifies the ordering of the directional text. The possible values are:

- **TEXT_VISUAL**: Code elements are provided in visually ordered segments, which can be rendered without any segment inversion.
- **TEXT_IMPLICIT**: Code elements are provided in logically ordered segments. Logically ordered means that the order in which the characters are provided is the same as the order in which the characters are pronounced when reading the presented text or the order in which characters would be entered from a keyboard.
- **TEXT_EXPLICIT**: Code elements are provided in logically ordered segments with a set of embedded controls. Some examples of such embedded controls from ISO/IEC 10646-1 are:
  - LEFT-TO-RIGHT EMBEDDING (LRE)
  - RIGHT-TO-LEFT EMBEDDING (RLE)
  - RIGHT-TO-LEFT OVERRIDE (RLO)
  - LEFT-TO-RIGHT OVERRIDE (LRO)
  - POP DIRECTIONAL FORMAT (PDF)

If no value or value trio is specified, the default is TEXT_IMPLICIT.
The `implicit_algorithm` value trio specifies the type of bidirectional implicit algorithm used in reordering and shaping of directional or context-dependent text. The possible values are:

- **ALGORITHM_IMPLICIT**
  Directional code elements will be reordered using an implementation-defined implicit algorithm.

- **ALGORITHM_BASIC**
  Directional code elements will be reordered using a basic implicit algorithm defined in the Unicode standard.

Even though we allow two different values for the `implicit_algorithm`, since the Solaris implementation-defined implicit algorithm is based on the Unicode standard, there is no difference in behavior whether you choose `ALGORITHM_IMPLICIT` or `ALGORITHM_BASIC` for this attribute.

The default value is `ALGORITHM_IMPLICIT`.

The `swapping` value trio specifies whether symmetric swapping is applied to the text. The possible values are:

- **SWAPPING_YES**
  The text conforms to symmetric swapping.

- **SWAPPING_NO**
  The text does not conform to symmetric swapping.

If no value or value trio is specified, the default is `SWAPPING_NO`.

The `numerals` value trio specifies the shaping of numerals. The possible values are:

- **NUMERALS_NOMINAL**
  Nominal shaping of numerals using the Arabic numbers of the portable character set (in Solaris, ASCII digits).

- **NUMERALS_NATIONAL**
  National shaping of numerals based on the script of the locale. For instance, Thai digits in the Thai locale.

- **NUMERALS_CONTEXTUAL**
  Contextual shaping of numerals depending on the context script of surrounding text, such as Hindi numbers in Arabic text and Arabic numbers otherwise.

If no value or value trio is specified, the default is `NUMERALS_NOMINAL`.

The `text_shaping` value trio specifies the shaping; that is, choosing (or composing) the correct shape of the input or output text. The possible values are:

- **TEXT_SHADED**
  The text has presentation form shapes.

- **TEXT_NOMINAL**
  The text is in basic form.

If no value or value trio is specified, the default is `TEXT_NOMINAL` for input and `TEXT_SHADED` for output.
The `shape_context_size` value trio specifies the size of the context (surrounding code elements) that must be accounted for when performing active shape editing. If not defined, the default value 0 is used for the number of surrounding code elements at both front and rear:

```
The shape_context_size for both front and rear surrounding code
elements are all zero:
shape_context_size 0:0
```

The front and rear attribute values are separated by a colon, with the front value to the left of the colon.

The `active_directional` value pair specifies whether the current locale requires (bi-)directional processing. The possible values are:

- `TRUE` Requires (bi-)directional processing.
- `FALSE` Does not require (bi-)directional processing.

The `active_shape_editing` value pair specifies whether the current locale requires context-dependent shaping for presentation. The possible values are:

- `TRUE` Requires context-dependent shaping.
- `FALSE` Does not require context-dependent shaping.

The `shape_charset` value pair specifies the current locale’s shape charset on which the complex text layout is based. There are two different kinds of shape charset values that can be specified:

- A single shape charset
- Multiple shape charsets

For a single shape charset, it can be defined by using `NAME` as defined in the Lexical Convention section above. For multiple shape charsets, however, it should follow the syntax given below in extended BNF form:

```
multiple_shape_charset
 : charset_list
 ;

charset_list
 : charset
 | charset_list ';' charset
 ;

charset
 : charset_name '=' charset_id
 ;

charset_name
 : NAME
 ;

charset_id
 : HEXADECIMAL_BYTE
 ;
```
For instance, the following is a valid multiple shape charsets value for the `shape_charset` attribute:

```
Multi-shape charsets:
shape_charset tis620.2533=e4;iso8859-8=e5;iso8859-6=e6
```

The `shape_charset` must be specified.

The `shape_charset_size` value pair specifies the encoding size of the current `shape_charset`. The valid value is a positive integer from 1 to 4. If the multiple shape charsets value is defined for the `shape_charset` attribute, the `shape_charset_size` must be 4.

The `shape_charset_size` must be specified.

The `check_mode` value pair specifies the level of checking of the elements in the input buffer for shaping and reordering purposes. The possible values are:

```
MODE_STREAM The string in the input buffer is expected to have valid combinations of characters or character elements.
MODE_EDIT The shaping of input text may vary depending on locale-specific validation or assumption.
```

When no value or value pair is not specified, the default value is `MODE_STREAM`.

This section defines the bidirectional and other character types that will be used in the Unicode Bidirectional Algorithm and the shaping algorithm part of the UMLE.

The definition starts with a keyword `LAYOUT_BIDI_CHAR_TYPE_DATA` and ends with `END LAYOUT_BIDI_CHAR_TYPE_DATA`:

```
LAYOUT_BIDI_CHAR_TYPE_DATA
 # Layout bidi definitions here.
 :
 :
END LAYOUT_BIDI_CHAR_TYPE_DATA
```

The bidirectional data and character type data definition should be defined for the two different kinds of text shape forms, `TEXT_SHAPED` and `TEXT NOMINAL`, depending on the `text_shaping` attribute value and also for the two different kinds of text representations, file code representation and process code representation (that is, wide character representation):

```
LAYOUT_BIDI_CHAR_TYPE_DATA
 FILE_CODE_REPRESENTATION
 TEXT_SHAPED
 # TEXT_SHAPED bidi and character type data
 # definition in file code representation here.
 :
```
Each bidi and character type data definition can have the following definitions:

- Bidirectional data type definition
- `swapping_pairs` character type definition
- `national_numerals` character type definition

There are nineteen different bidirectional data types that can be defined, as in the following table:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Strong</td>
<td>Left-to-right</td>
</tr>
<tr>
<td>LRE</td>
<td>Strong</td>
<td>Left-to-right embedd</td>
</tr>
<tr>
<td>LRO</td>
<td>Strong</td>
<td>Left-to-right override</td>
</tr>
<tr>
<td>R</td>
<td>Strong</td>
<td>Right-to-left</td>
</tr>
<tr>
<td>Keyword</td>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>AL</td>
<td>Strong</td>
<td>Right-to-left</td>
</tr>
<tr>
<td>RLE</td>
<td>Strong</td>
<td>Right-to-left embedding</td>
</tr>
<tr>
<td>RLO</td>
<td>Strong</td>
<td>Right-to-left override</td>
</tr>
<tr>
<td>PDF</td>
<td>Weak</td>
<td>Pop directional format</td>
</tr>
<tr>
<td>EN</td>
<td>Weak</td>
<td>European number</td>
</tr>
<tr>
<td>ES</td>
<td>Weak</td>
<td>European number separator</td>
</tr>
<tr>
<td>ET</td>
<td>Weak</td>
<td>European number terminator</td>
</tr>
<tr>
<td>AN</td>
<td>Weak</td>
<td>Arabic number</td>
</tr>
<tr>
<td>CS</td>
<td>Weak</td>
<td>Common number separator</td>
</tr>
<tr>
<td>PS</td>
<td>Separator</td>
<td>Paragraph separator</td>
</tr>
<tr>
<td>S</td>
<td>Separator</td>
<td>Segment separator</td>
</tr>
<tr>
<td>WS</td>
<td>Neutral</td>
<td>White space</td>
</tr>
<tr>
<td>ON</td>
<td>Neutral</td>
<td>Other neutrals</td>
</tr>
<tr>
<td>NSM</td>
<td>Weak</td>
<td>Non-spacing mark</td>
</tr>
<tr>
<td>BN</td>
<td>Weak</td>
<td>Boundary neutral</td>
</tr>
</tbody>
</table>

If not defined in this section, the characters belong to the other neutrals type, ON.

Each keyword list above will be accompanied by one or more **HEXADECIMAL** ranges of characters that belong to the bidirectional character type. The syntax is as follows:

```plaintext
bidi_char_type : bidi_keyword '::' range_list

;

bidi_keyword : 'L'
 | 'LRE'
 | 'LRO'
 | 'R'
 | 'AL'
 | 'RLE'
 | 'RLO'
 | 'PDF'
 | 'EN'
 | 'ES'
 | 'ET'
 | 'AN'
 | 'CS'
 | 'PS'
 | 'S'
 | 'WS'
 | 'ON'
 | 'NSM'
```
For example:

# Bidi character type definitions:
L: 0x26, 0x41...0x5a, 0xc380...0xc396, 0xe285a0...0xe28682
WS: 0x20, 0xc2a0, 0xe28080...0xe28086

The \texttt{swapping_pairs} specifies the list of swappable characters if \texttt{SWAPPING\_YES} is specified as a value at the swapping value trio. The syntax of the \texttt{swapping_pairs} is as follows:

\begin{verbatim}
swapping_pair_list : swapping_keyword ':' swap_pair_list

swapping_keyword : 'swapping_pairs'

swap_pair_list : swap_pair
| swap_pair_list ',' swap_pair

swap_pair : '(' HEXADECIMAL ',' HEXADECIMAL ')
\end{verbatim}

For example:

# Swapping pair definitions:
swapping_pairs: (0x28, 0x29), (0x7b, 0x7d)

The \texttt{national_numerals} specifies the list of national digits that can be converted as the \texttt{numerals} value trio specifies. The syntax of the \texttt{national_numerals} is as follows:

\begin{verbatim}
numerals_list : numerals_keyword ':'
| numerals_list ':' contextual_range_list

numerals_keyword : 'national_numerals'

numerals_list : '(' zero ' , ' one ' , ' two ' , ' three ' ,
| four ' , ' five ' , ' six ' , ' seven ' ,
| eight ' , ' nine ')' (numeral)

zero : HEXADECIMAL

one : HEXADECIMAL
\end{verbatim}
For instance:

```
National numerals definition. The national number that will
replace Arabic number 0 to 9 is 0, 0x41, 0x42, and so on.
The contextual surrounding characters are 0x20 to 0x40 and
0x50 to 0x7f:
national_numerals:
 (0x0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49)
 ; 0x20...0x40, 0x50...0x7f
```

Unless NUMERALS_CONTEXTUAL is the value of the numerals attribute, the contextual range list definition is meaningless.

The shaping data definition section defines the context-dependent shaping rules that will be used in the shaping algorithm of the UMLE.

The definition starts with a keyword, LAYOUT_SHAPE_DATA, and ends with END LAYOUT_SHAPE_DATA:

```
LAYOUT_SHAPE_DATA
 # Layout shaping data definitions here.
```
The shaping data definition should be defined for the two different kinds of text shape forms, TEXT_SHADED and TEXT_NOMINAL, depending on the text_shaping attribute value and also for the two different kinds of text representations, file code representation and process code representation (that is, wide character representation):

LAYOUT_SHAPE_DATA

FILE_CODE_REPRESENTATION
  TEXT_SHADED
    # TEXT_SHADED shaping data definition in file code
    # representation here.
    :
    :
  
  END TEXT_SHADED

TEXT_NOMINAL
  # TEXT_NOMINAL shaping data definition in file code
  # representation here.
  :
  :

  END TEXT_NOMINAL

END FILE_CODE_REPRESENTATION

PROCESS_CODE_REPRESENTATION
  TEXT_SHADED
    # TEXT_SHADED shaping data definition in process code
    # representation here.
    :
    :

  END TEXT_SHADED

TEXT_NOMINAL
  # TEXT_NOMINAL shaping data definition in process
  # code representation here.
  :
  :

  END TEXT_NOMINAL

END PROCESS_CODE_REPRESENTATION

END LAYOUT_SHAPE_DATA

Each shaping data definition consists of one or more of the shaping sequence definitions. Each shaping sequence definition is a representation of a series of state transitions triggered by an input character and the current state at each transition.
The syntax of the shaping sequence definition is as follows:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shaping_sequence</td>
<td>initial_state ‘+’ input ‘-‘&gt; next_state_list</td>
</tr>
<tr>
<td>initial_state</td>
<td>‘()’</td>
</tr>
<tr>
<td>input</td>
<td>HEXADECIMAL</td>
</tr>
<tr>
<td>next_state_list</td>
<td>next_state</td>
</tr>
<tr>
<td></td>
<td>next_state_list ‘+’ input ‘-‘&gt; next_state</td>
</tr>
<tr>
<td></td>
<td>‘(’ next_state_list ‘+’ input ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td></td>
<td>‘(‘ next_state_list ‘+’ input ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td>next_state</td>
<td>‘(‘ out_buffer ‘,’ in2out ‘,’ out2in ‘,’</td>
</tr>
<tr>
<td></td>
<td>property ‘)‘</td>
</tr>
<tr>
<td>out_buffer</td>
<td>‘[‘ out_char_list ‘]‘</td>
</tr>
<tr>
<td>out_char_list</td>
<td>HEXADECIMAL</td>
</tr>
<tr>
<td></td>
<td>‘(‘ HEXADECIMAL ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td></td>
<td>out_char_list ‘;‘ HEXADECIMAL</td>
</tr>
<tr>
<td>in2out</td>
<td>‘[‘ i2o_list ‘]‘</td>
</tr>
<tr>
<td>i2o_list</td>
<td>DECIMAL</td>
</tr>
<tr>
<td></td>
<td>‘(‘ DECIMAL ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td></td>
<td>i2o_list ‘;‘ DECIMAL</td>
</tr>
<tr>
<td>out2in</td>
<td>‘[‘ o2i_list ‘]‘</td>
</tr>
<tr>
<td>o2i_list</td>
<td>DECIMAL</td>
</tr>
<tr>
<td></td>
<td>‘(‘ DECIMAL ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td></td>
<td>o2i_list ‘;‘ DECIMAL</td>
</tr>
<tr>
<td>property</td>
<td>‘[‘ prop_list ‘]‘</td>
</tr>
<tr>
<td>prop_list</td>
<td>HEXADECIMAL</td>
</tr>
<tr>
<td></td>
<td>‘(‘ HEXADECIMAL ‘)‘ ‘repeat*‘</td>
</tr>
<tr>
<td></td>
<td>prop_list ‘;‘ HEXADECIMAL</td>
</tr>
</tbody>
</table>

For example, the following shaping sequences can be defined:

```plaintext
A simple shaping sequence:
() + 0x21 ->
 { [0x0021], [0], [0;0], [0x80] } + 0x22 ->
```

482  man pages section 1: User Commands • Last Revised 5 Nov 1999
The first example shows a shaping sequence such that if 0x21, 0x22, and 0xc2a0 are the input buffer contents, it will be converted into an output buffer containing 0x0021, 0x0022, and 0xe030; an input to the output buffer containing 0, 1, and 2; an output to the input buffer containing 0, 0, 1, 1, 2, and 2; and a property buffer containing 0x80, 0x80, and 0x80.

The second example shows a repeating shaping sequence where, if the first input code element is 0x21, then the second and third input code elements are 0x22 and 0xc2a2, respectively.

**EXIT STATUS**

The following exit values are returned:

0  No errors occurred and the output file was successfully created.
1  Command line options are not correctly used or unknown command line option specified.
2  Invalid input or output file specified.
3  The layout definitions not correctly defined.
4  No more system resource error.
6  Internal error.

**FILES**

/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1
The Universal Multiscript Layout Engine for 32-bit platforms.

/usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1
The Universal Multiscript Layout Engine for 64-bit SPARC platform.

/usr/lib/locale/common/LO_LTYPE/ia64/umle.layout.so.1
The Universal Multiscript Layout Engine for 64-bit Intel platform.

/usr/lib/locale/locale/LO_LTYPE/layout.dat
The binary layout table file for the locale.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWglt</td>
</tr>
</tbody>
</table>
SEE ALSO
m_create_layout(3LAYOUT), m_destroy_layout(3LAYOUT),
m_getvalues_layout(3LAYOUT), m_setvalues_layout(3LAYOUT),
m_transform_layout(3LAYOUT), m_wtransform_layout(3LAYOUT),
attributes(5), environ(5)

International Language Environments Guide

Unicode Technical Report #9: The Bidirectional Algorithm from
http://www.unicode.org/unicode/reports/
**genmsg** – generate a message source file by extracting messages from source files

**SYNOPSIS**

```
genmsg [-abdfrntx] [-c message-tag] [-g project-file] [-l project-file]
[-m prefix] [-M suffix] [-o message-file] [-p preprocessor] [-s set-tags] file...
genmsg prog.c
```

**DESCRIPTION**

The **genmsg** utility extracts message strings with calls to **catgets**(3C) from source files and writes them in a format suitable for input to **gencat**(1).

**Invocation**

**genmsg** reads one or more input files and, by default, generates a message source file whose name is composed of the first input file name with .msg. If the `-o` option is specified, **genmsg** uses the option argument for its output file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Output File</th>
</tr>
</thead>
<tbody>
<tr>
<td>genmsg prog.c</td>
<td>prog.c.msg</td>
</tr>
<tr>
<td>genmsg main.c util.c tool.c</td>
<td>main.c.msg</td>
</tr>
<tr>
<td>genmsg -o prog.msg mail.c util.c</td>
<td>prog.msg</td>
</tr>
</tbody>
</table>

**genmsg** also allows you to invoke a preprocessor to solve the dependencies of macros and define statements for the **catgets**(3C) calls.

**Auto Message Numbering**

**genmsg** replaces message numbers with the calculated numbers based upon the project file if the message numbers are -1, and it generates copies of the input files with the new message numbers and a copy of the project file with the new maximum message numbers.

A project file is a database that stores a list of set numbers with their maximum message numbers. Each line in a project file is composed of a set number and its maximum message number:

```
Set_number Maximum_message_number
```

In a project file, a line beginning with a number sign (#) or an ASCII space is considered as a comment and ignored.

**Comment Extraction**

**genmsg** also has the reverse operation to replace all message numbers with -1.

**Testing**

**genmsg** generates two kinds of messages for testing, prefixed messages and long messages. Prefixed messages allow you to check that your program is retrieving the messages from the message catalog. Long messages allow you to check the appearance of your window program’s initial size and position.
OPTIONS

The following options are supported:

-a
Append the output into the message file message-file that is specified by the -o option. If two different messages that have the same set and message number are found, the message in the specified message file is kept and the other message in the input file is discarded.

-b
Place the extracted comment after the corresponding message in the output file. This option changes the placement behavior of the -s or -c option.

-c message-tag
Extract message comments having message-tag inside them from the input files and write them with a `\$' prefix as a comment in the output file.

-d
Include an original text of a message as a comment to be preserved along with its translations. With this option, the translator can see the original messages even after they are replaced with their translations.

-f
Overwrite the input files and the project file when used with the -l or -r option. With the -r option, genmsg overwrites only the input files.

-g project-file
Generate project-file that has a list of set numbers and their maximum message numbers in the input files.

-l project-file
Replace message numbers with the calculated numbers based upon project-file if the message numbers are -1 in the input files, and then generate copies of the input files with the new message numbers and a copy of project-file with the new maximum message numbers. If project-file is not found, genmsg uses the maximum message number in the input file as a base number and generates project-file.

-m prefix
Fill in the message with prefix. This option is useful for testing.

-M suffix
Fill in the message with suffix. This option is useful for testing.

-n
Add comment lines to the output file indicating the file name and line number in the input files where each extracted string is encountered.

-o message-file
Write the output to message-file.

-p preprocessor
Invoke preprocessor to preprocess macros and define statements for the catgets(3C) calls. genmsg first invokes the option argument as a preprocessor and
Then starts the normal process against the output from the preprocessor. genmsg initiates this process for all the input files.

-\texttt{r} \\
Replace message numbers with -1. This is the reverse operation of the -1 option.

-\texttt{s set-tag} \\
Extract set number comments having set-tag inside them from the input files and write them with a ‘$’ prefix as a comment in the output file. If multiple comments are specified for one set number, the first one is extracted and the rest of them are discarded.

-\texttt{t} \\
Generate a message that is three times as long as the original message. This option is useful for testing.

-\texttt{x} \\
Suppress warning messages about message and set number range checks and conflicts.

\textbf{OPERANDS} \\
\texttt{file} \\
An input source file.

\textbf{EXAMPLES} \\
\textbf{EXAMPLE 1} Assigning message numbers and generating new files \\
Suppose that you have the following source and project files:

\begin{verbatim}
example% cat test.c
printf(catgets(catfd, 1, -1, "line too long"));
printf(catgets(catfd, 2, -1, "invalid code"));
\end{verbatim}

The command

\begin{verbatim}
example% genmsg -l proj test.c
\end{verbatim}

would assign the calculated message numbers based upon proj and generate the following files:

\begin{verbatim}
test.c.msg \\message file
proj.new \\updated project file
test.c.new \\new source file
\end{verbatim}

\begin{verbatim}
example% cat test.c.msg
$quote \
$set 1
11 "line too long"
$set 2
21 "invalid code"
example% cat proj.new
11
2
example% cat test.c.new
printf(catgets(catfd, 1, 11, "line too long"));
printf(catgets(catfd, 2, 21, "invalid code"));
\end{verbatim}

\textbf{EXAMPLE 2} Extracting comments into a file \\
The command

\begin{verbatim}
example% genmsg -s set-tag proj test.c
\end{verbatim}
EXAMPLE 2 Extracting comments into a file  (Continued)

genmsg -s SET -c MSG test.c

cat test.c

/* SET: tar messages */
/* MSG: don't translate "tar". */
catgets(catfd, 1, 1, "tar: tape write error");
// MSG: don't translate "tar" and "+I".
catgets(catfd, 1, 2, "tar: missing argument for -I flag");

would extract the comments and write them in the following output file:

genmsg -s SET -c MSG test.c

cat test.c

$ /* SET: tar messages */
<pre>
$set 1
$ /* MSG: don't translate "tar". */
1  "tar: tape write error"
$ // MSG: don't translate "tar" and "+I".
2  "tar: missing argument for -I flag"

EXAMPLE 3 Generating test messages

The command

genmsg -m PRE: -M :FIX test.c

would generate the following messages for testing:

genmsg -m PRE: -M :FIX test.c

1 "PRE:OK:FIX"
2 "PRE:Cancel:FIX"

EXAMPLE 4 Parsing a macro and writing the extracted messages

Given the following input:

genmsg -p "cc -E" -o example.msg example.c

define MSG1 "message1"
define MSG2 "message2"
define MSG3 "message3"
define MSG(n) catgets(catd, 1, n, MSG ## n)

main(int argc, char **argv)
{
    nl_catd catd = catopen(argv[0], NL_CAT_LOCALE);
    (void) printf("%s0, MSG(1));
    (void) printf("%s0, MSG(2));
    (void) printf("%s0, MSG(3));
    (void) catclose(catd);
}

The following command:

genmsg -p "cc -E" -o example.msg example.c

would parse the MSG macros and write the extracted messages in example.msg.

EXAMPLE 5 Assigning calculated message numbers

Suppose that you have the following header, source, and project files:
EXAMPLE 5 Assigning calculated message numbers  (Continued)

example% ./inc/msg.h
#define WARN_SET 1
#define ERR_SET 2
#define WARN_MSG(id, msg) catgets(catd, WARN_SET, (id), (msg))
#define ERR_MSG(id, msg) catgets(catd, ERR_SET, (id), (msg))
example% example.c
#include "msg.h"
printf("%s, WARN_MSG(-1, "Warning error");
printf("%s, ERR_MSG(-1, "Fatal error");
example % proj
  1   10
  2   10

The command
example% genmsg -f -p "cc -E -I../inc" -l proj \
   -o example.msg example.c

would assign each of the -1 message numbers a calculated number based upon proj
and would overwrite the results to example.c and proj. Also, this command writes
the extracted messages in example.msg.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of genmsg: LC_MESSAGES and NLSPATH.

EXIT STATUS
The following exit values are returned:
 0  Successful completion.
>0  An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
</tbody>
</table>

SEE ALSO
gencat(1), catgets(3C), catopen(3C), attributes(5), environ(5)

NOTES
Genmsg does not handle pointers or valuables in the catgets(3C) call. For example:

    const int set_num = 1;
    extern int msg_num(const char *);
    const char *msg = "Hello";
    catgets(catd, set_num, msg_num(msg), msg);

When the auto message numbering is turned on with a preprocessor, if there are
multiple -1's in the catgets(3C) line, genmsg replaces all of the -1's in the line
with a calculated number. For example, given the input:

User Commands  489
#define MSG(id, msg) catgets(catd, 1, (id), (msg))
if (ret == -1) printf("%s, MSG(-1, "Failed")");

the command

genmsg -l proj -p "cc -E"

would produce:

#define MSG(id, msg) catgets(catd, 1, (id), (msg))
if (ret == 1) printf("%s, MSG(1, "Failed")");

The workaround would be to split it into two lines as follows:

if (ret == -1)
    printf("%s, MSG(-1, "Failed")");
NAME
getconf – get configuration values

SYNOPSIS
getconf [-v specification] system_var
getconf [-v specification] path_var pathname
getconf -a

DESCRIPTION
In the first synopsis form, the `getconf` utility will write to the standard output the value of the variable specified by `system_var`, in accordance with `specification` if the `-v` option is used.

In the second synopsis form, `getconf` will write to the standard output the value of the variable specified by `path_var` for the path specified by `pathname`, in accordance with `specification` if the `-v` option is used.

In the third synopsis form, `config` will write to the standard output the names of the current system configuration variables.

The value of each configuration variable will be determined as if it were obtained by calling the function from which it is defined to be available. The value will reflect conditions in the current operating environment.

OPTIONS
The following options are supported:

- `-a`           Writes the names of the current system configuration variables to the standard output.
- `-v specification`  Gives the specification which governs the selection of values for configuration variables.

OPERANDS
The following operands are supported:

path_var   A name of a configuration variable whose value is available from the `pathconf(2)` function. All of the values in the following table are supported:

| LINK_MAX   | NAME_MAX          | _POSIX_CHOWN_RESTRICTED |
| MAX_CANON  | PATH_MAX          | _POSIX_NO_TRUNC         |
| MAX_INPUT  | PIPE_BUF          | _POSIX_VDISABLE        |

pathname   A path name for which the variable specified by `path_var` is to be determined.

system_var  A name of a configuration variable whose value is available from `confstr(3C)` or `sysconf(3C)`. All of the values in the following table are supported:
### getconf(1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG_MAX</td>
<td>BC_BASE_MAX</td>
</tr>
<tr>
<td>BC_DIM_MAX</td>
<td>BC_SCALE_MAX</td>
</tr>
<tr>
<td>BC_STRING_MAX</td>
<td>CHAR_BIT</td>
</tr>
<tr>
<td>CHARCLASS_NAME_MAX</td>
<td>CHAR_MAX</td>
</tr>
<tr>
<td>CHAR_MIN</td>
<td>CHILD_MAX</td>
</tr>
<tr>
<td>CLK_TCK</td>
<td>COLL_WEIGHTS_MAX</td>
</tr>
<tr>
<td>CS_PATH</td>
<td>EXPR_NEST_MAX</td>
</tr>
<tr>
<td>INT_MAX</td>
<td>INT_MIN</td>
</tr>
<tr>
<td>LFS64_CFLAGS</td>
<td>LFS64_LDFLAGS</td>
</tr>
<tr>
<td>LFS64_LIBS</td>
<td>LFS64_LINTFLAGS</td>
</tr>
<tr>
<td>LFS_CFLAGS</td>
<td>LFS_LDFLAGS</td>
</tr>
<tr>
<td>LFS_LIBS</td>
<td>LFS_LINTFLAGS</td>
</tr>
<tr>
<td>LINE_MAX</td>
<td>LONG_BIT</td>
</tr>
<tr>
<td>LONG_MAX</td>
<td>LONG_MIN</td>
</tr>
<tr>
<td>MB_LEN_MAX</td>
<td>NGROUPS_MAX</td>
</tr>
<tr>
<td>NL_ARGMAX</td>
<td>NL_LANGMAX</td>
</tr>
<tr>
<td>NL_MSGMAX</td>
<td>NL_NMAX</td>
</tr>
<tr>
<td>NL_SETMAX</td>
<td>NL_TEXTMAX</td>
</tr>
<tr>
<td>NZERO</td>
<td>OPEN_MAX</td>
</tr>
<tr>
<td>POSIX2_BC_BASE_MAX</td>
<td>POSIX2_BC_DIM_MAX</td>
</tr>
<tr>
<td>POSIX2_BC_SCALE_MAX</td>
<td>POSIX2_BC_STRING_MAX</td>
</tr>
<tr>
<td>POSIX2_C_BIND</td>
<td>POSIX2_C_DEV</td>
</tr>
<tr>
<td>POSIX2_CHAR_TERM</td>
<td>POSIX2_COLL_WEIGHTS_MAX</td>
</tr>
<tr>
<td>POSIX2_C_VERSION</td>
<td>POSIX2_EXPR_NEST_MAX</td>
</tr>
<tr>
<td>POSIX2_FORT_DEV</td>
<td>POSIX2_FORT_RUN</td>
</tr>
<tr>
<td>POSIX2_LINE_MAX</td>
<td>POSIX2_LOCALEDEF</td>
</tr>
<tr>
<td>POSIX2_RE_DUP_MAX</td>
<td>POSIX2_SW_DEV</td>
</tr>
<tr>
<td>POSIX2_UPE</td>
<td>POSIX2_VERSION</td>
</tr>
<tr>
<td>_POSIX_ARG_MAX</td>
<td>_POSIX_CHILD_MAX</td>
</tr>
<tr>
<td>_POSIX_JOB_CONTROL</td>
<td>_POSIX_LINK_MAX</td>
</tr>
</tbody>
</table>
The symbol `PATH` also is recognized, yielding the same value as the `confstr()` name value `CS_PATH`.
See largefile(5) for the description of the behavior of getconf when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

**EXAMPLE 1** Writing the value of a variable

This example illustrates the value of \{NGROUPS_MAX\}:

```
example% getconf NGROUPS_MAX
```

**EXAMPLE 2** Writing the value of a variable for a specific directory

This example illustrates the value of \NAME_MAX\ for a specific directory:

```
example% getconf NAME_MAX /usr
```

**EXAMPLE 3** Dealing with unspecified results

This example shows how to deal more carefully with results that might be unspecified:

```
if value=$(getconf PATH_MAX /usr); then
 if ["$value" = "undefined"]; then
 echo PATH_MAX in /usr is infinite.
 else
 echo PATH_MAX in /usr is $value.
 fi
else
 echo Error in getconf.
fi
```

Notice that

```
sysconf(_SC_POSIX_C_BIND);
```

and

```
system("getconf POSIX2_C_BIND");
```

in a C program could give different answers. The sysconf call supplies a value that corresponds to the conditions when the program was either compiled or executed, depending on the implementation; the system call to getconf always supplies a value corresponding to conditions when the program is executed.

**ENVIRONMENT VARIABLES**

See environ(5) for descriptions of the following environment variables that affect the execution of getconf: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

**EXIT STATUS**

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The specified variable is valid and information about its current state was written successfully.</td>
</tr>
<tr>
<td>&gt;0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>
ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO `pathconf(2), confstr(3C), sysconf(3C), attributes(5), environ(5), largefile(5), standards(5)`
getfacl(1)

NAME  getfacl – display discretionary file information

SYNOPSIS  getfacl [-ad] file...

DESCRIPTION  For each argument that is a regular file, special file, or named pipe, getfacl displays
the owner, the group, and the Access Control List (ACL). For each directory argument,
getfacl displays the owner, the group, and the ACL and/or the default ACL. Only
directories contain default ACLs.

getfacl may be executed on a file system that does not support ACLs. It reports the
ACL based on the base permission bits.

With no options specified, getfacl displays the filename, the file owner, the file
group owner, and both the ACL and the default ACL, if it exists.

OPTIONS  The following options are supported:

- a  Display the filename, the file owner, the file group owner, and the ACL of
     the file.

- d  Display the filename, the file owner, the file group owner, and the default
     ACL of the file, if it exists.

OPERANDS  The following operands are supported:

file  The path name of a regular file, special file, or named pipe.

OUTPUT  The format for ACL output is as follows:

# file: filename
# owner: uid
# group: gid
user::perm
user:uid:perm
group::perm
group:gid:perm
mask:perm
other:perm
default:user::perm
default:user:uid:perm
default:group::perm
default:group:gid:perm
default:mask:perm
default:other:perm

When multiple files are specified on the command line, a blank line separates the
ACLs for each file.

The ACL entries are displayed in the order in which they are evaluated when an
access check is performed. The default ACL entries that may exist on a directory have
no effect on access checks.
The first three lines display the filename, the file owner, and the file group owner.
Note that when only the -d option is specified and the file has no default ACL, only
these three lines are displayed.

The user entry without a user ID indicates the permissions that are granted to the file
owner. One or more additional user entries indicate the permissions that are granted
to the specified users.

The group entry without a group ID indicates the permissions that are granted to the
file group owner. One or more additional group entries indicate the permissions that
are granted to the specified groups.

The mask entry indicates the ACL mask permissions. These are the maximum
permissions allowed to any user entries except the file owner, and to any group
entries, including the file group owner. These permissions restrict the permissions
specified in other entries.

The other entry indicates the permissions that are granted to others.

The default entries may exist only for directories, and indicate the default entries
that are added to a file created within the directory.

The uid is a login name or a user ID if there is no entry for the uid in the system
password file, /etc/passwd. The gid is a group name or a group ID if there is no
entry for the gid in the system group file, /etc/group. The perm is a three character
string composed of the letters representing the separate discretionary access rights: r
(read), w (write), x (execute/search), or the place holder character -. The perm is
displayed in the following order: rwx. If a permission is not granted by an ACL entry,
the place holder character appears.

If you use the chmod(1) command to change the file group owner permissions on a file
with ACL entries, both the file group owner permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions may
change the effective permissions for additional users and groups who have ACL
entries on the file.

In order to indicate that the ACL mask restrict an ACL entry, getfacl displays an
additional tab character, pound sign (#), and the actual permissions granted,
following the entry.

**EXAMPLES**

**EXAMPLE 1** Displaying file information

Given file "foo", with an ACL six entries long, the command

```
host% getfacl foo
```

would print:

```
file: foo
owner: shea
group: staff
```
EXAMPLE 1 Displaying file information  

user::rwx
user:spy: ---
user:mookie:r --
group::r --
mask::rw -
other:: -- --

EXAMPLE 2 Displaying information after chmod command

Continue with the above example, after "chmod 700 foo" was issued:

host% getfacl foo

would print:

# file: foo
# owner: shea
# group: staff
user::rwx
user:spy: ---
user:mookie:r --  #effective: -- --
group:: -- --
mask:: -- --
other:: -- --

EXAMPLE 3 Displaying information when ACL contains default entries

Given directory "doo", with an ACL containing default entries, the command

host% getfacl -d doo

would print:

# file: doo
# owner: shea
# group: staff
default:user::rwx
default:user:spy: -- --
default:user:mookie:r --
default:group::r --
default:mask:: -- --
default:other:: -- --

FILES

/etc/passwd    system password file
/etc/group     group file
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**

chmod(1), ls(1), setfacl(1), acl(2), aclsort(3SEC), group(4), passwd(4), attributes(5)

**NOTES**
The output from getfacl is in the correct format for input to the setfacl -f command. If the output from getfacl is redirected to a file, the file may be used as input to setfacl. In this way, a user may easily assign one file’s ACL to another file.
NAME  getfrm – returns the current frameID number

SYNOPSIS  getfrm

DESCRIPTION  getfrm returns the current frameID number. The frameID number is a number assigned to the frame by FMLI and displayed flush left in the frame’s title bar. If a frame is closed its frameID number may be reused when a new frame is opened. getfrm takes no arguments.

EXAMPLES  EXAMPLE 1 A sample of the getfrm command.

If a menu whose frameID is 3 defines an item to have this action descriptor:

```
action-open text stdtext 'getfrm'
```

the text frame defined in the definition file stdtext would be passed the argument 3 when it is opened.

NOTES  It is not a good idea to use getfrm in a backquoted expression coded on a line by itself. Stand-alone backquoted expressions are evaluated before any descriptors are parsed, thus the frame is not yet fully current, and may not have been assigned a frameID number.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5)
NAME  getitems – returns a list of currently marked menu items

SYNOPSIS  getitems [delimiter_string]

DESCRIPTION  The getitems function returns the value of lininfo if defined, else it returns the value of the name descriptor, for all currently marked menu items. Each value in the list is delimited by delimiter_string. The default value of delimiter_string is newline.

EXAMPLES  EXAMPLE 1 A sample output of getitems command.

The done descriptor in the following menu definition file executes getitems when the user presses ENTER (note that the menu is multiselect):

Menu="Example"
multiselect=TRUE
done='getitems ":" | message'
nname="Item 1"
action='message "You selected item 1"
name="Item 2"
lininfo="This is item 2"
action='message "You selected item 2"
name="Item 3"
action='message "You selected item 3"

If a user marked all three items in this menu, pressing ENTER would cause the following string to be displayed on the message line:

Item 1:This is item 2:Item 3

NOTES  Because lininfo is defined for the second menu item, its value is displayed instead of the value of the name descriptor.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5)
getopt -- parse command options

set -- 'getopt optstring $*' 

The getopt command supersedes getopt. For more information, see NOTES below.

getopt is used to break up options in command lines for easy parsing by shell procedures and to check for legal options. optstring is a string of recognized option letters; see getopt(3C). If a letter is followed by a colon (:) the option is expected to have an argument which may or may not be separated from it by white space. The special option – is used to delimit the end of the options. If it is used explicitly, getopt recognizes it; otherwise, getopt generates it; in either case, getopt places it at the end of the options. The positional parameters ($1 $2 ...) of the shell are reset so that each option is preceded by a – and is in its own positional parameter; each option argument is also parsed into its own positional parameter.

EXAMPLES

EXAMPLE 1 Processing the arguments for a command

The following code fragment shows how one might process the arguments for a command that can take the options -a or -b, as well as the option -o, which requires an argument:

```
set -- 'getopt abo: $*'
if [$? != 0]
then
 echo $USAGE
 exit 2
fi
for i in $*
do
case $i in
 -a | -b) FLAG=$i; shift;;
 -o) OARG=$2; shift 2;;
 --) shift; break;;
esac
done
```

This code accepts any of the following as equivalent:

cmd -aoarg filename1 filename2
cmd -a -o arg filename1 filename2
cmd -oarg -a filename1 filename2
cmd -a -oarg -- filename1 filename2

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
getopt(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO intro(1), getopts(1), getoptcvt(1), sh(1), shell_builtins(1), getopt(3C), attributes(5)

DIAGNOSTICS getopt prints an error message on the standard error when it encounters an option letter not included in optstring.

NOTES getopt will not be supported in the next major release. For this release a conversion tool has been provided, namely, getoptcvt. For more information, see getopts(1) and getoptcvt(1).

Reset optind to 1 when rescanning the options.

getopt does not support the part of Rule 8 of the command syntax standard (see intro(1)) that permits groups of option-arguments following an option to be separated by white space and quoted. For example,

```
 cmd -a -b -o "xxx z yy" filename
```

is not handled correctly. To correct this deficiency, use the getopts command in place of getopt.

If an option that takes an option-argument is followed by a value that is the same as one of the options listed in optstring (referring to the earlier EXAMPLES section, but using the following command line:

```
 cmd -o -a filename
```

getopt always treats it as an option-argument to -o; it never recognizes -a as an option. For this case, the for loop in the example shifts past the filename argument.
NAME
goptcvt – convert to getopts to parse command options

SYNOPSIS
/usr/lib/getoptcvt [-b] filename
/usr/lib/getoptcvt

DESCRIPTION
/usr/lib/getoptcvt reads the shell script in filename, converts it to use getopts instead of getopt, and writes the results on the standard output.

getopts is a built-in Bourne shell command used to parse positional parameters and to check for valid options. See sh(1). It supports all applicable rules of the command syntax standard (see Rules 3-10, intro(1)). It should be used in place of the getopt command. (See the NOTES section below.) The syntax for the shell’s built-in getopts command is:

getopts optstring name [ argument ... ]

optstring must contain the option letters the command using getopts will recognize; if a letter is followed by a colon (:), the option is expected to have an argument, or group of arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name and the index of the next argument to be processed in the shell variable OPTIND. Whenever the shell or a shell script is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit status. The special option — may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (argument ...) are given on the getopts command line, getopts parses them instead.

So that all new commands will adhere to the command syntax standard described in intro(1), they should use getopts or getopt to parse positional parameters and check for options that are valid for that command (see the NOTES section below).

OPTIONS
The following option is supported:

- b Makes the converted script portable to earlier releases of the UNIX system. /usr/lib/getoptcvt modifies the shell script in filename so that when the resulting shell script is executed, it determines at run time whether to invoke getopts or getopt.

EXAMPLES
EXAMPLE 1 Processing the arguments for a command

The following fragment of a shell program shows how one might process the arguments for a command that can take the options - a or - b, as well as the option - o, which requires an option-argument:
EXAMPLE 1 Processing the arguments for a command

(Continued)

while getopts abo: c
do
case $c in
  a | b) FLAG=$c;;
o) OARG=$OPTARG;;
  ?) echo $USAGE
     exit 2;;
esac
done
shift 'expr $OPTIND - 1'

EXAMPLE 2 Equivalent code expressions

This code accepts any of the following as equivalent:

cmd -a -b -o "xxx z yy" filename
  cmd -a -b -o "xxx z yy" -filename
  cmd -ab -o xxx,z,yy filename
  cmd -ab -o "xxx z yy" filename
  cmd -o xxx,z,yy b a filename

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of getopts: LC_CTYPE, LC_MESSAGES, and NLSPATH.

OPTIND This variable is used by getoptcvt as the index of the next argument to be processed.

OPTARG This variable is used by getoptcvt to store the argument if an option is using arguments.

EXIT STATUS

The following exit values are returned:

0 An option, specified or unspecified by optstring, was found.

>0 The end of options was encountered or an error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

intro(1), getopts(1), sh(1), shell_builtins(1), getopt(3C), attributes(5)

DIAGNOSTICS

getopts prints an error message on the standard error when it encounters an option letter not included in optstring.
Although the following command syntax rule (see intro(1)) relaxations are permitted under the current implementation, they should not be used because they may not be supported in future releases of the system. As in the EXAMPLES section above, -a and -b are options, and the option -o requires an option-argument. The following example violates Rule 5: options with option-arguments must not be grouped with other options:

```
example$ cmd -aboxxx filename
```

The following example violates Rule 6: there must be white space after an option that takes an option-argument:

```
example$ cmd -ab oxxx filename
```

Changing the value of the shell variable OPTIND or parsing different sets of arguments may lead to unexpected results.
The `getopts` utility can be used to retrieve options and option-arguments from a list of parameters.

Each time it is invoked, the `getopts` utility places the value of the next option in the shell variable specified by the `name` operand and the index of the next argument to be processed in the shell variable `OPTIND`. Whenever the shell is invoked, `OPTIND` will be initialised to 1.

When the option requires an option-argument, the `getopts` utility will place it in the shell variable `OPTARG`. If no option was found, or if the option that was found does not have an option-argument, `OPTARG` will be unset.

If an option character not contained in the `optstring` operand is found where an option character is expected, the shell variable specified by `name` will be set to the question-mark (?) character. In this case, if the first character in `optstring` is a colon (`:`, the shell variable `OPTARG` will be set to the option character found, but no output will be written to standard error; otherwise, the shell variable `OPTARG` will be unset and a diagnostic message will be written to standard error. This condition is considered to be an error detected in the way arguments were presented to the invoking application, but is not an error in `getopts` processing.

If an option-argument is missing:

- If the first character of `optstring` is a colon, the shell variable specified by `name` will be set to the colon character and the shell variable `OPTARG` will be set to the option character found.
- Otherwise, the shell variable specified by `name` will be set to the question-mark character (?), the shell variable `OPTARG` will be unset, and a diagnostic message will be written to standard error. This condition is considered to be an error detected in the way arguments were presented to the invoking application, but is not an error in `getopts` processing; a diagnostic message will be written as stated, but the exit status will be zero.

When the end of options is encountered, the `getopts` utility will exit with a return value greater than zero; the shell variable `OPTIND` will be set to the index of the first non-option-argument, where the first `--` argument is considered to be an option-argument if there are no other non-option-arguments appearing before it, or the value ` $# + 1` if there are no non-option-arguments; the `name` variable will be set to the question-mark character. Any of the following identifies the end of options: the special option `--`, finding an argument that does not begin with a `--`, or encountering an error.
The shell variables `OPTIND` and `OPTARG` are local to the caller of `getopts` and are not exported by default.

The shell variable specified by the `name` operand, `OPTIND` and `OPTARG` affect the current shell execution environment.

If the application sets `OPTIND` to the value 1, a new set of parameters can be used: either the current positional parameters or new `arg` values. Any other attempt to invoke `getopts` multiple times in a single shell execution environment with parameters (positional parameters or `arg` operands) that are not the same in all invocations, or with an `OPTIND` value modified to be a value other than 1, produces unspecified results.

`getopts` is a built-in Bourne shell command used to parse positional parameters and to check for valid options. See `sh(1)`. It supports all applicable rules of the command syntax standard (see Rules 3-10, `intro(1)`). It should be used in place of the `getopt` command.

`optstring` must contain the option letters the command using `getopts` will recognize; if a letter is followed by a colon, the option is expected to have an argument, or group of arguments, which must be separated from it by white space.

Each time it is invoked, `getopts` places the next option in the shell variable `name` and the index of the next argument to be processed in the shell variable `OPTIND`. Whenever the shell or a shell script is invoked, `OPTIND` is initialized to 1.

When an option requires an option-argument, `getopts` places it in the shell variable `OPTARG`.

If an illegal option is encountered, `?` will be placed in `name`.

When the end of options is encountered, `getopts` exits with a non-zero exit status. The special option `-` may be used to delimit the end of the options.

By default, `getopts` parses the positional parameters. If extra arguments (`argument ...`) are given on the `getopts` command line, `getopts` parses them instead.

`/usr/lib/getoptcvt` reads the shell script in `filename`, converts it to use `getopts` instead of `getopt`, and writes the results on the standard output.

So that all new commands will adhere to the command syntax standard described in `intro(1)`, they should use `getopts` or `getopt` to parse positional parameters and check for options that are valid for that command.

`getopts` prints an error message on the standard error when it encounters an option letter not included in `optstring`.

Although the following command syntax rule (see `intro(1)`) relaxations are permitted under the current implementation, they should not be used because they may not be supported in future releases of the system. As in the EXAMPLES section below, `-a` and `-b` are options, and the option `-c` requires an option-argument.
The following example violates Rule 5: options with option-arguments must not be grouped with other options:

```
example% cmd -aboxxx filename
```

The following example violates Rule 6: there must be white space after an option that takes an option-argument:

```
example% cmd -ab oxxx filename
```

Changing the value of the shell variable `OPTIND` or parsing different sets of arguments may lead to unexpected results.

Checks `arg` for legal options. If `arg` is omitted, the positional parameters are used. An option argument begins with a `+` or a `−`. An option not beginning with `+` or `−` or the argument `−` ends the options. `optstring` contains the letters that `getopts` recognizes. If a letter is followed by a `:`, that option is expected to have an argument. The options can be separated from the argument by blanks.

`getopts` places the next option letter it finds inside variable `name` each time it is invoked with a `+` prepended when `arg` begins with a `+`. The index of the next `arg` is stored in `OPTIND`. The option argument, if any, gets stored in `OPTARG`.

A leading `:` in `optstring` causes `getopts` to store the letter of an invalid option in `OPTARG`, and to set `name` to `?` for an unknown option and to `:` when a required option is missing. Otherwise, `getopts` prints an error message. The exit status is non-zero when there are no more options.

For a further discussion of the Korn shell’s `getopts` built-in command, see the previous discussion in the Bourne shell (sh) section of this manpage.

The following operands are supported:

`optstring` A string containing the option characters recognised by the utility invoking `getopts`. If a character is followed by a colon, the option will be expected to have an argument, which should be supplied as a separate argument. Applications should specify an option character and its option-argument as separate arguments, but `getopts` will interpret the characters following an option character requiring arguments as an argument whether or not this is done. An explicit null option-argument need not be recognised if it is not supplied as a separate argument when `getopts` is invoked; see `getopt(3C)`. The characters question-mark (`?`) and colon (`:`) must not be used as option characters by an application. The use of other option characters that are not alphanumeric produces unspecified results. If the option-argument is not supplied as a separate argument from the option character, the value in `OPTARG` will be stripped of the option character and the −.
getopts(1)

The first character in optstring will determine how getopt will behave if an option character is not known or an option-argument is missing.

name The name of a shell variable that will be set by the getopt utility to the option character that was found.

The getopt utility by default will parse positional parameters passed to the invoking shell procedure. If args are given, they will be parsed instead of the positional parameters.

USAGE Since getopt affects the current shell execution environment, it is generally provided as a shell regular built-in. If it is called in a subshell or separate utility execution environment, such as one of the following:

(getopts abc value "$@")
nohup getopt ...
find . -exec getopt ... \\

it will not affect the shell variables in the caller’s environment.

Notice that shell functions share OPTIND with the calling shell even though the positional parameters are changed. Functions that want to use getopt to parse their arguments will usually want to save the value of OPTIND on entry and restore it before returning. However, there will be cases when a function will want to change OPTIND for the calling shell.

EXAMPLES EXAMPLE 1 Parsing and displaying arguments

The following example script parses and displays its arguments:

aflag=
bflag=
while getopt ab: name
do
case $name in
  a) aflag=1;;
  b) bflag=1
    bval="$OPTARG";;
  ?) printf "Usage: %s: [-a] [-b value] args\n" $0
    exit 2;;
  esac
done
if [ ! -z "$aflag" ]; then
  printf "Option -a specified\n"
fi
if [ ! -z "$bflag" ]; then
  printf 'Option -b "$bvalue" specified\n' "$bval"
fi
shift $(($OPTIND - 1))
printf 'Remaining arguments are: $s\n' "$**
EXAMPLE 2 Processing arguments for a command with options

The following fragment of a shell program shows how one might process the arguments for a command that can take the options -a or -b, as well as the option -o, which requires an option-argument:

```bash
while getopts abo: c
 do
 case $c in
 a | b) FLAG=$c;;
 o) OARG=$OPTARG;;

 ?) echo $USAGE
 exit 2;;
 esac
do
 done
 shift \(expr $OPTIND \- 1 \)
```

EXAMPLE 3 Equivalent code expressions

This code accepts any of the following as equivalent:

- `cmd -a -b -o "xxx z yy" filename`
- `cmd -a -b -o "xxx z yy" -- filename`
- `cmd -ab -o xxx,z,yy filename`
- `cmd -ab -o "xxx z yy" filename`
- `cmd -o xxx,z,yy -b -a filename`

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `getopts`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

- `OPTIND` This variable is used by `getopts` as the index of the next argument to be processed.
- `OPTARG` This variable is used by `getopts` to store the argument if an option is using arguments.

EXIT STATUS

The following exit values are returned:

- `0` An option, specified or unspecified by `optstring`, was found.
- `>0` The end of options was encountered or an error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
Whenever an error is detected and the first character in the `optstring` operand is not a colon (:`), a diagnostic message will be written to standard error with the following information in an unspecified format:

- The invoking program name will be identified in the message. The invoking program name will be the value of the shell special parameter `0` at the time the `getopts` utility is invoked. A name equivalent to `basename "$0"`
  
  may be used.

- If an option is found that was not specified in `optstring`, this error will be identified and the invalid option character will be identified in the message.

- If an option requiring an option-argument is found, but an option-argument is not found, this error will be identified and the invalid option character will be identified in the message.
**gettext** – retrieve text string from message database

**SYNOPSIS**

```bash
gettext [-d textdomain | --domain=textdomain] [textdomain] msgid
gettext -s [-e] [-n] [-d textdomain | --domain=textdomain] msgid...
```

**DESCRIPTION**

The `gettext` utility retrieves a translated text string corresponding to string `msgid` from a message object generated with `msgfmt`(1). The message object name is derived from the optional argument `textdomain` if present, otherwise from the `TEXTDOMAIN` environment. If no domain is specified, or if a corresponding string cannot be found, `gettext` prints `msgid`.

Ordinarily, `gettext` looks for its message object in `/usr/lib/locale/lang/LC_MESSAGES` where `lang` is the locale name. If present, the `TEXTDOMAINDIR` environment variable replaces the pathname component up to `lang`.

This command interprets C escape sequences such as `\t` for tab. Use `\\` to print a backslash. To produce a message on a line of its own, either enter `\n` at the end of `msgid`, or use this command in conjunction with `printf(1)`.

When used with the `-s` option, `gettext` behaves like `echo(1)`. But it does not simply copy its arguments to standard output. Instead, those messages found in the selected catalog are translated.

**OPTIONS**

The following options are supported:

- `-d textdomain`
- `--domain=textdomain`
  
  Retrieves translated messages from the domain `textdomain`, if `textdomain` is not specified as an operand.

- `-e`
  
  Enables expansion of some escape sequences if used with the `-s` option.

- `-n`
  
  Suppresses trailing newline if used with the `-s` option.

- `-s`
  
  Behaves like `echo(1)` (see DESCRIPTION above). If the `-s` option is specified, no expansion of C escape sequences is performed and a newline character is appended to the output, by default.

**OPERANDS**

The following operands are supported:

- `textdomain`
  
  A domain name used to retrieve the messages. This overrides the specification by the `-d` or `--domain` options, if present.

- `msgid`
  
  A key to retrieve the localized message.

**ENVIRONMENT VARIABLES**

- `LANG`
  
  Specifies locale name.

- `LC_MESSAGES`
  
  Specifies messaging locale, and if present overrides `LANG` for messages.
TEXTDOMAIN
Specifies the text domain name, which is identical to the message object filename without .mo suffix.

TEXTDOMAINDIR
Specifies the pathname to the message database. If present, replaces /usr/lib/locale.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
echo(1), msgfmt(1), printf(1), gettext(3C), setlocale(3C), attributes(5)

NOTES
This is the shell equivalent of the library routine gettext(3C).
gettxt - retrieve a text string from a message database

**SYNOPSIS**
gettxt msgfile : msgnum [dflt_msg]

**DESCRIPTION**
gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES. The directory name locale corresponds to
the language in which the text strings are written; see setlocale(3C).

*msgfile*  
Name of the file in the directory
/usr/lib/locale/locale/LC_MESSAGES to retrieve msgnum
from. The name of msgfile can be up to 14 characters in length, but
may not contain either \0 (null) or the ASCII code for / (slash) or
: (colon).

*msgnum*  
Sequence number of the string to retrieve from msgfile. The strings
in msgfile are numbered sequentially from 1 to n, where n is the
number of strings in the file.

*dflt_msg*  
Default string to be displayed if gettxt fails to retrieve msgnum
from msgfile. Nongraphic characters must be represented as
alphabetic escape sequences.

The text string to be retrieved is in the file msgfile, created by the mkmsgs(1) utility and
installed under the directory /usr/lib/locale/locale/LC_MESSAGES. You control
which directory is searched by setting the environment variable LC_MESSAGES. If
LC_MESSAGES is not set, the environment variable LANG will be used. If LANG is not
set, the files containing the strings are under the directory
/usr/lib/locale/C/LC_MESSAGES.

If gettxt fails to retrieve a message in the requested language, it will try to retrieve
the same message from /usr/lib/locale/C/LC_MESSAGES/msgfile. If this also
fails, and if dflt_msg is present and non-null, then it will display the value of dflt_msg;
if dflt_msg is not present or is null, then it will display the string Message not
found!!.

**EXAMPLES**

**EXAMPLE 1** The environment variables LANG and LC_MESSAGES.

If the environment variables LANG or LC_MESSAGES have not been set to other than
their default values, the following example:

```bash
example$ gettxt UX:10 "hello world\n"
```

will try to retrieve the 10th message from /usr/lib/locale/C/UX/msgfile. If the
retrieval fails, the message "hello world," followed by a newline, will be displayed.

**ENVIRONMENT VARIABLES**

See environ(5) for descriptions of the following environment variables that affect the
execution of gettxt: LC_CTYPE and LC_MESSAGES.

*LC_CTYPE*  
Determines how gettxt handles characters. When
LC_CTYPE is set to a valid value, gettxt can display
and handle text and filenames containing valid
gettext can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. gettext can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

**LC_MESSAGES**

Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

**FILES**

/usr/lib/locale/C/LC_MESSAGES/*

default message files created by `mkmgs(1)`

/usr/lib/locale/`locale`/LC_MESSAGES/*

message files for different languages created by `mkmgs(1)`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`exstr(1), mkmgs(1), srchtxt(1), gettext(3C), setlocale(3C), attributes(5), environ(5)`
glob – shell built-in function to expand a word list

csh  glob wordlist

glob performs filename expansion on wordlist. Like echo(1), but no \ escapes are recognized. Words are delimited by null characters in the output.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  csh(1), echo(1), attributes(5)
gprof

NAME
gprof -- display call-graph profile data

SYNOPSIS
gprof [-abcCDlsz] [-e function-name] [-E function-name] [-f function-name] [-F function-name] [-image-file [profile-file...]] [-n number of functions]

DESCRIPTION

The gprof utility produces an execution profile of a program. The effect of called routines is incorporated in the profile of each caller. The profile data is taken from the call graph profile file that is created by programs compiled with the -xpg option of cc(1), or by the -pg option with other compilers, or by setting the LD_PROFILE environment variable for shared objects. See ld.so.1. These compiler options also link in versions of the library routines which are compiled for profiling. The symbol table in the executable image file image-file (a.out by default) is read and correlated with the call graph profile file profile-file (gmon.out by default).

First, execution times for each routine are propagated along the edges of the call graph. Cycles are discovered, and calls into a cycle are made to share the time of the cycle. The first listing shows the functions sorted according to the time they represent, including the time of their call graph descendants. Below each function entry is shown its (direct) call-graph children and how their times are propagated to this function. A similar display above the function shows how this function’s time and the time of its descendants are propagated to its (direct) call-graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of the cycle and their contributions to the time and call counts of the cycle.

Next, a flat profile is given, similar to that provided by prof(1). This listing gives the total execution times and call counts for each of the functions in the program, sorted by decreasing time. Finally, an index is given, which shows the correspondence between function names and call-graph profile index numbers.

A single function may be split into subfunctions for profiling by means of the MARK macro. See prof(5).

Beware of quantization errors. The granularity of the sampling is shown, but remains statistical at best. It is assumed that the time for each execution of a function can be expressed by the total time for the function divided by the number of times the function is called. Thus the time propagated along the call-graph arcs to parents of that function is directly proportional to the number of times that arc is traversed.

The profiled program must call exit(2) or return normally for the profiling information to be saved in the gmon.out file.

OPTIONS

The following options are supported:

- a
  Suppress printing statically declared functions. If this option is given, all relevant information about the static function (for instance, time samples, calls to other functions, calls from other functions) belongs to the function loaded just before the static function in the a.out file.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-b</code></td>
<td>Brief. Suppress descriptions of each field in the profile.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>Discover the static call-graph of the program by a heuristic which examines the text space of the object file. Static-only parents or children are indicated with call counts of 0. Note that for dynamically linked executables, the linked shared objects’ text segments are not examined.</td>
</tr>
<tr>
<td><code>-C</code></td>
<td>Demangle C++ symbol names before printing them out.</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>Produce a profile file <code>gmon.sum</code> that represents the difference of the profile information in all specified profile files. This summary profile file may be given to subsequent executions of <code>gprof</code> (also with <code>-D</code>) to summarize profile data across several runs of an <code>a.out</code> file. See also the <code>-s</code> option.</td>
</tr>
<tr>
<td><code>-e function-name</code></td>
<td>Suppress printing the graph profile entry for routine <code>function-name</code> and all its descendants (unless they have other ancestors that are not suppressed). More than one <code>-e</code> option may be given. Only one <code>function-name</code> may be given with each <code>-e</code> option.</td>
</tr>
<tr>
<td><code>-E function-name</code></td>
<td>Suppress printing the graph profile entry for routine <code>function-name</code> (and its descendants) as <code>-e</code>, below, and also exclude the time spent in <code>function-name</code> (and its descendants) from the total and percentage time computations. More than one <code>-E</code> option may be given. For example: <code>'-E mcount -E mcleanup'</code> is the default.</td>
</tr>
<tr>
<td><code>-f function-name</code></td>
<td>Print the graph profile entry only for routine <code>function-name</code> and its descendants. More than one <code>-f</code> option may be given. Only one <code>function-name</code> may be given with each <code>-f</code> option.</td>
</tr>
</tbody>
</table>
| `-F function-name` | Print the graph profile entry only for routine `function-name` and its descendants (as `-f`, below) and also use only the times of the printed routines in total.
time and percentage computations. More than one -F option may be given. Only one function-name may be given with each -F option. The -F option overrides the -E option.

-l Suppress the reporting of graph profile entries for all local symbols. This option would be the equivalent of placing all of the local symbols for the specified executable image on the -E exclusion list.

-n Limits the size of flat and graph profile listings to the top n offending functions.

-s Produce a profile file gmon.sum which represents the sum of the profile information in all of the specified profile files. This summary profile file may be given to subsequent executions of gprof (also with -s) to accumulate profile data across several runs of an a.out file. See also the -D option.

-z Display routines which have zero usage (as indicated by call counts and accumulated time). This is useful in conjunction with the -c option for discovering which routines were never called. Note that this has restricted use for dynamically linked executables, since shared object text space will not be examined by the -c option.

ENVIRONMENT VARIABLES

PROFDIR If this environment variable contains a value, place profiling output within that directory, in a file named pid. programname. pid is the process ID and programname is the name of the program being profiled, as determined by removing any path prefix from the argv[0] with which the program was called. If the variable contains a null value, no profiling output is produced. Otherwise, profiling output is placed in the file gmon.out.

FILES

a.out executable file containing namelist
gmon.out dynamic call-graph and profile
gmon.sum summarized dynamic call-graph and profile

$PROFDIR/pid. programname

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO cc(1), ld.so.1(1), prof(1), exit(2), pcsample(2), profil(2), malloc(3C), malloc(3MALLOCP), monitor(3C), attributes(5), prof(5)
gprof(1)


**NOTES**

If the executable image has been stripped and has no symbol table (symtab), then gprof will read the dynamic symbol table (dyntab), if present. If the dynamic symbol table is used, then only the information for the global symbols will be available, and the behavior will be identical to the -a option.

LD_LIBRARY_PATH must not contain /usr/lib as a component when compiling a program for profiling. If LD_LIBRARY_PATH contains /usr/lib, the program will not be linked correctly with the profiling versions of the system libraries in /usr/lib/ld.

The times reported in successive identical runs may show variances because of varying cache-hit ratios that result from sharing the cache with other processes. Even if a program seems to be the only one using the machine, hidden background or asynchronous processes may blur the data. In rare cases, the clock ticks initiating recording of the program counter may "beat" with loops in a program, grossly distorting measurements. Call counts are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to produce a profile file, unless a final call to monitor is explicitly coded.

Functions such as mcount(), _mcount(), moncontrol(), _moncontrol(), monitor(), and _monitor() may appear in the gprof report. These functions are part of the profiling implementation and thus account for some amount of the runtime overhead. Since these functions are not present in an unprofiled application, time accumulated and call counts for these functions may be ignored when evaluating the performance of an application.

**64-bit profiling**

64-bit profiling may be used freely with dynamically linked executables, and profiling information is collected for the shared objects if the objects are compiled for profiling. Care must be applied to interpret the profile output, since it is possible for symbols from different shared objects to have the same name. If name duplication occurs in the profile output, the module id prefix before the symbol name in the symbol index listing can be used to identify the appropriate module for the symbol.

When using the -s or -D option to sum multiple profile files, care must be taken not to mix 32-bit profile files with 64-bit profile files.

**32-bit profiling**

32-bit profiling may be used with dynamically linked executables, but care must be applied. In 32-bit profiling, shared objects cannot be profiled with gprof. Thus, when a profiled, dynamically linked program is executed, only the "main" portion of the image is sampled. This means that all time spent outside of the "main" object, that is, time spent in a shared object, will not be included in the profile summary; the total time reported for the program may be less than the total time used by the program.
Because the time spent in a shared object cannot be accounted for, the use of shared objects should be minimized whenever a program is profiled with gprof. If desired, the program should be linked to the profiled version of a library (or to the standard archive version if no profiling version is available), instead of the shared object to get profile information on the functions of a library. Versions of profiled libraries may be supplied with the system in the /usr/lib/libp directory. Refer to compiler driver documentation on profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C library spends 100 units of time in some libc routine, say, malloc(). Suppose malloc() is called only from routine B and B consumes only 1 unit of time. Suppose further that routine A consumes 10 units of time, more than any other routine in the "main" (profiled) portion of the image. In this case, gprof will conclude that most of the time is being spent in A and almost no time is being spent in B. From this it will be almost impossible to tell that the greatest improvement can be made by looking at routine B and not routine A. The value of the profiler in this case is severely degraded; the solution is to use archives as much as possible for profiling.

Parents which are not themselves profiled will have the time of their profiled children propagated to them, but they will appear to be spontaneously invoked in the call-graph listing, and will not have their time propagated further. Similarly, signal catchers, even though profiled, will appear to be spontaneous (although for more obscure reasons). Any profiled children of signal catchers should have their times propagated properly, unless the signal catcher was invoked during the execution of the profiling routine, in which case all is lost.
NAME
graph – draw a graph

SYNOPSIS
graph [-a spacing [start]] [-b] [-c string] [-g gridstyle] [-l label]
[-m connectmode] [-s] [-x [l] lower [ upper [spacing]]] [-y [l] lower [ upper [spacing]]] [-h fraction] [-w fraction] [-r fraction]
[-u fraction] [-t] ...

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as abscissae and ordinates of a graph. Successive points are connected by straight lines. The standard output from graph contains plotting instructions suitable for input to plot(1B) or to the command lpr -g (see lpr(1B)).

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a label beginning on the point. Labels may be surrounded with quotes " ... ", in which case they may be empty or contain blanks and numbers; labels never contain NEWLINE characters.

A legend indicating grid range is produced with a grid unless the -s option is present.

OPTIONS
Each option is recognized as a separate argument. If a specified lower limit exceeds the upper limit, the axis is reversed.

-a spacing [start]
Supply abscissae automatically (they are missing from the input); spacing is the spacing (default 1). start is the starting point for automatic abscissae (default 0 or lower limit given by -x).

-b
Break (disconnect) the graph after each label in the input.

-c string
String is the default label for each point.

-g gridstyle
Gridstyle is the grid style: 0 no grid, 1 frame with ticks, 2 full grid (default).

-l label
label is label for graph.

-m connectmode
Mode (style) of connecting lines: 0 disconnected, 1 connected (default). Some devices give distinguishable line styles for other small integers.

-s
Save screen, do not erase before plotting.

-x [l] lower [ upper [spacing]]
If l is present, x axis is logarithmic. lower and upper are lower (and upper) x limits. spacing, if present, is grid spacing on x axis. Normally these quantities are determined automatically.
graph(1)

-\[y\{l\}\] lower [ upper [ spacing ]]
   If l is present, y axis is logarithmic. lower and upper are lower (and upper) y limits.
   spacing, if present, is grid spacing on y axis. Normally these quantities are
determined automatically.

-\[h\] fraction
   fraction of space for height.

-\[w\] fraction
   fraction of space for width.

-\[x\] fraction
   fraction of space to move right before plotting.

-\[u\] fraction
   fraction of space to move up before plotting.

-\[t\]
   Transpose horizontal and vertical axes. Option -x now applies to the vertical axis.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO
lpr(1B), plot(1B), spline(1), plot(3PLOT), attributes(5)

BUGS
graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.
The `grep` utility searches text files for a pattern and prints all lines that contain that pattern. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, ^, ], (, ) and \ in the pattern_list because they are also meaningful to the shell. It is safest to enclose the entire pattern_list in single quotes ‘...’.

If no files are specified, grep assumes standard input. Normally, each line found is copied to standard output. The file name is printed before each line found if there is more than one input file.

The /usr/bin/grep utility uses limited regular expressions like those described on the regexp(5) manual page to match the patterns.

The options -E and -F affect the way /usr/xpg4/bin/grep interprets pattern_list. If -E is specified, /usr/xpg4/bin/grep interprets pattern_list as a full regular expression (see -E for description). If -F is specified, grep interprets pattern_list as a fixed string. If neither are specified, grep interprets pattern_list as a basic regular expression as described on regexp(5) manual page.

The following options are supported for both /usr/bin/grep and /usr/xpg4/bin/grep:

- `-b` Precedes each line by the block number on which it was found. This can be useful in locating block numbers by context (first block is 0).
- `-c` Prints only a count of the lines that contain the pattern.
- `-h` Prevents the name of the file containing the matching line from being appended to that line. Used when searching multiple files.
- `-i` Ignores upper/lower case distinction during comparisons.
- `-l` Prints only the names of files with matching lines, separated by NEWLINE characters. Does not repeat the names of files when the pattern is found more than once.
- `-n` Precedes each line by its line number in the file (first line is 1).
- `-s` Suppresses error messages about nonexistent or unreadable files.
**grep(1)**

- **-v**  Prints all lines except those that contain the pattern.
- **-w**  Searches for the expression as a word as if surrounded by \< and \>.

### /usr/xpg4/bin/grep

The following options are supported for /usr/xpg4/bin/grep only:

- **-e** *pattern_list*  Specifies one or more patterns to be used during the search for input. Patterns in *pattern_list* must be separated by a NEWLINE character. A null pattern can be specified by two adjacent newline characters in *pattern_list*. Unless the -E or -F option is also specified, each pattern is treated as a basic regular expression. Multiple -e and -f options are accepted by grep. All of the specified patterns are used when matching lines, but the order of evaluation is unspecified.

- **-E**  Matches using full regular expressions. Treats each pattern specified as a full regular expression. If any entire full regular expression pattern matches an input line, the line will be matched. A null full regular expression matches every line. Each pattern is interpreted as a full regular expression as described on the *regex* manual page, except for \( and \), and including:
  1. A full regular expression followed by + that matches one or more occurrences of the full regular expression.
  2. A full regular expression followed by ? that matches 0 or 1 occurrences of the full regular expression.
  3. Full regular expressions separated by | or by a new-line that match strings that are matched by any of the expressions.
  4. A full regular expression that may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then * ?, +, then concatenation, then | and new-line.

- **-f** *pattern_file*  Reads one or more patterns from the file named by the path name *pattern_file*. Patterns in *pattern_file* are terminated by a NEWLINE character. A null pattern can be specified by an empty line in *pattern_file*. Unless the -E or -F option is also specified, each pattern is treated as a basic regular expression.

- **-F**  Matches using fixed strings. Treats each pattern specified as a string instead of a regular expression. If an input line contains any of the patterns as a contiguous sequence of bytes, the line will be matched. A null string matches every line. See *fgrep*(1) for more information.

- **-q**  Quiet. Does not write anything to the standard output, regardless of matching lines. Exits with zero status if an input line is selected.

- **-x**  Considers only input lines that use all characters in the line to match an entire fixed string or regular expression to be matching.
The following operands are supported:

- **file** A path name of a file to be searched for the patterns. If no file operands are specified, the standard input will be used.

- **pattern** Specifies a pattern to be used during the search for input.

- **pattern** Specifies one or more patterns to be used during the search for input. This operand is treated as if it were specified as `-e pattern_list`.

The `-e pattern_list` option has the same effect as the `pattern_list` operand, but is useful when `pattern_list` begins with the hyphen delimiter. It is also useful when it is more convenient to provide multiple patterns as separate arguments.

Multiple `-e` and `-f` options are accepted and `grep` will use all of the patterns it is given while matching input text lines. Notice that the order of evaluation is not specified. If an implementation finds a null string as a pattern, it is allowed to use that pattern first, matching every line, and effectively ignore any other patterns.

The `-q` option provides a means of easily determining whether or not a pattern (or string) exists in a group of files. When searching several files, it provides a performance improvement (because it can quit as soon as it finds the first match) and requires less care by the user in choosing the set of files to supply as arguments (because it will exit zero if it finds a match even if `grep` detected an access or read error on earlier file operands).

See `largefile(5)` for the description of the behavior of `grep` when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXAMPLES**

**EXAMPLE 1** Finding all uses of a word

To find all uses of the word “Posix” (in any case) in the file `text.mm`, and write with line numbers:

```
example% /usr/bin/grep -i -n posix text.mm
```

**EXAMPLE 2** Finding all empty lines

To find all empty lines in the standard input:

```
exa```mple% /usr/bin/grep ^$ or
```
example% /usr/bin/grep -v .
```
EXAMPLE 3 Finding lines containing strings

All of the following commands print all lines containing strings `abc` or `def` or both:

```bash
example% /usr/xpg4/bin/grep 'abc
def'
example% /usr/xpg4/bin/grep -e 'abc
def'
example% /usr/xpg4/bin/grep -e 'abc' -e 'def'
example% /usr/xpg4/bin/grep -E 'abc|def'
example% /usr/xpg4/bin/grep -E -e 'abc|def'
example% /usr/xpg4/bin/grep -E -e 'abc' -e 'def'
example% /usr/xpg4/bin/grep -E -e 'abc'
```

EXAMPLE 4 Finding lines with matching strings

Both of the following commands print all lines matching exactly `abc` or `def`:

```bash
example% /usr/xpg4/bin/grep -E '^abc$ ^def$
example% /usr/xpg4/bin/grep -F -x 'abc def'
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of `grep`: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- **0**: One or more matches were found.
- **1**: No matches were found.
- **2**: Syntax errors or inaccessible files (even if matches were found).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/grep</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td></td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/grep</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td>SUNWxcu4</td>
</tr>
</tbody>
</table>
grep(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

egrep(1), fgrep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
regex(5), regexp(5), standards(5)

NOTES

/\texttt{usr/bin/grep}

Lines are limited only by the size of the available virtual memory. If there is a line with embedded nulls, grep will only match up to the first null. If the line matches, the entire line will be printed.

/\texttt{usr/xpg4/bin/grep}
The results are unspecified if input files contain lines longer than \texttt{LINE_MAX} bytes or contain binary data. \texttt{LINE_MAX} is defined in \texttt{/usr/include/limits.h}.
groups(1)

NAME groups – print group membership of user

SYNOPSIS groups [user...]

DESCRIPTION The command groups prints on standard output the groups to which you or the
optionally specified user belong. Each user belongs to a group specified in
/etc/passwd and possibly to other groups as specified in /etc/group. Note that
/etc/passwd specifies the numerical ID (gid) of the group. The groups command
converts gid to the group name in the output.

EXAMPLES The output takes the following form:

example% groups tester01 tester02
tester01 : staff
tester02 : staff
example%

FILES
/etc/passwd
/etc/group

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO group(4), passwd(4), attributes(5)
NAME groups – display a user’s group memberships

SYNOPSIS /usr/ucb/groups [user...

DESCRIPTION With no arguments, groups displays the groups to which you belong; else it displays the groups to which the user belongs. Each user belongs to a group specified in the password file /etc/passwd and possibly to other groups as specified in the file /etc/group. If you do not own a file but belong to the group which it is owned by then you are granted group access to the file.

FILES
/etc/passwd

/etc/group

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO getgroups(2), attributes(5)

NOTES This command is obsolete.
grpck(1B)

NAME
grpck – check group database entries

SYNOPSIS
/etc/grpck [filename]

DESCRIPTION
The grpck utility checks that a file in group(4) does not contain any errors; it checks
the /etc/group file by default.

FILES
/etc/group

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
groups(1), group(4), passwd(4), attributes(5)

DIAGNOSTICS
Too many/few fields
An entry in the group file does not have the proper number of fields.

No group name
The group name field of an entry is empty.

Bad character(s) in group name
The group name in an entry contains characters other than lower-case letters and
digits.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

Null login name
A login name in the list of login names in an entry is null.

Logname not found in password file
A login name in the list of login names in an entry is not in the password file.

Line too long
A line (including the newline character) in the group file exceeds the maximum
length of 512 characters.

Duplicate logname entry
A login name appears more than once in the list of login names for a group file
entry.

Out of memory
The program cannot allocate memory in order to continue.

Maximum groups exceeded for logname
A login name’s group membership exceeds the maximum, NGROUPS_MAX.
hash(1)

NAME
hash, rehash, unhash, hashstat – evaluate the internal hash table of the contents of directories

SYNOPSIS
/usr/bin/hash [utility]
/usr/bin/hash [-r]
sh hash [-r] [name...]
csh rehash
unhash
hashstat
ksh hash [name...]

DESCRIPTION
The /usr/bin/hash utility affects the way the current shell environment remembers the locations of utilities found. Depending on the arguments specified, it adds utility locations to its list of remembered locations or it purges the contents of the list. When no arguments are specified, it reports on the contents of the list.

Utilities provided as built-ins to the shell are not reported by hash.

sh For each name, the location in the search path of the command specified by name is determined and remembered by the shell. The -r option to the hash built-in causes the shell to forget all remembered locations. If no arguments are given, hash provides information about remembered commands. The Hits column of output is the number of times a command has been invoked by the shell process. The Cost column of output is a measure of the work required to locate a command in the search path. If a command is found in a "relative" directory in the search path, after changing to that directory, the stored location of that command is recalculated. Commands for which this will be done are indicated by an asterisk (*) adjacent to the Hits information. Cost will be incremented when the recalculation is done.

csh rehash recomputes the internal hash table of the contents of directories listed in the path environmental variable to account for new commands added.

unhash disables the internal hash table.

hashstat prints a statistics line indicating how effective the internal hash table has been at locating commands (and avoiding execs). An exec is attempted for each component of the path where the hash function indicates a possible hit and in each component that does not begin with a ‘/’.

ksh For each name, the location in the search path of the command specified by name is determined and remembered by the shell. If no arguments are given, hash provides information about remembered commands.

OPERANDS
The following operand is supported by hash:
utility The name of a utility to be searched for and added to the list of remembered locations.

OUTPUT The standard output of hash is used when no arguments are specified. Its format is unspecified, but includes the pathname of each utility in the list of remembered locations for the current shell environment. This list consists of those utilities named in previous hash invocations that have been invoked, and may contain those invoked and found through the normal command search process.

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of hash: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of utility.

EXIT STATUS The following exit values are returned by hash:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), ksh(1), sh(1), attributes(5), environ(5), standards(5)
NAME
head – display first few lines of files

SYNOPSIS
head [-number | -n number] [filename...]

DESCRIPTION
The head utility copies the first number of lines of each filename to the standard output. If no filename is given, head copies lines from the standard input. The default value of number is 10 lines.

When more than one file is specified, the start of each file will look like:

```==>
filename<==
```

Thus, a common way to display a set of short files, identifying each one, is:

```example% head -9999 filename1 filename2 ...
```

OPTIONS
The following options are supported:

- `-n number` The first number lines of each input file will be copied to standard output. The number option-argument must be a positive decimal integer.

- `-number` The number argument is a positive decimal integer with the same effect as the `-n number` option.

If no options are specified, head will act as if `-n 10` had been specified.

OPERANDS
The following operand is supported:

```
file
```

A path name of an input file. If no file operands are specified, the standard input will be used.

USAGE
See largefile(5) for the description of the behavior of head when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXAMPLES
EXAMPLE 1 Writing the first ten lines of all files

To write the first ten lines of all files (except those with a leading period) in the directory:

```example% head *
```

ENVIROMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of head: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.
head(1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO cat(1), more(1), pg(1), tail(1), attributes(5), environ(5), largefile(5), standards(5)
The `fc` utility lists or edits and reexecutes, commands previously entered to an interactive `sh`.

The command history list references commands by number. The first number in the list is selected arbitrarily. The relationship of a number to its command will not change except when the user logs in and no other process is accessing the list, at which time the system may reset the numbering to start the oldest retained command at another number (usually 1). When the number reaches the value in `HISTSIZE` or 128 (whichever is greater), the shell may wrap the numbers, starting the next command with a lower number (usually 1). However, despite this optional wrapping of numbers, `fc` will maintain the time-ordering sequence of the commands. For example, if four commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are executed, command 32 767 is considered the command previous to 1, even though its number is higher.

When commands are edited (when the `-l` option is not specified), the resulting lines will be entered at the end of the history list and then reexecuted by `sh`. The `fc` command that caused the editing will not be entered into the history list. If the editor returns a non-zero exit status, this will suppress the entry into the history list and the command reexecution. Any command-line variable assignments or redirection operators used with `fc` will affect both the `fc` command itself as well as the command that results, for example:

```
fcc -s -- --1 2>/dev/null\reinvokes the previous command, suppressing standard error for both `fc` and the previous command.
```

DESCRIPTION

```
/users/bin/fc
The `fc` utility lists or edits and reexecutes, commands previously entered to an interactive `sh`.

The command history list references commands by number. The first number in the list is selected arbitrarily. The relationship of a number to its command will not change except when the user logs in and no other process is accessing the list, at which time the system may reset the numbering to start the oldest retained command at another number (usually 1). When the number reaches the value in `HISTSIZE` or 128 (whichever is greater), the shell may wrap the numbers, starting the next command with a lower number (usually 1). However, despite this optional wrapping of numbers, `fc` will maintain the time-ordering sequence of the commands. For example, if four commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are executed, command 32 767 is considered the command previous to 1, even though its number is higher.

When commands are edited (when the `-l` option is not specified), the resulting lines will be entered at the end of the history list and then reexecuted by `sh`. The `fc` command that caused the editing will not be entered into the history list. If the editor returns a non-zero exit status, this will suppress the entry into the history list and the command reexecution. Any command-line variable assignments or redirection operators used with `fc` will affect both the `fc` command itself as well as the command that results, for example:

```
fcc -s -- --1 2>/dev/null\reinvokes the previous command, suppressing standard error for both `fc` and the previous command.
```

**csh**

Display the history list; if `n` is given, display only the `n` most recent events.

- `-r` Reverse the order of printout to be most recent first rather than oldest first.
- `-h` Display the history list without leading numbers. This is used to produce files suitable for sourcing using the `-h` option to the `csh` built-in command, `source(1)`.

**History Substitution**
History substitution allows you to use words from previous command lines in the
command line you are typing. This simplifies spelling corrections and the repetition of
complicated commands or arguments. Command lines are saved in the history list, the
size of which is controlled by the history variable. The history shell variable may
be set to the maximum number of command lines that will be saved in the history file;
i.e.:

```
set history = 200
```

will allow the history list to keep track of the most recent 200
command lines. If not set, the C shell saves only the most recent command.

A history substitution begins with a `!` (although you can change this with the
histchars variable) and may occur anywhere on the command line; history
substitutions do not nest. The `!` can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets
executed.

**Event Designators:**

An event designator is a reference to a command line entry in the history list.

- `!` Start a history substitution, except when followed by a space character, tab, newline,
  = or 

- `!!` Refer to the previous command. By itself, this substitution repeats the previous
  command.

- `!n` Refer to command line n.

- `!-n` Refer to the current command line minus n.

- `!str` Refer to the most recent command starting

- `!?str?` Refer to the most recent command containing `str`.

- `!?str? additional` Refer to the most recent command containing `str` and append `additional` to that
  referenced command.

- `!{command} additional` Refer to the most recent command beginning with `command` and append `additional` to that
  referenced command.

- `^previous_word^replacement^` Repeat the previous command line
  replacing the string `previous_word` with the
  string `replacement`. This is equivalent to the
  history substitution:
To re-execute a specific previous command AND make such a substitution, say, re-executing command #6,

`! : 6s/previous_word/replacement/`.

**Word Designators:**

A ‘:’ (colon) separates the event specification from the word designator. It can be omitted if the word designator begins with a `^`, `$`, `*`, `−` or `%`. If the word is to be selected from the previous command, the second `!` character can be omitted from the event specification. For instance, `! : 1` and `! : 1` both refer to the first word of the previous command, while `!!$` and `!$` both refer to the last word in the previous command. Word designators include:

- `#` The entire command line typed so far.
- `0` The first input word (command).
- `n` The `n`'th argument.
- `^` The first argument, that is, 1.
- `$` The last argument.
- `%` The word matched by (the most recent) `?`s search.
- `x−y` A range of words; `−y` abbreviates `0−y`.
- `*` All the arguments, or a null value if there is just one word in the event.
- `x*` Abbreviates `x−$`.
- `x−` Like `x*` but omitting word `$`.

**Modifiers:**

After the optional word designator, you can add a sequence of one or more of the following modifiers, each preceded by a `:`.

- `h` Remove a trailing pathname component, leaving the head.
- `r` Remove a trailing suffix of the form `. xxx`, leaving the basename.
- `e` Remove all but the suffix, leaving the extension.

`s/oldchars/replacements/` Substitute `replacements` for `oldchars`. `oldchars` is a string that may contain embedded blank spaces, whereas `previous_word` in the event designator
Remove all leading pathname components, leaving the tail.

&
Repeat the previous substitution.

Apply the change to the first occurrence of a match in each word, by prefixing the above (for example, g&).

Print the new command but do not execute it.

Quote the substituted words, escaping further substitutions.

Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that matches oldchars; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings. Any character can be used as the delimiter in place of / . A backslash quotes the delimiter character. The character &, in the right hand side, is replaced by the text from the left-hand-side. The & can be quoted with a backslash. A null oldchars uses the previous string either from a oldchars or from a contextual scan string s from ! ? s. You can omit the rightmost delimiter if a newline immediately follows replacements; the rightmost ? in a context scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous command, or to a previous history reference on the command line (if any).

Using $fc$, in the form of

\texttt{$fc \ -e \ - [ \ old=new ] \ [ \ command \ ] \}, \ the \ command \ is \ re-executed \ after \ the \ substitution \ old=new \ is \ performed. \ If \ there \ is \ not \ a \ command \ argument, \ the \ most \ recent \ command \ typed \ at \ this \ terminal \ is \ executed.}

Using $fc$ in the form of

\texttt{$fc \ -e \ ename \ [ \ -nlr \ ] \ [ \ first \ [ \ last \ ] \] \}, \ a \ range \ of \ commands \ from \ first \ to \ last \ is \ selected \ from \ the \ last \ HISTSIZE \ commands \ that \ were \ typed \ at \ the \ terminal. \ The \ arguments \ first \ and \ last \ may \ be \ specified \ as \ a \ number \ or \ as \ a \ string. \ A \ string \ is \ used \ to \ locate \ the \ most \ recent \ command \ starting \ with \ the \ given \ string. \ A \ negative \ number \ is \ used \ as \ an \ offset \ to \ the \ current \ command \ number. \ If \ the \ -l \ flag \ is \ selected, \ the \ commands \ are \ listed \ on \ standard \ output. \ Otherwise, \ the \ editor \ program \ -e \ ename \ is \ invoked \ on \ a \ file \ containing \ these \ keyboard \ commands. \ If \ ename \ is \ not \ supplied, \ then \ the \ value \ of \ the \}
variable **FCEDIT** (default `/bin/ed`) is used as the editor. When editing is complete, the edited command(s) is executed. If **last** is not specified then it will be set to **first**. If **first** is not specified the default is the previous command for editing and −16 for listing. The flag -r reverses the order of the commands and the flag -n suppresses command numbers when listing. (See *ksh(1)* for more about command line editing.)

**HISTFILE**

If this variable is set when the shell is invoked, then the value is the pathname of the file that will be used to store the command history.

**HISTSIZE**

If this variable is set when the shell is invoked, then the number of previously entered commands that are accessible by this shell will be greater than or equal to this number. The default is 128.

**Command Re-entry:**

The text of the last **HISTSIZE** (default 128) commands entered from a terminal device is saved in a history file. The file **$HOME/.sh_history** is used if the **HISTFILE** variable is not set or if the file it names is not writable. A shell can access the commands of all interactive shells which use the same named **HISTFILE**. The special command **fc** is used to list or edit a portion of this file. The portion of the file to be edited or listed can be selected by number or by giving the first character or characters of the command. A single command or range of commands can be specified. If you do not specify an editor program as an argument to **fc** then the value of the variable **FCEDIT** is used. If **FCEDIT** is not defined then `/bin/ed` is used. The edited command(s) is printed and re-executed upon leaving the editor. The editor name − is used to skip the editing phase and to re-execute the command. In this case a substitution parameter of the form `old=\new` can be used to modify the command before execution. For example, if `r` is aliased to `´fc -e -´` then typing `r bad=good c` will re-execute the most recent command which starts with the letter c, replacing the first occurrence of the string bad with the string good.

Using the **fc** built-in command within a compound command will cause the whole command to disappear from the history file.

**OPTIONS**

The following options are supported:

- **-e editor**
  Use the editor named by **editor** to edit the commands. The **editor** string is a utility name, subject to search via the **PATH** variable. The value in the **FCEDIT** variable is used as a default when **-e** is not specified. If **FCEDIT** is null or unset, **ed** will be used as the editor.

- **-l**
  (The letter ell.) List the commands rather than invoking an editor on them. The commands will be written in the sequence indicated by the **first** and **last** operands, as affected by **-r**, with each command preceded by the command number.

- **-n**
  Suppress command numbers when listing with **-l**.
Reverse the order of the commands listed (with -l) or edited (with neither -l nor -s).

- Re-execute the command without invoking an editor.

OPERANDS

The following operands are supported:

- first
- last

Select the commands to list or edit. The number of previous commands that can be accessed is determined by the value of the `HISTSIZE` variable. The value of first or last or both will be one of the following:

- `+number`

A positive number representing a command number; command numbers can be displayed with the -l option.

- `-number`

A negative decimal number representing the command that was executed number of commands previously. For example, -1 is the immediately previous command.

- `string`

A string indicating the most recently entered command that begins with that string. If the old=new operand is not also specified with -s, the string form of the first operand cannot contain an embedded equal sign.

When the synopsis form with -s is used:

- If first is omitted, the previous command will be used. For the synopsis forms without -s:
  - If last is omitted, last defaults to the previous command when -l is specified; otherwise, it defaults to first.
  - If first and last are both omitted, the previous 16 commands will be listed or the previous single command will be edited (based on the -l option).
  - If first and last are both present, all of the commands from first to last will be edited (without -l) or listed (with -l). Editing multiple commands will be accomplished by presenting to the editor all of the commands at one time, each command starting on a new line. If first represents a newer command than last, the commands will be listed or edited in reverse sequence, equivalent to using -r. For example, the following commands on the first line are equivalent to using -r:

```bash
fc -r 10 20
fc 30 40
fc 20 10
fc -r 40 30
```
When a range of commands is used, it will not be an error to specify first or last values that are not in the history list; fc will substitute the value representing the oldest or newest command in the list, as appropriate. For example, if there are only ten commands in the history list, numbered 1 to 10:

```
fc -l
fc 1 99
```

will list and edit, respectively, all ten commands.

\[ old=new \]

Replace the first occurrence of string old in the commands to be reexecuted by the string new.

**OUTPUT**

When the -l option is used to list commands, the format of each command in the list is as follows:

\[ "\%d\\t\%s\\n", \<line number\>, \<command\> \]

If both the -l and -n options are specified, the format of each command is:

\[ \"\%s\\n\", \<command\> \]

If the command consists of more than one line, the lines after the first are displayed as:

\[ \"\%s\\n\", \<continued-command\> \]

**EXAMPLE 1 Using history and fc**

<table>
<thead>
<tr>
<th>csh</th>
<th>ksh</th>
</tr>
</thead>
<tbody>
<tr>
<td>% history</td>
<td>$ fc -l</td>
</tr>
<tr>
<td>1 cd /etc</td>
<td>1 cd /etc</td>
</tr>
<tr>
<td>2 vi passwd</td>
<td>2 vi passwd</td>
</tr>
<tr>
<td>3 date</td>
<td>3 date</td>
</tr>
<tr>
<td>4 cd</td>
<td>4 cd</td>
</tr>
<tr>
<td>5 du .</td>
<td>5 du .</td>
</tr>
<tr>
<td>6 ls -t</td>
<td>6 ls -t</td>
</tr>
<tr>
<td>7 history</td>
<td>7 fc -l</td>
</tr>
<tr>
<td>% !d</td>
<td>$ fc -e - d</td>
</tr>
<tr>
<td>du .</td>
<td>du .</td>
</tr>
<tr>
<td>262 ./SCCS</td>
<td>262 ./SCCS</td>
</tr>
<tr>
<td>336 .</td>
<td>336 .</td>
</tr>
<tr>
<td>% !da</td>
<td>$ fc -e - da</td>
</tr>
</tbody>
</table>
| % | $ alias \!\!'fc -e -' \!

**User Commands** 543
###ENVIRONMENT VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCEDIT</td>
<td>This variable, when expanded by the shell, determines the default value for the <code>editor</code> option's <code>editor</code> option-argument. If FCEDIT is null or unset, <code>ed</code> will be used as the editor.</td>
</tr>
<tr>
<td>HISTFILE</td>
<td>Determine a pathname naming a command history file. If the HISTFILE variable is not set, the shell may attempt to access or create a file <code>.sh_history</code> in the user's home directory. If the shell cannot obtain both read and write access to, or create, the history file, it will use an unspecified mechanism that allows the history to operate properly. (References to history “file” in this section are understood to mean this unspecified mechanism in such cases.) <code>fc</code> may choose to access this variable only when initializing the history file; this initialization will occur when <code>fc</code> or <code>sh</code> first attempt to retrieve entries from, or add entries to, the file, as the result of commands issued by the user, the file named by the ENV variable, or a system startup file such as <code>/etc/profile</code>. (The initialization process for the history file can be dependent on the system startup files, in that they may contain commands that will effectively preempt the user's settings of HISTFILE and HISTSIZE. For example, function definition commands are recorded in the history file, unless the <code>set -o noexec</code> option is set. If the system administrator includes function definitions in some system startup file called before the ENV file, the history file will be initialized before the user gets a chance to influence its characteristics.) The variable HISTFILE is accessed initially when the shell is invoked. Any changes to HISTFILE will not take effect until another shell is invoked.</td>
</tr>
<tr>
<td>HISTSIZE</td>
<td>Determine a decimal number representing the limit to the number of previous commands that are accessible. If this variable is unset, an unspecified default greater than or equal to 128 will be used. The variable HISTSIZE is accessed initially when the shell is invoked. Any changes to HISTSIZE will not take effect until another shell is invoked.</td>
</tr>
</tbody>
</table>

###EXIT STATUS

The following exit values are returned:

- 0  Successful completion of the listing.
- >0  An error occurred.
Otherwise, the exit status will be that of the commands executed by `fc`.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

csh(1), ed(1), ksh(1), set(1), set(1F), sh(1), source(1), attributes(5), environ(5)
NAME

hostid – print the numeric identifier of the current host

SYNOPSIS

/usr/bin/hostid

DESCRIPTION

The `hostid` command prints the identifier of the current host in hexadecimal. This numeric value is likely to differ when `hostid` is run on a different machine.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

sysinfo(2), gethostid(3C), attributes(5)
NAME  hostname – set or print name of current host system

SYNOPSIS /usr/bin/hostname [name-of-host]

DESCRIPTION The hostname command prints the name of the current host, as given before the login prompt. The super-user can set the hostname by giving an argument.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  uname(1), attributes(5)
iconv(1)

NAME
iconv – code set conversion utility

SYNOPSIS
iconv -f fromcode -t tocode [file...]

DESCRIPTION
The iconv utility converts the characters or sequences of characters in file from one
code set to another and writes the results to standard output. If no conversion exists
for a particular character, it is converted to the underscore _ in the target code set.
The list of supported conversions and the locations of the associated conversion tables
are provided in the iconv(5) manual page.

OPTIONS
The following options are supported:
- f fromcode Identifies the input code set.
- t tocode Identifies the output code set.

OPERANDS
The following operands are supported:
file A path name of the input file to be translated. If file is omitted, the
standard input is used.

EXAMPLES
EXAMPLE 1 Converting and storing files
The following example converts the contents of file mail1 from code set 8859 to
646fr and stores the results in file mail.local:
example% iconv -f 8859 -t 646fr mail1 > mail.local

ENVIRONMENT
VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of iconv: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
1 An error has occurred.

FILES
/usr/lib/iconv/*.so
conversion modules
/usr/lib/iconv/*.t
conversion tables
/usr/lib/iconv/iconv_data
list of conversions supported by conversion tables
/usr/lib/iconv/geniconvtbl/binarytables/* .bt
conversion binary tables
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
geniconvtbl(1), iconv(3C), geniconvtbl(4), attributes(5), environ(5), iconv(5), iconv_unicode(5), standards(5)

NOTES

The iconv utility can use conversion modules (/usr/lib/iconv/*.so), conversion tables (/usr/lib/iconv/*.t), or conversion binary tables (/usr/lib/iconv/geniconvtbl/binarytables/*.bt) to do the code set conversion. The iconv utility uses iconv_open(3C) to see if a particular code set conversion is available in the iconv(3C) function. iconv_open(3C) first tries to find out if there is a conversion binary table and then if there is a conversion module. If neither is available in your system, iconv_open(3C) will return a failure code. Then, finally, iconv will search for a conversion table.

Refer to the /usr/share/man/man5/iconv_locale.5 manual page in the Asian localized releases for information on which code set conversions are supported. For example, the command

example% man -s 5 iconv_ja

would display the manual page describing the code set conversions that are supported for the Japanese locale.

Notice that the iconv_locale(5) manual page may not exist in your system, depending on which locale you chose to install during the system installation.
indicator(1F)

NAME   indicator – display application specific alarms and/or the "working" indicator

SYNOPSIS  indicator [ -b [n]] [-c column] [-l length] [-o] [-w] [string...]

DESCRIPTION  The indicator function displays application specific alarms or the "working" indicator, or both, on the FMLI banner line. The argument string is a string to be displayed on the banner line, and should always be the last argument given. Note that string is not automatically cleared from the banner line.

OPTIONS  
- bn  The -b option rings the terminal bell n times, where n is an integer from 1 to 10. The default value is 1. If the terminal has no bell, the screen is flashed instead, if possible.
- c column  The -c option defines the column of the banner line at which to start the indicator string. The argument column must be an integer from 0 to DISPLAYW-1. If the -c option is not used, column defaults to 0.
- l length  The -l option defines the maximum length of the string displayed. If string is longer than length characters, it will be truncated. The argument length must be an integer from 1 to DISPLAYW. If the -l option is not used, length defaults to DISPLAYW. Note that if string doesn’t fit it will be truncated.
- o  The -o option causes indicator to duplicate its output to stdout.
- w  The -w option turns on the "working" indicator.

EXAMPLES  EXAMPLE 1  A sample output of the indicator command.

When the value entered in a form field is invalid, the following use of indicator will ring the bell three times and display the word WRONG starting at column 1 of the banner line.

invalidmsg='indicator -b 3 -c 1 "WRONG"'

To clear the indicator after telling the user the entry is wrong:

invalidmsg='indicator -b 9 -c 1 "WRONG"; sleep 3;
indicator -c 1 " "'

In this example the value of invalidmsg (in this case the default value Input is not valid), still appears on the FMLI message line.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5)

550  man pages section 1: User Commands • Last Revised 5 Jul 1990
NAME
indxbib – create an inverted index to a bibliographic database

SYNOPSIS
indxbib database-file...

DESCRIPTION
indxbib makes an inverted index to the named database-file (which must reside within the current directory), typically for use by lookbib(1) and refer(1). A database contains bibliographic references (or other kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field starts on a line beginning with a ‘%’, followed by a key-letter, then a blank, and finally the contents of the field, which may continue until the next line starting with ‘%’.

indxbib is a shell script that calls two programs: /usr/lib/refer/mkey and /usr/lib/refer/inv. mkey truncates words to 6 characters, and maps upper case to lower case. It also discards words shorter than 3 characters, words among the 100 most common English words, and numbers (dates) < 1000 or > 2099. These parameters can be changed.

indxbib creates an entry file (with a .ia suffix), a posting file (.ib), and a tag file (.ic), in the working directory.

FILES
/usr/lib/refer/mkey
/usr/lib/refer/inv
x.ia entry file
x.ib posting file
x.ic tag file
x.ig reference file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
addbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), attributes(5)

BUGS
All dates should probably be indexed, since many disciplines refer to literature written in the 1800s or earlier.

indxbib does not recognize pathnames.
install(1B)

NAME
install – install files

SYNOPSIS
/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] filename1

/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] filename...

directory

/usr/ucb/install -d [-g group] [-m mode] [-o owner] directory

DESCRIPTION
install is used within makefiles to copy new versions of files into a destination
directory and to create the destination directory itself.

The first two forms are similar to the cp(1) command with the addition that executable
files can be stripped during the copy and the owner, group, and mode of the installed
file(s) can be given.

The third form can be used to create a destination directory with the required owner,
group and permissions.

Note: install uses no special privileges to copy files from one place to another. The
implications of this are:

■ You must have permission to read the files to be installed.
■ You must have permission to copy into the destination file or directory.
■ You must have permission to change the modes on the final copy of the file if you
  want to use the -m option to change modes.
■ You must be superuser if you want to specify the ownership of the installed file
  with -o. If you are not the super-user, or if -o is not in effect, the installed file
  will be owned by you, regardless of who owns the original.

OPTIONS
"-c" Copy files. In fact install always copies files, but the -c option is
retained for backwards compatibility with old shell scripts that
might otherwise break.

"-d" Create a directory. Missing parent directories are created as
required as in mkdir -p. If the directory already exists, the owner,
group and mode will be set to the values given on the command
line.

"-s" Strip executable files as they are copied.

"-g group" Set the group ownership of the installed file or directory. (staff by
default.)

"-m mode" Set the mode for the installed file or directory. (0755 by default.)

"-o owner" If run as root, set the ownership of the installed file to the user-ID
of owner.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO chgrp(1), chmod(1), chown(1), cp(1), mkdir(1), strip(1), install(1M), attributes(5)
ipcrm(1)

NAME

ipcrm – remove a message queue, semaphore set, or shared memory ID

SYNOPSIS

ipcrm [-m shmids] [-q msqids] [-s semids] [-M shmkeys] [-Q msgkeys]
     [-S semkeys]

DESCRIPTION

ipcrm removes one or more messages, semaphores, or shared memory identifiers.

OPTIONS

The identifiers are specified by the following options:

- **-m shmids**: Remove the shared memory identifier `shmids` from the system. The shared memory segment and data structure associated with it are destroyed after the last detach.

- **-q msqids**: Remove the message queue identifier `msqids` from the system and destroy the message queue and data structure associated with it.

- **-s semids**: Remove the semaphore identifier `semids` from the system and destroy the set of semaphores and data structure associated with it.

- **-M shmkeys**: Removes the shared memory identifier, created with key `shmkeys`, from the system. The shared memory segment and data structure associated with it are destroyed after the last detach.

- **-Q msgkeys**: Remove the message queue identifier, created with key `msgkeys`, from the system and destroy the message queue and data structure associated with it.

- **-S semkeys**: Remove the semaphore identifier, created with key `semkeys`, from the system and destroy the set of semaphores and data structure associated with it.

The details of the removes are described in `msgctl(2)`, `shmctl(2)`, and `semctl(2)`. Use the `ipcs` command to find the identifiers and keys.

ENVIRONMENT

See `environ(5)` for descriptions of the following environment variables that affect the execution of `ipcrm`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWipc</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`ipcs(1)`, `msgctl(2)`, `msgget(2)`, `msgrcv(2)`, `msgsnd(2)`, `semctl(2)`, `semget(2)`, `semop(2)`, `shmctl(2)`, `shmget(2)`, `shmop(2)`, `attributes(5)`, `environ(5)`, `standards(5)`
The `ipcs` utility prints information about active inter-process communication facilities. The information that is displayed is controlled by the options supplied. Without options, information is printed in short format for message queues, shared memory, and semaphores that are currently active in the system.

The following options are supported:

- `-m` Prints information about active shared memory segments.
- `-q` Prints information about active message queues.
- `-s` Prints information about active semaphores.

If `-m`, `-q`, or `-s` are specified, information about only those indicated is printed. If none of these three is specified, information about all three is printed subject to these options:

- `-a` Uses all XCU5 print options. (This is a shorthand notation for `-b`, `-c`, `-o`, `-p`, and `-t`.)
- `-A` Uses all print options. (This is a shorthand notation for `-b`, `-c`, `-i`, `-o`, `-p`, and `-t`.)
- `-b` Prints information on biggest allowable size: maximum number of bytes in messages on queue for message queues, size of segments for shared memory, and number of semaphores in each set for semaphores. See below for meaning of columns in a listing.
- `-c` Prints creator's login name and group name. See below.
- `-D mtype` Displays, in hexadecimal and ASCII, the contents of all messages of type `mtype` found on any message queue that the user invoking `ipcs` has permission to read. If `mtype` is 0, all messages are displayed. If `mtype` is negative, all messages with type less than or equal to the absolute value of `mtype` are displayed. (See `msgrcv(2)` and `msgsnapp(2)`.)
- `-i` Prints number of ISM attaches to shared memory segments.
- `-o` Prints information on outstanding usage: number of messages on queue and total number of bytes in messages on queue for message queues and number of processes attached to shared memory segments.
- `-p` Prints process number information: process ID of last process to send a message, process ID of last process to receive a message on message queues, process ID of creating process, and process ID of last process to attach or detach on shared memory segments. See below.
-t  Prints time information: time of the last control operation that changed the access permissions for all facilities, time of last \texttt{msgsnd(2)} and last \texttt{msgrcv(2)} on message queues, time of last \texttt{shmat(2)} and last \texttt{shmdt(2)} on shared memory (see \texttt{shmop(2)}), time of last \texttt{semop(2)} on semaphores. See below.

The column headings and the meaning of the columns in an \texttt{ipcs} listing are given below. The letters in parentheses indicate the options that cause the corresponding heading to appear. “all” means that the heading always appears. \textit{Note:} These options only determine what information is provided for each facility; they do not determine which facilities are listed.

\noindent| \textbf{T (all)} | Type of the facility: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>message queue</td>
</tr>
<tr>
<td>m</td>
<td>shared memory segment</td>
</tr>
<tr>
<td>s</td>
<td>semaphore</td>
</tr>
</tbody>
</table>

\noindent| \textbf{ID (all)} | The identifier for the facility entry. |
|---|---|

\noindent| \textbf{KEY (all)} | The key used as an argument to \texttt{msgget(2)}, \texttt{semget(2)}, or \texttt{shmget(2)} to create the facility entry. \textit{(Note:} The key of a shared memory segment is changed to \texttt{IPC_PRIVATE} when the segment has been removed until all processes attached to the segment detach it.\textit{)} |
|---|---|

\noindent| \textbf{MODE (all)} | The facility access modes and flags: The mode consists of 11 characters that are interpreted as follows. The first two characters are: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>A process is waiting on a \texttt{msgrcv(2)}.</td>
</tr>
<tr>
<td>S</td>
<td>A process is waiting on a \texttt{msgsnd(2)}.</td>
</tr>
<tr>
<td>D</td>
<td>The associated shared memory segment has been removed. It will disappear when the last process attached to the segment detaches it. \textit{(Note:} If the shared memory segment identifier is removed via an \texttt{IPC_RMID} call to \texttt{shmct1(2)} before the process has detached from the segment with \texttt{shmdt(2)}, the segment is no longer visible to \texttt{ipcs} and it will not appear in the \texttt{ipcs} output.\textit{)}</td>
</tr>
<tr>
<td>C</td>
<td>The associated shared memory segment is to be cleared when the first attach is executed.</td>
</tr>
<tr>
<td>-</td>
<td>The corresponding special flag is not set.</td>
</tr>
</tbody>
</table>
The next nine characters are interpreted as three sets of three bits each. The first set refers to the owner’s permissions; the next to permissions of others in the user-group of the facility entry; and the last to all others. Within each set, the first character indicates permission to read, the second character indicates permission to write or alter the facility entry, and the last character is currently unused.

The permissions are indicated as follows:

- r  Read permission is granted.
- w  Write permission is granted.
- a  Alter permission is granted.
-  The indicated permission is not granted.

**OWNER (all)**
The login name of the owner of the facility entry.

**GROUP (all)**
The group name of the group of the owner of the facility entry.

**CREATOR (a,A,c)**
The login name of the creator of the facility entry.

**CGROUP (a,A,c)**
The group name of the group of the creator of the facility entry.

**CBYTES (a,A,o)**
The number of bytes in messages currently outstanding on the associated message queue.

**QNUM (a,A,o)**
The number of messages currently outstanding on the associated message queue.

**QBYTES (a,A,b)**
The maximum number of bytes allowed in messages outstanding on the associated message queue.

**LSPID (a,A,p)**
The process ID of the last process to send a message to the associated queue.

**LRPID (a,A,p)**
The process ID of the last process to receive a message from the associated queue.

**STIME (a,A,t)**
The time the last message was sent to the associated queue.

**RTIME (a,A,t)**
The time the last message was received from the associated queue.

**CTIME (a,A,t)**
The time when the associated entry was created or changed.

**ISMATTCHE (a,i)**
The number of ISM attaches to the associated shared memory segments.
NATTCHE (a,A,o)  The number of processes attached to the associated shared memory segment.
SEGSZ (a,A,b)    The size of the associated shared memory segment.
CPID (a,A,p)     The process ID of the creator of the shared memory entry.
LPID (a,A,p)     The process ID of the last process to attach or detach the shared memory segment.
ATIME (a,A,t)    The time the last attach was completed to the associated shared memory segment.
DTIME (a,A,t)    The time the last detach was completed on the associated shared memory segment.
NSEMS (a,A,b)    The number of semaphores in the set associated with the semaphore entry.
OTIME (a,A,t)    The time the last semaphore operation was completed on the set associated with the semaphore entry.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of ipcs: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.
TZ    Determine the timezone for the time strings written by ipcs.

FILES
/etc/group  group names
/etc/passwd user names

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWipc</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
ipcrm(1), msgget(2), msgrcv(2), msgsnd(2), semget(2), semids(2), semop(2), shmctl(2), shmhget(2), shmids(2), shmpop(2), attributes(5), environ(5), standards(5)

NOTES
Things can change while ipcs is running. The information it gives is guaranteed to be accurate only when it was retrieved.
isainfo(1)

NAME
isainfo – describe instruction set architectures

SYNOPSIS
isainfo [-v] [-b | -n | -k]

DESCRIPTION
The isainfo utility is used to identify various attributes of the instruction set
architectures supported on the currently running system. Among the questions it can
answer are whether 64-bit applications are supported, or whether the running kernel
uses 32-bit or 64-bit device drivers.

When invoked with no flags, isainfo prints the name(s) of the native instruction sets
for applications supported by the current version of the operating system. These will
be a subset of the list returned by isalist(1). The subset corresponds to the basic
applications environments supported by the currently running system.

OPTIONS
The following options are supported:

- **b**  Prints the number of bits in the address space of the native instruction set.
- **k**  Prints the name of the instruction set(s) used by the operating system
         kernel components such as device drivers and STREAMS modules.
- **n**  Prints the name of the native instruction set used by portable applications
         supported by the current version of the operating system.
- **v**  Prints more detailed information about the other options.

EXAMPLES

**EXAMPLE 1** Invoking isainfo on a 32-bit x86 platform

```bash
example$ isainfo -v
32-bit i386 applications
```

```bash
example$ isainfo -k
i386
```

**EXAMPLE 2** Invoking isainfo on a system running the 32-bit operating system on a 64-bit
SPARC processor

```bash
example$ isainfo -nsparc
example$ isainfo -v
32-bit sparc applications
example$ isainfo -kv
32-bit sparc kernel modules
```

**EXAMPLE 3** Invoking isainfo on the same hardware platform (that is, a 64-bit SPARC
processor) running the 64-bit operating system

```bash
example$ isainfo
sparcv9 sparc
example$ isainfo -n
sparcv9
example$ isainfo -v
64-bit sparcv9 applications 32-bit sparc applications
example$ isainfo -vk
64-bit sparcv9 kernel modules
```
EXAMPLE 3 Invoking isainfo on the same hardware platform (that is, a 64-bit SPARC processor) running the 64-bit operating system (Continued)

EXIT STATUS Non-zero Flags are not specified correctly, or the command is unable to recognize attributes of the system on which it is running. An error message is printed to stderr.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO isalist(1), uname(1), psrinfo(1M), sysinfo(2), attributes(5), isalist(5)
**NAME**
isalist – display the native instruction sets executable on this platform

**SYNOPSIS**
isalist

**DESCRIPTION**
isalist prints the names of the native instruction sets executable on this platform on the standard output, as returned by the SI_ISALIST command of sysinfo(2).

The names are space-separated and are ordered in the sense of best performance. That is, earlier-named instruction sets may contain more instructions than later-named instruction sets; a program that is compiled for an earlier-named instruction set will most likely run faster on this machine than the same program compiled for a later-named instruction set.

Programs compiled for instruction sets that do not appear in the list will most likely experience performance degradation or not run at all on this machine.

The instruction set names known to the system are listed in isalist(5). These names may or may not match predefined names or compiler options in the C language compilation system.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
optisa(1), uname(1), sysinfo(2), attributes(5), isalist(5)
When Job Control is enabled, the Bourne shell built-in `jobs` reports all jobs that are stopped or executing in the background. If `job_id` is omitted, all jobs that are stopped or running in the background will be reported. The following options will modify/enhance the output of `jobs`:

- `-l` Reports the process group ID and working directory of the jobs.
- `-p` Reports only the process group ID of the jobs.
- `-x` Replaces any `job_id` found in `command` or `arguments` with the corresponding process group ID, and then executes `command` passing it `arguments`.

When the shell is invoked as `jsh`, Job Control is enabled in addition to all of the functionality described previously for `sh`. Typically Job Control is enabled for the interactive shell only. Non-interactive shells typically do not benefit from the added functionality of Job Control.
With Job Control enabled every command or pipeline the user enters at the terminal is called a \textit{job id}. All jobs exist in one of the following states: foreground, background or stopped. These terms are defined as follows:

1. A job in the \textit{foreground} has read and write access to the controlling terminal.
2. A job in the \textit{background} is denied read access and has conditional write access to the controlling terminal (see \texttt{stty(1)})
3. A \textit{stopped} job is a job that has been placed in a suspended state, usually as a result of a \texttt{SIGTSTP} signal (see \texttt{signal(3HEAD)}).

Every job that the shell starts is assigned a positive integer, called a \textit{job id number} which is tracked by the shell and will be used as an identifier to indicate a specific job. Additionally, the shell keeps track of the \textit{current} and \textit{previous} jobs. The \textit{current job} is the most recent job to be started or restarted. The \textit{previous job} is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

\%\textit{job id} \\

where \textit{job id} may be specified in any of the following formats:

- \% or + for the current job
- - for the previous job
- ?<\textit{string}> specify the job for which the command line uniquely contains \textit{string}.
- \textit{n} for job number \textit{n}, where \textit{n} is a job number
- \textit{pref} where \textit{pref} is a unique prefix of the command name (for example, if the command \texttt{ls -l name} were running in the background, it could be referred to as \%\texttt{ls}); \textit{pref} cannot contain blanks unless it is quoted.

When Job Control is enabled, \texttt{fg} resumes the execution of a stopped job in the foreground, also moves an executing background job into the foreground. If \%\textit{job id} is omitted the current job is assumed.

When Job Control is enabled, \texttt{bg} resumes the execution of a stopped job in the background. If \%\textit{job id} is omitted the current job is assumed.

\texttt{stop} stops the execution of a background job(s) by using its \textit{job id}, or of any process by using its \textit{pid}; see \texttt{ps(1)}.

\texttt{csh} The C shell built-in, \texttt{jobs}, without an argument, lists the active jobs under job control.

- \texttt{-l} List process IDs, in addition to the normal information.
The shell associates a numbered `job_id` with each command sequence to keep track of those commands that are running in the background or have been stopped with `TSTP` signals (typically Control-Z). When a command or command sequence (semicolon-separated list) is started in the background using the `&` metacharacter, the shell displays a line with the job number in brackets and a list of associated process numbers:

```
[1] 1234
```

To see the current list of jobs, use the `jobs` built-in command. The job most recently stopped (or put into the background if none are stopped) is referred to as the current job and is indicated with a `+`. The previous job is indicated with a `-`; when the current job is terminated or moved to the foreground, this job takes its place (becomes the new current job).

To manipulate jobs, refer to the `bg`, `fg`, `kill`, `stop`, and `%` built-in commands.

A reference to a job begins with a `%`. By itself, the percent sign refers to the current job.

- `%` The current job.
- `%+` The previous job.
- `%` Refer to job `j` as in: `kill -9 %j`. `j` can be a job number, or a string that uniquely specifies the command line by which it was started; `fg %vi` might bring a stopped `vi` job to the foreground, for instance.
- `%string` Specify the job for which the command line uniquely contains `string`.

A job running in the background stops when it attempts to read from the terminal. Background jobs can normally produce output, but this can be suppressed using the `stty tostop` command.

- `fg` brings the current or specified `job_id` into the foreground.
- `bg` runs the current or specified jobs in the background.
- `stop` stops the execution of a background job(s) by using its `job_id`, or of any process by using its `pid`; see `ps(1)`.
- `notify` will notify the user asynchronously when the status of the current job or specified jobs changes.

`ksh` `jobs` displays the status of the jobs that were started in the current shell environment. When `jobs` reports the termination status of a job, the shell removes its process ID from the list of those "known in the current shell execution environment."
job_id specifies the jobs for which the status is to be displayed. If no job_id is given, the status information for all jobs will be displayed.

The following options will modify/enhance the output of jobs:

- `-l` (The letter ell.) Provides more information about each job listed. This information includes the job number, current job, process group ID, state and the command that formed the job.

- `-n` Displays only jobs that have stopped or exited since last notified.

- `-p` Displays only the process IDs for the process group leaders of the selected jobs.

By default, jobs displays the status of all the stopped jobs, running background jobs, and all jobs whose status has changed and have not been reported by the shell.

If the monitor option of the set command is turned on, an interactive shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them small integer numbers. When a job is started asynchronously with &amp;, the shell prints a line which looks like:

```
[1] 1234
```

indicating that the job, which was started asynchronously, was job number 1 and had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key `^Z` (Control-Z) which sends a STOP signal to the current job. The shell will then normally indicate that the job has been “Stopped” (see OUTPUT below), and print another prompt. You can then manipulate the state of this job, putting it in the background with the bg command, or run some other commands and then eventually bring the job back into the foreground with the foreground command fg. A ^Z takes effect immediately and is like an interrupt, in that pending output and unread input are discarded when it is typed.

There are several ways to refer to jobs in the shell. A job can be referred to by the process id of any process of the job or by one of the following:

- `%number` The job with the given number.
- `%string` Any job whose command line begins with string; works only in the interactive mode when the history file is active.
- `%=string` Any job whose command line contains string; works only in the interactive mode when the history file is active.
- `%%` Current job.
- `%+` Equivalent to `%%`.
- `%−` Previous job.
The shell learns immediately whenever a process changes state. It normally informs you whenever a job becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is done so that it does not otherwise disturb your work. When the monitor mode is on, each background job that completes triggers any trap set for CHLD. When you try to leave the shell while jobs are running or stopped, you will be warned that 'You have stopped (running) jobs.' You may use the jobs command to see what they are. If you do this or immediately try to exit again, the shell will not warn you a second time, and the stopped jobs will be terminated.

fg will move a background job from the current environment into the foreground. Using fg to place a job in the foreground will remove its process ID from the list of those "known in the current shell execution environment." The fg command is available only on systems that support job control. If job_id is not specified, the current job is brought into the foreground.

bg resumes suspended jobs from the current environment by running them as background jobs. If the job specified by job_id is already a running background job, bg has no effect and will exit successfully. Using bg to place a job into the background causes its process ID to become "known in the current shell execution environment", as if it had been started as an asynchronous list. The bg command is available only on systems that support job control. If job_id is not specified, the current job is placed in the background.

stop stops the execution of a background job(s) by using its job_id, or of any process by using its pid. See ps(1).

If the -p option is specified, the output consists of one line for each process ID:

"%d
", "process ID"

Otherwise, if the -l option is not specified, the output is a series of lines of the form:

" [%d] %c %s %s
", job-number, current, state, command

where the fields are as follows:

**current**  The character + identifies the job that would be used as a default for the fg or bg commands. This job can also be specified using the job_id %+ or %+. The character – identifies the job that would become the default if the current default job were to exit; this job can also be specified using the job_id %- . For other jobs, this field is a space character. At most, one job can be identified with + and at most one job can be identified with –. If there is any suspended job, then the current job will be a suspended job. If there are at least two suspended jobs, then the previous job will also be a suspended job.
job-number

A number that can be used to identify the process group to the
wait, fg, bg, and kill utilities. Using these utilities, the job can
be identified by prefixing the job number with \%.

state

One of the following strings (in the POSIX Locale):

Running   Indicates that the job has not been
           suspended by a signal and has not
           exited.

Done      Indicates that the job completed
           and returned exit status zero.

Done(code) Indicates that the job completed
           normally and that it exited with the
           specified non-zero exit status, code,
           expressed as a decimal number.

Stopped

Stopped(SIGTSTP) Indicates that the job was
           suspended by the SIGTSTP signal.

Stopped(SIGSTOP) Indicates that the job was
           suspended by the SIGSTOP signal.

Stopped(SIGTTIN) Indicates that the job was
           suspended by the SIGTTIN signal.

Stopped(SIGTTOU) Indicates that the job was
           suspended by the SIGTTOU signal.
           
           The implementation may substitute the string Suspended in place
           of Stopped. If the job was terminated by a signal, the format of
           state is unspecified, but it will be visibly distinct from all of the
           other state formats shown here and will indicate the name or
           description of the signal causing the termination.

command

The associated command that was given to the shell.

If the -l option is specified, a field containing the process group ID is inserted before
the state field. Also, more processes in a process group may be output on separate
lines, using only the process ID and command fields.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the
execution of jobs, fg, and bg: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH.

EXIT STATUS

The following exit values are returned for jobs, fg, and bg:

0      Successful completion.
>0     An error occurred.
ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO  csh(1), kill(1), ksh(1), ps(1), sh(1), stop(1), shell_builtins(1), stty(1), wait(1), signal(3HEAD), attributes(5), environ(5), standards(5)
### NAME
join – relational database operator

### SYNOPSIS

```bash
join [-a filenumber | -v filenumber] [-1 fieldnumber] [-2 fieldnumber]
[-o list] [-e string] [-t char] file1 file2
join [-a filenumber] [-j fieldnumber] [-j1 fieldnumber] [-j2 fieldnumber]
[-o list] [-e string] [-t char] file1 file2
```

### DESCRIPTION
The `join` command forms, on the standard output, a join of the two relations specified by the lines of `file1` and `file2`.

There is one line in the output for each pair of lines in `file1` and `file2` that have identical join fields. The output line normally consists of the common field, then the rest of the line from `file1`, then the rest of the line from `file2`. This format can be changed by using the `-o` option (see below). The `-a` option can be used to add unmatched lines to the output. The `-v` option can be used to output only unmatched lines.

The default input field separators are blank, tab, or new-line. In this case, multiple separators count as one field separator, and leading separators are ignored. The default output field separator is a blank.

If the input files are not in the appropriate collating sequence, the results are unspecified.

### OPTIONS
Some of the options below use the argument `filenumber`. This argument should be a 1 or a 2 referring to either `file1` or `file2`, respectively.

- `-a filenumber`
  In addition to the normal output, produce a line for each unpairable line in file `filenumber`, where `filenumber` is 1 or 2. If both `-a1` and `-a2` are specified, all unpairable lines will be output.

- `-e string`
  Replace empty output fields in the list selected by option `-o` with the string `string`.

- `-j fieldnumber`
  Equivalent to `-1fieldnumber -2fieldnumber`.

- `-j1 fieldnumber`
  Equivalent to `-1fieldnumber`.

- `-j2 fieldnumber`
  Equivalent to `-2fieldnumber`. Fields are numbered starting with 1.

- `-o list`
  Each output line includes the fields specified in `list`. Fields selected by `list` that do not appear in the input will be treated as empty output fields. (See the `-e` option.) Each element of which has the either the form `filenumber.fieldnumber`, or 0, which represents the `join` field. The common field is not printed unless specifically requested.

- `-t char`
  Use character `char` as a separator. Every appearance of `char` in a line is significant. The character `char` is used as the field separator for both input and output. With this
option specified, the collating term should be the same as `sort` without the `-b` option.

`-v file_number` Instead of the default output, produce a line only for each unpairable line in `file_number`, where `file_number` is 1 or 2. If both `-v 1` and `-v 2` are specified, all unpairable lines will be output.

`-1 field_number` Join on the `field_number`th field of file 1. Fields are decimal integers starting with 1.

`-2 field_number` Join on the `field_number`th field of file 2. Fields are decimal integers starting with 1.

**OPERANDS**

The following operands are supported:

`file1`  
`file2` A path name of a file to be joined. If either of the `file1` or `file2` operands is `−`, the standard input is used in its place.

`file1` and `file2` must be sorted in increasing collating sequence as determined by `LC_COLLATE` on the fields on which they are to be joined, normally the first in each line (see `sort(1)`).

**USAGE**

See `largefile(5)` for the description of the behavior of `join` when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1** Joining the password file and group file

The following command line will join the password file and the group file, matching on the numeric group ID, and outputting the login name, the group name and the login directory. It is assumed that the files have been sorted in ASCII collating sequence on the group ID fields.

```
example% join -j1 4 -j2 3 -o 1.1 2.1 1.6 -t:/etc/passwd /etc/group
```

**EXAMPLE 2** Using the `-o` option

The `-o 0` field essentially selects the union of the join fields. For example, given file phone:

```
!Name Phone Number
Don +1 123-456-7890
Hal +1 234-567-8901
Yasushi +2 345-678-9012
```

and file fax:

```
!Name Fax Number
Don +1 123-456-7899
`````
EXAMPLE 2 Using the -o option  (Continued)

Keith +1 456-789-0122
Yasushi +2 345-678-9011

where the large expanses of white space are meant to each represent a single tab character), the command:

example% join -t"tab" -a 1 -a 2 -e '(unknown)' -o 0,1.2,2.2 phone fax

would produce

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don</td>
<td>+1 123-456-7890</td>
<td>+1 123-456-7899</td>
</tr>
<tr>
<td>Hal</td>
<td>+1 234-567-8901</td>
<td>(unknown)</td>
</tr>
<tr>
<td>Keith</td>
<td>(unknown)</td>
<td>+1 456-789-012</td>
</tr>
<tr>
<td>Yasushi</td>
<td>+2 345-678-9012</td>
<td>+2 345-678-9011</td>
</tr>
</tbody>
</table>

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of join: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_COLLATE, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0   All input files were output successfully.
>0  An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

awk(1), comm(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5), standards(5)

NOTES

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is that of a plain sort.

The conventions of the join, sort, comm, uniq, and awk commands are wildly incongruous.
NAME  | kbd – manipulate the state of keyboard, or display the type of keyboard, or change the default keyboard abort sequence effect

SYNOPSIS  | kbd [-r] [-t] [-a enable | disable | alternate] [-c on | off]
|          | [-d keyboard device]
| kbd [-i] [-d keyboard device]

DESCRIPTION  | The kbd utility manipulates the state of the keyboard, or displays the keyboard type, or allows the default keyboard abort sequence effect to be changed. The abort sequence also applies to serial console devices. The kbd utility sets the /dev/kbd default keyboard device.

EXTENDED DESCRIPTION  | The -i option reads and processes default values for the keyclick and keyboard abort settings from the /etc/default/kbd keyboard default file. Only keyboards that support a clicker respond to the -c option. To turn clicking on by default, add or change the value of the KEYCLICK variable in the /etc/default/kbd file to:

KEYCLICK=on

Next, run the command kbd -i to change the setting. Valid settings for the KEYCLICK variable are on and off; all other values are ignored. If the KEYCLICK variable is not specified in the default file, the setting is unchanged.

The keyboard abort sequence effect (L1-A or STOP-A on the keyboard, and BREAK on the serial console input device on most systems) can only be changed by a superuser using the -a option. The system can be configured to ignore the keyboard abort sequence or trigger on the standard or alternate sequence.

A BREAK condition that originates from an erroneous electrical signal cannot be distinguished from one deliberately sent by remote DCE. As a remedy, use the -a option with Alternate Break to switch break interpretation. Due to the risk of incorrect sequence interpretation, binary protocols such as PPP, SLIP, and others should not be run over the serial console port when Alternate Break sequence is in effect. The Alternate Break sequence has no effect on the keyboard abort. For more information on the Alternate Break sequence, see zsa(7D), se(7D), and asy(7D).

On many systems, the default effect of the keyboard abort sequence is to suspend the operating system and enter the debugger or the monitor. Some systems feature key switches with a secure position. On these systems, setting the key switch to the secure position overrides any software default set with this command.

To permanently change the software default effect of the keyboard abort sequence, first add or change the value of the KEYBOARD_ABORT variable in the /etc/default/kbd file to:

KEYBOARD_ABORT=disable

Next, run the command kbd -i to change the setting. Valid settings are enable, disable, and alternate; all other values are ignored. If the variable is not specified in the default file, the setting is unchanged.
To set the abort sequence to the hardware BREAK, set the value of the KEYBOARD_ABORT variable in the `/etc/default/kbd` file to:

```
KEYBOARD_ABORT=enable
```

To change the current setting, run the command `kbd -i`. To set the abort sequence to the Alternate Break character sequence, first set the current value of the KEYBOARD_ABORT variable in the `/etc/default/kbd` file to:

```
KEYBOARD_ABORT=alternate
```

Next, run the command `kbd -i` to change the setting. When the Alternate Break sequence is in effect, only serial console devices are affected.

### OPTIONS

The `kbd` utility supports the following options:

- `-i`  
  Set keyboard defaults from the keyboard default file. With the exception of `-d` keyboard device, this option cannot be used with any other option. The `-i` option instructs the keyboard command to read and process keyclick and keyboard abort default values from the `/etc/default/kbd` file. The `-i` option can only be used by a superuser.

- `-r`  
  Reset the keyboard as if power-up

- `-t`  
  Return the type of the keyboard being used

- `-c on/off state`  
  Turn the clicking of the keyboard on or off.
  - `on` Enable clicking
  - `off` Disable clicking

- `-a enable/disable/alternate state`  
  Enable, disable, or alternate the keyboard abort sequence effect. By default, a keyboard abort sequence (typically Stop-A or L1-A on the keyboard and BREAK on the serial console device) suspends the operating system on most systems. The default keyboard behavior can be changed using this option. The `-a` option can only be used by a superuser.
  - `enable` Enable the default effect of the keyboard abort sequence (suspend the operating system and enter the debugger or the monitor)
  - `disable` Disable the default/alternate effect and ignore keyboard abort sequences
  - `alternate` Enable the alternate effect of the keyboard abort sequences (suspend the operating system and enter the debugger or the monitor) upon receiving the Alternate Break character sequence on the console. The Alternate Break sequence is defined by the drivers `zs(7D), se(7D), asy(7D)`. Due to a risk of incorrect sequence interpretation, binary protocols cannot be run over the serial console port when this value is used.
Specify the keyboard device being set. The default setting is /dev/kbd.

EXAMPLE 1 Displaying the keyboard type
To display the keyboard type:
example% kbd -t
Type 4 Sun keyboard

EXAMPLE 2 Setting keyboard defaults
To set the keyboard defaults as specified in the keyboard default file:
example# kbd -i

FILES
/etc/rcS shell script containing commands necessary to get the system to single-user mode
/dev/kbd keyboard device file
/etc/default/kbd keyboard default file containing software defaults for keyboard configurations.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SPARC</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
loadkeys(1), kadb(1M), keytables(4), attributes(5), kb(7M), zs(7D), se(7D), asy(7D)

NOTES
Some server systems have key switches with a secure key position that can be read by system software. This key position overrides the normal default of the keyboard abort sequence effect and changes the default so the effect is disabled. When the key switch is in the secure position on these systems, the keyboard abort sequence effect cannot be overridden by the software default, which is settable with the kbd utility. Currently, there is no way to determine the state of the keyboard click setting.
NAME
kdestroy – destroy Kerberos tickets

SYNOPSIS
/usr/bin/kdestroy [-q] [-c cache_name]

DESCRIPTION
The kdestroy utility destroys the user’s active Kerberos authorization tickets by writing zeros to the specified credentials cache that contains them. If the credentials cache is not specified, the default credentials cache is destroyed. If the credentials cache does not exist, kdestroy displays a message to that effect.

After overwriting the cache, kdestroy removes the cache from the system. The utility displays a message indicating the success or failure of the operation. If kdestroy is unable to destroy the cache, it will warn you by making your terminal beep.

If desired, you can place the kdestroy command in your .logout file so that your tickets are destroyed automatically when you logout.

OPTIONS
The following options are supported:

- `-c cache_name`
  Uses cache_name as the credentials (ticket) cache name and location. If this option is not used, the default cache name and location are used.

- `-q`
  Runs quietly. Your terminal will not beep when kdestroy fails to destroy the tickets.

ENVIRONMENT VARIABLES
kdestroy uses the following environment variable:

  KRB5CCNAME  Location of the credentials (ticket) cache.

FILES
/tmp/krb5cc_uid  Default credentials cache (uid is the decimal UID of the user).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkrbu</td>
</tr>
</tbody>
</table>

SEE ALSO
kinit(1), klist(1), attributes(5), SEAM(5)

BUGS
Only the tickets in the specified credentials cache are destroyed. Separate ticket caches are used to hold root instance and password changing tickets. These files should probably be destroyed too, or all of a user’s tickets should be kept in a single credential cache.

AUTHORS
Steve Miller, MIT Project Athena/Digital Equipment Corporation; Clifford Neuman, MIT Project Athena Bill Sommerfeld, MIT Project Athena
keylogin(1)

NAME
keylogin – decrypt and store secret key with keyserv

SYNOPSIS
/usr/bin/keylogin [-r]

DESCRIPTION
The keylogin command prompts for a password, and uses it to decrypt the user’s
secret key. The key may be found in the /etc/publickey file (see publickey(4)) or
the NIS map “publickey.byname” or the NIS+ table “cred.org_dir” in the user’s home
domain. The sources and their lookup order are specified in the
/etc/nsswitch.conf file. See nsswitch.conf(4). Once decrypted, the user’s
secret key is stored by the local key server process, keyserv(1M). This stored key is
used when issuing requests to any secure RPC services, such as NFS or NIS+.
The program keylogout(1) can be used to delete the key stored by keyserv.

keylogin will fail if it cannot get the caller’s key, or the password given is incorrect.
For a new user or host, a new key can be added using newkey(1M),
nisaddcred(1M), or nisclient(1M).

If multiple authentication mechanisms are configured for the system, each of the
configured mechanism’s secret key will be decrypted and stored by keyserv(1M). See
nisauthconf(1M) for information on configuring multiple authentication
mechanisms.

OPTIONS
- r Update the /etc/.rootkey file. This file holds the unencrypted secret
  key of the superuser. Only the superuser may use this option. It is used so
  that processes running as superuser can issue authenticated requests
  without requiring that the administrator explicitly run keylogin as
  superuser at system startup time. See keyserv(1M). The -r option should
  be used by the administrator when the host’s entry in the publickey
  database has changed, and the /etc/.rootkey file has become
  out-of-date with respect to the actual key pair stored in the publickey
  database. The permissions on the /etc/.rootkey file are such that it may
  be read and written by the superuser but by no other user on the system.

If multiple authentication mechanisms are configured for the system, each
of the configured mechanism’s secret keys will be stored in the
/etc/.rootkey file.

FILES
/etc/.rootkey superuser’s secret key

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
chkey(1), keylogout(1), login(1), keyserv(1M), newkey(1M), nisaddcred(1M),
nisauthconf(1M), nisclient(1M), nsswitch.conf(4), publickey(4),
attributes(5)
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
keylogout(1)

NAME | keylogout – delete stored secret key with keyserv
SYNOPSIS | /usr/bin/keylogout [-f]
DESCRIPTION | keylogout deletes the key stored by the key server process keyserv(1M). Further access to the key is revoked; however, current session keys may remain valid until they expire or are refreshed.

Deleting the keys stored by keyserv will cause any background jobs or scheduled at(1) jobs that need secure RPC services to fail. Since only one copy of the key is kept on a machine, it is a bad idea to place a call to this command in your .logout file since it will affect other sessions on the same machine.

If multiple NIS+ authentication mechanisms are configured for the system, then all keys stored by the key server process will be deleted, including keys that are no longer configured.

OPTIONS | -f Force keylogout to delete the secret key for the superuser. By default, keylogout by the superuser is disallowed because it would break all RPC services, such as NFS, that are started by the superuser.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | at(1), chkey(1), login(1), keylogin(1), keyserv(1M), newkey(1M), nisauthconf(1M), publickey(4), attributes(5)

NOTES | NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**

`kill` – terminate or signal processes

**SYNOPSIS**

```
/usr/bin/kill -s signal_name pid...

/usr/bin/kill -l [exit_status]

/usr/bin/kill [-signal_name] pid...

/usr/bin/kill [-signal_number] pid...
```

**DESCRIPTION**

The `kill` utility sends a signal to the process or processes specified by each `pid` operand.

For each `pid` operand, the `kill` utility will perform actions equivalent to the `kill(2)` function called with the following arguments:

1. The value of the `pid` operand will be used as the `pid` argument.
2. The `sig` argument is the value specified by the `-s` option, the `-signal_name` option, or the `-signal_number` option, or, if none of these options is specified, by `SIGTERM`.

The signaled process must belong to the current user unless the user is the super-user.

See `NOTES` for descriptions of the shell built-in versions of `kill`.

**OPTIONS**

The following options are supported:

```
-1

-s signal_name

-signal_name

-signal_number
```

- `-1` (The letter ell.) Writes all values of `signal_name` supported by the implementation, if no operand is given. If an `exit_status` operand is given and it is a value of the `?` shell special parameter and `wait` corresponding to a process that was terminated by a signal, the `signal_name` corresponding to the signal that terminated the process will be written. If an `exit_status` operand is given and it is the unsigned decimal integer value of a signal number, the `signal_name` corresponding to that signal will be written. Otherwise, the results are unspecified.

- `-s signal_name` Specifies the signal to send, using one of the symbolic names defined in the `<signal.h>` description. Values of `signal_name` will be recognized in a case-independent fashion, without the `SIG` prefix. In addition, the symbolic name `0` will be recognized, representing the signal value zero. The corresponding signal will be sent instead of `SIGTERM`.

- `-signal_name` Equivalent to `-s signal_name`.

- `-signal_number` Specifies a non-negative decimal integer, `signal_number`, representing the signal to be used instead of `SIGTERM`, as the `sig` argument in the effective call to `kill(2)`.

**OPERANDS**

The following operands are supported:

```
pid
```

One of the following:
1. A decimal integer specifying a process or process group to be signaled. The process or processes selected by positive, negative and zero values of the \textit{pid} operand will be as described for the \texttt{kill} function. If process number 0 is specified, all processes in the process group are signaled. If the first \textit{pid} operand is negative, it should be preceded by \texttt{-} to keep it from being interpreted as an option.

2. A job control job ID that identifies a background process group to be signaled. The job control job ID notation is applicable only for invocations of \texttt{kill} in the current shell execution environment.

\textbf{Note:} The job control job ID type of \textit{pid} is available only on systems supporting the job control option.

\textit{exit\_status} \hspace{1cm} A decimal integer specifying a signal number or the exit status of a process terminated by a signal.

\textbf{USAGE} \hspace{1cm} Process numbers can be found by using \texttt{ps(1)}.

The job control job ID notation is not required to work as expected when \texttt{kill} is operating in its own utility execution environment. In either of the following examples:

\begin{verbatim}
example$ nohup kill %1 &
example$ system("kill %1");
\end{verbatim}

\texttt{kill} operates in a different environment and will not share the shell’s understanding of job numbers.

\textbf{OUTPUT} \hspace{1cm} When the \texttt{-l} option is not specified, the standard output will not be used.

When the \texttt{-l} option is specified, the symbolic name of each signal will be written in the following format:

\begin{verbatim}
"%s%c", <signal\_name>, <separator>
\end{verbatim}

where the \texttt{<signal\_name>} is in upper-case, without the \texttt{SIG} prefix, and the \texttt{<separator>} will be either a newline character or a space character. For the last signal written, \texttt{<separator>} will be a newline character.

When both the \texttt{-l} option and \textit{exit\_status} operand are specified, the symbolic name of the corresponding signal will be written in the following format:

\begin{verbatim}
"%s\n", <signal\_name>
\end{verbatim}

\textbf{EXAMPLES} \hspace{1cm} \textbf{EXAMPLE 1} Sending the \texttt{kill} signal

Any of the commands:

\begin{verbatim}
example$ kill -9 100 -165
example$ kill -s kill 100 -165
\end{verbatim}
EXAMPLE 1  Sending the kill signal  (Continued)

example$ kill -s KILL 100 -165

sends the SIGKILL signal to the process whose process ID is 100 and to all processes whose process group ID is 165, assuming the sending process has permission to send that signal to the specified processes, and that they exist.

EXAMPLE 2  Avoiding ambiguity with an initial negative number  

To avoid an ambiguity of an initial negative number argument specifying either a signal number or a process group, the former will always be the case. Therefore, to send the default signal to a process group (for example, 123), an application should use a command similar to one of the following:

example$ kill -TERM -123
example$ kill -- -123

ENVIRONMENT VARIABLES  
See environ(5) for descriptions of the following environment variables that affect the execution of kill: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS  
The following exit values are returned:

  0  At least one matching process was found for each pid operand, and the specified signal was successfully processed for at least one matching process.

>0  An error occurred.

ATTRIBUTES  
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO  
csh(1), jobs(1), ksh(1), ps(1), sh(1), shell_builtins(1), wait(1), kill(2), signal(3C), signal(3HEAD), attributes(5), environ(5), standards(5)

NOTES  
The Bourne shell, sh, has a built-in version of kill to provide the functionality of the kill command for processes identified with a jobid. The sh syntax is:

    kill [ -sig ] [ pid ] [ %job ]...
    kill -1
The C-shell, csh, also has a built-in kill command, whose syntax is:

```
kill [-sig] [pid] [%job] ...
kill -l
```

The csh kill built-in sends the TERM (terminate) signal, by default, or the signal specified, to the specified process ID, the job indicated, or the current job. Signals are either given by number or by name. There is no default. Typing kill does not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as well.

- l     Lists the signal names that can be sent.

The syntax of the ksh kill is:

```
kill [-sig] [pid] [%job] ...
kill -l
```

The ksh kill sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes. Signals are either given by number or by names (as given in signal(3HEAD) stripped of the SIG prefix). If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will be sent a CONT (continue) signal if it is stopped. The argument job can be the process id of a process that is not a member of one of the active jobs. In the second form, kill -l, the signal numbers and names are listed.
The `kinit` command is used to obtain and cache an initial ticket-granting ticket (credential) for `principal`. This ticket is used for authentication by the Kerberos system. Notice that only users with Kerberos principals can use the Kerberos system. For information about Kerberos principals, see SEAM(5).

When you use `kinit` without options, the utility prompts for your `principal` and Kerberos password, and tries to authenticate your login with the local Kerberos server. The `principal` can be specified on the command line if desired.

If Kerberos authenticates the login attempt, `kinit` retrieves your initial ticket-granting ticket and puts it in the ticket cache. By default your ticket will be stored in the file `/tmp/krb5cc_uid`, where `uid` specifies your user identification number. Tickets expire after a specified lifetime, after which `kinit` must be run again. Any existing contents of the cache are destroyed by `kinit`.

Values specified in the command line override the values specified in the Kerberos configuration file for `lifetime` and `renewable_life`.

The `kdestroy(1)` command may be used to destroy any active tickets before you end your login session.

The following options are supported:

- `-A` Requests address-less tickets.
- `-c cache_name` Uses `cache_name` as the credentials (ticket) cache name and location. If this option is not used, the default cache name and location are used.
- `-f` Requests forwardable tickets.
- `-k [-t keytab_file]` Requests a host ticket, obtained from a key in the local host’s `keytab` file. The name and location of the keytab file may be specified with the `-t keytab_file` option; otherwise the default name and location will be used.
- `-l lifetime` Requests a ticket with the lifetime `lifetime`. If the `-l` option is not specified, the default ticket lifetime (configured by each site) is used. Specifying a ticket lifetime longer than the maximum ticket lifetime (configured by each site) results in a ticket with the maximum lifetime. See the Time Formats section for the valid time duration formats that you can specify for...
lifetime. See kdc.conf(4) and kadmin(IM) (for getprinc command to verify the lifetime values for the server principal).

The lifetime of the tickets returned will be the minimum of the following:

- Value specified in the command line.
- Value specified in the KDC configuration file.
- Value specified in the Kerberos database for the server principal. In the case of kinit, it is krbtgt/realm name.
- Value specified in the Kerberos database for the user principal.

-p Requests proxiable tickets.

-x renewable_life Requests renewable tickets, with a total lifetime of renewable_life. See the Time Formats section for the valid time duration formats that you can specify for renewable_life. See kdc.conf(4) and kadmin(IM) (for getprinc command to verify the lifetime values for the server principal).

The renewable lifetime of the tickets returned will be the minimum of the following:

- Value specified in the command line.
- Value specified in the KDC configuration file.
- Value specified in the Kerberos database for the server principal. In the case of kinit, it is krbtgt/realm name.
- Value specified in the Kerberos database for the user principal.

-R Requests renewal of the ticket-granting ticket. Notice that an expired ticket cannot be renewed, even if the ticket is still within its renewable life.

-s start_time Requests a postdated ticket, valid starting at start_time. Postdated tickets are issued with the invalid flag set, and need to be fed back to the KDC before use. See the Time Formats section for either the valid absolute time or time duration formats that you can specify for start_time. kinit attempts to match an absolute time first before trying to match a time duration.

-S service_name Specifies an alternate service name to use when getting initial tickets.
Requests that the ticket granting ticket in the cache (with the invalid flag set) be passed to the KDC for validation. If the ticket is within its requested time range, the cache is replaced with the validated ticket.

The following absolute time formats can be used for the \(-s\) start_time option. The examples are based on the date and time of July 2, 1999, 1:35:30 p.m.

<table>
<thead>
<tr>
<th>Absolute Time Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>yymmddhhmm[ss]</td>
<td>990702133530</td>
</tr>
<tr>
<td>hhmm[ss]</td>
<td>133530</td>
</tr>
<tr>
<td>yy.mm.ddhhh.mm ss</td>
<td>99:07:02:13:35:30</td>
</tr>
<tr>
<td>hh:mm[ss]</td>
<td>13:35:30</td>
</tr>
<tr>
<td>ldate:ltme</td>
<td>07-07-99:13:35:30</td>
</tr>
<tr>
<td>d-m-month-yyyyyhh:mm:ss</td>
<td>02-july-1999:13:35:30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd</td>
<td>day</td>
</tr>
<tr>
<td>hh</td>
<td>hour (24-hour clock)</td>
</tr>
<tr>
<td>mm</td>
<td>minutes</td>
</tr>
<tr>
<td>ss</td>
<td>seconds</td>
</tr>
<tr>
<td>yy</td>
<td>year within century (0-68 is 2000 to 2068; 69-99 is 1969 to 1999)</td>
</tr>
<tr>
<td>yyyy</td>
<td>year including century</td>
</tr>
<tr>
<td>month</td>
<td>locale’s full or abbreviated month name</td>
</tr>
<tr>
<td>ldate</td>
<td>locale’s appropriate date representation</td>
</tr>
<tr>
<td>ltime</td>
<td>locale’s appropriate time representation</td>
</tr>
</tbody>
</table>

The following time duration formats can be used for the \(-l\) lifetime, \(-x\) renewable_life, and \(-s\) start_time options. The examples are based on the time duration of 14 days, 7 hours, 5 minutes, and 30 seconds.

<table>
<thead>
<tr>
<th>Time Duration Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>#d</td>
<td>14d</td>
</tr>
</tbody>
</table>
### Time Duration Format Example

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>#h</td>
<td>7h</td>
</tr>
<tr>
<td>#m</td>
<td>5m</td>
</tr>
<tr>
<td>#s</td>
<td>30s</td>
</tr>
<tr>
<td>#d#h#m#s</td>
<td>14d7h5m30s</td>
</tr>
<tr>
<td>#h#m[#s]</td>
<td>7h5m30s</td>
</tr>
<tr>
<td>days-hh:mm:ss</td>
<td>14-07:05:30</td>
</tr>
<tr>
<td>hours:mm[ss]</td>
<td>7:05:30</td>
</tr>
</tbody>
</table>

### Delimiter Description

<table>
<thead>
<tr>
<th>Delimiter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>number of days</td>
</tr>
<tr>
<td>h</td>
<td>number of hours</td>
</tr>
<tr>
<td>m</td>
<td>number of minutes</td>
</tr>
<tr>
<td>s</td>
<td>number of seconds</td>
</tr>
</tbody>
</table>

### Variable Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>number</td>
</tr>
<tr>
<td>days</td>
<td>number of days</td>
</tr>
<tr>
<td>hours</td>
<td>number of hours</td>
</tr>
<tr>
<td>hh</td>
<td>hour (24-hour clock)</td>
</tr>
<tr>
<td>mm</td>
<td>minutes</td>
</tr>
<tr>
<td>ss</td>
<td>seconds</td>
</tr>
</tbody>
</table>

### Environment Variables

- **KRB5CCNAME**
  - Location of the credentials (ticket) cache.

- **FILES**
  - `/tmp/krb5cc_uid`
    - Default credentials cache (**uid** is the decimal UID of the user).
  - `/etc/krb5/krb5.keytab`
    - Default location for the local host’s keytab file.
  - `/etc/krb5/krb5.conf`
    - Default location for the local host’s configuration file. See `krb5.conf(4)`.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkrbu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

kdestroy(1), klist(1), kadmin(1M), kdc.conf(4), krb5.conf(4), attributes(5), SEAM(5)

AUTHORS

Steve Miller, MIT Project Athena/Digital Equipment Corporation; Clifford Neuman, MIT Project Athena
**NAME**
klist – list currently held Kerberos tickets

**SYNOPSIS**

```
/usr/bin/klist [-e] [[-c] [-f] [-s] [-a [-n]] [cache_name]] [-k
[-t] [-K] [keytab_file]]
```

**DESCRIPTION**

The `klist` utility prints the name of the credentials cache, the identity of the principal that the tickets are for (as listed in the ticket file), and the principal names of all Kerberos tickets currently held by the user, along with the issue and expiration time for each authenticator. Principal names are listed in the form `name/instance@realm`, with the ‘/’ omitted if the instance is not included, and the ‘@’ omitted if the realm is not included.

If `cache_file` or `keytab_name` is not specified, `klist` will display the credentials in the default credentials cache or keytab files as appropriate. By default, your ticket will be stored in the file `/tmp/krb5cc_uid`, where `uid` is the current user-ID of the user.

**OPTIONS**

The following options are supported:

- `-a` Displays list of addresses in credentials. Uses the configured nameservice to translate numeric network addresses to the associated hostname if possible.

- `-c [cache_name]` Lists tickets held in a credentials cache. This is the default if neither `-c` nor `-k` is specified.

- `-e` Displays the encryption types of the session key and the ticket for each credential in the credential cache, or each key in the keytab file.

- `-f` Shows the flags present in the credentials, using the following abbreviations:

  - `F` Forwardable
  - `f` Forwarded
  - `P` Proxiable
  - `p` Proxy
  - `D` Postdated
  - `d` Postdated
  - `R` Renewable
  - `I` Initial
  - `i` Invalid

- `-k [keytab_file]` List keys held in a keytab file.

- `-K` Displays the value of the encryption key in each keytab entry in the keytab file.
Shows numeric IP addresses instead of reverse-resolving addresses. Only valid with -a option.

-s
Causes klist to run silently (produce no output), but to still set the exit status according to whether it finds the credentials cache. The exit status is ‘0’ if klist finds a credentials cache, and ‘1’ if it does not.

-t
Displays the time entry timestamps for each keytab entry in the keytab file.

ENVIRONMENT VARIABLES
klist uses the following environment variable:

KRB5CCNAME Location of the credentials (ticket) cache.

FILES
/tmp/krb5cc_uid Default credentials cache (uid is the decimal UID of the user).
/etc/krb5/krb5.keytab Default location for the local host’s keytab file.
/etc/krb5/krb5.conf Default location for the local host’s configuration file. See krb5.conf(4).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkrbu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td></td>
</tr>
<tr>
<td>Command arguments</td>
<td>Evolving</td>
</tr>
<tr>
<td>Command output</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO
kdestroy(1), kinit(1), krb5.conf(4), attributes(5), SEAM(5)

BUGS
When reading a file as a service key file, very little error checking is performed.
The `kpasswd` command is used to change a Kerberos principal’s password. `kpasswd` prompts for the current Kerberos password, which is used to obtain a `changepw` ticket from the KDC for the user’s Kerberos realm. If `kpasswd` successfully obtains the `changepw` ticket, the user is prompted twice for the new password, and the password is changed.

If the principal is governed by a policy that specifies the length and/or number of character classes required in the new password, the new password must conform to the policy. (The five character classes are lower case, upper case, numbers, punctuation, and all other characters.)

The following operand is supported:

`principal`

Change the password for the Kerberos principal `principal`. Otherwise, the principal is derived from the identity of the user invoking the `kpasswd` command.

Temporary credentials cache for the lifetime of the password changing operation. (`xxxxxx` is a random string.)

See also `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkrbu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

If `kpasswd` is suspended, the `changepw` tickets may not be destroyed.
ksh(1)

NAME
ksh, rksh – KornShell, a standard/restricted command and programming language

SYNOPSIS
/usr/bin/ksh [ ± abCefhikmnoprstuvx] [ ± o option...] [arg...]

/usr/bin/ksh -c [ ± abCefhikmnoprstuvx] [ ± o option...] command_string
[command_name [ arg...]]

/usr/xpg4/bin/sh [ ± abCefhikmnoprstuvx] [ ± o option...] [arg...]

/usr/xpg4/bin/sh -c [ ± abCefhikmnoprstuvx] [ ± o option...] command_string [command_name [ arg...]]

/usr/bin/rksh [ ± abCefhikmnoprstuvx] [ ± o option...] [arg...]

/usr/bin/rksh -c [ ± abCefhikmnoprstuvx] [ ± o option...] command_string [command_name [ arg...]]

DESCRIPTION
The /usr/xpg4/bin/sh utility is a standards compliant shell. This utility provides all the functionality of /usr/bin/ksh, except in cases discussed below where differences in behavior exist. See Arithmetic Expansions section for details.

/usr/bin/ksh is a command and programming language that executes commands read from a terminal or a file. rksh is a restricted version of the command interpreter ksh; it is used to set up login names and execution environments whose capabilities are more controlled than those of the standard shell. See Invocation below for the meaning of arguments to the shell.

Definitions
A metacharacter is one of the following characters:

; & ( ) < > NEWLINE SPACE TAB

A blank is a TAB or a SPACE. An identifier is a sequence of letters, digits, or underscores starting with a letter or underscore. Identifiers are used as names for functions and variables. A word is a sequence of characters separated by one or more non-quoted metacharacters.

A command is a sequence of characters in the syntax of the shell language. The shell reads each command and carries out the desired action either directly or by invoking separate utilities. A special-command is a command that is carried out by the shell without creating a separate process. Except for documented side effects, most special commands can be implemented as separate utilities.

Commands
A simple-command is a sequence of blank-separated words which may be preceded by a variable assignment list. (See Environment below.) The first word specifies the name of the command to be executed. Except as specified below, the remaining words are passed as arguments to the invoked command. The command name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit status if it terminates normally. If it terminates abnormally due to receipt of a signal, the value is the signal number plus 128. See signal(3HEAD) for a list of signal values. Obviously, normal exit status values 129 to 255 cannot be distinguished from abnormal exit caused by receiving signal numbers 1 to 127.
A pipeline is a sequence of one or more commands separated by |. The standard output of each command but the last is connected by a pipe(2) to the standard input of the next command. Each command is run as a separate process; the shell waits for the last command to terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &&, or |, and optionally terminated by ;, &&, or |. Of these five symbols, ;, &&, and | have equal precedence, which is lower than that of && and |. The symbols && and | also have equal precedence. A semicolon (;) causes sequential execution of the preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (that is, the shell does not wait for that pipeline to finish). The symbol | causes asynchronous execution of the preceding command or pipeline with a two-way pipe established to the parent shell.

The standard input and output of the spawned command can be written to and read from by the parent shell using the -p option of the special commands read and print described in Special Commands. The symbol && (||) causes the list following it to be executed only if the preceding pipeline returns 0 (or a non-zero) value. An arbitrary number of new-lines may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following. Unless otherwise stated, the value returned by a command is that of the last simple-command executed in the command.

for identifier [ in word ... ] ; do list ; done

Each time a for command is executed, identifier is set to the next word taken from the in word list. If in word ... is omitted, then the for command executes the do list once for each positional parameter that is set (see Parameter Substitution below). Execution ends when there are no more words in the list.

select identifier [ in word ... ] ; do list ; done

A select command prints to standard error (file descriptor 2), the set of words, each preceded by a number. If in word ... is omitted, then the positional parameters are used instead (see Parameter Substitution below). The PS3 prompt is printed and a line is read from the standard input. If this line consists of the number of one of the listed words, then the value of the variable identifier is set to the word corresponding to this number. If this line is empty the selection list is printed again. Otherwise the value of the variable identifier is set to NULL. (See Blank Interpretation about NULL). The contents of the line read from standard input are saved in the shell variable REPLY. The list is executed for each selection until a break or EOF is encountered. If the REPLY variable is set to NULL by the execution of list, then the selection list is printed before displaying the PS3 prompt for the next selection.

case word in [ pattern [ | pattern ] ] list ; ; ] ... esac

A case command executes the list associated with the first pattern that matches word. The form of the patterns is the same as that used for file-name generation (see File Name Generation below).
if list ; then list ; [ elif list ; then list ; ... ] [ else list ; ] fi

The list following if is executed and, if it returns an exit status of 0, the list following the first then is executed. Otherwise, the list following elif is executed and, if its value is 0, the list following the next then is executed. Failing that, the else list is executed. If no else list or then list is executed, then the if command returns 0 exit status.

while list ; do list ; done

until list ; do list ; done

A while command repeatedly executes the while list and, if the exit status of the last command in the list is 0, executes the do list; otherwise the loop terminates. If no commands in the do list are executed, then the while command returns 0 exit status. until may be used in place of while to negate the loop termination test.

(list)

Execute list in a separate environment. Notice that if two adjacent open parentheses are needed for nesting, a space must be inserted to avoid arithmetic evaluation as described below.

{list}

list is simply executed. Notice that, unlike the metacharacters ( and ), { and } are reserved words and must occur at the beginning of a line or after a ; in order to be recognized.

[[expression]]

Evaluates expression and returns 0 exit status when expression is true. See Conditional Expressions below, for a description of expression.

function identifier { list ; }

identifier( ) { list ; }

Define a function which is referenced by identifier. The body of the function is the list of commands between { and }. (See Functions below).

time pipeline

The pipeline is executed and the elapsed time as well as the user and system time are printed to standard error.

The following reserved words are only recognized as the first word of a command and when not quoted:

! if then else elif fi case esac for while until do done { }
function select time [[ ]]

Comments

A word beginning with # causes that word and all the following characters up to a new-line to be ignored.

Aliasing

The first word of each command is replaced by the text of an alias if an alias for this word has been defined. An alias name consists of any number of characters excluding metacharacters, quoting characters, file expansion characters, parameter and command substitution characters, and =. The replacement string can contain any valid shell script including the metacharacters listed above. The first word of each command
in the replaced text, other than any that are in the process of being replaced, will be tested for aliases. If the last character of the alias value is a blank then the word following the alias will also be checked for alias substitution. Aliases can be used to redefine special builtin commands but cannot be used to redefine the reserved words listed above. Aliases can be created, listed, and exported with the alias command and can be removed with the unalias command. Exported aliases remain in effect for scripts invoked by name, but must be reinitialized for separate invocations of the shell (see Invocation below). To prevent infinite loops in recursive aliasing, if the shell is not currently processing an alias of the same name, the word will be replaced by the value of the alias; otherwise, it will not be replaced.

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias to take effect, the alias definition command has to be executed before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the aliasing facility allows the value of the alias to be automatically set to the full pathname of the corresponding command. These aliases are called tracked aliases. The value of a tracked alias is defined the first time the corresponding command is looked up and becomes undefined each time the PATH variable is reset. These aliases remain tracked so that the next subsequent reference will redefine the value. Several tracked aliases are compiled into the shell. The -h option of the set command makes each referenced command name into a tracked alias.

The following exported aliases are compiled into (and built-in to) the shell but can be unset or redefined:

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -l'
integer='typeset -i'
nohup='nohup '
r='fc -e '
true=';'
type='whence -v'

An example concerning trailing blank characters and reserved words follows. If the user types:

$ alias foo="/bin/ls "
$ alias while="/"

the effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of Hello, World strings to the screen. However, if the user types:
$ foo while

the result will be an ls listing of /. Since the alias substitution for foo ends in a space character, the next word is checked for alias substitution. The next word, while, has also been aliased, so it is substituted as well. Since it is not in the proper position as a command word, it is not recognized as a reserved word.

If the user types:

$ foo; while

while retains its normal reserved-word properties.

**Tilde Substitution**

After alias substitution is performed, each word is checked to see if it begins with an unquoted ~. If it does, then the word up to a / is checked to see if it matches a user name. If a match is found, the – and the matched login name are replaced by the login directory of the matched user. This is called a *tilde* substitution. If no match is found, the original text is left unchanged. A – by itself, or in front of a /, is replaced by $HOME. A – followed by a + or – is replaced by $PWD and $OLDPWD, respectively.

In addition, *tilde* substitution is attempted when the value of a variable assignment begins with a –.

**Tilde Expansion**

A *tilde-prefix* consists of an unquoted tilde character at the beginning of a word, followed by all of the characters preceding the first unquoted slash in the word, or all the characters in the word if there is no slash. In an assignment, multiple tilde-prefixes can be used: at the beginning of the word (that is, following the equal sign of the assignment), following any unquoted colon or both. A tilde-prefix in an assignment is terminated by the first unquoted colon or slash. If none of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated as a possible login name from the user database.

A portable login name cannot contain characters outside the set given in the description of the LOGNAME environment variable. If the login name is null (that is, the tilde-prefix contains only the tilde), the tilde-prefix will be replaced by the value of the variable HOME. If HOME is unset, the results are unspecified. Otherwise, the tilde-prefix will be replaced by a pathname of the home directory associated with the login name obtained using the getpwnam function. If the system does not recognize the login name, the results are undefined.

Tilde expansion generally occurs only at the beginning of words, but an exception based on historical practice has been included:

```
PATH=/posix/bin:~dgk/bin
```

is eligible for tilde expansion because tilde follows a colon and none of the relevant characters is quoted. Consideration was given to prohibiting this behavior because any of the following are reasonable substitutes:

```
PATH=($printf %s ~karels/bin : ~bostic/bin)
for Dir in ~maart/bin ~srb/bin .
do
```
PATH=${PATH:+$PATH:}$Dir
done

With the first command, explicit colons are used for each directory. In all cases, the shell performs tilde expansion on each directory because all are separate words to the shell.

Notice that expressions in operands such as:

```
make -k mumble LIBDIR=~chet/lib
```

do not qualify as shell variable assignments and tilde expansion is not performed (unless the command does so itself, which make does not).

The special sequence `~` has been designated for future implementations to evaluate as a means of forcing tilde expansion in any word.

Because of the requirement that the word not be quoted, the following are not equivalent; only the last will cause tilde expansion:

```
~hlj/ ~hlj/ ~“hlj”/ ~hlj\/ ~hlj/
```

The results of giving tilde with an unknown login name are undefined because the KornShell `~` and `~` constructs make use of this condition, but, in general it is an error to give an incorrect login name with tilde. The results of having `HOME` unset are unspecified because some historical shells treat this as an error.

The standard output from a `command` enclosed in parenthesis preceded by a dollar sign (that is, `$(command)`) or a pair of grave accents (`' `) may be used as part or all of a word. Trailing new-lines are removed. In the second (archaic) form, the string between the quotes is processed for special quoting characters before the command is executed. (See Quoting below.) The command substitution `$(cat file)` can be replaced by the equivalent but faster `$(<file)`. Command substitution of most special commands that do not perform input/output redirection are carried out without creating a separate process.

Command substitution allows the output of a command to be substituted in place of the command name itself. Command substitution occurs when the command is enclosed as follows:

```
$(command)
```

or (backquoted version):

```
'command'
```

The shell will expand the command substitution by executing `command` in a subshell environment and replacing the command substitution (the text of `command` plus the enclosing `$()` or backquotes) with the standard output of the command, removing sequences of one or more newline characters at the end of the substitution. Embedded
newline characters before the end of the output will not be removed; however, they may be treated as field delimiters and eliminated during field splitting, depending on the value of IFS and quoting that is in effect.

Within the backquoted style of command substitution, backslash shall retain its literal meaning, except when followed by:

```
\$
```

(dollar-sign, backquote, backslash). The search for the matching backquote is satisfied by the first backquote found without a preceding backslash. During this search, if a non-escaped backquote is encountered within a shell comment, a here-document, an embedded command substitution of the $(command) form, or a quoted string, undefined results occur. A single- or double-quoted string that begins, but does not end, within the ‘. . .’ sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the matching closing parenthesis constitute the command. Any valid shell script can be used for command, except:

- A script consisting solely of redirections produces unspecified results.
- See the restriction on single subshells described below.

The results of command substitution will not be field splitting and pathname expansion processed for further tilde expansion, parameter expansion, command substitution or arithmetic expansion. If a command substitution occurs inside double-quotes, it will not be performed on the results of the substitution.

Command substitution can be nested. To specify nesting within the backquoted version, the application must precede the inner backquotes with backslashes; for example:

```
\`
```

The $(command) form of command substitution solves a problem of inconsistent behavior when using backquotes. For example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo <code>\$x</code></td>
<td>$x</td>
</tr>
<tr>
<td>echo <code>echo </code>$x``</td>
<td>$x</td>
</tr>
<tr>
<td>echo $(echo <code>\$x</code>)</td>
<td>$x</td>
</tr>
</tbody>
</table>

Additionally, the backquoted syntax has historical restrictions on the contents of the embedded command. While the new $(command) form can process any kind of valid embedded script, the backquoted form cannot handle some valid scripts that include backquotes. For example, these otherwise valid embedded scripts do not work in the left column, but do work on the right:
Because of these inconsistent behaviors, the backquoted variety of command substitution is not recommended for new applications that nest command substitutions or attempt to embed complex scripts.

If the command substitution consists of a single subshell, such as:

\$ ( (command) )

a portable application must separate the $ and ( into two tokens (that is, separate them with white space). This is required to avoid any ambiguities with arithmetic expansion.

An arithmetic expression enclosed in double parentheses preceded by a dollar sign ( $((arithmetic-expression)) ) is replaced by the value of the arithmetic expression within the double parenthesis. Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and substituting its value. The format for arithmetic expansion is as follows:

$((expression))

The expression is treated as if it were in double-quotes, except that a double-quote inside the expression is not treated specially. The shell will expand all tokens in the expression for parameter expansion, command substitution and quote removal.

Next, the shell will treat this as an arithmetic expression and substitute the value of the expression. The arithmetic expression will be processed according to the rules of the ISO C with the following exceptions:

- Only integer arithmetic is required.
- The sizeof() operator and the prefix and postfix ++ and -- operators are not required.
Selection, iteration, and jump statements are not supported.

/usr/bin/ksh and /usr/bin/rksh treat prefix 0 through 9 as decimal constants. See the examples below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Result in /bin/ksh</th>
<th>Result in /usr/xpg4/bin/sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo $((019+10))</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>echo $((010+10))</td>
<td>29</td>
<td>error</td>
</tr>
<tr>
<td>[ 10 -le $((011)) ]</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

As an extension, the shell may recognize arithmetic expressions beyond those listed. If the expression is invalid, the expansion will fail and the shell will write a message to standard error indicating the failure.

A simple example using arithmetic expansion:

```bash
repeat a command 100 times
x=100
while [$x -gt 0]
do
 command
 x=$((x-1))
done
```

This feature is available in SunOS and only on versions of the UNIX operating system that support the /dev/fd directory for naming open files. Each command argument of the form `<(list)` or `>(list)` will run process list asynchronously connected to some file in /dev/fd. The name of this file will become the argument to the command. If the form with `>` is selected, then writing on this file will provide input for list. If `<` is used, then the file passed as an argument will contain the output of the list process. For example:

```
paste <(cut -f1 file1) <(cut -f3 file2) | tee >(process1) >(process2)
```

cuts fields 1 and 3 from the files file1 and file2, respectively, pastes the results together, and sends it to the processes process1 and process2, as well as putting it onto the standard output. Notice that the file, which is passed as an argument to the command, is a UNIX pipe(2) so programs that expect to lseek(2) on the file will not work.

A parameter is an identifier, one or more digits, or any of the characters `*`, `@`, `#`, `?`, `−`, `$`, and `!`. A variable (a parameter denoted by an identifier) has a value and zero or more attributes. Variables can be assigned values and attributes by using the typeset special command. The attributes supported by the shell are described later with the typeset special command. Exported variables pass values and attributes to the environment.
The shell supports a one-dimensional array facility. An element of an array variable is referenced by a subscript. A subscript is denoted by a [, followed by an arithmetic expression (see Arithmetic Evaluation below) followed by a ]. To assign values to an array, use set -A name value ... The value of all subscripts must be in the range of 0 through 4095. Arrays need not be declared. Any reference to a variable with a valid subscript is legal and an array will be created if necessary. Referencing an array without a subscript is equivalent to referencing the element 0. If an array identifier with subscript * or @ is used, then the value for each of the elements is substituted (separated by a field separator character).

The value of a variable may be assigned by writing:

name=value [ name=value ] ...

If the integer attribute, -i, is set for name, the value is subject to arithmetic evaluation as described below.

Positional parameters, parameters denoted by a number, may be assigned values with the set special command. Parameter $0 is set from argument zero when the shell is invoked. If parameter is one or more digits then it is a positional parameter. A positional parameter of more than one digit must be enclosed in braces.

The format for parameter expansion is as follows:

$\{expression\}

where expression consists of all characters until the matching }. Any } escaped by a backslash or within a quoted string, and characters in embedded arithmetic expansions, command substitutions and variable expansions, are not examined in determining the matching }.

The simplest form for parameter expansion is:

$\{parameter\}

The value, if any, of parameter will be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for positional parameters with more than one digit or when parameter is followed by a character that could be interpreted as part of the name. The matching closing brace will be determined by counting brace levels, skipping over enclosed quoted strings and command substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion will use the longest valid name whether or not the symbol represented by that name exists. When the shell is scanning its input to determine the boundaries of a name, it is not bound by its knowledge of what names are already defined. For example, if F is a defined shell variable, the command:

echo $Fred
does not echo the value of $F followed by red; it selects the longest possible valid
name, Fred, which in this case might be unset.

If a parameter expansion occurs inside double-quotes:
- Pathname expansion will not be performed on the results of the expansion.
- Field splitting will not be performed on the results of the expansion, with the
  exception of @.

In addition, a parameter expansion can be modified by using one of the following
formats. In each case that a value of word is needed (based on the state of parameter, as
described below), word will be subjected to tilde expansion, parameter expansion,
command substitution and arithmetic expansion. If word is not needed, it will not be
expanded. The } character that delimits the following parameter expansion
modifications is determined as described previously in this section and in dquote.
(For example, ${foo-bar}xyz} would result in the expansion of foo followed by
the string xyz} if foo is set, else the string barxyz}).

$\{parameter:-word\} Use Default Values. If parameter is unset or null,
the expansion of word will be substituted; otherwise, the value of parameter will be substituted.

$\{parameter:=word\} Assign Default Values. If parameter is unset or
null, the expansion of word will be assigned to parameter. In all cases, the final value of parameter will
be substituted. Only variables, not positional
parameters or special parameters, can be assigned in
this way.

$\{parameter:?[word]\} Indicate Error if Null or Unset. If parameter
is unset or null, the expansion of word (or a message
indicating it is unset if word is omitted) will be written
to standard error and the shell will exit with a non-zero
exit status. Otherwise, the value of parameter will be
substituted. An interactive shell need not exit.

$\{parameter:+[word]\} Use Alternative Value. If parameter is unset or
null, null will be substituted. Otherwise, the
expansion of word will be substituted.

In the parameter expansions shown previously, use of the colon in the format results
in a test for a parameter that is unset or null. Omission of the colon results in a test
for a parameter that is only unset. The following two tables summarize the effect of
the colon:

<table>
<thead>
<tr>
<th>parameter set and not null</th>
<th>parameter set and null</th>
</tr>
</thead>
<tbody>
<tr>
<td>${parameter:-word}</td>
<td>substitute parameter</td>
</tr>
</tbody>
</table>

User Commands 601
### Parameter Expansion

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>${parameter-word}</code></td>
<td>substitute parameter</td>
</tr>
<tr>
<td><code>${parameter:=word}</code></td>
<td>substitute parameter assign word</td>
</tr>
<tr>
<td><code>${parameter=word}</code></td>
<td>substitute parameter substitute parameter</td>
</tr>
<tr>
<td><code>${parameter:?word}</code></td>
<td>substitute parameter error, exit</td>
</tr>
<tr>
<td><code>${parameter?word}</code></td>
<td>substitute parameter substitute null</td>
</tr>
<tr>
<td><code>${parameter:+word}</code></td>
<td>substitute word substitute null</td>
</tr>
<tr>
<td><code>${parameter+word}</code></td>
<td>substitute word substitute word</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>${parameter-:word}</code></td>
<td>substitute word</td>
</tr>
<tr>
<td><code>${parameter-word}</code></td>
<td>substitute word</td>
</tr>
<tr>
<td><code>${parameter:=word}</code></td>
<td>assign word</td>
</tr>
<tr>
<td><code>${parameter=word}</code></td>
<td>assign null</td>
</tr>
<tr>
<td><code>${parameter:?word}</code></td>
<td>error, exit</td>
</tr>
<tr>
<td><code>${parameter?word}</code></td>
<td>error, exit</td>
</tr>
<tr>
<td><code>${parameter:+word}</code></td>
<td>substitute null</td>
</tr>
<tr>
<td><code>${parameter+word}</code></td>
<td>substitute null</td>
</tr>
</tbody>
</table>

In all cases shown with “substitute”, the expression is replaced with the value shown. In all cases shown with “assign”, `parameter` is assigned that value, which also replaces the expression.

**String Length**

The length in characters of the value of `parameter`. If `parameter` is `*` or `@`, then all the positional parameters, starting with `$1`, are substituted (separated by a field separator character).

The following four varieties of parameter expansion provide for substring processing. In each case, pattern matching notation (see `patmat`), rather than regular expression notation, will be used to evaluate the patterns. If `parameter` is `*` or `@`, then all the positional parameters, starting with `$1`, are substituted (separated by a field separator character). Enclosing the full parameter expansion string in double-quotes will not cause the following four varieties of pattern characters to be quoted, whereas quoting characters within the braces will have this effect.

**Remove Smallest Suffix Pattern**

The `word` will be expanded to produce a pattern. The parameter
expansion then will result in \textit{parameter}, with the smallest portion of the suffix matched by the \textit{pattern} deleted.

\texttt{$\{\text{parameter}%%\text{word}\}$} Remove Largest Suffix Pattern. The \textit{word} will be expanded to produce a pattern. The parameter expansion then will result in \textit{parameter}, with the largest portion of the suffix matched by the \textit{pattern} deleted.

\texttt{$\{\text{parameter}\#\text{word}\}$} Remove Smallest Prefix Pattern. The \textit{word} will be expanded to produce a pattern. The parameter expansion then will result in \textit{parameter}, with the smallest portion of the prefix matched by the \textit{pattern} deleted.

\texttt{$\{\text{parameter}\#\#\text{word}\}$} Remove Largest Prefix Pattern. The \textit{word} will be expanded to produce a pattern. The parameter expansion then will result in \textit{parameter}, with the largest portion of the prefix matched by the \textit{pattern} deleted.

**Examples:**

\texttt{$\{\text{parameter}:-\text{word}\}$}

In this example, \texttt{ls} is executed only if \texttt{x} is null or unset. (The \texttt{$(ls)$} command substitution notation is explained in Command Substitution above.)

\texttt{$\{x:=$(ls)\}$}

\texttt{$\{\text{parameter}:=\text{word}\}$}

unset \texttt{X}
\texttt{echo $\{X:=abc\}$}
\texttt{abc}

\texttt{$\{\text{parameter}?:\text{word}\}$}

unset \texttt{posix}
\texttt{echo $\{posix:?\}$}
\texttt{sh: posix: parameter null or not set}

\texttt{$\{\text{parameter}:+\text{word}\}$}

set \texttt{a b c}
\texttt{echo $\{3:+posix\}$}
\texttt{posix}

\texttt{$\{\#\text{parameter}\}$}

\texttt{HOME=/usr/posix}
\texttt{echo $\{\#HOME\}$}
\texttt{10}

\texttt{$\{\text{parameter}%=\text{word}\}$}
x=file.c
echo ${x%.c}.o
file.o

${parameter%%/word}
x=posix/src/std
echo ${x%%/*}
posix

${parameter#word}
x=${HOME}/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}
x=/one/two/three
echo ${x##*/}
three

Parameters Set by Shell

The following parameters are automatically set by the shell:

# The number of positional parameters in decimal.
– Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last executed command.
$ The process number of this shell.
– Initially, the value of _ is an absolute pathname of the shell or
script being executed as passed in the environment. Subsequently it
is assigned the last argument of the previous command. This
parameter is not set for commands which are asynchronous. This
parameter is also used to hold the name of the matching MAIL file
when checking for mail.
! The process number of the last background command invoked.

ERRNO The value of errno as set by the most recently failed system call.
This value is system dependent and is intended for debugging
purposes.

LINENO The line number of the current line within the script or function
being executed.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last option argument processed by the getopt special command.

OPTIND The index of the last option argument processed by the getopt special command.

PPID The process number of the parent of the shell.
### Variables Used by Shell

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PWD</strong></td>
<td>The present working directory set by the <code>cd</code> command.</td>
</tr>
<tr>
<td><strong>RANDOM</strong></td>
<td>Each time this variable is referenced, a random integer, uniformly distributed between 0 and 32767, is generated. The sequence of random numbers can be initialized by assigning a numeric value to <strong>RANDOM</strong>.</td>
</tr>
<tr>
<td><strong>REPLY</strong></td>
<td>This variable is set by the <code>select</code> statement and by the <code>read</code> special command when no arguments are supplied.</td>
</tr>
<tr>
<td><strong>SECONDS</strong></td>
<td>Each time this variable is referenced, the number of seconds since shell invocation is returned. If this variable is assigned a value, then the value returned upon reference will be the value that was assigned plus the number of seconds since the assignment.</td>
</tr>
</tbody>
</table>

The following variables are used by the shell:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CDPATH</strong></td>
<td>The search path for the <code>cd</code> command.</td>
</tr>
<tr>
<td><strong>COLUMNS</strong></td>
<td>If this variable is set, the value is used to define the width of the edit window for the shell edit modes and for printing <code>select</code> lists.</td>
</tr>
<tr>
<td><strong>EDITOR</strong></td>
<td>If the value of this variable ends in <code>emacs</code>, <code>gemacs</code>, or <code>vi</code> and the <strong>VISUAL</strong> variable is not set, then the corresponding option (see the <code>set</code> special command below) will be turned on.</td>
</tr>
<tr>
<td><strong>ENV</strong></td>
<td>This variable, when the shell is invoked, is subjected to parameter expansion by the shell and the resulting value is used as a pathname of a file containing shell commands to execute in the current environment. The file need not be executable. If the expanded value of <strong>ENV</strong> is not an absolute pathname, the results are unspecified. <strong>ENV</strong> will be ignored if the user's real and effective user IDs or real and effective group IDs are different. This variable can be used to set aliases and other items local to the invocation of a shell. The file referred to by <strong>ENV</strong> differs from <code>$HOME/.profile</code> in that <code>.profile</code> is typically executed at session startup, whereas the <strong>ENV</strong> file is executed at the beginning of each shell invocation. The <strong>ENV</strong> value is interpreted in a manner similar to a dot script, in that the commands are executed in the current environment and the file needs to be readable, but not executable. However, unlike dot scripts, no <strong>PATH</strong> searching is performed. This is used as a guard against Trojan Horse security breaches.</td>
</tr>
<tr>
<td><strong>FCEDIT</strong></td>
<td>The default editor name for the <code>fc</code> command.</td>
</tr>
</tbody>
</table>
| **FPATH** | The search path for function definitions. By default, the **FPATH** directories are searched after the **PATH** variable. If an executable file is found, then it is read and executed in the current environment. **FPATH** is searched before **PATH** when a function
with the \texttt{-u} attribute is referenced. The preset alias \texttt{autoload}
causes a function with the \texttt{-u} attribute to be created.

**HISTFILE**
If this variable is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command
history. (See \texttt{Command re-entry below}.)

**HISTSIZE**
If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will
be greater than or equal to this number. The default is 128.

**HOME**
The default argument (home directory) for the \texttt{cd} command.

**IFS**
Internal field separators, normally \texttt{space}, \texttt{tab}, and \texttt{new-line}
that are used to separate command words which result from
command or parameter substitution and for separating words
with the special command \texttt{read}. The first character of the \texttt{IFS}
variable is used to separate arguments for the \texttt{$*} substitution (See
\texttt{Quoting below}).

**LANG**
Provide a default value for the internationalization variables that
are unset or null. If any of the internationalization variables
contains an invalid setting, the utility will behave as if none of the
variables had been defined.

**LC_ALL**
This variable provides a default value for the \texttt{LC_*} variables.

**LC_COLLATE**
This variable determines the behavior of range expressions,
equivalence classes and multi-byte character collating elements
within pattern matching.

**LC_CTYPE**
Determines how the shell handles characters. When \texttt{LC_CTYPE}
is set to a valid value, the shell can display and handle text and
filenames containing valid characters for that locale. If \texttt{LC_CTYPE}
(see \texttt{environ(5)}) is not set in the environment, the operational
behavior of the shell is determined by the value of the \texttt{LANG}
environment variable. If \texttt{LC_ALL} is set, its contents are used to
override both the \texttt{LANG} and the other \texttt{LC_*} variables.

**LC_MESSAGES**
This variable determines the language in which messages should
be written.

**LINENO**
This variable is set by the shell to a decimal number representing
the current sequential line number (numbered starting with 1)
within a script or function before it executes each command. If the
user unsets or resets \texttt{LINENO}, the variable may lose its special
meaning for the life of the shell. If the shell is not currently
executing a script or function, the value of \texttt{LINENO} is unspecified.

**LINES**
If this variable is set, the value is used to determine the column
length for printing \texttt{select} lists. Select lists will print vertically
until about two-thirds of \texttt{LINES} lines are filled.
**MAIL**

If this variable is set to the name of a mail file and the MAILPATH variable is not set, then the shell informs the user of arrival of mail in the specified file.

**MAILCHECK**

This variable specifies how often (in seconds) the shell will check for changes in the modification time of any of the files specified by the MAILPATH or MAIL variables. The default value is 600 seconds. When the time has elapsed the shell will check before issuing the next prompt.

**MAILPATH**

A colon (:) separated list of file names. If this variable is set, then the shell informs the user of any modifications to the specified files that have occurred within the last MAILCHECK seconds. Each file name can be followed by a ? and a message that will be printed. The message will undergo parameter substitution with the variable $_ defined as the name of the file that has changed. The default message is you have mail in $_.

**NLSPATH**

Determine the location of message catalogues for the processing of LC_MESSAGES.

**PATH**

The search path for commands (see Execution below). The user may not change PATH if executing under rksh (except in .profile).

**PPID**

This variable is set by the shell to the decimal process ID of the process that invoked the shell. In a subshell, PPID will be set to the same value as that of the parent of the current shell. For example, echo $PPID and (echo $PPID) would produce the same value.

**PS1**

The value of this variable is expanded for parameter substitution to define the primary prompt string which by default is "$ ". The character ! in the primary prompt string is replaced by the command number (see Command Re-entry below). Two successive occurrences of ! will produce a single ! when the prompt string is printed.

**PS2**

Secondary prompt string, by default “> “.

**PS3**

Selection prompt string used within a select loop, by default “#? “.

**PS4**

The value of this variable is expanded for parameter substitution and precedes each line of an execution trace. If omitted, the execution trace prompt is “+ “.

**SHELL**

The pathname of the shell is kept in the environment. At invocation, if the basename of this variable is rsh, rksh, or krsh, then the shell becomes restricted.

**TMOUT**

If set to a value greater than zero, the shell will terminate if a command is not entered within the prescribed number of seconds.
after issuing the \texttt{PS1} prompt. (Notice that the shell can be compiled with a maximum bound for this value which cannot be exceeded.)

\textbf{VISUAL} If the value of this variable ends in \texttt{emacs}, \texttt{gemacs}, or \texttt{vi}, then the corresponding option (see Special Command set below) will be turned on.

The shell gives default values to \texttt{PATH}, \texttt{PS1}, \texttt{PS2}, \texttt{PS3}, \texttt{PS4}, \texttt{MAILCHECK}, \texttt{FCEDIT}, \texttt{TMOUT}, and \texttt{IFS}, while \texttt{HOME}, \texttt{SHELL}, \texttt{ENV}, and \texttt{MAIL} are not set at all by the shell (although \texttt{HOME} \texttt{is} set by \texttt{login(1)}). On some systems \texttt{MAIL} and \texttt{SHELL} are also set by \texttt{login}.

After parameter and command substitution, the results of substitutions are scanned for the field separator characters (those found in \texttt{IFS}) and split into distinct arguments where such characters are found. Explicit null arguments (""") or ('') are retained. Implicit null arguments (those resulting from \texttt{parameters} that have no values) are removed.

Following substitution, each command \textit{word} is scanned for the characters \texttt{*}, \texttt{?}, and \texttt{[} unless the -f option has been set. If one of these characters appears, the word is regarded as a \textit{pattern}. The word is replaced with lexicographically sorted file names that match the pattern. If no file name is found that matches the pattern, the word is left unchanged. When a \textit{pattern} is used for file name generation, the character period (\texttt{.}) at the start of a file name or immediately following a /, as well as the character / itself, must be matched explicitly. A file name beginning with a period will not be matched with a pattern with the period inside parentheses. That is, \texttt{ls .@(.r*)} would locate a file named \texttt{.restore}, but \texttt{ls@(.r*)} would not. In other instances of pattern matching, the / and . are not treated specially.

\begin{itemize}
  \item \texttt{*} Matches any string, including the null string.
  \item \texttt{?} Matches any single character.
  \item \texttt{[\ldots]} Matches any one of the enclosed characters. A pair of characters separated by – matches any character lexically between the pair, inclusive. If the first character following the opening "[" is a ",", then any character not enclosed is matched. A – can be included in the character set by putting it as the first or last character.
\end{itemize}

A \textit{pattern-list} is a list of one or more patterns separated from each other with a \texttt{|}. Composite patterns can be formed with one or more of the following:

\begin{itemize}
  \item \texttt{? (pattern-list)} Optionally matches any one of the given patterns.
  \item \texttt{* (pattern-list)} Matches zero or more occurrences of the given patterns.
  \item \texttt{+ (pattern-list)} Matches one or more occurrences of the given patterns.
  \item \texttt{@ (pattern-list)} Matches exactly one of the given patterns.
\end{itemize}
Quoting

Each of the metacharacters listed above (see Definitions) has a special meaning to the shell and causes termination of a word unless quoted. A character may be quoted (that is, made to stand for itself) by preceding it with a \. The pair \ NEWLINE is removed. All characters enclosed between a pair of single quote marks ('') are quoted. A single quote cannot appear within single quotes. Inside double quote marks (""), parameter and command substitution occur and \ quotes the characters \, ', "', and $. The meaning of $* and $@ is identical when not quoted or when used as a parameter assignment value or as a file name. However, when used as a command argument, $* is equivalent to \'$1 $2 . . .', where $d is the first character of the IFS variable, whereas $@ is equivalent to $1 $2 . . . Inside grave quote marks (``), \ quotes the characters \, ', and $. If the grave quotes occur within double quotes, then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by quoting any character of the reserved word. The recognition of function names or special command names listed below cannot be altered by quoting them.

Arithmetic Evaluation

An ability to perform integer arithmetic is provided with the special command let. Evaluations are performed using long arithmetic. Constants are of the form [base#]n where base is a decimal number between two and thirty-six representing the arithmetic base and n is a number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expression as the C language. All the integral operators, other than ++, --, ?, :, and , are supported. Variables can be referenced by name within an arithmetic expression without using the parameter substitution syntax. When a variable is referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a variable can be specified with the -i option of the typeset special command. Arithmetic evaluation is performed on the value of each assignment to a variable with the -i attribute. If you do not specify an arithmetic base, the first assignment to the variable determines the arithmetic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let command is provided. For any command which begins with a ((, all the characters until a matching )) are treated as a quoted expression. More precisely, ((...)) is equivalent to let "...".

Prompting

When used interactively, the shell prompts with the parameter expanded value of PS1 before reading a command. If at any time a new-line is typed and further input is needed to complete a command, then the secondary prompt (that is, the value of PS2) is issued.
Conditional Expressions

A conditional expression is used with the `[]` compound command to test attributes of files and to compare strings. Word splitting and file name generation are not performed on the words between `[` and `]`. Each expression can be constructed from one or more of the following unary or binary expressions:

- `-a file` True, if file exists.
- `-b file` True, if file exists and is a block special file.
- `-c file` True, if file exists and is a character special file.
- `-d file` True, if file exists and is a directory.
- `-e file` True, if file exists.
- `-f file` True, if file exists and is an ordinary file.
- `-g file` True, if file exists and has its setgid bit set.
- `-k file` True, if file exists and has its sticky bit set.
- `-n string` True, if length of string is non-zero.
- `-o option` True, if option named option is on.
- `-p file` True, if file exists and is a fifo special file or a pipe.
- `-r file` True, if file exists and is readable by current process.
- `-s file` True, if file exists and has size greater than zero.
- `-t file.des` True, if file descriptor number file.des is open and associated with a terminal device.
- `-u file` True, if file exists and has its setuid bit set.
- `-w file` True, if file exists and is writable by current process.
- `-x file` True, if file exists and is executable by current process.
  If file exists and is a directory, then the current process has permission to search in the directory.
- `-z string` True, if length of string is zero.
- `-L file` True, if file exists and is a symbolic link.
- `-O file` True, if file exists and is owned by the effective user id of this process.
- `-G file` True, if file exists and its group matches the effective group id of this process.
- `-S file` True, if file exists and is a socket.

For the binary expressions:

- `file1 -nt file2` True, if file1 exists and is newer than file2.
- `file1 -ot file2` True, if file1 exists and is older than file2.
- `file1 -ef file2` True, if file1 and file2 exist and refer to the same file.
string

string = pattern

string != pattern

string1==string2

string1!=string2

string1 < string2

string1 > string2

exp1 -eq exp2

exp1 -ne exp2

exp1 -lt exp2

exp1 -gt exp2

exp1 -le exp2

exp1 -ge exp2

In each of the above expressions, if file is of the form /dev/fd/n, where n is an integer, then the test is applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the following, listed in decreasing order of precedence.

(expression)

! expression

expression1 && expression2

expression1 || expression2

Input/Output

Before a command is executed, its input and output may be redirected using a special notation interpreted by the shell. The following may appear anywhere in a simple-command or may precede or follow a command and are not passed on to the invoked command. Command and parameter substitution occur before word or digit is used except as noted below. File name generation occurs only if the pattern matches a single file, and blank interpretation is not performed.

<word

Use file word as standard input (file descriptor 0).
Use file \texttt{word} as standard output (file descriptor 1). If the file does not exist then it is created. If the file exists, and the \texttt{noclobber} option is on, this causes an error; otherwise, it is truncated to zero length.

Sames as $>$, except that it overrides the \texttt{noclobber} option.

Use file \texttt{word} as standard output. If the file exists, output is appended to it (by first seeking to the EOF). Otherwise, the file is created.

Open file \texttt{word} for reading and writing as standard input.

The shell input is read up to a line that is the same as \texttt{word}, or to an EOF. No parameter substitution, command substitution, or file name generation is performed on \texttt{word}. The resulting document, called a \textit{here-document}, becomes the standard input. If any character of \texttt{word} is quoted, no interpretation is placed upon the characters of the document. Otherwise, parameter and command substitution occur, \texttt{\\NEWLINE} is ignored, and \texttt{\} must be used to quote the characters \texttt{$'$}, \texttt{'}, \texttt{\}}, and the first character of \texttt{word}. If \texttt{−} is appended to $<$, then all leading tabs are stripped from \texttt{word} and from the document.

The standard input is duplicated from file descriptor \texttt{digit} (see \texttt{dup(2)}). Similarly for the standard output using $>$\texttt{digit}.

The standard input is closed. Similarly for the standard output using $>$\texttt{−}.

The input from the co-process is moved to standard input.

The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number referred to is that specified by the digit (instead of the default 0 or 1). For example:

\texttt{... 2>&1}

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection in terms of the (file descriptor, file) association at the time of evaluation. For example:
... 1>fname 2>&1

first associates file descriptor 1 with file \texttt{fname}. It then associates file descriptor 2 with the file associated with file descriptor 1 (that is, \texttt{fname}). If the order of redirections were reversed, file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be associated with file \texttt{fname}.

If a command is followed by \& and job control is not active, then the default standard input for the command is the empty file /dev/null. Otherwise, the environment for the execution of a command contains the file descriptors of the invoking shell as modified by input/output specifications.

### Environment

The \texttt{environment} (see \texttt{environ(5)}) is a list of name-value pairs that is passed to an executed program in the same way as a normal argument list. The names must be \texttt{identifiers} and the values are character strings. The shell interacts with the environment in several ways. On invocation, the shell scans the environment and creates a variable for each name found, giving it the corresponding value and marking it \texttt{export}.

Executed commands inherit the environment. If the user modifies the values of these variables or creates new ones, using the \texttt{export} or \texttt{typeset -x} commands, they become part of the environment. The environment seen by any executed command is thus composed of any name-value pairs originally inherited by the shell, whose values may be modified by the current shell, plus any additions which must be noted in \texttt{export} or \texttt{typeset -x} commands.

The environment for any \texttt{simple-command} or \texttt{function} may be augmented by prefixing it with one or more variable assignments. A variable assignment argument is a word of the form \texttt{identifier=value}. Thus:

\begin{verbatim}
TERM=450 cmd args
\end{verbatim}

and

\begin{verbatim}
(export TERM; TERM=450; cmd args)
\end{verbatim}

are equivalent (as far as the above execution of \texttt{cmd} is concerned, except for special commands listed below that are preceded with an asterisk).

If the -\texttt{k} flag is set, \texttt{all} variable assignment arguments are placed in the environment, even if they occur after the command name. The following first prints \texttt{a=b c} and then \texttt{c}:

\begin{verbatim}
echo a=b c
set -k echo
a=b c
\end{verbatim}

This feature is intended for use with scripts written for early versions of the shell and its use in new scripts is strongly discouraged. It is likely to disappear someday.
### Functions

The function reserved word, described in the Commands section above, is used to define shell functions. Shell functions are read in and stored internally. Alias names are resolved when the function is read. Functions are executed like commands with the arguments passed as positional parameters. (See Execution below.)

Functions execute in the same process as the caller and share all files and present working directory with the caller. Traps caught by the caller are reset to their default action inside the function. A trap condition that is not caught or ignored by the function causes the function to terminate and the condition to be passed on to the caller.

A trap on EXIT set inside a function is executed after the function completes in the environment of the caller. This is true only for non-POSIX-style functions, that is, functions declared as

```bash
function func
```

as opposed to POSIX-style functions, declared as

```bash
func()
```

Ordinarily, variables are shared between the calling program and the function. However, the `typeset` special command used within a function defines local variables whose scope includes the current function and all functions it calls.

The special command `return` is used to return from function calls. Errors within functions return control to the caller.

The names of all functions can be listed with `typeset+ƒ`. `typeset -ƒ` lists all function names as well as the text of all functions. `typeset -ƒ function-names` lists the text of the named functions only. Functions can be undefined with the `-ƒ` option of the `unset` special command.

Ordinarily, functions are `unset` when the shell executes a shell script. The `-xf` option of the `typeset` command allows a function to be exported to scripts that are executed without a separate invocation of the shell. Functions that need to be defined across separate invocations of the shell should be specified in the `ENV` file with the `-xf` option of `typeset`.

A function is a user-defined name that is used as a simple command to call a compound command with new positional parameters. A function is defined with a `function definition command`.

The format of a function definition command is as follows:

```bash
fname() compound-command [io-redirect ...]
```

The function is named `fname`; it must be a name. An implementation may allow other characters in a function name as an extension. The implementation will maintain separate name spaces for functions and variables.
The () in the function definition command consists of two operators. Therefore, intermixing blank characters with the $fname, (, and ) is allowed, but unnecessary.

The argument compound-command represents a compound command.

When the function is declared, none of the expansions in wordexp will be performed on the text in compound-command or io-redirect; all expansions will be performed as normal each time the function is called. Similarly, the optional io-redirect redirections and any variable assignments within compound-command will be performed during the execution of the function itself, not the function definition.

When a function is executed, it will have the syntax-error and variable-assignment properties described for the special built-in utilities.

The compound-command will be executed whenever the function name is specified as the name of a simple command The operands to the command temporarily will become the positional parameters during the execution of the compound-command; the special parameter # will also be changed to reflect the number of operands. The special parameter 0 will be unchanged. When the function completes, the values of the positional parameters and the special parameter # will be restored to the values they had before the function was executed. If the special built-in return is executed in the compound-command, the function will complete and execution will resume with the next command after the function call.

An example of how a function definition can be used wherever a simple command is allowed:

```bash
If variable i is equal to "yes",
define function foo to be ls -l
#
[*$i* = yes] && foo() {
 ls -l
}
```

The exit status of a function definition will be 0 if the function was declared successfully; otherwise, it will be greater than zero. The exit status of a function invocation will be the exit status of the last command executed by the function.

Jobs

If the monitor option of the set command is turned on, an interactive shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them small integer numbers. When a job is started asynchronously with &, the shell prints a line which looks like:

```
[1] 1234
```

indicating that the job, which was started asynchronously, was job number 1 and had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may press the key ^Z (Control-Z) which sends a STOP signal to the current job. The shell will then normally indicate that the job has been ‘Stopped’, and print another prompt. You can then
manipulate the state of this job, putting it in the background with the `bg' command, or run some other commands and then eventually bring the job back into the foreground with the foreground command `fg'. A `^Z' takes effect immediately and is like an interrupt in that pending output and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are normally allowed to produce output, but this can be disabled by giving the command `stty tostop'. If you set this tty option, then background jobs will stop when they try to produce output as they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the process id of any process of the job or by one of the following:

\%number
The job with the given number.
\%string
Any job whose command line begins with \string.
\?string
Any job whose command line contains \string.
\%
Current job.
\+
Equivalent to \%.
\−
Previous job.

The shell learns immediately whenever a process changes state. It normally informs you whenever a job becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that completes triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be warned with the message, 'You have stopped(running) jobs.' You may use the jobs command to see what they are. If you do this or immediately try to exit again, the shell will not warn you a second time, and the stopped jobs will be terminated. If you have jobs running for which the nohup command was invoked and attempt to logout, you will be warned with the message:

You have jobs running.

You will then need to logout a second time to actually logout. However, your background jobs will continue to run.

Signals

The INT and QUIT signals for an invoked command are ignored if the command is followed by & and the monitor option is not active. Otherwise, signals have the values inherited by the shell from its parent (but see also the trap special command below).
Each time a command is executed, the above substitutions are carried out. If the command name matches one of the Special Commands listed below, it is executed within the current shell process. Next, the command name is checked to see if it matches one of the user defined functions. If it does, the positional parameters are saved and then reset to the arguments of the function call. When the function completes or issues a return, the positional parameter list is restored and any trap set on EXIT within the function is executed. The value of a function is the value of the last command executed. A function is also executed in the current shell process. If a command name is not a special command or a user defined function, a process is created and an attempt is made to execute the command via exec(2).

The shell variable PATH defines the search path for the directory containing the command. Alternative directory names are separated by a colon (:). The default path is /bin:/usr/bin: (specifying /bin, /usr/bin, and the current directory in that order). The current directory can be specified by two or more adjacent colons, or by a colon at the beginning or end of the path list. If the command name contains a / then the search path is not used. Otherwise, each directory in the path is searched for an executable file. If the file has execute permission but is not a directory or an a.out file, it is assumed to be a file containing shell commands. A sub-shell is spawned to read it. All non-exported aliases, functions, and variables are removed in this case. A parenthesized command is executed in a sub-shell without removing non-exported quantities.

The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved in a history file. The file $HOME/.sh_history is used if the HISTFILE variable is not set or if the file it names is not writable. A shell can access the commands of all interactive shells which use the same named HISTFILE. The special command fc is used to list or edit a portion of this file. The portion of the file to be edited or listed can be selected by number or by giving the first character or characters of the command. A single command or range of commands can be specified. If you do not specify an editor program as an argument to fc then the value of the variable FCEDIT is used. If FCEDIT is not defined, then /bin/ed is used. The edited command(s) is printed and re-executed upon leaving the editor. The editor name is used to skip the editing phase and to re-execute the command. In this case a substitution parameter of the form old=new can be used to modify the command before execution. For example, if r is aliased to ‘fc -e ’ then typing ‘r bad=good c’ will re-execute the most recent command which starts with the letter c, replacing the first occurrence of the string bad with the string good.

Normally, each command line entered from a terminal device is simply typed followed by a new-line (RETURN or LINEFEED). If either the emacs, gmacs, or vi option is active, the user can edit the command line. To be in either of these edit modes set the corresponding option. An editing option is automatically selected each time the VISUAL or EDITOR variable is assigned a value ending in either of these option names.

The editing features require that the user’s terminal accept RETURN as carriage return without line feed and that a space must overwrite the current character on the screen.
The editing modes implement a concept where the user is looking through a window at the current line. The window width is the value of `COLUMNS` if it is defined, otherwise 80. If the window width is too small to display the prompt and leave at least 8 columns to enter input, the prompt is truncated from the left. If the line is longer than the window width minus two, a mark is displayed at the end of the window to notify the user. As the cursor moves and reaches the window boundaries the window will be centered about the cursor. The mark is a `>` if the line extends on the right side of the window, `<` if the line extends on the left, and `*` if the line extends on both sides of the window.

The search commands in each edit mode provide access to the history file. Only strings are matched, not patterns, although a leading caret (`^`) in the string restricts the match to begin at the first character in the line.

**emacs Editing Mode**

This mode is entered by enabling either the `emacs` or `gmacs` option. The only difference between these two modes is the way they handle `^T`. To edit, move the cursor to the point needing correction and then insert or delete characters or words as needed. All the editing commands are control characters or escape sequences. The notation for control characters is caret (`^`) followed by the character. For example, `^F` is the notation for control `F`. This is entered by depressing `f` while holding down the CTRL (control) key. The SHIFT key is not depressed. (The notation `^?` indicates the DEL (delete) key.)

The notation for escape sequences is `M-` followed by a character. For example, `M- f` (pronounced Meta `f`) is entered by depressing ESC (ascii 033) followed by `f` (M- `f` would be the notation for ESC followed by SHIFT (capital) `f`).

All edit commands operate from any place on the line (not just at the beginning). Neither the RETURN nor the LINEFEED key is entered after edit commands except when noted.

- `^F` Move cursor forward (right) one character.
- `M- f` Move cursor forward one word. (The emacs editor’s idea of a word is a string of characters consisting of only letters, digits and underscores.)
- `^B` Move cursor backward (left) one character.
- `M- b` Move cursor backward one word.
- `^A` Move cursor to start of line.
- `^E` Move cursor to end of line.
- `^] char` Move cursor forward to character `char` on current line.
- `M- ^] char` Move cursor backward to character `char` on current line.
- `^X^X` Interchange the cursor and mark.
- `erase` (User defined erase character as defined by the `stty(1)` command, usually `^H` or `#`.) Delete previous character.
|^D Delete current character.
M-d Delete current word.
M-^H (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-^? (Meta-DEL) Delete previous word (if your interrupt character is ^?, DEL, the default) then this command will not work).
^T Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.
^C Capitalize current character.
M-c Capitalize current word.
M-l Change the current word to lower case.
^K Delete from the cursor to the end of the line. If preceded by a numerical parameter whose value is less than the current cursor position, then delete from given position up to the cursor. If preceded by a numerical parameter whose value is greater than the current cursor position, then delete from cursor up to given cursor position.
^W Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark on the stack.
kill (User defined kill character as defined by the stty(1) command, usually ^G or @.) Kill the entire current line. If two kill characters are entered in succession, all kill characters from then on cause a line feed (useful when using paper terminals).
^Y Restore last item removed from line. (Yank item back to the line.)
^L Line feed and print current line.
^@ (null character) Set mark.
M-space (Meta space) Set mark.
J (New line) Execute the current line.
M (Return) Execute the current line.
eof End-of-file character, normally ^D, is processed as an End-of-file only if the current line is null.
^P Fetch previous command. Each time ^P is entered the previous command back in time is accessed. Moves back one line when not on the first line of a multi-line command.
M-< Fetch the least recent (oldest) history line.
M-\> Fetch the most recent (youngest) history line.

^N Fetch next command line. Each time ^N is entered the next command line forward in time is accessed.

^Rstring Reverse search history for a previous command line containing string. If a parameter of zero is given, the search is forward. string is terminated by a RETURN or NEW LINE. If string is preceded by a ^, the matched line must begin with string. If string is omitted, then the next command line containing the most recent string is accessed. In this case a parameter of zero reverses the direction of the search.

^O Operate. Execute the current line and fetch the next line relative to current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to the next command. The commands that accept a parameter are ^F, ^B, erase, ^C, ^D, ^K, ^P, ^N, ^], M-, ., M-}].

M-letter Soft-key. Your alias list is searched for an alias by the name _ letter and if an alias of this name is defined, its value will be inserted on the input queue. The letter must not be one of the above meta-functions.

M-[letter] Soft-key. Your alias list is searched for an alias by the name __ letter and if an alias of this name is defined, its value will be inserted on the input queue. The can be used to program functions keys on many terminals.

M- The last word of the previous command is inserted on the line. If preceded by a numeric parameter, the value of this parameter determines which word to insert rather than the last word.

M-_ Same as M- .

M-\* An asterisk is appended to the end of the word and a file name expansion is attempted.

M-ESC File name completion. Replaces the current word with the longest common prefix of all filenames matching the current word with an asterisk appended. If the match is unique, a / is appended if the file is a directory and a space is appended if the file is not a directory.

M-= List files matching current word pattern if an asterisk were appended.

^U Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user’s erase, kill and interrupt (normally ^?) characters may be entered in a command.
vi Editing Mode

There are two typing modes. Initially, when you enter a command you are in the input mode. To edit, enter control mode by typing ESC (033) and move the cursor to the point needing correction and then insert or delete characters or words as needed. Most control commands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the command will be echoed again if the speed is 1200 baud or greater and it contains any control characters or less than one second has elapsed since the prompt was printed. The ESC character terminates canonical processing for the remainder of the command and the user can then modify the command line. This scheme has the advantages of canonical processing with the type-ahead echoing of raw mode.

If the option vraw is also set, the terminal will always have canonical processing disabled. This mode is implicit for systems that do not support two alternate end of line delimiters, and may be helpful for certain terminals.

By default the editor is in input mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>erase</td>
<td>(User defined erase character as defined by the stty(1) command, usually ^H or #.) Delete previous character.</td>
</tr>
<tr>
<td>^w</td>
<td>Delete the previous blank separated word.</td>
</tr>
<tr>
<td>^d</td>
<td>Terminate the shell.</td>
</tr>
<tr>
<td>^v</td>
<td>Escape next character. Editing characters and the user’s erase or kill characters may be entered in a command line or in a search string if preceded by a ^v. The ^v removes the next character’s editing features (if any).</td>
</tr>
<tr>
<td>\</td>
<td>Escape the next erase or kill character.</td>
</tr>
</tbody>
</table>

These commands will move the cursor.

<table>
<thead>
<tr>
<th>Count</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[count]l</td>
<td>Cursor forward (right) one character.</td>
</tr>
<tr>
<td>[count]w</td>
<td>Cursor forward one alpha-numeric word.</td>
<td></td>
</tr>
<tr>
<td>[count]b</td>
<td>Cursor to the beginning of the next word that follows a blank.</td>
<td></td>
</tr>
<tr>
<td>[count]e</td>
<td>Cursor to end of word.</td>
<td></td>
</tr>
<tr>
<td>[count]E</td>
<td>Cursor to end of the current blank delimited word.</td>
<td></td>
</tr>
<tr>
<td>[count]h</td>
<td>Cursor backward (left) one character.</td>
<td></td>
</tr>
<tr>
<td>[count]b</td>
<td>Cursor backward one word.</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td><code>[count]B</code></td>
<td>Cursor to preceding blank separated word.</td>
<td></td>
</tr>
<tr>
<td><code>[count]I</code></td>
<td>Cursor to column <code>count</code>.</td>
<td></td>
</tr>
<tr>
<td><code>[count]E</code></td>
<td>Find the next character <code>c</code> in the current line.</td>
<td></td>
</tr>
<tr>
<td><code>[count]E</code></td>
<td>Find the previous character <code>c</code> in the current line.</td>
<td></td>
</tr>
<tr>
<td><code>[count]E</code></td>
<td>Equivalent to <code>f</code> followed by <code>h</code>.</td>
<td></td>
</tr>
<tr>
<td><code>[count]E</code></td>
<td>Equivalent to <code>F</code> followed by <code>l</code>.</td>
<td></td>
</tr>
<tr>
<td><code>[count];</code></td>
<td>Repeats <code>count</code> times, the last single character find command, <code>f</code>, <code>F</code>, <code>t</code>, or <code>T</code>.</td>
<td></td>
</tr>
<tr>
<td><code>[count]</code>,</td>
<td>Reverses the last single character find command <code>count</code> times.</td>
<td></td>
</tr>
<tr>
<td><code>0</code></td>
<td>Cursor to start of line.</td>
<td></td>
</tr>
<tr>
<td><code>^</code></td>
<td>Cursor to first non-blank character in line.</td>
<td></td>
</tr>
<tr>
<td><code>$</code></td>
<td>Cursor to end of line.</td>
<td></td>
</tr>
<tr>
<td><code>%</code></td>
<td>Moves to balancing <code>(</code>, <code>)</code>, <code>{</code>, <code>}</code>, <code>[</code>, or <code>]</code>. If cursor is not on one of the above characters, the remainder of the line is searched for the first occurrence of one of the above characters first.</td>
<td></td>
</tr>
</tbody>
</table>

These commands access your command history.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[count]k</code></td>
<td>Fetch previous command. Each time <code>k</code> is entered the previous command back in time is accessed.</td>
</tr>
<tr>
<td><code>[count]</code></td>
<td>Equivalent to <code>k</code>.</td>
</tr>
<tr>
<td><code>[count]j</code></td>
<td>Fetch next command. Each time <code>j</code> is entered, the next command forward in time is accessed.</td>
</tr>
<tr>
<td><code>[count]</code></td>
<td>Equivalent to <code>j</code>.</td>
</tr>
<tr>
<td><code>[count]G</code></td>
<td>The command number <code>count</code> is fetched. The default is the least recent history command.</td>
</tr>
<tr>
<td><code>/string</code></td>
<td>Search backward through history for a previous command containing <code>string</code>. <code>string</code> is terminated by a RETURN or NEWLINE. If <code>string</code> is preceded by a <code>^</code>, the matched line must begin with <code>string</code>. If <code>string</code> is NULL, the previous string will be used.</td>
</tr>
<tr>
<td><code>?string</code></td>
<td>Same as <code>/</code> except that search will be in the forward direction.</td>
</tr>
<tr>
<td><code>n</code></td>
<td>Search for next match of the last pattern to <code>/</code> or <code>?</code> commands.</td>
</tr>
<tr>
<td><code>N</code></td>
<td>Search for next match of the last pattern to <code>/</code> or <code>?</code>, but in reverse direction. Search history for the <code>string</code> entered by the previous <code>/</code> command.</td>
</tr>
</tbody>
</table>

These commands will modify the line.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Enter input mode and enter text after the current character.</td>
</tr>
<tr>
<td><code>A</code></td>
<td>Append text to the end of the line. Equivalent to <code>$a</code>.</td>
</tr>
<tr>
<td><code>[count]</code></td>
<td>Delete current character through the character that <code>motion</code> would move the cursor to and enter input mode. If <code>motion</code> is <code>c</code>, the entire line will be deleted and input mode entered.</td>
</tr>
<tr>
<td><code>C</code></td>
<td>Delete the current character through the end of line and enter input mode. Equivalent to <code>$c</code>.</td>
</tr>
<tr>
<td><code>[count]s</code></td>
<td>Delete <code>count</code> characters and enter input mode. Equivalent to <code>cc</code>.</td>
</tr>
<tr>
<td><code>S</code></td>
<td>Delete the current character through the end of line. Equivalent to <code>$d</code>.</td>
</tr>
<tr>
<td><code>[count]r</code></td>
<td>Replace the <code>count</code> character(s) starting at the current cursor position with <code>c</code>, and advance the cursor.</td>
</tr>
<tr>
<td><code>R</code></td>
<td>Enter input mode and replace characters on the screen with characters you type overlay fashion.</td>
</tr>
<tr>
<td><code>[count]</code></td>
<td>Place the previous text modification before the cursor.</td>
</tr>
<tr>
<td><code>P</code></td>
<td>Place the previous text modification after the cursor.</td>
</tr>
<tr>
<td><code>[count]</code></td>
<td>Enter input mode and replace characters on the screen with characters you type overlay fashion.</td>
</tr>
<tr>
<td><code>r</code></td>
<td>Delete current character.</td>
</tr>
<tr>
<td><code>X</code></td>
<td>Delete preceding character.</td>
</tr>
<tr>
<td><code>.</code></td>
<td>Repeat the previous text modification command.</td>
</tr>
<tr>
<td><code>-</code></td>
<td>Invert the case of the <code>count</code> character(s) starting at the current cursor position and advance the cursor.</td>
</tr>
<tr>
<td><code>_</code></td>
<td>Causes the <code>count</code> word of the previous command to be appended and input mode entered. The last word is used if <code>count</code> is omitted.</td>
</tr>
</tbody>
</table>
Causes an * to be appended to the current word and file name generation attempted. If no match is found, it rings the bell. Otherwise, the word is replaced by the matching pattern and input mode is entered.

Filename completion. Replaces the current word with the longest common prefix of all filenames matching the current word with an asterisk appended. If the match is unique, a / is appended if the file is a directory and a space is appended if the file is not a directory.

Miscellaneous commands.

[count]ymotion

Yanks current character through character that motion would move the cursor to and puts them into the delete buffer. The text and cursor are unchanged.

Y

Yanks from current position to end of line. Equivalent to y$.

u

Undo the last text modifying command.

U

Undo all the text modifying commands performed on the line.

[count]v

Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} count in the input buffer. If count is omitted, then the current line is used.

^L

Line feed and print current line. Has effect only in control mode.

J

(New line) Execute the current line, regardless of mode.

M

(Return) Execute the current line, regardless of mode.

#

If the first character of the command is a #, then this command deletes this # and each # that follows a newline. Otherwise, sends the line after inserting a # in front of each line in the command. Useful for causing the current line to be inserted in the history as a comment and removing comments from previous comment commands in the history file.

=

List the file names that match the current word if an asterisk were appended it.

@letter

Your alias list is searched for an alias by the name _letter and if an alias of this name is defined, its value will be inserted on the input queue for processing.
The following simple-commands are executed in the shell process. Input/Output redirection is permitted. Unless otherwise indicated, the output is written on file descriptor 1 and the exit status, when there is no syntax error, is 0. Commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

*: [ arg ... ]
The command only expands parameters.

*: file [ arg ... ]
Read the complete file then execute the commands. The commands are executed in the current shell environment. The search path specified by PATH is used to find the directory containing file. If any arguments arg are given, they become the positional parameters. Otherwise the positional parameters are unchanged. The exit status is the exit status of the last command executed.

** alias [-tx] [ name[ =value ] ] ...
alias with no arguments prints the list of aliases in the form name=value on standard output. An alias is defined for each name whose value is given. A trailing space in value causes the next word to be checked for alias substitution. The -t flag is used to set and list tracked aliases. The value of a tracked alias is the full pathname corresponding to the given name. The value becomes undefined when the value of PATH is reset but the aliases remained tracked. Without the -t flag, for each name in the argument list for which no value is given, the name and value of the alias is printed. The -x flag is used to set or print exported aliases. An exported alias is defined for scripts invoked by name. The exit status is non-zero if a name is given, but no value, and no alias has been defined for the name.

bg [ $job ... ]
This command is only on systems that support job control. Puts each specified job into the background. The current job is put in the background if job is not specified. See "Jobs" section above for a description of the format of job.

* break [ n ]
Exit from the enclosed for, while, until, or select loop, if any. If n is specified then break n levels. If n is greater than the number of enclosing loops, the outermost enclosing loop shall be exited.

* continue [ n ]
Resume the next iteration of the enclosed for, while, until, or select loop. If n is specified then resume at the n-th enclosed loop. If n is greater than the number of enclosing loops, the outermost enclosing loop shall be used.
This command can be in either of two forms. In the first form it changes the current directory to \textit{arg}. If \textit{arg} is – the directory is changed to the previous directory. The shell variable \texttt{HOME} is the default \textit{arg}. The environment variable \texttt{PWD} is set to the current directory. If the \texttt{PWD} is changed, the \texttt{OLDPWD} environment variable shall also be changed to the value of the old working directory, that is, the current working directory immediately prior to the call to change directory (\texttt{cd}). The shell variable \texttt{CDPATH} defines the search path for the directory containing \textit{arg}. Alternative directory names are separated by a colon (\texttt{:}). The default path is null (specifying the current directory). Notice that the current directory is specified by a null path name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in the path list. If \textit{arg} begins with a / then the search path is not used. Otherwise, each directory in the path is searched for \textit{arg}.

\textbf{-L} \hspace{1em} Handles the operation dot-dot (\texttt{..}) logically. Symbolic link components are \textit{not} resolved before dot-dot components are processed.

\textbf{-P} \hspace{1em} Handles the operand dot-dot physically. Symbolic link components \textit{are} resolved before dot-dot components are processed.

If both \textbf{-L} and \textbf{-P} options are specified, the last option to be invoked is used and the other is ignored. If neither \textbf{-L} nor \textbf{-P} is specified, the operand is handled dot-dot logically.

The second form of \texttt{cd} substitutes the string \texttt{new} for the string \texttt{old} in the current directory name, \texttt{PWD}, and tries to change to this new directory. The \texttt{cd} command may not be executed by \texttt{rksh}.

\texttt{command [-p] [command_name] [argument ...]}

\texttt{command [-v | -V] command_name}

The \texttt{command} utility causes the shell to treat the arguments as a simple command, suppressing the shell function lookup. The \textbf{-p} flag performs the command search using a default value for \texttt{PATH} that is guaranteed to find all of the standard utilities. The \textbf{-v} flag writes a string to standard output that indicates the pathname or command that will be used by the shell, in the current shell execution environment, to invoke \textit{command_name}. The \textbf{-V} flag writes a string to standard output that indicates how the name given in the \textit{command_name} operand will be interpreted by the shell, in the current shell execution environment.

\texttt{echo [arg ...]}

See \texttt{echo(1)} for usage and description.

\texttt{* eval [arg ...]}

The arguments are read as input to the shell and the resulting command(s) executed.

\texttt{* exec [arg ...]}

If \textit{arg} is given, the command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and affect the current process. If no arguments are given the effect of this command is to
modify file descriptors as prescribed by the input/output redirection list. In this case, any file descriptor numbers greater than 2 that are opened with this mechanism are closed when invoking another program.

* exit [ n ]
Causes the calling shell or shell script to exit with the exit status specified by n. The value will be the least significant 8 bits of the specified status. If n is omitted then the exit status is that of the last command executed. When exit occurs when executing a trap, the last command refers to the command that executed before the trap was invoked. An EOF will also cause the shell to exit except for a shell which has the ignoreeof option (See set below) turned on.

** export [ name=value ] ...

** export -p
The given names are marked for automatic export to the environment of subsequently-executed commands.

When -p is specified, export writes to the standard output the names and values of all exported variables in the following format:

"export %s=%s\n", name, value

if name is set, and:

"export %s\n", name

if name is unset.

The shell formats the output, including the proper use of quoting, so that it is suitable for reinput to the shell as commands that achieve the same exporting results, except for the following:

1. Read-only variables with values cannot be reset.
2. Variables that were unset at the time they were output are not reset to the unset state if a value is assigned to the variable between the time the state was saved and the time at which the saved output is reinput to the shell.

fc [ -e ename ] [ -nlr ] [ first [ last ] ]
fc -e - [ old=new ] [ command ]
fc -s [ old=new ] [ command ]

In the first form, a range of commands from first to last is selected from the last HISTSIZE commands that were typed at the terminal. The arguments first and last may be specified as a number or as a string. A string is used to locate the most recent command starting with the given string. A negative number is used as an offset to the current command number. If the -1 flag is selected, the commands are listed on standard output. Otherwise, the editor program ename is invoked on a file containing these keyboard commands. If ename is not supplied, then the value of the variable FCEDIT (default /bin/ed) is used as the editor. When editing is complete, the edited command(s) is executed. If last is not specified then it will be set to first. If first is not specified the default is the previous command for editing and -16 for listing. The flag -r reverses the order of the commands and the flag -n suppresses command numbers when listing. In the second form the command is
re-executed after the substitution old=new is performed. If there is not a command argument, the most recent command typed at this terminal is executed.

fg [ %job...]
This command is only on systems that support job control. Each job specified is brought to the foreground. Otherwise, the current job is brought into the foreground. See “Jobs” section above for a description of the format of job.

getopts optstring name [ arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters are used. An option argument begins with a + or a -. An option not beginning with + or - or the argument - ends the options. optstring contains the letters that getopts recognizes. If a letter is followed by a :, that option is expected to have an argument. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is invoked with a + prepended when arg begins with a +. The index of the next arg is stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in OPTARG, and to set name to ? for an unknown option and to : when a required option is missing. Otherwise, getopts prints an error message. The exit status is non-zero when there are no more options. See getoptcvt(1) for usage and description.

hash [ name ...]
hash [-r]
For each name, the location in the search path of the command specified by name is determined and remembered by the shell. The -r option causes the shell to forget all remembered locations. If no arguments are given, information about remembered commands is presented. Hits is the number of times a command has been invoked by the shell process. Cost is a measure of the work required to locate a command in the search path. If a command is found in a “relative” directory in the search path, after changing to that directory, the stored location of that command is recalculated. Commands for which this will be done are indicated by an asterisk (*) adjacent to the hits information. Cost will be incremented when the recalculation is done.

jobs [-lnp] [%job ...]
Lists information about each given job; or all active jobs if job is omitted. The -l flag lists process ids in addition to the normal information. The -n flag displays only jobs that have stopped or exited since last notified. The -p flag causes only the process group to be listed. See "Jobs" section above and jobs(1) for a description of the format of job.

kill [ -sig ] %job ...
kills [ -sig ] pid ...
kill -l
Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes. Signals are either given by number or by names (as given in signal(3HEAD) stripped of the prefix “SIG” with the exception that SIGCHD is
named CHLD. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will be sent a CONT (continue) signal if it is stopped. The argument job can be the process id of a process that is not a member of one of the active jobs. See Jobs for a description of the format of job. In the second form, kill -l, the signal numbers and names are listed.

let arg...
Each arg is a separate arithmetic expression to be evaluated. See the Arithmetic Evaluation section above, for a description of arithmetic expression evaluation.

The exit status is 0 if the value of the last expression is non-zero, and 1 otherwise.

login argument...
Equivalent to 'exec login argument...'. See login(1) for usage and description.

*newgrp [arg...]
Equivalent to exec /bin/newgrp arg ....

print [-Rnprsu][arg ...]
The shell output mechanism. With no flags or with flag – or –, the arguments are printed on standard output as described by echo(1). The exit status is 0, unless the output file is not open for writing.

-n Suppresses NEWLINE from being added to the output.

-R | -r Raw mode. Ignores the escape conventions of echo. The -R option will print all subsequent arguments and options other than -n.

-p Writes the arguments to the pipe of the process spawned with | & instead of standard output.

-s Writes the arguments to the history file instead of standard output.

-u [ n ] Specifies a one digit file descriptor unit number n on which the output will be placed. The default is 1.

pwd [-L | -P ]
Writes to the standard output an absolute pathname of the current working directory, which does not contain the filenames dot (.) or dot-dot (..).

-L If the PWD environment variable contains an absolute pathname of the current directory that does not contain the filenames dot or dot-dot, pwd writes this pathname to standard output. Otherwise, the -L option behaves like the -P option.

-P The absolute pathname written shall not contain filenames that, in the context of the pathname, refer to files of type symbolic link.

If both -L and -P are specified, the last one applies. If neither -L nor -P is specified, pwd behaves as if -L had been specified.
read [-prs\[ n \]]\[ name?prompt \][ name ...]

The shell input mechanism. One line is read and is broken up into fields using the characters in IFS as separators. The escape character, (\), is used to remove any special meaning for the next character and for line continuation. In raw mode, -r, the \ character is not treated specially. The first field is assigned to the first name, the second field to the second name, etc., with leftover fields assigned to the last name. The -p option causes the input line to be taken from the input pipe of a process spawned by the shell using |&. If the -s flag is present, the input will be saved as a command in the history file. The flag -u can be used to specify a one digit file descriptor unit n to read from. The file descriptor can be opened with the exec special command. The default value of n is 0. If name is omitted then REPLY is used as the default name. The exit status is 0 unless the input file is not open for reading or an EOF is encountered. An EOF with the -p option causes cleanup for this process so that another can be spawned. If the first argument contains a ?, the remainder of this word is used as a prompt on standard error when the shell is interactive. The exit status is 0 unless an EOF is encountered.

**readonly \[ name=value \]...**

**readonly -p**

The given names are marked readonly and these names cannot be changed by subsequent assignment.

When -p is specified, readonly writes to the standard output the names and values of all read-only variables, in the following format:

*readonly \$s\n*, name, value

if name is set, and:

*readonly \$s\n*, name

if name is unset.

The shell formats the output, including the proper use of quoting, so that it is suitable for reinput to the shell as commands that achieve the same value and readonly attribute-setting results in a shell execution environment in which:

1. Variables with values set at the time they were output do not have the readonly attribute set.
2. Variables that were unset at the time they were output do not have a value at the time at which the saved output is reinput to the shell.

* return \[ n \]

Causes a shell function or ’.’ script to return to the invoking script with the return status specified by n. The value will be the least significant 8 bits of the specified status. If n is omitted then the return status is that of the last command executed. If return is invoked while not in a function or a ’.’ script, then it is the same as an exit.

set [ abCefhkmnopstuvx ]\[ \pm option \]...[ \pmA name ]\[ arg ...]

The flags for this command have meaning as follows:
-A    Array assignment. Unsets the variable *name* and assigns values sequentially from the list *arg*. If +A is used, the variable *name* is not unset first.

-a    All subsequent variables that are defined are automatically exported.

-b    Causes the shell to notify the user asynchronously of background job completions. The following message will be written to standard error:

    "[td]%c %s\n", <job-number>, <current>, <status>, <job-name>

where the fields are as follows:

<current>  The character + identifies the job that would be used as a default for the fg or bg utilities. This job can also be specified using the job_id %+ or %. The character – identifies the job that would become the default if the current default job were to exit; this job can also be specified using the job_id %−. For other jobs, this field is a space character. At most one job can be identified with + and at most one job can be identified with –. If there is any suspended job, then the current job will be a suspended job. If there are at least two suspended jobs, then the previous job will also be a suspended job.

<job-number>  A number that can be used to identify the process group to the wait, fg, bg, and kill utilities. Using these utilities, the job can be identified by prefixing the job number with %.

<status>    Unspecified.

<job-name>  Unspecified.

When the shell notifies the user a job has been completed, it may remove the job's process ID from the list of those known in the current shell execution environment. Asynchronous notification will not be enabled by default.

-c    Prevents existing files from being overwritten by the shell’s > redirection operator. The >| redirection operator overrides this noclobber option for an individual file.

-e    If a command has a non-zero exit status, executes the ERR trap, if set, and exit. This mode is disabled while reading profiles.

-f    Disables file name generation.

-h    Each command becomes a tracked alias when first encountered.

-k    All variable assignment arguments are placed in the environment for a command, not just those that precede the command name.
-m  Background jobs runs in a separate process group and a line prints upon completion. The exit status of background jobs is reported in a completion message. On systems with job control, this flag is turned on automatically for interactive shells.

-n  Reads commands and check them for syntax errors, but do not execute them. Ignored for interactive shells.

-o  The following argument can be one of the following option names:

- ALLEXPORT  Same as -a.
- errexit    Same as -e.
- bgnice     All background jobs are run at a lower priority. This is the default mode.
- emacs      Puts you in an emacs style in-line editor for command entry.
- gmacs      Puts you in a gmacs style in-line editor for command entry.
- ignoreeof  The shell will not exit on EOF. The command exit must be used.
- keyword    Same as -k.
- markdirs   All directory names resulting from file name generation have a trailing / appended.
- monitor    Same as -m.
- noclobber  Prevents redirection > from truncating existing files. Require > ! to truncate a file when turned on. Equivalent to -C.
- noexec     Same as -n.
- noglob     Same as -f.
- nolog      Do not save function definitions in history file.
- notify     Equivalent to -b.
- nounset    Same as -u.
- privileged Same as -p.
- verbose    Same as -v.
- trackall   Same as -h.
- vi         Puts you in insert mode of a vi style in-line editor until you hit escape character 033. This puts you in control mode. A return sends the line.
Each character is processed as it is typed in vi mode.

Same as -x.

If no option name is supplied, the current option settings are printed.

Disables processing of the $HOME/.profile file and uses the file /etc/suid_profile instead of the ENV file. This mode is on whenever the effective uid is not equal to the real uid, or when the effective gid is not equal to the real gid. Turning this off causes the effective uid and gid to be set to the real uid and gid.

Sorts the positional parameters lexicographically.

Exits after reading and executing one command.

Treats unset parameters as an error when substituting.

Prints shell input lines as they are read.

Prints commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.

Does not change any of the flags. Useful in setting $1 to a value beginning with -. If no arguments follow this flag then the positional parameters are unset.

Using + rather than – causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $-. Unless -A is specified, the remaining arguments are positional parameters and are assigned, in order, to $1 $2 ... If no arguments are given, the names and values of all variables are printed on the standard output.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.
* **times**
  Prints the accumulated user and system times for the shell and for processes run from the shell.

* **trap [ arg sig ...]**
  arg is a command to be read and executed when the shell receives signal(s) sig. arg is scanned once when the trap is set and once when the trap is taken. sig can be specified as a signal number or signal name. trap commands are executed in order of signal number. Any attempt to set a trap on a signal number that was ignored on entry to the current shell is ineffective.

  If arg is --, the shell will reset each sig to the default value. If arg is null (''), the shell will ignore each specified sig if it arises. Otherwise, arg will be read and executed by the shell when one of the corresponding sigs arises. The action of the trap will override a previous action (either default action or one explicitly set). The value of $? after the trap action completes will be the value it had before the trap was invoked.

  sig can be EXIT, 0 (equivalent to EXIT) or a signal specified using a symbolic name, without the SIG prefix, for example, HUP, INT, QUIT, TERM. If sig is 0 or EXIT and the trap statement is executed inside the body of a function, then the command arg is executed after the function completes. If sig is 0 or EXIT for a trap set outside any function, the command arg is executed on exit from the shell. If sig is ERR, arg will be executed whenever a command has a non-zero exit status. If sig is DEBUG, arg will be executed after each command.

  The environment in which the shell executes a trap on EXIT will be identical to the environment immediately after the last command executed before the trap on EXIT was taken.

  Each time the trap is invoked, arg will be processed in a manner equivalent to eval "$arg".

  Signals that were ignored on entry to a non-interactive shell cannot be trapped or reset, although no error need be reported when attempting to do so. An interactive shell may reset or catch signals ignored on entry. Traps will remain in place for a given shell until explicitly changed with another trap command.

  When a subshell is entered, traps are set to the default args. This does not imply that the trap command cannot be used within the subshell to set new traps.

  The trap command with no arguments will write to standard output a list of commands associated with each sig. The format is:

  ```
 trap -- $s $s ... <arg>, <sig> ...
  ```

  The shell will format the output, including the proper use of quoting, so that it is suitable for reinput to the shell as commands that achieve the same trapping results. For example:
save_traps=$(trap)
...
eval "$save_traps"

If the trap name or number is invalid, a non-zero exit status will be returned; otherwise, 0 will be returned. For both interactive and non-interactive shells, invalid signal names or numbers will not be considered a syntax error and will not cause the shell to abort.

Traps are not processed while a job is waiting for a foreground process. Thus, a trap on CHLD won’t be executed until the foreground job terminates.

type name ...
For each name, indicates how it would be interpreted if used as a command name.

**typeset [±HLRZfiirtux[n]][ name[=value ] ]...
Sets attributes and values for shell variables and functions. When typeset is invoked inside a function, a new instance of the variables name is created. The variables value and type are restored when the function completes. The following list of attributes may be specified:

- **H** This flag provides UNIX to host-name file mapping on non-UNIX machines.

- L  Left justifies and removes leading blanks from value. If n is non-zero it defines the width of the field. Otherwise, it is determined by the width of the value of first assignment. When the variable is assigned to, it is filled on the right with blanks or truncated, if necessary, to fit into the field. Leading zeros are removed if the -Z flag is also set. The -R flag is turned off.

- R  Right justifies and fills with leading blanks. If n is non-zero it defines the width of the field, otherwise it is determined by the width of the value of first assignment. The field is left filled with blanks or truncated from the end if the variable is reassigned. The -L flag is turned off.

- Z  Right justifies and fills with leading zeros if the first non-blank character is a digit and the -L flag has not been set. If n is non-zero it defines the width of the field. Otherwise, it is determined by the width of the value of first assignment.

- f  The names refer to function names rather than variable names. No assignments can be made and the only other valid flags are -t, -u, and -x. The flag -t turns on execution tracing for this function. The flag -u causes this function to be marked undefined. The $PATH variable will be searched to find the function definition when the function is referenced. The flag -x allows the function definition to remain in effect across shell procedures invoked by name.

- i  Parameter is an integer. This makes arithmetic faster. If n is non-zero it defines the output arithmetic base; otherwise, the first assignment determines the output base.
-l    All upper-case characters are converted to lower-case. The upper-case flag, -u is turned off.
-r    The given names are marked readonly and these names cannot be changed by subsequent assignment.
-t    Tags the variables. Tags are user definable and have no special meaning to the shell.
-u    All lower-case characters are converted to upper-case characters. The lower-case flag, -l is turned off.
-x    The given names are marked for automatic export to the environment of subsequently-executed commands.

The -i attribute can not be specified along with -R, -L, -Z, or -f.

Using + rather than – causes these flags to be turned off. If no name arguments are given but flags are specified, a list of names (and optionally the values) of the variables which have these flags set is printed. (Using + rather than – keeps the values from being printed.) If no names and flags are given, the names and attributes of all variables are printed.

ulimit [-HScdfnstv][limit]
Sets or displays a resource limit. The available resources limits are listed below. Many systems do not contain one or more of these limits. The limit for a specified resource is set when limit is specified. The value of limit can be a number in the unit specified below with each resource, or the value unlimited. The H and S flags specify whether the hard limit or the soft limit for the given resource is set. A hard limit cannot be increased once it is set. A soft limit can be increased up to the value of the hard limit. If neither the H or S options is specified, the limit applies to both. The current resource limit is printed when limit is omitted. In this case, the soft limit is printed unless H is specified. When more than one resource is specified, the limit name and unit is printed before the value.

-a    Lists all of the current resource limits.
-c    The number of 512-byte blocks on the size of core dumps.
-d    The number of K-bytes on the size of the data area.
-f    The number of 512-byte blocks on files written by child processes (files of any size may be read).
-n    The number of file descriptors plus 1.
-s    The number of K-bytes on the size of the stack area.
-t    The number of seconds to be used by each process.
-v    The number of K-bytes for virtual memory.

If no option is given, -f is assumed.
umask [-S] [ mask ]
The user file-creation mask is set to mask (see umask(2)). mask can either be an octal number or a symbolic value as described in chmod(1). If a symbolic value is given, the new umask value is the complement of the result of applying mask to the complement of the previous umask value. If mask is omitted, the current value of the mask is printed. The -S flag produces symbolic output.

unalias name...
unalias -a
The aliases given by the list of names are removed from the alias list. The -a option removes all alias definitions from the current execution environment.

unset [-f] name...
The variables given by the list of names are unassigned, that is, their values and attributes are erased. readonly variables cannot be unset. If the -f, flag is set, then the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special meaning even if they are subsequently assigned to.

* wait [ job ]
Waits for the specified job and report its termination status. If job is not given then all currently active child processes are waited for. The exit status from this command is that of the process waited for. See Jobs for a description of the format of job.

whence [-pv] name...
For each name, indicates how it would be interpreted if used as a command name.

The -v flag produces a more verbose report.

The -p flag does a path search for name even if name is an alias, a function, or a reserved word.

Invocation
If the shell is invoked by exec(2), and the first character of argument zero ($0) is -, then the shell is assumed to be a login shell and commands are read from /etc/profile and then from either .profile in the current directory or $HOME/.profile, if either file exists. Next, commands are read from the file named by performing parameter substitution on the value of the environment variable ENV if the file exists. If the -s flag is not present and arg is, then a path search is performed on the first arg to determine the name of the script to execute. The script arg must have read permission and any setuid and setgid settings will be ignored. If the script is not found on the path, arg is processed as if it named a builtin command or function. Commands are then read as described below. The following flags are interpreted by the shell when it is invoked:

-c  Reads commands from the command_string operand. Sets the value of special parameter 0 from the value of the command_name operand and the positional parameters ($1, $2, and so on) in sequence from the remaining arg operands. No commands are read from the standard input.
If the `-s` flag is present or if no arguments remain, commands are read from the standard input. Shell output, except for the output of the Special Commands listed above, is written to file descriptor 2.

If the `-i` flag is present or if the shell input and output are attached to a terminal (as told by `ioctl(2)`), then this shell is *interactive*. In this case, `TERM` is ignored (so that `kill 0` does not kill an interactive shell) and `INTR` is caught and ignored (so that `wait` is interruptible). In all cases, `QUIT` is ignored by the shell.

If the `-r` flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the `set` command above.

**rksh Only**

rksh is used to set up login names and execution environments whose capabilities are more controlled than those of the standard shell. The actions of rksh are identical to those of ksh, except that the following are disallowed:

- changing directory (see `cd(1)`)
- setting the value of `SHELL`, `ENV`, or `PATH`
- specifying path or command names containing `/`
- redirecting output (`&`, `&|`, `&<`, and `&>>`)
- changing group (see `newgrp(1)`).

The restrictions above are enforced after `.profile` and the `ENV` files are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh to execute it. Thus, it is possible to provide to the end-user shell procedures that have access to the full power of the standard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the `.profile` has complete control over user actions, by performing guaranteed setup actions and leaving the user in an appropriate directory (probably *not* the login directory).

The system administrator often sets up a directory of commands (that is, `/usr/rbin`) that can be safely invoked by rksh.

**ERRORS**

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. Otherwise, the shell returns the exit status of the last command executed (see also the `exit` command above). If the shell is being used non-interactively then execution of the shell file is abandoned. Run time errors detected by the shell are reported by printing the command or function name and the error condition. If the line number that the error occurred on is greater than one, then the line number is also printed in square brackets ([ ]) after the command or function name.

For a non-interactive shell, an error condition encountered by a special built-in or other type of utility will cause the shell to write a diagnostic message to standard error and exit as shown in the following table:
An expansion error is one that occurs when the shell expansions are carried out (for example, \${x!y}, because ! is not a valid operator); an implementation may treat these as syntax errors if it is able to detect them during tokenization, rather than during expansion.

If any of the errors shown as “will (may) exit” occur in a subshell, the subshell will (may) exit with a non-zero status, but the script containing the subshell will not exit because of the error.

In all of the cases shown in the table, an interactive shell will write a diagnostic message to standard error without exiting.

**USAGE**

See *largefile*(5) for the description of the behavior of *ksh* and *rksh* when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXIT STATUS**

Each command has an exit status that can influence the behavior of other shell commands. The exit status of commands that are not utilities is documented in this section. The exit status of the standard utilities is documented in their respective sections.

If a command is not found, the exit status will be 127. If the command name is found, but it is not an executable utility, the exit status will be 126. Applications that invoke utilities without using the shell should use these exit status values to report similar errors.

If a command fails during word expansion or redirection, its exit status will be greater than zero.

When reporting the exit status with the special parameter ?, the shell will report the full eight bits of exit status available. The exit status of a command that terminated because it received a signal will be reported as greater than 128.

**FILES**

/etc/profile

/etc/suid_profile
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

ATTRIBUTES

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

cat(1), cd(1), chmod(1), cut(1), echo(1), env(1), getoptcvt(1), jobs(1), login(1), newgrp(1), paste(1), ps(1), shell_builtins(1), stty(1), test(1), vi(1), dup(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2), ulimit(2), umask(2), wait(2), rand(3C), signal(3C), signal(3HEAD), a.out(4), profile(4), attributes(5), environ(5), largefile(5), standards(5)


WARNINGS

The use of setuid shell scripts is strongly discouraged.

NOTES

If a command which is a tracked alias is executed, and then a command with the same name is installed in a directory in the search path before the directory where the original command was found, the shell will continue to exec the original command. Use the \-t option of the alias command to correct this situation.

Some very old shell scripts contain a `^` as a synonym for the pipe character `|`.

Using the \.fc built-in command within a compound command will cause the whole command to disappear from the history file.

The built-in command \.file reads the whole file before any commands are executed. Therefore, alias and unalias commands in the file will not apply to any functions defined in the file.

When the shell executes a shell script that attempts to execute a non-existent command interpreter, the shell returns an erroneous diagnostic message that the shell script file does not exist.
**NAME**
ktutil – Kerberos keytab maintenance utility

**SYNOPSIS**
/usr/bin/ktutil

**DESCRIPTION**
The ktutil command is an interactive command-line interface utility for managing the keylist in keytab files. You must read in a keytab’s keylist before you can manage it. Also, the user running the ktutil command must have read/write permissions on the keytab. For example, if a keytab is owned by root, which it typically is, ktutil must be run as root to have the appropriate permissions.

**COMMANDS**
clear_list, clear
Clears the current keylist.

read_kt file, rkt file
Reads a keytab into the current keylist. You must specify a keytab file to read.

write_kt file, wkt file
Writes the current keylist to a keytab file. You must specify a keytab file to write. If the keytab file already exists, the current keylist is appended to the existing keytab file.

delete_entry number, delent number
Deletes an entry from the current keylist. Specify the entry by the keylist slot number.

list, l
Lists the current keylist.

list_request, lr
Lists available requests (commands).

quit, exit, q
Exits utility.

**EXAMPLES**
**EXAMPLE 1** Deleting a principal from a file

The following example deletes the host/denver@ACME.com principal from the /etc/krb5/krb5.keytab file. Notice that if you want to delete an entry from an existing keytab, you must first write the keylist to a temporary keytab and then overwrite the existing keytab with the temporary keytab. This is because the wkt command actually appends the current keylist to an existing keytab, so you can’t use it to overwrite a keytab.

```
example# /usr/krb5/bin/ktutil
ktutil: rkt /etc/krb5/krb5.keytab
ktutil: list
--- --- --
 1 8 host/vail@ACME.COM
 2 5 host/denver@ACME.COM
ktutil:delent 2
ktutil:l
--- --- --
 1 8 host/vail@ACME.COM
example# mv /tmp/krb5.keytab /etc/krb5/krb5.keytab
```

```
ktutil(1)
```
EXAMPLE 1 Deleting a principal from a file  (Continued)

FILES
/etc/krb5/krb5.keytab  keytab file for Kerberos clients

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWkrbu</td>
</tr>
</tbody>
</table>

SEE ALSO SEAM(5)
The **lari** utility analyzes the interface requirements of dynamic ELF objects. There are two basic modes of operation. The first mode displays runtime interface information. The second mode generates interface definitions.

Dynamic objects offer symbolic definitions that represent the interface that the object provides for external consumers. At runtime, bindings are established from the symbolic references of one object to the symbolic definitions of another object. **lari** analyzes both the interface definitions and runtime bindings of the specified objects.

When displaying runtime interface information, **lari** analyzes each file specified on the command line, or descends into each directory, *dir*, processing each file it finds. When generating interface definitions, only one input file is allowed.

Without the `-D` option, **lari** processes files as dynamic ELF objects using `ldd(1)`. This processing uses the options `-r` and `-e LD_DEBUG=files.bindings.detail` to provide information on all bindings established as part of loading the object. Notice that by using `ldd`, the specified object is not executed, and hence no user controlled loading of objects, by `dlopen(3DL)` for example, will occur. To capture all binding information from an executing process, the following environment variables can be passed directly to the runtime linker, `ld.so.1(1):

```
LD_DEBUG=files.bindings.detail LD_DEBUG_OUTPUT=lari.dbg
LD_BIND_NOW=yes
```

The resulting debug output, `lari.dbg.pid`, can be processed by **lari** using the `-D` option. Note: **lari** attempts to analyze each object that has been processed using the path name defined in the debug output. Each object must therefore be accessible to **lari** for a complete, accurate analysis to be provided. The debug output file must be generated in the C locale.

When displaying interface information, **lari** analyzes the interfaces of the processed dynamic objects and, by default, displays any interesting information. See Interesting Information under EXTENDED DESCRIPTION. The information displayed is also suitable for piping to other tools and can aid developers in analyzing process bindings or debugging complex binding scenarios.

The generation of interface definitions by **lari** can be used to refine the interface requirements of the dynamic objects processed. When creating a dynamic object, you should define an explicit, versioned interface. This definition controls the symbol definitions available to external users and frequently reduces the overall runtime execution cost of the object. Interface definitions may be assigned to an object during its creation by the link-editor using the `-M` option and the associated *mapfile* directives. See the Linker and Libraries Guide for more details on versioning using *mapfiles*. An initial version of these *mapfiles* can be created by **lari**.
The following options are supported.

- `a` Displays all interface information for the objects analyzed. *Note:* The output from this option may be substantial, but it can be useful for piping to other analysis tools.

- `b` Limits the interface information to those symbols that have been explicitly bound to. *Note:* Symbols defined as protected may have been bound to from within the defining object. This binding is satisfied at link-edit time and is therefore not visible to the runtime environment. Protected symbols are displayed with this option.

- `c` Demangles C++ symbol names. This option is useful for augmenting runtime interface information. When generating interface definitions, demangled names are added to the mapfiles as comments.

- `d` *mapdir* Defines the directory, *mapdir*, in which mapfiles are created. By default, the current working directory is used.

- `D` Interprets any input files as debugging information rather than as dynamic objects.

- `i` Displays interesting interface binding information. This mode is the default if no other output controlling option is supplied. See Interesting Information under EXTENDED DESCRIPTION.

- `m` Creates mapfiles for each dynamic object processed. These mapfiles reflect the interface requirements of each object as required by the input file being processed.

- `o` Limits the interface information to those symbols that are deemed an overhead. When creating mapfiles, any overhead symbols are itemized as local symbols. See Overhead Information under EXTENDED DESCRIPTION.

- `s` Saves the bindings information produced from ldd(1) for further analysis. See FILES.

- `v` Ignores any objects that are already versioned. Versioned objects have had their interfaces defined, but may contribute to the interface information displayed. For example, a versioned shared object may reveal overhead symbols for a particular process. Versioned objects are frequently designed for use by multiple processes, and thus their interfaces may extend beyond that which any one process requires. The `-v` option therefore, can reduce noise when displaying interface information.

The runtime interface information produced from lari has the following format:

```
[information]: symbol-name [demangled-name]: object-name
```
Each line describes the interface symbol, *symbol-name*, together with the object, *object-name*, in which it is defined. If the `-C` option is used, the symbol name is accompanied by the symbols demangled name, *demangled-name*. The information field provides one or more of the following tokens that describe the symbol’s use:

- `cnt:bnd`: Two decimal values indicate the symbol count, *cnt*, and the number of bindings to this object, *bnd*. The symbol count is the number of occurrences of this symbol definition found in the objects analyzed. A count greater than 1 indicates multiple instances of a symbol definition. The number of bindings indicates the number of objects that have been bound to this symbol definition by the runtime linker.
- `E`: This symbol definition has been bound to from an external object.
- `S`: This symbol definition has been bound to from the same object.
- `D`: This symbol definition has been directly bound to.
- `I`: This object explicitly identifies itself as an interposor. See the `-z interpose` option of `ld(1)`, and the `LD_PRELOAD` variable of `ld.so.1(1)`.
- `C`: This symbol definition is the reference data of a copy-relocation.
- `F`: This symbol definition resides in a filtee.
- `P`: This symbol is defined as protected. This symbol may have an internal binding from the object in which it is declared. Any internal bindings with this attribute can not be interposed upon by another symbol definition.
- `A`: This symbol definition is the address of a procedure linkage table entry within a dynamic executable.
- `U`: This symbol lookup originated from a user request, for example, `dlsym(3DL)`.

See the *Linker and Libraries Guide* for more details of these symbol classifications.

By default, or specifically using the `-i` option, `lari` filters any runtime interface information to present interesting events. This filtering is carried out mainly to reduce the amount of information generated from large applications. In addition, this information is intended to be the focus in debugging complex binding scenarios, and often highlights problem areas. However, classifying what information is interesting for any particular application is an inexact science. You are still free to use the `-a` option and to search the binding information for events that are unique to the application being investigated.

When an interesting symbol definition is discovered, all other definitions of the same symbol are output.
The focus of interesting interface information is the existence of multiple definitions of a symbol. In this case, one symbol typically interposes on one or more other symbol definitions. This interposition is seen when the binding count, \( bnd \), of one definition is non-zero, while the binding count of all other definitions is zero. Interposition that results from the compilation, or linking environment, is not characterized as interesting. Examples of this include copy relocations ([C]) and the binding to procedure linkage addresses ([A]).

Interposition is often desirable. The intent is to overload, or replace, the symbolic definition from a shared object. Interpositioning objects can be explicitly tagged ([I]), using the -z interpose option of ld(1). These objects will safely interpose on symbols, no matter what order they are loaded in a process. However, be cautious when non-explicit interposition is employed, as this is a consequence of the load-order of the objects that make up the process.

User-created, multiply-defined symbols are output from lari as interesting. In this example, two definitions of `interpose1()` exist, but only the definition in `main` is referenced:

```
[2:1E]: interpose1: ./main
[2:0]: interpose1: ./libA.so
```

Interposition may also be an undesirable and surprising event, caused by an unexpected symbol name clash. A symptom of this interposition might be that a function is never called although you know a reference to it exists. This scenario can be identified as a multiply defined symbol, as covered in the previous example. However, a more surprising scenario is often encountered when an object both defines and references a specific symbol.

An example of this scenario is if two dynamic objects define and reference the same function, `interpose2()`. Any reference to this symbol binds to the first dynamic object loaded with the process. In this case, the definition of `interpose2()` in object `libA.so` interposes on, and hides, the definition of `interpose2()` in object `libB.so`. The output from lari might be:

```
[2:2E]: interpose2: ./libA.so
[2:0]: interpose2: ./libB.so
```

Multiply defined symbols may also be bound to separately. This can be the case when direct bindings is in effect ([D]), or because of a symbol’s protected visibility ([P]). In either case, it may be desirable to establish different bindings, or it may come as a surprise to observe that they exist at all. Directly bound symbols, and symbols with protected visibility, are output as interesting information.

When using the -o option, lari displays symbol definitions that might be considered overhead.
Global symbols that are not referenced are considered an overhead. The symbol information provided within the object unnecessarily adds to the size of the object’s text segment. In addition, the symbol information can increase the processing required to search for other symbolic references within the object at runtime.

Global symbols that are only referenced from the same object have the same characteristics. Searching for the symbolic reference at runtime, only to bind to the same object that made the reference, is an additional overhead.

Both of these symbol definitions are candidates for reduction to local scope by defining the object’s interface. Interface definitions may be assigned to a file during its creation by the link-editor using the -M option and the associated mapfile directives. See the Linker and Libraries Guide for more details on mapfiles. Use lari with the -M option to create initial versions of these mapfiles.

If lari is being used to generate mapfiles, versioned shared objects will have mapfiles created indicating that their overhead symbols should be reduced to locals. This allows lari to generate mapfiles for comparison with existing interface definitions. Use the -v option to ignore versioned shared objects when creating mapfiles.

Copy-relocations are also viewed as an overhead and generally should be avoided. The size of the copied data is a definition of its interface. This definition restricts the ability to change the data size in newer versions of the shared object in which the data is defined. This restriction, plus the cost of processing a copy relocation, can be avoided by referencing data using a functional interface. The output from lari for a copy relocation might be:

```
[2:1EC]: __iob: ./main
[2:0]: __iob: ./libA.so.1
```

Notice that a number of small copy relocations, such as __iob used in the previous example, exist because of historic programming interactions with system libraries.

Another example of overhead information is the binding of a dynamic object to the procedure linkage table entry of a dynamic executable. If a dynamic executable references an external function, a procedure linkage table entry is created. This structure allows the reference binding to be deferred until the function call is actually made. If a dynamic object takes the address of the same referenced function, it binds to the dynamic executables procedure linkage table entry. An example of this type of event is displayed as:

```
[2:1EA]: foo: ./main
[2:1E]: foo: ./libA.so
```

A small number of bindings of this type are typically not cause for concern. However, a large number of these bindings, perhaps from a jump-table programming technique, can contribute to start up overhead. Address relocation bindings of this type require relocation processing at application start up, rather than the deferred relocation processing used when calling functions directly. Use of this address also requires an indirection at runtime.

User Commands  647
EXAMPLE 1 Analyzing a case of multiple bindings

The following example shows the analysis of a process in which multiple symbol definitions exist. The shared objects libX.so and libY.so both call the function interpose(). This function exists in both the application main, and the shared object libA.so. Because of interposition, both references bind to the definition of interpose() in main.

The shared objects libX.so and libY.so also both call the function foo(). This function exists in the application main, and the shared objects libA.so, libX.so, and libY.so. Because both libX.so and libY.so were built with direct bindings enabled, each object binds to its own definition.

```
example% lari ./main
[3:0]: foo: ./libA.so
[3:1SD]: foo: ./libX.so
[3:1SD]: foo: ./libY.so
[2:0]: interpose: ./libA.so
[2:2EP]: interpose: ./main
```

To analyze binding information more thoroughly, the bindings data can be saved and inspected further. For example, the previous output indicates that the function interpose() was called from two objects external to main. Inspecting the binding output reveals where the references to this function originated.

```
example% lari -s ./main
lari: ./main: bindings information saved as: /usr/tmp/lari.dbg.main
.....
example% fgrep foo /usr/tmp/lari.dbg.main
binding file=./libX.so to file=./main: symbol 'interpose'
binding file=./libY.so to file=./main: symbol 'interpose'
```

Note: The bindings output is typically more extensive than shown here, as it is accompanied with process identifier, address and other bindings information.

EXAMPLE 2 Generating an interface definition

The following example creates interface definitions for an application and its dependency, while ignoring any versioned system libraries. The application main makes reference to the interfaces one(), two(), and three() in foo.so:

```
example% lari -omv ./main
example% cat mapfile-foo.so
#
Interface Definition mapfile for:
Dynamic Object: ./foo.so
Process: ./main
#
foo.so {
 global:
 one;
 three;
```

648  man pages section 1: User Commands • Last Revised 10 Sep 2003
EXAMPLE 2 Generating an interface definition  (Continued)

```c

two;
local:
 _one;
 _three;
 _two;
*;
```

FILES

$TMPDIR/lari.dbg.file Binding output produced by ldd(1).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>See below.</td>
</tr>
</tbody>
</table>

Human readable output is Unstable. Options are Evolving.

SEE ALSO

ld(1), ldd(1), ld.so.1(1), dlopen(3DL), dl sym(3DL), attributes(5)

Linker and Libraries Guide
last(1)

NAME | last – display login and logout information about users and terminals
SYNOPSIS | last [-a] [-n number | -number] [-f filename] [name | tty...]

DESCRIPTION | The last command looks in the /var/adm/wtmpx file, which records all logins and logouts, for information about a user, a terminal, or any group of users and terminals. Arguments specify names of users or terminals of interest. If multiple arguments are given, the information applicable to any of the arguments is printed. For example, last root console lists all of root's sessions, as well as all sessions on the console terminal. last displays the sessions of the specified users and terminals, most recent first, indicating the times at which the session began, the duration of the session, and the terminal on which the session took place. last also indicates whether the session is continuing or was cut short by a reboot.

The pseudo-user reboot logs in when the system reboots. Thus,

last reboot

will give an indication of mean time between reboots.

last with no arguments displays a record of all logins and logouts, in reverse order.

If last is interrupted, it indicates how far the search has progressed in /var/adm/wtmpx. If interrupted with a quit signal (generated by a CTRL-\), last indicates how far the search has progressed, and then continues the search.

OPTIONS | The following options are supported:
-a | Displays the hostname in the last column.
-f filename | Uses filename as the name of the accounting file instead of /var/adm/wtmpx.
-n number | Limits the number of entries displayed to that specified by number. These options are identical; the -number option is provided as a transition tool only and will be removed in future releases.

ENVIRONMENT VARIABLES | Date and time format is based on locale specified by the LC_ALL, LC_TIME, or LANG environments, in that order of priority.
FILES | /var/adm/wtmpx accounting file

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>
SEE ALSO utmpx(4), attributes(5)
lastcomm(1)

NAME  lastcomm – display the last commands executed, in reverse order

SYNOPSIS  lastcomm [-f file] [-x] [command-name] ... [user-name] ... [terminal-name] ...

DESCRIPTION  The lastcomm command gives information on previously executed commands. lastcomm with no arguments displays information about all the commands recorded during the current accounting file’s lifetime. If called with arguments, lastcomm only displays accounting entries with a matching command-name, user-name, or terminal-name. If extended process accounting is active (see acctadm(1M)) and is recording the appropriate data items, lastcomm attempts to take data from the current extended process accounting file. If standard process accounting is active, lastcomm takes data from the current standard accounting file (see acct(2)).

If terminal-name is ‘--’, there was no controlling TTY for the process. The process was probably executed during boot time. If terminal-name is ‘??’, the controlling TTY could not be decoded into a printable name.

For each process entry, lastcomm displays the following items of information:

- The command name under which the process was called.
- One or more flags indicating special information about the process. The flags have the following meanings:
  - F The process performed a fork but not an exec.
  - S The process ran as a set-user-id program.
- The name of the user who ran the process.
- The terminal which the user was logged in on at the time (if applicable).
- The amount of CPU time used by the process (in seconds).
- The date and time the process exited.

OPTIONS  The following options are supported:

- `-f file` Uses file as the source of accounting data. file may be either an extended process accounting file or a standard process accounting file.

- `-x` Uses the currently active extended process accounting file. If extended processing accounting is inactive, no output will be produced.

EXAMPLES  EXAMPLE 1 Listing executions of named commands

The command

gives a listing of all the executions of commands named a.out by user root while using the terminal term/01.

652 man pages section 1: User Commands • Last Revised 10 Jan 2000
EXAMPLE 2 Listing all user commands

The command

```bash
example$ lastcomm root
```

produces a listing of all the commands executed by user root.

FILES
/var/adm/pacct standard accounting file
/var/adm/exacct/proc extended accounting file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO
last(1), acctadm(1M), acct(2), acct(3HEAD), sigvec(3UCB), core(4), attributes(5)
The `ld` command combines relocatable object files, performs relocation, and resolves external symbols. `ld` operates in two modes, static or dynamic, as governed by the `-d` option. In all cases, the output of `ld` is left in a `a.out` by default. See NOTES.

In static mode, `-dn`, relocatable object files given as arguments are combined to produce an executable object file. If the `-r` option is specified, relocatable object files are combined to produce one relocatable object file.

In dynamic mode, `-dy`, the default, relocatable object files given as arguments are combined to produce an executable object file that will be linked at execution with any shared object files given as arguments. If the `-G` option is specified, relocatable object files are combined to produce a shared object.

If any argument is a library, `ld` by default searches it exactly once at the point it encounters the library in the argument list. The library may be either a relocatable archive (see ar(3HEAD)) or a shared object.

For an archive library, `ld` loads only those routines that define an unresolved external reference. `ld` searches the archive library symbol table sequentially with as many passes as are necessary to resolve external references that can be satisfied by library members. Thus, the order of members in the library is functionally unimportant, unless multiple library members exist that define the same external symbol. Archive libraries that have interdependencies may require multiple command-line definitions, or use of the `-z rescan` option.

A shared object consists of an indivisible, whole unit that has been generated by a previous link-edit of one or more input files. When the link-editor processes a shared object, the entire contents of the shared object become a logical part of the resulting
output file image. The shared object is not physically copied during the link-edit as its actual inclusion is deferred until process execution. This logical inclusion means that all symbol entries defined in the shared object are made available to the link-editing process.

No command-line option is required to distinguish 32-bit or 64-bit objects. The link-editor uses the ELF class of the first input relocatable object file it sees on the command line to govern the mode in which it will operate. Intermixing 32-bit and 64-bit objects is not permitted. See also the -64 option and the LD_NOEXEC_64 environment variable.

**OPTIONS**

The following options are supported:

- **-64**
  Creates a 64-bit object. By default, the class of the object being generated is determined from the first ELF object processed from the command line. This option is useful when creating an object directly with ld whose input is solely from a mapfile (see the -M option) or an archive library.

- **-a**
  In static mode only, produces an executable object file; gives errors for undefined references. This is the default behavior for static mode. -a may not be used with the -r option.

- **-b**
  In dynamic mode only, does no special processing for relocations that reference symbols in shared objects. Without the -b option, the link-editor creates special position-independent relocations for references to functions defined in shared objects and arranges for data objects defined in shared objects to be copied into the memory image of an executable by the runtime linker.

The -b option is intended for specialized dynamic objects and is not recommended for general use. Its use suppresses all specialized processing required to insure an object’s shareability, and may even prevent the relocation of 64-bit executables.

- **-Bdirect**
  Establishes direct binding information by recording the relationship between each symbol reference and the dependency that provides the definition. The runtime linker uses this information to search directly for the symbol in the associated object rather than to carry out its default symbol search. Direct binding information can only be established to dependencies specified with the link-edit. Thus, you should use the -z defs option. Objects that wish to interpose on symbols in a direct binding environment should identify themselves as interposers with the -z interpose option. The use of -B direct enables -z lazyload for all dependencies.

- **-B dynamic | static**
  Options governing library inclusion. -B dynamic is valid in dynamic mode only. These options may be specified any number of times on the command line as toggles: if the -B static option is given, no shared objects will be accepted until -B dynamic is seen. See also the -l option.
Beliminate
Causes any global symbols not assigned to a version definition to be eliminated from the symbol table. This option achieves the same symbol elimination as the auto-elimination directive available as part of a mapfile version definition.

-B group
Establishes a shared object and its dependencies as a group. Objects within the group will be bound to other members of the group at runtime. The runtime processing of an object containing this flag mimics that which occurs if the object is added to a process using dlopen(3DL) with the RTLD_GROUP mode. An object that has an explicit dependency on a object identified as a group, will itself become a member of the group.

As the group must be self contained, use of the -B group option also asserts the -z defs option.

-B local
Causes any global symbols, not assigned to a version definition, to be reduced to local. Version definitions can be supplied via a mapfile and indicate the global symbols that should remain visible in the generated object. This option achieves the same symbol reduction as the auto-reduction directive available as part of a mapfile version definition and may be useful when combining versioned and non-versioned relocatable objects.

-B reduce
When generating a relocatable object, causes the reduction of symbolic information defined by any version definitions. Version definitions can be supplied via a mapfile to indicate the global symbols that should remain visible in the generated object. When a relocatable object is generated, by default version definitions are only recorded in the output image. The actual reduction of symbolic information will be carried out when the object itself is used in the construction of a dynamic executable or shared object. This option is applied automatically when dynamic executable or shared object is created.

-B symbolic
In dynamic mode only. When building a shared object, binds references to global symbols to their definitions, if available, within the object. Normally, references to global symbols within shared objects are not bound until runtime, even if definitions are available, so that definitions of the same symbol in an executable or other shared object can override the object’s own definition. ld will issue warnings for undefined symbols unless -z defs overrides.

The -B symbolic option is intended for specialized dynamic objects and is not recommended for general use. To reduce the runtime relocation overhead of an object, the creation of a version definition is recommended.

-c name
Records the configuration file name for use at runtime. Configuration files may be employed to alter default search paths, provide a directory cache and provide alternative object dependencies. See crle(1).
Demangles C++ symbol names displayed in diagnostic messages.

When -dy, the default, is specified, ld uses dynamic linking; when -dn is specified, ld uses static linking. See also -B dynamic|static.

Prints debugging information, as specified by each token, to the standard error. The special token help indicates the full list of tokens available.

Sets the entry point address for the output file to be that of the symbol epsym.

Useful only when building a shared object. Specifies that the symbol table of the shared object is used as an auxiliary filter on the symbol table of the shared object specified by name. Multiple instances of this option are allowed. This option may not be combined with the -F option.

Useful only when building a shared object. Specifies that the symbol table of the shared object is used as a filter on the symbol table of the shared object specified by name. Multiple instances of this option are allowed. This option may not be combined with the -f option.

In dynamic mode only, produces a shared object. Undefined symbols are allowed.

In dynamic mode only, when building a shared object, records name in the object’s dynamic section. name will be recorded in dynamic objects that are linked with this object rather than the object’s file system name. Accordingly, name will be used by the runtime linker as the name of the shared object to search for at runtime.

Ignores LD_LIBRARY_PATH. This option is useful when an LD_LIBRARY_PATH setting is in effect to influence the runtime library search, which would interfere with the link-editing being performed.

When building an executable, uses name as the path name of the interpreter to be written into the program header. The default in static mode is no interpreter; in dynamic mode, the default is the name of the runtime linker, ld.so.1(1). Either case may be overridden by -I name. exec(2) will load this interpreter when it loads a.out and will pass control to the interpreter rather than to a.out directly.

Searches a library libx.so or libx.a, the conventional names for shared object and archive libraries, respectively. In dynamic mode, unless the -B static option is in effect, ld searches each directory specified in the library search path for a libx.so or libx.a file. The directory search stops at the first directory containing either. ld chooses the file ending in .so if -lx expands to two files with names of
the form `libx.so` and `libx.a`. If no `libx.so` is found, then `ld` accepts `libx.a`. In static mode, or when the `-B static` option is in effect, `ld` selects only the file ending in `.a`. `ld` searches a library when it encounters its name, so the placement of `-l` is significant.

`-L path`

Adds `path` to the library search directories. `ld` searches for libraries first in any directories specified by the `-L` options and then in the standard directories. This option is useful only if it precedes the `-l` options to which it applies on the command line. The environment variable `LD_LIBRARY_PATH` may be used to supplement the library search path. See `LD_LIBRARY_PATH` below.

`-m`

Produces a memory map or listing of the input/output sections, together with any non-fatal multiply-defined symbols, on the standard output.

`-M mapfile`

Reads `mapfile` as a text file of directives to `ld`. This option may be specified multiple times. If `mapfile` is a directory, then all regular files, as defined by `stat(2)`, within the directory will be processed. See `Linker and Libraries Guide` for a description of mapfiles. There are mapfiles in `/usr/lib/ld` that show the default layout of programs, mapfiles for linking 64-bit programs above or below 4 gigabytes, and a mapfile for establishing a non-executable stack within an application. See the FILES section below.

`-N string`

This option causes a `DT_NEEDED` entry to be added to the `.dynamic` section of the object being built. The value of the `DT_NEEDED` string will be the `string` specified on the command line. This option is position dependent, and the `DT_NEEDED` `.dynamic` entry will be relative to the other dynamic dependencies discovered on the link-edit line. This option is useful for specifying dependencies within device driver relocatable objects when combined with the `-dy` and `-r` options.

`-o outfile`

Produces an output object file named `outfile`. The name of the default object file is `a.out`.

`-p auditlib`

Identifies an audit library, `auditlib`, that is used to audit this object at runtime. Any shared object identified as requiring auditing of itself has this requirement inherited by any object specifying this shared object as a dependency. See also the `-P` option.

`-P auditlib`

Identifies an audit library, `auditlib`, that is used to audit this object’s dependencies at runtime. Dependency auditing can also be inherited from dependencies identified as requiring auditing. See also the `-p` option.

`-Qy | n`

Under `-Q y`, an `ident` string is added to the `.comment` section of the output file to identify the version of the link-editor used to create the file. This results in multiple
ld identifies when there have been multiple linking steps, such as when using \texttt{ld -r}. This is identical with the default action of the \texttt{cc} command. \texttt{-Qn} suppresses version identification.

\texttt{-r}

Combines relocatable object files to produce one relocatable object file. \texttt{ld} will not complain about unresolved references. This option cannot be used with the \texttt{-a} option.

\texttt{-R path}

A colon-separated list of directories used to specify library search directories to the runtime linker. If present and not NULL, it is recorded in the output object file and passed to the runtime linker. Multiple instances of this option are concatenated together with each \texttt{path} separated by a colon.

\texttt{-s}

Strips symbolic information from the output file. Any debugging information, that is, .line, .debug*, and .stab* sections, and their associated relocation entries are removed. Except for relocatable files, a symbol table SHT_SYMTAB and its associated string table section are not created in the output object file. See also \texttt{-z redlocsym}.

\texttt{-S supportlib}

The shared object \texttt{supportlib} is loaded with the link-editor and given information regarding the linking process. Support shared objects may also be supplied using the \texttt{SGS_SUPPORT} environment variable. See \textit{Linker and Libraries Guide} for more details.

\texttt{-t}

Turns off the warning for multiply-defined symbols that have different sizes or alignments.

\texttt{-u symname}

Enters \texttt{symname} as an undefined symbol in the symbol table. This is useful for loading entirely from an archive library, since initially the symbol table is empty, and an unresolved reference is needed to force the loading of the first routine. The placement of this option on the command line is significant; it must be placed before the library that will define the symbol.

\texttt{-V}

Outputs a message giving information about the version of \texttt{ld} being used.

\texttt{-Y P, diplist}

Changes the default directories used for finding libraries. \texttt{diplist} is a colon-separated path list.

\texttt{-z absexec}

Useful only when building a dynamic executable. Specifies that references to external absolute symbols should be resolved immediately instead of being left for resolution at runtime. In very specialized circumstances, this option removes text relocations that can result in excessive swap space demands by an executable.
-z allextact | defaultextract | weakextract
   Alters the extraction criteria of objects from any archives that follow. By default, archive members are extracted to satisfy undefined references and to promote tentative definitions with data definitions. Weak symbol references do not trigger extraction. Under -z allextact, all archive members are extracted from the archive. Under -z weakextract, weak references trigger archive extraction. -z defaultextract provides a means of returning to the default following use of the former extract options.

- z combrelloc
   Combines multiple relocation sections. Historically, relocation sections are maintained in a one-to-one relationship with the sections to which the relocations will be applied. When building an executable or shared object, ld sorts the entries of data relocation sections by their symbol reference so as to reduce runtime symbol lookup. Combining multiple data relocation sections allows optimal sorting and hence the least relocation overhead when objects are loaded into memory.

- z def s | nodefs
   The -z def s option forces a fatal error if any undefined symbols remain at the end of the link. This is the default when an executable is built, but for historic reasons is not the default when building a shared object. Use of the -z def s option is recommended, as it assures the object being built is self-contained, that is, that all its symbolic references are resolved internally or to the object’s immediate dependencies.

   The -z nodefs option allows undefined symbols. For historic reasons, this is the default when a shared object is built. When used with executables, the behavior of references to such undefined symbols is unspecified. Use of the -z nodefs option is not recommended.

- z direct | nodirect
   Enables or disables direct binding to any dependencies that follow on the command line. These options allow finer control over direct binding than the global counterpart -B direct.

- z endfilttee
   Marks a filttee so that when processed by a filter it terminates any further filttee searches by the filter.

- z finiarray=functi on
   Appends an entry to the .finiarray section of the object being built. If no .finiarray section is present, one is created. The new entry is initialized to point to function. See Linker and Libraries Guide for more details.

- z groupperm | nogroupperm
   Assigns, or deassigns each dependency that follows to a unique group. Assigning a dependency to a group has the same effect as if the dependency had been built using the -B group option.
-z ignore | record
Ignores, or records, dynamic dependencies that are not referenced as part of the
link-edit. Ignores, or records, unreferenced ELF sections from the relocatable objects
input as part of the link-edit. By default, -z record is in effect.

If an ELF section is ignored, it is eliminated from the output file being generated. A
section is ignored when three conditions are true, that is, if the section contributes
to an allocatable segment, if it provides no global symbols, and if no other section
from any object that contributes to the link-edit references it.

-z initarray=function
Appends an entry to the .initarray section of the object being built. If no
.initarray section is present, one is created. The new entry is initialized to point

-z initfirst
Marks the object so that its runtime initialization occurs before the runtime
initialization of any other objects brought into the process at the same time. In
addition, the object runtime finalization will occur after the runtime finalization of
any other objects removed from the process at the same time. This option is only
meaningful when building a shared object.

-z interpose
Marks the object as an interposer. When direct bindings are in effect (see -B
direct), the runtime linker will search for symbols in any interposers before the
object associated to the direct binding.

-z lazyload | nolazyload
Enables or disables the marking of dynamic dependencies to be lazily loaded.
Dynamic dependencies which are marked lazyload will not be loaded at initial
process start-up, but instead will be delayed until the first binding to the object is
made. Note: Lazy loading can require the correct declaration of dependencies and
associated runpaths for each dynamic object used within a process. See Linker and

-z ld32=arg1,arg2,...
-z ld64=arg1,arg2,...
The class of the link-editor is affected by the class of the output file being created
and by the capabilities of the underlying operating system. This option provides a
means of defining any link-editor argument, such that it will only be interpreted,
respectively, by the 32– or 64–bit class of the link-editor.

For example, support libraries are class specific, so the correct class of support
library can be insured using:

```bash
ld ... -z ld32=-Saudit32.so.1 -z ld64=-Saudit64.so.1 ...
```

Note: The class of link-editor invoked is in part determined from the ELF class of the
first input relocatable file seen on the command line. This determination is carried
out prior to any -z ld[32|64] processing.
-z loadfltr
Marks the object to require that when building a filter, its fileees be processed immediately at runtime. Normally, filter processing is delayed until a symbol reference is bound to the filter. The runtime processing of an object that contains this flag mimics that which occurs if the LD_LOADFLTR environment variable is in effect. See ld.so.1(1).

-z muldefs
Allows multiple symbol definitions. By default, multiple symbol definitions that occur between relocatable objects will result in a fatal error condition. This option suppresses the error condition and allows the first symbol definition to be taken.

-z nocompstrtab
Disables the compression of ELF string tables.

-z nodefaultlib
Marks the object so that the runtime default library search path (used after any LD_LIBRARY_PATH or runpaths) is ignored. This option implies that all dependencies of the object can be satisfied from its runpath.

-z nodelete
Marks the object as non-deletable at runtime. The runtime processing of an object that contains this flag mimics that which occurs if the object is added to a process using dlopen(3DL) with the RTLD_NODELETE mode.

-z nodlopen
Marks the object as not available to dlopen(3DL), either as the object specified by the dlopen(), or as any form of dependency required by the object specified by the dlopen(). This option is only meaningful when building a shared object.

-z nodump
Marks the object as not available to dldump(3DL).

-z nopartial
If there are any partially initialized symbols in the input relocatable object files, the partially initialized symbols are expanded when the output file is generated.

-z nowversion
Does not record any versioning sections. Any version sections or associated .dynamic section entries will not be generated in the output image.

-z now
Marks the object to override the runtime linker’s default mode and require non-lazy runtime binding. This is similar to adding the object to the process by using dlopen(3DL) with the RTLD_NOW mode, or setting the LD_BIND_NOW environment variable in effect. See ld.so.1(1).

-z origin
Marks the object as requiring immediate $ORIGIN processing at runtime. This option is only maintained for historic compatibility, as the runtime analysis of objects to provide for $ORIGIN processing is now default.
-z preinitarray=\textit{function}
  Appends an entry to the .\textit{preinitarray} section of the object being built. If no .\textit{preinitarray} section is present, one is created. The new entry is initialized to point to \textit{function}. See Linker and Libraries Guide for more details.

-\texttt{z redlocsym}
  Eliminates all local symbols except for the \textit{SECT} symbols from the symbol table \texttt{SHT SYMTAB}. All relocations that refer to local symbols will be updated to refer to the corresponding \textit{SECT} symbol.

-\texttt{z rescans}
  Rescans the archive files provided to the link-edit. By default, archives are processed once as they appear on the command line. Archives are traditionally specified at the end of the command line so that their symbol definitions resolve any preceding references. However, it is often necessary to specify the archives multiple times to satisfy their own interdependencies.

The -\texttt{z rescans} option causes the entire archive list to be reprocessed in an attempt to locate additional archive members that resolve symbol references. This archive rescanning continues until a pass over the archive list occurs in which no new members are extracted.

-\texttt{z text}
  In dynamic mode only, forces a fatal error if any relocations against non-writable, allocatable sections remain. For historic reasons, this is not the default when building an executable or shared object. However, its use is recommended to insure that the text segment of the dynamic object being built is shareable between multiple running processes, and that the object incurs the least relocation overhead when loaded into memory.

-\texttt{z textoff}
  In dynamic mode only, allows relocations against all allocatable sections, including non-writable ones. This is the default when building a shared object.

-\texttt{z textwarn}
  In dynamic mode only, lists a warning if any relocations against non-writable, allocatable sections remain. This is the default when building an executable.

-\texttt{z verbose}
  This option provides additional warning diagnostics during a link-edit. Presently, its implementation conveys suspicious use of displacement relocations, but in future it may be enhanced to provide additional diagnostics deemed too noisy to be generated by default.

\texttt{LD_LIBRARY_PATH}
A list of directories in which to search for libraries specified with the -l option. Multiple directories are separated by a colon. In the most general case, it will contain two directory lists separated by a semicolon:

\texttt{dirlist1 ; dirlist2}

If \texttt{id} is called with any number of occurrences of -L, as in:
then the search path ordering is:

```
dirlist1 path1 ... pathn dirlist2 LIBPATH
```

When the list of directories does not contain a semicolon, it is interpreted as `dirlist2`.

The `LD_LIBRARY_PATH` environment variable also affects the runtime linkers searching for dynamic dependencies.

This environment variable can be specified with a `_32` or `_64` suffix. This makes the environment variable specific, respectively, to 32-bit or 64-bit processes and overrides any non-suffixed version of the environment variable that may be in effect.

**LD_NOEXEC_64**

Suppresses the automatic execution of the 64-bit link-editor. By default, the link-editor will execute its 64-bit version when the ELF class of the first input relocatable file it reads identifies it as a 64-bit object. Although there are some limitations to the 64-bit image that a 32-bit link-editor can create, some link-edits may find using the 32-bit link-editor faster.

**LD_OPTIONS**

A default set of options to `ld`. `LD_OPTIONS` is interpreted by `ld` just as though its value had been placed on the command line, immediately following the name used to invoke `ld`, as in:

```
ld $LD_OPTIONS ... other-arguments ...
```

**LD_RUN_PATH**

An alternative mechanism for specifying a runpath to the link-editor. See the `-R` option. If both `LD_RUN_PATH` and the `-R` option are specified, `-R` supersedes.

**SGS_SUPPORT**

Provides a colon-separated list of shared objects that are loaded with the link-editor and given information regarding the linking process. This environment variable can be specified with a `_32` or `_64` suffix. This makes the environment variable specific, respectively, to the 32-bit or 64-bit class of `ld` and overrides any non-suffixed version of the environment variable that may be in effect. See also the `-S` option.

Notice that environment variable-names beginning with the characters ``LD_`' are reserved for possible future enhancements to `ld` and `ld.so.1`.

**FILES**

- **libx.so**
  - shared object libraries.

- **libx.a**
  - archive libraries.

- **a.out**
  - default output file.
LIBPATH
/usr/lib for 32-bit libraries, or /usr/lib/64 for 64-bit libraries.

/usr/lib/ld/map.bssalign
mapfile providing a template for aligning bss.

/usr/lib/ld/map.default
mapfile showing default layout of 32-bit programs.

/usr/lib/ld/map.nox stk
mapfile showing a non-executable stack definition.

/usr/lib/ld/sparcv9/map.default
mapfile showing default layout of 64-bit SPARCv9 programs.

/usr/lib/ld/sparcv9/map.above4G
mapfile showing suggested layout above 4 gigabytes of 64-bit SPARCv9 programs.

/usr/lib/ld/sparcv9/map.below4G
mapfile showing suggested layout below 4 gigabytes of 64-bit SPARCv9 programs.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO
as(1), crle(1), gprof(1), ld.so.1(1), pvs(1), exec(2), stat(2), dllopen(3DL), dlldump(3DL), elf(3ELF), ar(3HEAD), a.out(4), attributes(5)

Linker and Libraries Guide

NOTES
Default options applied by ld are maintained for historic reasons. In today’s programming environment, where dynamic objects dominate, alternative defaults would often make more sense. However, historic defaults must be maintained to insure compatibility with existing program development environments. Historic defaults are called out wherever possible in this manual. For a description of current recommended options, see the “Link-Editor Quick Reference” in the Linker and Libraries Guide.

If the file being created by ld already exists, it will be truncated after all input files have been processed and overridden with the new file contents. ld does not create a temporary file as part of the link-edit, since multiple instances of large output files frequently exhaust system resources. The drawback of overriding an existing file occurs if the file is in use by a running process. In this case, the process may be prematurely terminated as the output files image is created. This situation can be avoided by removing the output file before performing the link-edit. This removal is not detrimental to the running process, as it frees up the file system namespace, not the actual disk space, for the new output file creation. The disk space of a removed file is freed when the last process referencing the file terminates.
NAME
ld – link editor, dynamic link editor

SYNOPSIS
/usr/ucb/ld [options]

DESCRIPTION
/usr/ucb/ld is the link editor for the BSD Compatibility Package. /usr/ucb/ld is identical to /usr/ccs/bin/ld (see ld(1)) except that BSD libraries and routines are included before the base libraries and routines.

OPTIONS
/usr/ucb/ld accepts the same options as /usr/ccs/bin/ld, with the following exceptions:

-\texttt{-Ldir}
Add \textit{dir} to the list of directories searched for libraries by /usr/ccs/bin/ld. Directories specified with this option are searched before /usr/ucb/lib and /usr/lib.

-\texttt{-Y LU,dir}
Change the default directory used for finding libraries. Warning: This option may have unexpected results, and should not be used.

FILES
/usr/lib
/usr/lib/libx.a
/usr/ucb/lib
/usr/ucb/lib/libx.a

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

\begin{tabular}{|l|l|}
\hline
ATTRIBUTE TYPE & ATTRIBUTE VALUE \\
\hline
Availability & SUNWscpu \\
\hline
\end{tabular}

SEE ALSO
ar(1), as(1), cc(1B), ld(1), lorder(1), strip(1), tsort(1), attributes(5)
LDAP refers to Lightweight Directory Access Protocol, which is an industry standard for accessing directory servers. By initializing the client using `ldapclient(1M)` and using the keyword `ldap` in the name service switch file, `/etc/nsswitch.conf`, Solaris clients can obtain naming information from an LDAP server. Information such as usernames, hostnames, and passwords are stored on the LDAP server in a Directory Information Tree or DIT. The DIT consists of entries which in turn are composed of attributes. Each attribute has a type and one or more values.

Solaris LDAP clients use the LDAP v3 protocol to access naming information from LDAP servers. The LDAP server must support the object classes and attributes defined in RFC2307bis (draft), which maps the naming service model on to LDAP. As an alternate to using the schema defined in RFC2307bis (draft), the system can be configured to use other schema sets and the schema mapping feature is configured to map between the two. Refer to the System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) for more details.

The `ldapclient(1M)` utility can make a Solaris machine an LDAP client by setting up the appropriate directories, files, and configuration information. The LDAP client caches this configuration information in local cache files. This configuration information is accessed through the `ldap_cachemgr(1M)` daemon. This daemon also refreshes the information in the configuration files from the LDAP server, providing better performance and security. The `ldap_cachemgr` must run at all times for the proper operation of the naming services.

There are two types of configuration information, the information available through a profile, and the information configured per client. The profile contains all the information as to how the client accesses the directory. The credential information for proxy user is configured on a per client basis and is not downloaded through the profile.

The profile contains server-specific parameters that are required by all clients to locate the servers for the desired LDAP domain. This information could be the server's IP address and the search base Distinguished Name (DN), for instance. It is configured on the client from the default profile during client initialization and is periodically updated by the `ldap_cachemgr` daemon when the expiration time has elapsed.

Client profiles can be stored on the LDAP server and may be used by the `ldapclient` utility to initialize an LDAP client. Using the client profile is the easiest way to configure a client machine. See `ldapclient(1M)`.

Credential information includes client-specific parameters that are used by a client. This information could be the Bind DN (LDAP "login" name) of the client and the password. If these parameters are required, they are manually defined during the initialization through `ldapclient(1M)`.

The naming information is stored in containers on the LDAP server. A container is a non-leaf entry in the DIT that contains naming service information. Containers are similar to maps in NIS and tables in NIS+. A default mapping between the NIS
The location of these containers as well as their names can be overridden through the use of serviceSearchDescriptors. For more information see ldapclient(1M).

<table>
<thead>
<tr>
<th>Database</th>
<th>Object Class</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>passwd</td>
<td>posixAccount</td>
<td>ou=people,dc=...</td>
</tr>
<tr>
<td></td>
<td>shadowAccount</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>posixGroup</td>
<td>ou=Group,dc=...</td>
</tr>
<tr>
<td>services</td>
<td>ipService</td>
<td>ou=Services,dc=...</td>
</tr>
<tr>
<td>protocols</td>
<td>ipProtocol</td>
<td>ou=Protocols,dc=...</td>
</tr>
<tr>
<td>rpc</td>
<td>oncRpc</td>
<td>ou=Rpc,dc=...</td>
</tr>
<tr>
<td>hosts</td>
<td>ipHost</td>
<td>ou=Hosts,dc=...</td>
</tr>
<tr>
<td>ipnodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethers</td>
<td>ieee802Device</td>
<td>ou=Ethers,dc=...</td>
</tr>
<tr>
<td>bootparams</td>
<td>bootableDevice</td>
<td>ou=Ethers,dc=...</td>
</tr>
<tr>
<td>networks</td>
<td>ipNetwork</td>
<td>ou=Networks,dc=...</td>
</tr>
<tr>
<td>netmasks</td>
<td>ipNetwork</td>
<td>ou=Networks,dc=...</td>
</tr>
<tr>
<td>netgroup</td>
<td>nisNetgroup</td>
<td>ou=Netgroup,dc=...</td>
</tr>
<tr>
<td>aliases</td>
<td>mailGroup</td>
<td>ou=Aliases,dc=...</td>
</tr>
<tr>
<td>publickey</td>
<td>nisKeyObject</td>
<td></td>
</tr>
<tr>
<td>generic</td>
<td>nisObject</td>
<td>nisMapName=...,dc=...</td>
</tr>
<tr>
<td>printers</td>
<td>printerService</td>
<td>ou=Printers,dc=...</td>
</tr>
<tr>
<td>auth_attr</td>
<td>SolarisAuthAttr</td>
<td>ou=SolarisAuthAttr,dc=...</td>
</tr>
<tr>
<td>prof_attr</td>
<td>SolarisProfAttr</td>
<td>ou=SolarisProfAttr,dc=...</td>
</tr>
<tr>
<td>exec_attr</td>
<td>SolarisExecAttr</td>
<td>ou=SolarisExecAttr,dc=...</td>
</tr>
<tr>
<td>user_attr</td>
<td>SolarisUserAttr</td>
<td>ou=people,dc=...</td>
</tr>
<tr>
<td>audit_attr</td>
<td>SolarisAuditAttr</td>
<td>ou=people,dc=...</td>
</tr>
</tbody>
</table>

The security model for clients is defined by a combination of the credential level to be used, the authentication method, and the PAM module to be used, that is, pam_unix versus pam_ldap. The credential level defines what credentials the client should use to authenticate to the directory server, and the authentication method defines the method of choice. Both these can be set with multiple values. The Solaris LDAP supports the following values for credential level:
The Solaris LDAP supports the following values for authentication method:

- none
- simple
- sasl/CRAM-MD5
- sasl/DIGEST-MD5
- tls:simple
- tls:sasl/CRAM-MD5
- tls:sasl/DIGEST-MD5

More protection can be provided by means of access control, allowing the server to grant access for certain containers or entries. Access control is specified by Access Control Lists (ACL’s) that are defined and stored in the LDAP server. The Access Control Lists on the LDAP server are called Access Control Instructions (ACI’s) by the iPlanet Directory Server. Each ACL or ACI specifies one or more directory objects, for example, the cn attribute in a specific container, one or more clients to whom you grant or deny access, and one or more access rights that determine what the clients can do to or with the objects. Clients can be users or applications. Access rights can be specified as read and write, for example. Refer to the *System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)* regarding the restrictions on ACL’s and ACI’s when using LDAP as a naming repository.

A sample `nsswitch.conf(4)` file called `nsswitch.ldap` is provided in the `/etc` directory. This is copied to `/etc/nsswitch.conf` by the `ldapclient(1M)` utility. This file uses LDAP as a repository for the different databases in the `nsswitch.conf` file.

The following is a list of the user commands related to LDAP:

- `idsconfig(1M)` Prepares an iPlanet Directory Server to be ready to support Solaris LDAP clients.
- `ldapaddent(1M)` Creates LDAP entries from corresponding `/etc` files.
- `ldapclient(1M)` Initializes LDAP clients, or generate a configuration profile to be stored in the directory.
- `ldaplist(1)` Lists the contents of the LDAP naming space.

**FILES**

- `/var/ldap/ldap_client_cred` Files that contain the LDAP configuration of the client. Do not manually modify these files. Their content is not guaranteed to be human readable. Use `ldapclient(1M)` to update them.
- `/etc/nsswitch.conf` Configuration file for the name-service switch.
### SEE ALSO

ldaplist(1), idsconfig(1M), ldap_cachemgr(1M), ldapaddent(1M),
ldapclient(1M), nsswitch.conf(4), pam.conf(4), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam ldap(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5),

### NOTES

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).
ldapdelete – ldap delete entry tool

SYNOPSIS

          [-w passwd] [-h ldaphost] [-M authentication] [-p ldapport] [dn…]

DESCRIPTION

The ldapdelete utility opens a connection to an LDAP server, then binds and
deletes one or more entries. If one or more dn arguments are provided, entries with
those distinguished names are deleted. If no dn arguments are provided, a list of DNs
is read from file, if the -f option is specified, or from standard input.

OPTIONS

The following options are supported:

- c
  Continuous operation mode. Errors are reported, but
  ldapdelete will continue with deletions. The default
  is to exit after reporting an error.

- d debuglevel
  Sets the LDAP debugging level. Useful levels of
depending for ldapdelete are:

      1     Trace
      2     Packets
      4     Arguments
     32     Filters
    128     Access control

    To request more than one category of debugging
    information, add the masks. For example, to request
    trace and filter information, specify a debuglevel of 33.

- D binddn
  Uses the distinguished name binddn to bind to the
directory.

- f file
  Reads the entry deletion information from file instead
  of from standard input.

- h ldaphost
  Specifies an alternate host on which the slapd server is
  running.

- M authentication
  Specifies the authentication mechanism used to bind to
  the directory.

  The default authentication method for ldapdelete is
  simple bind. simple bind sends the password to the
  server in the clear. The password is subject to snooping
  if the server is not local. You must use special care
  when you use this command with the default
  authentication method. If your server supports the
challenge response method CRAM-MD5 authentication method, you can override the default authentication method by using the -M option with CRAM-MD5 as the value for authentication.

The bind DN and bind password are mandatory with this option.

-\texttt{n}
shows what would be done, but does not actually delete entries. Useful in conjunction with options -\texttt{v} and -\texttt{d} for debugging.

-\texttt{p \textit{ldapport}}
specifies an alternate TCP port where the slapd server is listening.

-\texttt{v}
uses verbose mode, with diagnostics written to standard output.

-\texttt{w \textit{passwd}}
use \textit{passwd} as the password for authentication to the directory. When you use -\texttt{w \textit{passwd}} to specify the password to be used for authentication, the password is visible to other users of the system by means of the \texttt{ps} command, in script files or in shell history. If you use the \texttt{ldapdelete} command without this option, the command will prompt for the password and read it from standard in. When used without the -\texttt{w} option, the password will not be visible to other users.

\textbf{OPERANDS} The following operand is supported:

\texttt{dn}
specifies one or several distinguished names of entries to delete.

\textbf{EXAMPLES} \textbf{EXAMPLE 1 Deleting an entry}

To delete the entry named with commonName \texttt{Delete Me} directly below the XYZ Corporation organizational entry, use the following command:

\texttt{example\% ldapdelete -D "cn=Administrator, o=XYZ, c=US" \ "cn=Delete Me, o=XYZ, c=US"}

\textbf{ATTRIBUTES} See attributes\texttt{(5)} for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

\textbf{EXIT STATUS} The following exit values are returned:

672 man pages section 1: User Commands • Last Revised 8 Jan 2003
Successful completion.
Non-zero An error occurred. A diagnostic message is written to standard error.

SEE ALSO ldapadd(1), ldapmodify(1), ldapmodrdn(1), ldapsearch(1),
ldap_get_option(3LDAP), ldap_set_option(3LDAP), attributes(5)
ldaplist(1)

NAME       ldaplist – search and list naming information from a LDAP directory using the configured profile

SYNOPSIS   /usr/bin/ldaplist [-dlv] [database [key] ...]
            /usr/bin/ldaplist -h

DESCRIPTION The ldaplist utility searches for and lists the naming information from the LDAP directory service defined in the LDAP configuration files generated by ldapclient(1M) during the client initialization phase. The Solaris LDAP client must be set up in order to use this utility.

The database is either a container name or a database name as defined in nsswitch.conf(4). A container is a non-leaf entry in the Directory Information Tree (DIT) that contains naming service information. The container name is the LDAP Relative Distinguished Name (RDN) of the container relative to the defaultSearchBase as defined in the configuration files. For example, for a container named ou=people, the database name is the database specified in nsswitch.conf. This database is mapped to a container, for example, passwd maps to ou=people. If an invalid database is specified, it will be mapped to a generic container, for example, nisMapName=name).

The key is the attribute value to be searched in the database. You can specify more than one key to be searched in the same database. The key can be specified in either of two forms: attribute=value or value. In the first case, ldaplist passes the search key to the server. In the latter case, an attribute is assigned depending on how the database is specified. If the database is a container name, then the "cn" attribute type is used. If it is a valid database name as defined in the nsswitch.conf, then a predefined attribute type is used (see table below). If it is an invalid database name, then cn is used as the attribute type.

The ldaplist utility relies on the Schema defined in the RFC 2307bis, currently an IETF draft. The data stored on the LDAP server must be stored based on this Schema, unless the profile contains schema mapping definitions. For more information on schema mapping see ldapclient(1M). The following table lists the default mapping from the database names to the container, the LDAP object class, and the attribute type used if not defined in the key.

<table>
<thead>
<tr>
<th>Database</th>
<th>Object Class</th>
<th>Attribute Type</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliases</td>
<td>mailGroup</td>
<td>cn</td>
<td>ou=Aliases</td>
</tr>
<tr>
<td>automount</td>
<td>nisObject</td>
<td>cn</td>
<td>nisMapName=auto_*</td>
</tr>
<tr>
<td>bootparams</td>
<td>bootableDevice</td>
<td>cn</td>
<td>ou=Ethers</td>
</tr>
<tr>
<td>ethers</td>
<td>ieee802Device</td>
<td>cn</td>
<td>ou=Ethers</td>
</tr>
<tr>
<td>group</td>
<td>posixgroup</td>
<td>cn</td>
<td>ou=Group</td>
</tr>
</tbody>
</table>
### DATABASE CHARACTERIZATION

<table>
<thead>
<tr>
<th>Database</th>
<th>Object Class</th>
<th>Attribute Type</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>hosts</td>
<td>ipHost</td>
<td>cn</td>
<td>ou=Hosts</td>
</tr>
<tr>
<td>ipnodes</td>
<td>ipHost</td>
<td>cn</td>
<td>ou=Hosts</td>
</tr>
<tr>
<td>netgroup</td>
<td>ipNetgroup</td>
<td>cn</td>
<td>ou=Netgroup</td>
</tr>
<tr>
<td>netmasks</td>
<td>ipNetwork</td>
<td>ipnetworknumber</td>
<td>ou=Networks</td>
</tr>
<tr>
<td>networks</td>
<td>ipNetwork</td>
<td>ipnetworknumber</td>
<td>ou=Networks</td>
</tr>
<tr>
<td>passwd</td>
<td>posixAccount</td>
<td>uid</td>
<td>ou=People</td>
</tr>
<tr>
<td>protocols</td>
<td>ipProtocol</td>
<td>cn</td>
<td>ou=Protocols</td>
</tr>
<tr>
<td>publickey</td>
<td>nisKeyObject</td>
<td>uidnumber</td>
<td>ou=People</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cn</td>
<td>ou=Hosts</td>
</tr>
<tr>
<td>rpc</td>
<td>oncRpc</td>
<td>cn</td>
<td>ou=Rpc</td>
</tr>
<tr>
<td>services</td>
<td>ipService</td>
<td>cn</td>
<td>ou=Services</td>
</tr>
<tr>
<td>printers</td>
<td>printerService</td>
<td>printer-uri</td>
<td>ou=printers</td>
</tr>
<tr>
<td>auth_attr</td>
<td>SolarisAuthAttr</td>
<td>nameT</td>
<td>ou=SolarisAuthAttr</td>
</tr>
<tr>
<td>prof_attr</td>
<td>SolarisProfAttr</td>
<td>nameT</td>
<td>ou=SolarisProfAttr</td>
</tr>
<tr>
<td>exec_attr</td>
<td>SolarisExecAttr</td>
<td>nameT</td>
<td>ou=SolarisProfAttr</td>
</tr>
<tr>
<td>user_attr</td>
<td>SolarisUserAttr</td>
<td>uidT</td>
<td>ou=people</td>
</tr>
<tr>
<td>audit_user</td>
<td>SolarisAuditUser</td>
<td>uidT</td>
<td>ou=people</td>
</tr>
</tbody>
</table>

- auto_* represents auto_home, auto_direct, ...
- If the key starts with a digit, it will be interpreted as an uid number.
- If the key starts with a non-digit, it will be interpreted as a host name.

The `ldaplist` utility supports substring search by using the wildcard "*" in the key. For example, "my*" will match any strings that starts with "my". In some shell environments, keys containing the wildcard may need to be quoted.

If the key is not specified, all the containers in the current search `baseDN` will be listed.

### OPTIONS

The following options are supported:

- `-d` Lists the attributes for the specified database, rather than the entries. By default, the entries are listed.
- `-h` Lists the database mapping.
- `-l` Lists all the attributes for each entry matching the search criteria. By default, `ldaplist` lists only the Distinguished Name of the entries found.
Sets verbose mode. The `ldaplist` utility will also print the filter used to search for the entry. The filter will be prefixed with "+++".

**EXAMPLES**

**EXAMPLE 1** Listing All Entries in the Hosts Database
```bash
example% ldaplist hosts
```

**EXAMPLE 2** Listing All Entries in a Non-Standard Database `ou=new`
```bash
example% ldaplist ou=new
```

**EXAMPLE 3** Finding “user1” in the `passwd` Database
```bash
example% ldaplist passwd user1
```

**EXAMPLE 4** Finding the Entry With Service Port of 4045 in the `services` Database
```bash
example% ldaplist services ipServicePort=4045
```

**EXAMPLE 5** Finding All Users With Username Starting with `new` in the `passwd` Database
```bash
example% ldaplist passwd 'new*'
```

**EXAMPLE 6** Listing the Attributes for the `hosts` Database
```bash
example% ldaplist -d hosts
```

**EXIT STATUS**
The following exit values are returned:

0 Successfully matched some entries.
1 Successfully searched the table and no matches were found.
2 An error occurred. An error message is output.

**FILES**

/var/ldap/ldap_client_file
/var/ldap/ldap_client_cred

Files that contain the LDAP configuration of the client. Do not manually modify these files. Their content is not guaranteed to be human readable. To update these files, use `ldapclient(1M)`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>
SEE ALSO
ldap(1), ldapadd(1), ldapdelete(1), ldapmodify(1), ldapmodrdn(1),
ldapsearch(1), idsconfig(1M), ldap_cachemgr(1M), ldapaddent(1M),
ldapclient(1M), suninstall(1M), resolv.conf(4), attributes(5)

NOTES
RFC 2307bis is an IETF informational document in draft stage that defines an approach
for using LDAP as a naming service.
The `ldapmodify` utility opens a connection to an LDAP server, binds and modifies or adds entries. The entry information is read from standard input or from file, specified using the `-f` option. The `ldapadd` utility is implemented as a hard link to the `ldapmodify` tool. When invoked as `ldapadd`, the `-a` (add new entry) option is turned on automatically.

Both `ldapadd` and `ldapmodify` reject duplicate attribute-name/value pairs for the same entry.

The following options are supported:

- **-a**
  Adds new entries. The default for `ldapmodify` is to modify existing entries. If invoked as `ldapadd`, this option is always set.

- **-c**
  Specifies continuous operation mode. Errors are reported, but `ldapmodify` and `ldapadd` continue with modifications. The default is to exit after reporting an error.

- **-D binddn**
  Uses the distinguished name `binddn` to bind to the directory.

- **-d debuglevel**
  Sets the LDAP debugging level. Useful levels of debugging for `ldapmodify` and `ldapadd` are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trace</td>
</tr>
<tr>
<td>2</td>
<td>Packets</td>
</tr>
<tr>
<td>4</td>
<td>Arguments</td>
</tr>
<tr>
<td>32</td>
<td>Filters</td>
</tr>
<tr>
<td>128</td>
<td>Access control</td>
</tr>
</tbody>
</table>

To request more than one category of debugging information, add the masks. For example, to request trace and filter information, specify a `debuglevel` of 33.

- **-F**
  Forces application of all changes regardless of the content of input lines that begin with `replica:`. By default, `replica:` lines are compared against the LDAP server host and port in use to decide whether a replog record should be applied.
ldapmodify(1)

- f file
  Reads the entry modification information from file instead of from standard input.

- h ldaphost
  Specifies an alternate host on which the slapd server is running.

- l nb-ldap-connections
  Specifies the number of LDAP connections that ldapadd or ldapmodify will open to process the modifications in the directory. The default is one connection.

- M authentication
  Specifies the authentication mechanism used to bind to the directory.

  The default authentication method for ldapmodify and ldapadd is simple bind. simple bind sends the password to the server in the clear. The password is subject to snooping if the server is not local. You must use special care when you use this command with the default authentication method. If your server supports the challenge response method CRAM-MD5 authentication method, you can override the default authentication method by using the -M option with CRAM-MD5 as the value for authentication.

  The bind DN and bind password are mandatory with this option.

- n
  Previews modifications, but makes no changes to entries. Useful in conjunction with -v and -d for debugging.

- p ldapport
  Specifies an alternate TCP port where the slapd server is listening.

- r
  Replaces existing value with the specified value. This is the default for ldapmodify. When ldapadd is called, or if the -a option is specified, the -r option is ignored.

- v
  Uses verbose mode, with diagnostics written to standard output.

- w passwd
  Use passwd as the password for authentication to the directory. When you use -w passwd to specify the password to be used for authentication, the password is visible to other users of the system by means of the ps command, in script files or in shell history. If you use either the ldapmodify command or the ldapadd command without this option, the command will prompt for the password and read it from standard in.
When used without the `-w` option, the password will not be visible to other users.

**EXIT STATUS**

The following exit values are returned:

- 0  Successful completion.
- Non-zero  An error occurred. A diagnostic message is written to standard error.

**EXAMPLES**

The format of the content of file (or standard input if no `-f` option is specified) is illustrated in the following examples.

**EXAMPLE 1** Modifying an entry

The file `/tmp/entrymods` contains the following modification instructions:

```
 dn: cn=Modify Me, o=XYZ, c=US
 changetype: modify
 replace: mail
 mail: modme@atlanta.xyz.com
 -
 add: title
 title: System Manager
 -
 add: jpegPhoto
 jpegPhoto:< file:///tmp/modme.jpeg
 -
 delete: description
 -
```

The command:

```
example% ldapmodify -r -f /tmp/entrymods
```

modifies the Modify Me entry as follows:

1. The current value of the `mail` attribute is replaced with the value, `modme@atlanta.xyz.com`.
2. A `title` attribute with the value, `System Manager`, is added.
3. A `jpegPhoto` attribute is added, using the contents of the file, `/tmp/modme.jpeg`, as the attribute value.
4. The `description` attribute is removed.

**EXAMPLE 2** Creating a new entry

The file, `/tmp/newentry`, contains the following information for creating a new entry:

```
 dn: cn=Ann Jones, o=XYZ, c=US
 objectClass: person
 cn: Ann Jones
 cn: Annie Jones
```
EXAMPLE 2 Creating a new entry (Continued)

sn: Jones
title: Director of Research and Development
mail: ajones@londonrd.xyz.us.com
uid: ajones

The command

```
example% ldapadd -f /tmp/newentry
```

adds a new entry for Ann Jones, using the information in the file.

EXAMPLE 3 Deleting an entry

The file, /tmp/badentry, contains the following information about an entry to be deleted:

```
dn: cn=Ann Jones, o=XYZ, c=US
changetype: delete
```

The command:

```
example% ldapmodify -f /tmp/badentry
```

removes Ann Jones’ entry.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(1), ldapdelete(1), ldaplist(1), ldapmodrdn(1), ldapsearch(1),
ldapaddent(1M), ldap_cachemgr(1M), ldap_get_option(3LDAP),
ldap_set_option(3LDAP), attributes(5)
ldapmodrdn(1)

NAME

ldapmodrdn – ldap modify entry RDN tool

SYNOPSIS


[-h ldaphost] [-M authentication] [-p ldapport] [-f file] [ dn rdn]

DESCRIPTION

ldapmodrdn opens a connection to an LDAP server, binds, and modifies the RDN of entries. The entry information is read from standard input, from file through the use of the -f option, or from the command-line pair dn and rdn.

OPTIONS

-c Continuous operation mode. Errors are reported, but ldapmodify continues with modifications. The default is to exit after reporting an error.

-D binddn Use the distinguished name binddn to bind to the directory.

-d debuglevel Set the LDAP debugging level. Useful values of debuglevel for ldapmodrdn are:

1 Trace
2 Packets
4 Arguments
32 Filters
128 Access control

To request more than one category of debugging information, add the masks. For example, to request trace and filter information, specify a debuglevel of 33.

-f file Read the entry modification information from file instead of from standard input or the command-line.

-h ldaphost Specify an alternate host on which the slapd server is running.

-M authentication Specifies the authentication mechanism used to bind to the directory.

The default authentication method for ldapmodrdn is simple bind. simple bind sends the password to the server in the clear. The password is subject to snooping if the server is not local. You must use special care when you use this command with the default authentication method. If your server supports the challenge response method CRAM-MD5 authentication method, you can override the default authentication method by using the -M option with CRAM-MD5 as the value for authentication.
The bind DN and bind password are mandatory with this option.

-\texttt{\textbf{\textit{n}}}

Show what would be done, but don't actually change entries. Useful in conjunction with -\texttt{v} for debugging.

-\texttt{\textbf{\textit{p}} \text{\texttt{ldapp}}\texttt{ort}}

Specify an alternate TCP port where the slapd server is listening.

-\texttt{\textbf{\textit{r}}}

Remove old RDN values from the entry. By default, old values are kept.

-\texttt{\textbf{\textit{v}}}

Use verbose mode, with diagnostics written to standard output.

-\texttt{\textbf{\textit{w}} \text{\texttt{passwd}}}

Use \texttt{passwd} as the password for authentication to the directory. When you use -\texttt{w passwd} to specify the password to be used for authentication, the password is visible to other users of the system by means of the \texttt{ps} command, in script files or in shell history. If you use the \texttt{ldapmodrdn} command without this option, the command will prompt for the password and read it from standard in. When used without the -\texttt{w} option, the password will not be visible to other users.

\textbf{Input Format}

If the command-line arguments \texttt{dn} and \texttt{rdn} are given, \texttt{rdn} replaces the RDN of the entry specified by the DN, \texttt{dn}.

Otherwise, the contents of file (or standard input if the \texttt{–f} option is not specified) must consist of one or more pair of lines:

\begin{verbatim}
Distinguished Name (DN)
Relative Distinguished Name (RDN)
\end{verbatim}

Use one or more blank lines to separate each DN/RDN pair.

\textbf{EXAMPLES}

The file \texttt{/tmp/entrymods} contains:

\begin{verbatim}
\texttt{cn=Modify Me, o=XYZ, c=US}
\texttt{cn=The New Me}
\end{verbatim}

The command:

\texttt{example\% ldapmodify -r -f /tmp/entrymods}

changes the RDN of the "Modify Me" entry from "Modify Me" to "The New Me" and the old cn, "Modify Me" is removed.

\textbf{ATTRIBUTES}

See attributes(5) for a description of the following attributes:
See Also

ldapadd(1), ldapdelete(1), ldapmodify(1), ldapsearch(1), attributes(5)

Diagnostics

Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.
NAME
ldapsearch – ldap search tool

SYNOPSIS
[-F sep] [-f file] [-D binddn] [-w passwd] [-h ldaphost]
[ -l timelimit] [ -z sizelimit] filter [attrs...]

DESCRIPTION
ldapsearch opens a connection to an LDAP server, binds, and performs a search
using the filter filter.

If ldapsearch finds one or more entries, the attributes specified by attrs are retrieved
and the entries and values are printed to standard output. If no attrs are listed, all
attributes are returned.

Output Format
If one or more entries are found, each entry is written to standard output in the form:

Distinguished Name (DN)
User Friendly Name (if the -u option is used)
attributename=value
attributename=value
attributename=value
...

Multiple entries are separated with a single blank line. If the -F option is used to
specify a different separator character, this character will be used instead of the '='
character. If the -t option is used, the name of a temporary file is returned in place of
the actual value. If the -A option is given, only the "attributename" is returned and not
the attribute value.

OPTIONS
The following options are supported:

-A
Retrieve attributes only (no values). This is useful
when you just want to see whether an attribute is
present in an entry and are not interested in the specific
value.

-a deref
Specify how aliases dereferencing is done. The possible
values for deref are never, always, search, or find
to specify respectively that aliases are never
dereferenced, always dereferenced, dereferenced when
searching, or dereferenced only when finding the base
object for the search. The default is to never dereference
aliases.

-B
Do not suppress display of non-ASCII values. This is
useful when dealing with values that appear in
alternate character sets such as ISO-8859.1. This option
is automatically set by the -L option.

-b searchbase
Use searchbase as the starting point for the search
instead of the default.
-D binddn
Use the distinguished name binddn to bind to the directory.

-a debuglevel
Set the LDAP debugging level. Useful levels of debugging for \texttt{ldapsearch} are:

- 1 Trace
- 2 Packets
- 4 Arguments
- 32 Filters
- 128 Access control

To request more than one category of debugging information, add the masks. For example, to request trace and filter information, specify a debuglevel of 33.

-F sep
Use sep as the field separator between attribute names and values. The default separator is ‘=’. If -L option has been specified, this option is ignored.

-f file
Read a series of lines from file, performing one LDAP search for each line. In this case, the filter given on the command line is treated as a pattern where the first occurrence of %s is replaced with a line from file. If file is a single-character, then the lines are read from standard input.

-h ldaphost
Specify an alternate host on which the slapd server is running.

-L
Display search results in a modified format. This option also turns on the -B option, and causes the -F option to be ignored.

-l timelimit
Wait at most timelimit seconds for a search to complete.

-M authentication
Specifies the authentication mechanism used to bind to the directory.

The default authentication method for \texttt{ldapsearch} is simple bind. simple bind sends the password to the server in the clear. The password is subject to snooping if the server is not local. You must use special care when you use this command with the default authentication method. If your server supports the challenge response method CRAM-MD5 authentication method, you can override the default authentication method by using the -M option with CRAM-MD5 as the value for authentication.
The bind DN and bind password are mandatory with this option.

-\n Show what would be done, but do not actually perform the search. Useful in conjunction with -v and -d for debugging.

-p ldapport Specify an alternate TCP port where the slapd server is listening.

-R Do not automatically follow referrals returned while searching.

-s scope Specify the scope of the search. The possible values of scope are base, one, or sub to specify respectively a base object, one-level, or subtree search. The default is sub.

-t Write retrieved values to a set of temporary files. This is useful for dealing with non-ASCII values such as jpegPhoto or audio.

-u Include the user-friendly form of the Distinguished Name (DN) in the output.

-v Run in verbose mode, with diagnostics written to standard output.

-w passwd Use passwd as the password for authentication to the directory. When you use -w passwd to specify the password to be used for authentication, the password is visible to other users of the system by means of the ps command, in script files or in shell history. If you use the ldapsearch command without this option, the command will prompt for the password and read it from standard in. When used without the -w option, the password will not be visible to other users.

-z sizelimit Retrieve at most sizelimit entries for a search to complete.

EXAMPLE 1 Performing a Subtree Search

The following command performs a subtree search (using the default search base) for entries with a commonName of "mark smith". The commonName and telephoneNumber values will be retrieved and printed to standard output.

```
example% ldapsearch "cn=mark smith" cn telephoneNumber
```

The output looks something like this:

```
cn=Mark D Smith, ou=Sales, ou=Atlanta, ou=People, o=XYZ, c=US
cn=Mark Smith
```
EXAMPLE 1 Performing a Subtree Search  (Continued)

cn=Mark David Smith
cn=Mark D Smith 1
cn=Mark D Smith
telephoneNumber=+1 123 456-7890
cn=Mark C Smith, ou=Distribution, ou=Atlanta, ou=People, o=XYZ, c=US
cn=Mark C Smith 1
cn=Mark C Smith
telephoneNumber=+1 123 456-9999

EXAMPLE 2 Performing a Subtree Search Using the Default Search Base

The following command performs a subtree search using the default search base for entries with user id of "mcs". The user-friendly form of the entry’s DN will be output after the line that contains the DN itself, and the jpegPhoto and audio values will be retrieved and written to temporary files.

example% ldapsearch -u -t "uid=mcs" jpegPhoto audio

The output might look like this if one entry with one value for each of the requested attributes is found:

cn=Mark C Smith, ou=Distribution, ou=Atlanta, ou=People, o=XYZ, c=US
Mark C Smith, Distribution, Atlanta, People, XYZ, US
audio=/tmp/ldapsearch-audio-a19924
jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

EXAMPLE 3 Performing a One Level Search

The following command performs a one-level search at the c=US level for all organizations whose organizationName begins with XY.

example% ldapsearch -L -s one -b "c=US" "o=XY*" o description

Search results are displayed in the LDIF format. The organizationName and description attribute values will be retrieved and printed to standard output, resulting in output similar to this:

dn: o=XYZ, c=US
o: XYZ
description: XYZ Corporation
dn: o=”,c=US"
description: Import and export specialists

dn: o=XYInternational, c=US
o: XYInternational
o: XYI
o: XY International
**EXIT STATUS**
The following exit values are returned:

- 0  
  Successful completion.
- >0  
  An error occurred. A diagnostic message is written to standard error.

**ATTRIBUTES**
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

**SEE ALSO**
ldapadd(1), ldapdelete(1), ldapmodify(1), ldapmodrdn(1), attributes(5)
ldd(1)

NAME  ldd – list dynamic dependencies of executable files or shared objects


DESCRIPTION  The ldd utility lists the dynamic dependencies of executable files or shared objects. ldd uses the runtime linker, ld.so.1, to generate the diagnostics, since it takes the object being inspected and prepares it as it would in a running process. By default, ldd triggers the loading of any lazy dependencies.

ldd lists the path names of all shared objects that will be loaded when filename is loaded. ldd expects shared objects to have execute permission. If this is not the case, ldd will issue a warning before attempting to process the file.

ldd processes its input one file at a time. For each input file, ldd performs one of the following:

- Lists the object dependencies if they exist.
- Succeeds quietly if dependencies do not exist.
- Prints an error message if processing fails.

OPTIONS  ldd can also check the compatibility of filename with the shared objects it uses. With each of the following options, ldd prints warnings for any unresolved symbol references that would occur when filename is loaded.

- L  Check immediate references.
- -r  Check both immediate and lazy references.

Only one of the above options can be specified during any single invocation of ldd. immediate references are typically to data items used by the executable or shared object code, pointers to functions, and even calls to functions made from a position dependent shared object. lazy references are typically calls to global functions made from a position independent shared object, or calls to external functions made from an executable. For more information on these types of reference, see “When Relocations Are Performed” in the Linker and Libraries Guide. Object loading can also be affected by relocation processing. See Lazy Loading under USAGE for more details.

ldd can also check dependency use. With each of the following options, ldd prints warnings for any unreferenced or unused dependencies that are loaded when filename is loaded. Only when a symbol reference is bound to a dependency, is that dependency deemed used. These options are therefore only useful when symbol references are being checked. If the -r option is not in effect, the -d option is enabled.

A dependency that is defined by an object but is not bound to from that object is an unreferenced dependency. A dependency that is not bound to by any other object when filename is loaded is an unused object.

- U  Displays any unreferenced or unused dependencies. If an unreferenced dependency is not bound to by other objects loaded with filename, it is also...
flagged as unused. Cyclic dependencies that are not bound to from objects outside of the cycle are also deemed unreferenced.

-`u` Displays any unused objects.

Only one of the above options can be specified during any single invocation of `ldd`, although `-U` is a superset of `-u`. Objects that are found to be unreferenced or unused when using the `-r` option should be removed as dependencies. They provide no references but result in unnecessary overhead when `filename` is loaded. Objects that are found to be unreferenced or unused when using the `-d` option are not immediately required when `filename` is loaded, and are therefore candidates for lazy loading. See Lazy Loading under USAGE for more details.

The removal of unused dependencies reduces runtime linking overhead. The removal of unreferenced dependencies reduces runtime linking overhead to a lesser degree, but also guards against a dependency becoming unused when combined with different objects, or as the other object dependencies evolve.

The following additional options are supported:

-`-c` Disables any configuration file use. Configuration files may be employed to alter default search paths, provide a directory cache, and provide alternative object dependencies. See `crle(1)`.

-`-e envvar` Sets the environment variable `envvar`. This option is useful for experimenting with runtime linker environment variables that can adversely affect `ldd` itself.

-`-f` Forces `ldd` to check for an executable file that is not secure. When `ldd` is invoked by a superuser, by default it will not process any executable that it finds not secure. An executable is not considered secure if the interpreter it specifies does not reside under `/usr/lib` or `/etc/lib`, or if the interpreter cannot be determined. See Security under USAGE.

-`-i` Displays the order of execution of initialization sections. The order discovered may be affected by use of the `-d` or `-r` options. See Initialization Order under USAGE.

-`-L` Enables lazy loading. This is the default mode of operation when the object under inspection is loaded as part of a process. In this case, any lazy dependencies, or filters, are only loaded into the process when reference is made to a symbol that is defined within the lazy object. The `-d` or `-r` options, together with the `-L` option, may be used to inspect the dependencies and their order of loading since it will occur in a running process.

-`-l` Forces the immediate processing of any filters so that all filtrees, and their dependencies, are listed. The immediate processing of filters is now the default mode of operation for `ldd`. However,
under this default any auxiliary files that cannot be found are silently ignored. Under the -l option, missing auxiliary files generate an error message.

-s Displays the search path used to locate shared object dependencies.

-v Displays all dependency relationships incurred when processing filename. This option also displays any dependency version requirements. See pvs(1).

**USAGE**

**Security**

A superuser should use the -f option only if the executable to be examined is known to be trustworthy, because use of -f on an untrustworthy executable while superuser may compromise system security. If it is unknown whether or not the executable to be examined is trustworthy, a superuser should temporarily become a regular user and invoke ldd as that regular user.

Untrustworthy objects can be safely examined with dump(1) and with adb(1), as long as the :r subcommand is not used. In addition, a non-superuser can use either the :r subcommand of adb or truss(1) to examine an untrustworthy executable without too much risk of compromise. To minimize risk when using ldd, adb :r, or truss on an untrustworthy executable, use the user id "nobody".

**Lazy Loading**

Objects that employ lazy loading techniques, either through directly specified lazy dependencies (see the -z lazyload option of ldd(1)), or through filters (see the -f and -F options of ldd(1)), may experience variations in ldd output due to the options they use. If an object expresses all its dependencies as lazy, the default operation of ldd will list all dependencies in the order in which they are recorded in that object:

```
example% ldd main
libelf.so.1 => /usr/lib/libelf.so.1
libnsl.so.1 => /usr/lib/libnsl.so.1
libc.so.1 => /usr/lib/libc.so.1
```

The lazy loading behavior that occurs when this object is used at runtime may be enabled using the -L option. In this mode, lazy dependencies are loaded when reference is made to a symbol that is defined within the lazy object. Therefore, combining the -L option with use of the -d and -r options will reveal the dependencies needed to satisfy the immediate and lazy references respectively:

```
example% ldd -L main
example% ldd -d main
libc.so.1 => /usr/lib/libc.so.1
example% ldd -r main
libc.so.1 => /usr/lib/libc.so.1
libelf.so.1 => /usr/lib/libelf.so.1
```

Notice that in this example, the order of the dependencies listed is not the same as displayed from ldd with no options, and even with the -r option, the lazy reference to dependencies may not occur in the same order as it will in a running program.
Observing lazy loading may also reveal objects that are not required to satisfy any references. These objects (in this example, `libnsl.so.1`) are candidates for removal from the link-line used to build the object being inspected.

Objects that do not explicitly define their required dependencies may observe variations in the initialization section order displayed by `ldd` due to the options they use. For example, a simple application may reveal:

```bash
example$ ldd -i main
libA.so.1 => ./libA.so.1
libc.so.1 => /usr/lib/libc.so.1
libB.so.1 => ./libB.so.1

init object=./libB.so.1
init object=./libA.so.1
init object=/usr/lib/libc.so.1
```

whereas, when relocations are applied, the initialization section order is:

```bash
example$ ldd -ir main

init object=/usr/lib/libc.so.1
init object=./libB.so.1
init object=./libA.so.1
```

In this case, `libB.so.1` makes reference to a function in `/usr/lib/libc.so.1`. However, it has no explicit dependency on this library. Only after a relocation is discovered is a dependency established, which in turn affects the initialization section sort order.

Typically, the initialization section sort order established when an application is executed is equivalent to `ldd` with the `-d` option. The optimum order can be obtained if all objects fully define their dependencies. Use of the `ld(1)` options `-z defs` and `-z ignore` when building dynamic objects is recommended.

Cyclic dependencies may result when one or more dynamic objects reference each other. Cyclic dependencies should be avoided, as a unique initialization sort order for these dependencies can not be established.

Users that prefer a more static analysis of object files may inspect dependencies using tools such as `dump(1)` and `elfdump(1).

**FILES**

- `/usr/lib/lddstub`  
  Fake 32-bit executable loaded to check the dependencies of shared objects.

- `/usr/lib/64/lddstub`  
  Fake 64-bit executable loaded to check the dependencies of shared objects.

User Commands 693
ldd(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO

adb(1), crle(1), dump(1), elfdump(1), ldd(1), ld.so.1(1), pvs(1), truss(1),
dlopen(3DL), attributes(5)

Linker and Libraries Guide

DIAGNOSTICS

ldd prints the record of shared object path names to stdout. The optional list of symbol resolution problems is printed to stderr. If filename is not an executable file or a shared object, or if it cannot be opened for reading, a non-zero exit status is returned.

NOTES

ldd does not list shared objects explicitly attached using dlopen(3DL).

Using the -d or -r option with shared objects can give misleading results. ldd does a "worst case" analysis of the shared objects. However, in practice some or all of the symbols reported as unresolved can be resolved by the executable file referencing the shared object. The runtime linkers preloading mechanism (see LD_PRELOAD) may be employed to add dependencies to the object being inspected.

ldd uses the same algorithm as the runtime linker to locate shared objects.
Dynamic applications consist of one or more dynamic objects. They are typically a
dynamic executable and its shared object dependencies. As part of the initialization
and execution of a dynamic application, an interpreter is called. This interpreter
completes the binding of the application to its shared object dependencies. In Solaris,
this interpreter is referred to as the runtime linker.

During the link-editing of a dynamic executable, a special .interp section, together
with an associated program header, is created. This section contains a pathname
specifying the program’s interpreter. An interpreter pathname can be specified when
the executable is constructed using the -I option to ld(1), the link-editor. The default
name supplied by the link-editor is that of the runtime linker ld.so.1.

During the process of executing a dynamic executable, the kernel maps the
file, and locates the required interpreter. See exec(2) and mmap(2). The kernel maps this
interpreter and transfers control to it. Sufficient information is passed to the interpretor
to allow it to continue binding the application and then run it.

In addition to initializing an application, the runtime linker provides services that
allow the application to extend its address space. Additional shared objects can be
mapped, and symbols within these shared objects can be bound to.

The runtime linker performs the following functions:

- It opens and processes any applicable configuration file. Configuration files may be
  employed to alter default search paths, provide a directory cache, and provide
  alternative object dependencies. See crle(1). By default, the configuration file
  /var/ld/ld.config is used for 32-bit objects, and the configuration file
  /var/ld/64/ld.config for 64-bit objects. Alternative configuration files can be
  specified with the LD_CONFIG environment variable, or encoded within a dynamic
  executable using the -c option of ld(1).

- It analyzes the application’s dynamic information section (.dynamic) and
determines which shared object dependencies are required.

- It locates and maps in these dependencies. It then analyzes the dynamic
  information section of each dependency to determine if any additional shared
  object dependencies are required.

- Once all shared object dependencies are located an mapped, the runtime linker
  performs any necessary relocations. These relocations bind the shared objects in
  preparation for process execution.

- It calls any initialization functions provided by the shared object dependencies and,
  possibly, by the dynamic executable. By default, these are called in the reverse
  order of the topologically sorted dependencies. If cyclic dependencies exist, the
  initialization functions are called using the sorted order with the cycle removed.
  ldd(1) can be used to display the initialization order of shared object
dependencies.
- It passes control to the application.
- During the application’s execution, the runtime linker can be called upon to perform any delayed function binding.
- It calls any finalization functions on deletion of shared objects from the process. By default, these are called in the order of the topologically sorted dependencies.
- The application can also call upon the runtime linker’s services to acquire additional shared objects by `dlopen(3DL)` and bind to symbols within these objects with `dlsym(3DL)`.

Further details on each of the above topics may be found in the *Linker and Libraries Guide*.

The runtime linker uses a prescribed search path for locating the dynamic dependencies of an object. The default search paths are the `runpath` recorded in the object, followed by `/usr/lib` for 32-bit objects or `/usr/lib/64` for 64-bit objects. This latter component can be modified using a configuration file created with `crle(1)`. The `runpath` is specified when the dynamic object is constructed using the `-R` option to `ld(1)`. The environment variable `LD_LIBRARY_PATH` can be used to indicate directories to be searched before the default directories.

**ENVIRONMENT VARIABLES**

`LD_AUDIT`
- A colon-separated list of objects that are loaded by the runtime linker. As each object is loaded, it is examined for *Link-Auditing* interface routines. The routines that are present are called as specified in the *Link-Auditing* interface described in the *Linker and Libraries Guide*. Also, see the `-p` and `-P` options of `ld(1)`.

`LD_BIND_NOW`
- The runtime linker’s default mode of performing lazy binding can be overridden by setting the environment variable `LD_BIND_NOW` to any non-null value. This setting causes the runtime linker to perform both immediate reference and lazy reference relocations during process initialization, before transferring control to the application. Also, see the `-z now` option of `ld(1)`.

`LD_CONFIG`
- Provides an alternative configuration file. Configuration files may be employed to alter default search paths, provide a directory cache, and provide alternate object dependencies. See `crle(1)`.

`LD_DEBUG`
- Provides a comma, or colon-separated list of tokens to cause the runtime linker to print debugging information to standard error. The special token `help` indicates the full list of tokens available. The environment variable `LD_DEBUG_OUTPUT` may also be supplied to specify a file to which the debugging information is sent. The filename is suffixed with the process ID of the application generating the debugging information.
LD_DEMANGLE
Any symbol name used as part of a diagnostic message is shown as it is defined within an ELF file. When LD_DEMANGLE is set to any non-null value, the runtime linker attempts to decode (demangle) any C++ symbol name.

LD_FLAGS
Provides an alternative means of supplying environment variable information. Any of the LD_XXX environment variables can be specified as a xxx token. Multiple tokens can be supplied separated by commas. See EXAMPLES.

LD_LIBRARY_PATH
The LD_LIBRARY_PATH environment variable, if set, is used to enhance the search path that the runtime linker uses to find dynamic dependencies. LD_LIBRARY_PATH specifies a colon-separated list of directories that are searched before the default directories. Also notice that LD_LIBRARY_PATH adds additional semantics to ld(1).

LD_LOADFLTR
Filters are a form of shared object. They allow an alternative shared object to be selected at runtime that provide the implementation for any symbols defined within the filter. See the -f and -F options of ld(1). By default, the alternative shared object processing is deferred until symbol resolution occurs against the filter. When LD_LOADFLTR is set to any non-null value, any filters are processed immediately when they are loaded. Also, see the -z loadfltr option of ld(1).

LD_NOAUDIT
Local auditing libraries can be defined within applications and shared objects. See the -p and -P options of ld(1). When LD_NOAUDIT is set to any non-null value, the runtime linker ignores any local auditing libraries.

LD_NOAUXFLTR
Auxiliary filters are a form of shared object. They allow an alternative shared object to be selected at runtime which provides the implementation for any symbols defined within the filter. See the -f option of ld(1). When LD_NOAUXFLTR is set to any non-null value, the runtime linker disables this alternative shared object lookup.

LD_NOCONFIG
By default the runtime linker attempts to open and process a configuration file. When LD_NOCONFIG is set to any non-null value, the runtime linker disables this configuration file processing.

LD_NODIRCONFIG
Provides a subset of LD_NOCONFIG in that any directory cache information provided in a configuration file is ignored.

LD_NODIRECT
Direct binding information instructs the runtime linker to search directly for a symbol in an associated object. See the -B direct option of ld(1). Without direct binding, the symbol search performed by the runtime linker follows the default model. When LD_NODIRECT is set to any non-null value, the runtime linker ignores any direct binding information.
LD_NOENVCONFIG
Provides a subset of LD_NOCONFIG in that any environment variables provided in a configuration file are ignored.

LD_NOLAZYLOAD
Dependencies labeled for lazy loading are not loaded into memory until explicit reference has been made to them. See the -z lazyload option of ld(1). When LD_NOLAZYLOAD is set to any non-null value, the runtime linker ignores a dependencies lazy loading label and loads it immediately.

LD_NOOBJALTER
Provides a subset of LD_NOCONFIG in that any alternative object dependencies provided in a configuration file are ignored.

LD_NOVERSION
By default, the runtime linker verifies version dependencies for the primary executable and all of its dependencies. When LD_NOVERSION is set to any non-null value, the runtime linker disables this version checking.

LD_ORIGIN
The immediate processing of $ORIGIN can be triggered by setting the environment variable LD_ORIGIN to any non-null value. Before Solaris 9, this option was useful for applications that invoked chdir(2) prior to locating dependencies that employed the $ORIGIN string token. The establishment of the current working directory by the runtime linker is now default thus making this option redundant.

LD_PRELOAD
Provides a list of shared objects, separated by spaces. These objects are loaded after the program being executed but before any other shared objects that the program references. Symbol definitions provided by the preloaded objects interpose on references made by the shared objects that the program references. Symbol definitions provided by the preloaded objects do not interpose on the program itself.

LD_PROFILE
Defines a shared object to be profiled by the runtime linker. When profiling is enabled, a profiling buffer file is created and mapped. The name of the buffer file is the name of the shared object being profiled with a .profile extension. By default, this buffer is placed under /var/tmp. The environment variable LD_PROFILE_OUTPUT may also be supplied to indicate an alternative directory in which to place the profiling buffer.

This buffer contains profi(2) and call count information similar to the gmon.out information generated by programs that have been linked with the -xpg option of cc. Any applications that use the named shared object and run while this environment variable is set, accumulate data in the profile buffer. See also NOTES. The profile buffer information may be examined using gprof(1).
Notice that this profiling technique is an alternative to those that may be provided by the compilation system. The shared object being profiled does not have to be instrumented in any way, and `LD_PROFILE` should not be combined with a profile-instrumented application. See the `Linker and Libraries Guide` for more information on profiling shared objects.

**LD_SIGNAL**

Provides a `numeric` signal number that the runtime linker uses to kill the process in the event of a fatal runtime error. See `thr_kill(3THR)`. By default, `SIGKILL` is used. For example, providing the alternative signal number `6` (`SIGABRT`), can provide for the creation of a core file to aid debugging. See also the `RTLD_DI_SETSIGNAL` request to `dlinfo(3DL)`.

Each environment variable can be specified with a `_32` or `_64` suffix. This makes the environment variable specific, respectively, to 32-bit or 64-bit processes. This environment variable overrides any non-suffixed version of the environment variable that may be in effect.

Notice that environment variable names beginning with the characters ‘`LD_`’ are reserved for possible future enhancements to `ld(1)` and `ld.so.1`.

### SECURITY

Secure processes have some restrictions applied to the evaluation of their dependencies and `runpaths` to prevent malicious dependency substitution or symbol interposition.

The runtime linker categorizes a process as secure if the user is not a super-user, and the real user and effective user identifiers are not equal. Similarly, if the user is not a super-user and the real group and effective group identifiers are not equal, the process is deemed secure. See `getuid(2)`, `geteuid(2)`, `getgid(2)`, and `getegid(2)`.

The default trusted directory known to the runtime linker is `/usr/lib/secure` for 32-bit objects or `/usr/lib/secure/64` for 64-bit objects. The utility `crle(1)` may be used to specify additional trusted directories applicable for secure applications. Administrators who use this technique should ensure that the target directories are suitably protected from malicious intrusion.

If an `LD_LIBRARY_PATH` family environment variable is in effect for a secure process, only the `trusted` directories specified by this variable are used to augment the runtime linker’s search rules.

In a secure process, any `runpath` specifications provided by the application or any of its dependencies is used, provided it is a full pathname, that is, the pathname starts with a `/`.

In a secure process, the expansion of the `$ORIGIN` string is allowed only if it expands to a `trusted` directory.

In a secure process, `LD_CONFIG` is ignored. A secure process uses the default configuration file, if it exists. See `crle(1)`.
In a secure process, LD_SIGNAL is ignored.

Additional objects may be loaded with a secure process using the LD_PRELOAD, or LD_AUDIT environment variables. These objects must be specified as full pathnames or simple file names. Full pathnames are restricted to known trusted directories. Simple file names, in which no `/` appears in the name, are located subject to the search path restrictions previously described. Simple file names resolve only to known trusted directories.

In a secure process, any dependencies that consist of simple filenames are processed using the pathname restrictions previously described. Dependencies expressed as full or relative pathnames are used as is. Therefore, the developer of a secure process should ensure that the target directory referenced as a full or relative pathname dependency is suitably protected from malicious intrusion.

When creating a secure process, it is recommended that relative pathnames not be used to express dependencies or to construct dlopen(3DL) pathnames. This restriction should be applied to the application and to all dependencies.

EXAMPLE

EXAMPLE 1 Using LD_FLAGS to group environment variable information

The following use of LD_FLAGS is equivalent to setting the individual environment variables LD_BIND_NOW and LD_LIBRARY_PATH for 32–bit applications:

```bash
example% LD_FLAGS_32=bind_now,library_path=/lib/one:/lib/two
```

The following use of LD_FLAGS is equivalent to setting the individual environment variables LD_LIBRARY_PATH and LD_PRELOAD for 64–bit applications:

```bash
example% LD_FLAGS_64=library_path=/lib/one/64,preload=foo.so
```

FILES

/usr/lib/ld.so.1
 Default runtime linker.

/etc/lib/ld.so.1
 Alternate runtime linker.

/usr/lib/libc.so.1
 Alternate interpreter for SVID ABI compatibility.

/usr/lib/ld.so
 AOUT (BCP) runtime linker.

/usr/lib/0@0.so.1
 Null character pointer compatibility library. See NOTES.

/usr/lib/secure
 LD_PRELOAD location for secure applications.

/usr/lib/secure/64
 LD_PRELOAD location for secure 64–bit applications.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

crle(1), gprof(1), ld(1), ldd(1), exec(2), getegid(2), geteuid(2), getuid(2),
mmap(2), profi1(2), dladdr(3DL), dlclose(3DL), dlerror(3DL), dlinfo(3DL), dlopen(3DL), dl sym(3DL), thr_kill(3THR) proc(4),
attributes(5)

Linker and Libraries Guide

NOTES

Care should be exercised when using LD_PROFILE in combination with other process monitoring techniques, such as users of proc(4). Multiple process monitoring techniques can result in deadlock conditions that leave the profile buffer locked. A locked buffer blocks any processes that try to record profiling information. To reduce this likelihood, the runtime linker’s profile implementation determines if the process is being monitored at startup. If so, profiling of the process is silently disabled. However, this mechanism cannot catch monitoring processes that attach to the process during its execution.

The user compatibility library /usr/lib/0@0.so.1 provides a mechanism that establishes a value of 0 at location 0. Some applications exist that erroneously assume a null character pointer should be treated the same as a pointer to a null string. A segmentation violation occurs in these applications when a null character pointer is accessed. If this library is added to such an application at runtime using LD_PRELOAD, it provides an environment that is sympathetic to this errant behavior. However, the user compatibility library is intended neither to enable the generation of such applications, nor to endorse this particular programming practice.
let(1)

NAME  | let – shell built-in function to evaluate one or more arithmetic expressions
SYNOPSIS  | ksh  let arg...
DESCRIPTION  | ksh Each arg is a separate “arithmetic expression” to be evaluated.
EXIT STATUS  | The following exit values are returned:
               | 0     The value of the last expression is non-zero.
               | 1     The value of the last expression is zero.
ATTRIBUTES  | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  | ksh(1), set(1), typeset(1), attributes(5)
### NAME
lex – generate programs for lexical tasks

### SYNOPSIS
```bash
lex [-cntv] [-e | -w] [-V -Q [y | n]] [file...]
```

### DESCRIPTION
The `lex` utility generates C programs to be used in lexical processing of character input, and that can be used as an interface to `yacc`. The C programs are generated from `lex` source code and conform to the ISO C standard. Usually, the `lex` utility writes the program it generates to the file `lex.yy.c`. The state of this file is unspecified if `lex` exits with a non-zero exit status. See EXTENDED DESCRIPTION for a complete description of the `lex` input language.

### OPTIONS
The following options are supported:

- `-c`  Indicates C-language action (default option).
- `-e`  Generates a program that can handle EUC characters (cannot be used with the `-w` option). `yytext[ ]` is of type `unsigned char[ ]`.
- `-n`  Suppresses the summary of statistics usually written with the `-v` option. If no table sizes are specified in the `lex` source code and the `-v` option is not specified, then `-n` is implied.
- `-t`  Writes the resulting program to standard output instead of `lex.yy.c`.
- `-v`  Writes a summary of `lex` statistics to the standard error. (See the discussion of `lex` table sizes under the heading Definitions in `lex`.) If table sizes are specified in the `lex` source code, and if the `-n` option is not specified, the `-v` option may be enabled.
- `-w`  Generates a program that can handle EUC characters (cannot be used with the `-e` option). Unlike the `-e` option, `yytext[ ]` is of type `wchar_t[ ]`.
- `-V`  Prints out version information on standard error.
- `-Q[y|n]`  Prints out version information to output file `lex.yy.c` by using `-Qy`. The `-Qn` option does not print out version information and is the default.

### OPERANDS
The following operand is supported:

- `file`  A pathname of an input file. If more than one such file is specified, all files will be concatenated to produce a single `lex` program. If no file operands are specified, or if a file operand is `-`, the standard input will be used.

### OUTPUT
The `lex` output files are described below.

- **Stdout**  If the `-t` option is specified, the text file of C source code output of the `lex` will be written to standard output.
lex(1)  

Stderr  
If the `-t` option is specified informational, error and warning messages concerning the contents of `lex` source code input will be written to the standard error.

If the `-t` option is not specified:

1. Informational error and warning messages concerning the contents of `lex` source code input will be written to either the standard output or standard error.

2. If the `-v` option is specified and the `-n` option is not specified, `lex` statistics will also be written to standard error. These statistics may also be generated if table sizes are specified with a `%` operator in the `Definitions` in `lex` section (see EXTENDED DESCRIPTION), as long as the `-n` option is not specified.

Output Files  
A text file containing C source code will be written to `lex.yy.c`, or to the standard output if the `-t` option is present.

EXTENDED DESCRIPTION  
Each input file contains `lex` source code, which is a table of regular expressions with corresponding actions in the form of C program fragments.

When `lex.yy.c` is compiled and linked with the `lex` library (using the `-l l` operand with `c89` or `cc`), the resulting program reads character input from the standard input and partitions it into strings that match the given expressions.

When an expression is matched, these actions will occur:

- The input string that was matched is left in `yytext` as a null-terminated string; `yytext` is either an external character array or a pointer to a character string. As explained in `Definitions` in `lex`, the type can be explicitly selected using the `%array` or `%pointer` declarations, but the default is `%array`.
- The external `int yylen` is set to the length of the matching string.
- The expression’s corresponding program fragment, or action, is executed.

During pattern matching, `lex` searches the set of patterns for the single longest possible match. Among rules that match the same number of characters, the rule given first will be chosen.

The general format of `lex` source is:

```
Definitions
%%
Rules
%%
User Subroutines
```

The first `%%` is required to mark the beginning of the rules (regular expressions and actions); the second `%%` is required only if user subroutines follow.
Any line in the Definitions in lex section beginning with a blank character will be assumed to be a C program fragment and will be copied to the external definition area of the lex.yy.c file. Similarly, anything in the Definitions in lex section included between delimiter lines containing only \%{ and \%} will also be copied unchanged to the external definition area of the lex.yy.c file.

Any such input (beginning with a blank character or within \%{ and \%} delimiter lines) appearing at the beginning of the Rules section before any rules are specified will be written to lex.yy.c after the declarations of variables for the yylex function and before the first line of code in yylex. Thus, user variables local to yylex can be declared here, as well as application code to execute upon entry to yylex.

The action taken by lex when encountering any input beginning with a blank character or within \%{ and \%} delimiter lines appearing in the Rules section but coming after one or more rules is undefined. The presence of such input may result in an erroneous definition of the yylex function.

**Definitions in lex**

Definitions in lex appear before the first \%\% delimiter. Any line in this section not contained between \%{ and \%} lines and not beginning with a blank character is assumed to define a lex substitution string. The format of these lines is:

\[\text{name substitute}\]

If a name does not meet the requirements for identifiers in the ISO C standard, the result is undefined. The string substitute will replace the string \{ name \} when it is used in a rule. The name string is recognized in this context only when the braces are provided and when it does not appear within a bracket expression or within double-quotes.

In the Definitions in lex section, any line beginning with a \% (percent sign) character and followed by an alphanumeric word beginning with either s or S defines a set of start conditions. Any line beginning with a \% followed by a word beginning with either x or X defines a set of exclusive start conditions. When the generated scanner is in a %s state, patterns with no state specified will be also active; in a %x state, such patterns will not be active. The rest of the line, after the first word, is considered to be one or more blank-character-separated names of start conditions. Start condition names are constructed in the same way as definition names. Start conditions can be used to restrict the matching of regular expressions to one or more states as described in Regular expressions in lex.

Implementations accept either of the following two mutually exclusive declarations in the Definitions in lex section:

\[\text{%array}\]

Declare the type of yytext to be a null-terminated character array.

\[\text{%pointer}\]

Declare the type of yytext to be a pointer to a null-terminated character string.

**Note:** When using the %pointer option, you may not also use the yyless function to alter yytext.
%array is the default. If %array is specified (or neither %array nor %pointer is specified), then the correct way to make an external reference to yyext is with a declaration of the form:

extern char yyext[]

If %pointer is specified, then the correct external reference is of the form:

extern char *yytext;

lex will accept declarations in the Definitions in lex section for setting certain internal table sizes. The declarations are shown in the following table.

Table Size Declaration in lex

<table>
<thead>
<tr>
<th>Declaration</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>%pn</td>
<td>Number of positions</td>
<td>2500</td>
</tr>
<tr>
<td>%nn</td>
<td>Number of states</td>
<td>500</td>
</tr>
<tr>
<td>%an</td>
<td>Number of transitions</td>
<td>2000</td>
</tr>
<tr>
<td>%en</td>
<td>Number of parse tree nodes</td>
<td>1000</td>
</tr>
<tr>
<td>%kn</td>
<td>Number of packed character classes</td>
<td>10000</td>
</tr>
<tr>
<td>%on</td>
<td>Size of the output array</td>
<td>3000</td>
</tr>
</tbody>
</table>

Programs generated by lex need either the -e or -w option to handle input that contains EUC characters from supplementary codesets. If neither of these options is specified, yytext is of the type char[], and the generated program can handle only ASCII characters.

When the -e option is used, yytext is of the type unsigned char[] and yyleng gives the total number of bytes in the matched string. With this option, the macros input(), unput(c), and output(c) should do a byte-based I/O in the same way as with the regular ASCII lex. Two more variables are available with the -e option, yywtext and yywleng, which behave the same as yytext and yyleng would under the -w option.

When the -w option is used, yytext is of the type wchar_t[] and yyleng gives the total number of characters in the matched string. If you supply your own input(), unput(c), or output(c) macros with this option, they must return or accept EUC characters in the form of wide character (wchar_t). This allows a different interface between your program and the lex internals, to expedite some programs.
The Rules in lex source files are a table in which the left column contains regular expressions and the right column contains actions (C program fragments) to be executed when the expressions are recognized.

ERE action

... The extended regular expression (ERE) portion of a row will be separated from action by one or more blank characters. A regular expression containing blank characters is recognized under one of the following conditions:

- The entire expression appears within double-quotes.
- The blank characters appear within double-quotes or square brackets.
- Each blank character is preceded by a backslash character.

Anything in the user subroutines section will be copied to `lex.yy.c` following `yylex`.

The lex utility supports the set of Extended Regular Expressions (EREs) described on `regex(5)` with the following additions and exceptions to the syntax:

... Any string enclosed in double-quotes will represent the characters within the double-quotes as themselves, except that backslash escapes (which appear in the following table) are recognized. Any backslash-escape sequence is terminated by the closing quote. For example, " \ 01" represents a single string: the octal value 1 followed by the character 1.

\(<\text{state}>r\) \(<\text{state1, state2, ...}>r\) The regular expression \(r\) will be matched only when the program is in one of the start conditions indicated by \(\text{state}, \text{state1}, \text{and so forth}\). For more information, see Actions in lex. As an exception to the typographical conventions of the rest of this document, in this case \(<\text{state}>\) does not represent a metavariable, but the literal angle-bracket characters surrounding a symbol. The start condition is recognized as such only at the beginning of a regular expression.

\(r/x\) The regular expression \(r\) will be matched only if it is followed by an occurrence of regular expression \(x\). The token returned in `yytext` will only match \(r\). If the trailing portion of \(r\) matches the beginning of \(x\), the result is unspecified. The \(r\) expression cannot include further trailing context or the $ (match-end-of-line) operator; \(x\) cannot include the ^ (match-beginning-of-line) operator, nor trailing context, nor the $ operator. That is, only one occurrence of trailing context is allowed in a lex regular expression, and the ^ operator only can be used at the beginning of such an expression. A further restriction is that the trailing-context operator / (slash) cannot be grouped within parentheses.
When \{ name \} is one of the substitution symbols from the Definitions section, the string, including the enclosing braces, will be replaced by the substitute value. The substitute value will be treated in the extended regular expression as if it were enclosed in parentheses. No substitution will occur if \{ name \} occurs within a bracket expression or within double-quotes.

Within an ERE, a backslash character (\, \a, \b, \f, \n, \r, \t, \v) is considered to begin an escape sequence. In addition, the escape sequences in the following table will be recognized.

A literal newline character cannot occur within an ERE; the escape sequence \n can be used to represent a newline character. A newline character cannot be matched by a period operator.

---

**Escape Sequences in lex**

<table>
<thead>
<tr>
<th>Escape Sequence</th>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\digits</td>
<td>A backslash character followed by the longest sequence of one, two or three octal-digit characters (01234567). If all of the digits are 0, (that is, representation of the NUL character), the behavior is undefined.</td>
<td>The character whose encoding is represented by the one-, two- or three-digit octal integer. Multi-byte characters require multiple, concatenated escape sequences of this type, including the leading \ for each byte.</td>
</tr>
<tr>
<td>\xdigits</td>
<td>A backslash character followed by the longest sequence of hexadecimal-digit characters (01234567abcdefABCDEF). If all of the digits are 0, (that is, representation of the NUL character), the behavior is undefined.</td>
<td>The character whose encoding is represented by the hexadecimal integer.</td>
</tr>
<tr>
<td>\c</td>
<td>A backslash character followed by any character not described in this table. (\n, \a, \b, \f, \n, \r, \t, \v).</td>
<td>The character c, unchanged.</td>
</tr>
</tbody>
</table>

The order of precedence given to extended regular expressions for lex is as shown in the following table, from high to low.

**Note:** The escaped characters entry is not meant to imply that these are operators, but they are included in the table to show their relationships to the true
operators. The start condition, trailing context and anchoring notations have been omitted from the table because of the placement restrictions described in this section; they can only appear at the beginning or ending of an ERE.

### ERE Precedence in lex

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntax examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collation-related bracket symbols</td>
<td>[ = ] [ : ] [ . ]</td>
</tr>
<tr>
<td>Escaped characters</td>
<td>&lt;special character&gt;</td>
</tr>
<tr>
<td>Bracket expression</td>
<td>[ ]</td>
</tr>
<tr>
<td>Quoting</td>
<td>&quot; . . . &quot;</td>
</tr>
<tr>
<td>Grouping</td>
<td>( )</td>
</tr>
<tr>
<td>Definition</td>
<td>{ name }</td>
</tr>
<tr>
<td>Single-character RE duplication</td>
<td>* + ?</td>
</tr>
<tr>
<td>Concatenation</td>
<td></td>
</tr>
<tr>
<td>Interval expression</td>
<td>{ m,n }</td>
</tr>
<tr>
<td>Alternation</td>
<td></td>
</tr>
</tbody>
</table>

The ERE anchoring operators (`^` and `$`) do not appear in the table. With `lex` regular expressions, these operators are restricted in their use: the `^` operator can only be used at the beginning of an entire regular expression, and the `$` operator only at the end. The operators apply to the entire regular expression. Thus, for example, the pattern (`^abc`) | (def$) is undefined; it can instead be written as two separate rules, one with the regular expression `^abc` and one with `def$`, which share a common action via the special `|` action (see below). If the pattern were written `^abc | def$`, it would match either of `abc` or `def` on a line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical `lex` implementations. An example of embedded anchoring would be for patterns such as (`^`)foo($) to match `foo` when it exists as a complete word. This functionality can be obtained using existing `lex` features:

`^foo/\s\n|   * foo*/\s\n/* found foo as a separate word */`

Notice also that `$` is a form of trailing context (it is equivalent to `/\s\n` and as such cannot be used with regular expressions containing another instance of the operator (see the preceding discussion of trailing context).
The additional regular expressions trailing-context operator / (slash) can be used as an ordinary character if presented within double-quotes, " / "; preceded by a backslash, \ /; or within a bracket expression, [ / ]. The start-condition < and > operators are special only in a start condition at the beginning of a regular expression; elsewhere in the regular expression they are treated as ordinary characters.

The following examples clarify the differences between lex regular expressions and regular expressions appearing elsewhere in this document. For regular expressions of the form r/x, the string matching r is always returned; confusion may arise when the beginning of x matches the trailing portion of r. For example, given the regular expression a*b/cc and the input aaabcc, yytext would contain the string aaab on this match. But given the regular expression x*/xy and the input xxxxy, the token xxx, not xx, is returned by some implementations because xxx matches x*.

In the rule ab*/bc, the b* at the end of r will extend r’s match into the beginning of the trailing context, so the result is unspecified. If this rule were ab/bc, however, the rule matches the text ab when it is followed by the text bc. In this latter case, the matching of r cannot extend into the beginning of x, so the result is specified.

**Actions in lex**

The action to be taken when an ERE is matched can be a C program fragment or the special actions described below; the program fragment can contain one or more C statements, and can also include special actions. The empty C statement ; is a valid action; any string in the lex.yy.c input that matches the pattern portion of such a rule is effectively ignored or skipped. However, the absence of an action is not valid, and the action lex takes in such a condition is undefined.

The specification for an action, including C statements and special actions, can extend across several lines if enclosed in braces:

ERE <one or more blanks> { program statement
 program statement }

The default action when a string in the input to a lex.yy.c program is not matched by any expression is to copy the string to the output. Because the default behavior of a program generated by lex is to read the input and copy it to the output, a minimal lex source program that has just % generates a C program that simply copies the input to the output unchanged.

Four special actions are available:

<table>
<thead>
<tr>
<th>ECHO;  REJECT;  BEGIN</th>
</tr>
</thead>
</table>
| The action | means that the action for the next rule is the action for this rule. Unlike the other three actions, | cannot be enclosed in braces or be semicolon-terminated. It must be specified alone, with no other actions.

ECHO;

Writes the contents of the string yytext on the output.

REJECT;

Usually only a single expression is matched by a given string in the input. REJECT means "continue to the next expression that
matches the current input,” and causes whatever rule was the second choice after the current rule to be executed for the same input. Thus, multiple rules can be matched and executed for one input string or overlapping input strings. For example, given the regular expressions \texttt{xyz} and \texttt{xy} and the input \texttt{xyz}, usually only the regular expression \texttt{xyz} would match. The next attempted match would start after \texttt{z}. If the last action in the \texttt{xyz} rule is \texttt{REJECT}, both this rule and the \texttt{xy} rule would be executed. The \texttt{REJECT} action may be implemented in such a fashion that flow of control does not continue after it, as if it were equivalent to a \texttt{goto} to another part of \texttt{yylex}. The use of \texttt{REJECT} may result in somewhat larger and slower scanners.

\textbf{BEGIN} The action:

\begin{verbatim}
BEGIN newstate;
\end{verbatim}

switches the state (start condition) to \texttt{newstate}. If the string \texttt{newstate} has not been declared previously as a start condition in the Definitions in \texttt{lex} section, the results are unspecified. The initial state is indicated by the digit \texttt{0} or the token \texttt{INITIAL}.

The functions or macros described below are accessible to user code included in the \texttt{lex} input. It is unspecified whether they appear in the C code output of \texttt{lex}, or are accessible only through the \texttt{-ll} operand to \texttt{c89} or \texttt{cc} (the \texttt{lex} library).

\begin{description}
\item[\texttt{int yylex(void)}] Performs lexical analysis on the input; this is the primary function generated by the \texttt{lex} utility. The function returns zero when the end of input is reached; otherwise it returns non-zero values (tokens) determined by the actions that are selected.
\item[\texttt{int yymore(void)}] When called, indicates that when the next input string is recognized, it is to be appended to the current value of \texttt{yytext} rather than replacing it; the value in \texttt{yyleng} is adjusted accordingly.
\item[\texttt{int yyless(int n)}] Retains \texttt{n} initial characters in \texttt{yytext}, NUL-terminated, and treats the remaining characters as if they had not been read; the value in \texttt{yyleng} is adjusted accordingly.
\item[\texttt{int input(void)}] Returns the next character from the input, or zero on end-of-file. It obtains input from the stream pointer \texttt{yyin}, although possibly via an intermediate buffer. Thus, once scanning has begun, the effect of altering the value of \texttt{yyin} is undefined. The character read is removed from the input stream of the scanner without any processing by the scanner.
\end{description}
int unput(int c)  Returns the character c to the input; yytext and yyleng are undefined until the next expression is matched. The result of using unput for more characters than have been input is unspecified.

The following functions appear only in the lex library accessible through the -ll operand; they can therefore be redefined by a portable application:

int yywrap(void)  Called by yylex at end-of-file; the default yywrap always will return 1. If the application requires yylex to continue processing with another source of input, then the application can include a function yywrap, which associates another file with the external variable FILE *yyin and will return a value of zero.

int main(int argc, char *argv[])  Calls yylex to perform lexical analysis, then exits. The user code can contain main to perform application-specific operations, calling yylex as applicable.

The reason for breaking these functions into two lists is that only those functions in libl.a can be reliably redefined by a portable application.

Except for input, unput and main, all external and static names generated by lex begin with the prefix yy or YY.

PORTABLE APPLICATIONS are warned that in the Rules in lex section, an ERE without an action is not acceptable, but need not be detected as erroneous by lex. This may result in compilation or run-time errors.

The purpose of input is to take characters off the input stream and discard them as far as the lexical analysis is concerned. A common use is to discard the body of a comment once the beginning of a comment is recognized.

The lex utility is not fully internationalized in its treatment of regular expressions in the lex source code or generated lexical analyzer. It would seem desirable to have the lexical analyzer interpret the regular expressions given in the lex source according to the environment specified when the lexical analyzer is executed, but this is not possible with the current lex technology. Furthermore, the very nature of the lexical analyzers produced by lex must be closely tied to the lexical requirements of the input language being described, which will frequently be locale-specific anyway. (For example, writing an analyzer that is used for French text will not automatically be useful for processing other languages.)

EXAMPLE 1 Using lex

The following is an example of a lex program that implements a rudimentary scanner for a Pascal-like syntax:

```c
%
/* need this for the call to atof() below */
#include <math.h>
/* need this for printf(), fopen() and stdin below */
#include <stdio.h>
```


EXAMPLE 1 Using lex  (Continued)

%

DIGIT    [0-9]
ID       [a-z][a-z0-9]*
%

{DIGIT}+    {
  printf("An integer: %s (%d)\n", yytext,
    atoi(yytext));
}

{DIGIT}+.*{DIGIT}*    {
  printf("A float: %s (%g)\n", yytext,
    atof(yytext));
}

if|then|begin|end|procedure|function    {
  printf("A keyword: %s\n", yytext);
}

{ID}    printf("An identifier: %s\n", yytext);

*/|*-|"*/|*/"    printf("An operator: %s\n", yytext);

{/*|}*/    /* eat up one-line comments */

[ \t\n]+ /* eat up white space */

.    printf("Unrecognized character: %s\n", yytext);
%

int main(int argc, char *argv[ ])
{
  ++argv, --argc; /* skip over program name */
  if (argc > 0)
    yyin = fopen(argv[0], "r");
  else
    yyin = stdin;
  yylex();
}

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the
execution of lex: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and
NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
yacc(1), attributes(5), environ(5), regex(5), standards(5)

NOTES
If routines such as yyback(), yywrap(), and yylock() in .1 (ell) files are to be external C functions, the command line to compile a C++ program must define the __EXTERN_C__ macro. For example:

```
example$ CC -D__EXTERN_C__ ... file
```
limit(1)

NAME
limit, ulimit, unlimit – set or get limitations on the system resources available to the current shell and its descendents

SYNOPSIS
/usr/bin/ulimit [-f] [blocks]
sh
ulimit [-H] [a | cdfnstv]
ulimit [-S] [c | d | f | n | s | t | v] limit

csh
limit [-h] [ resource [limit]]
unlimit [-h] [resource]
ksh
ulimit [-HScdfnstv] [limit]

DESCRIPTION
/usr/bin/ulimit
The ulimit utility sets or reports the file-size writing limit imposed on files written by the shell and its child processes (files of any size may be read). Only a process with appropriate privileges can increase the limit.

sh
The Bourne shell built-in function, ulimit, prints or sets hard or soft resource limits. These limits are described in getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits may be printed at one time. The -a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string unlimited requests the largest valid limit. Limits may be set for only one resource at a time. Any user may set a soft limit to any value below the hard limit. Any user may lower a hard limit. Only a super-user may raise a hard limit; see su(1M).

The -H option specifies a hard limit. The -S option specifies a soft limit. If neither option is specified, ulimit will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If no option is specified, the file size limit is printed or set.

- c maximum core file size (in 512-byte blocks)
- d maximum size of data segment or heap (in kbytes)
- f maximum file size (in 512-byte blocks)
- n maximum file descriptor plus 1
- s maximum size of stack segment (in kbytes)
- t maximum CPU time (in seconds)
- v maximum size of virtual memory (in kbytes)
The C-shell built-in function, `limit`, limits the consumption by the current process or any process it spawns, each not to exceed `limit` on the specified `resource`. If `limit` is omitted, print the current limit; if `resource` is omitted, display all limits. (Run the `sysdef(1M)` command to obtain the maximum possible limits for your system. The values reported are in hexadecimal, but can be translated into decimal numbers using the `bc(1)` command).

```
limit
```

- Use hard limits instead of the current limits. Hard limits impose a ceiling on the values of the current limits. Only the privileged user may raise the hard limits.

`resource` is one of:

- `cputime` Maximum CPU seconds per process.
- `filesize` Largest single file allowed. Limited to the size of the filesystem (see `df(1M)`).
- `datasize` The maximum size of a process’s heap in kilobytes.
- `stacksize` Maximum stack size for the process (see `swap(1M)`).
- `coredumpsize` Maximum size of a core dump (file). This is limited to the size of the filesystem.
- `descriptors` Maximum number of file descriptors (run `sysdef()`).
- `memorysize` Maximum size of virtual memory.

`limit` is a number, with an optional scaling factor, as follows:

- `nh` Hours (for `cputime`).
- `nk` `n` kilobytes. This is the default for all but `cputime`.
- `nm` `n` megabytes or minutes (for `cputime`).
- `mm:ss` Minutes and seconds (for `cputime`).

`unlimit` removes a limitation on `resource`. If no `resource` is specified, then all resource limitations are removed. See the description of the `limit` command for the list of resource names.

```
unlimit
```

- Remove corresponding hard limits. Only the privileged user may do this.

The Korn shell built-in function, `ulimit`, sets or displays a resource limit. The available resources limits are listed below. Many systems do not contain one or more of these limits. The limit for a specified resource is set when `limit` is specified. The value of `limit` can be a number in the unit specified below with each resource, or the value `unlimited`. The `-H` and `-S` flags specify whether the hard limit or the soft limit for the given resource is set. A hard limit cannot be increased once it is set. A soft limit can be increased up to the value of the hard limit. If neither the `-H` or `-S` options is
specified, the limit applies to both. The current resource limit is printed when `limit` is omitted. In this case, the soft limit is printed unless `-H` is specified. When more than one resource is specified, then the limit name and unit is printed before the value.

- `a` Lists all of the current resource limits.
- `c` The number of 512-byte blocks on the size of core dumps.
- `d` The number of K-bytes on the size of the data area.
- `f` The number of 512-byte blocks on files written by child processes (files of any size may be read).
- `n` The number of file descriptors plus 1.
- `s` The number of K-bytes on the size of the stack area.
- `t` The number of seconds (CPU time) to be used by each process.
- `v` The number of K-bytes for virtual memory.

If no option is given, `-f` is assumed.


table:

**OPTIONS**

The following option is supported by `ulimit`:

- `-f` Set (or report, if no `blocks` operand is present), the file size limit in blocks. The `-f` option is also the default case.

**OPERANDS**

The following operand is supported by `ulimit`:

- `blocks` The number of 512-byte blocks to use as the new file size limit.

**EXAMPLES**

**/usr/bin/ulimit**

**EXAMPLE 1** Limiting the stack size

To limit the stack size to 512 kilobytes:

```
example% ulimit -s 512
example% ulimit -a
```

```
time(seconds) unlimited
file(blocks) 100
data(kbytes) 523256
stack(kbytes) 512
coredump(blocks) 200
nofiles(descriptors) 64
memory(kbytes) unlimited
```

**sh/ksh**

**EXAMPLE 2** Limiting the number of file descriptors

To limit the number of file descriptors to 12:

```
example$ ulimit -n 12
example$ ulimit -a
```

```
time(seconds) unlimited
file(blocks) 41943
```
EXAMPLE 2 Limiting the number of file descriptors (Continued)

data (kbytes) 523256
stack (kbytes) 8192
coredump (blocks) 200
nofiles (descriptors) 12
vmemory (kbytes) unlimited

csh  EXAMPLE 3 Limiting the core dump file size

To limit the size of a core dump file size to 0 kilobytes:

```csh
example$ limit coredumpsize 0
example$ limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize 0 kbytes
descriptors 64
memorysize unlimited
```

EXAMPLE 4 Removing the limitation for core file size

To remove the above limitation for the core file size:

```csh
example$ unlimit coredumpsize
example$ limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize unlimited
descriptors 64
memorysize unlimited
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of ulimit: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned by ulimit:

- 0  Successful completion.
- >0  A request for a higher limit was rejected or an error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
SEE ALSO  |  bc(1), csh(1), ksh(1), sh(1), df(1M), su(1M), swap(1M), sysdef(1M), getrlimit(2), attributes(5), environ(5), standards(5)
line(1)

NAME | line – read one line

SYNOPSIS | line

DESCRIPTION | The `line` utility copies one line (up to and including a new-line) from the standard input and writes it on the standard output. It returns an exit status of 1 on `EOF` and always prints at least a new-line. It is often used within shell files to read from the user’s terminal.

EXIT STATUS | Exit status is:
0 | Successful completion
>0 | End-of-file on input.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | `sh(1)`, `read(2)`, `attributes(5)`
lint(1B)

NAME
lint – C program verifier

SYNOPSIS
/usr/ucb/lint [options]

DESCRIPTION
/usr/ucb/lint is the interface to the BSD Compatibility Package C program
verifier. It is a script that looks for the link /usr/ccs/bin/ucblint to the C
program verifier. /usr/ccs/bin/ucblint is available only with the SPROcc
package, whose default location is /opt/SUNWspro. /usr/ucb/lint is identical to
/usr/ccs/bin/ucblint, except that BSD headers are used and BSD libraries are
linked before base libraries. The /opt/SUNWspro/man/man1/lint.1 man page is
available only with the SPROcc package.

OPTIONS
/usr/ucb/lint accepts the same options as /usr/ccs/bin/ucblint, with the
following exceptions:

-Idir Search dir for included files whose names do not begin with a
slash (/) prior to searching the usual directories. The directories
for multiple -I options are searched in the order specified. The
preprocessor first searches for #include files in the directory
containing sourcefile, and then in directories named with -I
options (if any), then /usr/ucbinclude, and finally, in
/usr/include.

-Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucblint. This option is passed to
/usr/ccs/bin/ld. Directories specified with this option are
searched before /usr/ucplib and /usr/lib.

-Y P, dir Change the default directory used for finding libraries.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/usr/lint/bin/ld link editor
/usr/lib/libc C library
/usr/ucbinclude BSD Compatibility directory for header files
/usr/ucplib BSD Compatibility directory for libraries
/usr/ucplib/libucb BSD Compatibility C library
/usr/lib/libsocket library containing socket routines
/usr/lib/libnsl library containing network functions
/usr/lib/libelf library containing routines to process ELF object files
/usr/lib/libaio library containing asynchronous I/O routines
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO ld(1), a.out(4), attributes(5)
### Names

list_devices – list allocatable devices

### Synopsis

```bash
list_devices [-s] [-U uid] -l [device]
list_devices [-s] [-U uid] -n [device]
list_devices [-s] [-U uid] -u [device]
```

### Description

The `list_devices` utility lists the allocatable devices in the system according to specified qualifications.

The `device` and all device special files associated with the device are listed. The device argument is optional and, if it is not present, all relevant devices are listed.

### Options

The following options are supported:

- `-l [device]` Lists the pathname(s) of the device special files associated with the device that are allocatable to the current process. If `device` is given, lists only the files associated with the specified device.

- `-n [device]` Lists the pathname(s) of device special files associated with the device that are allocatable to the current process but are not currently allocated. If `device` is given, lists only the files associated with that device.

- `-s` Silent. Suppresses any diagnostic output.

- `-u [device]` Lists the pathname(s) of device special files, associated with the device that are allocated to the owner of the current process. If `device` is given, list only the files associated with that device.

- `-U uid` Uses the user ID `uid` instead of the real user ID of the current process when performing the `list_devices` operation. Only a user with the `solaris.devices.revoke` authorization can use this option.

### Exit Status

The following exit values are returned:

- non—zero An error occurred.

### Files

- `/etc/security/device_allocate`
- `/etc/security/device_maps`
- `/etc/security/dev/*`
- `/usr/security/lib/*`

### Attributes

See attributes(5) for descriptions of the following attributes:
list_devices(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO allocate(1), deallocate(1), bsmconv(1M), dminfo(1M), device_allocate(4), device_maps(4), attributes(5)

NOTES The functionality described in this man page is available only if the Basic Security Module (BSM) has been enabled. See bsmconv(1M) for more information.

/etc/security/dev, mkdevalloc(1M), and mkdevmaps(1M) may not be supported in a future release of the Solaris operating environment.
NAME
listusers – list user login information

SYNOPSIS
listusers [-g groups] [-l logins]

DESCRIPTION
Executed without any options, this command lists all user logins sorted by login. The output shows the login ID and the account field value from the system’s password database as specified by /etc/nsswitch.conf.

OPTIONS
The following options are supported:
- -g groups Lists all user logins belonging to group, sorted by login. Multiple groups can be specified as a comma-separated list.
- -l logins Lists the user login or logins specified by logins, sorted by login. Multiple logins can be specified as a comma-separated list.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
nsswitch.conf(4), attributes(5)

NOTES
A user login is one that has a UID of 100 or greater.

The -l and -g options can be combined. User logins will only be listed once, even if they belong to more than one of the selected groups.
llc2_autoconfig

NAME
llc2_autoconfig – generate LLC2 configuration files

SYNOPSIS
/usr/lib/llc2/llc2_autoconfig [-f]

DESCRIPTION
The llc2_autoconfig utility is used to generate LLC2 configuration files
(*/etc/llc2/default/llc2.*) If there is no configuration file in
*/etc/llc2_default/*, it detects all the available interfaces in the system and
generates corresponding default configuration files.

If there are existing configuration files in */etc/llc2_default/*, it will check if those
interfaces defined in the files still exist. If they do not exist in the system, it will set
llc2_on in those files to 0. After this, it will detect if there are new interfaces in the
system. If there are, it will generate configuration files for them.

OPTIONS
The following option is supported:

- f Erases all configuration files in */etc/llc2/default/*. Then detects all
the available interfaces in the system and generates corresponding default
configuration files. Use this option with caution.

FILES
*/etc/llc2/default/llc2.* LLC2 configuration files

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWllc</td>
</tr>
</tbody>
</table>

SEE ALSO
llc2_config(1), llc2(4), attributes(5), llc2(7D)
NAME  llc2_config – configure LLC2 interface parameters

SYNOPSIS  
/usr/lib/llc2/llc2_config [-P | -U | -d | -q | -i ppa | -r ppa]

DESCRIPTION  The llc2_config utility is used to start/stop the LLC2 subsystem and to configure LLC2 interface parameters.

OPTIONS  The following options are supported:

-`d`  Turns on debug mode. Extra debugging information will be printed out.

-`i ppa`  Initializes the corresponding interface using the file 
/etc/llc2/default/llc2.ppa.

-`P`  Reads in all /etc/llc2/default/llc2.* configuration files, opens those devices defined in the files, and sets up the streams needed for LLC2 to use those devices. Before doing this, llc2_config-q will not show anything.

-`q`  Queries the LLC2 subsystem. Information similar to the following example will be printed out for all PPAs (Physical Point of Attachment) available under the LLC2 module:

```
PPA State ID MACAddr Type MaxSDU MinSDU Mode
0 up 0000 0800208a217e ethernet 1500 0 3
```

The fields displayed are described below:

PPA  The relative logical position of the interface.
State  The state of the interface:
  `up`  The interface is initialized and operational.
  `down`  The interface was "discovered" by the LLC2 driver, has passed its bootup diagnostics, and is awaiting initialization.
  `bad`  The interface is known to the LLC2 driver, but failed one or more of the integrity checks performed at boot time. This might include detecting Interrupt Request and shared memory conflicts or failures detected during the execution of the level 0 diagnostics.

ID  The interface ID.
MACAddr  The MAC address currently in effect for the interface.
Type  The MAC type. Current types supported include:
llc2_config(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWllc</td>
</tr>
</tbody>
</table>

SEE ALSO  
llc2_autoconfig(1), llc2(4), attributes(5), llc2(7D)
llc2_stats – LLC2 Station, SAP, and Connection Statistics

SYNOPSIS
llc2_stats ppa [-r] [-s sap] [-c connection]

DESCRIPTION
The llc2_stats command is used to retrieve statistical information from the
Host-based Logical Link Control Class 2 component of the LLC2 Driver. Statistics are
kept for the station, SAP (Service Access Point), and connection components.

OPTIONS
The following options are supported:

- -c connection
  Specifies the connection of interest. Its value is entered
  in hexadecimal notation with no leading 0x.

- -r
  Resets the specified counters to zero after reading
  them. This option is only valid if the root user is
  executing the command.

- -s sap
  Specifies the SAP for this request. It is a single-byte
  value, expressed in hexadecimal notation with no
  leading 0x. For example, the NetBIOS sap, 240 (0xf0)
  would be entered as: -s f0.

OPERANDS
The following operand is supported:

ppa The logical number used to address the adapter. The PPA (Physical
  Point of Attachment) must be the first argument.

EXAMPLES
EXAMPLE 1 Station Statistics
The following command will display the station statistics for PPA 4. After the
example, a brief description of each field is presented.

example$ /usr/lib/llc2/llc2_stats 4

Station values received:
ppa = 0x00000004 clearFlag = 0x00
# of saps (hex) = 0x0002
saps (hex) = 02 aa
state = 0x01
nullSapXidCmdRcvd = 0x00000000
nullSapXidRspSent = 0x00000000
nullSapTestCmdRcvd = 0x00000000
nullSapTestRspSent = 0x00000000
outOfState = 0x00000000
allocFail = 0x00000000
protocolError = 0x00000000

The fields are described as follows:

ppa The logical number used to address the adapter.

clearFlag This flag indicates if the statistics will be reset to zero
  after reading (set to 1) or if the statistics are read only
  (set to 0).
**EXAMPLE 1** Station Statistics  
(Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># of saps</td>
<td>The number of SAPs currently bound on this station.</td>
</tr>
<tr>
<td>saps</td>
<td>The array of the station’s Service Access Point (SAP) logical interface</td>
</tr>
<tr>
<td></td>
<td>values between the LLC and its adjacent layers.</td>
</tr>
<tr>
<td>state</td>
<td>A number indicating the current state of the station component (0 = down, 1 = up).</td>
</tr>
<tr>
<td>nullSapXidCmdRcvd</td>
<td>The number of XID command Protocol Data Units (PDUs) received for the NULL SAP address (sap = 0x00).</td>
</tr>
<tr>
<td>nullSapXidRspSent</td>
<td>The number of XID response PDUs sent in response to XID command PDUs</td>
</tr>
<tr>
<td></td>
<td>received for the null SAP address.</td>
</tr>
<tr>
<td>nullSapTestCmdRcvd</td>
<td>The number of TEST command PDUs received for the null SAP address.</td>
</tr>
<tr>
<td>nullSapTestRspSent</td>
<td>The number of TEST response PDUs sent in response to TEST command PDUs</td>
</tr>
<tr>
<td></td>
<td>received for the null SAP address.</td>
</tr>
<tr>
<td>outOfState</td>
<td>The number of events received in an invalid state.</td>
</tr>
<tr>
<td>allocFail</td>
<td>The number of buffer allocation failures.</td>
</tr>
<tr>
<td>protocolError</td>
<td>The number of LLC protocol errors, that is, the receipt of malformed PDUs</td>
</tr>
<tr>
<td></td>
<td>or the receipt of frame X when frame Y was expected.</td>
</tr>
</tbody>
</table>

**EXAMPLE 2** SAP Statistics

In the above display, there are two active SAPs, 0x02 and 0xaa. The following is an example of a command for retrieving the statistics for SAP 02 and a brief explanation of each field presented.

```bash
example% /usr/lib/llc2/llc2_stats 4 -s 02
```

Sap values received:

- ppa = 0x00000004  clearFlag = 0x00  
- sap = 0x02  
- state = 0x01  
- # of cons (hex) = 0x0000000a  
- connections (hex) = 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009  
- xidCmdSent = 0x00000000  
- xidCmdRcvd = 0x00000000  
- xidRspSent = 0x00000000  
- xidRspRcvd = 0x00000000  
- testCmdSent = 0x00000000  
- testCmdRcvd = 0x00000000  
- testRspSent = 0x00000000
EXAMPLE 2 SAP Statistics  (Continued)

\[
\begin{align*}
\text{testRspRcvd} & = 0x00000000 \\
\text{uiSent} & = 0x00000000 \\
\text{uiRcvd} & = 0x00000000 \\
\text{outOfState} & = 0x00000000 \\
\text{allocFail} & = 0x00000000 \\
\text{protocolError} & = 0x00000000
\end{align*}
\]

The fields are described as follows:

- **ppa**: The logical number used to address the adapter.
- **clearFlag**: This flag indicates if the statistics will be reset to zero after reading (set to 1) or if the statistics are read only (set to 0).
- **sap**: The specified Service Access Point (SAP) logical interface value for the station.
- **state**: A number indicating the current state of the SAP component (0 = inactive, 1 = active).
- **# of cons**: The number of active connections on this SAP.
- **connections**: The array of active connection indexes.
- **xidCmdSent**: The number of XID command PDUs sent (Source SAP = this sap).
- **xidCmdRcvd**: The number of XID command PDUs received (Destination SAP = this sap).
- **xidRspSent**: The number of XID response PDUs sent (Source SAP = this sap).
- **xidRspRcvd**: The number of XID response PDUs received (Source SAP = this sap).
- **testCmdSent**: The number of TEST command PDUs sent (Source SAP = this sap).
- **testCmdRcvd**: The number of TEST command PDUs received (Destination SAP = this sap).
- **testRspSent**: The number of TEST response PDUs sent (Source SAP = this sap).
- **testRspRcvd**: The number of TEST response PDUs received (Source SAP = this sap).
- **uiSent**: The number of Unnumbered Information Frames sent.
- **uiRcvd**: The number of Unnumbered Information Frames received.
EXAMPLE 2 SAP Statistics (Continued)

outOfState
The number of events received in an invalid state.

allocFail
The number of buffer allocation failures.

protocolError
The number of LLC protocol errors, that is, the receipt of malformed PDUs or the receipt of frame X when frame Y was expected.

EXAMPLE 3 Connection Statistics

Ten established connections are associated with this SAP. To retrieve the statistics for connection 1, enter the following command:

evacation% /usr/lib/llc2/llc2_stats 4 -s 2 -c 1

Connection values received:
ppa = 0x0004  clearFlag = 0x00
sap = 0x02  con = 0x0001  sid = 0x0201
stateOldest = 0x00  stateOlder = 0x00  stateOld = 0x01
state = 0x08
dl_nodeaddr = 0x0080d84008c2  dl_sap = 0x04
flag = 0x50  dataFlag = 0x00  timerOn = 0x18
vs = 0x29  vr = 0x1e  mrRcvd = 0x29  k = 0x14
retryCount = 0x0000  numToBeAcked = 0x0000  numToResend = 0x0000
macOutSave = 0x0000  macOutDump = 0x0000
iSent = 0x0ba9  iRcvd = 0x001e
frmrSent = 0x0000  frmrRcvd = 0x0000
rrSent = 0x016a  rrRcvd = 0x06fb
rnrSent = 0x0000  rnrRcvd = 0x0000
rejSent = 0x0000  rejRcvd = 0x0000
sabmeSent = 0x0000  sabmeRcvd = 0x0001
uaSent = 0x0001  uaRcvd = 0x0000  discSent = 0x0000
outOfState = 0x0000  allocFail = 0x0000  protocolError = 0x0000
localBusy = 0x0000  remoteBusy = 0x00b5  maxRetryFail = 0x0000
ackTimerExp = 0x0000  pollTimerExp = 0x0000
remBusyTimerExp = 0x0000
inactTimerExp = 0x0000
sendAckTimerExp = 0x0000

ppa
The logical number used to address the adapter.

clearFlag
This flag indicates if the statistics will be reset to zero after reading (set to a 1) or if the statistics are read only (set to 0).

sap
The specified Service Access Point (SAP) logical interface value for the station.

con
The specified connection index value for the SAP.

stateOldest
A number representing the state of the connection component prior to stateOlder.
### EXAMPLE 3 Connection Statistics (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stateOlder</td>
<td>A number representing the state of the connection component prior to stateOld.</td>
</tr>
<tr>
<td>stateOld</td>
<td>A number representing the state of the connection component prior to state.</td>
</tr>
<tr>
<td>state</td>
<td>A number representing the most current state of the connection component. See Table 1.</td>
</tr>
<tr>
<td>sid</td>
<td>The Station Identifier composed of the SAP (upper byte) and connection index (lower byte).</td>
</tr>
<tr>
<td>dl_nodeaddr</td>
<td>The Data Link Node Address. This is the destination node’s MAC address.</td>
</tr>
<tr>
<td>dl_sap</td>
<td>The destination node’s SAP.</td>
</tr>
<tr>
<td>flag</td>
<td>The connection component processing flag. See Table 3.</td>
</tr>
<tr>
<td>dataFlag</td>
<td>A number representing the status of the data units from received I-frame PDUs (0 = not discarded, 1 = discarded, 2 = busy state entered with REJ PDU outstanding).</td>
</tr>
<tr>
<td>timerOn</td>
<td>A number representing the timer activity flag, with each bit representing an active timer for this connection. See Table 2 for timer definitions.</td>
</tr>
<tr>
<td>vs</td>
<td>The sequence number of the next I-frame PDU to send.</td>
</tr>
<tr>
<td>vr</td>
<td>The expected sequence number of the next I-frame PDU to be received.</td>
</tr>
<tr>
<td>nrRcvd</td>
<td>The sequence number plus 1 of the last sent I-frame PDU acknowledged by the remote node.</td>
</tr>
<tr>
<td>k</td>
<td>The transmit window size.</td>
</tr>
<tr>
<td>retryCount</td>
<td>The retryCount is incremented whenever a timer expiration occurs. These timers protect outbound frames.</td>
</tr>
<tr>
<td>numToBeAched</td>
<td>The number of outbound I-frames awaiting acknowledgement.</td>
</tr>
<tr>
<td>numToResend</td>
<td>The number of outbound I-frames to be retransmitted.</td>
</tr>
<tr>
<td>macOutSave</td>
<td>No longer used.</td>
</tr>
<tr>
<td>macOutDump</td>
<td>No longer used.</td>
</tr>
<tr>
<td>iSent</td>
<td>The number of I-frames sent.</td>
</tr>
</tbody>
</table>
### Connection Statistics (Continued)

- **iRcvd**: The number of I-frames received.
- **frmrSent**: The number of Frame Reject PDUs (FRMR) sent.
- **frmrRcvd**: The number of Frame Reject PDUs (FRMR) received.
- **rrSent**: The number of Receiver Ready PDUs (RR) sent.
- **rrRcvd**: The number of Receiver Ready PDUs (RR) received.
- **rnrSent**: The number of Receiver Not Ready PDUs (RNR) sent.
- **rnrRcvd**: The number of Receiver Not Ready PDUs (RNR) received.
- **rejSent**: The number of Reject PDUs (REJ) sent.
- **rejRcvd**: The number of Reject PDUs (REJ) received.
- **sabmeSent**: The number of Set Asynchronous Balanced Mode Extended PDUs (SABME) sent.
- **sabmeRcvd**: The number of Set Asynchronous Balanced Mode Extended PDUs (SABME) received.
- **uaSent**: The number of Unnumbered Acknowledgment PDUs (UA) sent.
- **uaRcvd**: The number of Unnumbered Acknowledgment PDUs (UA) received.
- **discSent**: The number of Disconnect PDUs (DISC) sent.
- **outOfState**: The number of events received in an invalid state.
- **allocFail**: The number of buffer allocation failures.
- **protocolError**: The number of LLC protocol errors, that is, the receipt of malformed PDUs or the receipt of frame X when frame Y was expected.
- **localBusy**: The number of times this component was in local busy state and could not accept I-frames.
- **remoteBusy**: The number of times the remote connection component was busy and could not accept I-frames.
- **maxRetryFail**: The number of failures that occurred because maxRetry was reached.
- **ackTimerExp**: The number of expirations of the Acknowledgement timer.
- **pollTimerExp**: The number of expirations of the Poll timer.
### EXAMPLE 3 Connection Statistics  (Continued)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rejTimerExp</td>
<td>The number of expirations of the Reject timer.</td>
</tr>
<tr>
<td>remBusyTimerExp</td>
<td>The number of expirations of the Remote Busy timer.</td>
</tr>
<tr>
<td>inactTimerExp</td>
<td>The number of expirations of the Inactivity timer.</td>
</tr>
<tr>
<td>sendAckTimerExp</td>
<td>The number of expirations of the Send Acknowledgement timer.</td>
</tr>
</tbody>
</table>

### Table 1: LLC2 States

<table>
<thead>
<tr>
<th>Type</th>
<th>State</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
<td>DOWN</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>UP</td>
<td>0x01</td>
</tr>
<tr>
<td>SAP</td>
<td>INACTIVE</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>ACTIVE</td>
<td>0x01</td>
</tr>
<tr>
<td>CONNECTION</td>
<td>ADM</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>CONN</td>
<td>0x01</td>
</tr>
<tr>
<td></td>
<td>RESET_WAIT</td>
<td>0x02</td>
</tr>
<tr>
<td></td>
<td>RESET_CHECK</td>
<td>0x03</td>
</tr>
<tr>
<td></td>
<td>SETUP</td>
<td>0x04</td>
</tr>
<tr>
<td></td>
<td>RESET</td>
<td>0x05</td>
</tr>
<tr>
<td></td>
<td>D_CONN</td>
<td>0x06</td>
</tr>
<tr>
<td></td>
<td>ERROR</td>
<td>0x07</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>0x08</td>
</tr>
<tr>
<td></td>
<td>BUSY</td>
<td>0x09</td>
</tr>
<tr>
<td></td>
<td>REJECT</td>
<td>0x0a</td>
</tr>
<tr>
<td></td>
<td>AWAIT</td>
<td>0x0b</td>
</tr>
<tr>
<td></td>
<td>AWAIT_BUSY</td>
<td>0x0c</td>
</tr>
<tr>
<td></td>
<td>AWAIT_REJECT</td>
<td>0x0d</td>
</tr>
</tbody>
</table>
# llc2_stats(1)

## Table 2: timersOn

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>0x80</td>
</tr>
<tr>
<td>Poll</td>
<td>0x40</td>
</tr>
<tr>
<td>Reject</td>
<td>0x20</td>
</tr>
<tr>
<td>Remove Busy</td>
<td>0x10</td>
</tr>
<tr>
<td>Inactivity</td>
<td>0x08</td>
</tr>
<tr>
<td>Send Acknowledgement</td>
<td>0x04</td>
</tr>
</tbody>
</table>

## Table 3: LLC2 Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_FLAG</td>
<td>0x80</td>
</tr>
<tr>
<td>F_FLAG</td>
<td>0x40</td>
</tr>
<tr>
<td>S_FLAG</td>
<td>0x20</td>
</tr>
<tr>
<td>REMOTE_BUSY</td>
<td>0x10</td>
</tr>
<tr>
<td>RESEND_PENDING</td>
<td>0x08</td>
</tr>
</tbody>
</table>

## Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWllc</td>
</tr>
</tbody>
</table>

## Files

/dev/llc2 clone device

## See Also

`attributes(5)`

## Notes

For further information on the LLC2 components, states and flags, see the International Standards Organization document, ISO 8802-2: 1994, Section 7.
NAME
ln - make hard or symbolic links to files

SYNOPSIS
/usr/bin/ln [-fns] source_file  [target]
/usr/bin/ln [-fns] source_file...  target
/usr/xpg4/bin/ln  [-fs]  source_file  [target]
/usr/xpg/bin/ln  [-fs]  source_file...  target

DESCRIPTION
In the first synopsis form, the ln utility creates a new directory entry (link) for the file specified by source_file, at the destination path specified by target. If target is not specified, the link is made in the current directory. This first synopsis form is assumed when the final operand does not name an existing directory; if more than two operands are specified and the final is not an existing directory, an error will result.

In the second synopsis form, the ln utility creates a new directory entry for each file specified by a source_file operand, at a destination path in the existing directory named by target.

The ln utility may be used to create both hard links and symbolic links. A hard link is a pointer to a file and is indistinguishable from the original directory entry. Any changes to a file are effective independent of the name used to reference the file. Hard links may not span file systems and may not refer to directories.

ln by default creates hard links. source_file is linked to target. If target is a directory, another file named source_file is created in target and linked to the original source_file.

/usr/bin/ln
If target is a file, its contents are overwritten. If /usr/bin/ln determines that the mode of target forbids writing, it will print the mode (see chmod(1)), ask for a response, and read the standard input for one line. If the response is affirmative, the link occurs, if permissible. Otherwise, the command exits.

/usr/xpg4/bin/ln
If target is a file and the -f option is not specified, /usr/xpg4/bin/ln will write a diagnostic message to standard error, do nothing more with the current source_file, and go on to any remaining source_files.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of the file to which it is linked. Symbolic links may span file systems and may refer to directories.

When creating a hard link, and the source file is itself a symbolic link, then the target will be a hard link to the file referenced by the symbolic link, not to the symbolic link object itself (source_file).

File permissions for target may be different from those displayed with a -l listing of the ls(1) command. To display the permissions of target use ls -1l. See stat(2) for more information.

OPTIONS
The following options are supported for both /usr/bin/ln and /usr/xpg4/bin/ln:
-f Link files without questioning the user, even if the mode of target forbids writing. This is the default if the standard input is not a terminal.

-s Create a symbolic link.

If the -s option is used with two arguments, target may be an existing directory or a non-existent file. If target already exists and is not a directory, an error is returned. source_file may be any path name and need not exist. If it exists, it may be a file or directory and may reside on a different file system from target. If target is an existing directory, a file is created in directory target whose name is source_file or the last component of source_file. This file is a symbolic link that references source_file. If target does not exist, a file with name target is created and it is a symbolic link that references source_file.

If the -s option is used with more than two arguments, target must be an existing directory or an error will be returned. For each source_file, a link is created in target whose name is the last component of source_file. Each new source_file is a symbolic link to the original source_file. The files and target may reside on different file systems.

The following options are supported for /usr/bin/ln only:

- n If the link is an existing file, do not overwrite the contents of the file. The -f option overrides this option. This is the default behavior for /usr/xpg4/bin/ln, and is silently ignored.

The following operands are supported:

source_file A path name of a file to be linked. This can be either a regular or special file. If the -s option is specified, source_file can also be a directory.

target The path name of the new directory entry to be created, or of an existing directory in which the new directory entries are to be created.

See largefile(5) for the description of the behavior of ln when encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the execution of ln: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All the specified files were linked successfully

>0 An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

chmod(1), ls(1), stat(2), attributes(5), environ(5), largefile(5), standards(5)

NOTES

A symbolic link to a directory behaves differently than you might expect in certain cases. While an ls(1) on such a link displays the files in the pointed-to directory, an ’ls -l’ displays information about the link itself:

```bash
eexample% ln -s dir link
eexample% ls link
test1 test2
eexample% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir
```

When you cd(1) to a directory through a symbolic link, you wind up in the pointed-to location within the file system. This means that the parent of the new working directory is not the parent of the symbolic link, but rather, the parent of the pointed-to directory. For instance, in the following case the final working directory is /usr and not /home/user/linktest.

```bash
eexample% pwd
/home/user/linktest
eexample% ln -s /usr/tmp symlink
eexample% cd symlink
eexample% cd..
eexample% pwd
/usr
```

C shell users can avoid any resulting navigation problems by using the pushd and popd built-in commands instead of cd.
**NAME**
ln – make hard or symbolic links to files

**SYNOPSIS**
```
/usr/ucb/ln [-fs] filename [linkname]
/usr/ucb/ln [-fs] pathname... directory
```

**DESCRIPTION**
The `/usr/ucb/ln` utility creates an additional directory entry, called a link, to a file or directory. Any number of links can be assigned to a file. The number of links does not affect other file attributes such as size, protections, data, etc.

`filename` is the name of the original file or directory. `linkname` is the new name to associate with the file or filename. If `linkname` is omitted, the last component of `filename` is used as the name of the link.

If the last argument is the name of a directory, symbolic links are made in that directory for each `pathname` argument; `/usr/ucb/ln` uses the last component of each `pathname` as the name of each link in the named directory.

A hard link (the default) is a standard directory entry just like the one made when the file was created. Hard links can only be made to existing files. Hard links cannot be made across file systems (disk partitions, mounted file systems). To remove a file, all hard links to it must be removed, including the name by which it was first created; removing the last hard link releases the inode associated with the file.

A symbolic link, made with the `-s` option, is a special directory entry that points to another named file. Symbolic links can span file systems and point to directories. In fact, you can create a symbolic link that points to a file that is currently absent from the file system; removing the file that it points to does not affect or alter the symbolic link itself.

A symbolic link to a directory behaves differently than you might expect in certain cases. While an `ls(1)` on such a link displays the files in the pointed-to directory, an `ls -l` displays information about the link itself:

```
example% /usr/ucb/ln -s dir link
example% ls link
file1 file2 file3 file4
example% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link → dir
```

When you use `cd(1)` to change to a directory through a symbolic link, you wind up in the pointed-to location within the file system. This means that the parent of the new working directory is not the parent of the symbolic link, but rather, the parent of the pointed-to directory. For instance, in the following case the final working directory is `/usr` and not `/home/user/linktest`.

```
example% pwd
/home/user/linktest
example% /usr/ucb/ln -s /var/tmp symlink
example% cd symlink
example% cd ..
```
C shell users can avoid any resulting navigation problems by using the pushd and popd built-in commands instead of cd.

**OPTIONS**

- **-f** Force a hard link to a directory. This option is only available to the super-user, and should be used with extreme caution.

- **-s** Create a symbolic link or links.

**USAGE**

See `largefile(5)` for the description of the behavior of ln when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXAMPLES**

**EXAMPLE 1** The `/usr/ucb/ln` command

The commands below illustrate the effects of the different forms of the `/usr/ucb/ln` command:

```bash
example$ /usr/ucb/ln file link
example$ ls -F file link
file link
example$ /usr/ucb/ln -s file symlink
example$ ls -F file symlink
file symlink@
example$ ls -li file link symlink
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 file
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 link
10607 lrwxrwxrwx 1 user 4 Jan 12 00:06 symlink → file
example$ /usr/ucb/ln -s nonesuch devoid
example$ ls -F devoid
devoid@
example$ cat devoid
devoid: No such file or directory
example$ /usr/ucb/ln -s /proto/bin/* /tmp/bin
example$ ls -F /proto/bin /tmp/bin
/proto/bin:
x* y* z*
/tmp/bin:
x* y* z*
```

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`cp(1), ls(1), mv(1), rm(1), link(2), readlink(2), stat(2), symlink(2), attributes(5), largefile(5)`
When the last argument is a directory, simple basenames should not be used for `pathname` arguments. If a basename is used, the resulting symbolic link points to itself:

```
example$ /usr/ucb/ln -s file /tmp
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file → file
eexample$ cat /tmp/file
/tmp/file: Too many levels of symbolic links
```

To avoid this problem, use full pathnames, or prepend a reference to the `PWD` variable to files in the working directory:

```
example$ rm /tmp/file
example$ /usr/ucb/ln -s $PWD/file /tmp
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file →
/home/user/subdir/file
```
NAME
loadkeys, dumpkeys – load and dump keyboard translation tables

SYNOPSIS
loadkeys [filename]
dumpkeys

DESCRIPTION
loadkeys reads the file specified by filename, and modifies the keyboard streams module's translation tables. If no file is specified, loadkeys loads the file:
/usr/share/lib/keytables/type_tt/layout_dd, where tt is the value returned by the KIOCTYPE ioctl, and dd is the value returned by the KIOCLAYOUT ioctl (see kb(7M)). These keytable files specify only the entries that change between the specified layout and the default layout for the particular keyboard type. On self-identifying keyboards, the value returned by the KIOCLAYOUT ioctl is set from the DIP switches.

dumpkeys writes the current contents of the keyboard streams module's translation tables, in the format specified by keytables(4), to the standard output.

FILES
/usr/share/lib/keytables/layout_dd
default keytable files

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
kbd(1), keytables(4), attributes(5), kb(7M), usbkbm(7M)
locale utility writes information about the current locale environment, or all
public locales, to the standard output. For the purposes of this section, a public locale is
one provided by the implementation that is accessible to the application.

When locale is invoked without any arguments, it summarizes the current locale
environment for each locale category as determined by the settings of the environment
variables.

When invoked with operands, it writes values that have been assigned to the
keywords in the locale categories, as follows:

- Specifying a keyword name selects the named keyword and the category
  containing that keyword.
- Specifying a category name selects the named category and all keywords in that
category.

The following options are supported:

- `-a` Writes information about all available public locales. The available locales
  include POSIX, representing the POSIX locale.
- `-c` Writes the names of selected locale categories. The `-c` option increases
  readability when more than one category is selected (for example, via more
  than one keyword name or via a category name). It is valid both with and
  without the `-k` option.
- `-k` Writes the names and values of selected keywords. The implementation
  may omit values for some keywords; see OPERANDS.
- `-m` Writes names of available charmaps; see localedef(1).

The following operand is supported:

`name` The name of a locale category, the name of a keyword in a locale category,
or the reserved name charmap. The named category or keyword will be
selected for output. If a single `name` represents both a locale category name
and a keyword name in the current locale, the results are unspecified;
otherwise, both category and keyword names can be specified as `name`
operands, in any sequence.

Examples

In the following examples, the assumption is that locale environment variables are set
as follows:

`LANG=locale_x LC_COLLATE=locale_y`
EXAMPLE 1 Examples of the locale utility  (Continued)

The command `locale` would result in the following output:

```
LANG=locale_x
LC_CTYPE="locale_x"
LC_NUMERIC="locale_x"
LC_TIME="locale_x"
LC_COLLATE="locale_y"
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=
```

The command

```
LC_ALL=POSIX locale -ck decimal_point
```

would produce:

```
LC_NUMERIC
decimal_point= "."
```

The following command shows an application of `locale` to determine whether a user-supplied response is affirmative:

```
if printf "%s\n" "$response" | /usr/xpg4/bin/grep -Eq
 "$(locale yesexpr)"
then
 affirmative processing goes here
else
 non-affirmative processing goes here
fi
```

ENVIRONMENT VARIABLES

See `environ(5)` for the descriptions of `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The `LANG`, `LC_*`, and `NLSPATH` environment variables must specify the current locale environment to be written out. These environment variables will be used if the `-a` option is not specified.

EXIT STATUS

The following exit values are returned:

- 0  All the requested information was found and output successfully.
- >0  An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
</tbody>
</table>
locale(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

If LC_CTYPE or keywords in the category LC_CTYPE are specified, only the values in the range 0x00-0x7f are written out.

If LC_COLLATE or keywords in the category LC_COLLATE are specified, no actual values are written out.


localedef(1)

NAME
localedef – define locale environment

SYNOPSIS
localedef [-c] [-C compiler_options] [-f charmap] [-i sourcefile]
          [-L linker_options] [-m model] [-Wc, arg] [-x extensions_file] localename

DESCRIPTION
The localedef utility converts source definitions for locale categories into a format usable by the functions and utilities whose operational behavior is determined by the setting of the locale environment variables; see environ(5).

The utility reads source definitions for one or more locale categories belonging to the same locale from the file named in the -i option (if specified) or from standard input.

Each category source definition is identified by the corresponding environment variable name and terminated by an END category-name statement. The following categories are supported.

LC_CTYPE     Defines character classification and case conversion.
LC_COLLATE   Defines collation rules.
LC_MONETARY  Defines the format and symbols used in formatting of monetary information.
LC_NUMERIC   Defines the decimal delimiter, grouping and grouping symbol for non-monetary numeric editing.
LC_TIME      Defines the format and content of date and time information.
LC_MESSAGES  Defines the format and values of affirmative and negative responses.

OPTIONS
The following options are supported:

-c            Creates permanent output even if warning messages have been issued.
-C compiler_options
              Passes the compiler_options to the C compiler (cc). If more than one option is specified, then the options must be enclosed in quotes (" ").
              This is an old option. Use the -Wcc, arg option instead.
-f charmap    Specifies the pathname of a file containing a mapping of character symbols and collating element symbols to actual character encodings. This option must be specified if symbolic names (other than collating symbols defined in a collating-symbol keyword) are used. If the -f option is not present, the default character mapping will be used.
localedef(1)

- `i` sourcefile
  The path name of a file containing the source definitions. If this option is not present, source definitions will be read from standard input.

- `-L` linker_options
  Passes the `linker_options` to the C compiler (`cc`) that follows the C source filename. If more than one option is specified, then the options must be enclosed in quotes (" ").

  This is an old option. Use the `-W cc, arg` option instead.

- `-m` model
  Specifies whether `localedef` will generate a 64-bit or a 32-bit locale object.

  Specify `model` as `ilp32` to generate a 32-bit locale object. Specify `lp64` to generate a 64-bit locale object. If the `-m` option is not specified, `localedef` generates a 32-bit locale object. And if no other options than `-c`, `-f`, and `-i` options are specified and if the system running `localedef` supports the 64-bit environment, `localedef` additionally generates a 64-bit locale object.

- `-W cc, arg`
  Passes `arg` options to the C compiler. Each argument must be separated from the preceding by only a comma. (A comma can be part of an argument by escaping it by an immediately preceding backslash character; the backslash is removed from the resulting argument.)

  Use this option instead of the `-C` and `-L` options.

- `-x` extensions file
  Specifies the name of an extension file where various `localedef` options are listed. See `locale`(5).

**OPERANDS**

The following operand is supported:

- **localenname**
  Identifies the locale. If the name contains one or more slash characters, `localenname` will be interpreted as a path name where the created locale definitions will be stored. This capability may be restricted to users with appropriate privileges. (As a consequence of specifying one `localenname`, although several categories can be processed in one execution, only categories belonging to the same locale can be processed.)

**OUTPUT**

`localedef` creates a temporary C source file that represents the locale’s data. `localedef` then calls the C compiler to compile this C source file into a shared object.
localedef calls the C compiler for generating 32-bit objects and generates a 32-bit locale object. If the \texttt{-mlp64} option is specified, localedef calls the C compiler for generating 64-bit objects and generates a 64-bit locale object.

If the \texttt{-m} option is not specified, localedef calls the C compiler for generating 32-bit objects and generates a 32-bit locale object. If no other options than \texttt{-c}, \texttt{-f}, and \texttt{-i} options are specified and if the system running localedef supports the 64-bit environment, localedef additionally calls the C compiler for generating 64-bit objects and generates a 64-bit locale object.

If no option to the C compiler is explicitly specified using the \texttt{-W}, \texttt{-C}, or \texttt{-L} options, localedef calls the C compiler with appropriate C compiler options to generate a locale object or objects.

If the \texttt{-mlp32} option is specified, localedef generates a 32-bit locale object named:

\texttt{localename.so.version\_number}

If the \texttt{-mlp64} option is specified, localedef generates a 64-bit locale object named:

\texttt{localename.so.version\_number}

If the \texttt{-m} option is not specified, localedef generates a 32-bit locale object named:

\texttt{localename.so.version\_number}

and, if appropriate, generates a 64-bit locale object named:

\texttt{64-bit\_architecture\_name/localename.so.version\_number}

The shared object for the 32-bit environment must be moved to:

\texttt{/usr/lib/locale/localename/localename.so.version\_number}

The shared object for the 64-bit environment on SPARC must be moved to:

\texttt{/usr/lib/locale/localename/sparcv9/localename.so.version\_number}

localedef also generates a text file named \texttt{localename} that is used for information only.

\textbf{ENVIRONMENT VARIABLES}

See \texttt{environ(5)} for definitions of the following environment variables that affect the execution of localedef: \texttt{LANG}, \texttt{LC\_ALL}, \texttt{LC\_COLLATE}, \texttt{LC\_CTYPE}, \texttt{LC\_MESSAGES}, and \texttt{NLSPATH}.

\textbf{EXIT STATUS}
The following exit values are returned:

\begin{itemize}
  \item 0 No errors occurred and the locales were successfully created.
  \item 1 Warnings occurred and the locales were successfully created.
\end{itemize}
localedef(1)

2 The locale specification exceeded implementation limits or the coded character set or sets used were not supported by the implementation, and no locale was created.

3 The capability to create new locales is not supported by the implementation.

>3 Warnings or errors occurred and no output was created.

If an error is detected, no permanent output will be created.

FILES

/usr/lib/localedef/extensions/generic_eucbc.x
Describes what a generic EUC locale uses in the system. This file is used by default.

/usr/lib/localedef/extensions/single_byte.x
Describes a generic single-byte file used in the system.

/usr/lib/locale/localename/localename.so.version_number
The shared object for the 32-bit environment.

/usr/lib/locale/localename/sparcv9/localename.so.version_number
The shared object for the 64-bit environment on SPARC.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

locale(1), nl_langinfo(3C), strftime(3C), attributes(5), charmap(5), environ(5), extensions(5), locale(5), standards(5)

WARNINGS

If warnings occur, permanent output will be created if the -c option was specified. The following conditions will cause warning messages to be issued:

- If a symbolic name not found in the charmap file is used for the descriptions of the LC_CTYPE or LC_COLLATE categories (for other categories, this will be an error conditions).
- If optional keywords not supported by the implementation are present in the source.
NAME
logger – add entries to the system log

SYNOPSIS
logger [-i] [-f file] [-p priority] [-t tag] [message] ...

DESCRIPTION
The logger command provides a method for adding one-line entries to the system log file from the command line. One or more message arguments can be given on the command line, in which case each is logged immediately. If this is unspecified, either the file indicated with -f or the standard input is added to the log. Otherwise, a file can be specified, in which case each line in the file is logged. If neither is specified, logger reads and logs messages on a line-by-line basis from the standard input.

OPTIONS
The following options are supported:

- file
  Uses the contents of file as the message to log.
- i
  Logs the process ID of the logger process with each line.
- p priority
  Enters the message with the specified priority. The message priority can be specified numerically, or as a facility.level pair. For example, ‘-p local3.info’ assigns the message priority to the info level in the local3 facility. The default priority is user.notice.
- t tag
  Marks each line added to the log with the specified tag.

OPERANDS
The following operand is supported:

message
One of the string arguments whose contents are concatenated together, in the order specified, separated by single space characters.

EXAMPLES
EXAMPLE 1 Examples of the logger command

The following example:

eexample% logger System rebooted

logs the message ‘System rebooted’ to the default priority level notice to be treated by syslogd as are other messages to the facility user.

The next example:

eexample% logger -p local0.notice -t HOSTIDM -f /dev/idmc

reads from the file /dev/idmc and logs each line in that file as a message with the tag ‘HOSTIDM’ at priority level notice to be treated by syslogd as are other messages to the facility local0.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of logger: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
logger(1)

0 Successful completion.
>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

mailx(1), write(1), syslogd(1M), syslog(3C), attributes(5), environ (5), standards(5)
logger(1B)

NAME  logger – add entries to the system log

SYNOPSIS  /usr/ucb/logger [-f filename] [-i] [-p priority] [-t tag] mm [message]...

DESCRIPTION  The logger utility provides a method for adding one-line entries to the system log file from the command line. One or more message arguments can be given on the command line, in which case each is logged immediately. If message is unspecified, either the file indicated with -f or the standard input is added to the log. Otherwise, a filename can be specified, in which case each line in the file is logged. If neither is specified, logger reads and logs messages on a line-by-line basis from the standard input.

OPTIONS  The following options are supported:

- i  Log the process ID of the logger process with each line.
- f filename  Use the contents of filename as the message to log.
- p priority  Enter the message with the specified priority. The message priority can be specified numerically, or as a facility.level pair. For example, `-p local3.info` assigns the message priority to the info level in the local3 facility. The default priority is user.notice.
- t tag  Mark each line added to the log with the specified tag.

EXAMPLES  EXAMPLE 1  Logging a message

The command:

example% logger System rebooted

will log the message ‘System rebooted’ to the facility at priority notice to be treated by syslogd as other messages to the facility notice are.

EXAMPLE 2  Logging messages from a file

The command:

example% logger -p local0.notice -t HOSTIDM -f /dev/idmc

will read from the file /dev/idmc and will log each line in that file as a message with the tag ‘HOSTIDM’ at priority notice to be treated by syslogd as other messages to the facility local0 are.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>
logger(1B)

SEE ALSO syslogd(1M), syslog(3C), attributes(5)
NAME
login – sign on to the system

SYNOPSIS
login [-p] [-d device] [-h hostname | [terminal] | -r hostname] [ name
[environ]...]

DESCRIPTION
The login command is used at the beginning of each terminal session to identify
oneself to the system. login is invoked by the system when a connection is first
established, after the previous user has terminated the login shell by issuing the exit
command.

If login is invoked as a command, it must replace the initial command interpreter. To
invoke login in this fashion, type:

exec login

from the initial shell. The C shell and Korn shell have their own builtins of login. See
ksh(1) and csh(1) for descriptions of login builtins and usage.

login asks for your user name, if it is not supplied as an argument, and your
password, if appropriate. Where possible, echoing is turned off while you type your
password, so it will not appear on the written record of the session.

If you make any mistake in the login procedure, the message:
Login incorrect

is printed and a new login prompt will appear. If you make five incorrect login
attempts, all five may be logged in /var/adm/loginlog, if it exists. The TTY line
will be dropped.

If password aging is turned on and the password has “aged” (see passwd(1) for more
information), the user is forced to changed the password. In this case the
/etc/nsswitch.conf file is consulted to determine password repositories (see
nsswitch.conf(4)). The password update configurations supported are limited to
the following five cases.

- passwd: files
- passwd: files nis
- passwd: files nisplus
- passwd: compat (==> files nis)
- passwd: compat (==> files nisplus)
  passwd_compat: nisplus

Failure to comply with the configurations will prevent the user from logging onto the
system because passwd(1) will fail. If you do not complete the login successfully
within a certain period of time, it is likely that you will be silently disconnected.

After a successful login, accounting files are updated. Device owner, group, and
permissions are set according to the contents of the /etc/logindevperm file, and
the time you last logged in is printed (see logindevperm(4)).
The user-ID, group-ID, supplementary group list, and working directory are initialized, and the command interpreter (usually ksh) is started.

The basic environment is initialized to:

```
HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin:
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/
TZ=timezone-specification
```

For Bourne shell and Korn shell logins, the shell executes `/etc/profile` and `$HOME/.profile`, if it exists. For C shell logins, the shell executes `/etc/.login`, `$HOME/.cshrc`, and `$HOME/.login`. The default `/etc/profile` and `/etc/.login` files check quotas (see `quota(1M)`), print `/etc/motd`, and check for mail. None of the messages are printed if the file `$HOME/.hushlogin` exists. The name of the command interpreter is set to `−` (dash), followed by the last component of the interpreter’s path name, for example, `−sh`.

If the `login-shell` field in the password file (see `passwd(4)`) is empty, then the default command interpreter, `/usr/bin/sh`, is used. If this field is `*` (asterisk), then the named directory becomes the root directory. At that point, `login` is re-executed at the new level, which must have its own root structure.

The environment may be expanded or modified by supplying additional arguments to `login`, either at execution time or when `login` requests your login name. The arguments may take either the form `xxx` or `xxx=yyy`. Arguments without an `=` (equal sign) are placed in the environment as:

```
Ln=xxx
```

where `n` is a number starting at 0 and is incremented each time a new variable name is required. Variables containing an `=` (equal sign) are placed in the environment without modification. If they already appear in the environment, then they replace the older values.

There are two exceptions: The variables `PATH` and `SHELL` cannot be changed. This prevents people logged into restricted shell environments from spawning secondary shells that are not restricted. `login` understands simple single-character quoting conventions. Typing a `\` (backslash) in front of a character quotes it and allows the inclusion of such characters as spaces and tabs.

Alternatively, you can pass the current environment by supplying the `-p` flag to `login`. This flag indicates that all currently defined environment variables should be passed, if possible, to the new environment. This option does not bypass any environment variable restrictions mentioned above. Environment variables specified on the login line take precedence, if a variable is passed by both methods.
To enable remote logins by root, edit the `/etc/default/login` file by inserting a `#` (pound sign) before the `CONSOLE=/dev/console` entry. See FILES.

**SECURITY**

The `login` command uses `pam(3PAM)` for authentication, account management, session management, and password management. The PAM configuration policy, listed through `/etc/pam.conf`, specifies the modules to be used for `login`. Here is a partial `pam.conf` file with entries for the `login` command using the UNIX authentication, account management, and session management modules:

```plaintext
login auth required pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1

login account requisite pam_roles.so.1
login account required pam_projects.so.1
login account required pam_unix_account.so.1

login session required pam_unix_session.so.1
```

The Password Management stack looks like the following:

```plaintext
other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1
other password required pam_authtok_store.so.1
```

If there are no entries for the service, then the entries for the "other" service will be used. If multiple authentication modules are listed, then the user may be prompted for multiple passwords.

When `login` is invoked through `rlogin` or `telnetd`, the service name used by PAM is `rlogin` or `telnet`, respectively.

**OPTIONS**

The following options are supported:

- `-d device`

  `login` accepts a device option, `device`. `device` is taken to be the path name of the TTY port `login` is to operate on. The use of the device option can be expected to improve `login` performance, since `login` will not need to call `ttyname(3C)`. The `-d` option is available only to users whose UID and effective UID are root. Any other attempt to use `-d` will cause `login` to quietly exit.

- `-h hostname [ terminal ]`

  Used by `in.telnetd(1M)` to pass information about the remote host and terminal type.

- `-p`

  Used to pass environment variables to the login shell.
EXIT STATUS

The following exit values are returned:

- 0 Successful operation.
- non-zero Error.

FILES

- `$HOME/.cshrc` initial commands for each csh
- `$HOME/.hushlogin` suppresses login messages
- `$HOME/.login` user's login commands for csh
- `$HOME/.profile` user's login commands for sh and ksh
- `$HOME/.rhosts` private list of trusted hostname/username combinations
- `/etc/.login` system-wide csh login commands
- `/etc/issue` issue or project identification
- `/etc/logindevperm` login-based device permissions
- `/etc/motd` message-of-the-day
- `/etc/nologin` message displayed to users attempting to login during machine shutdown
- `/etc/passwd` password file
- `/etc/profile` system-wide sh and ksh login commands
- `/etc/shadow` list of users' encrypted passwords
- `/usr/bin/sh` user's default command interpreter
- `/var/adm/lastlog` time of last login
- `/var/adm/loginlog` record of failed login attempts
- `/var/adm/utmpx` accounting
- `/var/adm/wtmpx` accounting
- `/var/mail/your-name` mailbox for user `your-name`
- `/etc/default/login` Default value can be set for the following flags in `/etc/default/login`. For example:
  ```
 TIMEZONE=EST5EDT

 TIMEZONE
 Sets the TZ environment variable of the shell (see environ(5)).

 HZ
 Sets the HZ environment variable of the shell.
```
ULIMIT
Sets the file size limit for the login. Units are disk
blocks. Default is zero (no limit).

CONSOLE
If set, root can login on that device only. This will
not prevent execution of remote commands with
rsh(1). Comment out this line to allow login by
root.

PASSREQ
Determines if login requires a non-null password.

ALTSHHELL
Determines if login should set the SHELL
environment variable.

PATH
Sets the initial shell PATH variable.

SUPATH
Sets the initial shell PATH variable for root.

TIMEOUT
Sets the number of seconds (between 0 and 900) to
wait before abandoning a login session.

UMASK
Sets the initial shell file creation mode mask. See
umask(1).

SYSLOG
Determines whether the syslog(3C) LOG_AUTH
facility should be used to log all root logins at level
LOG_NOTICE and multiple failed login attempts
at LOG_CRIT.

DISABLETIME
If present, and greater than zero, the number of
seconds that login will wait after RETRIES failed
attempts or the PAM framework returns
PAM_ABORT. Default is 20 seconds. Minimum is 0
seconds. No maximum is imposed.

SLEEPTIME
If present, sets the number of seconds to wait before
the login failure message is printed to the screen.
This is for any login failure other than PAM_ABORT.
Another login attempt is allowed, providing
RETRIES has not been reached or the PAM
framework is returned PAM_MAXTRIES. Default is 4
seconds. Minimum is 0 seconds. Maximum is 5
seconds.
RETRIES
Sets the number of retries for logging in (see pam(3PAM)). The default is 5.

SYSLOG_FAILED_LOGINS
Used to determine how many failed login attempts will be allowed by the system before a failed login message is logged, using the syslog(3C) LOG_NOTICE facility. For example, if the variable is set to 0, login will log all failed login attempts.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), exit(1), ksh(1), mail(1), mailx(1), newgrp(1), passwd(1), rlogin(1), rsh(1), sh(1), shell_builtins(1), telnet(1), unmask(1), in.rlogin(1M), in.telnetd(1M), logins(1M), quota(1M), su(1M), syslogd(1M), useradd(1M), userdel(1M), pam(3PAM), rcmd(3SOCKET), syslog(3C), ttyname(3C), auth_attr(4), exec_attr(4), hosts.equiv(4), issue(4), logindевpем(4), loginlog(4), nologin(4), nsswitch.conf(4), pam.conf(4), passwd(4), profile(4), shadow(4), user_attr(4), utmpx(4), wtmpx(4), attributes(5), environ(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), termio(7I)

DIAGNOSTICS
Login incorrect
The user name or the password cannot be matched.

Not on system console
Root login denied. Check the CONSOLE setting in /etc/default/login.

No directory! Logging in with home=/
The user’s home directory named in the passwd(4) database cannot be found or has the wrong permissions. Contact your system administrator.

No shell
Cannot execute the shell named in the passwd(4) database. Contact your system administrator.

NO LOGINS: System going down in N minutes
The machine is in the process of being shut down and logins have been disabled.

WARNINGS
Users with a UID greater than 76695844 are not subject to password aging, and the system does not record their last login time.
If you use the CONSOLE setting to disable root logins, you should arrange that remote command execution by root is also disabled. See `rsh(1)`, `rcmd(3SOCKET)`, and `hosts.equiv(4)` for further details.

The `pam_unix(5)` module might not be supported in a future release. Similar functionality is provided by `pam_unix_account(5)`, `pam_unix_auth(5)`, `pam_unix_session(5)`, `pam_authtok_check(5)`, `pam_authtok_get(5)`, `pam_authtok_store(5)`, `pam_dhkeys(5)`, and `pam_passwd_auth(5)`.
logname(1)

NAME    logname – return user’s login name

SYNOPSIS logname

DESCRIPTION The logname utility will write the user’s login name to standard output. The login
name is the string that would be returned by the getlogin(3C) function. Under the
conditions where getlogin() would fail, logname will write a diagnostic message
to standard error and exit with a non-zero exit status.

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the
execution of logname: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:
0           Successful completion.
>0          An error occurred.

FILES
/etc/profile   environment for user at login time
/var/adm/utmpx user and accounting information

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO env(1), login(1), getlogin(3C), utmpx(4), attributes(5), environ(5),
standards(5)
NAME  logout – shell built-in function to exit from a login session

SYNOPSIS

csh  logout

DESCRIPTION

csh  Terminate a login shell.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  csh(1), login(1), attributes(5)
NAME

look – find words in the system dictionary or lines in a sorted list

SYNOPSIS

/usr/bin/look [-d] [-f] [-tc] string [filename]

DESCRIPTION

The look command consults a sorted filename and prints all lines that begin with string.

If no filename is specified, look uses /usr/share/lib/dict/words with collating sequence -df.

look limits the length of a word to search for to 256 characters.

OPTIONS

-d   Dictionary order. Only letters, digits, TAB and SPACE characters are used in comparisons.

-f   Fold case. Upper case letters are not distinguished from lower case in comparisons.

-tc  Set termination character. All characters to the right of c in string are ignored.

FILES

/usr/share/lib/dict/words      spelling list

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO

grep(1), sort(1), attributes(5)
A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field starts on a line beginning with a ‘%’, followed by a key-letter, then a blank, and finally the contents of the field, which may continue until the next line starting with ‘%’.

The lookbib utility uses an inverted index made by indxbib to find sets of bibliographic references. It reads keywords typed after the ‘>’ prompt on the terminal, and retrieves records containing all these keywords. If nothing matches, nothing is returned except another ‘>’ prompt.

It is possible to search multiple databases, as long as they have a common index made by indxbib. In that case, only the first argument given to indxbib is specified to lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with the same name as the argument, without the suffixes. It creates a file with a .ig suffix, suitable for use with fgrep (see grep(1)). lookbib then uses this fgrep file to find references. This method is simpler to use, but the .ig file is slower to use than the .i[abc] files, and does not allow the use of multiple reference files.

FILES

x.ia
x.ib
x.ic  index files
x.ig  reference file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO addbib(1), grep(1), indxbib(1), refer(1), roffbib(1), sortbib(1), attributes(5)

BUGS Probably all dates should be indexed, since many disciplines refer to literature written in the 1800s or earlier.
lorder(1)

NAME lorder – find ordering relation for an object or library archive

SYNOPSIS lorder filename...

DESCRIPTION The input is one or more object or library archive filenames (see ar(1)). The standard output is a list of pairs of object file or archive member names; the first file of the pair refers to external identifiers defined in the second. The output may be processed by tsort(1) to find an ordering of a library suitable for one-pass access by ld. Note that the link editor ld is capable of multiple passes over an archive in the portable archive format (see ar(3HEAD)) and does not require that lorder be used when building an archive. The usage of the lorder command may, however, allow for a more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.

ar -cr library ` lorder *.o | tsort `  

FILES TMPDIR/*symref temporary files
TMPDIR/*symdef temporary files
TMPDIR usually /var/tmp but can be redefined by setting the environment variable TMPDIR (see tempnam() in tmpnam(3C))

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO ar(1), ld(1), tsort(1), tmpnam(3C), ar(3HEAD), attributes(5)

NOTES lorder will accept as input any object or archive file, regardless of its suffix, provided there is more than one input file. If there is but a single input file, its suffix must be .o.

The length of the filename for TMPDIR is limited to whatever sed allows.
NAME
lp – submit print request

SYNOPSIS
[-H special-handling] [-n number] [-o option] [-P page-list]
[-q priority-level] [-S character-set | print-wheel] [-t title]
[-T content-type [-r]] [-y mode-list] [file...]

[-H special-handling] [-n number] [-o option] [-P page-list]
[-q priority-level] [-S character-set | print-wheel] [-t title]
[-T content-type [-r]] [-y mode-list] [file...]

DESCRIPTION
The lp utility submits print requests to a destination. There are two formats of the lp command.

The first form of lp prints files (file) and associated information (collectively called a print request). If file is not specified, lp assumes the standard input. Use a hyphen (−) with file to specify the standard input. Files are printed in the order in which they appear on the command line.

The second form of lp changes print request options. This form of lp can only be used on a Solaris 2.6 Operating Environment or compatible versions of the LP print server. The print request identified by request-ID is changed according to the printing options specified. The printing options available are the same as those with the first form of the lp. If the request has finished printing when the lp command is executed, the change is rejected. If the request is in the process of printing, it will be stopped and restarted from the beginning (unless the -P option has been given).

The print client commands locate destination information using the “printers” database in the name service switch. See nsswitch.conf(4), printers(4), and printers.conf(4) for details.

OPTIONS
Printers that have a 4.x or BSD-based print server are not configured to handle BSD protocol extensions. lp handles print requests sent to such destinations differently (see NOTES).

The following options are supported:

-c Copies file before printing.

Unless -c is specified, users should not remove any file before the print request has completely printed.
Changes made to file after the print request is made but before it is printed will be reflected in the printed output. file will be linked (as opposed to copied).

-d destination Prints file on a specific destination. The -d option is used to set the destination only when the job is first created. (Note: To move existing jobs to a different destination, see lpmove(1M).) destination can be either a printer or a class of printers (see lpadmin(1M)).
Specify destination using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS)
(.../service/printer/...) names. See
printers.conf(4) for information regarding the
naming conventions for atomic and FNS names and
standards(5) for information regarding POSIX.

-f form-name
Prints file on form-name. The LP print service ensures
that the form is mounted on the printer. The print
request is rejected if the printer does not support
form-name, if form-name is not defined for the system, or
if the user is not allowed to use form-name (see
lpforms(1M)).

-H special-handling
Prints the print request according to the value of
special-handling. The following special-handling values
are acceptable:

hold
Do not print the print request until notified. If
printing has already begun, stop it. Other print
requests will go ahead of a request that has been put
on hold (held print request) until the print request is
resumed.

resume
Resume a held print request. If the print request had
begun to print when held, it will be the next print
request printed, unless it is superseded by an
immediate print request.

immediate
Print the print request next. If more than one print
request is assigned, the most recent print request is
printed next. If a print request is currently printing
on the desired printer, a hold request must be
issued to allow the immediate request to print. The
immediate request is only available to LP
administrators.

-i request-ID
Changes options for the print request identified by
request-ID. There must be a space between -i and
request-ID. This option applies only to jobs that are in a
local queue on a print server.

-m
Sends mail after file has printed (see mail(1)). By
default, no mail is sent upon normal completion of a
print request.

-n number
Prints a specific number of copies of file. Specify number
as a digit. The default for number is 1.
Specifies printer-dependent options. Specify several options by specifying `-o option` multiple times (`-o option -o option -o option`). Printer-dependent options may also be specified using the `-o` keyletter once, followed by a list of options enclosed in double quotes (`-o "option option option"`). The following options are valid:

**nobanner**
Does not print a banner page with the request. This option can be disallowed by the LP administrator.

**nofilebreak**
Prints multiple files without inserting a form feed between them.

**length=number i | number c | number**
Prints the print request with pages of a specific length in inches, centimeters, or number of lines. Append the letter `i` for inches or `c` for centimeters to `number`. Indicate the number of lines by specifying `number` alone. `length=66` indicates a page length of 66 lines. `length=11i` indicates a page length of 11 inches. `length=27.94c` indicates a page length of 27.94 centimeters.

This option may not be used with the `-f` option.

**width=number i | number c | number**
Prints the print request with pages of a specific width in inches, centimeters, or number of columns. Append the letter `i` for inches or `c` for centimeters to `number`. Indicate the number of columns by specifying `number` alone. `width=65` indicates a page width of 65 columns. `width=6.5i` indicates a page width of 6.5 inches. `width=10c` indicates a page width of 10 centimeters.

This option may not be used with the `-f` option.

**lpi=number**
Prints the print request with the line pitch set to `number` lines in an inch. Use `number` to specify the number of lines in an inch.

This option may not be used with the `-f` option.

**cpi=n|pica|elite|compressed**
Prints the print request with the character pitch set to `number` characters in an inch. Use `number` to specify the number of characters in an inch. Use
pica to set character pitch to pica (10 characters per inch), or elite to set character pitch to elite (12 characters per inch). Use compressed to set character pitch to as many characters as the printer can handle. There is no standard number of characters per inch for all printers; see the terminfo database (see terminfo(4)) for the default character pitch for your printer. This option may not be used with the -E option.

`stty=stty-option-list`

Prints the request using a list of options valid for the stty command (see stty(1)). Enclose the list in single quotes (') if it contains blanks.

`-P page-list`

Prints the pages specified in page-list in ascending order. Specify page-list as a of range of numbers, single page number, or a combination of both.

The -P option can only be used if there is a filter available to handle it; otherwise, the print request will be rejected.

`-p`

Enables notification on completion of the print request. Delivery of the notification is dependent on additional software.

`-q priority-level`

Assigns the print request a priority in the print queue. Specify priority-level as an integer between from 0 and 39. Use 0 to indicate the highest priority; 39 to indicate the lowest priority. If no priority is specified, the default priority for a print service is assigned by the LP administrator. The LP administrator may also assign a default priority to individual users.

`-s`

Suppresses the display of messages sent from lp.

`-S character-set | -S print-wheel`

Prints the request using the character-set or print-wheel. If a form was requested and requires a character set or print wheel other than the one specified with the -S option, the request is rejected. Printers using mountable print wheels or font cartridges use the print wheel or font cartridge mounted at the time of the print request, unless the -S option is specified.

Printers Using Print Wheels: If print wheel is not one listed by the LP administrator as acceptable for the printer the request is rejected unless the print wheel is already mounted on the printer.
Printers Using Selectable or Programmable Character Sets: If the -S option is not specified, \texttt{lp} uses the standard character set. If character-set is not defined in the \texttt{terminfo} database for the printer (see \texttt{terminfo}(4)), or is not an alias defined by the LP administrator, the request is rejected.

-\texttt{t title}

Prints a title on the banner page of the output. Enclose \texttt{title} in quotes if it contains blanks. If \texttt{title} is not not specified, the name of the file is printed on the banner page.

-\texttt{T content-type} [-r]

Prints the request on a printer that can support the specified \texttt{content-type}. If no printer accepts this type directly, a filter will be used to convert the content into an acceptable type. If the -r option is specified, a filter will not be used. If -r is specified, and no printer accepts the \texttt{content-type} directly, the request is rejected. If the \texttt{content-type} is not acceptable to any printer, either directly or with a filter, the request is rejected.

-\texttt{w}

Writes a message on the user's terminal after the files have been printed. If the user is not logged in, then mail will be sent instead.

-\texttt{y mode-list}

Prints the request according to the printing modes listed in \texttt{mode-list}. The allowed values for \texttt{mode-list} are locally defined.

This option may be used only if there is a filter available to handle it; otherwise, the print request will be rejected.

**OPERANDS**

The following operand is supported:

\texttt{file}

The name of the file to be printed. Specify \texttt{file} as a pathname or as a hyphen (-) to indicate the standard input. If \texttt{file} is not specified, \texttt{lp} uses the standard input.

**USAGE**

See \texttt{largefile}(5) for the description of the behavior of \texttt{lp} when encountering files greater than or equal to 2 Gbyte \((2^{31}\text{ bytes})\).

**ENVIRONMENT VARIABLES**

See \texttt{environ}(5) for descriptions of the following environment variables that affect the execution of \texttt{lp}: \texttt{LANG}, \texttt{LC_ALL}, \texttt{LC_CTYPE}, \texttt{LC_MESSAGES}, \texttt{NLSPATH}, and \texttt{PATH}.

\texttt{LC_TIME}

Determine the format and contents of date and time strings displayed in the \texttt{lp} banner page, if any.

\texttt{LPDEST}

Determine the destination. If the \texttt{LPDEST} environment variable is not set, the \texttt{PRINTER} environment variable shall be used. The -d
dest option takes precedence over LPDEST. Results are undefined when -d is not specified and LPDEST contains a value that is not a valid destination name.

**PRINTER**
Determine the output device or destination. If the LPDEST and PRINTER environment variables are not set, an unspecified output device is used. The -d dest option and the LPDEST environment variable shall take precedence over PRINTER. Results are undefined when -d is not specified, LPDEST is unset, and PRINTER contains a value that is not a valid device or destination name.

**TZ**
Determine the timezone used to calculate date and time strings displayed in the lp banner page, if any. If TZ is unset or null, an unspecified default timezone shall be used.

**EXIT STATUS**
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>non-zero</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

**FILES**

- `/var/spool/lp/*` LP print queue.
- `~/.printers` User-configurable printer database.
- `/etc/printers.conf` System printer configuration database.
- `printers.conf.byname` NIS version of `/etc/printers.conf`.
- `printers.org_dir` NIS+ version of `/etc/printers.conf`.
- `fns.ctx_dir.domain` FNS version of `/etc/printers.conf`.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

**SEE ALSO**
cancel(1), enable(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), mail(1),
postprint(1), pr(1), stty(1), accept(1M), lpadmin(1M), lpfilter(1M),
lpforms(1M), lpmove(1M), lpsched(1M), lpshut(1M), lpsystem(1M),
lpusers(1M), nsswitch.conf(4), printers(4), printers.conf(4), terminfo(4),
attributes(5), environ(5), largefile(5), standards(5)

**NOTES**
CSI-capability assumes that printer names are composed of ASCII characters.
Print jobs are assumed to contain one type of data. That type of data is either specified on the command line or autodetected (simple, PostScript) based on the contents of the first file in the job.

Printers that have a 4.x or BSD-based print server are not configured to handle BSD protocol extensions. \texttt{lp} handles print requests sent to such printers in the following ways:

1. Print requests with more than 52 filenames will be truncated to 52 files. \texttt{lp} displays a warning message.

2. The \texttt{-f}, \texttt{-H}, \texttt{-o}, \texttt{-p}, \texttt{-q}, \texttt{-S}, \texttt{-T}, and \texttt{-y} options may require a protocol extension to pass to a print server. If \texttt{lp} cannot handle the print request, it displays a warning message.

LP administrators enable protocol extensions by setting a printer’s \texttt{bsdaddr} entry in /etc/printers.conf. Changing the \texttt{bsdaddr} entry in /etc/printers.conf to:

\texttt{destination=bsdaddr=server,destination,Solaris} generates a set of BSD print protocol extensions that can be processed by a Solaris print server. \texttt{lp} supports only Solaris protocol extensions at this time.
The `lpc` utility controls the operation of local printers. Use `lpc` to perform the following functions:

- start or stop a printer,
- disable or enable a printer’s spooling queue,
- rearrange the order of jobs in a print queue, or
- display the status of a printer print queue and printer daemon.

`lpc` can be run from the command line or interactively. Specifying `lpc` with the optional `command` and `parameter` arguments causes `lpc` to interpret the first argument as an `lpc` command, and all other arguments as parameters to that command. Specifying `lpc` without arguments causes it to run interactively, prompting the user for `lpc` commands with `lpc>`. By redirecting the standard input, `lpc` can read commands from a file.

`lpc` commands may be typed in their entirety or abbreviated to an unambiguous substring. Some `lpc` commands are available to all users; others are available only to super-users.

All users may execute the following `lpc` commands:

```
? [command ...] | help [command ...]
```

Displays a short description of `command`. `command` is an `lpc` command. If `command` is not specified, displays a list of `lpc` commands.

```
exit | quit
```

Exits from `lpc`.

```
status [all | printer ...]
```

Displays the status of print daemons and print queues. `all` specifies that this command is performed on all locally attached printers. `printer` indicates this command is performed on specific printers. Specify `printer` as an atomic name. See `printers.conf(4)` for information regarding naming conventions for atomic names.

Only a super-user may execute the following `lpc` commands:

```
abort [all | printer ...]
```

Terminates an active spooling daemon. Disables printing (by preventing new daemons from being started by `lpr(1B)`) for `printer`. `all` specifies this command is performed on all locally attached printers. `printer` indicates this command is performed on specific printers. Specify `printer` as an atomic name. See `printers.conf(4)` for information regarding naming conventions for atomic names.
clean [all | printer ...]
Removes files created in the print spool directory by the print daemon from printer's print queue. all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

disable [all | printer ...]
Turns off the print queue for printer. Prevents new printer jobs from being entered into the print queue for printer by lpr(1B). all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

down [all | printer ...] [message]
Turns the queue for printer off and disables printing on printer. Inserts message in the printer status file. message does not need to be quoted; multiple arguments to message are treated as arguments to echo(1). Use down to take a printer down and inform users. all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

enable [all | printer ...]
Enables lpr(1B) to add new jobs in the spool queue. all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

restart [all | printer ...]
Attempts to start a new printer daemon. restart is useful when a print daemon dies unexpectedly and leaves jobs in the print queue. all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

start [all | printer ...]
Enables printing. Starts a spooling daemon for the printer. all specifies that this command is performed on all locally attached printers. printer indicates the command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

stop [all | printer ...]
Stops a spooling daemon after the current job is complete. Disables printing at that time. all specifies that this command is performed on all locally attached printers.
printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

topq printer [request-ID ...] [user ...]
Moves request-ID or print jobs belonging to user on printer to the beginning of the print queue. Specify user as a user's login name. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

up [all | printer ...]
Turns the queue for printer on and enables printing on printer. Deletes the message in the printer status file (inserted by down). Use up to undo the effects of down. all specifies that this command is performed on all locally attached printers. printer indicates this command is performed on specific printers. Specify printer as an atomic name. See printers.conf(4) for information regarding naming conventions for atomic names.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/var/spool/lp/* LP print queue.
/var/spool/lp/system/pstatus Printer status information file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscplp</td>
</tr>
</tbody>
</table>

SEE ALSO
echo(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpsched(1M), lpshut(1M), printers.conf(4), attributes(5)

DIAGNOSTICS
Ambiguous command
Indicates that the lpc command or abbreviation matches more than one command.

?Invalid command
Indicates that the lpc command or abbreviation is not recognized.

?Privileged command
Indicates that the lpc command or abbreviation can be executed only by a super-user.

lpc: printer: unknown printer to the print service
Indicates that printer does not exist in the LP database. Check that printer was correctly specified. Use lpstat -p or the status command (see lpstat(1) or USAGE) to check the status of printers.
lpc: error on opening queue to spooler
Indicates that the connection to lpsched failed. Usually means that the printer server has died or is hung. Use /usr/lib/lp/lpsched to check if the printer spooler daemon is running.

lpc: Can’t send message to LP print service

lpc: Can’t receive message from LP print service
Indicates that the LP print service stopped. Contact the LP administrator.

lpc: Received unexpected message from LP print service
Indicates a problem with the software. Contact the LP administrator.
### NAME

lpq – display the content of a print queue

### SYNOPSIS

```
/usr/ucb/lpq [-P destination] [-l] [+ [interval]] [request-ID...] [user...]
```

### DESCRIPTION

The `lpq` utility displays the information about the contents of a print queue. A print queue is comprised of print requests that are waiting in the process of being printed.

`lpq` displays the following information to the standard output:
- the username of the person associated with a print request,
- the position of a print request in the print queue,
- the name of file or files comprising a print request,
- the job number of a print request, and
- the size of the file requested by a print request. File size is reported in bytes.

Normally, only as much information as will fit on one line is displayed. If the name of the input file associated with a print request is not available, the input file field indicates the standard input.

The print client commands locate destination information using the “printers” database in the name service switch. See `nsswitch.conf(4)`, `printers(4)`, and `printers.conf(4)` for details.

### OPTIONS

The following options are supported:

- `-P destination` Displays information about printer or class of printers (see `lpadmin(1M)`). Specify `destination` using atomic, POSIX-style (server:destination), or Federated Naming Service (FNS) (../service/printer/...) names. See `printers.conf(4)` for information regarding the naming conventions for atomic and FNS names, and `standards(5)` for information regarding POSIX.

- `-l` Displays information in long format. Long format includes the name of the host from which a print request originated in the display.

- `+ [interval]` Displays information at specific time intervals. Stops displaying information when the print queue is empty. Clears the screen before reporting displaying the print queue. Specify `interval` as the number of seconds between displays. If `interval` is not specified only executes once.

### OPERANDS

The following operands are supported:

- `request-ID` The job number associated with a print request.
- `user` The name of the user about whose jobs `lpq` reports information. Specify `user` as a valid username.

### EXIT STATUS

The following exit values are returned:
Successful completion.

non-zero An error occurred.

FILES
/var/spool/print/ [cd] f*
Spooling directory and request files for jobs awaiting transfer.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscplp</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), lpc(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4), printers(4), printers.conf(4), attributes(5), standards(5)
lpr(1B)

NAME
lpr – submit print requests

SYNOPSIS
[ -i [indent]] [-1 | -2 | -3 | -4 font] [-w cols] [-m] [-h] [-s]
[-filter_option] [file...]

DESCRIPTION
The lpr utility submits print requests to a destination. lpr prints files (file) and
associated information, collectively called a print request. If file is not specified, lpr
assumes the standard input.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

Print requests with more than 52 files specified will be truncated to 52 files. lpr
displays a warning message.

OPTIONS
The following options are supported:

- P destination
  Prints file on a specific printer or class of printers(see
  lpadmin(1M)). Specify destination using atomic,
  POSIX-style (server:destination), or Federated Naming
  Service (FNS) (/service/printer/) names.
  See printers.conf(4) for information regarding the
  naming conventions for atomic and FNS names, and
  standards(5) for information regarding POSIX.

- # number
  Prints a specific number of copies. Specify number as a
  positive integer. The default for number is 1.

- C class
  Prints class as the job classification on the banner page
  of the output. Enclose class in double quotes if it
  contains blanks. If class is not specified, the name of the
  system (as returned by hostname) is printed as the job
  classification. See hostname(1).

- J job
  Prints job as the job name on the banner page of the
  output. Enclose job in double quotes if it contains
  blanks. If job is not specified, file (or in the case of
  multiple files, the first file specified on the command
  line) is printed as the job name on the banner page of
  the output.

- T title
  Prints a title on the page header of the output. Enclose
  title in double quotes if it contains blanks. The -T
  option is ignored unless it is specified with the -p filter
  option.

- i indent
  Indents the output a specific number of SPACE
  characters. Use indent to indicate the number of SPACE
  characters to be indented. Specify indent as a positive
integer. If the optional argument to indent is not specified, then eight SPACE characters is the default. The -i option is ignored unless it is specified with the -p filter option.

-1|-2|-3|-4 font

Mounts the specified font in the font position 1, 2, 3, or 4. Specify font as a valid font name.

-w cols

Prints file with pages of a specific width. cols indicates the number of columns wide. The -w option is ignored unless it is specified with the -p filter option.

-m

Sends mail after file has printed. See mail(1). By default, no mail is sent upon normal completion of a print request.

-h

Suppresses printing of the banner page of the output.

-s

Uses full pathnames (as opposed to symbolic links) to file rather than trying to copy them. This means file should not be modified or removed until it has completed printing. Option -s only prevents copies of local files from being made on the local machine. Option -s only works with specified files. If the lpr command is at the end of a pipeline, file is copied to the spool.

-filter_option

Notifies the print spooler that file is not a standard text file. Enables the spooling daemon to use the appropriate filters to print file.

filter_options offer a standard user interface. All filter options may not be available for, or applicable to, all printers.

Specify filter_option as a single character.

If filter_option is not specified and the printer can interpret PostScript®, inserting ‘%!’ as the first two characters of file causes file to be interpreted as PostScript.

The following filter options are supported:

p Use pr to format the files. See pr(1).

l Print control characters and suppress page breaks.

t file contains troff (cat phototypesetter) binary data.
n  file contains ditroff data from device independent troff.

d  file contains tex data in DVI format from Stanford.

g  file contains standard plot data produced by plot(1B) routines.

v  file contains a raster image. printer must support an appropriate imaging model such as PostScript in order to print the image.

c  file contains data produced by cifplot.

f  Interprets the first character of each line as a standard FORTRAN carriage control character.

OPERANDS  The following operand is supported:

file  The name of the file to be printed. Specify file as a pathname. If file is not specified, lpr uses the standard input.

USAGE  See largefile(5) for the description of the behavior of lpr when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXIT STATUS  The following exit values are returned:

0  Successful completion.

non-zero  An error occurred.

FILES  
/var/spool/print/.seq  File containing the sequence numbers for job ID assignment.

/var/spool/print/[cd]f*  Spooling directories and files.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpplp</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
</tbody>
</table>

SEE ALSO  hostname(1), lp(1), lpc(1B), lpq(1B), lprm(1B), lpstat(1), mail(1), plot(1B), pr(1), troff(1), ladmin(1M), nsswitch.conf(4), printers(4), printers.conf(4), attributes(5), largefile(5), standards(5)

DIAGNOSTICS  lpr: destination |: unknown destination

destination was not found in the LP configuration database. Usually this is a typing mistake; however, it may indicate that the destination does not exist on the system.
Use `lpstat -p` to display information about the status of the print service.

**NOTES**

`lpr` is CSI-enabled except for the *printer* name.

Print jobs are assumed to contain one type of data. That type of data is either specified on the command line or autodetected (simple, PostScript) based on the contents of the first file in the job.
The `lprm` utility removes print requests (request-ID) from the print queue. Without arguments, `lprm` deletes the current print request. `lprm` reports the name of the file associated with print requests that it removes. `lprm` is silent if there are no applicable print requests to remove.

Users can only remove print requests associated with their user name. See NOTES. If a super-user executes `lprm` and specifies the `user` operand, `lprm` removes all print requests belonging to the specified user.

The print client commands locate destination information using the “printers” database in the name service switch. See `nsswitch.conf(4)`, `printers(4)`, and `printers.conf(4)` for details.

**OPTIONS**

The following options are supported:

- `-P destination`
  The name of the printer or class of printers (see `lpadmin(1M)`) from which to remove print requests. Specify destination using atomic, POSIX-style (`server:destination`), or Federated Naming Service (FNS) (`.../service/printer/...`) names. See `printers.conf(4)` for information regarding the naming conventions for atomic and FNS names, and `standards(5)` for information regarding POSIX.

- `−`
  If a user specifies this option, removes all print requests owned by that user. If a super-user specifies this option, removes all requests in the print queue. Job ownership is determined by the user’s login name and host name on the machine from which `lpr` was executed. See NOTES.

**OPERANDS**

The following operands are supported.

- `user`
  Removes print requests associated with a specific user. Specify `user` as a valid user name. This option can only be used by a super-user.

- `request-ID`
  Removes a specific print request. Specify `request-ID` as the job number (`Job`) associated with a print request and reported by `lpq`. See `lpq(1B)`.

**EXAMPLES**

**EXAMPLE 1** Removing a print request

The following example removes request-ID 385 from destination `killtree`:

```
example% lprm -P killtree 385
```

**EXIT STATUS**

The following exit values are returned:

- `0`
  Successful completion.
non-zero An error occurred.

FILES
/var/spool/print/ [cd]f* Spooling directories and files.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscplp</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), lpc(1B), lpq(1B), lpr(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4), printers(4), printers.conf(4), attributes(5), standards(5)

NOTES
Users can only remove print requests associated with their user name. By default, users can only remove print requests on the host from which the print request was submitted. If a super-user has set user-equivalence=true in /etc/printers.conf on the print server, users can remove print requests associated with their user name on any host. Super-users can remove print requests on the host from which the print request was submitted. Super-users can also remove print requests from the print server.
The `lpstat` utility displays information about the current status of the LP print service to standard output. If no options are given, `lpstat` prints the status of all the user's print requests made by `lp`. Any arguments that are not `options` are assumed to be `request-IDs` as returned by `lp`. The `lpstat` command prints the status of such requests. `options` may appear in any order and may be repeated and intermixed with other arguments. Some key letters may be followed by an optional `list` that can be in one of two forms: a list of items separated from one another by a comma, or a list of items separated from one another by spaces enclosed in quotes. For example:

```
example% lpstat -u "user1 user2 user3"
```

Specifying `all` after any key letter that takes `list` as an argument causes all information relevant to the key letter to be printed. For example, the command:

```
example% lpstat -o all
```

prints the status of all output requests.

The omission of a `list` following such key letters causes all information relevant to the key letter to be printed. For example, the command:

```
example% lpstat -o
```

prints the status of all output requests.

The print client commands locate destination information using the “printers” database in the name service switch. See `nsswitch.conf(4)`, `printers(4)`, and `printers.conf(4)` for details.

The following options are supported on all platforms.

- `-d`
  Prints the default destination for output requests.

- `-o [list]`
  Prints the status of output requests. `list` is a list of intermixed printer names, class names, and request-IDs. The key letter `-o` may be omitted. Specify printer and class names using atomic, POSIX-style (`server:destination`), or Federated Naming Service (FNS) (`.../service/printer/...`) names. See `printers.conf(4)` for information regarding the naming conventions for atomic and FNS names, and `standards(5)` for information regarding POSIX.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-r</code></td>
<td>Prints the status of the LP request scheduler.</td>
</tr>
<tr>
<td><code>-R</code></td>
<td>Prints a number showing the position of each request in the print queue.</td>
</tr>
<tr>
<td><code>-s</code></td>
<td>Prints a status summary, including the status of the LP scheduler, the default destination, a list of printers and their associated devices, a list of the machines sharing print services, a list of all forms currently mounted, and a list of all recognized character sets and print wheels.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Prints all status information. This includes all the information obtained with the <code>-s</code> option, plus the acceptance and idle/busy status of all printers.</td>
</tr>
</tbody>
</table>
| `-u [login-ID-list]` | Prints the status of output requests for users. The `login-ID-list` argument may include any or all of the following constructs:  
  - `login-ID`  
    - a user on any system  
  - `system_name!login-ID`  
    - a user on system `system_name`  
  - `system_name!all`  
    - all users on system `system_name`  
  - `all:login-ID`  
    - a user on all systems  
  - `all`  
    - all users on all systems |
| `-v [list]` | Prints the names of printers and the path names of the devices associated with them or remote system names for network printers. `list` is a list of printer names. |

The following options return accurate results only if they are issued from a Solaris 2.6 Operating Environment or compatible version of the LP print server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a [list]</code></td>
<td>Reports whether print destinations are accepting requests. <code>list</code> is a list of intermixed printer names and class names.</td>
</tr>
<tr>
<td><code>-c [list]</code></td>
<td>Prints name of all classes and their members. <code>list</code> is a list of class names.</td>
</tr>
<tr>
<td><code>-f [list] [-l]</code></td>
<td>Prints a verification that the forms in <code>list</code> are recognized by the LP print service. <code>list</code> is a list of forms; the default is <code>all</code>. The <code>-l</code> option will list the form descriptions.</td>
</tr>
</tbody>
</table>
| `-p [list] [-D] [-l]` | Prints the status of printers. `list` is a list of printer names. If the `-D` option is given, a brief description is
lpstat(1)

printed for each printer in list. If the -l option is given and the printer is on the local machine, a full
description of each printer's configuration is returned, including the form mounted, the acceptable content
and printer types, a printer description, and the interface used.

-S [list] [-l]
Prints a verification that the character sets or the print
wheels specified in list are recognized by the LP print
service. Items in list can be character sets or print
wheels; the default for the list is all. If the -l option is
given, each line is appended by a list of printers that
can handle the print wheel or character set. The list also
shows whether the print wheel or character set is
mounted, or specifies the built-in character set into
which it maps.

-d
Prints the default destination for output requests.

-o [list]
Prints the status of output requests. list is a list of
intermixed printer names, class names, and request-IDs.
The key letter -o may be omitted.

-\(r\)
Prints the status of the LP request scheduler.

-R
Prints a number showing the position of each request
in the print queue.

-s
Prints a status summary, including the status of the LP
scheduler, the default destination, a list of printers and
their associated devices, a list of the machines sharing
print services, a list of all forms currently mounted, and
a list of all recognized character sets and print wheels.

-\(t\)
Prints all status information. This includes all the
information obtained with the -s option, plus the
acceptance and idle/busy status of all printers.

-u [login-ID-list]
Prints the status of output requests for users. The
login-ID-list argument may include any or all of the
following constructs:

login-ID
a user on any system

system_name!login-ID
a user on system system_name

system_name!all
all users on system system_name

call!login-ID
a user on all systems
all
all users on all systems

-v [list] Prints the names of printers and the path names of the
devices associated with them or remote system names
for network printers. list is a list of printer names.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/var/spool/print/* LP print queue.
$HOME/.printers User-configurable printer database.
/etc/printers.conf System configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
printers.org_dir NIS+ version of /etc/printers.conf.
fns.ctx_dir.domain FNS version of /etc/printers.conf.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpcu</td>
</tr>
</tbody>
</table>

SEE ALSO cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), nsswitch.conf(4), printers(4),
printers.conf(4), attributes(5), standards(5)
NAME  lptest – generate line printer ripple pattern

SYNOPSIS  /usr/ucb/lptest [ length [count] ]

DESCRIPTION  The lptest utility writes the traditional ripple test pattern to the standard output. In 96 lines, the ripple test pattern prints all 96 printable ASCII characters in each position. The ripple test pattern was originally created to test printers. It is also useful for testing terminals, driving terminal ports, debugging, and performing tasks that require a quick supply of random data.

This command is obsolete.

OPTIONS  

length  Specifies the length of the output line in characters. 79 characters is the default.

count  Specifies the number of output lines. 200 lines is the default. If count is specified, length must also be specified.

EXIT STATUS  The following exit values are returned:

0  Successful completion.

non-zero  An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscplp</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5)
NAME
ls – list contents of directory

SYNOPSIS
/usr/bin/ls [-aAbcCdfGhilLmnopqrRstux1@] [file...]
/usr/xpg4/bin/ls [-aAbcCdfGhilLmnopqrRstux1@] [file...]

DESCRIPTION
For each file that is a directory, ls lists the contents of the directory. For each file that is an ordinary file, ls repeats its name and any other information requested. The output is sorted alphabetically by default. When no argument is given, the current directory is listed. When several arguments are given, the arguments are first sorted appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a terminal is multi-column with entries sorted down the columns. The -1 option allows single column output and -m enables stream output format. In order to determine output formats for the -C, -x, and -m options, ls uses an environment variable, COLUMNS, to determine the number of character positions available on one output line. If this variable is not set, the terminfo(4) database is used to determine the number of columns, based on the environment variable, TERM. If this information cannot be obtained, 80 columns are assumed.

The mode printed under the -l option consists of ten characters. The first character may be one of the following:

- d The entry is a directory.
- D The entry is a door.
- l The entry is a symbolic link.
- b The entry is a block special file.
- c The entry is a character special file.
- p The entry is a FIFO (or “named pipe”) special file.
- s The entry is an AF_UNIX address family socket.
- - The entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to the owner’s permissions; the next to permissions of others in the user-group of the file; and the last to all others. Within each set, the three characters indicate permission to read, to write, and to execute the file as a program, respectively. For a directory, “execute” permission is interpreted to mean permission to search the directory for a specified file. The character after permissions is ACL indication. A plus sign is displayed if there is an ACL associated with the file. Nothing is displayed if there are just permissions.

ls -l (the long list) prints its output as follows for the POSIX locale:

- rwxrwxrwx+ 1 smith dev 10876 May 16 9:42 part2
Reading from right to left, you see that the current directory holds one file, named `part2`. Next, the last time that file’s contents were modified was 9:42 A.M. on May 16. The file contains 10,876 characters, or bytes. The owner of the file, or the user, belongs to the group `dev` (perhaps indicating “development”), and his or her login name is `smith`. The number, in this case 1, indicates the number of links to file `part2` (see `cp(1)`). The plus sign indicates that there is an ACL associated with the file. Note: If the `-@` option has been specified, the presence of extended attributes will supersede the presence of an ACL and the plus sign will be replaced with an ‘at’ sign (@). Finally, the dash and letters tell you that user, group, and others have permissions to read, write, and execute `part2`.

The execute (x) symbol here occupies the third position of the three-character sequence. A – in the third position would have indicated a denial of execution permissions.

The permissions are indicated as follows:

- `r` The file is readable.
- `w` The file is writable.
- `x` The file is executable.
- `–` The indicated permission is *not* granted.
- `s` The set-user-ID or set-group-ID bit is on, and the corresponding user or group execution bit is also on.
- `S` Undefined bit-state (the set-user-ID bit is on and the user execution bit is off).
- `t` The 1000 (octal) bit, or sticky bit, is on (see `chmod(1)`), and execution is on.
- `T` The 1000 bit is turned on, and execution is off (undefined bit-state).
- `/usr/bin/ls` Mandatory locking occurs during access (the set-group-ID bit is on and the group execution bit is off).
- `/usr/xpg4/bin/ls` Mandatory locking occurs during access (the set-group-ID bit is on and the group execution bit is off).

For user and group permissions, the third position is sometimes occupied by a character other than `x` or `–`. `s` also may occupy this position, referring to the state of the set-ID bit, whether it be the user’s or the group’s. The ability to assume the same ID as the user during execution is, for example, used during login, when you begin as root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, `l` may occupy the third position. `l` refers to mandatory file and record locking. This permission describes a file’s ability to allow other files to lock its reading or writing permissions during access.

For others permissions, the third position may be occupied by `t` or `T`. These refer to the state of the sticky bit and execution permissions.
The following options are supported:

- **-a** Lists all entries, including those that begin with a dot (.), which are normally not listed.
- **-A** Lists all entries, including those that begin with a dot (.), with the exception of the working directory (.) and the parent directory (..).
- **-b** Forces printing of non-printable characters to be in the octal \ddd notation.
- **-c** Uses time of last modification of the i-node (file created, mode changed, and so forth) for sorting (-t) or printing (-1 or -n).
- **-C** Multi-column output with entries sorted down the columns. This is the default output format.
- **-d** If an argument is a directory, lists only its name (not its contents). Often used with -l to get the status of a directory.
- **-f** Forces each argument to be interpreted as a directory and list the name found in each slot. This option turns off -l, -t, -s, and -r, and turns on -a. The order is the order in which entries appear in the directory.
- **-F** Marks directories with a trailing slash (/), doors with a trailing greater-than sign (>), executable files with a trailing asterisk (*), FIFOs with a trailing vertical bar (|), symbolic links with a trailing ‘at’ sign (@), and AF_UNIX address family sockets with a trailing equals sign (=).
- **-g** The same as -l, except that the owner is not printed.
- **-h** All sizes are scaled to a human readable format, for example, 14K, 234M, 2.7G, or 3.0T. Scaling is done by repetitively dividing by 1024.
- **-i** For each file, prints the i-node number in the first column of the report.
- **-l** Lists in long format, giving mode, ACL indication, number of links, owner, group, size in bytes, and time of last modification for each file (see above). If the file is a special file, the size field instead contains the major and minor device numbers. If the time of last modification is greater than six months ago, it is shown in the format ‘month date year’ for the POSIX locale. When the LC_TIME locale category is not set to the POSIX locale, a different format of the time field may be used. Files modified within six months show ‘month date time’. If the file is a symbolic link, the filename is printed followed by “→” and the path name of the referenced file.
- **-L** If an argument is a symbolic link, lists the file or directory the link references rather than the link itself.
- **-m** Streams output format. Files are listed across the page, separated by commas.
- **-n** The same as -l, except that the owner’s UID and group’s GID numbers are printed, rather than the associated character strings.
- **-o** The same as -l, except that the group is not printed.
-p  Puts a slash (/) after each filename if the file is a directory.
-q  Forces printing of non-printable characters in file names as the character question mark (?).
-r  Reverses the order of sort to get reverse alphabetic or oldest first as appropriate.
-R  Recursively lists subdirectories encountered.
-s  Gives size in blocks, including indirect blocks, for each entry.
-t  Sorts by time stamp (latest first) instead of by name. The default is the last modification time. (See -u and -c.)
-u  Uses time of last access instead of last modification for sorting (with the -t option) or printing (with the -l option).
-@  The same as -l, except that extended attribute information will supersede ACL information. An @ is displayed after the file permission bits for files that have extended attributes.
-x  Multi-column output with entries sorted across rather than down the page.
-l  Prints one entry per line of output.

OPERANDS
The following operand is supported:
file    A path name of a file to be written. If the file specified is not found, a diagnostic message will be output on standard error.

EXAMPLES

EXAMPLE 1 File permissions
An example of a file’s permissions is:
-rwxr-xr-x
This describes a file that is readable, writable, and executable by the user and readable by the group and others.

Another example of a file’s permissions is:
-rwsr-xr-x
EXAMPLE 1 File permissions (Continued)

This describes a file that is readable, writable, and executable by the user, readable and executable by the group and others, and allows its user-ID to be assumed, during execution, by the user presently executing it.

Another example of a file’s permissions is:

-rw-rwl- - -

This describes a file that is readable and writable only by the user and the group and can be locked during access.

EXAMPLE 2 Printing the names of all files

This command prints the names of all files in the current directory, including those that begin with a dot (.), which normally do not print:

example$ ls -a

EXAMPLE 3 Providing file information

Another example of a command line is:

example$ ls -aisn

This command provides information on all files, including those that begin with a dot (.), the i-number—the memory address of the i-node associated with the file—printed in the left-hand column (i); the size (in blocks) of the files, printed in the column to the right of the i-numbers (s); finally, the report is displayed in the numeric version of the long list, printing the UID (instead of user name) and GID (instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is printed.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of ls: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

COLUMNS Determines the user’s preferred column position width for writing multiple text-column output. If this variable contains a string representing a decimal integer, the ls utility calculates how many path name text columns to write (see -C) based on the width provided. If COLUMNS is not set or is invalid, 80 is used. The column width chosen to write the names of files in any given directory will be constant. File names will not be truncated to fit into the multiple text-column output.
All information was written successfully.

An error occurred.

FILES
/etc/group
/etc/passwd
/usr/share/lib/terminfo/?/*

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
chmod(1), cp(1), setfacl(1), terminfo(4), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)

NOTES
Unprintable characters in file names may confuse the columnar output options.

The total block count will be incorrect if there are hard links among the files.

The sort order of `ls` output is affected by the locale and can be overridden by the `LC_COLLATE` environment variable. For example, if `LC_COLLATE` equals `C`, dot files appear first, followed by names beginning with upper-case letters, then followed by names beginning with lower-case letters. But if `LC_COLLATE` equals `en_US.ISO8859-1`, then leading dots as well as case are ignored in determining the sort order.
NAME
ls – list the contents of a directory

SYNOPSIS
/usr/ucb/ls [-aAcdfgIlqRrstu1] file...

DESCRIPTION
For each filename that is a directory, ls lists the contents of the directory; for each
filename that is a file, ls repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments are processed before directories and their contents.

Permissions Field
The mode printed under the -l option contains 10 characters interpreted as follows. If
the first character is:

d  Entry is a directory.
d  Entry is a door.
b  Entry is a block-type special file.
c  Entry is a character-type special file.
l  Entry is a symbolic link.
p  Entry is a FIFO (also known as “named pipe”) special file.
s  Entry is an AF_UNIX address family socket.
–  Entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers
to owner permissions; the next refers to permissions to others in the same user-group;
and the last refers to all others. Within each set, the three characters indicate
permission respectively to read, to write, or to execute the file as a program. For a
directory, “execute” permission is interpreted to mean permission to search the
directory. The permissions are indicated as follows:

r  The file is readable.
w  The file is writable.
x  The file is executable.
–  The indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit
set; likewise the owner-execute permission character is given as s if the file has the
set-user-id bit set.

The last character of the mode (normally x or ‘–’) is true if the 1000 bit of the mode is
on. See chmod(1) for the meaning of this mode. The indications of set-ID and 1000 bits
of the mode are capitalized (S and T, respectively) if the corresponding execute
permission is not set.

A plus sign (+) appended to the list of permissions indicates that an ACL is associated
with the file.
When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is printed.

**OPTIONS**

The following options are supported:

- `-a` Lists all entries; in the absence of this option, entries whose names begin with a `.` are not listed (except for the privileged user, for whom `ls` normally prints even files that begin with a `.`).

- `-A` Same as `-a`, except that `'.'` and `'..'` are not listed.

- `-c` Uses time of last edit (or last mode change) for sorting or printing.

- `-C` Forces multi-column output, with entries sorted down the columns; for `ls`, this is the default when output is to a terminal.

- `-d` If argument is a directory, lists only its name (not its contents); often used with `-l` to get the status of a directory.

- `-f` Forces each argument to be interpreted as a directory and lists the name found in each slot. This option turns off `-l`, `-t`, `-s`, and `-r`, and turns on `-a`; the order is the order in which entries appear in the directory.

- `-F` Marks directories with a trailing slash (`/`), doors with a trailing greater-than sign (`>`), executable files with a trailing asterisk (`*`), FIFOs with a trailing vertical bar (`|`), symbolic links with a trailing at-sign (`@`), and AF_UNIX address family sockets with a trailing equals sign (`=`).

- `-g` For `ls`, shows the group ownership of the file in a long output.

- `-i` For each file, prints the i-node number in the first column of the report.

- `-l` Lists in long format, giving mode, ACL indication, number of links, owner, size in bytes, and time of last modification for each file. If the file is a special file the size field will instead contain the major and minor device numbers. If the time of last modification is greater than six months ago, it is shown in the format `month date year`; files modified within six months show `month date time`. If the file is a symbolic link, the pathname of the linked-to file is printed preceded by `~>`.

- `-L` If argument is a symbolic link, lists the file or directory the link references rather than the link itself.

- `-q` Displays non-graphic characters in filenames as the character `?`; for `ls`, this is the default when output is to a terminal.

- `-r` Reverses the order of sort to get reverse alphabetic or oldest first as appropriate.

- `-R` Recursively lists subdirectories encountered.

- `-s` Gives size of each file, including any indirect blocks used to map the file, in kilobytes.

- `-t` Sorts by time modified (latest first) instead of by name.
-u Uses time of last access instead of last modification for sorting (with the -t option) and/or printing (with the -l option).

-1 Forces one entry per line output format; this is the default when output is not to a terminal.

OPERANDS The following operand is supported:

file A path name of a file to be listed. If the file specified is not found, a diagnostic message will be output on standard error.

USAGE See largefile(5) for the description of the behavior of ls when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

FILES /etc/group to get group ID for ‘ls -g’
/etc/passwd to get user IDs for ‘ls -l’ and ‘ls -o’

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO ls(1), attributes(5), largefile(5)

NOTES NEWLINE and TAB are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as ‘ls -s’ is much different than ‘ls -s | lpr’. On the other hand, not doing this setting would make old shell scripts which used ls almost certain losers.

Unprintable characters in file names may confuse the columnar output options.
m4(1)

NAME  m4 – macro processor

[=val]] ...
[-U name] ... [file...]

[ ...=val]] [-U name] ... [file...]

DESCRIPTION  The m4 utility is a macro processor intended as a front end for C, assembler, and other
languages. Each of the argument files is processed in order; if there are no files, or if a
file is –, the standard input is read. The processed text is written on the standard
output.

Macro Syntax  Macro calls have the form:

    name (arg1, arg2, ..., argn)

The open parenthesis character ( must immediately follow the name of the macro. If
the name of a defined macro is not followed by a (, it is deemed to be a call of that
macro with no arguments. Potential macro names consist of alphanumeric characters
and underscore (_), where the first character is not a digit.

Leading unquoted blanks, TABs, and NEWLINES are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

Macro Processing  When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be NULL. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right parentheses
that happen to turn up within the value of a nested call are as effective as those in the
original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

OPTIONS  The options and their effects are as follows:

    -B int    Changes the size of the push-back and argument collection buffers from the
default of 4,096.
    -e        Operates interactively. Interrupts are ignored and the output is unbuffered.
    -H int    Changes the size of the symbol table hash array from the default of 199.
The size should be prime.
    -s        Enables line sync output for the C preprocessor (#line . . .)
    -S int    Changes the size of the call stack from the default of 100 slots. Macros take
three slots, and non-macro arguments take one.
    -T int    Changes the size of the token buffer from the default of 512 bytes.
To be effective, the above flags must appear before any file names and before any -D or -U flags:

```
-D name[=val] Defines name to val or to NULL in val's absence.
-U name Undefines name.
```

**OPERANDS**
The following operand is supported:

```
file A path name of a text file to be processed. If no file is given, or if it is -,
 the standard input is read.
```

**USAGE**
The m4 utility makes available the following built-in macros. These macros may be redefined, but once this is done the original meaning is lost. Their values are NULL unless otherwise stated.

- `changequote`: Change quote symbols to the first and second arguments. The symbols may be up to five characters long. `changequote` without arguments restores the original values (that is, `''`).
- `changecom`: Change left and right comment markers from the default `#` and `NEWLINE`. With no arguments, the comment mechanism is effectively disabled. With one argument, the left marker becomes the argument and the right marker becomes `NEWLINE`. With two arguments, both markers are affected. Comment markers may be up to five characters long.
- `decr`: Returns the value of its argument decremented by 1.
- `define`: The second argument is installed as the value of the macro whose name is the first argument. Each occurrence of `$n` in the replacement text, where `n` is a digit, is replaced by the `n`-th argument. Argument 0 is the name of the macro; missing arguments are replaced by the null string; `$#` is replaced by the number of arguments; `$*` is replaced by a list of all the arguments separated by commas; `$@` is like `$*`, but each argument is quoted (with the current quotes).
- `defn`: Returns the quoted definition of its argument(s). It is useful for renaming macros, especially built-ins.
- `divert`: m4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of the streams in numerical order; initially stream 0 is the current stream. The `divert` macro changes the current output stream to its (digit-string) argument. Output diverted to a stream other than 0 through 9 is discarded.
- `divnum`: Returns the value of the current output stream.
- `dnl`: Reads and discards characters up to and including the next `NEWLINE`. 
<table>
<thead>
<tr>
<th>dumpdef</th>
<th>Prints current names and definitions, for the named items, or for all if no arguments are given.</th>
</tr>
</thead>
<tbody>
<tr>
<td>errprint</td>
<td>Prints its argument on the diagnostic output file.</td>
</tr>
<tr>
<td>eval /usr/ccs/bin/m4</td>
<td>Evaluates its argument as an arithmetic expression, using 32-bit signed-integer arithmetic. The following operators are supported: parentheses, unary −, unary +, !, ∼, *, /, %, +, −, relations, bitwise &amp;</td>
</tr>
<tr>
<td>eval /usr/xpg4/bin/m4</td>
<td>bitwise</td>
</tr>
<tr>
<td>ifdef</td>
<td>If the first argument is defined, the value is the second argument, otherwise the third. If there is no third argument, the value is NULL. The word unix is predefined.</td>
</tr>
<tr>
<td>ifelse</td>
<td>This macro has three or more arguments. If the first argument is the same string as the second, then the value is the third argument. If not, and if there are more than four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth string, or, if it is not present, NULL.</td>
</tr>
<tr>
<td>include</td>
<td>Returns the contents of the file named in the argument.</td>
</tr>
<tr>
<td>incr</td>
<td>Returns the value of its argument incremented by 1. The value of the argument is calculated by interpreting an initial digit-string as a decimal number.</td>
</tr>
<tr>
<td>index</td>
<td>Returns the position in its first argument where the second argument begins (zero origin), or −1 if the second argument does not occur.</td>
</tr>
<tr>
<td>len</td>
<td>Returns the number of characters in its argument.</td>
</tr>
<tr>
<td>m4exit</td>
<td>This macro causes immediate exit from m4. Argument 1, if given, is the exit code; the default is 0.</td>
</tr>
<tr>
<td>m4wrap</td>
<td>Argument 1 will be pushed back at final EOF. Example: m4wrap(‘cleanup( )’)</td>
</tr>
<tr>
<td>maketemp</td>
<td>Fills in a string of “x” characters in its argument with the current process ID.</td>
</tr>
</tbody>
</table>
popdef  Removes current definition of its argument(s), exposing the previous one, if any.

pushdef  Like define, but saves any previous definition.

shift    Returns all but its first argument. The other arguments are quoted and pushed back with commas in between. The quoting nullifies the effect of the extra scan that will subsequently be performed.

sinclude This macro is identical to include, except that it says nothing if the file is inaccessible.

substr   Returns a substring of its first argument. The second argument is a zero origin number selecting the first character; the third argument indicates the length of the substring. A missing third argument is taken to be large enough to extend to the end of the first string.

syscmd   This macro executes the command given in the first argument. No value is returned.

sysval   This macro is the return code from the last call to syscmd.

translit Transliterates the characters in its first argument from the set given by the second argument to the set given by the third. No abbreviations are permitted.

traceon This macro with no arguments, turns on tracing for all macros (including built-ins). Otherwise, turns on tracing for named macros.

traceoff Turns off trace globally and for any macros specified. Macros specifically traced by traceon can be untraced only by specific calls to traceoff.

undefined Removes the definition of the macro named in its argument.

undivert This macro causes immediate output of text from diversions named as arguments, or all diversions if no argument. Text may be undiverted into another diversion. Undiverting discards the diverted text.

EXAMPLES  EXAMPLE 1 Examples of m4 files

An example of a single m4 input file capable of generating two output files follows. The file file1.m4 could contain lines such as:

\`
if(VER, 1, do_something)
if(VER, 2, do_something)
\`

The makefile for the program might include:

\`
file1.1.c :  file1.m4
  m4 -D VER=1 file1.m4 > file1.1.c
...
file1.2.c :  file1.m4
\`

User Commands  803
EXAMPLE 1 Examples of m4 files (Continued)

m4 -D VER=2 file1.m4 > file1.2.c
...

The -U option can be used to undefine VER. If file1.m4 contains:

if(VER, 1, do_something)
if(VER, 2, do_something)
ifndef(VER, do_something)

then the makefile would contain:

file1.0.c : file1.m4
  m4 -U VER file1.m4 > file1.0.c
  ...

file1.1.c : file1.m4
  m4 -D VER=1 file1.m4 > file1.1.c
  ...

file1.2.c : file1.m4
  m4 -D VER=2 file1.m4 > file1.2.c
  ...

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of m4: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred

If the m4exit macro is used, the exit value can be specified by the input file.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE   ATTRIBUTE VALUE
Availability       SUNWcsu

SEE ALSO
as(1), attributes(5), environ(5), standards(5)
NAME
mach – display the processor type of the current host

SYNOPSIS
mach

DESCRIPTION
The mach command displays the processor-type of the current host.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
arch(1), uname(1), attributes(5)

NOTES
mach and uname -p return equivalent values; therefore, Independent Software Vendors (ISV) and others who need to ascertain processor type are encouraged to use uname with the -p option instead of the mach command. The mach command is provided for compatibility with previous releases, but generally its use is discouraged.
NAME  
machid, sun, iAPX286, i286, i386, i486, i860, pdp11, sparc, u3b, u3b2, u3b5, u3b15, vax, u370 – get processor type truth value

SYNOPSIS
sun
iAPX286
i386
pdp11
sparc
u3b
u3b2
u3b5
u3b15
vax
u370

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are using an instruction set that the command name indicates.

sun  True if you are on a Sun system.

iAPX286  True if you are on a computer using an iAPX286 processor.
i386  True if you are on a computer using an iAPX386 processor.
pdp11  True if you are on a PDP-11/45™ or PDP-11/70™.
sparc  True if you are on a computer using a SPARC-family processor.
u3b  True if you are on a 3B20 computer.
u3b2  True if you are on a 3B2 computer.
u3b5  True if you are on a 3B5 computer.
u3b15  True if you are on a 3B15 computer.
vax  True if you are on a VAX-11/750™ or VAX-11/780™.
u370  True if you are on an IBM® System/370™ computer.

The commands that do not apply will return a false (non-zero) value. These commands are often used within makefiles (see make(1)) and shell scripts (see sh(1)) to increase portability.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
The machid family of commands is obsolete. Use `uname -p` and `uname -m` instead.

SEE ALSO
make(1S), sh(1), test(1), true(1), uname(1), attributes(5)
The madv.so.1 shared object provides a means by which the VM advice can be selectively configured for a launched process (or processes) and its descendants. To enable madv.so.1, the following string needs to be present in the environment (see ld.so.1(1)) along with one or more MADV environment variables:

```
LD_PRELOAD=$LD_PRELOAD:madv.so.1
```

If the madv.so.1 shared object is specified in the LD_PRELOAD list, the following environment variables are read by the madv shared object to determine to which created process(es) to apply the specified advice.

**MADV**

The **MADV** specifies the VM advice to use for all heap, shared memory, and mmap regions in the process address space. This advice is applied to all created processes.

Values for **advice** correspond to values in `<sys/mman.h>` used in `madvise(3)` to specify memory access patterns:

- normal
- random
- sequential
- access_lwp
- access_many
- access_default

**MADVCFGFILE**

**config-file** is a text file which contains one or more madv configuration entries of the form:

```
exec-name exec-args:advice-opts
```

Advice specified in **config-file** takes precedence over that specified by the **MADV** environment variable. When **MADVCFGFILE** is not set, advice is taken from file `/etc/madv.conf` if it exists.

**exec-name** specifies the name of an application or executable. The corresponding advice is set for newly created processes (see `getexecname(3)`) that match the first **exec-name** found in the file.

**exec-name** can be a full pathname, a base name, or a pattern string. See File Name Generation in sh(1) for a discussion of pattern matching.

**exec-args** is an optionally specified pattern string to match against arguments. Advice is set only if **exec-args** is not specified or occurs within the arguments to **exec-name**.
### Advice Options

`advice-opts` is a comma-separated list specifying the advice for various memory region(s):

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>madv</code></td>
<td>Applies to all heap, shared memory, and mmap regions in the process address space.</td>
</tr>
<tr>
<td><code>heap</code></td>
<td>The heap is defined to be the brk area (see <code>brk(2)</code>). Applies to the existing heap and for any additional heap memory allocated in the future.</td>
</tr>
<tr>
<td><code>shm</code></td>
<td>Shared memory segments (see <code>shmat(2)</code>) attached using any flags, flag <code>SHM_SHARE_MMU</code>, or flag <code>SHM_PAGEABLE</code> respectively. Options <code>ism</code> and <code>dism</code> take precedence over option <code>shm</code>.</td>
</tr>
<tr>
<td><code>map</code></td>
<td>Mappings established through <code>mmap(2)</code> using any flags, flag <code>MAP_SHARED</code>, flag <code>MAP_PRIVATE</code>, or flag <code>MAP_ANON</code>, respectively. Options <code>mapshared</code>, <code>mapprivate</code>, and <code>mapanon</code> take precedence over option <code>map</code>. Option <code>mapanon</code> takes precedence over <code>mapshared</code> and <code>mapprivate</code>.</td>
</tr>
</tbody>
</table>

**MADVERRFILE=pathname**

By default, error messages are logged via `syslog(3C)` using level `LOG_ERR` and facility `LOG_USER`. If `MADVERRFILE` contains a valid `pathname` (such as `/dev/stderr`), error messages will be logged there instead.

### Examples

**Example 1** Applying advice to all ISM segments

The following configuration applies advice to all ISM segments for application `/usr/bin/foo`:

```bash
example$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
example$ MADVCFGFILE=madvcfg
example$ export LD_PRELOAD MADVCFGFILE
example$ cat $MADVCFGFILE
 /usr/bin/foo:ism=access_lwp
```

**Example 2** Setting advice for all applications with exception

The following configuration sets advice for all applications with the exception of `ls`.

```bash
example$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
example$ MADV=access_many
example$ MADVCFGFILE=madvcfg
example$ export LD_PRELOAD MADV MADVCFGFILE
example$ cat $MADVCFGFILE
 ls:
```
EXAMPLE 3 Precedence rules (continuation from Example 2)

Because `MADVCFGFILE` takes precedence over `MADV`, specifying `'*'` (pattern match all) for the `exec-name` of the last `madv` configuration entry would be equivalent to setting `MADV`. The following is equivalent to example 2:

```bash
example$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
example$ MADVCFGFILE=madvcfg
example$ export LD_PRELOAD MADVCFGFILE
example$ cat $MADVCFGFILE
 ls:
 *:madv=access_many
```

EXAMPLE 4 Applying advice for different regions

The following configuration applies one type of advice for mmap regions and different advice for heap and shared memory regions for a select set of applications with exec names that begin with `foo`:

```bash
example$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
example$ MADVCFGFILE=madvcfg
example$ export LD_PRELOAD MADVCFGFILE
example$ cat $MADVCFGFILE
 foo*:madv=access_many,heap=sequential,shm=access_lwp
```

EXAMPLE 5 Applying advice selectively

The following configuration applies advice for the heap of applications beginning with `ora` that have `oral` as an argument:

```bash
example$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
example$ MADVCFGFILE=madvcfg
example$ export LD_PRELOAD MADVCFGFILE
example$ cat $MADVCFGFILE
 ora* oral:heap=access_many
```

FILES

/etc/madv.conf

Configuration file

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesuu (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO

cat(1), ld.so.1(1), proc(1), sh(1), brk(2), exec(2), fork(2), mmap(2), memcntl(2), shmat(2), getexecname(3C), madvise(3C), syslog(3C), proc(4), attributes(5)
The advice is inherited. A child process has the same advice as its parent. On `exec()` (see `exec(2)`), the advice is set back to the default system advice unless different advice has been configured via the `madv` shared object.

Advice is only applied to `mmap` regions explicitly created by the user program. Those regions established by the run-time linker or by system libraries making direct system calls (for example, libthread allocations for thread stacks) are not affected.
mail(1)

NAME
mail, rmail – read mail or send mail to users

SYNOPSIS
Sending mail
mail [-tw] [-m message_type] recipient...
rmail [-tw] [-m message_type] recipient...

Reading mail
mail [-ehPqr] [-f file]

Debugging
mail [-x debug_level] [other_mail_options] recipient...

DESCRIPTION
A recipient is usually a domain style address ("user@machine") or a user name recognized by login(1). When recipients are named, mail assumes a message is being sent. It reads from the standard input up to an end-of-file (Control-d) or, if reading from a terminal device, until it reads a line consisting of just a period. When either of those indicators is received, mail adds the letter to the mailfile for each recipient.

A letter is composed of some header lines followed by a blank line followed by the message content. The header lines section of the letter consists of one or more UNIX postmarks:

From sender date_and_time [remote from remote_system_name]

followed by one or more standardized message header lines of the form:

keyword-name: [printable text]

where keyword-name is comprised of any printable, non-whitespace characters other than colon (" :"). A Content-Length: header line, indicating the number of bytes in the message content will always be present unless the letter consists of only header lines with no message content. A Content-Type: header line that describes the type of the message content (such as text, binary, multipart, and so on) will also be present unless the letter consists of only header lines with no message content. Header lines may be continued on the following line if that line starts with white space.

OPTIONS
Sending mail
The following command-line arguments affect sending mail:

-m message_type  A Message-Type: line is added to the message header with the value of message_type.
-t              A To: line is added to the message header for each of the intended recipients.
-w              A letter is sent to a remote recipient without waiting for the completion of the remote transfer program.
If a letter is found to be undeliverable, it is returned to the sender with diagnostics that indicate the location and nature of the failure. If mail is interrupted during input, the message is saved in the file dead.letter to allow editing and resending. dead.letter is always appended to, thus preserving any previous contents. The initial attempt to append to (or create) dead.letter will be in the current directory. If this fails, dead.letter will be appended to (or created in) the user's login directory. If the second attempt also fails, no dead.letter processing will be done.

rmail only permits the sending of mail; uucp(1C) uses rmail as a security precaution. Any application programs that generate mail messages should be sure to invoke rmail rather than mail for message transport and/or delivery.

If the local system has the Basic Networking Utilities installed, mail may be sent to a recipient on a remote system. There are numerous ways to address mail to recipients on remote systems depending on the transport mechanisms available to the local system. The two most prevalent addressing schemes are Domain-style and UUCP-style.

Domain-style addressing

Remote recipients are specified by appending an '@' and domain (and possibly sub-domain) information to the recipient name (such as user@sf.att.com). (The local system administrator should be consulted for details on which addressing conventions are available on the local system.)

UUCP-style addressing

Remote recipients are specified by prefixing the recipient name with the remote system name and an exclamation point, such as sysa!user. If csh(1) is the default shell, sysa\!user should be used. A series of system names separated by exclamation points can be used to direct a letter through an extended network (such as sysa!sysb!sysc!user or sysa\!sysb\!sysc\!user).

Reading Mail

The following command-line arguments affect reading mail:

- `e` Mail is not printed. An exit status of 0 is returned if the user has mail; otherwise, an exit status of 1 is returned.
- `h` A window of headers are initially displayed rather than the latest message. The display is followed by the ? prompt.
- `p` All messages are printed without prompting for disposition.
- `P` All messages are printed with all header lines displayed, rather than the default selective header line display.
- `q` mail terminates after interrupts. Normally an interrupt causes only the termination of the message being printed.
- `r` Messages are printed in first-in, first-out order.
- `f file` mail uses file (such as mbox) instead of the default mailfile.
mail, unless otherwise influenced by command-line arguments, prints a user’s mail messages in last-in, first-out order. The default mode for printing messages is to display only those header lines of immediate interest. These include, but are not limited to, the UNIX From and >From postmarks, From:, Date:, Subject:, and Content-Length: header lines, and any recipient header lines such as To:, Cc:, Bcc:, and so forth. After the header lines have been displayed, mail will display the contents (body) of the message only if it contains no unprintable characters. Otherwise, mail will issue a warning statement about the message having binary content and not display the content. (This may be overridden via the p command. See below.)

For each message, the user is prompted with a ? and a line is read from the standard input. The following commands are available to determine the disposition of the message:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Print the number of the current message.</td>
</tr>
<tr>
<td>-</td>
<td>Print previous message.</td>
</tr>
<tr>
<td>&lt;new-line&gt;, +, or n</td>
<td>Print the next message.</td>
</tr>
<tr>
<td>;command</td>
<td>Escape to the shell to do command.</td>
</tr>
<tr>
<td>a</td>
<td>Print message that arrived during the mail session.</td>
</tr>
<tr>
<td>d, or dp</td>
<td>Delete the current message and print the next message.</td>
</tr>
<tr>
<td>d n</td>
<td>Delete message number n. Do not go on to next message.</td>
</tr>
<tr>
<td>dq</td>
<td>Delete message and quit mail.</td>
</tr>
<tr>
<td>h</td>
<td>Display a window of headers around current message.</td>
</tr>
<tr>
<td>h n</td>
<td>Display a window of headers around message number n.</td>
</tr>
<tr>
<td>h a</td>
<td>Display headers of all messages in the user’s mailfile.</td>
</tr>
<tr>
<td>h d</td>
<td>Display headers of messages scheduled for deletion.</td>
</tr>
<tr>
<td>m [ persons ]</td>
<td>Mail (and delete) the current message to the named persons.</td>
</tr>
<tr>
<td>n</td>
<td>Print message number n.</td>
</tr>
<tr>
<td>p</td>
<td>Print current message again, overriding any indications of binary (that is, unprintable) content.</td>
</tr>
<tr>
<td>P</td>
<td>Override default brief mode and print current message again, displaying all header lines.</td>
</tr>
<tr>
<td>q, or CTRL-D</td>
<td>Put undeleted mail back in the mailfile and quit mail.</td>
</tr>
<tr>
<td>r [ users ]</td>
<td>Reply to the sender, and other users, then delete the message.</td>
</tr>
</tbody>
</table>
mail(1)

s [files ] 
Save message in the named files (mbox is default) and delete the message.

u [ n ] 
Undelete message number n (default is last read).

w [files ] 
Save message contents, without any header lines, in the named files (mbox is default) and delete the message.

x 
Put all mail back in the mailfile unchanged and exit mail.

y [files ] 
Same as -w option.

? 
Print a command summary.

When a user logs in, the presence of mail, if any, is usually indicated. Also, notification is made if new mail arrives while using mail.

The permissions of mailfile may be manipulated using chmod(1) in two ways to alter the function of mail. The other permissions of the file may be read-write (0666), read-only (0664), or neither read nor write (0660) to allow different levels of privacy. If changed to other than the default (mode 0660), the file will be preserved even when empty to perpetuate the desired permissions. (The administrator may override this file preservation using the DEL_EMPTY_MAILFILE option of mailcnfg.)

The group ID of the mailfile must be mail to allow new messages to be delivered, and the mailfile must be writable by group mail.

**Debugging**

The following command-line arguments cause mail to provide debugging information:

- `-x debug_level`
  mail creates a trace file containing debugging information.

The `-x` option causes mail to create a file named `/tmp/MLDBGprocess_id` that contains debugging information relating to how mail processed the current message. The absolute value of `debug_level` controls the verboseness of the debug information. 0 implies no debugging. If `debug_level` is greater than 0, the debug file will be retained only if mail encountered some problem while processing the message. If `debug_level` is less than 0, the debug file will always be retained. The `debug_level` specified via `-x` overrides any specification of DEBUG in `/etc/mail/mailcnfg`. The information provided by the `-x` option is esoteric and is probably only useful to system administrators.

**Delivery Notification**

Several forms of notification are available for mail by including one of the following lines in the message header.

Transport-Options: [ /options ]

Default-Options: [ /options ]

> To: recipient [ /options ]
Where the "/options" may be one or more of the following:

/delivery Inform the sender that the message was successfully delivered to the recipient’s mailbox.

/nodelivery Do not inform the sender of successful deliveries.

/ignore Do not inform the sender of failed deliveries.

/return Inform the sender if mail delivery fails. Return the failed message to the sender.

/report Same as /return except that the original message is not returned.

The default is /nodelivery/return. If contradictory options are used, the first will be recognized and later, conflicting, terms will be ignored.

OPERANDS
The following operand is supported for sending mail:

recipient A domain style address ("user@machine") or user login name recognized by login(1).

USAGE
See largefile(5) for the description of the behavior of mail and rmail when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of mail: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone used with date and time strings.

EXIT STATUS
The following exit values are returned:

0 Successful completion when the user had mail.

1 The user had no mail or an initialization error occurred.

>1 An error occurred after initialization.

FILES
dead.letter unmailable text
/etc/passwd to identify sender and locate recipients
$HOME/mbox saved mail
$MAIL variable containing path name of mailfile
/tmp/ma* temporary file
/tmp/MLDBG* debug trace file
/var/mail/*.lock lock for mail directory
/var/mail/:saved directory for holding temp files to prevent loss of data in the event of a system crash
/var/mail/user incoming mail for user; that is, the mailfile
### ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

### SEE ALSO

chmod(1), csh(1), login(1), mailx(1), uucp(1C), uuencode(1C), vacation(1), write(1), attributes(5), environ(5), largefile(5)

Solaris Advanced User’s Guide

### NOTES

The interpretation and resulting action taken because of the header lines described in the Delivery Notifications section above will only occur if this version of mail is installed on the system where the delivery (or failure) happens. Earlier versions of mail may not support any types of delivery notification.

Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced by typing a `p`. 
NAME
  mail, Mail – interactive message processing system

SYNOPSIS
  /usr/ucb/mail ...
  /usr/ucb/Mail ...

DESCRIPTION
  /usr/ucb/mail and /usr/ucb/Mail are provided as links to /usr/bin/mailx. See mailx(1) for more information on the usage of these commands.

ATTRIBUTES
  See attributes(5) for descriptions of the following attributes:

  /
  /usr/ucb/mail
  /

    ATTRIBUTE TYPE     ATTRIBUTE VALUE
    -------------------  -------------------
    Availability        SUNWscpu

  /
  /usr/ucb/Mail
  /

    ATTRIBUTE TYPE     ATTRIBUTE VALUE
    -------------------  -------------------
    Availability        SUNWscpu

SEE ALSO
  mailx(1), attributes(5)
mailcompat(1)

NAME
mailcompat – provide SunOS compatibility for Solaris mailbox format

DESCRIPTION
mailcompat is a program to provide SunOS 4.x compatibility for the Solaris mailbox format. You would typically run mailcompat to be able to read mail on a workstation running SunOS 4.x when your mail server is running Solaris.

Enabling mailcompat creates an entry in your .forward file, if it exists. If this file does not exist, mailcompat will create it. Disabling mailcompat will remove the entry from the .forward file, and if this was the only entry, will remove the entire file.

To execute mailcompat, log onto the Solaris mail server and enter mailcompat on the command line. Answer the queries provided by the program.

USAGE
See largefile(5) for the description of the behavior of mailcompat when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXAMPLES
EXAMPLE 1 Examples of the mailcompat feature.

The following example enables the mailcompat feature for the user "john".

example$ mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.x based mail readers
To enable the mailcompat feature a ".forward" file is created.
Would you like to enable the mailcompat feature? Y
Mailcompat feature ENABLED. Run mailcompat with no arguments to remove it
example$

The following example disables the mailcompat feature for the user "john".

example$ mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.x based mail readers
You have a .forward file in your home directory containing:
"/usr/bin/mailcompat johns"
Would you like to remove it and disable the mailcompat feature? y
Back to normal reception of mail.
example$

FILES
-.forward list of recipients for forwarding messages

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
mailx(1), attributes(5), largefile(5)
### NAME
mailp, digestp, filep, newsp, filofaxp, franklinp, timemanp, timesysp – frontends to the mp Text to PDL (Printer Description Language) pretty print filter

### SYNOPSIS
```
mailp [options] filename...
newsp [options] filename...
digestp [options] filename...
filep [options] filename...
filofaxp [options] filename...
franklinp [options] filename...
timemanp [options] filename...
timesysp [options] filename...
```

### DESCRIPTION
The `mailp` utility is a frontend to the `mp(1)` program. It uses different names to provide various `mp` options:

- **mailp**
  - Prints out mail messages.

- **newsp**
  - Prints out USENET news articles.

- **digestp**
  - Prints out USENET digest files.

- **filep**
  - Prints out ordinary ASCII files.

- **filofaxp**
  - Prints out in Filofax personal organiser format.

- **franklinp**
  - Prints out in Franklin Planner personal organiser format.

- **timemanp**
  - Prints out in Time Manager personal organiser format.

- **timesysp**
  - Prints out in Time/System International personal organiser format.

`mailp` and the associated programs read each `filename` in sequence and generate a prettified version of the contents. If no filename arguments are provided, `mailp` reads the standard input.

`mailp` works in two ways. With the `-D` option, it will work as an X print server client to produce the PDL of the target printer and spool it. With the `-d` or `-P` option, it will generate and spool PostScript™ output.

### OPTIONS
The following options are supported:

- **-d printer**
  - Sends output to the named printer. Otherwise, sends output to the printer named in the `PRINTER` environment variable.

- **-D**
  - Generates the PDL for the target printer and spools it to the printer.

- **-F**
  - Instead of printing who the mail article is for, the top header will contain who the mail article is from. This is a useful option for people with their own personal printer.
Banner printing is disabled. Most of the information that typically appears on the banner sheet is output in the mp banners.

Formats output in landscape mode. Two pages of text will be printed per sheet of paper.

Same as -d option.

Uses subject as the new subject for the printout. If you are printing ordinary ASCII files which have been specified on the command line, the subject will default to the name of each of these files.

The following operand is supported:

filename The name of the file to be read.

If none of the -d, -D, or -P options is used, mailp uses the PRINTER environment variable to determine the printer to which the output from the mp(1) program is sent. If the PRINTER variable is not found, the default destination is the PostScript™ printer.

The following exit values are returned:

0 Successful completion.
1 An error occurred.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmp</td>
</tr>
</tbody>
</table>

The -P option, which spools the PDL directly to the target printer in mp(1), produces PostScript™ when used in mailp so as to be backward compatible.
mailq(1)

NAME    mailq – print the mail queue

SYNOPSIS /usr/bin/mailq [-Ac] [-q subarg] [-v]

DESCRIPTION The mailq utility displays a summary of the mail messages queued for future delivery.

The first line displayed for each mail message shows the internal identifier used on this host for the message, the size of the message in bytes, the date and time the message was accepted into the queue, and the envelope sender of the message. The second line of the display shows the error message that caused this message to be retained in the queue. This line will not be displayed if the message is being processed for the first time.

The mailq utility used to be identical to sendmail-bp. Now it checks for the authorization attribute, solaris.mail.mailq. If the check for the invoking user succeeds, sendmail-bp is executed with the remaining argument vector. Otherwise, an error message is printed. This authorization attribute is by default enabled for all users. It can be disabled by modifying the Basic Solaris User entry in prof_attr(4).

OPTIONS The following options are supported:

- Ac Like sendmail(1M), this flag tells mailq to use submit.cf rather than sendmail.cf even if the operation mode does not indicate an initial mail submission. This will result in the client queue /var/spool/clientmqueue being displayed rather than the default server queue /var/spool/mqueue.

- qp[time] Similar to -qtime, except that instead of periodically forking a child to process the queue, sendmail forks a single persistent child for each queue that alternates between processing the queue and sleeping. The sleep time is given as the argument. The sleep time default is 1 second. The process will always sleep at least 5 seconds if the queue was empty in the previous queue run.

- qf Processes saved messages in the queue once and does not fork(), but runs in the foreground.

- qG name Processes jobs in the queue group called name only.

- q[!]I substr Limits processed jobs to those containing substr as a substring of the queue id, or not when ! is specified.

- q[!]R substr Limits processed jobs to those containing substr as a substring of one of the recipients, or not when ! is specified.

- q[!]S substr Limits processed jobs to those containing substr as a substring of the sender, or not when ! is specified.

- v Prints verbose information. This adds the priority of the message and a single character indicator (+ or blank) indicating whether a warning message has been sent on the first line of the message.
Additionally, extra lines may be intermixed with the recipients that indicate the "controlling user" information. This shows who will own any programs that are executed on behalf of this message and the name of the alias this command is expanded from, if any.

EXIT STATUS

0  Successful completion.

>0  An error occurred.

FILES
/etc/security/prof_attr  local source for execution profile attributes
/var/spool/mqueue  default server queue
/var/spool/clientmqueue  client queue

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTrIBUTE TYPE</th>
<th>ATTrIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

SEE ALSO

sendmail(1M), prof_attr(4), attributes(5)
The `mailstats` utility prints out the statistics collected by the `sendmail`(1M) program on mailer usage. These statistics are collected if the file indicated by the `StatusFile` configuration option of `sendmail` (defined in `/etc/mail/sendmail.cf`) exists. The default statistics file is `/etc/mail/statistics`.

To enable `mailstats`, you must, as root, touch `/etc/mail/statistics`. See the `StatusFile` processing option in `sendmail`(1M).

`mailstats` first prints the time that the statistics file was created and the last time it was modified. Then, the statistics for each mailer are displayed on a single line, each with the following whitespace-separated fields:

- **M**: The mailer number.
- **msgsfr**: Number of messages from the mailer.
- **bytes_from**: Kbytes from the mailer.
- **msgsto**: Number of messages to the mailer.
- **bytes_to**: Kbytes to the mailer.
- **msgsrej**: Number of messages rejected by the mailer.
- **msgsdis**: Number of messages discarded by the mailer.
- **Mailer**: The name of the mailer.

After this display, a line totaling the values for all of the mailers is displayed, separated from the previous information by a line containing only equal sign (=) characters.

To reinitialize the statistics file once a night, add an entry to root’s `crontab`(1):

```
mailstats -p > /dev/null
```

The following options are supported:

- `-c` Tries to use `submit.cf` instead of the default `sendmail` configuration file.
- `-C configfile` Specifies a `sendmail` configuration file.
- `-f statisticsfile` Specifies a `sendmail` statistics file.
- `-o` Does not display the name of the mailer in the output.
- `-p` Outputs information in program-readable mode and clear statistics.
mailstats(1)

- P                Outputs information in program-readable mode without clearing statistics.

**USAGE**
See largefile(5) for the description of the behavior of mailstats when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**FILES**
/dev/null          zero-lined file
/etc/mail/statistics  default sendmail statistics file
/etc/mail/sendmail.cf  default sendmail configuration file

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
crontab(1), cron(1M), sendmail(1M), attributes(5), largefile(5)
NAME
mailx – interactive message processing system

SYNOPSIS
mailx [-BdeHiNURvV-] [ -f [file | +folder]] [-T file] [-u user]

mailx [-BdFintUv~] [-b bcc] [-c cc] [-h number] [-r address] [-s subject]
recipient...

/usr/ucb/mail ...
/usr/ucb/Mail ...

DESCRIPTION
The mail utilities listed above provide a comfortable, flexible environment for sending
and receiving mail messages electronically.

When reading mail, the mail utilities provide commands to facilitate saving, deleting,
and responding to messages. When sending mail, the mail utilities allow editing,
reviewing and other modification of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the mailbox for that
user. When the mail utilities are called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a secondary
file for storage, unless specific action is taken, so that the messages need not be seen
again. This secondary file is called the mbox and is normally located in the user’s HOME
directory (see MBOX in ENVIRONMENT VARIABLES for a description of this file).
Messages can be saved in other secondary files named by the user. Messages remain in
a secondary file until forcibly removed.

The user can access a secondary file by using the -f option. Messages in the
secondary file can then be read or otherwise processed using the same Commands as
in the primary mailbox. This gives rise within these pages to the notion of a current
mailbox.

OPTIONS
On the command line options start with a dash (-). Any other arguments are taken to
be destinations (recipients). If no recipients are specified, mailx attempts to read
messages from the mailbox.

- B  Do not buffer standard input or standard output.
- b bcc  Set the blind carbon copy list to bcc. bcc should be enclosed in
quotes if it contains more than one name.
- c cc  Set the carbon copy list to cc. cc should be enclosed in quotes if it
contains more than one name.
- d  Turn on debugging output. (Neither particularly interesting nor
recommended.)
- e  Test for the presence of mail. mailx prints nothing and exits with
a successful return code if there is mail to read.
- F  Record the message in a file named after the first recipient.
    Overrides the record variable, if set (see Internal
    Variables).
mailx(1)

-\[+\text{file}\] Read messages from file instead of mailbox. If no file is specified, the mbox is used.

-\[+\text{folder}\] Use the file folder in the folder directory (same as the folder command). The name of this directory is listed in the folder variable.

-H Print header summary only.

-h number The number of network “hops” made so far. This is provided for network software to avoid infinite delivery loops. This option and its argument are passed to the delivery program.

-I Include the newsgroup and article-id header lines when printing mail messages. This option requires the -f option to be specified.

-i Ignore interrupts. See also ignore in Internal Variables.

-N Do not print initial header summary.

-n Do not initialize from the system default mailx.rc or Mail.rc file. See USAGE.

-r address Use address as the return address when invoking the delivery program. All tilde commands are disabled. This option and its argument are passed to the delivery program.

-s subject Set the Subject header field to subject. subject should be enclosed in quotes if it contains embedded white space.

-T file Message-id and article-id header lines are recorded in file after the message is read. This option also sets the -I option.

-t Scan the input for To:, Cc:, and Bcc: fields. Any recipients on the command line will be ignored.

-U Convert UUCP-style addresses to internet standards. Overrides the conv environment variable.

-u user Read user’s mailbox. This is only effective if user’s mailbox is not read protected.

-v Print the mailx version number and exit.

-\[\text{v}\] Pass the -v flag to sendmail(1M).

-\[\text{v}\] Interpret tilde escapes in the input even if not reading from a tty.

OPERANDS The following operands are supported:

\[\text{recipient}\] Addressee of message.

USAGE
Starting Mail

At startup time, `mailx` executes the system startup file `/etc/mail/mailx.rc`. If invoked as `mail` or `Mail`, the system startup file `/etc/mail/Mail.rc` is used instead.

The system startup file sets up initial display options and alias lists and assigns values to some internal variables. These variables are flags and valued parameters which are set and cleared using the `set` and `unset` commands. See `Internal Variables`.

With the following exceptions, regular commands are legal inside startup files: `,`, `Copy`, `edit`, `followup`, `Followup`, `hold`, `mail`, `preserve`, `reply`, `Reply`, `shell`, and `visual`. An error in the startup file causes the remaining lines in the file to be ignored.

After executing the system startup file, the mail utilities execute the optional personal startup file `$HOME/.mailrc`, wherein the user can override the values of the internal variables as set by the system startup file.

If the `-n` option is specified, however, the mail utilities do not execute the system startup file.

Many system administrators include the commands

```
set appenddeadletter
unset replyall
unset pipeignore
```

in the system startup files (to be compatible with past Solaris behavior), but this does not meet standards requirements for `mailx`. To get standard behavior for `mailx`, users should use the `-n` option or include the following commands in a personal startup file:

```
unset appenddeadletter
set replyall
set pipeignore
```

When reading mail, the mail utilities are in `command mode`. A header summary of the first several messages is displayed, followed by a prompt indicating the mail utilities can accept regular commands (see `Commands` below). When sending mail, the mail utilities are in `input mode`. If no subject is specified on the command line, and the `asksub` variable is set, a prompt for the subject is printed.

As the message is typed, the mail utilities read the message and store it in a temporary file. Commands may be entered by beginning a line with the tilde (~) escape character followed by a single command letter and optional arguments. See `Tilde Escapes` for a summary of these commands.

Reading Mail

Each message is assigned a sequential number, and there is at any time the notion of a current message, marked by a right angle bracket (>) in the header summary. Many commands take an optional list of messages (`message-list`) to operate on. In most cases, the current message is set to the highest-numbered message in the list after the command is finished executing.
The default for *message-list* is the current message. A *message-list* is a list of message identifiers separated by spaces, which may include:

- **n**: Message number *n*.
- **.**: The current message.
- **^**: The first undeleted message.
- **$**: The last message.
- *****: All messages.
- **+**: The next undeleted message.
- **−**: The previous undeleted message.
- **n−m**: An inclusive range of message numbers.
- **user**: All messages from *user*.
- **/string**: All messages with *string* in the Subject line (case ignored).
- **:c**: All messages of type *c*, where *c* is one of:
  - **d**: deleted messages
  - **n**: new messages
  - **o**: old messages
  - **r**: read messages
  - **u**: unread messages

Notice that the context of the command determines whether this type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command involved. Filenames, where expected, are expanded using the normal shell conventions (see *sh*(1)). Special characters are recognized by certain commands and are documented with the commands below.

### Sending Mail

Recipients listed on the command line may be of three types: login names, shell commands, or alias groups. Login names may be any network address, including mixed network addressing. If mail is found to be undeliverable, an attempt is made to return it to the sender's mailbox. If the recipient name begins with a pipe symbol ( | ), the rest of the name is taken to be a shell command to pipe the message through. This provides an automatic interface with any program that reads the standard input, such as *lp*(1) for recording outgoing mail on paper. Aliases groups are set by the alias command (see *Commands* below) or in a system startup file (for example, *$HOME/.mailrc*). Aliases are lists of recipients of any type.
Forwarding Mail

To forward a specific message, include it in a message to the desired recipients with the \texttt{-f} or \texttt{-m} tilde escapes. See \texttt{Tilde Escapes} below. To forward mail automatically, add a comma-separated list of addresses for additional recipients to the \texttt{.forward} file in your home directory. This is different from the format of the \texttt{alias} command, which takes a space-separated list instead. \textit{Note:} Forwarding addresses must be valid, or the messages will “bounce.” You cannot, for instance, reroute your mail to a new host by forwarding it to your new address if it is not yet listed in the NIS aliases domain.

Commands

Regular commands are of the form

\texttt{[ command ] [ message-list ] [ arguments ]}

In \textit{input mode}, commands are recognized by the escape character, \texttt{tilde(-)}, and lines not treated as commands are taken as input for the message. If no command is specified in \textit{command mode}, next is assumed. The following is a complete list of \texttt{mailx} commands:

\texttt{!shell-command}

\textit{Escape to the shell. See} \texttt{SHELL} in ENVIRONMENT VARIABLES.

\texttt{# comment}

\texttt{NULL command (comment). Useful in mailrc files.}

\texttt{=}

\texttt{Print the current message number.}

\texttt{?}

\texttt{Prints a summary of commands.}

\texttt{alias alias name ...}

\texttt{group alias name ...}

\texttt{Declare an alias for the given names. The names are substituted when alias is used as a recipient. Useful in the mailrc file. With no arguments, the command displays the list of defined aliases.}

\texttt{alternates name ...}

\texttt{Declare a list of alternate names for your login. When responding to a message, these names are removed from the list of recipients for the response. With no arguments, print the current list of alternate names. See also allnet in Internal Variables.}

\texttt{cd [directory]}

\texttt{chdir [directory]}

\texttt{Change directory. If directory is not specified, $HOME is used.}

\texttt{copy [file]}

\texttt{copy [message-list] file}

\texttt{Copy messages to the file without marking the messages as saved. Otherwise equivalent to the save command.}
Copy [message-list]
Save the specified messages in a file whose name is derived from the author of the message to be saved, without marking the messages as saved. Otherwise equivalent to the Save command.

delete [message-list]
Delete messages from the mailbox. If autoprint is set, the next message after the last one deleted is printed (see Internal Variables).

discard [header-field...] ignore [header-field...]
Suppress printing of the specified header fields when displaying messages on the screen. Examples of header fields to ignore are Status and Received. The fields are included when the message is saved, unless the alwaysignore variable is set. The More, Page, Print, and Type commands override this command. If no header is specified, the current list of header fields being ignored is printed. See also the undiscard and unignore commands.

dp [message-list]
dt [message-list]
Delete the specified messages from the mailbox and print the next message after the last one deleted. Roughly equivalent to a delete command followed by a print command.

echo string...
Echo the given strings (like echo(1)).

eedit [message-list]
Edit the given messages. Each message is placed in a temporary file and the program named by the EDITOR variable is invoked to edit it (see ENVIRONMENT VARIABLES). Default editor is ed(1).

exit
xit
Exit from mailx, without changing the mailbox. No messages are saved in the mbox (see also quit).

field [message-list] header-file
Display the value of the header field in the specified message.

file [file]
folder [file]
Quit from the current file of messages and read in the specified file. Several special characters are recognized when used as file names:

% the current mailbox.
%user the mailbox for user.
# the previous mail file.
& the current mbox.
+file The named file in the folder directory (listed in the folder variable).
With no arguments, print the name of the current mail file, and the number of messages and characters it contains.

folders
Print the names of the files in the directory set by the folder variable (see Internal Variables).

Followup [message]
Respond to a message, recording the response in a file whose name is derived from the author of the message. Overrides the record variable, if set. If the replyall variable is set, the actions of Followup and followup are reversed. See also the followup, Save, and Copy commands and outfolder in Internal Variables, and the Starting Mail section in USAGE above.

followup [message-list]
Respond to the first message in the message-list, sending the message to the author of each message in the message-list. The subject line is taken from the first message and the response is recorded in a file whose name is derived from the author of the first message. If the replyall variable is set, the actions of followup and Followup are reversed. See also the Followup, Save, and Copy commands and outfolder in Internal Variables, and the Starting Mail section in USAGE above.

from [message-list]
Print the header summary for the specified messages. If no messages are specified, print the header summary for the current message.

group alias name ...
alias alias name ...
Declare an alias for the given names. The names are substituted when alias is used as a recipient. Useful in the mailrc file.

headers [message]
Print the page of headers which includes the message specified. The screen variable sets the number of headers per page (see Internal Variables). See also the z command.

help
Print a summary of commands.

hold [message-list]
preserve [message-list]
Hold the specified messages in the mailbox.

if s | r | t
mail-commands
else
mail-commands
endif
Conditional execution, where s executes following mail-commands, up to an else or endif, if the program is in send mode, r causes the mail-commands to be executed
only in receive mode, and t causes the mail-commands to be executed only if mailx is being run from a terminal. Useful in the mailrc file.

inc
Incorporate messages that arrive while you are reading the system mailbox. The new messages are added to the message list in the current mail session. This command does not commit changes made during the session, and prior messages are not renumbered.

ignore [header-field . . .]
discard [header-field . . .]
Supress printing of the specified header fields when displaying messages on the screen. Examples of header fields to ignore are Status and Cc. All fields are included when the message is saved. The More, Page, Print and Type commands override this command. If no header is specified, the current list of header fields being ignored is printed. See also the undiscard and unignore commands.

list
Print all commands available. No explanation is given.

load [message] file
The specified message is replaced by the message in the named file. file should contain a single mail message including mail headers (as saved by the save command).

mail recipient ...
Mail a message to the specified recipients.

Mail recipient
Mail a message to the specified recipients, and record it in a file whose name is derived from the author of the message. Overrides the record variable, if set. See also the Save and Copy commands and outfolder in Internal Variables.

mbox [message-list]
Arrange for the given messages to end up in the standard mbox save file when mailx terminates normally. See mbox in ENVIRONMENT VARIABLES for a description of this file. See also the exit and quit commands.

more [message-list]
page [message-list]
Print the specified messages. If crt is set, the messages longer than the number of lines specified by the crt variable are paged through the command specified by the PAGER variable. The default command is pg(1) or if the bsdcompat variable is set, the default is more(1). See ENVIRONMENT VARIABLES. Same as the print and type commands.

More [message-list]
Page [message-list]
Print the specified messages on the screen, including all header fields. Overrides suppression of fields by the ignore command. Same as the Print and Type commands.
new [message-list]
New [message-list]
unread [message-list]
Unread

[message-list] Take a message list and mark each message as not having been read.

next [message]
Go to the next message matching message. If message is not supplied, this command
finds the next message that was not deleted or saved. A message-list may be
specified, but in this case the first valid message in the list is the only one used. This
is useful for jumping to the next message from a specific user, since the name
would be taken as a command in the absence of a real command. See the discussion
of message-list above for a description of possible message specifications.

pipe [message-list] [shell-command]
| [message-list] [shell-command]
Pipe the message through the given shell-command. The message is treated as if it
were read. If no arguments are given, the current message is piped through the
command specified by the value of the cmd variable. If the page variable is set, a
form feed character is inserted after each message (see Internal Variables).

preserve [message-list]
hold [message-list]
Preserve the specified messages in the mailbox.

print [message-list]
type [message-list]
Print the specified messages. If cmt is set, the messages longer than the number of
lines specified by the cmt variable are paged through the command specified by the
PAGER variable. The default command is pg(1) or if the bsdcompat variable is set,
the default is more(1). See ENVIRONMENT VARIABLES. Same as the more and
page commands.

Print [message-list]
Type [message-list]
Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ignore command. Same as the more and page commands.

put [file]
put [message-list] file
Save the specified message in the given file. Use the same conventions as the print
command for which header fields are ignored.

Put [file]
Put [message-list] file
Save the specified message in the given file. Overrides suppression of fields by the
ignore command.
quit
Exit from mailx, storing messages that were read in mbox and unread messages in
the mailbox. Messages that have been explicitly saved in a file are deleted unless
the keepsave variable is set.

reply [message-list]
respond [message-list]
repysender [message-list]
Send a response to the author of each message in the message-list. The subject line is
taken from the first message. If record is set to a file, a copy of the reply is added
to that file. If the replyall variable is set, the actions of Reply/Respond and
reply/respond are reversed. The repysender command is not affected by the
replyall variable, but sends each reply only to the sender of each message. See
the Starting Mail section in USAGE above.

Reply [message]
Respond [message]
replyall [message]
Reply to the specified message, including all other recipients of that message. If the
variable record is set to a file, a copy of the reply added to that file. If the
replyall variable is set, the actions of Reply/Respond and reply/respond are
reversed. The replyall command is not affected by the replyall variable, but
always sends the reply to all recipients of the message. See the Starting Mail
section in USAGE above.

retain
Add the list of header fields named to the retained list. Only the header fields in the
retain list are shown on your terminal when you print a message. All other header
fields are suppressed. The set of retained fields specified by the retain command
overrides any list of ignored fields specified by the ignore command. The Type and
Print commands can be used to print a message in its entirety. If retain is executed
with no arguments, it lists the current set of retained fields.

save [message-list]
Save the specified messages in a file whose name is derived from the author of the
first message. The name of the file is taken to be the author’s name with all network
addressing stripped off. See also the Copy, followup, and Followup commands and
outfolder in Internal Variables.

save [file]
save [message-list] file
Save the specified messages in the given file. The file is created if it does not exist.
The file defaults to mbox. The message is deleted from the mailbox when mailx
terminates unless keepsave is set (see also Internal Variables and the exit
and quit commands).

set
set variable
set variable=string
set variable=number
Define a variable. To assign a value to variable, separate the variable name from the value by an ‘=’ (there must be no space before or after the ‘=’). A variable may be given a null, string, or numeric value. To embed SPACE characters within a value, enclose it in quotes.

With no arguments, set displays all defined variables and any values they might have. See Internal Variables for a description of all predefined mail variables.

shell
  Invoke an interactive shell. See also SHELL in ENVIRONMENT VARIABLES.

size [message-list]
  Print the size in characters of the specified messages.

source file
  Read commands from the given file and return to command mode.

top [message-list]
  Print the top few lines of the specified messages. If the toplines variable is set, it is taken as the number of lines to print (see Internal Variables). The default is 5.

touch [message-list]
  Touch the specified messages. If any message in message-list is not specifically saved in a file, it is placed in the mailbox, or the file specified in the MBOX environment variable, upon normal termination. See exit and quit.

Type [message-list]
Print [message-list]
  Print the specified messages on the screen, including all header fields. Overrides suppression of fields by the ignore command.

type [message-list]
print [message-list]
  Print the specified messages. If crt is set, the messages longer than the number of lines specified by the crt variable are paged through the command specified by the PAGER variable. The default command is pg(1). See ENVIRONMENT VARIABLES.

unalias [alias]...
ungroup [alias]...
  Remove the definitions of the specified aliases.

undelete [message-list]
  Restore the specified deleted messages. Will only restore messages deleted in the current mail session. If autoprint is set, the last message of those restored is printed (see Internal Variables).

undiscard [header-field ...]
unignore [header-field ...]
  Remove the specified header fields from the list being ignored. If no header fields are specified, all header fields are removed from the list being ignored.
unretain [header-field ...]
Remove the specified header fields from the list being retained. If no header fields are specified, all header fields are removed from the list being retained.

unread [message-list]
Unread [message-list] Same as the new command.

unset variable ...
Erase the specified variables. If the variable was imported from the environment (that is, an environment variable or exported shell variable), it cannot be unset from within mailx.

version
Print the current version and release date of the mailx utility.

visual [message-list]
Edit the given messages with a screen editor. Each messages is placed in a temporary file and the program named by the VISUAL variable is invoked to edit it (see ENVIRONMENT VARIABLES). Notice that the default visual editor is vi.

write [message-list] file
Write the given messages on the specified file, minus the header and trailing blank line. Otherwise equivalent to the save command.

exit
Exit from mailx, without changing the mailbox. No messages are saved in the mailbox (see also quit).

z[+ | −]
Scroll the header display forward or backward one screen–full. The number of headers displayed is set by the screen variable (see Internal Variables).

The following tilde escape commands can be used when composing mail to send. These may be entered only from input mode, by beginning a line with the tilde escape character (~). See escape in Internal Variables for changing this special character. The escape character can be entered as text by typing it twice.

-! shell-command
Escape to the shell. If present, run shell-command.

-. Simulate end of file (terminate message input).

-: mail-command
Perform the command-level request. Valid only when sending a message while reading mail.

-? Print a summary of tilde escapes.

-A Insert the autograph string Sign into the message (see Internal Variables).

-a Insert the autograph string sign into the message (see Internal Variables).
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b name . . .</td>
<td>Add the names to the blind carbon copy (Bcc) list. This is like the carbon copy (Cc) list, except that the names in the Bcc list are not shown in the header of the mail message.</td>
</tr>
<tr>
<td>-c name . . .</td>
<td>Add the names to the carbon copy (Cc) list.</td>
</tr>
<tr>
<td>-d</td>
<td>Read in the dead-letter file. See DEAD in ENVIRONMENT VARIABLES for a description of this file.</td>
</tr>
<tr>
<td>-e</td>
<td>Invoke the editor on the partial message. See also EDITOR in ENVIRONMENT VARIABLES.</td>
</tr>
<tr>
<td>-f [message-list]</td>
<td>Forward the specified message, or the current message being read. Valid only when sending a message while reading mail. The messages are inserted into the message without alteration (as opposed to the -m escape).</td>
</tr>
<tr>
<td>-F [message-list]</td>
<td>Forward the specified message, or the current message being read, including all header fields. Overrides the suppression of fields by the ignore command.</td>
</tr>
<tr>
<td>-h</td>
<td>Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with an initial value, it may be edited as if you had just typed it.</td>
</tr>
<tr>
<td>-i variable</td>
<td>Insert the value of the named variable into the text of the message. For example, -A is equivalent to ‘Sign.’ Environment variables set and exported in the shell are also accessible by -i.</td>
</tr>
<tr>
<td>-m [message-list]</td>
<td>Insert the listed messages, or the current message being read into the letter. Valid only when sending a message while reading mail. The text of the message is shifted to the right, and the string contained in the indentprefix variable is inserted as the leftmost characters of each line. If indentprefix is not set, a TAB character is inserted into each line.</td>
</tr>
<tr>
<td>-M [message-list]</td>
<td>Insert the listed messages, or the current message being read, including the header fields, into the letter. Valid only when sending a message while reading mail. The text of the message is shifted to the right, and the string contained in the indentprefix variable is inserted as the leftmost characters of each line. If indentprefix is not set, a TAB character is inserted into each line. Overrides the suppression of fields by the ignore command.</td>
</tr>
<tr>
<td>-p</td>
<td>Print the message being entered.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>-q</code></td>
<td>Quit from input mode by simulating an interrupt. If the body of the message is not null, the partial message is saved in <code>dead-letter</code>. See <code>DEAD</code> in <code>ENVIRONMENT VARIABLES</code> for a description of this file.</td>
</tr>
<tr>
<td><code>-R</code></td>
<td>Mark message for return receipt.</td>
</tr>
<tr>
<td><code>-r file</code></td>
<td>Read in the specified file. If the argument begins with an exclamation point (!), the rest of the string is taken as an arbitrary shell command and is executed, with the standard output inserted into the message.</td>
</tr>
<tr>
<td><code>&lt; file</code></td>
<td>Read in the specified file.</td>
</tr>
<tr>
<td><code>&lt; ! shell-command</code></td>
<td>Pipe the body of the message through the given <code>shell-command</code>. If the <code>shell-command</code> returns a successful exit status, the output of the command replaces the message.</td>
</tr>
<tr>
<td><code>-s string ...</code></td>
<td>Set the subject line to <code>string</code>.</td>
</tr>
<tr>
<td><code>-t name ...</code></td>
<td>Add the given <code>names</code> to the To list.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Invoke a preferred screen editor on the partial message. The default visual editor is <code>vi(1)</code>. See also <code>VISUAL</code> in <code>ENVIRONMENT VARIABLES</code>.</td>
</tr>
<tr>
<td><code>-w file</code></td>
<td>Write the message into the given file, without the header.</td>
</tr>
<tr>
<td><code>-x</code></td>
<td>Exit as with <code>-q</code> except the message is not saved in <code>dead-letter</code>.</td>
</tr>
<tr>
<td>`</td>
<td>shell-command`</td>
</tr>
</tbody>
</table>

**Internal Variables**

The following variables are internal variables. They may be imported from the execution environment or set using the `set` command at any time. The `unset` command may be used to erase variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>allnet</code></td>
<td>All network names whose last component (login name) match are treated as identical. This causes the <code>message-list</code> message specifications to behave similarly. Disabled by default. See also the <code>alternates</code> command and the <code>metoo</code> and <code>fuzzymatch</code> variables.</td>
</tr>
<tr>
<td><code>alwaysignore</code></td>
<td>Ignore header fields with <code>ignore</code> everywhere, not just during print or type. Affects the <code>save</code>, <code>Save</code>, <code>copy</code>, <code>Copy</code>, <code>top</code>, <code>pipe</code>, and <code>write</code> commands, and the <code>-m</code> and <code>-f</code> tilde escapes. Enabled by default.</td>
</tr>
<tr>
<td><code>append</code></td>
<td>Upon termination, append messages to the end of the <code>mbox</code> file instead of prepending them. Although</td>
</tr>
</tbody>
</table>
disabled by default, append is set in the system startup file (which can be suppressed with the -n command line option).

**appenddeadletter** Append to the deadletter file rather than overwrite it. Although disabled by default, appenddeadletter is frequently set in the system startup file. See Starting Mail in USAGE above.

**askbcc** Prompt for the Bcc list after the Subject is entered if it is not specified on the command line with the -b option. Disabled by default.

**askcc** Prompt for the Cc list after the Subject is entered if it is not specified on the command line with the -c option. Disabled by default.

**asksub** Prompt for subject if it is not specified on the command line with the -s option. Enabled by default.

**autoinc** Automatically incorporate new messages into the current session as they arrive. This has an affect similar to issuing the inc command every time the command prompt is displayed. Disabled by default, but autoinc is set in the default system startup file for mailx; it is not set for /usr/ucb/mail or /usr/ucb/Mail.

**autoprint** Enable automatic printing of messages after delete and undelete commands. Disabled by default.

**bang** Enable the special-casing of exclamation points (!) in shell escape command lines as in vi(1). Disabled by default.

**bsdcompat** Set automatically if mailx is invoked as mail or Mail. Causes mailx to use /etc/mail/Mail.rc as the system startup file. Changes the default pager to more(1).

**cmd=shell-command** Set the default command for the pipe command. No default value.

**conv=conversion** Convert uucp addresses to the specified address style, which can be either:

*internet* This requires a mail delivery program conforming to the RFC822 standard for electronic mail addressing.

*optimize* Remove loops in uucp(1C) address paths (typically generated by the reply command). No rerouting is
Conversion is disabled by default. See also sendmail(1M) and the -U command-line option.

crt[=number]
Pipe messages having more than number lines through the command specified by the value of the PAGER variable (ps(1) or more(1) by default). If number is not specified, the current window size is used. Disabled by default.

debug
Enable verbose diagnostics for debugging. Messages are not delivered. Disabled by default.

dot
Take a period on a line by itself, or EOF during input from a terminal as end-of-file. Disabled by default, but dot is set in the system startup file (which can be suppressed with the -n command line option).

fcc
By default, mailx will treat any address containing a slash (/) character as a local "send to file" address. By unsetting this option, this behavior is disabled. Enabled by default.

flipr
Reverse the effect of the followup/Followup and reply/Reply command pairs. If both flipr and replyall are set, the effect is as if neither was set.

from
Extract the author listed in the header summary from the From: header instead of the UNIX From line. Enabled by default.

fuzzymatch
The from command searches for messages from the indicated sender. By default, the full sender address must be specified. By setting this option, only a sub-string of the sender address need be specified. Disabled by default.

escape=c
Substitute c for the ~ escape character. Takes effect with next message sent.

folder=directory
The directory for saving standard mail files. User-specified file names beginning with a plus (+) are expanded by preceding the file name with this directory name to obtain the real file name. If directory does not start with a slash (/), $HOME is prepended to it. There is no default for the folder variable. See also outfolder below.

header
Enable printing of the header summary when entering mailx. Enabled by default.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hold</td>
<td>Preserve all messages that are read in the mailbox instead of putting them in the standard mbox save file. Disabled by default.</td>
</tr>
<tr>
<td>ignore</td>
<td>Ignore interrupts while entering messages. Handy for noisy dial-up lines. Disabled by default.</td>
</tr>
<tr>
<td>ignoreeof</td>
<td>Ignore end-of-file during message input. Input must be terminated by a period (.) on a line by itself or by the -- command. See also dot above. Disabled by default.</td>
</tr>
<tr>
<td>indentprefix=string</td>
<td>When indentprefix is set, string is used to mark indented lines from messages included with --m. The default is a TAB character.</td>
</tr>
<tr>
<td>keep</td>
<td>When the mailbox is empty, truncate it to zero length instead of removing it. Disabled by default.</td>
</tr>
<tr>
<td>iprompt=string</td>
<td>The specified prompt string is displayed before each line on input is requested when sending a message.</td>
</tr>
<tr>
<td>keepsave</td>
<td>Keep messages that have been saved in other files in the mailbox instead of deleting them. Disabled by default.</td>
</tr>
<tr>
<td>makeremote</td>
<td>When replying to all recipients of a message, if an address does not include a machine name, it is assumed to be relative to the sender of the message. Normally not needed when dealing with hosts that support RFC822.</td>
</tr>
<tr>
<td>metoo</td>
<td>If your login appears as a recipient, do not delete it from the list. Disabled by default.</td>
</tr>
<tr>
<td>mustbang</td>
<td>Force all mail addresses to be in bang format.</td>
</tr>
<tr>
<td>onehop</td>
<td>When responding to a message that was originally sent to several recipients, the other recipient addresses are normally forced to be relative to the originating author’s machine for the response. This flag disables alteration of the recipients’ addresses, improving efficiency in a network where all machines can send directly to all other machines (that is, one hop away). Disabled by default.</td>
</tr>
<tr>
<td>outfolder</td>
<td>Locate the files used to record outgoing messages in the directory specified by the folder variable unless the path name is absolute. Disabled by default. See folder above and the Save, Copy, Followup, and Followup commands.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>page</td>
<td>Used with the pipe command to insert a form feed after each message sent through the pipe. Disabled by default.</td>
</tr>
<tr>
<td>pipeignore</td>
<td>Omit ignored header when outputting to the pipe command. Although disabled by default, pipeignore is frequently set in the system startup file. See Starting Mail in USAGE above.</td>
</tr>
<tr>
<td>postmark</td>
<td>Your &quot;real name&quot; to be included in the From line of messages you send. By default this is derived from the comment field in your passwd(4) file entry.</td>
</tr>
<tr>
<td>prompt=string</td>
<td>Set the command mode prompt to string. Default is “?” unless the bsdcompat variable is set, then the default is “&amp;”.</td>
</tr>
<tr>
<td>quiet</td>
<td>Refrain from printing the opening message and version when entering mailx. Disabled by default.</td>
</tr>
<tr>
<td>record=file</td>
<td>Record all outgoing mail in file. Disabled by default. See also outfolder above.</td>
</tr>
<tr>
<td>replyall</td>
<td>Reverse the effect of the reply and Reply and Followup and Followup commands. Although set by default, replayall is frequently unset in the system startup file. See flipr and Starting Mail in USAGE above.</td>
</tr>
<tr>
<td>returnaddr=string</td>
<td>The default sender address is that of the current user. This variable can be used to set the sender address to any arbitrary value. Set with caution.</td>
</tr>
<tr>
<td>save</td>
<td>Enable saving of messages in dead-letter on interrupt or delivery error. See DEAD for a description of this file. Enabled by default.</td>
</tr>
<tr>
<td>screen=number</td>
<td>Sets the number of lines in a screen-full of headers for the headers command. number must be a positive number.</td>
</tr>
<tr>
<td>sendmail=shell-command</td>
<td>Alternate command for delivering messages. Note: In addition to the expected list of recipients, mail also passes the -i and -m flags to the command. Since these flags are not appropriate to other commands, you may have to use a shell script that strips them from the</td>
</tr>
</tbody>
</table>

User Commands 843
arguments list before invoking the desired command. Default is /usr/bin/rmail.

**sendwait**

Wait for background mailer to finish before returning. Disabled by default.

**showname**

Causes the message header display to show the sender’s real name (if known) rather than their mail address. Disabled by default, but showname is set in the /etc/mail/mailx.rc system startup file for mailx.

**showto**

When displaying the header summary and the message is from you, print the recipient’s name instead of the author’s name.

**sign=string**

The variable inserted into the text of a message when the -a (autograph) command is given. No default (see also -i in Tilde Escapes).

**Sign=string**

The variable inserted into the text of a message when the -A command is given. No default (see also -i in Tilde Escapes).

**toplines=number**

The number of lines of header to print with the top command. Default is 5.

**verbose**

Invoke sendmail(1M) with the -v flag.

**translate**

The name of a program to translate mail addresses. The program receives mail addresses as arguments. The program produces, on the standard output, lines containing the following data, in this order:

- the postmark for the sender (see the postmark variable)
- translated mail addresses, one per line, corresponding to the program’s arguments. Each translated address will replace the corresponding address in the mail message being sent.
- a line containing only "y" or "n". if the line contains "y" the user will be asked to confirm that the message should be sent.

The translate program will be invoked for each mail message to be sent. If the program exits with a non-zero exit status, or fails to produce enough output, the message is not sent.
See `largefile(5)` for the description of the behavior of `mailx` when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

See `environ(5)` for descriptions of the following environment variables that affect the execution of `mailx`:

- `HOME`:
The name of the file in which to save partial letters in case of untimely interrupt. Default is `$HOME/dead.letter`.

- `EDITOR`:
The command to run when the `edit` or `-e` command is used. Default is `ed(1)`.

- `LISTER`:
The command (and options) to use when listing the contents of the folder directory. The default is `ls(1)`.

- `MAIL`:
The name of the initial mailbox file to read (in lieu of the standard system mailbox). The default is `/var/mail/username`.

- `MAILRC`:
The name of the startup file. Default is `$HOME/.mailrc`.

- `MAILX_HEAD`:
The specified string is included at the beginning of the body of each message that is sent.

- `MAILX_TAIL`:
The specified string is included at the end of the body of each message that is sent.

- `MBOX`:
The name of the file to save messages which have been read. The exit command overrides this function, as does saving the message explicitly in another file. Default is `$HOME/mbox`.

- `PAGER`:
The command to use as a filter for paginating output. This can also be used to specify the options to be used. Default is `pg(1)`, or if the `bsdcompat` variable is set, the default is `more(1)`. See `Internal Variables`.

- `SHELL`:
The name of a preferred command interpreter. Default is `sh(1)`.

- `VISUAL`:
The name of a preferred screen editor. Default is `vi(1)`.

### EXIT STATUS

When the `-e` option is specified, the following exit values are returned:

- `0` Mail was found.
- `>0` Mail was not found or an error occurred.

Otherwise, the following exit values are returned:

- `0` Successful completion. Notice that this status implies that all messages were sent, but it gives no assurances that any of them were actually delivered.
- `>0` An error occurred
mailx(1)

FILES

$HOME/.mailrc
   personal startup file

$HOME/mbox
   secondary storage file

$HOME/.Maillock
   lock file to prevent multiple writers of system mailbox

/etc/mail/mailx.rc
   optional system startup file for mailx only

/etc/mail/Mail.rc
   BSD compatibility system-wide startup file for /usr/ucb/mail and
   /usr/ucb/Mail

/tmp/R[emq xs]*
   temporary files

/usr/share/lib/mailx/mailx.help*
   help message files

/var/mail/*
   post office directory

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

biff(1B), echo(1), ed(1), ex(1), fmt(1), lp(1), ls(1), mail(1), mail(1B),
mailcompat(1), more(1), pg(1), sh(1), uucp(1C), vacation(1), vi(1),
newaliases(1M), sendmail(1M), aliases(4), passwd(4), attributes(5),
environ(5), largefile(5), standards(5)

NOTES

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards need
some time to settle down.

Replies do not always generate correct return addresses. Try resending the errant reply
with onehop set.

mailx does not lock your record file. So, if you use a record file and send two or more
messages simultaneously, lines from the messages may be interleaved in the record file.
The format for the alias command is a space-separated list of recipients, while the format for an alias in either the .forward or /etc/aliases is a comma-separated list.

To read mail on a workstation running Solaris 1.x when your mail server is running Solaris 2.x, first execute the mailcompat(1) program.
The `make` utility maintains, updates, and regenerates related programs and files.

**SYNOPSIS**

```
```

```
```

**DESCRIPTION**

The `make` utility executes a list of shell commands associated with each target, typically to create or update a file of the same name. `makefile` contains entries that describe how to bring a target up to date with respect to those on which it depends, which are called dependencies. Since each dependency is a target, it may have dependencies of its own. Targets, dependencies, and sub-dependencies comprise a tree structure that `make` traces when deciding whether or not to rebuild a target.

The `make` utility recursively checks each target against its dependencies, beginning with the first target entry in `makefile` if no target argument is supplied on the command line. If, after processing all of its dependencies, a target file is found either to be missing, or to be older than any of its dependencies, make rebuilds it. Optionally with this version of `make`, a target can be treated as out-of-date when the commands used to generate it have changed since the last time the target was built.

To build a given target, `make` executes the list of commands, called a rule. This rule may be listed explicitly in the target’s `makefile` entry, or it may be supplied implicitly by `make`.

If no target is specified on the command line, `make` uses the first target defined in `makefile`.

If a target has no `makefile` entry, or if its entry has no rule, `make` attempts to derive a rule by each of the following methods, in turn, until a suitable rule is found. Each method is described under **USAGE** below.

- Pattern matching rules.
- Implicit rules, read in from a user-supplied `makefile`.
- Standard implicit rules (also known as suffix rules), typically read in from the file `/usr/share/lib/make/make.rules`.
- SCCS retrieval. `make` retrieves the most recent version from the SCCS history file (if any). See the description of the `.SCCS_GET` special-function target for details.
- The rule from the `.DEFAULT` target entry, if there is such an entry in the `makefile`.

If there is no `makefile` entry for a target, if no rule can be derived for building it, and if no file by that name is present, `make` issues an error message and halts.

**OPTIONS**

The following options are supported:
### make(1S)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-d</code></td>
<td>Displays the reasons why <code>make</code> chooses to rebuild a target. <code>make</code> displays any and all dependencies that are newer. In addition, <code>make</code> displays options read in from the <code>MAKEFLAGS</code> environment variable.</td>
</tr>
<tr>
<td><code>-dd</code></td>
<td>Displays the dependency check and processing in vast detail.</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>Displays the text of the <code>make</code> files read in.</td>
</tr>
<tr>
<td><code>-DD</code></td>
<td>Displays the text of the <code>make</code> files, <code>make.rules</code> file, the state file, and all hidden-dependency reports.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Environment variables override assignments within <code>make</code> files.</td>
</tr>
<tr>
<td><code>-f makefile</code></td>
<td>Uses the description file <code>makefile</code>. A <code>-' as the </code>makefile<code>argument denotes the standard input. The contents of</code>makefile<code>, when present, override the standard set of implicit rules and predefined macros. When more than one </code>' -f makefile' argument pair appears, <code>make</code> uses the concatenation of those files, in order of appearance.</td>
</tr>
</tbody>
</table>

When no `makefile` is specified, `/usr/ccs/bin/make` tries the following in sequence, except when in POSIX mode (see the `.POSIX special-function targets` in the `USAGE` section below):

- If there is a file named `makefile` in the working directory, `make` uses that file. If, however, there is an SCCS history file (`SCCS/s.makefile`) which is newer, `make` attempts to retrieve and use the most recent version.

- In the absence of the above file(s), if a file named `Makefile` is present in the working directory, `make` attempts to use it. If there is an SCCS history file (`SCCS/s.Makefile`) that is newer, `make` attempts to retrieve and use the most recent version.

When no `makefile` is specified, `/usr/ccs/bin/make` in POSIX mode and `/usr/xpg4/bin/make` try the following files in sequence:

- `./makefile, ./Makefile`
- `s.makefile, SCCS/s.makefile`
- `s.Makefile, SCCS/s.Makefile`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i</code></td>
<td>Ignores error codes returned by commands. Equivalent to the special-function target <code>‘.IGNORE’</code>.</td>
</tr>
<tr>
<td><code>-k</code></td>
<td>When a nonzero error status is returned by a rule, or when <code>make</code> cannot find a rule, abandons work on the current target, but continues with other dependency branches that do not depend on it.</td>
</tr>
<tr>
<td><code>-K statefile</code></td>
<td>Uses the state file <code>statefile</code>. A <code>-' as the </code>statefile<code>argument denotes the standard input. The contents of</code>statefile`, when present, override the...</td>
</tr>
</tbody>
</table>

User Commands 849
make(1S)

standard set of implicit rules and predefined macros. When more
than one `~K statefile` argument pair appears, make uses the
concatenation of those files, in order of appearance. (See also
.KEEP_STATE and .KEEP_STATE_FILE in the Special-Function
Targets section).

-n No execution mode. Prints commands, but does not execute them.
Even lines beginning with an @ are printed. However, if a
command line contains a reference to the $(MAKE) macro, that
line is always executed (see the discussion of MAKEFLAGS in
Reading Makefiles and the Environment). When in POSIX mode,
lines beginning with a “+” are executed.

-p Prints out the complete set of macro definitions and target
descriptions.

-P Merely reports dependencies, rather than building them.

-q Question mode. make returns a zero or nonzero status code
depending on whether or not the target file is up to date. When in
POSIX mode, lines beginning with a “+” are executed.

-r Does not read in the default makefile
/usr/share/lib/make/make.rules.

-s Silent mode. Does not print command lines before executing them.
Equivalent to the special-function target .SILENT:

-S Undoes the effect of the -k option. Stops processing when a
non-zero exit status is returned by a command.

-t Touches the target files (bringing them up to date) rather than
performing their rules. Warning: This can be dangerous when files
are maintained by more than one person. When the
.KEEP_STATE: target appears in the makefile, this option updates
the state file just as if the rules had been performed. When in
POSIX mode, lines beginning with a “+” are executed.

-V Puts make into SysV mode. Refer to sysV-make(1) for respective
details.

OPERANDS The following operands are supported:

target Target names, as defined in USAGE.

macro=value Macro definition. This definition overrides any regular definition
for the specified macro within the makefile itself, or in the
environment. However, this definition can still be overridden by
conditional macro assignments.

USAGE The usage of make is described below:
When make first starts, it reads the MAKEFLAGS environment variable to obtain any of the following options specified present in its value: -d, -D, -e, -i, -k, -n, -p, -q, -r, -s, -S, or -t. Due to the implementation of POSIX.2 (see POSIX.2(5), the MAKEFLAGS values will contain a leading ‘−’ character. The make utility then reads the command line for additional options, which also take effect.

Next, make reads in a default makefile that typically contains predefined macro definitions, target entries for implicit rules, and additional rules, such as the rule for retrieving SCCS files. If present, make uses the file make.rules in the current directory; otherwise it reads the file /usr/share/lib/make/make.rules, which contains the standard definitions and rules. Use the directive:

```
include /usr/share/lib/make/make.rules
```

in your local make.rules file to include them.

Next, make imports variables from the environment (unless the -e option is in effect), and treats them as defined macros. Because make uses the most recent definition it encounters, a macro definition in the makefile normally overrides an environment variable of the same name. When -e is in effect, however, environment variables are read in after all makefiles have been read. In that case, the environment variables take precedence over definitions in the makefile.

Next, make reads any makefiles you specify with -f, or one of makefile or Makefile as described above and then the state file, in the local directory if it exists. If the makefile contains a .KEEP_STATE_FILE target, then it reads the state file that follows the target. Refer to special target .KEEP_STATE_FILE for details.

Next (after reading the environment if -e is in effect), make reads in any macro definitions supplied as command line arguments. These override macro definitions in the makefile and the environment both, but only for the make command itself.

make exports environment variables, using the most recently defined value. Macro definitions supplied on the command line are not normally exported, unless the macro is also an environment variable.

make does not export macros defined in the makefile. If an environment variable is set, and a macro with the same name is defined on the command line, make exports its value as defined on the command line. Unless -e is in effect, macro definitions within the makefile take precedence over those imported from the environment.

The macros MAKEFLAGS, MAKE, SHELL, HOST_ARCH, HOST_MACH, and TARGET_MACH are special cases. See Special-Purpose Macros below for details.

A target entry has the following format:

```
 [command]
 . . .
```

User Commands 851
The first line contains the name of a target, or a space-separated list of target names, terminated with a colon or double colon. If a list of targets is given, this is equivalent to having a separate entry of the same form for each target. The colon(s) may be followed by a dependency, or a dependency list. `make` checks this list before building the target. The dependency list may be terminated with a semicolon (`;`), which in turn can be followed by a single Bourne shell command. Subsequent lines in the target entry begin with a `TAB` and contain Bourne shell commands. These commands comprise the rule for building the target.

Shell commands may be continued across input lines by escaping the `NEWLINE` with a backslash (`\`). The continuing line must also start with a `TAB`.

To rebuild a target, `make` expands macros, strips off initial `TAB` characters and either executes the command directly (if it contains no shell metacharacters), or passes each command line to a Bourne shell for execution.

The first non-empty line that does not begin with a `TAB` or `#` begins another target or macro definition.

### Special Characters

#### Global

- `#` Start a comment. The comment ends at the next `NEWLINE`. If the `#` follows the `TAB` in a command line, that line is passed to the shell (which also treats `#` as the start of a comment).

- `include filename` If the word `include` appears as the first seven letters of a line and is followed by a `SPACE` or `TAB`, the string that follows is taken as a filename to interpolate at that line. `include` files can be nested to a depth of no more than about 16. If `filename` is a macro reference, it is expanded.

#### Targets and Dependencies

- `:` Target list terminator. Words following the colon are added to the dependency list for the target or targets. If a target is named in more than one colon-terminated target entry, the dependencies for all its entries are added to form that target’s complete dependency list.

- `::` Target terminator for alternate dependencies. When used in place of a `:` the double-colon allows a target to be checked and updated with respect to alternate dependency lists. When the target is out-of-date with respect to dependencies listed in the first alternate, it is built according to the rule for that entry. When out-of-date with respect to dependencies in another alternate, it is built according to the rule in that other entry. Implicit rules do not apply to double-colon dependencies.
targets; you must supply a rule for each entry. If no dependencies are specified, the rule is always performed.

`target [+ target . . . ]:` Target group. The rule in the target entry builds all the indicated targets as a group. It is normally performed only once per `make` run, but is checked for command dependencies every time a target in the group is encountered in the dependency scan.

`%` Pattern matching wild card metacharacter. Like the `*` shell wild card, `%` matches any string of zero or more characters in a target name or dependency, in the target portion of a conditional macro definition, or within a pattern replacement macro reference. Notice that only one `%` can appear in a target, dependency-name, or pattern-replacement macro reference.

`. /pathname` `make` ignores the leading `./` characters from targets with names given as pathnames relative to “dot,” the working directory.

`Macros =` Macro definition. The word to the left of this character is the macro name; words to the right comprise its value. Leading and trailing white space characters are stripped from the value. A word break following the `=` is implied.

`$` Macro reference. The following character, or the parenthesized or bracketed string, is interpreted as a macro reference: `make` expands the reference (including the `$`) by replacing it with the macro’s value.

`( )` Macro-reference name delimiters. A parenthesized or bracketed word appended to a `$` is taken as the name of the macro being referred to. Without the delimiters, `make` recognizes only the first character as the macro name.

`$\$` A reference to the dollar-sign macro, the value of which is the character `$`. Used to pass variable expressions beginning with `$` to the shell, to refer to environment variables which are expanded by the shell, or to delay processing of dynamic macros within the dependency list of a target, until that target is actually processed.

`\$` Escaped dollar-sign character. Interpreted as a literal dollar sign within a rule.

`+=` When used in place of `=` , appends a string to a macro definition (must be surrounded by white space, unlike `=`).
make(1S)

:= Conditional macro assignment. When preceded by a list of targets with explicit target entries, the macro definition that follows takes effect when processing only those targets, and their dependencies.

:sh = Define the value of a macro to be the output of a command (see Command Substitutions below).

:sh In a macro reference, execute the command stored in the macro, and replace the reference with the output of that command (see Command Substitutions below).

Rules + make will always execute the commands preceded by a “+”, even when -n is specified.

− make ignores any nonzero error code returned by a command line for which the first non-TAB character is a ‘−’. This character is not passed to the shell as part of the command line. make normally terminates when a command returns nonzero status, unless the -i or -k options, or the .IGNORE: special-function target is in effect.

@ If the first non-TAB character is a @, make does not print the command line before executing it. This character is not passed to the shell.

? Escape command-dependency checking. Command lines starting with this character are not subject to command dependency checking.

! Force command-dependency checking. Command-dependency checking is applied to command lines for which it would otherwise be suppressed. This checking is normally suppressed for lines that contain references to the ‘?’ dynamic macro (for example, ‘$?’).

When any combination of ‘+’, ‘−’, ‘@’, ‘?’ or ‘!’ appear as the first characters after the TAB, all that are present apply. None are passed to the shell.

Special-Function Targets

When incorporated in a makefile, the following target names perform special-functions:

.DEFAULT: If it has an entry in the makefile, the rule for this target is used to process a target when there is no other entry for it, no rule for building it, and no SCCS history file from which to retrieve a current version. make ignores any dependencies for this target.

.DONE: If defined in the makefile, make processes this target and its dependencies after all other targets are built. This target is also performed when make halts with an error, unless the .FAILED target is defined.
This target, along with its dependencies, is performed instead of \texttt{.DONE} when defined in the makefile and make halts with an error.

\texttt{.GET\_POSIX:}  
This target contains the rule for retrieving the current version of an SCCS file from its history file in the current working directory. make uses this rule when it is running in POSIX mode.

\texttt{.IGNORE:}  
Ignore errors. When this target appears in the makefile, make ignores non-zero error codes returned from commands. When used in POSIX mode, \texttt{.IGNORE} could be followed by target names only, for which the errors will be ignored.

\texttt{.INIT:}  
If defined in the makefile, this target and its dependencies are built before any other targets are processed.

\texttt{.KEEP\_STATE:}  
If this target is in effect, make updates the state file, \texttt{.make.state}, in the current directory. This target also activates command dependencies, and hidden dependency checks. If either the \texttt{.KEEP\_STATE:} target appears in the makefile, or the environment variable \texttt{KEEP\_STATE} is set ("setenv KEEP\_STATE"), make will rebuild everything in order to collect dependency information, even if all the targets were up to date due to previous make runs. See also the \texttt{ENVIRONMENT\_VARIABLES} section. This target has no effect if used in POSIX mode.

\texttt{.KEEP\_STATE\_FILE:}  
This target has no effect if used in POSIX mode. This target implies \texttt{.KEEP\_STATE}. If the target is followed by a filename, make uses it as the state file. If the target is followed by a directory name, make looks for a \texttt{.make.state} file in that directory. If the target is not followed by any name, make looks for \texttt{.make.state} file in the current working directory.

\texttt{.MAKE\_VERSION:}  
A target-entry of the form:

\begin{verbatim}
MAKE\_VERSION: VERSION-number
\end{verbatim}

enables version checking. If the version of make differs from the version indicated by a string like "VERSION-1.0", make issues a warning message.

\texttt{.NO\_PARALLEL:}  
Currently, this target has no effect, it is, however, reserved for future use.

\texttt{.PARALLEL:}  
Currently of no effect, but reserved for future use.
.POSIX: This target enables POSIX mode.

.PRECIOUS: List of files not to delete. make does not remove any of the files listed as dependencies for this target when interrupted. make normally removes the current target when it receives an interrupt. When used in POSIX mode, if the target is not followed by a list of files, all the file are assumed precious.

.SCCS_GET: This target contains the rule for retrieving the current version of an SCCS file from its history file. To suppress automatic retrieval, add an entry for this target with an empty rule to your makefile.

.SCCS_GET_POSIX: This target contains the rule for retrieving the current version of an SCCS file from its history file. make uses this rule when it is running in POSIX mode.

.SILENT: Run silently. When this target appears in the makefile, make does not echo commands before executing them. When used in POSIX mode, it could be followed by target names, and only those will be executed silently.

.SUFFIXES: The suffixes list for selecting implicit rules (see The Suffixes List).

.WAIT: Currently of no effect, but reserved for future use.

Clearing Special Targets
In this version of make, you can clear the definition of the following special targets by supplying entries for them with no dependencies and no rule:

.DEFUALT, .SCCS_GET, and .SUFFIXES

Command Dependencies
When the .KEEP_STATE: target is effective, make checks the command for building a target against the state file. If the command has changed since the last make run, make rebuilds the target.

Hidden Dependencies
When the .KEEP_STATE: target is effective, make reads reports from cpp(1) and other compilation processors for any “hidden” files, such as #include files. If the target is out of date with respect to any of these files, make rebuilds it.

Macros
Entries of the form

\[ \text{macro}=\text{value} \]

define macros. macro is the name of the macro, and value, which consists of all characters up to a comment character or unescaped NEWLINE, is the value. make strips both leading and trailing white space in accepting the value.

Subsequent references to the macro, of the forms: $\{(name)\} or ${\{name\}} are replaced by value. The parentheses or brackets can be omitted in a reference to a macro with a single-character name.
Macro references can contain references to other macros, in which case nested references are expanded first.

Substitutions within macros can be made as follows:

$$\$(name: string1=string2)$$

where string1 is either a suffix, or a word to be replaced in the macro definition, and string2 is the replacement suffix or word. Words in a macro value are separated by SPACE, TAB, and escaped NEWLINE characters.

Pattern matching replacements can also be applied to macros, with a reference of the form:

$$\$(name: op%os=np%ns)$$

where op is the existing (old) prefix and os is the existing (old) suffix, np and ns are the new prefix and new suffix, respectively, and the pattern matched by % (a string of zero or more characters), is carried forward from the value being replaced. For example:

```make
PROGRAM=fabricate
DEBUG= $(PROGRAM:%=tmp/%-g)
```

sets the value of DEBUG to tmp/fabricate−g.

Notice that pattern replacement macro references cannot be used in the dependency list of a pattern matching rule; the % characters are not evaluated independently. Also, any number of % metacharacters can appear after the equal-sign.

Words can be appended to macro values as follows:

```make
macro += word...
```

When the MAKEFLAGS variable is present in the environment, make takes options from it, in combination with options entered on the command line. make retains this combined value as the MAKEFLAGS macro, and exports it automatically to each command or shell it invokes.

Notice that flags passed by way of MAKEFLAGS are only displayed when the -d, or -dd options are in effect.

The MAKE macro is another special case. It has the value make by default, and temporarily overrides the -n option for any line in which it is referred to. This allows nested invocations of make written as:

```make
$ (MAKE) . . .
```

to run recursively, with the -n flag in effect for all commands but make. This lets you use make -n to test an entire hierarchy of makefiles.

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the MAKEFLAGS variable by prepending a ‘−’. MFLAGS is not exported automatically.
The SHELL macro, when set to a single-word value such as /usr/bin/csh, indicates the name of an alternate shell to use. The default is /bin/sh. Notice that make executes commands that contain no shell metacharacters itself. Built-in commands, such as dirs in the C shell, are not recognized unless the command line includes a metacharacter (for instance, a semicolon). This macro is neither imported from, nor exported to the environment, regardless of -e. To be sure it is set properly, you must define this macro within every makefile that requires it.

The syntax of the VPATH macro is:

```
VPATH = [pathname [: pathname] ...]
```

VPATH specifies a list of directories to search for the files, which are targets or dependencies, when make is executed. VPATH is also used in order to search for the include files mentioned in the particular makefile.

When processing a target or a dependency or an include directive, make checks the existence of the file with the same name in the current directory. If the file is found to be missing, make will search for this file in the list of directories presented in VPATH (like the PATH variable in the shell). Unlike the PATH variable, VPATH is used in order to search for the files with relative pathnames. When make attempts to apply implicit rules to the target, it also searches for the dependency files using VPATH.

When the file is found using VPATH, internal macros $@, @<, $?, $*, and their alternative forms (with D or F appended) are set in accordance with the name derived from VPATH. For instance, if the target subdir/foo.o is found in the directory /aaa/bbb using VPATH, then the value of the internal macro $@ for this target will be /aaa/bbb/subdir/foo.o.

If a target or a dependency file is found using VPATH, then any occurrences of the word that is the same as the target name in the subsequent rules will be replaced with the actual name of the target derived from VPATH.

For example:

```
VPATH=./subdir
file.o : file.c
 cc -c file.c -o file.o
```

If file.c is found in ./subdir, then the command

```
cc -c ./subdir/file.c -o file.o
```

will be executed.

The following macros are provided for use with cross-compilation:

HOST_ARCH The machine architecture of the host system. By default, this is the output of the arch(1) command prepended with ‘-’. Under normal circumstances, this value should never be altered by the user.
HOST_MACH The machine architecture of the host system. By default, this is the output of the mach(1), prepended with ‘−’. Under normal circumstances, this value should never be altered by the user.

TARGET_ARCH The machine architecture of the target system. By default, the output of mach, prepended with ‘−’.

Dynamic Macros

There are several dynamically maintained macros that are useful as abbreviations within rules. They are shown here as references; if you were to define them, make would simply override the definition.

$* The basename of the current target, derived as if selected for use with an implicit rule.

$< The name of a dependency file, derived as if selected for use with an implicit rule.

$@ The name of the current target. This is the only dynamic macro whose value is strictly determined when used in a dependency list. (In which case it takes the form ‘$$@’.)

$? The list of dependencies that are newer than the target. Command-dependency checking is automatically suppressed for lines that contain this macro, just as if the command had been prefixed with a ‘?’ . See the description of ‘? ’, under Special Character Rules above. You can force this check with the ? command-line prefix.

$% The name of the library member being processed. (See Library Maintenance below.)

To refer to the $@ dynamic macro within a dependency list, precede the reference with an additional ‘$ ’ character (as in, ‘$$@’). Because make assigns $< and $* as it would for implicit rules (according to the suffixes list and the directory contents), they may be unreliable when used within explicit target entries.

These macros can be modified to apply either to the filename part, or the directory part of the strings they stand for, by adding an upper case F or D, respectively (and enclosing the resulting name in parentheses or braces). Thus, ‘$ ($D) ’ refers to the directory part of the string ‘$@’; if there is no directory part, ‘.’ is assigned. $ ($@F) refers to the filename part.

Conditional Macro Definitions

A macro definition of the form:

target-list := macro = value

indicates that when processing any of the targets listed and their dependencies, macro is to be set to the value supplied. Notice that if a conditional macro is referred to in a dependency list, the $ must be delayed (use $$ instead). Also, target-list may contain a % pattern, in which case the macro will be conditionally defined for all targets encountered that match the pattern. A pattern replacement reference can be used within the value.
You can temporarily append to a macro’s value with a conditional definition of the form:

\[
target-list ::= macro ++ value
\]

### Predefined Macros

`make` supplies the macros shown in the table that follows for compilers and their options, host architectures, and other commands. Unless these macros are read in as environment variables, their values are not exported by `make`. If you run `make` with any of these set in the environment, it is a good idea to add commentary to the `makefile` to indicate what value each is expected to take. If `-r` is in effect, `make` does not read the default `makefile` (`./make.rules` or `/usr/share/lib/make/make.rules`) in which these macro definitions are supplied.

<table>
<thead>
<tr>
<th>Use</th>
<th>Macro</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>AR</td>
<td><code>ar</code></td>
</tr>
<tr>
<td></td>
<td>ARFLAGS</td>
<td><code>rv</code></td>
</tr>
<tr>
<td>Archives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembler</td>
<td>AS</td>
<td><code>as</code></td>
</tr>
<tr>
<td></td>
<td>ASFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.s</td>
<td>$(AS) $(ASFLAGS)</td>
</tr>
<tr>
<td></td>
<td>COMPILE.S</td>
<td>$(CC) $(ASFLAGS) $(CPPFLAGS) -c</td>
</tr>
<tr>
<td>C</td>
<td>CC</td>
<td><code>cc</code></td>
</tr>
<tr>
<td></td>
<td>CFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPPFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.c</td>
<td>$(CC) $(CFLAGS) $(CPPFLAGS) -c</td>
</tr>
<tr>
<td></td>
<td>LINK.c</td>
<td>$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)</td>
</tr>
<tr>
<td>C++</td>
<td>CCC</td>
<td><code>cc</code></td>
</tr>
<tr>
<td></td>
<td>CCFLAGS</td>
<td><code>CFLAGS</code></td>
</tr>
<tr>
<td></td>
<td>CPPFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.cc</td>
<td>$(CCC) $(CCFLAGS) $(CPPFLAGS) -c</td>
</tr>
<tr>
<td></td>
<td>LINK.cc</td>
<td>$(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)</td>
</tr>
</tbody>
</table>
**Table of Predefined Macros**

<table>
<thead>
<tr>
<th>Use</th>
<th>Macro</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMPILE.C</td>
<td>$(CCC) $(CCFLAGS) $(CPPFLAGS) -c</td>
</tr>
<tr>
<td></td>
<td>LINK.C</td>
<td>$(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)</td>
</tr>
</tbody>
</table>

**FORTRAN 77**

**Compiler**

F77

**Commands**

|          | COMPILE.f          | $(PC) $(FFLAGS) -c                                                          |
|          | LINK.f             | $(PC) $(FFLAGS) $(LDFLAGS)                                                  |
|          | COMPILE.F          | $(PC) $(FFLAGS) $(CPPFLAGS) -c                                              |
|          | LINK.F             | $(PC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)                                       |

**FORTRAN 90**

**Compiler**

F90

**Commands**

|          | COMPILE.f90        | $(F90C) $(F90FLAGS) -c                                                      |
|          | LINK.f90           | $(F90C) $(F90FLAGS) $(LDFLAGS)                                               |
|          | COMPILE.ftn        | $(F90C) $(F90FLAGS) $(CPPFLAGS) -c                                           |
|          | LINK.ftn           | $(F90C) $(F90FLAGS) $(CPPFLAGS) $(LDFLAGS)                                   |

**Link Editor**

ld

**Command**

LDFLAGS

lex

**Command**

lex

LEX.l $(LEX) $(LFLAGS) -t

lint

**Command**

lint

LINT.c $(LINT) $(LINTFLAGS) $(CPPFLAGS)
<table>
<thead>
<tr>
<th>Use</th>
<th>Macro</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modula 2 Commands</td>
<td>M2C</td>
<td>m2c</td>
</tr>
<tr>
<td></td>
<td>M2FLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEFFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.def</td>
<td>$(M2C) $(M2FLAGS) $(DEFFLAGS)</td>
</tr>
<tr>
<td></td>
<td>COMPILE.mod</td>
<td>$(M2C) $(M2FLAGS) $(MODFLAGS)</td>
</tr>
<tr>
<td>Pascal Compiler Commands</td>
<td>PC</td>
<td>pc</td>
</tr>
<tr>
<td></td>
<td>PFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.p</td>
<td>$(PC) $(PFLAGS) $(CPPFLAGS) -c</td>
</tr>
<tr>
<td></td>
<td>LINK.p</td>
<td>$(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)</td>
</tr>
<tr>
<td>Ratfor Compilation Commands</td>
<td>RFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPILE.r</td>
<td>$(PC) $(PFLAGS) $(RFLAGS) -c</td>
</tr>
<tr>
<td></td>
<td>LINK.r</td>
<td>$(PC) $(PFLAGS) $(RFLAGS) $(LDFLAGS)</td>
</tr>
<tr>
<td>rm Command</td>
<td>RM</td>
<td>rm -f</td>
</tr>
<tr>
<td>sccs Command</td>
<td>SCCSFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCCSGETFLAGS</td>
<td>-s</td>
</tr>
<tr>
<td>yacc Command</td>
<td>YACC</td>
<td>yacc</td>
</tr>
<tr>
<td></td>
<td>YFLAGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YACC.y</td>
<td>$(YACC) $(YFLAGS)</td>
</tr>
</tbody>
</table>
Implicit Rules

When a target has no entry in the makefile, make attempts to determine its class (if any) and apply the rule for that class. An implicit rule describes how to build any target of a given class, from an associated dependency file. The class of a target can be determined either by a pattern, or by a suffix; the corresponding dependency file (with the same basename) from which such a target might be built. In addition to a predefined set of implicit rules, make allows you to define your own, either by pattern, or by suffix.

Pattern Matching Rules

A target entry of the form:

```
tp%ts: dp%ds
 rule
```

is a pattern matching rule, in which tp is a target prefix, ts is a target suffix, dp is a dependency prefix, and ds is a dependency suffix (any of which may be null). The ‘%’ stands for a basename of zero or more characters that is matched in the target, and is used to construct the name of a dependency. When make encounters a match in its search for an implicit rule, it uses the rule in that target entry to build the target from the dependency file. Pattern-matching implicit rules typically make use of the $@ and $< dynamic macros as placeholders for the target and dependency names. Other, regular dependencies may occur in the dependency list; however, none of the regular dependencies may contain ‘%’. An entry of the form:

```
tp%ts: [dependency...] dp%ds [dependency...]
 rule
```

is a valid pattern matching rule.

Suffix Rules

When no pattern matching rule applies, make checks the target name to see if it ends with a suffix in the known suffixes list. If so, make checks for any suffix rules, as well as a dependency file with same root and another recognized suffix, from which to build it.

The target entry for a suffix rule takes the form:

```
DsTs: rule
```

where Ts is the suffix of the target, Ds is the suffix of the dependency file, and rule is the rule for building a target in the class. Both Ds and Ts must appear in the suffixes list. (A suffix need not begin with a ‘.’ to be recognized.)

A suffix rule with only one suffix describes how to build a target having a null (or no) suffix from a dependency file with the indicated suffix. For instance, the .c rule could be used to build an executable program named file from a C source file named ‘file.c’. If a target with a null suffix has an explicit dependency, make omits the search for a suffix rule.
<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.s.o</td>
<td>$(COMPILE.s) -o $@ $&lt;</td>
</tr>
</tbody>
</table>
| .s.a              | $(COMPILE.s) -o $% $<  
|                   | $(AR) $(ARFLAGS) $@ $%  
|                   | $(RM) $% |
| .s-.o             | $(GET) $(GFLAGS) -p $< > $*.s  
|                   | $(COMPILE.s) -o $@ $*.s |
| .S.o              | $(COMPILE.S) -o $@ $< |
| .S.a              | $(COMPILE.S) -o $% $<  
|                   | $(AR) $(ARFLAGS) $@ $%  
|                   | $(RM) $% |
| .S-.o             | $(GET) $(GFLAGS) -p $< > $*.S  
|                   | $(COMPILE.S) -o $@ $*.S |
| .S-.a             | $(GET) $(GFLAGS) -p $< > $*.S  
|                   | $(COMPILE.S) -o $% $*.S  
|                   | $(AR) $(ARFLAGS) $@ $%  
|                   | $(RM) $% |

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.c</td>
<td>$(LINK.c) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.c.ln</td>
<td>$(LINT.c) $(OUTPUT_OPTION) -i $&lt;</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for C Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.c.o</td>
<td>$(COMPILE.c) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.c.a</td>
<td>$(COMPILE.c) -o $% $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) $@ $%</td>
</tr>
<tr>
<td></td>
<td>$(RM) $%</td>
</tr>
<tr>
<td>.c~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.c</td>
</tr>
<tr>
<td></td>
<td>$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $*.c</td>
</tr>
<tr>
<td>.c~.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.c</td>
</tr>
<tr>
<td></td>
<td>$(CC) $(CFLAGS) -c $*.c</td>
</tr>
<tr>
<td>.c~.ln</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.c</td>
</tr>
<tr>
<td></td>
<td>$(LINT.c) $(OUTPUT_OPTION) -c $*.c</td>
</tr>
<tr>
<td>.c~.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.c</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.c) -o $% $*.c</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) $@ $%</td>
</tr>
<tr>
<td></td>
<td>$(RM) $%</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for C++ Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.cc</td>
<td>$(LINK.cc) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.cc.o</td>
<td>$(COMPILE.cc) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.cc.a</td>
<td>$(COMPILE.cc) -o $% $&lt;</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for C++ Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(AR) $(ARFLAGS) $@ $%</td>
<td>$(AR) $(ARFLAGS) $@ $%</td>
</tr>
<tr>
<td>$(RM) $%</td>
<td>$(RM) $%</td>
</tr>
<tr>
<td>.cc~</td>
<td>$(GET) $(GFLAGS) -p $&lt; $<em>.cc $(LINK.cc) -o $% $</em>.cc $(LDLIBS)</td>
</tr>
<tr>
<td>.cc.o</td>
<td>$(COMPILE.cc) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.cc-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; $<em>.cc $(COMPILE.cc) $(OUTPUT_OPTION) $</em>.cc</td>
</tr>
<tr>
<td>.cc.a</td>
<td>$(COMPILE.cc) -o $% $&lt; $(AR) $(ARFLAGS) $% $(RM) $%</td>
</tr>
<tr>
<td>.cc-.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; $<em>.cc $(COMPILE.cc) -o $% $</em>.cc $(AR) $(ARFLAGS) $% $(RM) $%</td>
</tr>
<tr>
<td>.C</td>
<td>$(LINK.C) -o $% $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.C~</td>
<td>$(GET) $(GFLAGS) -p $&lt; $<em>.C $(LINK.C) -o $% $</em>.C $(LDLIBS)</td>
</tr>
<tr>
<td>.C.o</td>
<td>$(COMPILE.C) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.C-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; $*.C</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for C++ Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
</table>
| .C.a               | $(COMPILE.C) -o $% $<  
                      $(AR) $(ARFLAGS) @ $%  
                      $(RM) $%           |
| .C-.a              | $(GET) $(GFLAGS) -p $< > $*.C  
                      $(COMPILE.C) -o $% $*.C  
                      $(AR) $(ARFLAGS) @ $%  
                      $(RM) $%           |

### Table of Standard Implicit (Suffix) Rules for FORTRAN 77 Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.f</td>
<td>$(LINK.f) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.f.o</td>
<td>$(COMPILE.f) $(OUTPUT_OPTION) $&lt;</td>
</tr>
</tbody>
</table>
| .f.a               | $(COMPILE.f) -o $% $<  
                      $(AR) $(ARFLAGS) @ $%  
                      $(RM) $%           |
| .f                | $(LINK.f) -o $@ $< $(LDLIBS) |
| .f~                | $(GET) $(GFLAGS) -p $< > $*.f  
                      $(FC) $(FFLAGS) $(LDFLAGS) -o $@ $*.*f |
| .f~.o              | $(GET) $(GFLAGS) -p $< > $*.f  
                      $(FC) $(FFLAGS) -c $*.f |
<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.f~.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.f</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.f) -o % $*.f</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) @ @</td>
</tr>
<tr>
<td></td>
<td>$(RM) @</td>
</tr>
<tr>
<td>.F</td>
<td>$(LINK.F) -o @ @ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.F.o</td>
<td>$(COMPILE.F) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.F.a</td>
<td>$(COMPILE.F) -o % $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) @ @</td>
</tr>
<tr>
<td></td>
<td>$(RM) @</td>
</tr>
<tr>
<td>.F~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.F</td>
</tr>
<tr>
<td></td>
<td>$(FC) $(FFLAGS) $(LDFLAGS) -o @ @ $*.F</td>
</tr>
<tr>
<td>.F-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.F</td>
</tr>
<tr>
<td></td>
<td>$(FC) $(FFLAGS) -c $*.F</td>
</tr>
<tr>
<td>.F-.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.F</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.F) -o % $*.F</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) @ @</td>
</tr>
<tr>
<td></td>
<td>$(RM) @</td>
</tr>
<tr>
<td>.f90</td>
<td>$(LINK.f90) -o @ @ $&lt; $(LDLIBS)</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for FORTRAN 90 Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.f90~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $<em>.f90 $(LINK.f90) -o $@ $</em>.f90 $(LDLIBS)</td>
</tr>
<tr>
<td>.f90.o</td>
<td>$(COMPILE.f90) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.f90-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $<em>.f90 $(COMPILE.f90) $(OUTPUT_OPTION) $</em>.f90</td>
</tr>
<tr>
<td>.f90.a</td>
<td>$(COMPILE.f90) -o $% $&lt; $(AR) $(ARFLAGS) $@ $% $(RM) $%</td>
</tr>
<tr>
<td>.f90-.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $<em>.f90 $(COMPILE.f90) -o $% $</em>.f90 $(AR) $(ARFLAGS) $@ $% $(RM) $%</td>
</tr>
<tr>
<td>.ftn</td>
<td>$(LINK.ftn) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.ftn~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $<em>.ftn $(LINK.ftn) -o $@ $</em>.ftn $(LDLIBS)</td>
</tr>
<tr>
<td>.ftn.o</td>
<td>$(COMPILE.ftn) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.ftn-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $<em>.ftn $(COMPILE.ftn) $(OUTPUT_OPTION) $</em>.ftn</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for FORTRAN 90 Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
</table>
| .ftn.a             | $(COMPILE.ftn) -o % $<  
$(AR) $(ARFLAGS) $@ %  
$(RM) % |
| .ftn-.a            | $(GET) $(GFLAGS) -p $< > %*.ftn  
$(COMPILE.ftn) -o % %*.ftn  
$(AR) $(ARFLAGS) $@ %  
$(RM) % |

### Table of Standard Implicit (Suffix) Rules for lex Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
</table>
| .l                 | $(RM) %*.c  
$(LEX.l) $< > %*.c  
$(LINK.c) -o % %*.c $(LDLIBS)  
$(RM) %*.c |
| .l.c               | $(RM) %  
$(LEX.l) $< > % |
| .l.ln              | $(RM) %*.c  
$(LEX.l) $< > %*.c  
$(LINT.c) -o % -i %*.c  
$(RM) %*.c |
| .l.o               | $(RM) %*.c  
$(LEX.l) $< > %*.c  
$(COMPILE.c) -o % %*.c  
$(RM) %*.c |
### Table of Standard Implicit (Suffix) Rules for lex Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
</table>
| .l~                | `${GET} ` ${GFLAGS} -p $< > *.*.l  
|                    | `${LEX} ` ${LFLAGS} *.*.l  
|                    | `${CC} ` ${CFLAGS} -c lex.yy.c  
|                    | `rm -f lex.yy.c`  
|                    | `mv lex.yy.c $@` |
| .l~.c              | `${GET} ` ${GFLAGS} -p $< > *.*.l  
|                    | `${LEX} ` ${LFLAGS} *.*.l  
|                    | `mv lex.yy.c $@` |
| .l~.ln             | `${GET} ` ${GFLAGS} -p $< > *.*.l  
|                    | `${RM} ` *.*.c  
|                    | `${LEX.l} ` *.*.l > *.*.c  
|                    | `${LINT.c} ` -o $@ -i *.*.c  
|                    | `${RM} ` *.*.c |
| .l~.o              | `${GET} ` ${GFLAGS} -p $< > *.*.l  
|                    | `${LEX} ` ${LFLAGS} *.*.l  
|                    | `${CC} ` ${CFLAGS} -c lex.yy.c  
|                    | `rm -f lex.yy.c`  
|                    | `mv lex.yy.c $@` |

### Table of Standard Implicit (Suffix) Rules for Modula 2 Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.mod</td>
<td><code>${COMPILE.mod} </code> -o $@ -e $@ $&lt;</td>
</tr>
<tr>
<td>.mod.o</td>
<td><code>${COMPILE.mod} </code> -o $@ $&lt;</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for Modula 2 Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.def.sym</td>
<td>$(COMPILE.def) -o $@ $&lt;</td>
</tr>
<tr>
<td>.def~.sym</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.def</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.def) -o $@ $*.def</td>
</tr>
<tr>
<td>.mod~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.mod</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.mod) -o $@ -e $@ $*.mod</td>
</tr>
<tr>
<td>.mod~.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.mod</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.mod) -o $@ $*.mod</td>
</tr>
<tr>
<td>.mod~.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.mod</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.mod) -o $% $*.mod</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) $% $%</td>
</tr>
<tr>
<td></td>
<td>$(RM) $%</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for NeWS Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.cps.h</td>
<td>cps $*.cps</td>
</tr>
<tr>
<td>.cps~.h</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.cps</td>
</tr>
<tr>
<td></td>
<td>$(CPS) $(CPSFLAGS) $*.cps</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for Pascal Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.p</td>
<td>$(LINK.p) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.p.o</td>
<td>$(COMPILE.p) $(OUTPUT_OPTION) $&lt;</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for Pascal Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.p~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.p</td>
</tr>
<tr>
<td></td>
<td>$(LINK.p) -o $@ $*.p $(LDLIBS)</td>
</tr>
<tr>
<td>.p~.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.p</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.p) $(OUTPUT_OPTION) $*.p</td>
</tr>
<tr>
<td>.p~.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.p</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.p) -o $% $*.p</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) $@ $%</td>
</tr>
<tr>
<td></td>
<td>$(RM) $%</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for Ratfor Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.r</td>
<td>$(LINK.r) -o $@ $&lt; $(LDLIBS)</td>
</tr>
<tr>
<td>.r.o</td>
<td>$(COMPILE.r) $(OUTPUT_OPTION) $&lt;</td>
</tr>
<tr>
<td>.r.a</td>
<td>$(COMPILE.r) -o $% $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(AR) $(ARFLAGS) $@ $%</td>
</tr>
<tr>
<td></td>
<td>$(RM) $%</td>
</tr>
<tr>
<td>.r~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.r</td>
</tr>
<tr>
<td></td>
<td>$(LINK.r) -o $@ $*.r $(LDLIBS)</td>
</tr>
<tr>
<td>.r~.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.r</td>
</tr>
<tr>
<td></td>
<td>$(COMPILE.r) $(OUTPUT_OPTION) $*.r</td>
</tr>
<tr>
<td>.r~.a</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.r</td>
</tr>
</tbody>
</table>
### Table of Standard Implicit (Suffix) Rules for Ratfor Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(COMPILE.r) -o $% $*.r</td>
<td></td>
</tr>
<tr>
<td>$(AR) $(ARFLAGS) $@ $%</td>
<td></td>
</tr>
<tr>
<td>$(RM) $%</td>
<td></td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for SCCS Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.SCCS_GET</td>
<td>sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@ -G$@</td>
</tr>
<tr>
<td>.SCCS_GET_POSIX</td>
<td>sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@</td>
</tr>
<tr>
<td>.GET_POSIX</td>
<td>$(GET) $(GFLAGS) s.$@</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for Shell Scripts

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.sh</td>
<td>cat $&lt; &gt;$@</td>
</tr>
<tr>
<td></td>
<td>chmod +x $@</td>
</tr>
<tr>
<td>.sh~</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.sh</td>
</tr>
<tr>
<td></td>
<td>cp $*.sh $@</td>
</tr>
<tr>
<td></td>
<td>chmod a+x $@</td>
</tr>
</tbody>
</table>

### Table of Standard Implicit (Suffix) Rules for yacc Files

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.y</td>
<td>$(YACC.y) $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(LINK.c) -o $@ y.tab.c $(LDLIBS)</td>
</tr>
<tr>
<td></td>
<td>$(RM) y.tab.c</td>
</tr>
<tr>
<td>.y.c</td>
<td>$(YACC.y) $&lt;</td>
</tr>
<tr>
<td>Implicit Rule Name</td>
<td>Command Line</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>mv y.tab.c $@</td>
<td></td>
</tr>
<tr>
<td>.y.ln</td>
<td>$(YACC.y) $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(LINT.c) -o $@ -i y.tab.c</td>
</tr>
<tr>
<td></td>
<td>$(RM) y.tab.c</td>
</tr>
<tr>
<td>.y.o</td>
<td>$(YACC.y) $&lt;</td>
</tr>
<tr>
<td></td>
<td>$(COMPIL.c) -o $@ y.tab.c</td>
</tr>
<tr>
<td></td>
<td>$(RM) y.tab.c</td>
</tr>
<tr>
<td>.y-</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.y</td>
</tr>
<tr>
<td></td>
<td>$(YACC) $(YFLAGS) $*.y</td>
</tr>
<tr>
<td></td>
<td>$(COMPIL.c) -o $@ y.tab.c</td>
</tr>
<tr>
<td></td>
<td>$(RM) y.tab.c</td>
</tr>
<tr>
<td>.y-.c</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.y</td>
</tr>
<tr>
<td></td>
<td>$(YACC) $(YFLAGS) $*.y</td>
</tr>
<tr>
<td></td>
<td>mv y.tab.c $@</td>
</tr>
<tr>
<td>.y-.ln</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.y</td>
</tr>
<tr>
<td></td>
<td>$(YACC.y) $*.y</td>
</tr>
<tr>
<td></td>
<td>$(LINT.c) -o $@ -i y.tab.c</td>
</tr>
<tr>
<td></td>
<td>$(RM) y.tab.c</td>
</tr>
<tr>
<td>.y-.o</td>
<td>$(GET) $(GFLAGS) -p $&lt; &gt; $*.y</td>
</tr>
<tr>
<td></td>
<td>$(YACC) $(YFLAGS) $*.y</td>
</tr>
<tr>
<td></td>
<td>$(CC) $(CFLAGS) -c y.tab.c</td>
</tr>
<tr>
<td></td>
<td>rm -f y.tab.c</td>
</tr>
</tbody>
</table>
make(1S)

<table>
<thead>
<tr>
<th>Implicit Rule Name</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mv y.tab.o $@</code></td>
<td></td>
</tr>
</tbody>
</table>

make reads in the standard set of implicit rules from the file `/usr/share/lib/make/make.rules`, unless `-r` is in effect, or there is a `make.rules` file in the local directory that does not include that file.

The Suffixes List

The suffixes list is given as the list of dependencies for the `.SUFFIXES:` special-function target. The default list is contained in the `SUFFIXES` macro (See Table of Predefined Macros for the standard list of suffixes). You can define additional `.SUFFIXES:` targets; a `.SUFFIXES` target with no dependencies clears the list of suffixes. Order is significant within the list; `make` selects a rule that corresponds to the target’s suffix and the first dependency-file suffix found in the list. To place suffixes at the head of the list, clear the list and replace it with the new suffixes, followed by the default list:

```make
.SUFFIXES:
.SUFFIXES: suffixes $(SUFFIXES)
```

A tilde (`~`) indicates that if a dependency file with the indicated suffix (minus the ~) is under SCCS its most recent version should be retrieved, if necessary, before the target is processed.

A target name of the form:

```make
lib (member ...)
```

refers to a member, or a space-separated list of members, in an ar(1) library.

The dependency of the library member on the corresponding file must be given as an explicit entry in the makefile. This can be handled by a pattern matching rule of the form:

```make
lib (%.s) : %.s
```

where `.s` is the suffix of the member; this suffix is typically `.o` for object libraries.

A target name of the form:

```make
lib ((symbol))
```

refers to the member of a randomized object library that defines the entry point named `symbol`.

Command Execution

Command lines are executed one at a time, each by its own process or shell. Shell commands, notably `cd`, are ineffectual across an unescaped `NEWLINE` in the makefile. A line is printed (after macro expansion) just before being executed. This is suppressed if it starts with a `@`, if there is a `.SILENT:` entry in the makefile, or if `make` is run with the `-s` option. Although the `-n` option specifies printing without execution, lines
containing the macro $\$(MAKE)\$ are executed regardless, and lines containing the special character are printed. The -t (touch) option updates the modification date of a file without executing any rules. This can be dangerous when sources are maintained by more than one person.

`make` invokes the shell with the -e (exit-on-errors) argument. Thus, with semicolon-separated command sequences, execution of the later commands depends on the success of the former. This behavior can be overridden by starting the command line with a `' -'`, or by writing a shell script that returns a non-zero status only as it finds appropriate.

To use the Bourne shell `if` control structure for branching, use a command line of the form:

```
if expression ;
 then command ;
 ;
else command ;
 ;
fi
```

Although composed of several input lines, the escaped `NEWLINE` characters insure that `make` treats them all as one (shell) command line.

To use the Bourne shell `for` control structure for loops, use a command line of the form:

```
for var in list ;
do command ;
 ;
done
```

To refer to a shell variable, use a double-dollar-sign (`$$`). This prevents expansion of the dollar-sign by `make`.

To incorporate the standard output of a shell command in a macro, use a definition of the form:

```
MACRO :sh =command
```

The command is executed only once, standard error output is discarded, and `NEWLINE` characters are replaced with `SPACES`. If the command has a non-zero exit status, `make` halts with an error.

To capture the output of a shell command in a macro reference, use a reference of the form:

```
$(MACRO :sh)
```

where `MACRO` is the name of a macro containing a valid Bourne shell command line. In this case, the command is executed whenever the reference is evaluated. As with shell command substitutions, the reference is replaced with the standard output of the command. If the command has a non-zero exit status, `make` halts with an error.
In contrast to commands in rules, the command is not subject for macro substitution; therefore, a dollar sign ($$) need not be replaced with a double dollar sign ($$$).

**Signals**

INT, SIGTERM, and QUIT signals received from the keyboard halt make and remove the target file being processed unless that target is in the dependency list for .PRECIOUS:

**EXAMPLES**

**EXAMPLE 1** Defining dependencies

This makefile says that `pgm` depends on two files `a.o` and `b.o`, and that they in turn depend on their corresponding source files `(a.c and b.c)` along with a common file `incl.h`:

```
pgm: a.o b.o
 $(LINK.c) -o $@ a.o b.o
a.o: incl.h a.c
 cc -o a.c
b.o: incl.h b.c
 cc -o b.c
```

**EXAMPLE 2** Using implicit rules

The following makefile uses implicit rules to express the same dependencies:

```
pgm: a.o b.o
 cc a.o b.o -o pgm
a.o b.o: incl.h
```

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `make`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

**KEEP_STATE**

This environment variable has the same effect as the .KEEP_STATE: special-function target. It enables command dependencies, hidden dependencies and writing of the state file.

**USE_SVR4_MAKE**

This environment variable causes `make` to invoke the generic System V version of `make` (/usr/ccs/lib/svr4.make). See `sysV-make(1)`.

**MAKEFLAGS**

This variable is interpreted as a character string representing a series of option characters to be used as the default options. The implementation will accept both of the following formats (but need not accept them when intermixed):

1. The characters are option letters without the leading hyphens or blank character separation used on a command line.

2. The characters are formatted in a manner similar to a portion of the `make` command line: options are preceded by hyphens and blank-character-separated. The `macro=name` macro definition
operands can also be included. The difference between the contents of MAKEFLAGS and the command line is that the contents of the variable will not be subjected to the word expansions (see wordexp(3C)) associated with parsing the command line values.

When the command-line options -f or -p are used, they will take effect regardless of whether they also appear in MAKEFLAGS. If they otherwise appear in MAKEFLAGS, the result is undefined.

The MAKEFLAGS variable will be accessed from the environment before the makefile is read. At that time, all of the options (except -f and -p) and command-line macros not already included in MAKEFLAGS are added to the MAKEFLAGS macro. The MAKEFLAGS macro will be passed into the environment as an environment variable for all child processes. If the MAKEFLAGS macro is subsequently set by the makefile, it replaces the MAKEFLAGS variable currently found in the environment.

PROJECTDIR

Provides a directory to be used to search for SCCS files not found in the current directory. In all of the following cases, the search for SCCS files is made in the directory SCCS in the identified directory. If the value of PROJECTDIR begins with a slash, it shall be considered an absolute pathname. Otherwise, the value of PROJECTDIR is treated as a user name and that user’s initial working directory shall be examined for a subdirectory src or source. If such a directory is found, it shall be used. Otherwise, the value is used as a relative pathname.

If PROJECTDIR is not set or has a null value, the search for SCCS files shall be made in the directory SCCS in the current directory. The setting of PROJECTDIR affects all files listed in the remainder of this utility description for files with a component named SCCS.

EXIT STATUS

When the -q option is specified, the make utility will exit with one of the following values:

0 Successful completion.
1 The target was not up-to-date.
>1 An error occurred.
When the `-q` option is not specified, the `make` utility will exit with one of the following values:

- **0**: Successful completion
- **>0**: An error occurred

### FILES

- **makefile**
- **Makefile**
  - current version(s) of make description file
- **s.makefile**
- **s.Makefile**
  - SCCS history files for the above makefile(s) in the current directory
- **SCCS/s.makefile**
- **SCCS/s.Makefile**
  - SCCS history files for the above makefile(s)
- **make.rules**
  - default file for user-defined targets, macros, and implicit rules
- **/usr/share/lib/make/make.rules**
  - makefile for standard implicit rules and macros (not read if `make.rules` is)
- **.make.state**
  - state file in the local directory

### ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNW-sprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

### SEE ALSO

- `ar(1)`, `arch(1)`, `c(1)`, `cpp(1)`, `lex(1)`, `mach(1)`, `sccs-get(1)`, `sh(1)`, `sysV-make(1)`, `yacc(1)`, `wordexp(3C)`, `passwd(4)`, `attributes(5)`, `environ(5)`, `POSIX.2(5)`, `standards(5)`

**Solaris Advanced User’s Guide**

### DIAGNOSTICS

Don’t know how to make target `target`

There is no makefile entry for `target`, and none of `make`’s implicit rules apply (there is no dependency file with a suffix in the suffixes list, or the target’s suffix is not in the list).
**target removed.**
make was interrupted while building target. Rather than leaving a partially-completed version that is newer than its dependencies, make removes the file named target.

**target not removed.**
make was interrupted while building target and target was not present in the directory.

**target could not be removed, reason**
make was interrupted while building target, which was not removed for the indicated reason.

Read of include file ‘file’ failed
The makefile indicated in an include directive was not found, or was inaccessible.

Loop detected when expanding macro value ‘macro’
A reference to the macro being defined was found in the definition.

Could not write state file ‘file’
You used the .KEEP_STATE: target, but do not have write permission on the state file.

*** Error code n
The previous shell command returned a nonzero error code.

*** signal message
The previous shell command was aborted due to a signal. If ‘- core dumped’ appears after the message, a core file was created.

Conditional macro conflict encountered
Displayed only when -d is in effect, this message indicates that two or more parallel targets currently being processed depend on a target which is built differently for each by virtue of conditional macros. Since the target cannot simultaneously satisfy both dependency relationships, it is conflicted.

**BUGS**
Some commands return nonzero status inappropriately; to overcome this difficulty, prefix the offending command line in the rule with a ‘-’.

Filenames with the characters ‘=’, ‘:’, or ‘@’, do not work.

You cannot build file.o from lib(file.o).

Options supplied by MAKEFLAGS should be reported for nested make commands. Use the -d option to find out what options the nested command picks up from MAKEFLAGS.

This version of make is incompatible in certain respects with previous versions:
- The -d option output is much briefer in this version. -dd now produces the equivalent voluminous output.
- make attempts to derive values for the dynamic macros ‘$*’, ‘$<’, and ‘$?’; while processing explicit targets. It uses the same method as for implicit rules; in some cases this can lead either to unexpected values, or to an empty value being assigned. (Actually, this was true for earlier versions as well, even though the documentation stated otherwise.)

- make no longer searches for SCCS history ”(s.)” files.

- Suffix replacement in macro references are now applied after the macro is expanded.

There is no guarantee that makefiles created for this version of make will work with earlier versions.

If there is no make.rules file in the current directory, and the file /usr/share/lib/make/make.rules is missing, make stops before processing any targets. To force make to run anyway, create an empty make.rules file in the current directory.

Once a dependency is made, make assumes the dependency file is present for the remainder of the run. If a rule subsequently removes that file and future targets depend on its existence, unexpected errors may result.

When hidden dependency checking is in effect, the $? macro’s value includes the names of hidden dependencies. This can lead to improper filename arguments to commands when $? is used in a rule.

Pattern replacement macro references cannot be used in the dependency list of a pattern matching rule.

Unlike previous versions, this version of make strips a leading ‘./’ from the value of the ‘$@’ dynamic macro.

With automatic SCCS retrieval, this version of make does not support tilde suffix rules.

The only dynamic macro whose value is strictly determined when used in a dependency list is $@ (takes the form ‘$$@’).

make invokes the shell with the -e argument. This cannot be inferred from the syntax of the rule alone.
# NAME
man – find and display reference manual pages

# SYNOPSIS
```
man [-] [-adFlrt] [-M path] [-T macro-package] [-s section] name...
man [-M path] -k keyword...
man [-M path] -f file...
```

# DESCRIPTION
The `man` command displays information from the reference manuals. It displays complete manual pages that you select by `name`, or one-line summaries selected either by `keyword` (`-k`), or by the name of an associated file (`-f`). If no manual page is located, `man` prints an error message.

Reference Manual pages are marked up with either `nroff` (see `nroff(1)`) or `SGML` (Standard Generalized Markup Language) tags (see `sgml(5)`). The `man` command recognizes the type of markup and processes the file accordingly. The various source files are kept in separate directories depending on the type of markup.

The online Reference Manual page directories are conventionally located in `/usr/share/man`. The `nroff` sources are located in the `/usr/share/man/man*` directories. The `SGML` sources are located in the `/usr/share/man/sman*` directories. Each directory corresponds to a section of the manual. Since these directories are optionally installed, they may not reside on your host. You may have to mount `/usr/share/man` from a host on which they do reside.

If there are preformatted, up-to-date versions in the corresponding `cat*` or `fmt*` directories, `man` simply displays or prints those versions. If the preformatted version of interest is out of date or missing, `man` reformats it prior to display and will store the preformatted version if `cat*` or `fmt*` is writable. The `windex` database is not updated.

See `catman(1M)`. If directories for the preformatted versions are not provided, `man` reformats a page whenever it is requested. `man` uses a temporary file to store the formatted text during display.

If the standard output is not a terminal, or if the `-' flag is given, `man` pipes its output through `cat(1)`. Otherwise, `man` pipes its output through `more(1)` to handle paging and underlining on the screen.

# OPTIONS
The following options are supported:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a</code></td>
<td>Shows all manual pages matching <code>name</code> within the <code>MANPATH</code> search path. Manual pages are displayed in the order found.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>Debugs. Displays what a section-specifier evaluates to, method used for searching, and paths searched by <code>man</code>.</td>
</tr>
<tr>
<td><code>-f file ...</code></td>
<td><code>man</code> attempts to locate manual pages related to any of the given files. It strips the leading path name components from each <code>file</code>, and then prints one-line summaries containing the resulting basename or names. This option also uses the <code>windex</code> database.</td>
</tr>
<tr>
<td><code>-F</code></td>
<td>Forces <code>man</code> to search all directories specified by <code>MANPATH</code> or the <code>man.cf</code> file, rather than using the <code>windex</code> lookup database.</td>
</tr>
</tbody>
</table>
The option is useful if the database is not up to date and it has been made the default behavior of the man command. The option therefore does not have to be invoked and is documented here for reference only.

-\texttt{k \texttt{keyword} ...} Prints out one-line summaries from the \texttt{windex} database (table of contents) that contain any of the given \texttt{keywords}. The \texttt{windex} database is created using \texttt{catman(1M)}.

-\texttt{l} Lists all manual pages found matching \texttt{name} within the search path.

-\texttt{-M \texttt{path}} Specifies an alternate search path for manual pages. \texttt{path} is a colon-separated list of directories that contain manual page directory subtrees. For example, if \texttt{path} is \\
\texttt{/usr/share/man:/usr/local/man}, \texttt{man} searches for \texttt{name} in the standard location, and then \texttt{/usr/local/man}. When used with the -\texttt{k} or -\texttt{f} options, the -\texttt{M} option must appear first. Each directory in the \texttt{path} is assumed to contain subdirectories of the form \texttt{man*} or \texttt{sman*}, one for each section. This option overrides the MANPATH environment variable.

-\texttt{-r} Reformats the manual page, but does not display it. This replaces the \texttt{man -t name} combination.

-\texttt{-s \texttt{section} ...} Specifies sections of the manual for \texttt{man} to search. The directories searched for \texttt{name} are limited to those specified by \texttt{section}. \texttt{section} can be a numerical digit, perhaps followed by one or more letters to match the desired section of the manual, for example, “3libucb”. Also, \texttt{section} can be a word, for example, \texttt{local,new,old,public}. \texttt{section} can also be a letter. To specify multiple sections, separate each section with a comma. This option overrides the MANPATH environment variable and the \texttt{man.cf} file. See \texttt{Search Path} below for an explanation of how \texttt{man} conducts its search.

-\texttt{-t \texttt{man}} man arranges for the specified manual pages to be \texttt{troff}ed to a suitable raster output device (see \texttt{troff(1)}). If both the - and -\texttt{t} flags are given, \texttt{man} updates the \texttt{troff}ed versions of each named \texttt{name} (if necessary), but does not display them.

-\texttt{-T \texttt{macro-package}} Formats manual pages using \texttt{macro-package} rather than the standard -\texttt{man} macros defined in \texttt{/usr/share/lib/tmac/an}. See \texttt{Search Path} under \texttt{USAGE} for a complete explanation of the default search path order.

\textbf{OPERANDS} The following operand is supported:

\texttt{name} A keyword or the name of a standard utility.

\textbf{USAGE} The usage of \texttt{man} is described below:
Entries in the reference manuals are organized into sections. A section name consists of a major section name, typically a single digit, optionally followed by a subsection name, typically one or more letters. An unadorned major section name, for example, "9", does not act as an abbreviation for the subsections of that name, such as "9e", "9f", or "9s". That is, each subsection must be searched separately by `man -s`. Each section contains descriptions apropos to a particular reference category, with subsections refining these distinctions. See the `intro` manual pages for an explanation of the classification used in this release.

Before searching for a given name, `man` constructs a list of candidate directories and sections. `man` searches for name in the directories specified by the `MANPATH` environment variable. If this variable is not set, `/usr/share/man` is searched by default.

Within the manual page directories, `man` confines its search to the sections specified in the following order:

- sections specified on the command line with the `-s` option
- sections embedded in the `MANPATH` environment variable
- sections specified in the `man.cf` file for each directory specified in the `MANPATH` environment variable

If none of the above exist, `man` searches each directory in the manual page path, and displays the first matching manual page found.

The `man.cf` file has the following format:

```
MANSECTIONS=section[,section]...
```

Lines beginning with `#` and blank lines are considered comments, and are ignored. Each directory specified in `MANPATH` can contain a manual page configuration file, specifying the default search order for that directory.

Manual pages are marked up in `nroff(1)` or `sgml(5)`. Nroff manual pages are processed by `nroff(1)` or `troff(1)` with the `-man` macro package. Please refer to `man(5)` for information on macro usage. SGML—tagged manual pages are processed by an SGML parser and passed to the formatter.

When formatting an nroff manual page, `man` examines the first line to determine whether it requires special processing. If the first line is a string of the form:

```
```

where `X` is separated from the ‘”’ by a single SPACE and consists of any combination of characters in the following list, `man` pipes its input to `troff(1)` or `nroff(1)` through the corresponding preprocessors.

```
e eqn(1), or neqn for nroff
r refer(1)
```
t tbl(1)

v vgrind(1)

If `eqn` or `neqn` is invoked, it will automatically read the file `/usr/pub/eqnchar` (see `eqnchar(5)`). If `nroff(1)` is invoked, `col(1)` is automatically used.

**Referring to Other nroff Manual Pages**

If the first line of the nroff manual page is a reference to another manual page entry fitting the pattern:

```
.so man*/sourcefile
```

man processes the indicated file in place of the current one. The reference must be expressed as a path name relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with `.so`, man ignores it; `troff(1)` or `nroff(1)` processes the request in the usual manner.

**Processing SGML Manual Pages**

Manual pages are identified as being marked up in SGML by the presence of the string `<!DOCTYPE`. If the file also contains the string `SHADOW_PAGE`, the file refers to another manual page for the content. The reference is made with a file entity reference to the manual page that contains the text. This is similar to the `.so` mechanism used in the nroff formatted man pages.

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of man: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

- **MANPATH** A colon-separated list of directories; each directory can be followed by a comma-separated list of sections. If set, its value overrides `/usr/share/man` as the default directory search path, and the `man.cf` file as the default section search path. The `-M` and `-s` flags, in turn, override these values.

- **PAGER** A program to use for interactively delivering man’s output to the screen. If not set, ‘more -s’ is used. See `more(1)`.

- **TCAT** The name of the program to use to display troffed manual pages.

- **TROFF** The name of the formatter to use when the `-t` flag is given. If not set, `troff(1)` is used.

**EXIT STATUS**

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

**FILES**

- `/usr/share/man` Root of the standard manual page directory subtree
- `/usr/share/man/man?/*` Unformatted nroff manual entries
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see NOTES)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

apropos(1), cat(1), col(1), eqn(1), more(1), nroff(1), refer(1), tbl(1), troff(1), vgrind(1), whatis(1), catman(1M), attributes(5), environ(5), eqnchar(5), man(5), sgml(5), standards(5)

NOTES

The -f and -k options use the windex database, which is created by catman(1M).

The man command is CSI-capable. However, some utilities invoked by the man command, namely, troff, eqn, neqn, refer, tbl, and vgrind, are not verified to be CSI-capable. Because of this, the man command with the -t option may not handle non-EUC data. Also, using the man command to display man pages that require special processing through eqn, neqn, refer, tbl, or vgrind may not be CSI-capable.
The manual is supposed to be reproducible either on a phototypesetter or on an ASCII terminal. However, on a terminal some information (indicated by font changes, for instance) is lost.

Some dumb terminals cannot process the vertical motions produced by the e (see eqn(1)) preprocessing flag. To prevent garbled output on these terminals, when you use e, also use t, to invoke col(1) implicitly. This workaround has the disadvantage of eliminating superscripts and subscripts, even on those terminals that can display them. Control-q will clear a terminal that gets confused by eqn(1) output.
mconnect – connect to SMTP mail server socket

**SYNOPSIS**

```
mconnect [-p port] [-r] [hostname]
```

**DESCRIPTION**

The `mconnect` utility opens a connection to the mail server on a given host, so that it can be tested independently of all other mail software. If no host is given, the connection is made to the local host. Servers expect to speak the Simple Mail Transfer Protocol (SMTP) on this connection. Exit by typing the `quit` command. Typing `EOF` sends an end of file to the server. An interrupt closes the connection immediately and exits.

**OPTIONS**

The following options are supported:

- `-p port` Specify the port number instead of the default SMTP port (number 25) as the next argument.

- `-r` "Raw" mode: disable the default line buffering and input handling. This produces an effect similar to `telnet(1)` to port number 25.

**OPERANDS**

The following operand is supported:

- `hostname` The name of a given host.

**FILES**

`/etc/mail/sendmail.hf` help file for SMTP commands

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

telnet(1), sendmail(1M), attributes(5), ip6(7P)

mcs(1)

NAME  mcs – manipulate the comment section of an object file

SYNOPSIS  /usr/ccs/bin/mcs { -c | -d | -p | -V | -a string | -n name } file...

DESCRIPTION  The mcs command is used to manipulate a section, by default the .comment section, in an ELF object file. It is used to add to, delete, print, and compress the contents of a section in an ELF object file, and print only the contents of a section in a COFF object file. mcs cannot add, delete, or compress the contents of a section that is contained within a segment.

If the input file is an archive (see ar(3HEAD)), the archive is treated as a set of individual files. For example, if the -a option is specified, the string is appended to the comment section of each ELF object file in the archive; if the archive member is not an ELF object file, then it is left unchanged.

mcs must be given one or more of the options described below. It applies, in order, each of the specified options to each file.

OPTIONS  The following options are supported:

- a string  Appends string to the comment section of the ELF object files. If string contains embedded blanks, it must be enclosed in quotation marks.

- c  Compresses the contents of the comment section of the ELF object files. All duplicate entries are removed. The ordering of the remaining entries is not disturbed.

- d  Deletes the contents of the comment section from the ELF object files. The section header for the comment section is also removed.

- n name  Specifies the name of the comment section to access if other than .comment. By default, mcs deals with the section named .comment. This option can be used to specify another section. mcs can take multiple -n options to allow for specification of multiple section comments.

- p  Prints the contents of the comment section on the standard output. Each section printed is tagged by the name of the file from which it was extracted, using the format file [member_name] : for archive files and file : for other files.

- V  Prints on standard error the version number of mcs.

EXAMPLES  EXAMPLE 1 Printing a file’s comment section

The following entry

element$ /usr/ccs/bin/mcs -p elf.file prints the comment section of the file elf.file.
EXAMPLE 2 Appending a string to a comment section

The following entry

```bash
example$ /usr/ccs/bin/mcs -a xyz elf.file appends string xyz to elf.file's comment section.
```

FILES

```
/tmp/mcs* temporary files
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>
```

SEE ALSO

ar(1), as(1), ld(1), elf(3ELF), tmpnam(3C), a.out(4), ar(3HEAD), attributes(5)

NOTES

When `mcs` deletes a section using the `-d` option, it tries to bind together sections of type SHT_REL and target sections pointed to by the `sh_info` section header field. If one is to be deleted, `mcs` attempts to delete the other of the pair.
mdb – modular debugger


mdb is an extensible utility for low-level debugging and editing of the live operating system, operating system crash dumps, user processes, user process core dumps, and object files. For a more detailed description of mdb features, refer to the manual, Solaris Modular Debugger Guide.

Debugging is the process of analyzing the execution and state of a software program in order to remove defects. Traditional debugging tools provide facilities for execution control so that programmers can re-execute programs in a controlled environment and display the current state of program data or evaluate expressions in the source language used to develop the program.

Unfortunately, these techniques are often inappropriate for debugging complex software systems such as an operating system, where bugs may not be reproducible and program state is massive and distributed, for programs that are highly optimized, have had their debug information removed, or are themselves low-level debugging tools, or for customer situations where the developer can only access post-mortem information.

mdb provides a completely customizable environment for debugging these programs and scenarios, including a dynamic module facility that programmers can use to implement their own debugging commands to perform program-specific analysis. Each mdb module can be used to examine the program in several different contexts, including live and post-mortem.

The target is the program being inspected by the debugger. mdb currently provides support for the following types of targets: user processes, user process core files, the live operating system (via /dev/kmem and /dev/ksyms), operating system crash dumps, user process images recorded inside an operating system crash dump, ELF object files, and raw binary files. Each target exports a standard set of properties, including one or more address spaces, one or more symbol tables, a set of load objects, and a set of threads that can be examined using the debugger commands described below.

A debugger command, or dcmd (pronounced dee-command) in mdb terminology, is a routine in the debugger that can access any of the properties of the current target. mdb parses commands from standard input, and then executes the corresponding dcmds. Each dcmd can also accept a list of string or numerical arguments, as shown in the syntax description below. mdb contains a set of built-in dcmds, described below, that are always available. You can also extend the capabilities of mdb itself by writing your own dcmds, as described in the Solaris Modular Debugger Guide.
A walker is a set of routines that describe how to walk, or iterate, through the elements of a particular program data structure. A walker encapsulates the data structure’s implementation from dcmds and from mdb itself. You can use walkers interactively, or use them as a primitive to build other dcmds or walkers. As with dcmds, you can extend mdb by implementing your own walkers as part of a debugger module.

A debugger module, or dmod (pronounced dee-mod), is a dynamically loaded library containing a set of dcmds and walkers. During initialization, mdb will attempt to load dmods corresponding to the load objects present in the target. You can subsequently load or unload dmods at any time while running mdb. mdb ships with a set of standard dmods for debugging the Solaris kernel. The Solaris Modular Debugger Guide contains more information on developing your own debugger modules.

A macro file is a text file containing a set of commands to execute. Macro files are typically used to automate the process of displaying a simple data structure. mdb provides complete backward compatibility for the execution of macro files written for adb(1), and the Solaris installation includes a set of macro files for debugging the Solaris kernel that may be used with either tool.

The debugger processes commands from standard input. If standard input is a terminal, mdb provides terminal editing capabilities. mdb can also process commands from macro files and from dcmd pipelines, described below. The language syntax is designed around the concept of computing the value of an expression (typically a memory address in the target), and then applying a dcmd to that address. The current address location is referred to as dot, and its value is referenced using ".".

A metacharacter is one of the following characters:

```
[] | ! / \ ? = > $; ;
NEWLINE SPACE TAB
```

A blank is a TAB or a SPACE. A word is a sequence of characters separated by one or more non-quoted metacharacters. Some of the metacharacters only function as delimiters in certain contexts, as described below. An identifier is a sequence of letters, digits, underscores, periods, or backquotes beginning with a letter, underscore, or period. Identifiers are used as the names of symbols, variables, dcmds, and walkers. Commands are delimited by a NEWLINE or semicolon (;).

A dcmd is denoted by one of the following words or metacharacters:

```
/ \ ? = > $ character : character :: identifier
```

dcmds named by metacharacters or prefixed by a single $ or : are provided as built-in operators, and implement complete compatibility with the command set of the legacy adb(1) utility. Once a dcmd has been parsed, the /, \, ?, =, >, $, and : characters are no longer recognized as metacharacters until the termination of the argument list.
A simple-command is a dcmd followed by a sequence of zero or more blank-separated words. The words are passed as arguments to the invoked dcmd, except as specified under Quoting and Arithmetic Expansion below. Each dcmd returns an exit status that indicates it was either successful, failed, or was invoked with invalid arguments.

A pipeline is a sequence of one or more simple commands separated by `. Unlike the shell, dcmds in mdb pipelines are not executed as separate processes. After the pipeline has been parsed, each dcmd is invoked in order from left to right. Each dcmd’s output is processed and stored as described under dcmd Pipelines below. Once the left-hand dcmd is complete, its processed output is used as input for the next dcmd in the pipeline. If any dcmd does not return a successful exit status, the pipeline is aborted.

An expression is a sequence of words that is evaluated to compute a 64-bit unsigned integer value. The words are evaluated using the rules described under Arithmetic Expansion below.

### Commands

A command is one of the following:

**pipeline [! word ...] [ ; ]**

A simple-command or pipeline can be optionally suffixed with the `!` character, indicating that the debugger should open a `pipe(2)` and send the standard output of the last dcmd in the `mdb` pipeline to an external process created by executing `$SHELL -c` followed by the string formed by concatenating the words after the `!` character. For more details, refer to Shell Escapes below.

**expression pipeline [! word ...] [ ; ]**

A simple-command or pipeline can be prefixed with an expression. Before execution of the pipeline, the value of dot (the variable denoted by `'.'`) is set to the value of the expression.

**expression , expression pipeline [! word ...] [ ; ]**

A simple-command or pipeline can be prefixed with two expressions. The first is evaluated to determine the new value of dot, and the second is evaluated to determine a repeat count for the first dcmd in the pipeline. This dcmd will be executed `count` times before the next dcmd in the pipeline is executed. The repeat count only applies to the first dcmd in the pipeline.

**expression , expression pipeline [! word ...] [ ; ]**

If the initial expression is omitted, dot is not modified but the first dcmd in the pipeline will be repeated according to the value of the expression.

**expression [! word ...] [ ; ]**

A command can consist only of an arithmetic expression. The expression is evaluated and the dot variable is set to its value, and then the previous dcmd and arguments are executed using the new value of dot.
A command can consist only of a dot expression and repeat count expression. After dot is set to the value of the first expression, the previous dcmd and arguments are repeatedly executed the number of times specified by the value of the second expression.

If the initial expression is omitted, dot is not modified but the previous dcmd and arguments are repeatedly executed the number of times specified by the value of the count expression.

If the command begins with the `!` character, no dcmds are executed and the debugger simply executes `$SHELL` followed by the string formed by concatenating the words after the `!` character.

A word beginning with `//` causes that word and all the subsequent characters up to a newline to be ignored.

Arithmetic expansion is performed when an `mdb` command is preceded by an optional expression representing a start address, or a start address and a repeat count.

Arithmetic expansion can also be performed to compute a numerical argument for a dcmd. An arithmetic expression can appear in an argument list enclosed in square brackets preceded by a dollar sign (`$[ expression ]`), and will be replaced by the value of the expression.

Expressions may contain any of the following special words:

- **integer**
  - The specified integer value. Integer values may be prefixed with `0i` or `0I` to indicate binary values, `0o` or `0O` to indicate octal values, `0t` or `0T` to indicate decimal values, and `0x` or `0X` to indicate hexadecimal values (the default).

- `0[i|t][0-9]+.[0-9]+`
  - The specified decimal floating point value, converted to its IEEE double-precision floating point representation.

- `'cccccccc'`
  - The integer value computed by converting each character to a byte equal to its ASCII value. Up to eight characters may be specified in a character constant. Characters are packed into the integer in reverse order (right-to-left) beginning at the least significant byte.

- `<identifier>`
  - The value of the variable named by `identifier`.

- `identifier`
  - The value of the symbol named by `identifier`.

- `(expression)`
  - The value of `expression`.

- `. `
  - The value of dot.

- `&`
  - The most recent value of dot used to execute a dcmd.
+ The value of dot incremented by the current increment.
^ The value of dot decremented by the current increment.

The increment is a global variable that stores the total bytes read by the last formatting dcmd. For more information on the increment, refer to the discussion of Formatting dcmds below.

Unary operators are right associative and have higher precedence than binary operators. The unary operators are:

#expression Logical negation.
~expression Bitwise complement.
-expression Integer negation.
%expression The value of a pointer-sized quantity at the object file location corresponding to virtual address expression in the target’s virtual address space.
%/[csil]/expression The value of a char, short, int, or long-sized quantity at the object file location corresponding to virtual address expression in the target’s virtual address space.
%/[1248]/expression The value of a one, two, four, or eight-byte quantity at the object file location corresponding to virtual address expression in the target’s virtual address space.
*expression The value of a pointer-sized quantity at virtual address expression in the target’s virtual address space.
*/[csil]/expression The value of a char, short, int, or long-sized quantity at virtual address expression in the target’s virtual address space.
*/[1248]/expression The value of a one, two, four, or eight-byte quantity at virtual address expression in the target’s virtual address space.

Binary operators are left associative and have lower precedence than unary operators. The binary operators, in order of precedence from highest to lowest, are:

* Integer multiplication.
% Integer division.
# Left-hand side rounded up to next multiple of right-hand side.
+ Integer addition.
- Integer subtraction.
<< Bitwise shift left.
Bitwise shift right.

Logical equality.

Logical inequality.

Bitwise AND.

Bitwise exclusive OR.

Bitwise inclusive OR.

Quoting
Each metacharacter described above (see Syntax) terminates a word unless quoted. Characters can be quoted (forcing mdb to interpret each character as itself without any special significance) by enclosing them in a pair of single (’) or double (”) quote marks. A single quote cannot appear within single quotes. Inside double quotes, mdb recognizes the C programming language character escape sequences.

Shell Escapes
The ! character can be used to create a pipeline between an mdb command and the user’s shell. If the $SHELL environment variable is set, mdb will fork and exec this program for shell escapes; otherwise /bin/sh is used. The shell is invoked with the -c option followed by a string formed by concatenating the words after the ! character. The ! character takes precedence over all other metacharacters, except semicolon (;) and NEWLINE. Once a shell escape is detected, the remaining characters up to the next semicolon or NEWLINE are passed as is to the shell. The output of shell commands may not be piped to mdb dcmands. Commands executed by a shell escape have their output sent directly to the terminal, not to mdb.

Variables
A variable is a variable name, a corresponding integer value, and a set of attributes. A variable name is a sequence of letters, digits, underscores, or periods. A variable can be assigned a value using the > dcmd or ::typeset dcmd, and its attributes can be manipulated using the ::typeset dcmd. Each variable’s value is represented as a 64-bit unsigned integer. A variable may have one or more of the following attributes: read-only (cannot be modified by the user), persistent (cannot be unset by the user), and tagged (user-defined indicator).

The following variables are defined as persistent:

0 The most recent value printed using the /, \, ?, or = dcmd.

9 The most recent count used with the $< dcmd.

b The virtual address of the base of the data section.

d The size of the data section in bytes.

e The virtual address of the entry point.

m The initial bytes (magic number) of the target’s primary object file, or zero if no object file has been read yet.

t The size of the text section in bytes.
hits The count of the number of times the matched software event specifier has been matched. See Event Callbacks, below.

thread The thread identifier of the current representative thread. The value of the identifier depends on the threading model used by the current target. See Thread Support, below.

In addition, the mdb kernel and process targets will export the current values of the representative thread’s register set as named variables. The names of these variables will depend on the target’s platform and instruction set architecture.

As explained in the Syntax description above, a symbol identifier present in an expression context evaluates to the value of this symbol. The value typically denotes the virtual address of the storage associated with the symbol in the target’s virtual address space. A target may support multiple symbol tables including, but not limited to, a primary executable symbol table, a primary dynamic symbol table, a run-time link-editor symbol table, and standard and dynamic symbol tables for each of a number of load objects (such as shared libraries in a user process, or kernel modules in the Solaris kernel). The target typically searches the primary executable’s symbol tables first, and then one or more of the other symbol tables. Notice that ELF symbol tables only contain entries for external, global, and static symbols; automatic symbols do not appear in the symbol tables processed by mdb.

Additionally, mdb provides a private user-defined symbol table that is searched prior to any of the target symbol tables. The private symbol table is initially empty, and can be manipulated using the ::nmadd and ::nmdel dcmds. The ::nm -P option can be used to display the contents of the private symbol table. The private symbol table allows the user to create symbol definitions for program functions or data that were either missing from the original program or stripped out. These definitions are then used whenever mdb converts a symbolic name to an address, or an address to the nearest symbol.

As targets contain multiple symbol tables, and each symbol table may include symbols from multiple object files, different symbols with the same name may exist. mdb uses the backquote ('') character as a symbol name scoping operator to allow the programmer to obtain the value of the desired symbol in this situation. The programmer can specify the scope used to resolve a symbol name as either: object ‘name’, or file ‘name’, or object ‘file’ name. The object identifier refers to the name of a load object. The file identifier refers to the basename of a source file that has a symbol of type STT_FILE in the specified object’s symbol table. The object identifier’s interpretation depends on the target type.

The mdb kernel target expects object to specify the basename of a loaded kernel module. For example, the symbol name

specfs’_init

evaluates to the value of the _init symbol in the specfs kernel module.
The `mdb` process target expects `object` to specify the name of the executable or of a loaded shared library. It may take any of the following forms:

1. An exact match (that is, a full pathname): `/usr/lib/libc.so.1`
2. An exact basename match: `libc.so.1`
3. An initial basename match up to a "." suffix: `libc.so` or `libc`
4. The literal string `a.out` is accepted as an alias for the executable.

The process target will also accept any of the four forms described above preceded by an optional link-map id (lmid). The lmid prefix is specified by an initial "LM" followed by the link-map id in hexadecimal followed by an additional backquote. For example, the symbol name

```
LM0\'libc.so.1\'\'_init
```

will evaluate to the value of the `_init` symbol in the `libc.so.1` library that is loaded on link-map 0 (`LM_ID_BASE`). The link-map specifier may be necessary to resolve symbol naming conflicts in the event that the same library is loaded on more than one link map. For more information on link maps, refer to the Linker and Libraries Guide and `dlopen(3DL)`. Link-map identifiers will be displayed when symbols are printed according to the setting of the `showlmid` option, as described under OPTIONS, below.

In the case of a naming conflict between symbols and hexadecimal integer values, `mdb` will attempt to evaluate an ambiguous token as a symbol first, before evaluating it as an integer value. For example, the token `f` may either refer to the decimal integer value `15` specified in hexadecimal (the default base), or to a global variable named `f` in the target’s symbol table. If a symbol with an ambiguous name is present, the integer value can be specified by using an explicit `0x` or `0X` prefix.

As described earlier, each `mdb` dmod provides a set of dcmds and walkers. dcmds and walkers are tracked in two distinct, global namespaces. `mdb` also keeps track of a dcmd and walker namespace associated with each dmod. Identically named dcmds or walkers within a given dmod are not allowed: a dmod with this type of naming conflict will fail to load. Name conflicts between dcmds or walkers from different dmods are allowed in the global namespace. In the case of a conflict, the first dcmd or walker with that particular name to be loaded is given precedence in the global namespace. Alternate definitions are kept in a list in load order. The backquote character (`'`) may be used in a dcmd or walker name as a scoping operator to select an alternate definition. For example, if dmods `m1` and `m2` each provide a dcmd `d`, and `m1` is loaded prior to `m2`, then:

```
::d Executes m1's definition of d.
::m1 'd Executes m1's definition of d.
::m2 'd Executes m2's definition of d.
```
If module m1 were now unloaded, the next dcmd on the global definition list (m2 'd) would be promoted to global visibility. The current definition of a dcmd or walker can be determined using the ::which dcmd, described below. The global definition list can be displayed using the ::which -v option.

**dcmd Pipelines**

dcmds can be composed into a pipeline using the | operator. The purpose of a pipeline is to pass a list of values, typically virtual addresses, from one dcmd or walker to another. Pipeline stages might be used to map a pointer from one type of data structure to a pointer to a corresponding data structure, to sort a list of addresses, or to select the addresses of structures with certain properties.

mdb executes each dcmd in the pipeline in order from left to right. The leftmost dcmd is executed using the current value of dot, or using the value specified by an explicit expression at the start of the command. When a | operator is encountered, mdb creates a pipe (a shared buffer) between the output of the dcmd to its left and the mdb parser, and an empty list of values. As the dcmd executes, its standard output is placed in the pipe and then consumed and evaluated by the parser, as if mdb were reading this data from standard input. Each line must consist of an arithmetic expression terminated by a NEWLINE or semicolon (;). The value of the expression is appended to the list of values associated with the pipe. If a syntax error is detected, the pipeline is aborted.

When the dcmd to the left of a | operator completes, the list of values associated with the pipe is then used to invoke the dcmd to the right of the | operator. For each value in the list, dot is set to this value and the right-hand dcmd is executed. Only the rightmost dcmd in the pipeline has its output printed to standard output. If any dcmd in the pipeline produces output to standard error, these messages are printed directly to standard error and are not processed as part of the pipeline.

**Signal Handling**

The debugger ignores the PIPE and QUIT signals. The INT signal aborts the command that is currently executing. The debugger intercepts and provides special handling for the ILL, TRAP, EMT, FPE, BUS, and SEGV signals. If any of these signals are generated asynchronously (that is, delivered from another process using kill(2)), mdb will restore the signal to its default disposition and dump core. However, if any of these signals are generated synchronously by the debugger process itself and a dcmd from an externally loaded dmod is currently executing, and standard input is a terminal, mdb will provide a menu of choices allowing the user to force a core dump, quit without producing a core dump, stop for attach by a debugger, or attempt to resume. The resume option will abort all active commands and unload the dmod whose dcmd was active at the time the fault occurred. It can then be subsequently re-loaded by the user. The resume option provides limited protection against buggy dcems. Refer to WARNINGS, Use of the Error Recovery Mechanism, below for information about the risks associated with the resume option.

**Command Re-entry**

The text of the last HISTSIZE (default 128) commands entered from a terminal device are saved in memory. The in-line editing facility, described next, provides key mappings for searching and fetching elements from the history list.
In-line Editing

If standard input is a terminal device, mdb provides some simple emacs-style facilities for editing the command line. The search, previous, and next commands in edit mode provide access to the history list. Only strings, not patterns, are matched when searching. In the table below, the notation for control characters is caret (^) followed by a character shown in upper case. The notation for escape sequences is M- followed by a character. For example, M-f (pronounced meta-eff) is entered by depressing ESC followed by ‘f’, or by depressing Meta followed by ‘f’ on keyboards that support a Meta key. A command line is committed and executed using RETURN or NEWLINE. The edit commands are:

- ^F Move cursor forward (right) one character.
- M-f Move cursor forward one word.
- ^B Move cursor backward (left) one character.
- M-b Move cursor backward one word.
- ^A Move cursor to start of line.
- ^E Move cursor to end of line.
- ^D Delete current character, if the current line is not empty. If the current line is empty, ^D denotes EOF and the debugger will exit.
- M-^H (Meta-backspace) Delete previous word.
- ^K Delete from the cursor to the end of the line.
- ^L Clear the screen and reprint the current line.
- ^T Transpose current character with next character.
- ^N Fetch the next command from the history. Each time ^N is entered, the next command forward in time is retrieved.
- ^P Fetch the previous command from the history. Each time ^P is entered, the next command backward in time is retrieved.
- ^R[string] Search backward in the history for a previous command line containing string. The string should be terminated by a RETURN or NEWLINE. If string is omitted, the previous history element containing the most recent string is retrieved.

The editing mode also interprets the following user-defined sequences as editing commands. User defined sequences can be read or modified using the stty(1) command.

- erase User defined erase character (usually ^H or ^?). Delete previous character.
- intr User defined interrupt character (usually ^C). Abort the current command and print a new prompt.
kill User defined kill character (usually \^U). Kill the entire current command line.

quit User defined quit character (usually \^\). Quit the debugger.

suspend User defined suspend character (usually \^Z). Suspend the debugger.

werase User defined word erase character (usually \^W). Erase the preceding word.

On keyboards that support an extended keypad with arrow keys, mdb will interpret these keystrokes as editing commands:

up-arrow Fetch the previous command from the history (same as \^P).

down-arrow Fetch the next command from the history (same as \^N).

left-arrow Move cursor backward one character (same as \^B).

right-arrow Move cursor forward one character (same as \^F).

Output Pager mdb provides a built-in output pager. The output pager is enabled if the debugger’s standard output is a terminal device. Each time a command is executed, mdb will pause after one screenful of output is produced and will display a pager prompt:

>> More [<space>, <cr>, q, n, c, a] ?

The following key sequences are recognized by the pager:

SPACE Display the next screenful of output.

a, A Abort the current top-level command and return to the prompt.

c, C Continue displaying output without pausing at each screenful until the current top-level command is complete.

n, N, NEWLINE, RETURN Display the next line of output.

q, Q, \^C, \^\ Quit (abort) the current dcmd only.

Formatting dcmds The /, \, ?, and = metacharacters are used to denote the special output formatting dcmds. Each of these dcmds accepts an argument list consisting of one or more format characters, repeat counts, or quoted strings. A format character is one of the ASCII characters shown in the table below. Format characters are used to read and format data from the target. A repeat count is a positive integer preceding the format character that is always interpreted in base 10 (decimal). A repeat count may also be specified as an expression enclosed in square brackets preceded by a dollar sign (\$[ ]). A string argument must be enclosed in double-quotes (" "). No blanks are necessary between format arguments.

The formatting dcmds are:
Display data from the target’s virtual address space starting at the virtual address specified by dot.

\ Display data from the target’s physical address space starting at the physical address specified by dot.

? Display data from the target’s primary object file starting at the object file location corresponding to the virtual address specified by dot.

= Display the value of dot itself in each of the specified data formats. The = dcmd is therefore useful for converting between bases and performing arithmetic.

In addition to dot, mdb keeps track of another global value called the increment. The increment represents the distance between dot and the address following all the data read by the last formatting dcmd. For example, if a formatting dcmd is executed with dot equal to address A, and displays a 4-byte integer, then after this dcmd completes, dot is still A, but the increment is set to 4. The + character (described under Arithmetic Expansion above) would now evaluate to the value A + 4, and could be used to reset dot to the address of the next data object for a subsequent dcmd.

Most format characters increase the value of the increment by the number of bytes corresponding to the size of the data format, shown in the table. The table of format characters can be displayed from within mdb using the ::formats dcmd. The format characters are:

+ increment dot by the count (variable size)
- decrement dot by the count (variable size)
B hexadecimal int (1 byte)
C character using C character notation (1 byte)
D decimal signed int (4 bytes)
E decimal unsigned long long (8 bytes)
F double (8 bytes)
G octal unsigned long long (8 bytes)
H swap bytes and shorts (4 bytes)
I address and disassembled instruction (variable size)
J hexadecimal long long (8 bytes)
K hexadecimal uintptr_t (4 or 8 bytes)
N newline
O octal unsigned int (4 bytes)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>symbol (4 or 8 bytes)</td>
</tr>
<tr>
<td>Q</td>
<td>octal signed int (4 bytes)</td>
</tr>
<tr>
<td>R</td>
<td>binary int (8 bytes)</td>
</tr>
<tr>
<td>S</td>
<td>string using C string notation (variable size)</td>
</tr>
<tr>
<td>T</td>
<td>horizontal tab</td>
</tr>
<tr>
<td>U</td>
<td>decimal unsigned int (4 bytes)</td>
</tr>
<tr>
<td>V</td>
<td>decimal unsigned int (1 byte)</td>
</tr>
<tr>
<td>W</td>
<td>default radix unsigned int (4 bytes)</td>
</tr>
<tr>
<td>X</td>
<td>hexadecimal int (4 bytes)</td>
</tr>
<tr>
<td>Y</td>
<td>decoded time32_t (4 bytes)</td>
</tr>
<tr>
<td>Z</td>
<td>hexadecimal long long (8 bytes)</td>
</tr>
<tr>
<td>^</td>
<td>decrement dot by increment * count (variable size)</td>
</tr>
<tr>
<td>a</td>
<td>dot as symbol+offset</td>
</tr>
<tr>
<td>b</td>
<td>octal unsigned int (1 byte)</td>
</tr>
<tr>
<td>c</td>
<td>character (1 byte)</td>
</tr>
<tr>
<td>d</td>
<td>decimal signed short (2 bytes)</td>
</tr>
<tr>
<td>e</td>
<td>decimal signed long long (8 bytes)</td>
</tr>
<tr>
<td>f</td>
<td>float (4 bytes)</td>
</tr>
<tr>
<td>g</td>
<td>octal signed long long (8 bytes)</td>
</tr>
<tr>
<td>h</td>
<td>swap bytes (2 bytes)</td>
</tr>
<tr>
<td>i</td>
<td>disassembled instruction (variable size)</td>
</tr>
<tr>
<td>n</td>
<td>newline</td>
</tr>
<tr>
<td>o</td>
<td>octal unsigned short (2 bytes)</td>
</tr>
<tr>
<td>p</td>
<td>symbol (4 or 8 bytes)</td>
</tr>
<tr>
<td>q</td>
<td>octal signed short (2 bytes)</td>
</tr>
<tr>
<td>r</td>
<td>whitespace</td>
</tr>
<tr>
<td>s</td>
<td>raw string (variable size)</td>
</tr>
<tr>
<td>t</td>
<td>horizontal tab</td>
</tr>
<tr>
<td>u</td>
<td>decimal unsigned short (2 bytes)</td>
</tr>
<tr>
<td>v</td>
<td>decimal signed int (1 byte)</td>
</tr>
<tr>
<td>w</td>
<td>default radix unsigned short (2 bytes)</td>
</tr>
<tr>
<td>x</td>
<td>hexadecimal short (2 bytes)</td>
</tr>
<tr>
<td>y</td>
<td>decoded time64_t (8 bytes)</td>
</tr>
</tbody>
</table>

The /, \, and ? formatting dcmds can also be used to write to the target’s virtual address space, physical address space, or object file by specifying one of the following modifiers as the first format character, and then specifying a list of words that are either immediate values or expressions enclosed in square brackets preceded by a dollar sign ($[ ]$).

The write modifiers are:

v  Write the lowest byte of the value of each expression to the target beginning at the location specified by dot.

w  Write the lowest two bytes of the value of each expression to the target beginning at the location specified by dot.

W  Write the lowest 4 bytes of the value of each expression to the target beginning at the location specified by dot.

Z  Write the complete 8 bytes of the value of each expression to the target beginning at the location specified by dot.

The /, \, and ? formatting dcmds can also be used to search for a particular integer value in the target’s virtual address space, physical address space, and object file, respectively, by specifying one of the following modifiers as the first format character, and then specifying a value and optional mask. The value and mask are each specified as either immediate values or expressions enclosed in square brackets preceded by a dollar sign. If only a value is specified, mdb reads integers of the appropriate size and stops at the address containing the matching value. If a value V and mask M are specified, mdb reads integers of the appropriate size and stops at the address containing a value X where (X & M) == V. At the completion of the dcmd, dot is updated to the address containing the match. If no match is found, dot is left at the last address that was read.

The search modifiers are:

1  Search for the specified 2-byte value.

L  Search for the specified 4-byte value.

M  Search for the specified 8-byte value.
Notice that for both user and kernel targets, an address space is typically composed of a set of discontiguous segments. It is not legal to read from an address that does not have a corresponding segment. If a search reaches a segment boundary without finding a match, it will abort when the read past the end of the segment boundary fails.

**Execution Control**

mdb provides facilities for controlling and tracing the execution of a live running program. Currently, only the user process target provides support for execution control. mdb provides a simple model of execution control: a target process can be started from within the debugger using ::run, or mdb can attach to an existing process using :A, :attach, or the -p command-line option, as described below. A list of traced software events can be specified by the user. Each time a traced event occurs in the target process, all threads in the target stop, the thread that triggered the event is chosen as the representative thread, and control returns to the debugger. Once the target program is set running, control can be asynchronously returned to the debugger by typing the user-defined interrupt character (typically ^C).

A **software event** is a state transition in the target program that is observed by the debugger. For example, the debugger may observe the transition of a program counter register to a value of interest (a breakpoint) or the delivery of a particular signal.

A **software event specifier** is a description of a class of software events that is used by the debugger to instrument the target program in order to observe these events. The ::events dcmd is used to list the software event specifiers. A set of standard properties is associated with each event specifier, as described under ::events, below.

The debugger can observe a variety of different software events, including breakpoints, watchpoints, signals, machine faults, and system calls. New specifiers can be created using ::bp, ::fltbp, ::sigbp, ::sysbp, or ::wp. Each specifier has an associated callback (an mdb command string to execute as if it had been typed at the command prompt) and a set of properties, as described below. Any number of specifiers for the same event may be created, each with different callbacks and properties. The current list of traced events and the properties of the corresponding event specifiers can be displayed using the ::events dcmd. The event specifier properties are defined as part of the description of the ::events and ::evset dcmds, below.

The execution control built-in dcmds, described below, are always available, but will issue an error message indicating they are not supported if applied to a target that does not support execution control. For more information about the interaction of exec, attach, release, and job control with debugger execution control, refer to NOTES, below.

**Event Callbacks**

The ::evset dcmd and event tracing dcmds allow you to associate an event callback (using the -c option) with each event specifier. The event callbacks are strings that represent mdb commands to execute when the corresponding event occurs in the target. These commands are executed as if they had been typed at the command
prompt. Before executing each callback, the dot variable is set to the value of the representative thread’s program counter and the "hits" variable is set to the number of times this specifier has been matched, including the current match.

If the event callbacks themselves contain one or more commands to continue the target (for example, ::cont or ::step), these commands do not immediately continue the target and wait for it to stop again. Instead, inside of an event callback, the continue dcmds note that a continue operation is now pending, and then return immediately. Therefore, if multiple dcmds are included in an event callback, the step or continue dcmd should be the last command specified. Following the execution of all event callbacks, the target will immediately resume execution if all matching event callbacks requested a continue. If conflicting continue operations are requested, the operation with the highest precedence determines what type of continue will occur. The order of precedence from highest to lowest is: step, step-over (next), step-out, continue.

Thread Support

mdb provides facilities to examine the stacks and registers of each thread associated with the target. The persistent "thread" variable contains the current representative thread identifier. The format of the thread identifier depends on the target. The ::regs and ::fpregs dcmds can be used to examine the register set of the representative thread, or of another thread if its register set is currently available. In addition, the register set of the representative thread is exported as a set of named variables. The user can modify the value of one or more registers by applying the > dcmd to the corresponding named variable.

The mdb kernel target exports the virtual address of the corresponding internal thread structure as the identifier for a given thread. The Solaris Modular Debugger Guide provides more information on debugging support for threads in the Solaris kernel. The mdb process target provides proper support for examination of multi-threaded user processes that use the native lwp_* interfaces, /usr/lib/libthread.so or /usr/lib/lwp/libthread.so. When debugging a live user process, mdb will detect if a single threaded process dopens or closes libthread and will automatically adjust its view of the threading model on-the-fly. The process target thread identifiers will correspond to either the lwpid_t, thread_t, or pthread_t of the representative, depending on the threading model used by the application.

If mdb is debugging a user process target and the target makes use of compiler-supported thread-local storage, mdb will automatically evaluate symbol names referring to thread-local storage to the address of the storage corresponding to the current representative thread. The ::tls built-in dcmd can be used to display the value of the symbol for threads other than the representative thread.

Built-in dcmds

mdb provides a set of built-in dcmds that are always defined. Some of these dcmds are only applicable to certain targets: if a dcmd is not applicable to the current target, it will fail and print a message indicating "command is not supported by current target". In many cases, mdb provides a mnemonic equivalent (::identifier) for the legacy adb(1) dcmd names. For example, ::quit is provided as the equivalent of $q. Programmers who are experienced with adb(1) or who appreciate brevity or arcana may prefer the $ or : forms of the built-ins. Programmers who are new to mdb may
prefer the more verbose :: form. The built-ins are shown in alphabetical order. If a $ or : form has a ::identifier equivalent, it is shown underneath the ::identifier form. The built-in dcmds are:

> variable-name
> /modifier/variable-name
Assign the value of dot to the specified named variable. Some variables are read-only and may not be modified. If the > is followed by a modifier character surrounded by / //, then the value is modified as part of the assignment. The modifier characters are:

c unsigned char quantity (1-byte)
s unsigned short quantity (2-byte)
i unsigned int quantity (4-byte)
l unsigned long quantity (4-byte in 32-bit, 8-byte in 64-bit)

Notice that these operators do not perform a cast. Instead, they fetch the specified number of low-order bytes (on little-endian architectures) or high-order bytes (big-endian architectures). Modifiers are provided for backwards compatibility; the mdb */modifier/ and %/modifier/ syntax should be used instead.

$< macro-name
Read and execute commands from the specified macro file. The filename may be given as an absolute or relative path. If the filename is a simple name (that is, if it does not contain a '/'), mdb will search for it in the macro file include path. If another macro file is currently being processed, this file is closed and replaced with the new file.

$<< macro-name
Read and execute commands from the specified macro file (as with $<), but do not close the current open macro file.

$?
Print the process-ID and current signal of the target if it is a user process or core file, and then print the general register set of the representative thread.

[ address ] $C [ count ]
Print a C stack backtrace, including stack frame pointer information. If the dcmd is preceded by an explicit address, a backtrace beginning at this virtual memory address is displayed. Otherwise the stack of the representative thread is displayed. If an optional count value is given as an argument, no more than count arguments are displayed for each stack frame in the output.

[ base ] $d
Get or set the default output radix. If the dcmd is preceded by an explicit expression, the default output radix is set to the given base; otherwise the current radix is printed in base 10 (decimal). The default radix is base 16 (hexadecimal).
$e
Print a list of all known external (global) symbols of type object or function, the
value of the symbol, and the first 4 (32-bit mdb) or 8 (64-bit mdb) bytes stored at this
location in the target’s virtual address space. The ::nm dcmd provides more
flexible options for displaying symbol tables.

$P prompt-string
Set the prompt to the specified prompt-string. The default prompt is ‘>’. The prompt
can also be set using ::set -P or the -P command-line option.

distance $s
Get or set the symbol matching distance for address-to-symbol-name conversions.
The symbol matching distance modes are discussed along with the -s
command-line option under OPTIONS, below. The symbol matching distance may
also be modified using the ::set -s option. If no distance is specified, the current
setting is displayed.

$V
Print a list of the named variables that have non-zero values. The ::vars dcmd
provides other options for listing variables.

width $w
Set the output page width to the specified value. Typically, this command is not
necessary as mdb queries the terminal for its width and handles resize events.

$W
Re-open the target for writing, as if mdb had been executed with the -w option on
the command line. Write mode can also be enabled with the ::set -w option.

[ pid ] ::attach [ core | pid ]
[ pid ] :A [ core | pid ]
If the user process target is active, attach to and debug the specified process-ID or
core file. The core file pathname should be specified as a string argument. The
process-ID may be specified as the string argument, or as the value of the
expression preceding the dcmd. Recall that the default base is hexadecimal, so
decimal PIDs obtained using pgrep(1) or ps(1) should be preceded with "0t" when
specified as expressions.

[ address ] ::bp [+/-dDesT] [-c cmd] [-n count] sym ...
address :b [cmd ...]
Set a breakpoint at the specified locations. The ::bp dcmd sets a breakpoint at each
address or symbol specified, including an optional address specified by an explicit
expression preceding the dcmd, and each string or immediate value following the
dcmd. The arguments may either be symbol names or immediate values denoting a
particular virtual address of interest. If a symbol name is specified, it may refer to a
symbol that cannot yet be evaluated in the target process. That is, it may consist of
an object name and function name in a load object that has not yet been opened. In
this case, the breakpoint is deferred and it will not be active in the target until an
object matching the given name is loaded. The breakpoint will be automatically
enabled when the load object is opened. Breakpoints on symbols defined in a
shared library should always be set using a symbol name and not using an address
expression, as the address may refer to the corresponding Procedure Linkage Table (PLT) entry instead of the actual symbol definition. Breakpoints set on PLT entries may be overwritten by the run-time link-editor when the PLT entry is subsequently resolved to the actual symbol definition. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the ::evset dcmd, as described below. If the :b form of the dcmd is used, a breakpoint is only set at the virtual address specified by the expression preceding the dcmd. The arguments following the :b dcmd are concatenated together to form the callback string. If this string contains meta-characters, it must be quoted.

::cat filename ...
Concatenate and display files. Each filename may specified as a relative or absolute pathname. The file contents will be printed to standard output, but will not be passed to the output pager. This dcmd is intended to be used with the | operator; the programmer can initiate a pipeline using a list of addresses stored in an external file.

::cont [ SIG ]
:c [ SIG ]
Suspend the debugger, continue the target program, and wait for it to terminate or stop following a software event of interest. If the target is already running because the debugger was attached to a running program with the -nostop option enabled, this dcmd simply waits for the target to terminate or stop after an event of interest. If an optional signal name or number (see signal(3HEAD)) is specified as an argument, the signal is immediately delivered to the target as part of resuming its execution. If the SIGINT signal is traced, control may be asynchronously returned to the debugger by typing the user-defined interrupt character (usually ^C). This SIGINT signal will be automatically cleared and will not be observed by the target the next time it is continued. If no target program is currently running, ::cont will start a new program running as if by ::run.

address ::context
address $p
Context switch to the specified process. A context switch operation is only valid when using the kernel target. The process context is specified using the address of its proc structure in the kernel’s virtual address space. The special context address "0" is used to denote the context of the kernel itself. mdb can only perform a context switch when examining a crash dump if the dump contains the physical memory pages of the specified user process (as opposed to just kernel pages). The kernel crash dump facility can be configured to dump all pages or the pages of the current user process using dumpadm(1M). The ::status dcmd can be used to display the contents of the current crash dump.

When the user requests a context switch from the kernel target, mdb constructs a new target representing the specified user process. Once the switch occurs, the new target interposes its dc cmds at the global level: thus the / dcmd will now format and display data from the virtual address space of the user process, the ::mappings dcmd will display the mappings in the address space of the user process, and so on. The kernel target can be restored by executing 0::context.
::dcmds  
List the available dcmds and print a brief description for each one.

[address] ::delete [id | all]  
[address] ::d [id | all]  
Delete the event specifiers with the given id number. The id number argument is interpreted in decimal by default. If an optional address is specified preceding the dcmd, all event specifiers that are associated with the given virtual address are deleted (for example, all breakpoints or watchpoints affecting that address). If the special argument "all" is given, all event specifiers are deleted, except those that are marked sticky (T flag). The ::events dcmd displays the current list of event specifiers.

[address] ::dis [ -fw ] [ -n count ] [ address ]  
Disassemble starting at or around the address specified by the final argument, or the current value of dot. If the address matches the start of a known function, the entire function is disassembled. Otherwise, a "window" of instructions before and after the specified address is printed in order to provide context. By default, instructions are read from the target’s virtual address space. If the -f option is present, instructions are read from the target’s object file instead. The -f option is enabled by default if the debugger is not currently attached to a live process, core file, or crash dump. The -w option can be used to force "window"-mode, even if the address is the start of a known function. The size of the window defaults to ten instructions; the number of instructions can be specified explicitly using the -n option.

::disasms  
List the available disassembler modes. When a target is initialized, mdb will attempt to select the appropriate disassembler mode. The user can change the mode to any of the modes listed using the ::dismode dcmd.

::dismode [mode]  
$V [mode]  
Get or set the disassembler mode. If no argument is specified, print the current disassembler mode. If a mode argument is specified, switch the disassembler to the specified mode. The list of available disassemblers can be displayed using the ::disasms dcmd.

::dmods [-l] [module-name]  
List the loaded debugger modules. If the -l option is specified, the list of the dcmds and walkers associated with each dmod is printed below its name. The output can be restricted to a particular dmod by specifying its name as an additional argument.

[address] ::dump [ -egrstu ] [ -f | -p ]  
[ -g bytes ] [ -w paragraphs ]  
Print a hexadecimal and ASCII memory dump of the 16-byte aligned region of memory containing the address specified by dot. If a repeat count is specified for ::dump, this is interpreted as a number of bytes to dump rather than a number of iterations. The ::dump dcmd also recognizes the following options:
mdb(1)

- e Adjusts for endian-ness. The -e option assumes 4-byte words. The -g option can be used to change the default word size.

- f Reads data from the object file location corresponding to the given virtual address instead of from the target’s virtual address space. The -f option is enabled by default if the debugger is not currently attached to a live process, core file, or crash dump.

- g Display bytes in groups of bytes. The default group size is 4 bytes. The group size must be a power of two that divides the line width.

- p Interprets address as a physical address location in the target’s address space instead of a virtual address.

- q Does not print an ASCII decoding of the data.

- r Numbers lines relative to the start address instead of with the explicit address of each line. This option implies the -u option.

- s Elides repeated lines.

- t Only reads from and displays the contents of the specified addresses, instead of reading and printing entire lines.

- u Unaligns output instead of aligning the output at a paragraph boundary.

- w Displays paragraphs at 16-byte paragraphs per line. The default number of paragraphs is one. The maximum value accepted for -w is 16.

::echo [ string | value ]
Print the arguments separated by blanks and terminated by a NEWLINE to standard output. Expressions enclosed in \$[ ] will be evaluated to a value and printed in the default base.

::eval command
Evaluate and execute the specified string as a command. If the command contains metacharacters or whitespace, it should be enclosed in double or single quotes.

::events [-av]
Display the list of software event specifiers. Each event specifier is assigned a unique ID number that can be used to delete or modify it at a later time. The debugger may also have its own internal events enabled for tracing. These events will only be displayed if the -a option is present. If the -v option is present, a more verbose display, including the reason for any specifier inactivity, will be shown. Here is some sample output:

```
> :events
 ID S TA HT LM Description Action
```

912 man pages section 1: User Commands • Last Revised 16 Sep 2002
The following table explains the meaning of each column. A summary of this information is available using `:help events`.

<table>
<thead>
<tr>
<th>ID</th>
<th>The event specifier identifier. The identifier will be shown in square brackets [ ] if the specifier is enabled, in parentheses ( ) if the specifier is disabled, or in angle brackets &lt; &gt; if the target program is currently stopped on an event that matches the given specifier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>The event specifier state. The state will be one of the following symbols:</td>
</tr>
<tr>
<td></td>
<td>-  The event specifier is idle. When no target program is running, all specifiers are idle. When the target program is running, a specifier may be idle if it cannot be evaluated (for example, a deferred breakpoint in a shared object that is not yet loaded).</td>
</tr>
<tr>
<td></td>
<td>+  The event specifier is active. When the target is continued, events of this type will be detected by the debugger.</td>
</tr>
<tr>
<td></td>
<td>*  The event specifier is armed. This state means that the target is currently running with instrumentation for this type of event. This state is only visible if the debugger is attached to a running program with the <code>-onostop</code> option.</td>
</tr>
<tr>
<td></td>
<td>!  The event specifier was not armed due to an operating system error. The <code>:events -v</code> option can be used to display more information about the reason the instrumentation failed.</td>
</tr>
<tr>
<td>TA</td>
<td>The Temporary, Sticky, and Automatic event specifier properties. One or more of the following symbols may be shown:</td>
</tr>
<tr>
<td></td>
<td>t  The event specifier is temporary, and will be deleted the next time the target stops, regardless of whether it is matched.</td>
</tr>
</tbody>
</table>

---

### User Commands 913
The event specifier is sticky, and will be not be deleted by ::delete all or :z. The specifier can be deleted by explicitly specifying its id number to ::delete.

The event specifier will be automatically disabled when the hit count is equal to the hit limit.

The event specifier will be automatically deleted when the hit count is equal to the hit limit.

The target will automatically stop when the hit count is equal to the hit limit.

| T | The current hit count. This column displays the number of times the corresponding software event has occurred in the target since the creation of this event specifier. |
| d | The current hit limit. This column displays the limit on the hit count at which the auto-disable, auto-delete, or auto-stop behavior will take effect. These behaviors can be configured using the ::evset dcmd, described below. |
| LM | Description of the type of software event that is matched by the given specifier. |
| Action | The callback string to execute when the corresponding software event occurs. This callback is executed as if it had been typed at the command prompt. |

```
[id] ::evset [+-dDestT] [-c cmd] [-n count] id ...
```

Modify the properties of one or more software event specifiers. The properties are set for each specifier identified by the optional expression preceding the dcmd and an optional list of arguments following the dcmd. The argument list is interpreted as a list of decimal integers, unless an explicit radix is specified. The ::evset dcmd recognizes the following options:

- d Disables the event specifier when the hit count reaches the hit limit. If the +d form of the option is given, this behavior is disabled. Once an event specifier is disabled, the debugger will remove any corresponding instrumentation and will ignore the corresponding software events until the specifier is subsequently re-enabled. If the -n option is not present, the specifier is disabled immediately.

- D Deletes the event specifier when the hit count reaches the hit limit. If the +D form of the option is given, this behavior is disabled. The -D option takes precedence over the -d option. The hit limit can be configured using the -n option.

- e Enables the event specifier. If the +e form of the option is given, the specifier is disabled.
-s  Stops the target program when the hit count reaches the hit limit. If the +s form of the option is given, this behavior is disabled. The -s behavior tells the debugger to act as if the ::cont were issued following each execution of the specifier’s callback, except for the Nth execution, where N is the current value of the specifier’s hit limit. The -s option takes precedence over both the -D option and the -d option.

-t  Marks the event specifier as temporary. Temporary specifiers are automatically deleted the next time the target stops, regardless of whether it stopped as the result of a software event corresponding to the given specifier. If the +t form of the option is given, the temporary marker is removed. The -t option takes precedence over the -T option.

-T  Marks the event specifier as sticky. Sticky specifiers will not be deleted by ::delete all or ::z. They can be deleted by specifying the corresponding specifier ID as an explicit argument to ::delete. If the +T form of the option is given, the sticky property is removed. The default set of event specifiers are all initially marked sticky.

-c  Executes the specified cmd string each time the corresponding software event occurs in the target program. The current callback string can be displayed using ::events.

-n  Sets the current value of the hit limit to count. If no hit limit is currently set and the -n option does not accompany -s or D, the hit limit will be set to one.

A summary of this information is available using ::help evset.

::files
$f
Print a list of the known source files (symbols of type STT_FILE present in the various target symbol tables).

[flt] ::fltbp [+/dDestT] [-c cmd] [-n count] flt ...
Trace the specified machine faults. The faults are identified using an optional fault number preceding the dcmd, or a list of fault names or numbers (see <sys/fault.h>) following the dcmd. The -d, -D, -e, -s, -l, -T, -c, and -n options have the same meaning as they do for the ::evset dcmd.

[thread] ::fpregs
[thread] $x, $X, $y, $Y
Print the floating-point register set of the representative thread. If a thread is specified, the floating point registers of that thread are displayed. The thread expression should be one of the thread identifiers described under Thread Support, above.

::formats
List the available output format characters for use with the /, \, ?, and = formatting dcmds. The formats and their use is described under Formatting dcmds, above.
::grep command
Evaluate the specified command string, and then print the old value of dot if the new value of dot is non-zero. If the command contains whitespace or metacharacters, it must be quoted. The ::grep dcmd can be used in pipelines to filter a list of addresses.

::help [ dcmd-name ]
With no arguments, the ::help dcmd prints a brief overview of the help facilities available in mdb. If a dcmd-name is specified, mdb will print a usage summary for that dcmd.

signal :i
If the target is a live user process, ignore the specified signal and allow it to be delivered transparently to the target. All event specifiers that are tracing delivery of the specified signal will be deleted from the list of traced events. By default, the set of ignored signals is initialized to the complement of the set of signals that cause a process to dump core by default (see signal(3HEAD)), except for SIGINT, which is traced by default.

$:
Display the list of signals that are ignored by the debugger and that will be handled directly by the target. More information on traced signals can be obtained using the ::events dcmd.

::kill :k
Forcibly terminate the target if it is a live user process. The target will also be forcibly terminated when the debugger exits if it was created by the debugger using ::run.

$L
Print the LWPID of the representative thread, if the target is a user process.

$L
Print the LWPIDs of each LWP in the target, if the target is a user process.

[ address ] ::list type member [ variable-name ]
Walk through the elements of a linked list data structure and print the address of each element in the list. The address of the first element in the list can be specified using an optional address. Otherwise, the list is assumed to start at the current value of dot. The type parameter must name a C struct or union type and is used to describe the type of the list elements so that mdb can read in objects of the appropriate size. The member parameter is used to name the member of type that contains a pointer to the next list element. The ::list dcmd will continue iterating until a NULL pointer is encountered, the first element is reached again (a circular list), or an error occurs while reading an element. If the optional variable-name is specified, the specified variable will be assigned the value returned at each step of the walk when mdb invokes the next stage of a pipeline. The ::list dcmd may only be used with objects that contain symbolic debugging information designed for use with mdb. Refer to NOTES, Symbolic Debugging Information, below for more information.
::load [-s] module-name

Load the specified dmod. The module name may be given as an absolute or relative path. If module-name is a simple name (that is, does not contain a `/'), mdb will search for it in the module library path. Modules with conflicting names may not be loaded; the existing module must be unloaded first. If the -s option is present, mdb will remain silent and not issue any error messages if the module is not found or could not be loaded.

::log [-d | [-e] filename]

$> [filename]

Enable or disable the output log. mdb provides an interactive logging facility where both the input commands and standard output can be logged to a file while still interacting with the user. The -e option enables logging to the specified file, or re-enables logging to the previous log file if no filename is given. The -d option disables logging. If the $> dcmd is used, logging is enabled if a filename argument is specified; otherwise, logging is disabled. If the specified log file already exists, mdb appends any new log output to the file.

::map command

Map the value of dot to a corresponding value using the command specified as a string argument, and then print the new value of dot. If the command contains whitespace or metacharacters, it must be quoted. The ::map dcmd can be used in pipelines to transform the list of addresses into a new list of addresses.

[address] ::mappings [name]

[address] $m [name]

Print a list of each mapping in the target's virtual address space, including the address, size, and description of each mapping. If the dcmd is preceded by an address, mdb will only show the mapping that contains the given address. If a string name argument is given, mdb will only show the mapping matching that description.

::next [SIG]

::. [SIG]

Step the target program one instruction, but step over subroutine calls. If an optional signal name or number (see signal(3HEAD)) is specified as an argument, the signal is immediately delivered to the target as part of resuming its execution. If no target program is currently running, ::next will start a new program running as if by ::run and stop at the first instruction.

[address] ::nm [-Dpghnopux] [-t types] [-f format] [object]

Print the symbol tables associated with the current target. If an optional address preceding the dcmd is specified, only the symbol table entry for the symbol corresponding to address is displayed. If an object is specified, only the symbol table for this load object is displayed. The ::nm dcmd also recognizes the following options:

-D

Prints .dynsym (dynamic symbol table) instead of .symtab.
-P  Prints the private symbol table instead of .symtab.
-d  Prints value and size fields in decimal.
-g  Prints only global symbols.
-h  Suppresses the header line.
-n  Sorts symbols by name.
-o  Prints value and size fields in octal.
-p  Prints symbols as a series of :.nmadd commands.
   This option can be used with -P to produce a macro file that can be subsequently read into the debugger with $<.
-u  Prints only undefined symbols.
-v  Sorts symbols by value.
-x  Prints value and size fields in hexadecimal.
-t type[,type ...]  Prints only symbols of the specified type(s). The valid type argument strings are:
   noty   STT_NOTYPE
   objt   STT_OBJECT
   func   STT_FUNC
   sect   STT_SECTION
   file   STT_FILE
   comm   STT_COMMON
   tls    STT_TLS
   regi   STT_SPARC_REGISTER
-f format[,format ...]  Prints only the specified symbol information. The valid format argument strings are:
   ndx    symbol table index
   val    symbol value
   size   size in bytes
   type   symbol type
   bind   binding
   oth    other
   shndx  section index
   name   symbol name
::nmadd name
Add the specified symbol name to the private symbol table. mdb provides a private, configurable symbol table that can be used to interpose on the target's symbol table, as described under Symbol Name Resolution above. The ::nmadd dcmd also recognizes the following options:

- **e**
  Sets the size of the symbol to end - value.

- **f**
  Sets the type of the symbol to STT_FUNC.

- **o**
  Sets the type of the symbol to STT_OBJECT.

- **s**
  Sets the size of the symbol to size.

::nmdel name
Delete the specified symbol name from the private symbol table.

::objects
Print a map of the target's virtual address space, showing only those mappings that correspond to the primary mapping (usually the text section) of each of the known load objects.

::offsetof type member
Print the offset of the specified member of the specified type. The type should be the name of a C structure. The offset is printed in bytes, unless the member is a bit-field, in which case the offset may be printed in bits. The output is always suffixed with the appropriate units for clarity. The type name may use the backquote (') scoping operator described under Symbol Name Resolution above. The ::offsetof dcmd may only be used with objects that contain symbolic debugging information designed for use with mdb. Refer to NOTES, Symbolic Debugging Information, below for more information.

::print address [-aCdLptx] [-c lim] [-l lim] [type [member ... ]]
Print the data structure at the specified virtual address using the given type information. The type parameter may name a C struct, union, enum, fundamental integer type, or a pointer to any of these types. If the type name contains whitespace (for example, "struct foo"), it must be enclosed in single or double quotes. The type name may use the backquote ('') scoping operator described under Symbol Name Resolution, above. If the type is a structured type, the ::print dcmd will recursively print each member of the struct or union. If the type argument is not present and a static or global STT_OBJECT symbol matches the address, ::print will infer the appropriate type automatically. If the type argument is specified, it may be followed by an optional list of member expressions, in which case only those members and submembers of the specified type are displayed. If type contains other structured types, each member string may refer to a sub-structure element by forming a list of member names separated by period ('.') delimiters. The ::print dcmd may only be used with objects that contain symbolic debugging information designed for use with mdb. Refer to NOTES,
Symbolic Debugging Information, below for more information. After displaying the data structure, ::print increments dot by the size of type in bytes.

If the -a option is present, the address of each member is displayed. If the -p option is present, ::print interprets address as a physical memory address instead of a virtual memory address. If the -t option is present, the type of each member is displayed. If the -d or -x options are present, all integers are displayed in decimal (-d) or hexadecimal (-x). By default, a heuristic is used to determine if the value should be displayed in decimal or hexadecimal. The number of characters in a character array that will be read and displayed as a string can be limited with the -c option. If the -C option is present, no limit is enforced. The number of elements in a standard array that will be read and displayed can be limited with the -l option. If the -L option is present, no limit is enforced and all array elements are shown. The default values for -c and -l can be modified using ::set or the -o command-line option as described under OPTIONS, below.

::quit
$q
Quit the debugger.

[thread] ::regs
[thread] $r
Print the general purpose register set of the representative thread. If a thread is specified, the general purpose register set of that thread is displayed. The thread expression should be one of the thread identifiers described under Thread Support, above.

::release [-a]
:R [-a]
Release the previously attached process or core file. If the -a option is present, the process is released and left stopped and abandoned. It can subsequently be continued by prun(1) (see proc(1)) or it can be resumed by applying mdb or another debugger. By default, a released process is forcibly terminated if it was created by mdb using ::run, or it is released and set running if it was attached to by mdb using the -p option or using the ::attach or :A dcmds.

::run [args ...]
:r [args ...]
Start a new target program running with the specified arguments and attach to it. The arguments are not interpreted by the shell. If the debugger is already examining a live running program, it will first detach from this program as if by ::release.

::set [-wF][+/-o option][ -s distance][ -I path]
[-L path][ -P prompt]
Get or set miscellaneous debugger properties. If no options are specified, the current set of debugger properties is displayed. The ::set dcmd recognizes the following options:

-F Forcibly takes over the next user process that ::attach is applied to, as if mdb had been executed with the -F option on the command line.
Sets the default path for locating macro files. The path argument may contain any of the special tokens described for the -I command-line option under OPTIONS below.

-L
Sets the default path for locating debugger modules. The path argument may contain any of the special tokens described for the -I command-line option under OPTIONS below.

-o
Enables the specified debugger option. If the +o form is used, the option is disabled. The option strings are described along with the -o command-line option under OPTIONS below.

-P
Sets the command prompt to the specified prompt string.

-s
Sets the symbol matching distance to the specified distance. Refer to the description of the -s command-line option under OPTIONS below for more information.

-w
Re-opens the target for writing, as if mdb had been executed with the -w option on the command line.

[signal] ::sigbp [+/-dDestT] [-c cmd] [-n count] SIG ...  
Trace delivery of the specified signals. The signals are identified using an optional signal number preceding the dcmd, or a list of signal names or numbers (see signal(3HEAD)) following the dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the ::evset dcmd. Initially, the set of signals that cause the process to dump core by default (see signal(3HEAD)) and SIGINT are traced.

::sizeof type
Print the size of the specified type in bytes. The type parameter may name a C struct, union, enum, fundamental integer type, or a pointer to any of these types. The type name may use the backquote (') scoping operator described under Symbol Name Resolution, above. The ::sizeof dcmd may only be used with objects that contain symbolic debugging information designed for use with mdb. Refer to NOTES, Symbolic Debugging Information, below for more information.

[ address ] ::stack [ count ]
[ address ] $c [ count ]
Print a C stack backtrace. If the dcmd is preceded by an explicit address, a backtrace beginning at this virtual memory address is displayed. Otherwise the stack of the representative thread is displayed. If an optional count value is given as an argument, no more than count arguments are displayed for each stack frame in the output.

::status
Print a summary of information related to the current target.

::step [ over | out ] [ SIG ]
:s [ SIG ]
:u [ SIG ]
Step the target program one instruction. If an optional signal name or number (see `signal(3HEAD)`) is specified as an argument, the signal is immediately delivered to the target as part of resuming its execution. If the optional "over" argument is specified, ::step will step over subroutine calls. The ::step over argument is the same as the ::next dcmd. If the optional "out" argument is specified, the target program will continue until the representative thread returns from the current function. If no target program is currently running, ::step out will start a new program running as if by ::run and stop at the first instruction. The :s dcmd is the same as ::step. The :u dcmd is the same as ::step out.

::sysbp [ +/-dDestT ][@io ][@c cmd ]
[ -n count ] syscall...
Trace entry to or exit from the specified system calls. The system calls are identified using an optional system call number preceding the dcmd, or a list of system call names or numbers (see <sys/syscall.h>) following the dcmd. If the -i option is specified (the default), the event specifiers trigger on entry into the kernel for each system call. If the -o option is specified, the event specifiers trigger on exit out from the kernel. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the ::evset dcmd.

thread ::tls symbol
Print the address of the storage for the specified thread-local storage (TLS) symbol in the context of the specified thread. The thread expression should be one of the thread identifiers described under Thread Support, above. The symbol name may use any of the scoping operators described under Symbol Name Resolution, above.

::typeset [+/-t] variable-name ...
Set attributes for named variables. If one or more variable names are specified, they are defined and set to the value of dot. If the -t option is present, the user-defined tag associated with each variable is set. If the +t option is present, the tag is cleared. If no variable names are specified, the list of variables and their values is printed.

::unload module-name
Unload the specified dmod. The list of active dmods may be printed using the ::dmods dcmd. Built-in modules may not be unloaded. Modules that are busy (that is, provide dcmds that are currently executing) may not be unloaded.

::unset variable-name ...
Unset (remove) the specified variable(s) from the list of defined variables. Some variables exported by mdb are marked as persistent, and may not be unset by the user.

::vars [ -npt ]
Print a listing of named variables. If the -n option is present, the output is restricted to variables that currently have non-zero values. If the -p option is present, the variables are printed in a form suitable for re-processing by the debugger using the $< dcmd. This option can be used to record the variables to a macro file and then restore these values later. If the -t option is present, only the tagged variables are printed. Variables can be tagged using the -t option of the ::typeset dcmd.
::version
Print the debugger version number.

::vtop [-a as]
Print the physical address mapping for the specified virtual address, if possible.
The ::vtop dcmd is only available when examining a kernel target, or when examining a user process inside a kernel crash dump (after a ::context dcmd has been issued).

When examining a kernel target from the kernel context, the -a option can be used to specify the address (as) of an alternate address space structure that should be used for the virtual to physical translation. By default, the kernel’s address space is used for translation. This option is available for active address spaces even when the dump content only contains kernel pages.

::walk walker-name [ variable-name ]
Walk through the elements of a data structure using the specified walker. The available walkers can be listed using the ::walkers dcmd. Some walkers operate on a global data structure and do not require a starting address. For example, walk the list of proc structures in the kernel. Other walkers operate on a specific data structure whose address must be specified explicitly. For example, given a pointer to an address space, walk the list of segments. When used interactively, the ::walk dcmd will print the address of each element of the data structure in the default base. The dcmd can also be used to provide a list of addresses for a pipeline. The walker name may use the backquote (') scoping operator described under dcmd and Walker Name Resolution, above. If the optional variable-name is specified, the specified variable will be assigned the value returned at each step of the walk when mdb invokes the next stage of the pipeline.

::walkers
List the available walkers and print a brief description for each one.

::whence [-v] name ...
::which [-v] name ...
Print the dmod that exports the specified dcmds and walkers. These dcmds can be used to determine which dmod is currently providing the global definition of the given dcmd or walker. Refer to the section on dcmd and Walker Name Resolution above for more information on global name resolution. The -v option will cause the dcmd to print the alternate definitions of each dcmd and walker in order of precedence.

addr [ len ] ::wp [ +/ -DestT ] [ -rwx ] [ -c cmd ] [ -n count ]
addr [ len ] :a [ cmd ... ]
addr [ len ] :p [ cmd ... ]
addr [ len ] :w [ cmd ... ]
Set a watchpoint at the specified address. The length in bytes of the watched region may be set by specifying an optional repeat count preceding the dcmd. If no length is explicitly set, the default is one byte. The ::wp dcmd allows the watchpoint to be configured to trigger on any combination of read (-r option), write (-w option), or execute (-x option) access. The -d, -D, -e, -s, -t, -T, -c, and -n options have the
same meaning as they do for the :evset dcmd. The :a dcmd sets a read access
watchpoint at the specified address. The :p dcmd sets an execute access
watchpoint at the specified address. The :w dcmd sets a write access watchpoint at
the specified address. The arguments following the :a, :p, and :w dcmds are
concatenated together to form the callback string. If this string contains
meta-characters, it must be quoted.

::xdata
List the external data buffers exported by the current target. External data buffers
represent information associated with the target that can not be accessed through
standard target facilities (that is, an address space, symbol table, or register set).
These buffers may be consumed by dcmds; for more information, refer to the Solaris
Modular Debugger Guide.

::z
Delete all event specifiers from the list of traced software events. Event specifiers
can also be deleted using ::delete.

OPTIONS
The following options are supported:

-A Disable automatic loading of mdb modules. By default, mdb attempts to load debugger modules corresponding to the active shared libraries in a user process or core file, or to the loaded kernel modules in the live operating system or an operating system crash dump.

-f Forces raw file debugging mode. By default, mdb attempts to infer whether the object and core file operands refer to a user executable and core dump or to a pair of operating system crash dump files. If the file type cannot be inferred, the debugger will default to examining the files as plain binary data. The -f option forces mdb to interpret the arguments as a set of raw files to examine.

-F Forcibly takes over the specified user process, if necessary. By default, mdb refuses to attach to a user process that is already under the control of another debugging tool, such as truss(1). With the -F option, mdb attaches to these processes anyway. This may produce unexpected interactions between mdb and the other tools attempting to control the process.

-I path Sets default path for locating macro files. Macro files are read using the $< or $<< dcmds. The path is a sequence of directory names delimited by colon (:) characters. The -I include path and -L library path (see below) may also contain any of the following tokens:

%i Expands to the current instruction set architecture (ISA) name (‘sparc’, ‘sparcv9’, or ‘i386’).

mdb(1)
%o Expands to the old value of the path being modified. This is useful for appending or prepending directories to an existing path.

%p Expands to the current platform string (either `uname -i` or the platform string stored in the process core file or crash dump).

%r Expands to the pathname of the root directory. An alternate root directory may be specified using the `-R` option. If no `-R` option is present, the root directory is derived dynamically from the path to the `mdb` executable itself. For example, if `/bin/mdb` is executed, the root directory will be `/`. If `/net/hostname/bin/mdb` were executed, the root directory would be derived as `/net/hostname`.

%t Expands to the name of the current target. This will either be the literal string `proc` (a user process or user process core file), `kvm` (a kernel crash dump or the live operating system), or `raw` (a raw file).

The default include path for 32-bit `mdb` is:

```
%r/usr/platform/%p/lib/adb:%r/usr/lib/adb
```

The default include path for 64-bit `mdb` is:

```
%r/usr/platform/%p/lib/adb/%i:%r/usr/lib/adb/%i
```

-k Forces kernel debugging mode. By default, `mdb` attempts to infer whether the object and core file operands refer to a user executable and core dump, or to a pair of operating system crash dump files. The `-k` option forces `mdb` to assume these files are operating system crash dump files. If no object or core operand is specified, but the `-k` option is specified, `mdb` defaults to an object file of `/dev/ksyms` and a core file of `/dev/kmem`. Access to `/dev/kmem` is restricted to group sys.

-L path Sets default path for locating debugger modules. Modules are loaded automatically on startup or using the `::load dcmd`. The path is a sequence of directory names delimited by colon (`:`) characters. The `-L` library path may also contain any of the tokens shown for `-I` above.

-m Disables demand-loading of kernel module symbols. By default, `mdb` processes the list of loaded kernel modules and performs demand loading of per-module symbol tables. If the `-m` option is specified, `mdb` will not attempt to process the kernel module list or
provide per-module symbol tables. As a result, mdb modules corresponding to active kernel modules will not be loaded on startup.

-M

Preloads all kernel module symbols. By default, mdb performs demand-loading for kernel module symbols: the complete symbol table for a module is read when an address is that module’s text or data section is referenced. With the -M option, mdb loads the complete symbol table of all kernel modules during startup.

-o option

Enables the specified debugger option. If the +o form of the option is used, the specified option is disabled. Unless noted below, each option is off by default. mdb recognizes the following option arguments:

adb

Enables stricter adb(1) compatibility. The prompt will be set to the empty string and many mdb features, such as the output pager, will be disabled.

array_mem_limit=limit

Sets the default limit on the number of array members that \::print will display. If limit is the special token none, all array members will be displayed by default.

array_str_limit=limit

Sets the default limit on the number of characters that ::print will attempt to display as an ASCII string when printing a char array. If limit is the special token none, the entire char array will be displayed as a string by default.

follow_exec_mode=mode

Sets the debugger behavior for following an exec(2) system call. The mode should be one of the following named constants:

ask

If stdout is a terminal device, the debugger stops after the exec(2) system call has returned and then prompts the user to decide whether to follow the exec or stop. If stdout is not a terminal device, the ask mode defaults to stop.

follow

The debugger follows the exec by automatically continuing the target process and resetting all of its mappings and symbol tables based on the new executable. The follow behavior is discussed in more detail under NOTES, Interaction with Exec, below.

stop

The debugger stops following return from the exec system call. The stop behavior is discussed in more detail under NOTES, Interaction with Exec, below.
follow_fork_mode=

Sets the debugger behavior for following a fork(2), fork1(2), or vfork(2) system call. The mode should be one of the following named constants:

ask
If stdout is a terminal device, the debugger stops after the fork(2) system call has returned and then prompts the user to decide whether to follow the parent or child. If stdout is not a terminal device, the ask mode defaults to parent.

parent
The debugger follows the parent process, and detaches from the child process and sets it running.

child
The debugger follows the child process, and detaches from the parent process and sets it running.

ignoreeof
The debugger will not exit when an EOF sequence (^D) is entered at the terminal. The ::quit dcmd must be used to quit.

nostop
Does not stop a user process when attaching to it when the -p option is specified or when the ::attach or :A dcmds are applied. The nostop behavior is described in more detail under NOTES, Process Attach and Release, below.

pager
Enables the output pager (default).

repeatlast
If a NEWLINE is entered as the complete command at the terminal, mdb repeats the previous command with the current value of dot. This option is implied by -o adb.

showlmid
mdb provides support for symbol naming and identification in user applications that make use of link maps other than LM_ID_BASE and LM_ID_LDSO, as described in Symbol Name Resolution, above. Symbols on link maps other than LM_ID_BASE or LM_ID_LDSO will be shown as LMlmid’library’symbol, where lmid is the link-map ID in the default output radix (16). The user may optionally configure mdb to show the link-map ID scope of all symbols and objects, including those associated with LM_ID_BASE and LM_ID_LDSO, by enabling the showlmid option. Built-in dcmds that deal with object file names will display link-map IDs according to the value of showlmid above, including ::nm, ::mappings, $m, and ::objects.
mdb(1)

-\*pid\*
Attaches to and stops the specified process-id. \texttt{mdb} will use the
/proc/pid/object/a.out file as the executable file pathname.

-\*prompt\*
Sets the command prompt. The default prompt is \'\'>\'.

-\*R root\*
Sets root directory for pathname expansion. By default, the root
directory is derived from the pathname of the \texttt{mdb} executable
itself. The root directory is substituted in place of the \$r token
during pathname expansion.

-\*s distance\*
Sets the symbol matching distance for address-to-symbol-name
conversions to the specified \textit{distance}. By default, \texttt{mdb}
sets the distance to zero, which enables a smart-matching mode. Each ELF
symbol table entry includes a value \textit{V} and size \(S\), representing the
size of the function or data object in bytes. In smart mode, \texttt{mdb}
matches an address \(A\) with the given symbol if \(A\) is in the range \([\textit{V}, \textit{V} + S]\). If any non-zero distance is specified, the same algorithm
is used, but \(S\) in the expression above is always the specified
absolute distance and the symbol size is ignored.

-\*S\*
Suppresses processing of the user's ~/.mdbrc file. By default, \texttt{mdb}
reads and processes the macro file .mdbrc if one is present in the
user's home directory, as defined by \$HOME. If the -S option is
present, this file will not be read.

-\*u\*
Forces user debugging mode. By default, \texttt{mdb} attempts to infer
whether the object and core file operands refer to a user executable
and core dump, or to a pair of operating system crash dump files.
The -u option forces \texttt{mdb} to assume these files are not operating
system crash dump files.

-\*V version\*
Sets disassembler version. By default, \texttt{mdb} attempts to infer the
appropriate disassembler version for the debug target. The
disassembler can be set explicitly using the -V option. The
\texttt{::disasms} dcmd lists the available disassembler versions.

-\*w\*
Opens the specified object and core files for writing.

-\*y\*
Sends explicit terminal initialization sequences for tty mode. Some
terminals, such as cmdtool(1), require explicit initialization
sequences to switch into a tty mode. Without this initialization
sequence, terminal features such as standout mode may not be
available to \texttt{mdb}.

\textbf{OPERANDS}
The following operands are supported:

\textbf{object} Specifies an ELF format object file to examine. \texttt{mdb} provides the ability to
examine and edit ELF format executables (\texttt{ET_EXEC}), ELF dynamic library
files (\texttt{ET_DYN}), ELF relocatable object files (\texttt{ET_REL}), and operating system
unix.X symbol table files.
core Specifies an ELF process core file (ET_CORE), or an operating system crash dump vmcore.X file. If an ELF core file operand is provided without a corresponding object file, mdb will attempt to infer the name of the executable file that produced the core using several different algorithms. If no executable is found, mdb will still execute, but some symbol information may be unavailable.

suffix Specifies the numerical suffix representing a pair of operating system crash dump files. For example, if the suffix is ‘3’, mdb infers that it should examine the files ‘unix.3’ and ‘vmcore.3’. The string of digits will not be interpreted as a suffix if an actual file of the same name is present in the current directory.

mdb processes all input files (including scripts, object files, core files, and raw data files) in a large file aware fashion. See largefile(5) for more information about the processing of large files, which are files greater than or equal to 2 Gbytes (2^31 bytes).

The following exit values are returned:

0 Debugger completed execution successfully.
1 A fatal error occurred.
2 Invalid command line options were specified.

HISTSIZE This variable is used to determine the maximum length of the command history list. If this variable is not present, the default length is 128.

HOME This variable is used to determine the pathname of the user’s home directory, where a .mdbrc file may reside. If this variable is not present, no .mdbrc processing will occur.

SHELL This variable is used to determine the pathname of the shell used to process shell escapes requested using the ! meta-character. If this variable is not present, /bin/sh is used.

User mdb initialization file. The .mdbrc file, if present, is processed after the debug target has been initialized, but before module auto-loading is performed or any commands have been read from standard input.

Kernel virtual memory image device. This device special file is used as the core file when examining the live operating system.

Kernel symbol table device. This device special file is used as the object file when examining the live operating system.

Process information files that are read when examining and controlling user processes.
Default directories for macro files that are read with the $< and $<< dcmds. 

/platform-name is the name of the platform, derived either from information in a core file or crash dump, or from the current machine as if by `uname -i` (see `uname(1)`).

Default directories for debugger modules that are loaded using the `::load` dcmd.

/platform-name is the name of the platform, derived either from information in a core file or crash dump, or from the current machine as if by `uname -i` (see `uname(1)`).

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmdb (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWmdbx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

adb(1), cmdtool(1), gcore(l), proc(l), pgrep(l), ps(l), stty(l), truss(l), 
uname(l), coreadm(1M), dumpadm(1M), largefile(5), savecore(1M), exec(2), 
fork(2), _lwp_self(2), pipe(2), vfork(2), dlopen(3DL), elf(3ELF), libkvm(3LIB), 
libthread_db(3LIB), libthread(3LIB), signal(3C), signal(3HEAD), 
thr_self(3THR), threads(3THR), core(4), proc(4), attributes(5), 
largefile(5), ksymas(7D), mem(7D)

Linker and Libraries Guide

Solaris Modular Debugger Guide

WARNINGS

Use of the Error Recovery Mechanism

The debugger and its dmods execute in the same address space, and thus it is quite possible that a buggy dmod can cause `mdb` to dump core or otherwise misbehave. The `mdb` resume capability, described above under Signal Handling, provides a limited recovery mechanism for these situations. However, it is not possible for `mdb` to know definitively whether the dmod in question has corrupted only its own state, or the debugger’s global state. Therefore a resume operation cannot be guaranteed to be safe, or to prevent a subsequent crash of the debugger. The safest course of action following a resume is to save any important debug information, and then quit and restart the debugger.

Use of the Debugger to Modify the Live Operating System

The use of the debugger to modify (that is, write to) the address space of live running operating system is extremely dangerous, and may result in a system panic in the event the user damages a kernel data structure.
mdb does not provide support for examining process core files that were generated by a release of Solaris preceding Solaris 2.6. If a core file from one operating system release is examined on a different operating system release, the run-time link-editor debugging interface (librtld_db) may not be able to initialize. In this case, symbol information for shared libraries will not be available. Furthermore, since shared mappings are not present in user core files, the text section and read-only data of shared libraries may not match the data that was present in the process at the time it dumped core. Core files from Solaris x86 systems may not be examined on Solaris SPARC systems, and vice-versa.

Crash dumps from Solaris 7 and earlier releases may only be examined with the aid of the libkvm from the corresponding operating system release. If a crash dump from one operating system release is examined using the dmods from a different operating system release, changes in the kernel implementation may prevent some dcmds or walkers from working properly. mdb will issue a warning message if it detects this condition. Crash dumps from Solaris x86 systems may not be examined on Solaris SPARC systems, and vice-versa.

mdb provides support for debugging both 32-bit and 64-bit programs. Once it has examined the target and determined its data model, mdb automatically re-executes the mdb binary that has the same data model as the target, if necessary. This approach simplifies the task of writing debugger modules, because the modules that are loaded will use the same data model as the primary target. Only the 64-bit debugger may be used to debug 64-bit target programs. The 64-bit debugger can only be used on a system that is running the 64-bit operating environment.

The debugger may also need to re-execute itself when debugging a 32-bit process that execs a 64-bit process, or vice-versa. The handling of this situation is discussed in more detail under Interaction with Exec, below.

When a controlled process performs a successful exec(2), the behavior of the debugger is controlled by the ::set -o follow_exec_mode option, as described above. If the debugger and victim process have the same data model, then the "stop" and "follow" modes determine whether mdb automatically continues the target or returns to the debugger prompt following the exec. If the debugger and victim process have a different data model, then the "follow" behavior causes mdb to automatically re-exec the mdb binary with the appropriate data model and to re-attach to the process, still stopped on return from the exec. Not all debugger state is preserved across this re-exec.

If a 32-bit victim process execs a 64-bit program, then "stop" returns to the command prompt, but the debugger is no longer able to examine the process because it is now using the 64-bit data model. To resume debugging, execute the ::release -a dcmd, quit mdb, and then execute mdb -p pid to re-attach the 64-bit debugger to the process.
If a 64-bit victim process execut 32-bit program, then "stop" will return to the command prompt, but the debugger will only provide limited capabilities for examining the new process. All built-in dcmds will work as advertised, but loadable dcmds will not since they do not perform data model conversion of structures. The user should release and re-attach the debugger to the process as described above in order to restore full debugging capabilities.

If the debugger is attached to a process that is stopped by job control (that is, it stopped in response to SIGTSTP, SIGTTIN, or SIGTTOU), the process may not be able to be set running again when it is continued by a continue dcmd. If the victim process is a member of the same session (that is, it shares the same controlling terminal as mdb), mdb attempts to bring the associated process group to the foreground and to continue the process with SIGCONT to resume it from job control stop. When mdb is detached from such a process, it restores the process group to the background before exiting. If the victim process is not a member of the same session, mdb cannot safely bring the process group to the foreground, so it continues the process with respect to the debugger, but the process remains stopped by job control. mdb prints a warning in this case, and the user must issue an "fg" command from the appropriate shell in order to resume the process.

When mdb attaches to a running process, the process is stopped and remains stopped until one of the continue dcmds is applied, or the debugger quits. If the -onostop option is enabled prior to attaching the debugger to a process with -p, or prior to issuing an :A command, mdb attaches to the process but does not stop it. While the process is still running, it may be inspected as usual (albeit with inconsistent results) and breakpoints or other tracing flags may be enabled. If the :c or ::cont dcmds are executed while the process is running, the debugger waits for the process to stop. If no traced software events occur, the user can send an interrupt (^C) after :c or ::cont to force the process to stop and return control to the debugger.

mdb releases the current running process (if any) when the :R, ::release, :r, :run, $q, or ::quit dcmds are executed, or when the debugger terminates as the result of an EOF or signal. If the process was originally created by the debugger using :r or ::run, it will be forcibly terminated as if by SIGKILL when it is released. If the process was already running prior to attaching mdb to it, it will be set running again when it is released. A process may be released and left stopped and abandoned using the ::release -a option.

The :list, ::offsetof, ::print, and ::sizeof dcmds require that one or more load objects contain compressed symbolic debugging information suitable for use with mdb. This information is currently only available for certain Solaris kernel modules.

The Solaris Modular Debugger Guide provides a more detailed description of mdb features, as well as information for debugger module developers.

The header file <sys/mdb_modapi.h> contains prototypes for the functions in the MDB Module API, and the SUNWmdbdm package provides source code for an example module in the directory /usr/demo/mdb.
NAME
mesg – permit or deny messages

SYNOPSIS
mesg [-n | -y | n | y]

DESCRIPTION
The mesg utility will control whether other users are allowed to send messages via write(1), talk(1), or other utilities to a terminal device. The terminal device affected is determined by searching for the first terminal in the sequence of devices associated with standard input, standard output, and standard error, respectively. With no arguments, mesg reports the current state without changing it. Processes with appropriate privileges may be able to send messages to the terminal independent of the current state.

OPTIONS
The following options are supported:
-n | n Denies permission to other users to send message to the terminal. See write(1).
-y | y Grants permission to other users to send messages to the terminal.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of mesg: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 if messages are receivable.
1 if messages are not receivable.
2 on error.

FILES
/dev/tty* terminal devices
/dev/pts/* terminal devices

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
talk(1), write(1), attributes(5), environ(5), standards(5)
message(1F)

NAME  message – puts its arguments on FMLI message line

SYNOPSIS  message [-t] [-b [num]] [-o] [-w] [string]
message [-f] [-b [num]] [-o] [-w] [string]
message [-p] [-b [num]] [-o] [-w] [string]

DESCRIPTION  The message command puts string out on the FMLI message line. If there is no string, the stdin input to message will be used. The output of message has a duration (length of time it remains on the message line). The default duration is "transient": it or one of two other durations can be requested with the mutually-exclusive options below.

Messages displayed with message -p will replace (change the value of) any message currently displayed or stored via use of the permanentmsg descriptor. Likewise, message -f will replace any message currently displayed or stored via use of the framemsg descriptor. If more than one message in a frame definition file is specified with the -p option, the last one specified will be the permanent duration message.

The string argument should always be the last argument.

OPTIONS

- t  Explicitly defines a message to have transient duration. Transient messages remain on the message line only until the user presses another key or a CHECKWORLD occurs. The descriptors itemmsg, fieldmsg, invalidmsg, choicemsg, the default-if-not-defined value of oninterrupt, and FMLI generated error messages (that is, from syntax errors) also output transient duration messages. Transient messages take precedence over both frame messages and permanent messages.

- f  Defines a message to have "frame" duration. Frame messages remain on the message line as long as the frame in which they are defined is current. The descriptor framemsg also outputs a frame duration message. Frame messages take precedence over permanent messages.

- p  Defines a message to have "permanent" duration. Permanent messages remain on the message line for the length of the FMLI session, unless explicitly replaced by another permanent message or temporarily superseded by a transient message or frame message. A permanent message is not affected by navigating away from, or by closing, the frame which generated the permanent message. The descriptor permanentmsg also outputs a permanent duration message.

- b[num]  Rings the terminal bell num times, where num is an integer from 1 to 10. The default value is 1. If the terminal has no bell, the screen will flash num times instead, if possible.

- o  Forces message to duplicate its message to stdout.

- w  Turns on the working indicator.
EXAMPLE 1 A sample output of `message` on the message line:

When a value entered in a field is invalid, ring the bell 3 times and then display
Invalid Entry: Try again! on the message line:

```bash
invalidmsg=`message -b 3 "Invalid Entry: Try again!"`
```

Display a message that tells the user what is being done:

```bash
done=`message EDITOR has been set in your environment` close
```

Display a message on the message line and `stdout` for each field in a form (a pseudo-"field duration" message).

```bash
fieldmsg=`message -o -f "Enter a filename."`
```

Display a blank transient message (effect is to "remove" a permanent or frame duration message).

```bash
done=`message ""` `nop
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

sleep(1), attributes(5)

NOTES

If `message` is coded more than once on a single line, it may appear that only the right-most instance is interpreted and displayed. Use `sleep(1)` between uses of `message` in this case, to display multiple messages.

`message -f` should not be used in a stand-alone backquoted expression or with the `init` descriptor because the frame is not yet current when these are evaluated.

In cases where `message -f "string"` is part of a stand-alone backquoted expression, the context for evaluation of the expression is the previously current frame. The previously current frame can be the frame that issued the `open` command for the frame containing the backquoted expression, or it can be a frame given as an argument when `fmli` was invoked. That is, the previously current frame is the one whose frame message will be modified.

Permanent duration messages are displayed when the user navigates to the command line.
mixerctl(1)

NAME    mixerctl – audio mixer control command line application

SYNOPSIS  /usr/sbin/mixerctl [-a | -d dev] [-iv] [-e | -o]

DESCRIPTION Some audio devices support the audio mixer functionality. See mixer(7I) for a complete description of the audio mixer. The mixerctl command is used to control the mode of the audio mixer and to get information about the audio mixer and the audio device. See audio(7I) for details.

OPTIONS The following options are supported. If none are specified, option -i is assumed:

- a   The command applies to all audio devices.
- d dev The dev argument specifies an alternate audio control device for the command to use.
- e   Enables the audio mixer function if the audio device supports it. If supported, the audio mixer may be enabled at any time. The command silently ignores the enable option if the audio mixer is already enabled.
- i   Prints the audio device type information for the device and indicates whether the audio device uses the audio mixer. If the device does use the audio mixer, this option displays the audio mixer’s mode.
- o   Turns off the audio mixer function if the audio device supports it. If supported, the audio mixer may be turned off if only one process has the device opened with the O_RDWR flag, or, if two different processes have the device opened, one with the O_RDONLY flag and the other with the O_WRONLY flag. (See open(2).) The command silently ignores the disable option if the audio mixer function is already disabled.
- v   Verbose mode. Prints the audio_info_t structure for the device, along with the device type information. This option implies the -i option.

ENVIRONMENT VARIABLES AUDIODEV If the -d and -a options are not specified, the AUDIODEV environment variable is consulted. If set, AUDIODEV will contain the full path name of the user’s default audio device. The default audio device will be converted into a control device, and then used. If the AUDIODEV variable is not set, /dev/audioctl is used.

FILES /dev/audioctl

/dev/sound/{0...n}ctl
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SPARC, x86</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWauda</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO audioconvert(1), audioplay(1), audiorecord(1), open(2), attributes(5), usb_ac(7D), audio(7I), audio_support(7I), mixer(7I)
The `mkdir` command creates the named directories in mode 777 (possibly altered by the file mode creation mask `umask(1)`).

Standard entries in a directory (for instance, the files ".", for the directory itself, and ". ..", for its parent) are made automatically. `mkdir` cannot create these entries by name. Creation of a directory requires write permission in the parent directory.

The owner-ID and group-ID of the new directories are set to the process’s effective user-ID and group-ID, respectively. `mkdir` calls the `mkdir(2)` system call.

To change the setgid bit on a newly created directory, you must use `chmod g+s` or `chmod g-s` after executing `mkdir`.

The setgid bit setting is inherited from the parent directory.

The following options are supported:

- `-m mode` This option allows users to specify the mode to be used for new directories. Choices for modes can be found in `chmod(1)`.
- `-p` With this option, `mkdir` creates `dir` by creating all the non-existing parent directories first. The mode given to intermediate directories will be the difference between 777 and the bits set in the file mode creation mask. The difference, however, must be at least 300 (write and execute permission for the user).

The following operand is supported:

- `dir` A path name of a directory to be created.

See `largefile(5)` for the description of the behavior of `mkdir` when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

The following example:

```bash
example% mkdir -p ltr/jd/jan
```

creates the subdirectory structure `ltr/jd/jan`.

See `environ(5)` for descriptions of the following environment variables that affect the execution of `mkdir`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The following exit values are returned:

- 0 All the specified directories were created successfully or the `-p` option was specified and all the specified directories now exist.
An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsuc</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

rm(1), sh(1), umask(1), intro(2), mkdir(2), attributes(5), environ(5), largefile(5), standards(5)
The `mkmsgs` utility is used to create a file of text strings that can be accessed using the text retrieval tools (see `gettext(1)`, `srtxt(1)`, `exstr(1)`, and `gettext(3C)`). It will take as input a file of text strings for a particular geographic locale (see `setlocale(3C)`) and create a file of text strings in a format that can be retrieved by both `gettext(1)` and `gettext(3C)`. By using the `-i` option, you can install the created file under the `/usr/lib/locale/locale/LC_MESSAGES` directory (`locale` corresponds to the language in which the text strings are written).

`inputstrings` is the name of the file that contains the original text strings. `msgfile` is the name of the output file where `mkmsgs` writes the strings in a format that is readable by `gettext(1)` and `gettext(3C)`. The name of `msgfile` can be up to 14 characters in length, but may not contain either `\0` (null) or the ASCII code for `/` (slash) or `:` (colon).

The input file contains a set of text strings for the particular geographic locale. Text strings are separated by a newline character. Nongraphic characters must be represented as alphabetic escape sequences. Messages are transformed and copied sequentially from `inputstrings` to `msgfile`. To generate an empty message in `msgfile`, leave an empty line at the correct place in `inputstrings`.

Strings can be changed simply by editing the file `inputstrings`. New strings must be added only at the end of the file; then a new `msgfile` file must be created and installed in the correct place. If this procedure is not followed, the retrieval function will retrieve the wrong string and software compatibility will be broken.

The following options are supported:

- `-o` Overwrite `msgfile`, if it exists.
- `-i locale` Install `msgfile` in the `/usr/lib/locale/locale/LC_MESSAGES` directory. Only someone who is super user or a member of group `bin` can create or overwrite files in this directory. Directories under `/usr/lib/locale` will be created if they do not exist.

**EXAMPLES**

**EXAMPLE 1** Using the `mkmsgs` command.

The following example shows an input message source file `C.str`:

```plaintext
File %s:	 cannot be opened
%s: Bad directory
...
write error
...
```

```bash
mkmsgs -o [-i locale] inputstrings msgfile
```
EXAMPLE 1 Using the `mkmsgs` command.  (Continued)

EXAMPLE 2 Using Input Strings From `C.str` to Create Text Strings in a File

The following command uses the input strings from `C.str` to create text strings in the appropriate format in the file `UX` in the current directory:
```
example% mkmsgs C.str UX
```

EXAMPLE 3 Using Input Strings From `FR.str` to Create Text Strings in a File

The following command uses the input strings from `FR.str` to create text strings in the appropriate format in the file `UX` in the directory `/usr/lib/locale/fr/LC_MESSAGES`:
```
example% mkmsgs -i fr FR.str UX
```

These text strings would be accessed if you had set the environment variable `LC_MESSAGES=fr` and then invoked one of the text retrieval tools listed at the beginning of the DESCRIPTION section.

FILES
```
/usr/lib/locale/locale/LC_MESSAGES/*
message files created by mkmsgs
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
</tbody>
</table>

SEE ALSO

`exstr(1), gettxt(1), srchtxt(1), gettxt(3C), setlocale(3C), attributes(5)`
**NAME**

mkstr – create an error message file by massaging C source files

**SYNOPSIS**

```
/usr/ucb/mkstr [-] messagefile prefix filename...
```

**DESCRIPTION**

The mkstr utility creates files of error messages. You can use mkstr to make programs with large numbers of error diagnostics much smaller, and to reduce system overhead in running the program — as the error messages do not have to be constantly swapped in and out.

mkstr processes each of the specified filenames, placing a massaged version of the input file in a file with a name consisting of the specified prefix and the original source file name. A typical example of using mkstr would be:

```
mkstr pistrings processed *.c
```

This command would cause all the error messages from the C source files in the current directory to be placed in the file pistrings and processed copies of the source for these files to be placed in files whose names are prefixed with processed.

To process the error messages in the source to the message file, mkstr keys on the string ‘error(‘ in the input stream. Each time it occurs, the C string starting at the ‘‘’ is placed in the message file followed by a null character and a NEWLINE character; the null character terminates the message so it can be easily used when retrieved, the NEWLINE character makes it possible to sensibly cat the error message file to see its contents. The massaged copy of the input file then contains a lseek pointer into the file which can be used to retrieve the message, that is:

```c
 char efilname[] = "/usr/lib/pi_strings*;
 int efil = -1;

 error(a1, a2, a3, a4) {
 char
 buf[256];
 if (efil < 0) {
 efil = open(efilname, 0);
 if (efil < 0) {
 oops:
 perror (efilname);
 exit (1);
 }
 if (lseek(efil, (long) a1, 0) | | read(efil, buf, 256) <= 0)
 goto oops;
 printf(buf, a2, a3, a4);
 }
 }
```

**OPTIONS**

- Place error messages at the end of the specified message file for recompiling part of a large mkstr ed program.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO

xstr(1), attributes(5)
The more utility is a filter that displays the contents of a text file on the terminal, one screenful at a time. It normally pauses after each screenful. /usr/bin/more then prints --More-- and /usr/xpg4/bin/more then prints file at the bottom of the screen. If more is reading from a file rather than a pipe, the percentage of characters displayed so far is also shown.

The more utility scrolls up to display one more line in response to a RETURN character. more displays another screenful in response to a SPACE character. Other commands are listed below.

The page utility clears the screen before displaying the next screenful of text. page only provides a one-line overlap between screens.

The more utility sets the terminal to NOECHO mode, so that the output can be continuous. Commands that you type do not normally show up on your terminal, except for the / and ! commands.

The /usr/bin/more utility exits after displaying the last specified file. /usr/xpg4/bin/more prompts for a command at the last line of the last specified file.

If the standard output is not a terminal, more acts just like cat(1), except that a header is printed before each file in a series.

The following options are supported for both /usr/bin/more and /usr/xpg4/bin/more:

- **c** Clear before displaying. Redraws the screen instead of scrolling for faster displays. This option is ignored if the terminal does not have the ability to clear to the end of a line.

- **d** Displays error messages rather than ringing the terminal bell if an unrecognized command is used. This is helpful for inexperienced users.

- **s** Squeeze. Replaces multiple blank lines with a single blank line. This is helpful when viewing nroff(1) output on the screen.

The following options are supported for /usr/bin/more only:
Does not fold long lines. This is useful when lines contain nonprinting characters or escape sequences, such as those generated when nroff(1) output is piped through ul(1).

Does not treat FORMFEED characters (Control-l) as page breaks. If -l is not used, more pauses to accept commands after any line containing a ^L character (Control-l). Also, if a file begins with a FORMFEED, the screen is cleared before the file is printed.

Normally, more ignores control characters that it does not interpret in some way. The -r option causes these to be displayed as ^C where C stands for any such control character.

Suppresses generation of underlining escape sequences. Normally, more handles underlining, such as that produced by nroff(1), in a manner appropriate to the terminal. If the terminal can perform underlining or has a stand-out mode, more supplies appropriate escape sequences as called for in the text file.

Normally, more exits when it comes to the end of its input. With -w, however, more prompts and waits for any key to be struck before exiting.

Displays the indicated number of lines in each screenful, rather than the default (the number of lines in the terminal screen less two).

Start up at linenumber.

Start up two lines above the line containing the regular expression pattern. Note: Unlike editors, this construct should not end with a ‘/’. If it does, then the trailing slash is taken as a character in the search pattern.

The following options are supported for /usr/xpg4/bin/more only:

Exits immediately after writing the last line of the last file in the argument list.

Performs pattern matching in searches without regard to case.

Specifies the number of lines per screenful. The number argument is a positive decimal integer. The -n option overrides any values obtained from the environment.

For each file examined, initially executes the more command in the command argument. If the command is a positioning command, such as a line number or a regular expression search, set the current position to represent the final results of the command, without writing any intermediate lines of the file. For example, the two commands:
more -p 1000j file
more -p 1000G file

are equivalent and start the display with the current position at line 1000, bypassing the lines that j would write and scroll off the screen if it had been issued during the file examination. If the positioning command is unsuccessful, the first line in the file will be the current position.

-t tagstring

Writes the screenful of the file containing the tag named by the tagstring argument. See the ctags(1) utility.

-u

Treats a backspace character as a printable control character, displayed as a ^H (Control-h), suppressing backspacing and the special handling that produces underlined or standout-mode text on some terminal types. Also, does not ignore a carriage-return character at the end of a line.

If both the -t tagstring and -p command (or the obsolescent +command) options are given, the -t tagstring is processed first.

 USAGE

Environment

more uses the terminal's terminfo(4) entry to determine its display characteristics.

more looks in the environment variable MORE for any preset options. For instance, to page through files using the -c mode by default, set the value of this variable to -c. (Normally, the command sequence to set up this environment variable is placed in the .login or .profile file).

Commands

The commands take effect immediately. It is not necessary to type a carriage return unless the command requires a file, command, tagstring, or pattern. Up to the time when the command character itself is given, the user may type the line kill character to cancel the numerical argument being formed. In addition, the user may type the erase character to redisplay the ‘- - More - - (xx%)’ or file message.

In the following commands, i is a numerical argument (1 by default).

i SPACE          Display another screenful, or i more lines if i is specified.
i RETURN         Display another line, or i more lines, if specified.
i b               (Control-b) Skip back i screenfuls and then print a screenful.
i ^B              (Control-d) Scroll forward one half screenful or i more lines. If i is specified, the count becomes the default for subsequent d and u commands.
i d               Skip i screens full and then print a screenful.
Help. Give a description of all the more commands.

^L (Control-l) Refresh.

i Search for the i th occurrence of the last pattern entered.

q Q Exit from more.

is Skip i lines and then print a screenful.

v Drop into the vi editor at the current line of the current file.

iz Same as SPACE, except that i, if present, becomes the new default number of lines per screenful.

= Display the current line number.

i/pattern Search forward for the i th occurrence of the regular expression pattern. Display the screenful starting two lines before the line that contains the i th match for the regular expression pattern, or the end of a pipe, whichever comes first. If more is displaying a file and there is no match, its position in the file remains unchanged. Regular expressions can be edited using erase and kill characters. Erasing back past the first column cancels the search command.

:command Invoke a shell to execute command. The characters % and !, when used within command are replaced with the current filename and the previous shell command, respectively. If there is no current filename, % is not expanded. Prepend a backslash to these characters to escape expansion.

:f Display the current filename and line number.

i:n Skip to the i th next filename given in the command line, or to the last filename in the list if i is out of range.

i:p Skip to the i th previous filename given in the command line, or to the first filename if i is out of range. If given while more is positioned within a file, go to the beginning of the file. If more is reading from a pipe, more simply rings the terminal bell.

:q :Q Exit from more (same as q or Q).

The following commands are available only in /usr/bin/more:

' Single quote. Go to the point from which the last search started. If no search has been performed in the current file, go to the beginning of the file.

. Dot. Repeat the previous command.

^ \ Halt a partial display of text. more stops sending output, and displays the usual --More-- prompt. Some output is lost as a result.
The following commands are available only in /usr/xpg4/bin/more:

- `i` (Control-f) Skip `i` screens full and print a screenful. (Same as `if`.)
- `^G` (Control-g) Display the current line number (same as `=`).
- `ig` Go to line number `i` with the default of the first line in the file.
- `iG` Go to line number `i` with the default of the last line in the file.
- `ij` Display another line, or `i` more lines, if specified. (Same as `iRETURN`.)
- `ik` Scroll backwards one or `i` lines, if specified.
- `mletter` Mark the current position with the name `letter`.
- `N` Reverse direction of search.
- `r` Refresh the screen.
- `R` Refresh the screen, discarding any buffered input.
- `iu` (Control-u) Scroll backwards one half a screen of `i` lines, if specified. If `i` is specified, the count becomes the new default for subsequent `d` and `u` commands.
- `ZZ` Exit from `more` (same as `q`).
- `:e file` Examine (display) a new file. If no `file` is specified, the current file is redisplayed.
- `:t tagstring` Go to the tag named by the `tagstring` argument and scroll/rewrite the screen with the tagged line in the current position. See the `ctags` utility.
- `` Return to the position that was previously marked with the name `letter`.
- `'` Return to the position from which the last move of more than a screenful was made. Defaults to the beginning of the file.
- `i?[!]pattern` Search backward in the file for the `i`th line containing the `pattern`. The `!` specifies to search backward for the `i`th line that does not contain the `pattern`.
- `i/` Search forward in the file for the `i`th line that does not contain the `pattern`.
- `!` Invoke a shell or the specified command.

**Large File Behavior**

See `largefile(5)` for the description of the behavior of `more` and `page` when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).
See environ(5) for descriptions of the following environment variables that affect the execution of more: LANG, LC_ALL, LC_COLLATE (/usr/xpg4/bin/more only), LC_CTYPE, LC_MESSAGES, NLSPATH, and TERM.

The following environment variables also affect the execution of /usr/xpg4/bin/more:

- **COLUMNS**: Overrides the system selected horizontal screen size.
- **EDITOR**: Used by the v command to select an editor.
- **LINES**: Overrides the system selected vertical screen size. The -n option has precedence over LINES in determining the number of lines in a screen.
- **MORE**: A string specifying options as described in the OPTIONS section, above. As in a command line, The options must be separated by blank characters and each option specification must start with a -. Any command line options are processed after those specified in MORE as though the command line were: more $MORE options operands

The following exit values are returned:

- **0**: Successful completion.
- **>0**: An error occurred.

See /usr/lib/more.help help file for /usr/bin/more and /usr/bin/page only.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/more</th>
<th>/usr/bin/page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/more</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE TYPE</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>CSI</td>
</tr>
<tr>
<td>Interface Stability</td>
</tr>
</tbody>
</table>

See also cat(1), csh(1), ctags(1), man(1), nroff(1), script(1), sh(1), ul(1), environ(4), terminfo(4), attributes(5), environ(5), largefile(5), standards(5), regcomp(3C)
<table>
<thead>
<tr>
<th>more(1)</th>
<th>regex(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/xpg4/bin/more</td>
<td>Skipping backwards is too slow on large files.</td>
</tr>
<tr>
<td>/usr/bin/more</td>
<td>This utility will not behave correctly if the terminal is not set up properly.</td>
</tr>
<tr>
<td>/usr/xpg4/bin/more</td>
<td></td>
</tr>
</tbody>
</table>
The `mp` program, when called without the `-D` or `-P` option, reads each `filename` in sequence and generates a prettified version of the contents in PostScript™ format, sent to standard output. If no `filename` argument is provided, `mp` reads the standard input. If the standard input is a terminal, input is terminated by an `EOF` signal, usually Control-d.

The `-D` and `-P` options require the target printer name as an argument and produce the Page Description Language (PDL) of the target printer. The `-D` option causes the PDL to output to stdout and the `-P` option causes the PDL to be directly spooled to the printer. In the absence of these options, `mp` will product default PostScript output.

The `mp` program accepts international text files of various Solaris locales and produces output which is proper for the specified locale. The output will also contain proper text layout. For instance, the output will contain bidirectional text rendering, and also shaping, since the complex text layout (CTL) is supported in `mp`.

Mail items, news articles, ordinary ASCII files, complete mail folders, and digests are all acceptable input formats for `mp`. The output format includes grayscale lozenges, or the outline of the same dimensions as the lozenges, containing banner information at the top and bottom of every page.

### OPTIONS

The following options are supported:

- `-a` Formats the file as a news article. The top banner contains the text: "Article from newsgroup", where `newsgroup` is the first news group found on the "Newsgroups:" line.

- `-A4` Uses A4 paper size (8.26 x 11.69 inches).

- `-c chars` The maximum number of characters to extract from the `gecos` field of the user’s `/etc/passwd` entry. The default is 18.

- `-C` Instead of using "\nFrom" to denote the start of new mail messages, `mp` will look for (and use) the value of the Content-Length: mail header. If the Content-Length doesn’t take you to the next "\nFrom", then it is wrong, and `mp` falls back to looking for the next "\nFrom" in the mail folder.

- `-d` Formats the file as a digest.
-D target_printer_name

Produces the PDL for the target printer. Requires X
Print Server connection. target_printer_name can be
either printer_name@machine[display_number] or just
printer_name. In the first form, mp tries to connect to the
X Print Server display machine[display_number] with
the target printer as printer_name.

-e

Assumes the ELM mail frontend intermediate file
format. Used when printing messages from within
ELM (using the "p" command), especially for printing
tagged messages. This option must be specified in your
ELM option setup.

-ff

Formats the file for use with a Filofax personal
organizer.

-fp

Formats the file for use with a Franklin Planner
personal organizer.

-F

Instead of printing who the mail article is for, the top
header will contain who the mail article is from. A
useful option for people with their own personal
printer.

-l

Formats output in landscape mode. Two pages of text
will be printed per sheet of paper.

-ll

Formats output in landscape mode. One page of text
will be printed per sheet of paper. This is useful for
printing files with longer than normal lines.

-L localenname

Provides the locale of the file to be printed. If this
command line option is not present, then mp looks for
the MP_LANG environment variable. If that is not
present, the LANG environment variable is used. If none
of these options are present, mp tries to determine the
locale it is running in. If it cannot determine the locale,
mp assumes it is running in the C locale.

-m

Formats the file as a mail folder, printing multiple
messages.

-M

Forces mp to use the mp.conf file for printing output
even if a prolog.ps file exists for that locale. Useful
when printing to non-native PostScript printers.

-n

Turns off the gray bars and associated information from
header and footer. Used to get output similar to output
of '1p filename'.

-o

Formats the file as an ordinary ASCII file.
-p prologue

Employs the file prologue as the PostScript/Xprt prologue file, overriding any previously defined file names. This file specifies the format of the print output. For PostScript output, the prologue file will have a .ps extension. For Xprt clients (when the -D option is specified), this file will have an .xpr extension. These files are defined in the SUPPLIED PROLOGUE FILES section below.

-P target_spool_printer

Spools the PDL to the target printer. No output is sent to stdout. Requires X Print Server connection.

target_spool_printer can be either

printer_name@machine[:display_number] or just

printer_name. In the first form, mp tries to connect to the display machine[:display_number] with the target printer as printer_name.

-PS

If the mail or digest message just has PostScript as the text of the message, this is normally just passed straight through. Specifying this option causes PostScript to be printed as text.

-s subject

Uses subject as the new subject for the printout. If you are printing ordinary ASCII files that have been specified on the command line, the subject will default to the name of each of these files.

-tm

Formats the file for use with the Time Manager personal organizer.

-ts

Formats the file for use with the Time/System International personal organizer.

-US

Uses US paper size (8.5 x 11 inches). This is the default paper size.

-u config_file_path

Specifies an alternate configuration file to the default file

/usr/lib/lp/locale/locale_name/mp/mp.conf.
The absolute file path name must be used.

-v

Prints the version number of this release of mp.

-w words

The maximum number of words to extract from the gecos field of the user’s /etc/passwd entry. The default is 3.

-z point_size

Prints the output text in the point size specified by point_size. The internal default is 12 points for portrait printing and 9 points for landscape printing.
Prints the usage line for mp. Notice that the ? character must be escaped if using csh(1).

**OPERANDS**

The following operand is supported:

`filename`  The name of the file to be read.

**EXAMPLES**

The mp print filter can be used to print files in any locale that is installed in the user's machine.

**EXAMPLE 1** Printing Japanese text files

Japanese text files encoded in the euc codeset can be printed in any non-Japanese PostScript printers by entering:

```
example% mp -L ja_JP.eucJP -M ja_JP_eucJP.txt | lp
```

Here, the -L option specifies the locale and the -M option invokes the mp.conf configuration file instead of the default prolog.ps file. In the case of ja_JP.eucJP, both `/usr/lib/lp/locale/ja_JP.eucJP/mp/mp.conf` and `/usr/openwin/lib/locale/ja_JP.eucJP/print/prolog.ps` files are present. Therefore, the -M option is used to override the precedence of the default prolog.ps file. Using `mp.conf` as the configuration file makes it possible to print to any PostScript printer.

The encoding of the locale specified by the -L option and that of the text file to be printed have to be the same. In the above Japanese file example, if the text file is encoded in Shift-JIS, use the following command, since the locale ja_JP.PCK is encoded in SJIS:

```
example% mp -L ja_JP.PCK -M SJIS.txt | lp
```

**EXAMPLE 2** Running in Xprt mode

If an X Print Server daemon (/usr/openwin/bin/Xprt) is running in any system in the network, mp can be invoked as follows, enabling it to output in any Page Description Language supported by Xprt (the default value of `display_number` is 2100):

```
example% setenv XPSERVERLIST "machine1[display_number1] \n machine2[display_number2] machine3[display_number3]"
```

or

```
example% setenv XPDISPLAY machine_name[display_number]
```

Using the options `-D printer_name[@machine[display_number]]` or `-P printer_name[@machine[display_number]]` gives the greatest precedence and mp tries to connect to Xprt running on `machine[display_number]` with `printer_name`. When not
EXAMPLE 2 Running in Xprt mode  (Continued)

specified, the default display_number value is 2100. If this fails, printer_name is tried with an Xprt display obtained from the following logic. The following is also valid if you enter only \texttt{-D printer_name} or \texttt{-P printer_name} on the command line.

\texttt{mp} checks XPSERVERLIST for a list of space-separated Xprt servers until it finds one which supports the \texttt{printer_name} argument. If none is found, \texttt{mp} checks the XPDISPLAY environment variable, which is of the form \texttt{machine[display_number]}. If that is also not set or not valid, \texttt{mp} tries to connect to the default display, :2100. If that is also not successful, \texttt{mp} exits with an error message.

To pipe the data to the target printer when XPSERVERLIST or XPDISPLAY is set, enter:

\begin{verbatim}
example$ mp -D printer_name -L ja_JP.eucJP -M ja_JP_eucJP.txt | lp -d printer_name
\end{verbatim}

For direct spooling when working in Xprt client mode, use the -P option:

\begin{verbatim}
example$ mp -P printer_name -L ja_JP.eucJP -M ja_JP_eucJP.txt
\end{verbatim}

EXAMPLE 3 Turning off the header and footer

Use the -n option to turn off the mp header and footer:

\begin{verbatim}
example$ mp -n mytext.txt | lp
\end{verbatim}

EXAMPLE 4 Printing long text lines

Use the -ll option to print text files with longer than 80 column lines in landscape mode:

\begin{verbatim}
example$ mp -ll mytext.txt | lp
\end{verbatim}

EXAMPLE 5 Specifying print point size

Use the -z option to specify any point size, in this case, 20 points:

\begin{verbatim}
example$ mp -z 20 mytext.txt | lp
\end{verbatim}

ENVIRONMENT VARIABLES

XPSERVERLIST  If the arguments to -D or -P is of the form \texttt{printer_name@machine[display_number]}, XPSERVERLIST is used only if the machine[display_number] does not support printer_name.
XPERVERLIST contains a space-separated list of Xprt displays to which to connect the printer. mp goes through the list sequentially to get an Xprt server that can support the given printer, exiting at the first instance where mp finds a display to which to connect. If this is not set, the environment variable XPDISPLAY is used instead.

**XPDISPLAY**
If the -D or -p option is specified in the command line with just the printer_name argument and no XPERVERLIST variable is set in the environment, the XPDISPLAY variable is used to determine the machine[display_number] running the X Print Server to connect the client. If XPDISPLAY is also not set, the print server startup script starts an Xprt server at port 2100 of the machine in which the client is running. The script terminates the print server once the job is over. If XPDISPLAY is set, the mp client tries to contact the print server running at XPDISPLAY. In this case, no attempt is made to start the server if it is not running.

**MP_PROLOGUE**
Used to determine the directory where the page formatting files (.xpr or .ps) are kept. These files determine page decorations, number of logical pages per physical page, landscape or portrait format, and so forth. In the absence of MP_PROLOGUE, the default location of the directory is /usr/lib/lp/locale/C/mp.

**MP_LANG**
If neither of the -D or -p options is specified, a prologue file is prepended to the output to be printed. The prologue file is called /usr/openwin/lib/locale/localename/print/prolog.ps or /usr/lib/lp/locale/localename/mp/prolog.ps, where localename is the value of the MP_LANG or LANG environment variable, if present. If both variables are present, the file /usr/openwin/lib/locale/localename/print/prolog.ps is given preference due to backward compatibility reasons. If either of these files are not present, and the -D option is not specified, a configuration file of the locale called /usr/lib/lp/locale/localename/mp/mp.conf is used as the source of the configuration information that substitutes the prologue information for printing. The presence of prolog.ps disables mp.conf for backward compatibility.

**EXIT STATUS**
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

**SUPPLIED PROLOGUE FILES**
The following prologue files are provided. Files with .ps extensions are for the PostScript output. Files with .xpr extensions are for the Print Server client. .xpr files are created for 300dpi printers and will scale to other resolution values.
### FILES

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp.common.ps</td>
<td>Common prologue file for all other .ps files in this directory.</td>
</tr>
<tr>
<td>mp.pro.ps</td>
<td>Used by default.</td>
</tr>
<tr>
<td>mp.pro.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.ff.ps</td>
<td>Used if the <code>-ff</code> option is in effect.</td>
</tr>
<tr>
<td>mp.pro.ff.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.fp.ps</td>
<td>Used if the <code>-fp</code> option is in effect.</td>
</tr>
<tr>
<td>mp.pro.fp.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.tm.ps</td>
<td>Used if the <code>-tm</code> option is in effect.</td>
</tr>
<tr>
<td>mp.pro.tm.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.ts.ps</td>
<td>Used if the <code>-ts</code> option is in effect.</td>
</tr>
<tr>
<td>mp.pro.ts.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.alt.ps</td>
<td>An alternative modification of the default prologue file which outputs the page number in the right corner of the bottom banner.</td>
</tr>
<tr>
<td>mp.pro.alt.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.l.ps</td>
<td>Prologue file used for landscape outputs.</td>
</tr>
<tr>
<td>mp.pro.l.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.ll.ps</td>
<td>Prologue file used for landscape outputs, when printing files with longer than normal lines.</td>
</tr>
<tr>
<td>mp.pro.ll.xpr</td>
<td></td>
</tr>
<tr>
<td>mp.pro.altl.ps</td>
<td>Alternate prologue file used for landscape outputs.</td>
</tr>
<tr>
<td>mp.pro.altl.xpr</td>
<td></td>
</tr>
</tbody>
</table>

**.cshrc**
Initialization file for `csh(1)`.

**.mailrc**
Initialization file for `mail(1)`.

`/usr/bin/mp`
Executable.

`/usr/lib/lp/locale/C/mp/mp.conf`
Default configuration file.

`/usr/lib/lp/locale/C/mp/mp.common.ps`
Common prologue file for all other .ps files in this directory. Not for .xpr files.

`/usr/lib/lp/locale/C/mp/mp.pro.ps`  
Default prologue files for mail printing.

`/usr/lib/lp/locale/C/mp/mp.pro.l.ps`  
Default prologue files for landscape format.
Default prologue files for landscape format with one column per page. Useful when printing files with long lines.

Alternate prologue files for landscape format.

Alternative "default" prologue files. Insert page numbers in the bottom right corner of each page.

Default prologue files for Filofax format.

Default prologue files for Franklin Planner format.

Default prologue files for Time Manager format.

Default prologue files for Time/System International format.

Default locale-specific prologue file as an alternative to the mp.conf file. See ENVIRONMENT VARIABLES for more detail on the relationship.

The structure and format for mp.conf and .xpr files are documented in the International Language Environments Guide. Refer to this document if you need to use alternate fonts, including Printer Resident Fonts, or if you want to make changes to output format.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWmp</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), mail(1), mailtool(1), attributes(5)

International Language Environments Guide
mpss.so.1 – shared object for setting preferred page size

mpss.so.1

The mpss.so.1 shared object provides a means by which the preferred stack and/or heap page size can be selectively configured for launched processes and their descendants. To enable mpss.so.1, the following string needs to be present in the environment (see ld.so.1(1)) along with one or more MPSS (Multiple Page Size Support) environment variables:

LD_PRELOAD=$LD_PRELOAD:mpss.so.1

Once preloaded, the mpss.so.1 shared object reads the following environment variables to determine any preferred page size requirements and any processes these may be specific to.

MPSSHAP=size
MPSSSTACK=size

MPSSHAP and MPSSSTACK specify the preferred page sizes for the heap and stack, respectively. The specified page size(s) are applied to all created processes.

size must be a supported page size (see pagesize(1)) or 0, in which case the system will select an appropriate page size (see memcntl(2)).

size can be qualified with K, M, G, or T to specify Kilobytes, Megabytes, Gigabytes, or Terabytes respectively.

MPSSCFGFILE=config-file

config-file is a text file which contains one or more mpss configuration entries of the form:

exec-name exec-args:heap-size:stack-size

exec-name specifies the name of an application or executable. The corresponding preferred page size(s) are set for newly created processes (see getexecname(3C)) that match the first exec-name found in the file.

exec-name can be a full pathname, a base name or a pattern string. See File Name Generation in sh(1) for a discussion of pattern matching.

exec-args is an optionally specified pattern string to match against arguments. Preferred page size(s) are set only if exec-args is not specified or occurs within the arguments to exec-name.

If heap-size and/or stack-size are not specified, the corresponding preferred page size(s) will not be set.
MPSCFGFILE takes precedence over MPSSHARE and MPSSSTACK. When MPSCFGFILE is not set, preferred page size settings are taken from file /etc/mpss.conf if it exists.

**MPSSERRFILE=pathname**

By default, error messages are logged via syslog(3C) using level LOG_ERR and facility LOG_USER. If MPSSERRFILE contains a valid pathname (such as /dev/stderr), error messages will be logged there instead.

**EXAMPLE 1** Configuring preferred page sizes using MPSCFGFILE

The following Bourne shell commands (see sh(1)) configure the preferred page sizes to a select set of applications with exec names that begin with foo, using the MPSCFGFILE environment variable. The MPSS configuration file, mpsscfg, is assumed to have been previously created via a text editor like vi(1). The cat(1) command is only dumping out the contents.

```
example$ LD_PRELOAD=$LD_PRELOAD:mpss.so.1
example$ MPSCFGFILE=mpsscfg
example$ export LD_PRELOAD MPSCFGFILE
example$ cat $MPSCFGFILE
foo*:512K:64K
```

Once the application has been started, pmap (see proc(1)) can be used to view the actual page sizes configured:

```
example$ foobar
example$ pmap -s 'pgrep foobar'
```

If the desired page size is not configured (shown in the pmap output), it may be due to errors in the MPSS configuration file or environment variables. Check the error log (by default: /var/adm/messages) for errors.

If no errors can be found, resource or alignment constraints may be responsible. See the NOTES section.

**EXAMPLE 2** Configuring preferred page sizes using MPSSHARE and MPSSSTACK

The following Bourne shell commands configure 512K heap and 64K stack preferred page sizes for all applications using the MPSSHARE and MPSSSTACK environment variables.

```
example$ LD_PRELOAD=$LD_PRELOAD:mpss.so.1
example$ MPSSHARE=512K
example$ MPSSSTACK=64K
example$ export LD_PRELOAD MPSSHARE MPSSSTACK
```
EXAMPLE 3 Precedence rules (continuation from Example 2)

The preferred page size configuration in MPSSCFGFILE overrides MPSSHEAP and MPSSSTACK. Appending the following commands to those in Example 2 would mean that all applications will be configured with 512K heap and 64K stack preferred page sizes with the exception of those applications, the ls command, and all applications beginning with ora that have ora1 as an argument, in the configuration file.

```
example$ MPSSCFGFILE=mpsscfg2
example$ export MPSSCFGFILE
example$ cat $MPSSCFGFILE
ls::
ora* ora1:4m:4m
```

FILES

/usr/lib/ld/map.bssalign A template link-editor mapfile for aligning bss (see NOTES).
/etc/mpss.conf Configuration file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

cat(1), ld(1), ld.so.1(1), pagesize(1), ppgsz(1), proc(1), sh(1), vi(1), exec(2), fork(2), memcntl(2), getexecname(3C), getpagesize(3C), syslog(3C), proc(4), attributes(5)

NOTES

The heap and stack preferred page sizes are inherited. A child process has the same preferred page sizes as its parent. On exec(2), the preferred page sizes are set back to the default system page size unless a preferred page size has been configured via the mpss shared object.

ppgsz(1), a proc tool, can also be used to set the preferred stack and/or heap page sizes. It cannot selectively configure the page size for descendents based on name matches.

See also NOTES under ppgsz(1).
msgfmt(1)

NAME
msgfmt – create a message object from a message file

SYNOPSIS
msgfmt [-D dir | --directory=dir] [-f | --use-fuzzy] [-g]
[--verbose] filename.po...

DESCRIPTION
The msgfmt utility creates message object files from portable object files
(filename.po), without changing the portable object files.

The .po file contains messages displayed to users by system commands or by
application programs. .po files can be edited. The messages in these files can be
rewritten in any language supported by the system.

The xgettext(1) command can be used to create .po files from script or programs.

msgfmt interprets data as characters according to the current setting of the LC_CTYPE
locale category or according to the codeset specified in the .po file.

OPTIONS
The following options are supported:
- -D dir
   --directory=dir  Adds dir to the list for input files search.
- -f
   --use-fuzzy     Uses fuzzy entries in output. If this option is not
                   specified, fuzzy entries are not included into the
                   output. These options are ignored if Solaris message
catalogs are processed.
- -g
   Directs the utility to generate the GNU-compatible
message catalog file. This option cannot be specified
with the -s option.
- -o output-file
   --output=output-file  Specifies the output file name as output-file. All domain
directives and duplicate msgids in the .po file are
ignored.
- -s
   Directs the utility to generate the Solaris message
catalog file. This option cannot be specified with the -g
option.
- --strict
   Directs the utility to append the suffix .mo to the
   generating message object file name if it doesn’t have
   this suffix. This option is ignored if Solaris message
catalogs are processed.
- -v
   --verbose
   Verbose. Lists duplicate message identifiers if Solaris
message catalog files are processed. Message strings are
not redefined.
If GNU-compatible message files are processed, this option detects and diagnoses input file anomalies which might represent translation errors. The msgid and msgstr strings are studied and compared. It is considered abnormal if one string starts or ends with a newline while the other does not. Also, if the string represents a format string used in a printf-like function, both strings should have the same number of % format specifiers, with matching types. If the flag c-format appears in the special comment ‘#’ for this entry, a check is performed.

The format of portable object files (.po files) is defined as follows. Each .po file contains one or more lines, with each line containing either a comment or a statement. Comments start the line with a pound sign (#) and end with the newline character. All comments (except special comments described later) and empty lines are ignored. The format of a statement is:

directive  value

Each directive starts at the beginning of the line and is separated from value by white space (such as one or more space or tab characters). value consists of one or more quoted strings separated by white space. Use any of the following types of directives for the Solaris message file:

domain  domainname
msgid  message_identifier
msgstr  message_string

For a GNU-compatible message file, use any of the following types of directives:

domain  domainname
msgid  message_identifier
msgid_plural  untranslated_string_plural
msgstr  message_string
msgstr[n]  message_string

The behavior of the domain directive is affected by the options used. See OPTIONS for the behavior when the -o or --output-file options are specified. If the -o or --output-file options are not specified, the behavior of the domain directive is as follows:

- All msgids from the beginning of each .po file to the first domain directive are put into a default message object file. The default message object file is named messages.mo, if the Solaris message catalog file format is used to generate the message object file or if the --strict option is specified. Otherwise, the default message object file is named messages.
When `msgfmt` encounters a `domain domainname` directive in the `.po` file, all following `msgid` until the next `domain` directive are put into the message object file, named `domainname.mo`, if the Solaris message catalog file format is used to generate the message object file or if the `--strict` option is specified. Otherwise, the `msgid`s are put into the message object file named `domainname`.

Duplicate `msgid`s are defined in the scope of each domain. That is, a `msgid` is considered a duplicate only if the identical `msgid` exists in the same domain.

All duplicate `msgid`s are ignored.

The `msgid` directive specifies the value of a message identifier associated with the directive that follows it. The `msgid_plural` directive specifies the plural form message specified to the plural message handling functions `ngettext()`, `dngettext()`, or `dcngettext()`. The `message_identifier` string identifies a target string to be used at retrieval time. Each statement containing a `msgid` directive must be followed by a statement containing a `msgstr` directive or `msgstr[n]` directives.

The `msgstr` directive specifies the target string associated with the `message_identifier` string declared in the immediately preceding `msgid` directive.

The directive `msgstr[n]` (where `n` = 0, 1, 2, ... ) specifies the target string to be used with plural form handling functions `ngettext()`, `dngettext()`, and `dcngettext()`.

Message strings can contain the escape sequences `\n` for newline, `\t` for tab, `\v` for vertical tab, `\b` for backspace, `\r` for carriage return, `\f` for formfeed, `\` for backslash, `"` for double quote, `\a` for alarm, `\ddd` for octal bit pattern, and `\xDD` for hexadecimal bit pattern.

Comments for a GNU-compatible message file should be in one of the following formats (the `msgfmt` utility will ignore these comments when processing Solaris message files):

```plaintext
translator-comments
#. automatic-comments
#: reference..
#, flag
```

The `#:` comments indicate the location of the `msgid` string in the source files in `filename:line` format. The `#`, `#/`, and `:#:` comments are informative only and are silently ignored by the `msgfmt` utility. The `#` comments require one or more flags separated by the comma character. The following flags can be specified:

- `fuzzy` This flag can be inserted by the translator. It shows that the `msgstr` string might not be a correct translation (anymore). Only the translator can judge if the translation requires further modification or is acceptable as is. Once satisfied with the translation, the translator removes this fuzzy flag. If this flag is
specified, the msgfmt utility will not generate the entry for the immediately following msgid in the output message catalog.

**c-format**

The **c-format** flag indicates that the **msgid** string is used as a format string by printf-like functions. In case the **c-format** flag is given for a string, the **msgfmt** utility does some more tests to check the validity of the translation.

In the GNU-compatible message file, the **msgid** entry with empty string ("") is called the header entry and treated specially. If the message string for the header entry contains `nplurals=value`, the value indicates the number of plural forms. For example, if `nplurals=4`, there are four plural forms. If `nplurals` is defined, the same line should contain `plural=expression`, separated by a semicolon character. The expression is a C language expression to determine which version of `msgstr[n]` is to be used based on the value of `n`, the last argument of `ngettext()`, `dngettext()`, or `dcngettext()`. For example,

```plaintext
nplurals=2; plural= n ==1?0:1
```

indicates that there are two plural forms in the language. `msgstr[0]` is used if `n == 1`, otherwise `msgstr[1]` is used. For another example:

```plaintext
nplurals=3; plural= n ==1?0:n==2?1:2
```

indicates that there are three plural forms in the language. `msgstr[0]` is used if `n == 1`, `msgstr[1]` is used if `n == 2`, otherwise `msgstr[2]` is used.

If the header entry contains a `charset=code set` string, the `codeset` is used to indicate the codeset to be used to encode the message strings. If the output string’s codeset is different from the message string’s codeset, codeset conversion from the message string’s codeset to the output string’s codeset will be performed upon the call of `gettext()`, `dgettext()`, `dcgettext()`, `ngettext()`, `dngettext()`, or `dcngettext()` for the GNU-compatible message catalogs. The output string’s codeset is determined by the current locale’s codeset (the return value of `nl_langinfo(CODESET)`) by default, and can be changed by the call of `bind_textdomain_codeset()`.

The **msgfmt** utility can generate the message object both in Solaris message catalog file format and in GNU-compatible message catalog file format. If the `-s` option is specified and the input file is a Solaris .po file, the **msgfmt** utility generates the message object in Solaris message catalog file format. If the `-g` option is specified and the input file is a GNU .po file, the **msgfmt** utility generates the message object in GNU-compatible message catalog file format. If neither the `-s` nor `-g` option is specified, the **msgfmt** utility determines the message catalog file format as follows:

- If the .po file contains a valid GNU header entry (having an empty string for **msgid**), the **msgfmt** utility uses the GNU-compatible message catalog file format.
- Otherwise, the **msgfmt** utility uses the Solaris message catalog file format.
If the `msgfmt` utility determined that the Solaris message catalog file format is used, as above, but found the `.po` file contains directives that are specific to the GNU-compatible message catalog file format, such as `msgid_plural` and `msgstr[n]`, the `msgfmt` utility handles those directives as invalid specifications.

**EXAMPLE 1** Creating message objects from message files

In this example, `module1.po` and `module2.po` are portable message objects files.

```
example% cat module1.po
default domain "messages.mo"
msgid "msg 1"
msgstr "msg 1 translation"
#
 domain "help_domain"
msgid "help 2"
msgstr "help 2 translation"
#
 domain "error_domain"
msgid "error 3"
msgstr "error 3 translation"
```

```
example% cat module2.po
default domain "messages.mo"
msgid "mesg 4"
msgstr "mesg 4 translation"
#
 domain "error_domain"
msgid "error 5"
msgstr "error 5 translation"
#
 domain "window_domain"
msgid "window 6"
msgstr "window 6 translation"
```

The following command will produce the output files `messages.mo`, `help_domain.mo`, and `error_domain.mo` in Solaris message catalog file format:

```
example% msgfmt module1.po
```

The following command will produce the output files `messages.mo`, `help_domain.mo`, `error_domain.mo`, and `window_domain.mo` in Solaris message catalog file format:

```
example% msgfmt module1.po module2.po
```

The following command will produce the output file `hello.mo` in Solaris message catalog file format:

```
example% msgfmt -o hello.mo module1.po module2.po
```

See `environ(5)` for descriptions of the following environmental variables that affect the execution of `msgfmt`: `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`. 
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

xgettext(1), gettext(3C), setlocale(3C), attributes(5), environ(5)

NOTES

Installing message catalogs under the C locale is pointless, since they are ignored for the sake of efficiency.
mt(1)

NAME  mt – magnetic tape control
SYNOPSIS  mt [-f tapename] command... [count]

DESCRIPTION  The `mt` utility sends commands to a magnetic tape drive. If `-f tapename` is not specified, the environment variable `TAPE` is used. If `TAPE` does not exist, `mt` uses the device `/dev/rmt/0n`.

OPTIONS  The following option is supported:
- `-f tapename` Specifies the raw tape device.

OPERANDS  The following operands are supported:
- `count` The number of times that the requested operation is to be performed. By default, `mt` performs `command` once. Multiple operations of `command` may be performed by specifying `count`.
- `command` Available commands that can be sent to a magnetic tape drive. Only as many characters as are required to uniquely identify a `command` need be specified.
  - `eof, weof` Write `count` EOF marks at the current position on the tape.
  - `fsf` Forward space over `count` EOF marks. The tape is positioned on the first block of the file.
  - `fsr` Forward space `count` records.
  - `bsf` Back space over `count` EOF marks. The tape is positioned on the beginning-of-tape side of the EOF mark.
  - `bsr` Back space `count` records.
  - `nbsf` Back space `count` files. The tape is positioned on the first block of the file. This is equivalent to `count+1 bsf's followed by one fsf`.
  - `asf` Absolute space to `count` file number. This is equivalent to a `rewind` followed by a `fsf count`.

If `count` is specified with any of the following commands, the `count` is ignored and the command is performed only once.
- `eom` Space to the end of recorded media on the tape. This is useful for appending files onto previously written tapes.
- `rewind` Rewind the tape.
offline, rewofl

Rewind the tape and, if appropriate, take the drive unit off-line by unloading the tape. It cycles through all four tapes.

status

Print status information about the tape unit.

retension

Rewind the cartridge tape completely, then wind it forward to the end of the reel and back to beginning-of-tape to smooth out tape tension.

reserve

Allow the tape drive to remain reserved after closing the device. The drive must then be explicitly released.

release

Re-establish the default behavior of releasing at close.

forcereserve

Break the reservation of the tape drive held by another host and then reserve the tape drive. This command can be executed only with super-user privileges.

erase

Erase the entire tape. Erasing a tape may take a long time depending on the device and/or tape. Refer to the device specific manual for time details.

EXIT STATUS

0  All operations were successful.
1  Command was unrecognized or mt was unable to open the specified tape drive.
2  An operation failed.

FILES

/dev/rmt/*  magnetic tape interface

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  
tar(1), tcopy(1), ar(3HEAD), environ(4), attributes(5), mtio(7I), st(7D)
BUGS

Not all devices support all options. Some options are hardware-dependent. Refer to the corresponding device manual page.

mt is architecture sensitive. Heterogeneous operation (that is, SPARC to x86 or the reverse) is not supported.
mv(1)

NAME
mv – move files

SYNOPSIS
/usr/bin/mv [-fi] source target_file
/usr/bin/mv [-fi] source... target_dir
/usr/xpg4/bin/mv [-fi] source target_file
/usr/xpg4/bin/mv [-fi] source... target_dir

DESCRIPTION
In the first synopsis form, the mv utility moves the file named by the source operand to
the destination specified by the target_file. source and target_file may not have the same
name. If target_file does not exist, mv creates a file named target_file. If target_file exists,
its contents are overwritten. This first synopsis form is assumed when the final
operand does not name an existing directory.

In the second synopsis form, mv moves each file named by a source operand to a
destination file in the existing directory named by the target_dir operand. The
destination path for each source is the concatenation of the target directory, a single
slash character (/), and the last path name component of the source. This second form
is assumed when the final operand names an existing directory.

If mv determines that the mode of target_file forbids writing, it will print the mode (see
chmod(2)), ask for a response, and read the standard input for one line. If the response
is affirmative, the mv occurs, if permissible; otherwise, the command exits. Notice that
the mode displayed may not fully represent the access permission if target is
associated with an ACL. When the parent directory of source is writable and has the
sticky bit set, one or more of the following conditions must be true:

- the user must own the file
- the user must own the directory
- the file must be writable by the user
- the user must be a privileged user

If source is a file and target_file is a link to another file with links, the other links remain
and target_file becomes a new file.

If source and target_file/target_dir are on different file systems, mv copies the source and
deletes the original. Any hard links to other files are lost. mv will attempt to duplicate
the source file characteristics to the target, that is, the owner and group id, permission
modes, modification and access times, ACLs, and extended attributes, if applicable.
For symbolic links, mv will preserve only the owner and group of the link itself.

If unable to preserve owner and group id, mv will clear S_ISUID and S_ISGID bits in
the target. mv will print a diagnostic message to stderr if unable to clear these bits,
though the exit code will not be affected. mv may be unable to preserve extended
attributes if the target file system does not have extended attribute support.
/usr/xpg4/bin/mv will print a diagnostic message to stderr for all other failed
attempts to duplicate file characteristics. The exit code will not be affected.

User Commands 971
In order to preserve the source file characteristics, users must have the appropriate file access permissions. This includes being super-user or having the same owner id as the destination file.

OPTIONS

The following options are supported:

- **-f**  
  mv will move the file(s) without prompting even if it is writing over an existing target. Note that this is the default if the standard input is not a terminal.

- **-i**  
  mv will prompt for confirmation whenever the move would overwrite an existing target. An affirmative answer means that the move should proceed. Any other answer prevents mv from overwriting the target.

/usr/bin/mv

Specifying both the -f and the -i options is not considered an error. The -f option will override the -i option.

/usr/xpg4/bin/mv

Specifying both the -f and the -i options is not considered an error. The last option specified will determine the behavior of mv.

OPERANDS

The following operands are supported:

- **source**  
  A path name of a file or directory to be moved.

- **target_file**  
  A new path name for the file or directory being moved.

- **target_dir**  
  A path name of an existing directory into which to move the input files.

USEAGE

See largefile(5) for the description of the behavior of mv when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of mv: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- **0**  
  All input files were moved successfully.

- **>0**  
  An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>
mv(1)

SEE ALSO

A -- permits the user to mark explicitly the end of any command line options, allowing mv to recognize filename arguments that begin with a - . As an aid to BSD migration, mv will accept - as a synonym for -- . This migration aid may disappear in a future release.

NOTES

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

cp(1), cpio(1), ln(1), rm(1), setfacl(1), chmod(2), attributes(5), environ(5), fsattr(5), largefile(5), standards(5)
nawk(1)

NAME    nawk – pattern scanning and processing language

SYNOPSIS /usr/bin/nawk [ -F ERE ] [ -v assignment ] ’program’ | -f profile... [argument...]
            /usr/xpg4/bin/awk [ -F ERE ] [ -v assignment ] ’program’ | -f profile...

DESCRIPTION The /usr/bin/nawk and /usr/xpg4/bin/awk utilities execute programs written in
the nawk programming language, which is specialized for textual data manipulation.
A nawk program is a sequence of patterns and corresponding actions. The string
specifying program must be enclosed in single quotes (’) to protect it from
interpretation by the shell. The sequence of pattern - action statements can be specified
in the command line as program or in one, or more, file(s) specified by the -f profile
option. When input is read that matches a pattern, the action associated with the
pattern is performed.

Input is interpreted as a sequence of records. By default, a record is a line, but this can
be changed by using the RS built-in variable. Each record of input is matched to each
pattern in the program. For each pattern matched, the associated action is executed.

The nawk utility interprets each input record as a sequence of fields where, by default,
a field is a string of non-blank characters. This default white-space field delimiter
(blanks and/or tabs) can be changed by using the FS built-in variable or the -F ERE
option. The nawk utility denotes the first field in a record $1, the second $2, and so
forth. The symbol $0 refers to the entire record; setting any other field causes the
reevaluation of $0. Assigning to $0 resets the values of all fields and the NF built-in
variable.

OPTIONS The following options are supported:

- F ERE  Define the input field separator to be the extended regular
          expression ERE, before any input is read (can be a character).

- f profile  Specifies the pathname of the file profile containing a nawk
          program. If multiple instances of this option are specified, the
          concatenation of the files specified as profile in the order specified
          is the nawk program. The nawk program can alternatively be
          specified in the command line as a single argument.

- v assignment  The assignment argument must be in the same form as an
                assignment operand. The assignment is of the form var=value,
                where var is the name of one of the variables described below. The
                specified assignment occurs before executing the nawk program,
                including the actions associated with BEGIN patterns (if any).
                Multiple occurrences of this option can be specified.

OPERANDS The following operands are supported:

program  If no -f option is specified, the first operand to nawk is the text of
          the nawk program. The application supplies the program operand
Either of the following two types of argument can be intermixed:

- **file**: A pathname of a file that contains the input to be read, which is matched against the set of patterns in the program. If no file operands are specified, or if a file operand is −, the standard input is used.

- **assignment**: An operand that begins with an underscore or alphabetic character from the portable character set, followed by a sequence of underscores, digits and alphanetics from the portable character set, followed by the = character specifies a variable assignment rather than a pathname. The characters before the = character represent the name of a nawk variable. If that name is a nawk reserved word, the behavior is undefined. The characters following the equal sign is interpreted as if they appeared in the nawk program preceded and followed by a double-quote ("), as a STRING token, except that if the last character is an unescaped backslash, it is interpreted as a literal backslash rather than as the first character of the sequence "\". The variable is assigned the value of that STRING token. If the value is considered a numeric string, the variable is assigned its numeric value. Each such variable assignment is performed just before the processing of the following file, if any. Thus, an assignment before the first file argument is executed after the BEGIN actions (if any), while an assignment after the last file argument is executed before the END actions (if any). If there are no file arguments, assignments are executed before processing the standard input.

**INPUT FILES**

Input files to the nawk program from any of the following sources:

- any file operands or their equivalents, achieved by modifying the nawk variables ARGV and ARGC
- standard input in the absence of any file operands
- arguments to the getline function
must be text files. Whether the variable RS is set to a value other than a newline character or not, for these files, implementations support records terminated with the specified separator up to \{LINE_MAX\} bytes and may support longer records.

If `-f progfile` is specified, the files named by each of the `progfile` option-arguments must be text files containing an `nawk` program.

The standard input are used only if no `file` operands are specified, or if a `file` operand is `-`.

A `nawk` program is composed of pairs of the form:

```
pattern { action }
```

Either the pattern or the action (including the enclosing brace characters) can be omitted. Pattern-action statements are separated by a semicolon or by a newline.

A missing pattern matches any record of input, and a missing action is equivalent to an action that writes the matched record of input to standard output.

Execution of the `nawk` program starts by first executing the actions associated with all `BEGIN` patterns in the order they occur in the program. Then each `file` operand (or standard input if no files were specified) is processed by reading data from the file until a record separator is seen (a newline character by default), splitting the current record into fields using the current value of `FS`, evaluating each pattern in the program in the order of occurrence, and executing the action associated with each pattern that matches the current record. The action for a matching pattern is executed before evaluating subsequent patterns. Last, the actions associated with all `END` patterns is executed in the order they occur in the program.

Expressions describe computations used in `patterns` and `actions`. In the following table, valid expression operations are given in groups from highest precedence first to lowest precedence last, with equal-precedence operators grouped between horizontal lines. In expression evaluation, where the grammar is formally ambiguous, higher precedence operators are evaluated before lower precedence operators. In this table `expr, expr1, expr2, and expr3` represent any expression, while `lvalue` represents any entity that can be assigned to (that is, on the left side of an assignment operator).

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Name</th>
<th>Type of Result</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>( expr )</code></td>
<td>Grouping</td>
<td>type of <code>expr</code></td>
<td>n/a</td>
</tr>
<tr>
<td><code>$expr</code></td>
<td>Field reference</td>
<td>string</td>
<td>n/a</td>
</tr>
<tr>
<td><code>++ lvalue</code></td>
<td>Pre-increment</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>--lvalue</code></td>
<td>Pre-decrement</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>lvalue++</code></td>
<td>Post-increment</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td>Syntax</td>
<td>Name</td>
<td>Type of Result</td>
<td>Associativity</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>lvalue —</td>
<td>Post-decrement</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>expr ^ expr</code></td>
<td>Exponentiation</td>
<td>numeric</td>
<td>right</td>
</tr>
<tr>
<td><code>! expr</code></td>
<td>Logical not</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>+ expr</code></td>
<td>Unary plus</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>− expr</code></td>
<td>Unary minus</td>
<td>numeric</td>
<td>n/a</td>
</tr>
<tr>
<td><code>expr * expr</code></td>
<td>Multiplication</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>expr / expr</code></td>
<td>Division</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>expr % expr</code></td>
<td>Modulus</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>expr + expr</code></td>
<td>Addition</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>expr − expr</code></td>
<td>Subtraction</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>expr expr</code></td>
<td>String concatenation</td>
<td>string</td>
<td>left</td>
</tr>
<tr>
<td><code>expr &lt; expr</code></td>
<td>Less than</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr &lt;= expr</code></td>
<td>Less than or equal to</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr != expr</code></td>
<td>Not equal to</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr == expr</code></td>
<td>Equal to</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr &gt; expr</code></td>
<td>Greater than</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr &gt;= expr</code></td>
<td>Greater than or equal to</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr ~ expr</code></td>
<td>ERE match</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr ~/ expr</code></td>
<td>ERE non-match</td>
<td>numeric</td>
<td>none</td>
</tr>
<tr>
<td><code>expr in array</code></td>
<td>Array membership</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td><code>( index ) in array</code></td>
<td>Multi-dimension array</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td>array</td>
<td>membership</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>expr &amp; &amp; expr</code></td>
<td>Logical AND</td>
<td>numeric</td>
<td>left</td>
</tr>
<tr>
<td>`expr</td>
<td></td>
<td>expr`</td>
<td>Logical OR</td>
</tr>
<tr>
<td><code>expr1 ? expr2</code></td>
<td>Conditional expression</td>
<td>type of selected</td>
<td>right</td>
</tr>
<tr>
<td>: expr3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lvalue ~= expr</td>
<td>Exponentiation</td>
<td>numeric</td>
<td>right</td>
</tr>
</tbody>
</table>
Each expression has either a string value, a numeric value or both. Except as stated for specific contexts, the value of an expression is implicitly converted to the type needed for the context in which it is used. A string value is converted to a numeric value by the equivalent of the following calls:

```
setlocale(LC_NUMERIC, "")
numeric_value = atof(string_value);
```

A numeric value that is exactly equal to the value of an integer is converted to a string by the equivalent of a call to the `sprintf` function with the string `%d` as the `fmt` argument and the numeric value being converted as the first and only `expr` argument. Any other numeric value is converted to a string by the equivalent of a call to the `sprintf` function with the value of the variable `CONVFMT` as the `fmt` argument and the numeric value being converted as the first and only `expr` argument.

A string value is considered to be a numeric string in the following case:

1. Any leading and trailing blank characters is ignored.
2. If the first unignored character is a `+` or `−`, it is ignored.
3. If the remaining unignored characters would be lexically recognized as a NUMBER token, the string is considered a numeric string.

If a `−` character is ignored in the above steps, the numeric value of the numeric string is the negation of the numeric value of the recognized NUMBER token. Otherwise the numeric value of the numeric string is the numeric value of the recognized NUMBER token. Whether or not a string is a numeric string is relevant only in contexts where that term is used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of zero is treated as false and any other value is treated as true. Otherwise, a string value of the null string is treated as false and any other value is treated as true. A Boolean context is one of the following:
- the first subexpression of a conditional expression.
- an expression operated on by logical NOT, logical AND, or logical OR.
- the second expression of a `for` statement.
- the expression of an `if` statement.
- the expression of the `while` clause in either a `while` or `do ... while` statement.
- an expression used as a pattern (as in Overall Program Structure).

The `awk` language supplies arrays that are used for storing numbers or strings. Arrays need not be declared. They are initially empty, and their sizes changes dynamically. The subscripts, or element identifiers, are strings, providing a type of associative array capability. An array name followed by a subscript within square brackets can be used as an `lvalue` and as an expression, as described in the grammar. Unsubscripted array names are used in only the following contexts:

- a parameter in a function definition or function call.
- the `NAME` token following any use of the keyword `in`.

A valid array `index` consists of one or more comma-separated expressions, similar to the way in which multi-dimensional arrays are indexed in some programming languages. Because `awk` arrays are really one-dimensional, such a comma-separated list is converted to a single string by concatenating the string values of the separate expressions, each separated from the other by the value of the `SUBSEP` variable.

Thus, the following two index operations are equivalent:

```
var[expr1, expr2, ... exprn]
var[expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]
```

A multi-dimensioned `index` used with the `in` operator must be put in parentheses. The `in` operator, which tests for the existence of a particular array element, does not create the element if it does not exist. Any other reference to a non-existent array element automatically creates it.

Variables can be used in an `awk` program by referencing them. With the exception of function parameters, they are not explicitly declared. Uninitialized scalar variables and array elements have both a numeric value of zero and a string value of the empty string.

Field variables are designated by a `$` followed by a number or numerical expression. The effect of the field number `expression` evaluating to anything other than a non-negative integer is unspecified. Uninitialized variables or string values need not be converted to numeric values in this context. New field variables are created by assigning a value to them. References to non-existent fields (that is, fields after `$NF`) produce the null string. However, assigning to a non-existent field (for example, `$NF+2 = 5`) increases the value of `NF`, create any intervening fields with the null string as their values and cause the value of `$0` to be recomputed, with the fields being separated by the value of `OFS`. Each field variable has a string value when created. If
the string, with any occurrence of the decimal-point character from the current locale changed to a period character, is considered a **numeric string** (see Expressions in `nawk` above), the field variable also has the numeric value of the **numeric string**.

`nawk` sets the following special variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ARGC</code></td>
<td>The number of elements in the <code>ARGV</code> array.</td>
</tr>
<tr>
<td><code>ARGV</code></td>
<td>An array of command line arguments, excluding options and the <code>program</code> argument, numbered from zero to <code>ARGC</code>−1. The arguments in <code>ARGV</code> can be modified or added to; <code>ARGC</code> can be altered. As each input file ends, <code>nawk</code> treats the next non-null element of <code>ARGV</code>, up to the current value of <code>ARGC</code>−1, inclusive, as the name of the next input file. Setting an element of <code>ARGV</code> to null means that it is not treated as an input file. The name − indicates the standard input. If an argument matches the format of an assignment operand, this argument is treated as an assignment rather than a file argument.</td>
</tr>
<tr>
<td><code>CONVFMT</code></td>
<td>The <code>printf</code> format for converting numbers to strings (except for output statements, where <code>OFMT</code> is used); <code>% .6g</code> by default.</td>
</tr>
<tr>
<td><code>ENVIRON</code></td>
<td>The variable <code>ENVIRON</code> is an array representing the value of the environment. The indices of the array are strings consisting of the names of the environment variables, and the value of each array element is a string consisting of the value of that variable. If the value of an environment variable is considered a <strong>numeric string</strong>, the array element also has its numeric value. In all cases where <code>nawk</code> behavior is affected by environment variables (including the environment of any commands that <code>nawk</code> executes via the <code>system</code> function or via pipeline redirections with the <code>printf</code> statement, the <code>printf</code> statement, or the <code>getline</code> function), the environment used is the environment at the time <code>nawk</code> began executing.</td>
</tr>
<tr>
<td><code>FILENAME</code></td>
<td>A pathname of the current input file. Inside a BEGIN action the value is undefined. Inside an END action the value is the name of the last input file processed.</td>
</tr>
<tr>
<td><code>FNR</code></td>
<td>The ordinal number of the current record in the current file. Inside a BEGIN action the value is zero. Inside an END action the value is the number of the last record processed in the last file processed.</td>
</tr>
<tr>
<td><code>FS</code></td>
<td>Input field separator regular expression; a space character by default.</td>
</tr>
</tbody>
</table>
| `NF`     | The number of fields in the current record. Inside a BEGIN action, the use of `NF` is undefined unless a getline function without a `var` argument is executed previously. Inside an END action, `NF` retains the value it had for the last record read, unless a
subsequent, redirected, getline function without a var argument is performed prior to entering the END action.

NR  The ordinal number of the current record from the start of input. Inside a BEGIN action the value is zero. Inside an END action the value is the number of the last record processed.

OFMT The printf format for converting numbers to strings in output statements "%.6g" by default. The result of the conversion is unspecified if the value of OFMT is not a floating-point format specification.

OFS  The printf statement output field separator; a space character by default.

ORS  The printf output record separator; a newline character by default.

LENGTH  The length of the string matched by the match function.

RS  The first character of the string value of RS is the input record separator; a newline character by default. If RS contains more than one character, the results are unspecified. If RS is null, then records are separated by sequences of one or more blank lines: leading or trailing blank lines do not produce empty records at the beginning or end of input, and the field separator is always newline, no matter what the value of FS.

RSTART  The starting position of the string matched by the match function, numbering from 1. This is always equivalent to the return value of the match function.

SUBSEP  The subscript separator string for multi-dimensional arrays; the default value is 1.

The awk utility makes use of the extended regular expression notation (see regex(5)) except that it allows the use of C-language conventions to escape special characters within the EREs, namely \, \a, \b, \f, \n, \r, \t, \v, and those specified in the following table. These escape sequences are recognized both inside and outside bracket expressions. Note that records need not be separated by newline characters and string constants can contain newline characters, so even the \n sequence is valid in awk EREs. Using a slash character within the regular expression requires escaping as shown in the table below:

<table>
<thead>
<tr>
<th>Escape Sequence</th>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;</td>
<td>Backslash quotation-mark</td>
<td>Quotation-mark character</td>
</tr>
<tr>
<td>/</td>
<td>Backslash slash</td>
<td>Slash character</td>
</tr>
</tbody>
</table>
A backslash character followed by the longest sequence of one, two, or three octal-digit characters (01234567). If all of the digits are 0, (that is, representation of the NULL character), the behavior is undefined.

The character encoded by the one-, two- or three-digit octal integer. Multi-byte characters require multiple, concatenated escape sequences, including the leading \ for each byte.

A backslash character followed by any character not described in this table or special characters (\, \a, \b, \f, \n, \r, \t, \v).

Unde

A regular expression can be matched against a specific field or string by using one of the two regular expression matching operators, - and ! -. These operators interpret their right-hand operand as a regular expression and their left-hand operand as a string. If the regular expression matches the string, the - expression evaluates to the value 1, and the ! - expression evaluates to the value 0. If the regular expression does not match the string, the - expression evaluates to the value 0, and the ! - expression evaluates to the value 1. If the right-hand operand is any expression other than the lexical token ERE, the string value of the expression is interpreted as an extended regular expression, including the escape conventions described above. Notice that these same escape conventions also are applied in the determining the value of a string literal (the lexical token STRING), and is applied a second time when a string literal is used in this context.

When an ERE token appears as an expression in any context other than as the right-hand of the - or ! - operator or as one of the built-in function arguments described below, the value of the resulting expression is the equivalent of:

\$0 ~ /ere/

The ere argument to the gsub, match, sub functions, and the fs argument to the split function (see String Functions) is interpreted as extended regular expressions. These can be either ERE tokens or arbitrary expressions, and are interpreted in the same manner as the right-hand side of the - or ! - operator.

An extended regular expression can be used to separate fields by using the -F ERE option or by assigning a string containing the expression to the built-in variable FS. The default value of the FS variable is a single space character. The following describes FS behavior:

1. If FS is a single character:
   - If FS is the space character, skip leading and trailing blank characters; fields are delimited by sets of one or more blank characters.
   - Otherwise, if FS is any other character c, fields are delimited by each single occurrence of c.
Otherwise, the string value of \textit{FS} is considered to be an extended regular expression. Each occurrence of a sequence matching the extended regular expression delimits fields.

Except in the \texttt{gsub}, \texttt{match}, \texttt{split}, and \texttt{sub} built-in functions, regular expression matching is based on input records. That is, record separator characters (the first character of the value of the variable \textit{RS}, a newline character by default) cannot be embedded in the expression, and no expression matches the record separator character. If the record separator is not a newline character, newline characters embedded in the expression can be matched. In those four built-in functions, regular expression matching are based on text strings. So, any character (including the newline character and the record separator) can be embedded in the pattern and an appropriate pattern will match any character. However, in all \texttt{nawk} regular expression matching, the use of one or more NUL characters in the pattern, input record or text string produces undefined results.

A pattern is any valid expression, a range specified by two expressions separated by comma, or one of the two special patterns \texttt{BEGIN} or \texttt{END}.

The \texttt{nawk} utility recognizes two special patterns, \texttt{BEGIN} and \texttt{END}. Each \texttt{BEGIN} pattern is matched once and its associated action executed before the first record of input is read (except possibly by use of the \texttt{getline} function in a prior \texttt{BEGIN} action) and before command line assignment is done. Each \texttt{END} pattern is matched once and its associated action executed after the last record of input has been read. These two patterns have associated actions.

\texttt{BEGIN} and \texttt{END} do not combine with other patterns. Multiple \texttt{BEGIN} and \texttt{END} patterns are allowed. The actions associated with the \texttt{BEGIN} patterns are executed in the order specified in the program, as are the \texttt{END} actions. An \texttt{END} pattern can precede a \texttt{BEGIN} pattern in a program.

If an \texttt{nawk} program consists of only actions with the pattern \texttt{BEGIN}, and the \texttt{BEGIN} action contains no \texttt{getline} function, \texttt{nawk} exits without reading its input when the last statement in the last \texttt{BEGIN} action is executed. If an \texttt{nawk} program consists of only actions with the pattern \texttt{END} or only actions with the patterns \texttt{BEGIN} and \texttt{END}, the input is read before the statements in the \texttt{END} actions are executed.

An expression pattern is evaluated as if it were an expression in a Boolean context. If the result is true, the pattern is considered to match, and the associated action (if any) is executed. If the result is false, the action is not executed.

A pattern range consists of two expressions separated by a comma. In this case, the action is performed for all records between a match of the first expression and the following match of the second expression, inclusive. At this point, the pattern range can be repeated starting at input records subsequent to the end of the matched range.

An action is a sequence of statements. A statement may be one of the following:

\begin{verbatim}
if ( expression ) statement [ else statement ]
while ( expression ) statement
\end{verbatim}
Any single statement can be replaced by a statement list enclosed in braces. The statements are terminated by newline characters or semicolons, and are executed sequentially in the order that they appear.

The `next` statement causes all further processing of the current input record to be abandoned. The behavior is undefined if a `next` statement appears or is invoked in a `BEGIN` or `END` action.

The `exit` statement invokes all `END` actions in the order in which they occur in the program source and then terminate the program without reading further input. An `exit` statement inside an `END` action terminates the program without further execution of `END` actions. If an expression is specified in an `exit` statement, its numeric value is the exit status of `nawk`, unless subsequent errors are encountered or a subsequent `exit` statement with an expression is executed.

**Output Statements**

Both `print` and `printf` statements write to standard output by default. The output is written to the location specified by `output_redirection` if one is supplied, as follows:

```
> expression
>> expression
| expression
```

In all cases, the `expression` is evaluated to produce a string that is used as a full pathname to write into (for `>` or `>>`) or as a command to be executed (for `|`). Using the first two forms, if the file of that name is not currently open, it is opened, creating it if necessary and using the first form, truncating the file. The output then is appended to the file. As long as the file remains open, subsequent calls in which `expression` evaluates to the same string value simply appends output to the file. The file remains open until the `close` function, which is called with an expression that evaluates to the same string value.

The third form writes output onto a stream piped to the input of a command. The stream is created if no stream is currently open with the value of `expression` as its command name. The stream created is equivalent to one created by a call to the `popen(3C)` function with the value of `expression` as the `command` argument and a value of `w` as the `mode` argument. As long as the stream remains open, subsequent calls in which `expression` evaluates to the same string value writes output to the existing stream. The stream will remain open until the `close` function is called with an expression that evaluates to the same string value. At that time, the stream is closed as if by a call to the `pclose` function.
These output statements take a comma-separated list of expressions referred in the grammar by the non-terminal symbols expr_list, print_expr_list or print_expr_list_opt. This list is referred to here as the expression list, and each member is referred to as an expression argument.

The print statement writes the value of each expression argument onto the indicated output stream separated by the current output field separator (see variable OFS above), and terminated by the output record separator (see variable ORS above). All expression arguments is taken as strings, being converted if necessary; with the exception that the printf format in OFMT is used instead of the value in CONVFMT. An empty expression list stands for the whole input record ($0).

The printf statement produces output based on a notation similar to the File Format Notation used to describe file formats in this document. Output is produced as specified with the first expression argument as the string format and subsequent expression arguments as the strings arg1 to argn, inclusive, with the following exceptions:

1. The format is an actual character string rather than a graphical representation. Therefore, it cannot contain empty character positions. The space character in the format string, in any context other than a flag of a conversion specification, is treated as an ordinary character that is copied to the output.
2. If the character set contains a Delta character and that character appears in the format string, it is treated as an ordinary character that is copied to the output.
3. The escape sequences beginning with a backslash character is treated as sequences of ordinary characters that are copied to the output. Note that these same sequences is interpreted lexically by nawk when they appear in literal strings, but they is not treated specially by the printf statement.
4. A field width or precision can be specified as the * character instead of a digit string. In this case the next argument from the expression list is fetched and its numeric value taken as the field width or precision.
5. The implementation does not precede or follow output from the d or u conversion specifications with blank characters not specified by the format string.
6. The implementation does not precede output from the o conversion specification with leading zeros not specified by the format string.
7. For the c conversion specification: if the argument has a numeric value, the character whose encoding is that value is output. If the value is zero or is not the encoding of any character in the character set, the behavior is undefined. If the argument does not have a numeric value, the first character of the string value will be output; if the string does not contain any characters the behavior is undefined.
8. For each conversion specification that consumes an argument, the next expression argument will be evaluated. With the exception of the c conversion, the value will be converted to the appropriate type for the conversion specification.
9. If there are insufficient expression arguments to satisfy all the conversion specifications in the format string, the behavior is undefined.
10. If any character sequence in the format string begins with a % character, but does not form a valid conversion specification, the behavior is unspecified.

Both `print` and `printf` can output at least `{LINE_MAX}` bytes.

The **nawk** language has a variety of built-in functions: arithmetic, string, input/output and general.

### Arithmetic Functions

The arithmetic functions, except for `int`, are based on the **ISO C** standard. The behavior is undefined in cases where the **ISO C** standard specifies that an error be returned or that the behavior is undefined. Although the grammar permits built-in functions to appear with no arguments or parentheses, unless the argument or parentheses are indicated as optional in the following list (by displaying them within the `[]` brackets), such use is undefined.

- `atan2(y, x)` Return arctangent of `y/x`.
- `cos(x)` Return cosine of `x`, where `x` is in radians.
- `sin(x)` Return sine of `x`, where `x` is in radians.
- `exp(x)` Return the exponential function of `x`.
- `log(x)` Return the natural logarithm of `x`.
- `sqrt(x)` Return the square root of `x`.
- `int(x)` Truncate its argument to an integer. It will be truncated toward 0 when `x > 0`.
- `rand()` Return a random number `n`, such that `0 ≤ n < 1`.
- `srand([expr])` Set the seed value for `rand` to `expr` or use the time of day if `expr` is omitted. The previous seed value will be returned.

### String Functions

The string functions in the following list shall be supported. Although the grammar permits built-in functions to appear with no arguments or parentheses, unless the argument or parentheses are indicated as optional in the following list (by displaying them within the `[]` brackets), such use is undefined.

- `gsub(ere, repl[, in])` Behave like `sub` (see below), except that it will replace all occurrences of the regular expression (like the `ed` utility global substitute) in `$0` or in the `in` argument, when specified.
- `index(s,t)` Return the position, in characters, numbering from 1, in string `s` where string `t` first occurs, or zero if it does not occur at all.
- `length([s])` Return the length, in characters, of its argument taken as a string, or of the whole record, `$0`, if there is no argument.
match(s,ere)

Return the position, in characters, numbering from 1, in string s where the extended regular expression ere occurs, or zero if it does not occur at all. RSTART will be set to the starting position (which is the same as the returned value), zero if no match is found; RLENGTH will be set to the length of the matched string, −1 if no match is found.

split(s,a[,fs])

Split the string s into array elements a[1], a[2], . . . , a[n], and return n. The separation will be done with the extended regular expression fs or with the field separator FS if fs is not given. Each array element will have a string value when created. If the string assigned to any array element, with any occurrence of the decimal-point character from the current locale changed to a period character, would be considered a numeric string; the array element will also have the numeric value of the numeric string. The effect of a null string as the value of fs is unspecified.

sprintf(fmt,expr,expr,...)

Format the expressions according to the printf format given by fmt and return the resulting string.

sub(ere,repl[, in])

Substitute the string repl in place of the first instance of the extended regular expression ERE in string in and return the number of substitutions. An ampersand (&) appearing in the string repl will be replaced by the string from in that matches the regular expression. For each occurrence of backslash (\) encountered when scanning the string repl from beginning to end, the next character is taken literally and loses its special meaning (for example, \& will be interpreted as a literal ampersand character). Except for & and \, it is unspecified what the special meaning of any such character is. If in is specified and it is not an lvalue the behavior is undefined. If in is omitted, nawk will substitute in the current record ($0).
nawk(1)

substr(s,m[, n])
Return the at most n-character substring of s that begins at position m, numbering from 1. If n is missing, the length of the substring will be limited by the length of the string s.

tolower(s)
Return a string based on the string s. Each character in s that is an upper-case letter specified to have a tolower mapping by the LC_CTYPE category of the current locale will be replaced in the returned string by the lower-case letter specified by the mapping. Other characters in s will be unchanged in the returned string.

toupper(s)
Return a string based on the string s. Each character in s that is a lower-case letter specified to have a toupper mapping by the LC_CTYPE category of the current locale will be replaced in the returned string by the upper-case letter specified by the mapping. Other characters in s will be unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string valued expression that is a regular expression as defined below.

Input/Output and General Functions

The input/output and general functions are:

close(expression)
Close the file or pipe opened by a print or printf statement or a call to getline with the same string-valued expression. If the close was successful, the function will return 0; otherwise, it will return non-zero.

expression|getline[var]
Read a record of input from a stream piped from the output of a command. The stream will be created if no stream is currently open with the value of expression as its command name. The stream created will be equivalent to one created by a call to the popen function with the value of expression as the command argument and a value of r as the mode argument. As long as the stream remains open, subsequent calls in which expression evaluates to the same string value will read subsequent records from the file. The stream will remain open until the close function is called with an expression that evaluates to the same string value. At
that time, the stream will be closed as if by a call to the `pclose` function. If `var` is missing, `$0` and `NF` will be set; otherwise, `var` will be set.

The `getline` operator can form ambiguous constructs when there are operators that are not in parentheses (including concatenate) to the left of the `|` (to the beginning of the expression containing `getline`). In the context of the `$` operator, `|` behaves as if it had a lower precedence than `$`. The result of evaluating other operators is unspecified, and all such uses of portable applications must be put in parentheses properly.

**getline**

Set `$0` to the next input record from the current input file. This form of `getline` will set the `NF`, `NR`, and `FNR` variables.

**getline `var`**

Set variable `var` to the next input record from the current input file. This form of `getline` will set the `FNR` and `NR` variables.

**getline `[var] < expression`**

Read the next record of input from a named file. The `expression` will be evaluated to produce a string that is used as a full pathname. If the file of that name is not currently open, it will be opened. As long as the stream remains open, subsequent calls in which `expression` evaluates to the same string value will read subsequent records from the file. The file will remain open until the `close` function is called with an expression that evaluates to the same string value. If `var` is missing, `$0` and `NF` will be set; otherwise, `var` will be set.

The `getline` operator can form ambiguous constructs when there are binary operators that are not in parentheses (including concatenate) to the right of the `<` (up to the end of the expression containing the `getline`). The result of evaluating such a construct is unspecified, and all such uses of portable applications must be put in parentheses properly.
system(expression)  
Execute the command given by expression in a manner equivalent to the system(3C) function and return the exit status of the command.

All forms of getline will return 1 for successful input, 0 for end of file, and −1 for an error.

Where strings are used as the name of a file or pipeline, the strings must be textually identical. The terminology “same string value” implies that “equivalent strings”, even those that differ only by space characters, represent different files.

The nawk language also provides user-defined functions. Such functions can be defined as:

function name(args, ...) { statements }  
A function can be referred to anywhere in an nawk program; in particular, its use can precede its definition. The scope of a function will be global.

Function arguments can be either scalars or arrays; the behavior is undefined if an array name is passed as an argument that the function uses as a scalar, or if a scalar expression is passed as an argument that the function uses as an array. Function arguments will be passed by value if scalar and by reference if array name. Argument names will be local to the function; all other variable names will be global. The same name will not be used as both an argument name and as the name of a function or a special nawk variable. The same name must not be used both as a variable name with global scope and as the name of a function. The same name must not be used within the same scope both as a scalar variable and as an array.

The number of parameters in the function definition need not match the number of parameters in the function call. Excess formal parameters can be used as local variables. If fewer arguments are supplied in a function call than are in the function definition, the extra parameters that are used in the function body as scalars will be initialized with a string value of the null string and a numeric value of zero, and the extra parameters that are used in the function body as arrays will be initialized as empty arrays. If more arguments are supplied in a function call than are in the function definition, the behavior is undefined.

When invoking a function, no white space can be placed between the function name and the opening parenthesis. Function calls can be nested and recursive calls can be made upon functions. Upon return from any nested or recursive function call, the values of all of the calling function’s parameters will be unchanged, except for array parameters passed by reference. The return statement can be used to return a value. If a return statement appears outside of a function definition, the behavior is undefined.
In the function definition, newline characters are optional before the opening brace and after the closing brace. Function definitions can appear anywhere in the program where a pattern-action pair is allowed.

**USAGE**

The `index`, `length`, `match`, and `substr` functions should not be confused with similar functions in the ISO C standard; the awk versions deal with characters, while the ISO C standard deals with bytes.

Because the concatenation operation is represented by adjacent expressions rather than an explicit operator, it is often necessary to use parentheses to enforce the proper evaluation precedence.

See `largefile(5)` for the description of the behavior of awk when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

**EXAMPLES**

The awk program specified in the command line is most easily specified within single-quotes (for example, `'program'`) for applications using sh, because awk programs commonly contain characters that are special to the shell, including double-quotes. In the cases where a awk program contains single-quote characters, it is usually easiest to specify most of the program as strings within single-quotes concatenated by the shell with quoted single-quote characters. For example:

```
awk '/\'/ { print "quote:\", $0 }
```

prints all lines from the standard input containing a single-quote character, prefixed with `quote:`.

The following are examples of simple awk programs:

**EXAMPLE 1** Write to the standard output all input lines for which field 3 is greater than 5:

```
$3 > 5
```

**EXAMPLE 2** Write every tenth line:

```
(NR % 10) == 0
```

**EXAMPLE 3** Write any line with a substring matching the regular expression:

```
/(G|D)([0-9][[:alpha:]]+)/
```

**EXAMPLE 4** Print any line with a substring containing a G or D, followed by a sequence of digits and characters:

This example uses character classes `digit` and `alpha` to match language-independent digit and alphabetic characters, respectively.

```
/(G|D)\[[[:digit:]][[:alpha:]]*/
```
EXAMPLE 4 Print any line with a substring containing a G or D, followed by a sequence of digits and characters:

(Continued)

EXAMPLE 5 Write any line in which the second field matches the regular expression and the fourth field does not:

$2 ~ /xyz/ && $4 !~ /xyz/

EXAMPLE 6 Write any line in which the second field contains a backslash:

$2 ~ /\/

EXAMPLE 7 Write any line in which the second field contains a backslash (alternate method):

Notice that backslash escapes are interpreted twice, once in lexical processing of the string and once in processing the regular expression.

$2 ~ "\\\""

EXAMPLE 8 Write the second to the last and the last field in each line, separating the fields by a colon:

{OFS=":";print $(NF-1), $NF}

EXAMPLE 9 Write the line number and number of fields in each line:

The three strings representing the line number, the colon and the number of fields are concatenated and that string is written to standard output.

{print NR ":" NF}

EXAMPLE 10 Write lines longer than 72 characters:

{length($0) > 72}

EXAMPLE 11 Write first two fields in opposite order separated by the OFS:

{ print $2, $1 }

EXAMPLE 12 Same, with input fields separated by comma or space and tab characters, or both:

BEGIN { FS = ",,[\t]+|\[\t]*\|\[\t]+" }
  { print $2, $1 }

EXAMPLE 13 Add up first column, print sum and average:

{s += $1 }
END {print "sum is ", s, " average is", s/NR}
EXAMPLE 13 Add up first column, print sum and average:  (Continued)

EXAMPLE 14 Write fields in reverse order, one per line (many lines out for each line in):
{ for (i = NF; i > 0; --i) print $i }

EXAMPLE 15 Write all lines between occurrences of the strings “start” and “stop”:
/start/, /stop/

EXAMPLE 16 Write all lines whose first field is different from the previous one:
$1 != prev { print; prev = $1 }

EXAMPLE 17 Simulate the echo command:
BEGIN {
    for (i = 1; i < ARGC; ++i)
        printf "%%s%s", ARGV[i], i==ARGC-1?"\n":"
}

EXAMPLE 18 Write the path prefixes contained in the PATH environment variable, one per line:
BEGIN {
    n = split {ENVIRON[*PATH*], path, *:*)
    for (i = 1; i <= n; ++i)
        print path[i]
}

EXAMPLE 19 Print the file “input”, filling in page numbers starting at 5:
If there is a file named input containing page headers of the form
  Page#
and a file named program that contains
/Page/{ $2 = n++; }
{ print }
then the command line
nawk -f program n=5 input
will print the file input, filling in page numbers starting at 5.

EnvIRON VARIABLes

See environ(5) for descriptions of the following environment variables that affect
execution: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

LC_NUMERIC  Determine the radix character used when interpreting numeric
input, performing conversions between numeric and string values
and formatting numeric output. Regardless of locale, the period
character (the decimal-point character of the POSIX locale) is the decimal-point character recognized in processing awk programs (including assignments in command-line arguments).

EXIT STATUS

The following exit values are returned:

- 0 All input files were processed successfully.
- >0 An error occurred.

The exit status can be altered within the program by using an `exit` expression.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
</tbody>
</table>

SEE ALSO

awk(1), ed(1), egrep(1), grep(1), lex(1), sed(1), popen(3C), printf(3C), system(3C), attributes(5), environ(5), largefile(5), regex(5), XPG4(5)


DIAGNOSTICS

If any `file` operand is specified and the named file cannot be accessed, `nawk` will write a diagnostic message to standard error and terminate without any further action.

If the program specified by either the `program` operand or a `profile` operand is not a valid `nawk` program (as specified in EXTENDED DESCRIPTION), the behavior is undefined.

NOTES

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a number add 0 to it; to force it to be treated as a string concatenate the null string (""") to it.
nca, snca – the Solaris Network Cache and Accelerator (NCA)

DESCRIPTION
The Solaris Network Cache and Accelerator ("NCA") is a kernel module designed to provide improved web server performance. The kernel module, ncakmod, services HTTP requests. To improve the performance of servicing HTTP requests, the NCA kernel module maintains an in-kernel cache of web pages. If the NCA kernel module cannot service the request itself, it passes the request to the http daemon (httpd). It uses either a sockets interface, with family type designated PF_NCA, or a private Solaris doors interface that is based on the Solaris doors RPC mechanism, to pass the request.

To use the sockets interface, the web server must open a socket of family type PF_NCA. The PF_NCA family supports only SOCK_STREAM and protocol 0, otherwise an error occurs.

The following features are not presently supported:

- You cannot initiate a connection from a PF_NCA type socket. The connect(3SOCKET) interface on PF_NCA will fail.
- System calls that are associated with type SO_DGRAM, such as send(), sendto(), sendmsg(), recv(), recvfrom(), and recvmsg(), will fail.
- You cannot set TCP or IP options on a PF_NCA type socket through setsockopt(3SOCKET).

The NCA cache consistency is maintained by honoring HTTP headers that deal with a given content type and expiration date, much the same way as a proxy cache.

For configuration information, see System Administration Guide: IP Services

When native PF_NCA socket support does not exist in the web server, the ncad_addr(4) interface must be used to provide NCA support in that web server.

NCA is intended to be run on a dedicated web server. Running other large processes while running NCA might cause undesirable behavior.

NCA supports the logging of in-kernel cache hits. See ncalogd.conf(4). NCA stores logs in a binary format. Use the ncab2clf(1) utility to convert the log from a binary format to the Common Log File format.

FILES
/etc/nca/ncakmod.conf Lists configuration parameters for NCA.
/etc/nca/ncalogd.conf Lists configuration parameters for NCA logging.
/etc/nca/nca.if Lists the physical interfaces on which NCA will run.
/etc/hostname.{}{0-9} Lists all physical interfaces configured on the server.
/etc/hosts

Lists all host names associated with the server. Entries in this file must match with entries in /etc/hostname.{{0–9}} for NCA to function.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWncar (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWncarx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ncab2clf(1), ncakmod(1), close(2), read(2), write(2), sendfilev(3EXT), accept(3SOCKET), bind(3SOCKET), connect(3SOCKET), door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR), getsockopt(3SOCKET), listen(3SOCKET), setsockopt(3SOCKET), shutdown(3SOCKET), socket(3HEAD), socket(3SOCKET), ncad_addr(4), nca.if(4), ncakmod.conf(4), ncalogd.conf(4), attributes(5)

System Administration Guide: IP Services
ncab2clf -- convert binary log file to Common Log File format

**SYNOPSIS**

```
/usr/bin/ncab2clf [-Dhv] [-i input-file] [-o output-file] [-b size]
 [-n number] [-s datetime]
```

**DESCRIPTION**

The `ncab2clf` command is used to convert the log file generated by the Solaris Network Cache and Accelerator ("NCA") from binary format, to Common Log File ("CLF") format. If no `input-file` is specified, `ncab2clf` uses stdin. If no `output-file` is specified, the output goes to stdout.

**OPTIONS**

- `-b` Specifies the binary-log-file blocking in kilobytes; the default is 64 Kbyte.
- `-D` Specifies that direct I/O be disabled.
- `-h` Prints usage message.
- `-i input-file` Specifies the input file.
- `-n number` Output `number` CLF records.
- `-o output-file` Specifies the output file.
- `-s datetime` Skip any records before the date and time specified in `datetime`. You can specify the date and time in CLF format or in the format specified by the `touch(1)` utility. CLF format is the dominant format, so `ncab2clf` first analyzes `datetime` assuming CLF.
- `-v` Provides verbose output.

**EXAMPLES**

**EXAMPLE 1** Converting a Binary File to a Common Log File Format

The following example converts the binary file `/var/nca/logs/nca.blf` to a file `/var/nca/logs/nca.clf`, which is in Common Log File format.

```
example% ncab2clf -D -i /var/nca/logs/nca.blf -o /var/nca/logs/nca.clf
```

**EXAMPLE 2** Converting Multiple Log Files

The following script may be used to convert multiple log files. The directory designated by "*" must only contain log files.

```
#!/bin/ksh
for filename in *
do
 ncab2clf -D < $filename > $filename.clf
done
```

**EXAMPLE 3** Using `-s` and `-n` on a Raw Device

The following example shows how `ncab2clf` can be used on a raw device. If not using the `-n` option, the default is to convert all records from the starting location to the end of the file. The date and time specified with `-s`, below, is in CLF format.
EXAMPLE 3 Using \(-s\) and \(-n\) on a Raw Device (Continued)

example$ ncab2clf -s '10/Apr/2001:09:23:13' -n 100 < /dev/dsk/c2t1d0s6

EXIT STATUS
The following exit values are returned:
0        The file converted successfully
>0       An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWncau</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
nca(1), ncakmod(1), nca.if(4), ncakmod.conf(4), ncalogd.conf(4), attributes(5)

System Administration Guide: IP Services

NOTES
The binary log files generated by NCA can become very large. When converting these large binary files, use the \(-b\) option to the ncab2clf command to help performance.

Direct I/O is a benefit to the user if the data being written does not come in as large chunks. However, if the user wishes to convert the log file in large chunks using the \(-b\) option, then direct I/O should be disabled by using the \(-D\) option.
NAME
ncakmod – start or stop the NCA kernel module

SYNOPSIS
/etc/init.d/ncakmod start | stop

DESCRIPTION
ncakmod is used to start or stop the Solaris Network Cache and Accelerator ("NCA")
kernel module.

When the start option is specified at the command-line, the NCA kernel module will
be activated for all physical interfaces listed in the nca.if file. When the ncakmod
command is invoked with the stop option, the NCA kernel module will print the
following message:

To stop NCA, please set the status configuration parameter
to disable in ncakmod.conf and then reboot your system. See
the ncakmod.conf(4) manual page for more information.

Note that in order to properly stop NCA on your system, you must first edit the
ncakmod.conf(4) file and set the status field to "disable," then reboot your system.

OPTIONS
start          Starts the NCA kernel module.
stop           Describes the current method for stopping the NCA feature.

EXAMPLES
EXAMPLE 1 Starting and Stopping the NCA Feature

The following command is used to start the NCA feature:

example% /etc/init.d/ncakmod start

FILES
/etc/init.d/ncakmod         The NCA kernel module startup script.
/etc/nca/ncakmod.conf       Specifies configuration options for the NCA
                            kernel module.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWncar</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
nc(a), ncab2clf(1), ncad_addr(4), nca.if(4), ncakmod.conf(4),
ncalogd.conf(4), attributes(5)
Netscape Communicator for Solaris is comprised of a comprehensive set of components that integrates browsing, email, web-based word processing, chat, and group scheduling to allow users to easily communicate, share, and access information.

**SYNOPSIS**

```
/usr/dt/bin/netscape [options] [arguments]
```

**DESCRIPTION**

Any argument that is not a switch is interpreted as either a file or URL. The following options are supported:

- **-component-bar**
  Shows only the Component Bar.

- **-composer**
  Opens all command line URLs in Composer.

- **-discussions**
  Shows Collabra Discussions.

- **-display dpy**
  Specifies the X server to use for display.

- **-dont-force-window-stacking**
  Ignores the alwaysraised, alwayslowered, and z-lock JavaScript `window.open()` attributes.

- **-dont-save-geometry-prefs**
  Does not save window geometry preferences for the session.

- **-edit**
  See `-composer`.

- **-geometry =WxH+X+Y**
  Positions and sizes the Netscape window.

- **-help**
  Shows the command line options for Netscape.

- **-iconic**
  Minimizes Netscape after start up.

- **-id window-id**
  Identifies an X window to receive -remote commands. If you do not specify a window, the first window found is used.

- **-ignore-geometry-prefs**
  Ignores saved window geometry preferences for the current session.

- **-install**
  Installs private colormap.
-irix-session-management
   Enables IRIX session management. On SGI systems, IRIX session management is enabled by default. IRIX session management is available on other platforms and may work with session managers other than the IRIX desktop. See -no-irix-session-management.

-mail
   Same as -messenger.

-messenger
   Shows the Messenger Mailbox (Inbox).

-mono
   Forces a one-bit deep image display.

-ncols N
   Sets the maximum number of colors to allocate for images when not using -install.

-nethelp
   Starts NetHelp, Netscape’s online help system.

-news
   Same as -discussions.

-no-about-splash
   Bypasses the startup license page.

-no-install
   Uses the default colormap.

-no-irix-session-management
   Disables IRIX session management. See -irix-session-management.

-no-session-management
   Disables session management. Session management is enabled by default. See -session-management.

-noraise
   Does not display the remote window on top when using -remote commands. See -raise and -remote.

-raise
   Displays the remote window on top when using -remote commands. See -noraise and -remote.

-remote remote-command
   Connects to and controls an existing process. You can issue multiple -remote options on the same command line. The commands are executed sequentially unless a command fails. If there is no Netscape process currently running, this command fails. If the command fails, an error message will be reported to stderr and it will exit with a nonzero status. See REMOTE ACTIONS section below and EXAMPLES.
The following options exist for finer-grained control of the `-remote` commands:

- **-id X_window_ID**
  If there is more than one Netscape Navigator window open, this option selects the window to control. If you do not use this option, the first window found is controlled. See EXAMPLES.

- **-raise**
  Controls whether the `-remote` command option causes the Netscape window to raise or not raise itself to the top. The default is `-raise`.

- **-noraise**
  You can use `-raise` and `-noraise` options with the addBookmark and openURL arguments. See EXAMPLES.

- **-session-management**
  Enables session management. Session management is enabled by default. See `-no-session-management`.

- **-version**
  Displays the version number and build date.

- **-visual id-or-number**
  Uses the specified server visual.

- **-xrm resource-spec**
  Sets the specified X resource.

When Netscape Navigator is invoked with the `-remote` argument, it does not open a window, but instead connects to and controls an already existing process. The argument to the `-remote` switch is an Xt action to invoke, with optional arguments. Remote control is implemented using X properties, so the two processes need not be running on the same machine, and need not share a file system. See http://home.netscape.com/newsref/std/x-remote.html.

All of Netscape's action names are the same as its resource names. For example, if you wanted to know the name of the action that corresponds to the "Add Bookmark" menu item, you could look in Netscape for "Add Bookmark" and see that the resource that is set to that string is addBookmark. That is the name of the Action as well. Note: To find the Netscape file, use the full path name which is, by default, /usr/dt/appconfig/netscape/lib/locale/C/app-defaults/Netscape.

You can use Actions in Translation tables in the usual Xt manner, but you can also invoke them directly via the `-remote` option, like this:

```
netscape -remote 'addBookmark()'
```

That command will cause the existing Netscape Navigator process to add its current URL to the bookmarks, just as if you had selected that menu item.

To open a document, enter:
Invoking an action with no arguments has the same effect as selecting the corresponding menu item. However, with some actions you can pass the following arguments:

- `addBookmark( )`: Adds the current document to the Bookmark list.
- `addBookmark(URL)`: Adds the specified document to the Bookmark list. See EXAMPLES.
- `addBookmark(URL, title)`: Adds the specified document and title to the Bookmark list.
- `mailto( )`: Opens the mail dialog box with an empty To: field.
- `mailto(a, b, c)`: Inserts the specified address(es) in the default To: field.
- `openFile( )`: Opens a dialog box that prompts for a file.
- `openFile(filename)`: Opens the specified file.
- `openURL( )`: Opens a dialog box that prompts for a URL.
- `openURL(URL)`: Opens the specified document. See EXAMPLES.
- `openURL(URL, new window)`: Opens a new window displaying the specified document.
- `saveAs( )`: Opens a dialog box that prompts for a URL.
- `saveAs(output_file)`: Writes HTML to the specified file.
- `saveAs(output_file, type)`: Writes the type to the specified file (HTML, text, or PostScript).

**EXIT STATUS**

If a command fails, an error message is reported to stderr and the command exits with a nonzero status.

**EXAMPLES**

The following are all examples of using the `-remote` command option. For more information and examples, see http://home.netscape.com/newsref/std/x-remote.html

**EXAMPLE 1** Selecting among open Netscape windows

```
example1 netscape -id 0x3c00124 -remote 'openURL(http://www.example.com)'
```
EXAMPLE 2 Adding a bookmark without raising a window

To add a bookmark without raising a window, followed by opening a URL and raising
the window, enter:

```
example$ netscape -noraise -remote 'addBookmark(http://www.example.com)'
-raise -remote 'openURL(http://home.netscape.com)'
```

EXAMPLE 3 Adding a specified document to the Bookmark list

```
example$ netscape -remote 'addBookmark(http://www.example.com)'
```

EXAMPLE 4 Opening a specified document

```
example$ netscape -remote 'openURL(http://www.example.com)'
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>NSCPcom</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

Refer to the Netscape Communicator online help for more information.
newform(1)

NAME
newform – change the format of a text file

SYNOPSIS
[-cchar] [-ln] [filename...]

DESCRIPTION
newform reads lines from the named filenames, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformat ted in
accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be repeated, and
may be inter mingled with the optional filenames. Command line options are processed
in the order speci fied. This means that option sequences like ‘’-e15 -l160’’ will yield
results different from ‘’-l160 -e15’’. Options are applied to all filenames on the
command line.

OPTIONS
The following options are supported:

-s
Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a * and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -s -i -l -a -e filename

-itabspec
Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs(1). In addition, tabspec may be -, in which
newform assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4)). If no tabspec
is given, tabspec defaults to −8. A tabspec of −0 expects no tabs; if
any are found, they are treated as −1.

-otabspec
Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to −8. A tabspec of
−0 means that no spaces will be converted to tabs on output.

User Commands 1005
newform(1)

Truncate \( n \) characters from the beginning of the line when the line length is greater than the effective line length (see \(-l n\)). Default is to truncate the number of characters necessary to obtain the effective line length. The default value is used when \(-b\) with no \( n \) is used. This option can be used to delete the sequence numbers from a COBOL program as follows:

```
newform -l1 -b7 filename
```

Same as \(-b n\) except that characters are truncated from the end of the line.

Prefix \( n \) characters (see \(-c char\)) to the beginning of a line when the line length is less than the effective line length. Default is to prefix the number of characters necessary to obtain the effective line length.

Same as \(-p n\) except characters are appended to the end of a line.

Write the tab specification format line on the standard output before any other lines are output. The tab specification format line which is printed will correspond to the format specified in the last \(-o\) option. If no \(-o\) option is specified, the line which is printed will contain the default specification of \(-8\).

Change the prefix/append character to \( char\). Default character for \( char\) is a space.

Set the effective line length to \( n \) characters. If \( n \) is not entered, \(-l\) defaults to 72. The default line length without the \(-l\) option is 80 characters. Note: Tabs and backspaces are considered to be one character (use \(-i\) to expand tabs to spaces).

The \(-l1\) must be used to set the effective line length shorter than any existing line in the file so that the \(-b\) option is activated.

**OPERANDS**
The following operand is supported:

```
filename
```

Input file

**EXIT STATUS**
The following exit values are returned:

0 Successful operation.

1 Operation failed.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
</table>
**SEE ALSO**
csplit(1), tabs(1), fspec(4), attributes(5)

**DIAGNOSTICS**
All diagnostics are fatal.

**usage:** . . .
  newform was called with a bad option.

"not -s format"
  There was no tab on one line.

"can’t open file"
  Self-explanatory.

"internal line too long"
  A line exceeds 512 characters after being expanded in the internal work buffer.

"tabspec in error"
  A tab specification is incorrectly formatted, or specified tab stops are not ascending.

"tabspec indirection illegal"
  A `tabspec` read from a file (or standard input) may not contain a `tabspec` referencing another file (or standard input).

**NOTES**
newform normally only keeps track of physical characters; however, for the `-i` and `-o` options, newform will keep track of backspaces in order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a `tabspec` is to be read from the standard input (by use of `-i-` or `-o-`).

If the `-f` option is used, and the last `-o` option specified was `-o-`, and was preceded by either a `-o-` or a `-i-`, the tab specification format line will be incorrect.
The `newgrp` command logs a user into a new group by changing a user's real and effective group ID. The user remains logged in and the current directory is unchanged. The execution of `newgrp` always replaces the current shell with a new shell, even if the command terminates with an error (unknown group).

Any variable that is not exported is reset to null or its default value. Exported variables retain their values. System variables (such as `PS1`, `PS2`, `PATH`, `MAIL`, and `HOME`), are reset to default values unless they have been exported by the system or the user. For example, when a user has a primary prompt string (`PS1`) other than `$` (default) and has not exported `PS1`, the user's `PS1` will be set to the default prompt string `$`, even if `newgrp` terminates with an error. Note that the shell command `export` (see `sh(1)` and `set(1)`) is the method to export variables so that they retain their assigned value when invoking new shells.

With no operands and options, `newgrp` changes the user's group IDs (real and effective) back to the group specified in the user's password file entry. This is a way to exit the effect of an earlier `newgrp` command.

A password is demanded if the group has a password and the user is not listed in `/etc/group` as being a member of that group. The only way to create a password for a group is to use `passwd(1)`, then cut and paste the password from `/etc/shadow` to `/etc/group`. Group passwords are antiquated and not often used.

```
newgrp – log in to a new group
```

```
Command
```
```
/newusr/bin/newgrp [-| -l] [group]
```

```
sh Built-in
```
```
newgrp [argument]
```

```
ksh Built-in
```
```
*newgrp [argument]
```

```
DESCRIPTION
```
```
The `newgrp` command logs a user into a new group by changing a user's real and effective group ID. The user remains logged in and the current directory is unchanged. The execution of `newgrp` always replaces the current shell with a new shell, even if the command terminates with an error (unknown group).

Any variable that is not exported is reset to null or its default value. Exported variables retain their values. System variables (such as `PS1`, `PS2`, `PATH`, `MAIL`, and `HOME`), are reset to default values unless they have been exported by the system or the user. For example, when a user has a primary prompt string (`PS1`) other than `$` (default) and has not exported `PS1`, the user's `PS1` will be set to the default prompt string `$`, even if `newgrp` terminates with an error. Note that the shell command `export` (see `sh(1)` and `set(1)`) is the method to export variables so that they retain their assigned value when invoking new shells.

With no operands and options, `newgrp` changes the user's group IDs (real and effective) back to the group specified in the user's password file entry. This is a way to exit the effect of an earlier `newgrp` command.

A password is demanded if the group has a password and the user is not listed in `/etc/group` as being a member of that group. The only way to create a password for a group is to use `passwd(1)`, then cut and paste the password from `/etc/shadow` to `/etc/group`. Group passwords are antiquated and not often used.

```
Equivalent to exec `newgrp` argument where argument represents the options and/or operand of the `newgrp` command.
```

```
sh Built-in
```
```
Equivalent to exec `/bin/newgrp` argument where argument represents the options and/or operand of the `newgrp` command.
```

```
ksh Built-in
```
```
On this man page, `ksh(1)` commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

OPTIONS

The following option is supported:

-1 | −

Change the environment to what would be expected if the user actually logged in again as a member of the new group.

OPERANDS

The following operands are supported:

group

A group name from the group database or a non-negative numeric group ID. Specifies the group ID to which the real and effective group IDs will be set. If group is a non-negative numeric string and exists in the group database as a group name (see getgrnam(3C)), the numeric group ID associated with that group name will be used as the group ID.

argument

sh and ksh only. Options and/or operand of the newgrp command.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of newgrp: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

If newgrp succeeds in creating a new shell execution environment, whether or not the group identification was changed successfully, the exit status will be the exit status of the shell. Otherwise, the following exit value is returned:

>0 An error occurred.

FILES

/etc/group system’s group file
/etc/passwd system’s password file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

login(1), ksh(1), set(1), sh(1), intro(3), getgrnam(3C), group(4), passwd(4), attributes(5), environ(5), standards(5)
news(1)

NAME  news – print news items

SYNOPSIS  news [-a] [-n] [-s] [items]

DESCRIPTION  news is used to keep the user informed of current events. By convention, these events are described by files in the directory /var/news.

When invoked without arguments, news prints the contents of all current files in /var/news, most recent first, with each preceded by an appropriate header. news stores the “currency” time as the modification date of a file named .news_time in the user’s home directory (the identity of this directory is determined by the environment variable $HOME); only files more recent than this currency time are considered “current.”

OPTIONS
- a  Print all items, regardless of currency. In this case, the stored time is not changed.
- n  Report the names of the current items without printing their contents, and without changing the stored time.
- s  report how many current items exist, without printing their names or contents, and without changing the stored time. It is useful to include such an invocation of news in one’s .profile file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next item is started. Another delete within one second of the first causes the program to terminate.

ENVIRONMENT VARIABLES  See environ(5) for a description of the LC_CTYPE environment variable that affects the execution of news.

FILES
/etc/profile
/var/news/*
$HOME/.news_time

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO  profile(4), attributes(5), environ(5)
newtask – create new task or change task or project of running process

newtask [-c pid | [-F] [command...]] [-p project] [-v]

The newtask command executes the user’s default shell or a specified command, placing the executed command in a new task owned by the specified project. The user’s default shell is the one specified in the passwd database, and is determined via getpwnam().

Alternatively, newtask may be used to change the task of an already running process. A project may also be specified in this form of the command. This may be desirable for processes that are mission critical and cannot be restarted in order to put them into a new project.

In the case that extended accounting is active, the newtask command may additionally cause the creation of a task accounting record marking the completion of the preceding system task.

The following options are supported:

- **c pid** Changes the task or project of a running process. The invoking user must either own the process or have super-user privileges.

  If the project is being changed, the process owner must be a member of the specified project, or the invoking user must have super-user privileges.

  When the project is changed for a running process, its pool binding as well as resource controls are modified to match the configuration of the new project. Controls not explicitly specified in the project entry will be preserved.

  This option is incompatible with the -F and -l options.

- **F** Creates a finalized task, within which further newtask or settaskid(2) invocations would fail. Finalized tasks may be useful at some sites for simplifying the attribution of resource consumption.

- **l** Changes the environment to what would be expected if the user dactually logged in again as a member of the new project.

- **p** Changes the project ID of the new task to that associated with the given project name. The invoking user must be a valid member of the requested project, or must have super-user privileges, for the command to succeed. If no project name is specified, the new task is started in the invoking user’s current project.

- **v** Verbose: displays the system task id as the new system task is begun.

The following operands are supported:

- **project** The project to which resource usage by the created task should be charged. The requested project must be defined in the project databases defined in nsswitch.conf(4).
command

The command to be executed as the new task. If no command is given, the user’s login shell is invoked. (If the login shell is not available, /bin/sh is invoked.)

EXAMPLE 1 Creating a new shell

The following example creates a new shell in the canada project, displaying the task id:

```
example$ id -p
uid=565(gh) gid=10(staff) projid=10(default)
example$ newtask -v -p canada
38
example$ id -p
uid=565(gh) gid=10(staff) projid=82(canada)
```

EXAMPLE 2 Running the date command

The following example runs the date command in the russia project:

```
example$ newtask -p russia date
Tue Aug 31 11:12:10 PDT 1999
```

EXAMPLE 3 Changing the project of an existing process

The following example changes the project of the existing process with a pid of 9999 to russia:

```
example$ newtask -c 9999 -p russia
```

EXIT STATUS

The following exit values are returned:

0 Successful execution.
1 A fatal error occurred during execution.
2 Invalid command line options were specified.

FILES

/etc/project Local database containing valid project definitions for this machine.

/proc/pid/* Process information and control files.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>SEE ALSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc(1), id(1M), poolbind(1M), execvp(2), setrctl(2), settaskid(2), setproject(3PROJECT), nsswitch.conf(4), proc(4), project(4), attributes(5)</td>
</tr>
</tbody>
</table>

newtask(1)
nice(1)

NAME
nice – invoke a command with an altered scheduling priority

SYNOPSIS
/usr/bin/nice [-increment | -n increment] command [argument...]
/usr/xpg4/bin/nice [-increment | -n increment] command [argument...]
csh Builtin
nice [-increment | +increment] [command]

DESCRIPTION
The nice utility invokes command, requesting that it be run with a different system
scheduling priority. The priocntl(1) command is a more general interface to
scheduler functions.

The invoking process (generally the user’s shell) must be in a scheduling class that
supports nice.

If the C shell (see csh(1)) is used, the full path of the command must be specified;
otherwise, the csh built-in version of nice will be invoked. See csh Builtin below.

/usr/bin/nice
If nice executes commands with arguments, it uses the default shell /usr/bin/sh
(see sh(1)).

/usr/xpg4/bin/nice
If nice executes commands with arguments, it uses /usr/xpg4/bin/sh (see
ksh(1)).

csh Builtin
nice is also a csh built-in command with behavior different from the utility versions.
See csh(1) for description.

OPTIONS
The following options are supported:

- increment | -n increment
increment must be in the range 1-19; if not specified, an increment of 10 is
assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by using a
negative increment such as -10. A negative increment assigned by an unprivileged
user is ignored.

OPERANDS
The following operands are supported:

command The name of a command that is to be invoked. If command names
any of the special built-in utilities (see shell builtins(1)), the
results are undefined.

argument Any string to be supplied as an argument when invoking
command.

ENVIRONMENT
VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of nice: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, PATH, and NLSPATH.

EXIT STATUS
If command is invoked, the exit status of nice will be the exit status of command.
Otherwise, nice will exit with one of the following values:

1-125 An error occurred.
126 command was found but could not be invoked.
127 command could not be found.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), ksh(1), nohup(1), priocntl(1), sh(1), shell_builtins(1), nice(2), attributes(5), environ(5), standards(5)
nis+(1)

NAME
nis+, NIS+, nis – a new version of the network information name service

DESCRIPTION
NIS+ is a new version of the network information nameservice. This version differs in several significant ways from version 2, which is referred to as NIS or YP in earlier releases. Specific areas of enhancement include the ability to scale to larger networks, security, and the administration of the service.

The man pages for NIS+ are broken up into three basic categories. Those in section 1 are the user commands that are most often executed from a shell script or directly from the command line. Section 1M man pages describe utility commands that can be used by the network administrator to administer the service itself. The NIS+ programming API is described by man pages in section 3NSL.

All commands and functions that use NIS version 2 are prefixed by the letters yp as in ypmatch(1), ypcat(1), yp_match(3NSL), and yp_first(3NSL). Commands and functions that use the new replacement software NIS+ are prefixed by the letters nis as in nismatch(1), nischown(1), nis_list(3NSL), and nis_add_entry(3NSL). A complete list of NIS+ commands is in the LIST OF COMMANDS section.

This man page introduces the NIS+ terminology. It also describes the NIS+ namespace, authentication, and authorization policies.

NIS+ NAMESPACE
The naming model of NIS+ is based upon a tree structure. Each node in the tree corresponds to an NIS+ object. There are six types of NIS+ objects: directory, table, group, link, entry, and private.

NIS+ Directory Object
Each NIS+ namespace will have at least one NIS+ directory object. An NIS+ directory is like a UNIX file system directory which contains other NIS+ objects including NIS+ directories. The NIS+ directory that forms the root of the NIS+ namespace is called the root directory. There are two special NIS+ directories: org_dir and groups_dir. The org_dir directory consists of all the system-wide administration tables, such as passwd, hosts, and mail_aliases. The groups_dir directory consists of NIS+ group objects which are used for access control. The collection of org_dir, groups_dir and their parent directory is referred to as an NIS+ domain. NIS+ directories can be arranged in a tree-like structure so that the NIS+ namespace can match the organizational or administrative hierarchy.

NIS+ Table Object
NIS+ tables (not files), contained within NIS+ directories, store the actual information about some particular type. For example, the hosts system table stores information about the IP address of the hosts in that domain. NIS+ tables are multicolumn and the tables can be searched through any of the searchable columns. Each table object defines the schema for its table. The NIS+ tables consist of NIS+ entry objects. For each entry in the NIS+ table, there is an NIS+ entry object. NIS+ entry objects conform to the schema defined by the NIS+ table object.

NIS+ Group Object
NIS+ group objects are used for access control at group granularity. NIS+ group objects, contained within the groups_dir directory of a domain, contain a list of all the NIS+ principals within a certain NIS+ group. An NIS+ principal is a user or a machine making NIS+ requests.
**NIS+ Link Object**

NIS+ link objects are like UNIX symbolic file-system links and are typically used for shortcuts in the NIS+ namespace.

Refer to `nis_objects(3NSL)` for more information about the NIS+ objects.

**NIS+ NAMES**

The NIS+ service defines two forms of names, simple names and indexed names. Simple names are used by the service to identify NIS+ objects contained within the NIS+ namespace. Indexed names are used to identify NIS+ entries contained within NIS+ tables. Furthermore, entries within NIS+ tables are returned to the caller as NIS+ objects of type `entry`. NIS+ objects are implemented as a union structure which is described in the file `<rpcsvc/nis_object.x>`. The differences between the various types and the meanings of the components of these objects are described in `nis_objects(3NSL)`.

**Simple Names**

Simple names consist of a series of labels that are separated by the `.' (dot) character. Each label is composed of printable characters from the ISO Latin 1 set. Each label can be of any nonzero length, provided that the fully qualified name is fewer than `NIS_MAXNAMELEN` octets including the separating dots. (See `<rpcsvc/nis.h>` for the actual value of `NIS_MAXNAMELEN` in the current release.) Labels that contain special characters (see `Grammar`) must be quoted.

The NIS+ namespace is organized as a singly rooted tree. Simple names identify nodes within this tree. These names are constructed such that the leftmost label in a name identifies the leaf node and all of the labels to the right of the leaf identify that object’s parent node. The parent node is referred to as the leaf’s directory. This is a naming directory and should not be confused with a file system directory.

For example, the name `example.simple.name.` is a simple name with three labels, where `example` is the leaf node in this name, the directory of this leaf is `simple.name.`, which by itself is a simple name. The leaf of which is `simple` and its directory is simply `name`.

The function `nis_leaf_of(3NSL)` returns the first label of a simple name. The function `nis_domain_of(3NSL)` returns the name of the directory that contains the leaf. Iterative use of these two functions can break a simple name into each of its label components.

The name `.' (dot) is reserved to name the global root of the namespace. For systems that are connected to the Internet, this global root will be served by a Domain Name Service. When an NIS+ server is serving a root directory whose name is not `.' (dot) this directory is referred to as a local root.

NIS+ names are said to be fully qualified when the name includes all of the labels identifying all of the directories, up to the global root. Names without the trailing dot are called partially qualified.

**Indexed Names**

Indexed names are compound names that are composed of a search criterion and a simple name. The search criterion component is used to select entries from a table; the simple name component is used to identify the NIS+ table that is to be searched. The search criterion is a series of column names and their desired values enclosed in bracket `[ ]` characters. These criteria take the following form:
A search criterion is combined with a simple name to form an indexed name by concatenating the two parts, separated by a ‘,’(comma) character as follows.

\[
\text{[ search-criterion }, \text{ table.directory }
\]

When multiple column name/value pairs are present in the search criterion, only those entries in the table that have the appropriate value in all columns specified are returned. When no column name/value pairs are specified in the search criterion, all entries in the table are returned.

The following text represents a context-free grammar that defines the set of legal NIS+ names. The terminals in this grammar are the characters ‘.’ (dot), ‘[’ (open bracket), ‘]’ (close bracket), ‘,’ (comma), ‘=’ (equals) and whitespace. Angle brackets (‘<’ and ‘>’), which delineate non-terminals, are not part of the grammar. The character ‘|’ (vertical bar) is used to separate alternate productions and should be read as “this production OR this production”.

\[
\begin{align*}
\text{name} & ::= . \mid <\text{simple name}> \mid <\text{indexed name}> \\
\text{simple name} & ::= <\text{string}>. \mid <\text{string}>,<\text{simple name}> \\
\text{indexed name} & ::= <\text{search criterion}>,<\text{simple name}> \\
\text{search criterion} & ::= [ <\text{attribute list}> ] \\
\text{attribute list} & ::= <\text{attribute}> \mid <\text{attribute}>,<\text{attribute list}> \\
\text{attribute} & ::= <\text{string}> = <\text{string}> \\
\text{string} & ::= \text{ISO Latin 1 character set except the character ‘/’ (slash). The initial character may not be a terminal character or the characters ‘@’ (at), ‘+’ (plus), or (‘−’) hyphen.}
\end{align*}
\]

Terminals that appear in strings must be quoted with “” (double quote). The “” character may be quoted by quoting it with itself ””.

The NIS+ service only accepts fully qualified names. However, since such names may be unwieldy, the NIS+ commands in section 1 employ a set of standard expansion rules that will attempt to fully qualify a partially qualified name. This expansion is actually done by the NIS+ library function nis_getnames(3NSL) which generates a list of names using the default NIS+ directory search path or the NIS_PATH environment variable. The default NIS+ directory search path includes all the names in its path. nis_getnames() is invoked by the functions nis_lookup(3NSL) and nis_list(3NSL) when the EXPAND_NAME flag is used.
The NIS_PATH environment variable contains an ordered list of simple names. The names are separated by the ‘:’ (colon) character. If any name in the list contains colons, the colon should be quoted as described in the Grammar section. When the list is exhausted, the resolution function returns the error NIS_NOTFOUND. This may mask the fact that the name existed but a server for it was unreachable. If the name presented to the list or lookup interface is fully qualified, the EXPAND_NAME flag is ignored.

In the list of names from the NIS_PATH environment variable, the ‘$’ (dollar sign) character is treated specially. Simple names that end with the label ‘$’ have this character replaced by the default directory (see nis_local_directory(3NSL)). Using “$” as a name in this list results in this name being replaced by the list of directories between the default directory and the global root that contain at least two labels.

Below is an example of this expansion. Given the default directory of some.long.domain.name, and the NIS_PATH variable set to fred.bar.:org_dir.$:$.

This path is initially broken up into the list:

1 fred.bar.
2 org_dir.$
3 $

The dollar sign in the second component is replaced by the default directory. The dollar sign in the third component is replaced with the names of the directories between the default directory and the global root that have at least two labels in them. The effective path value becomes:

1 fred.bar.
2a org_dir.some.long.domain.name.
3a some.long.domain.name.
3b long.domain.name.
3c domain.name.

Each of these simple names is appended to the partially qualified name that was passed to the nis_lookup(3NSL) or nis_list(3NSL) interface. Each is tried in turn until NIS_SUCCESS is returned or the list is exhausted.

If the NIS_PATH variable is not set, the path “$” is used.

The library function nis_getnames(3NSL) can be called from user programs to generate the list of names that would be attempted. The program nisdefaults(1) with the -s option can also be used to show the fully expanded path.

Normally, all the entries for a certain type of information are stored within the table itself. However, there are times when it is desirable for the table to point to other tables where entries can be found. For example, you may want to store all the IP
addresses in the host table for their own domain, and yet want to be able to resolve hosts in some other domain without explicitly specifying the new domain name. NIS+ provides a mechanism for concatenating different but related tables with a "NIS+ Concatenation Path". With a concatenation path, you can create a sort of flat namespace from a hierarchical structure. You can also create a table with no entries and just point the hosts or any other table to its parent domain. Notice that with such a setup, you are moving the administrative burden of managing the tables to the parent domain. The concatenation path will slow down the request response time because more tables and more servers are searched. It will also decrease the availability if all the servers are incapacitated for a particular directory in the table path.

The NIS+ Concatenation Path is also referred to as the "table path". This path is set up at table creation time through nistbladm(1). You can specify more than one table to be concatenated and they will be searched in the given order. Notice that the NIS+ client libraries, by default, will not follow the concatenation path set in site-specific tables. Refer to nis_list(3NSL) for more details.

## Namespaces

The NIS+ service defines two additional disjoint namespaces for its own use. These namespaces are the NIS+ Principal namespace, and the NIS+ Group namespace. The names associated with the group and principal namespaces are syntactically identical to simple names. However, the information they represent cannot be obtained by directly presenting these names to the NIS+ interfaces. Instead, special interfaces are defined to map these names into NIS+ names so that they may then be resolved.

## Principal Names

NIS+ principal names are used to uniquely identify users and machines that are making NIS+ requests. These names have the form:

```
principal.domain
```

Here `domain` is the fully qualified name of an NIS+ directory where the named principal’s credentials can be found. See Directories and Domains for more information on domains. Notice that in this name, `principal`, is not a leaf in the NIS+ namespace.

Credentials are used to map the identity of a host or user from one context such as a process UID into the NIS+ context. They are stored as records in an NIS+ table named `cred`, which always appears in the `org_dir` subdirectory of the directory named in the principal name.

This mapping can be expressed as a replacement function:

```
principal.domain -> [cname=principal.domain], cred.org_dir.domain
```

This latter name is an NIS+ name that can be presented to the `nis_list(3NSL)` interface for resolution. NIS+ principal names are administered using the `nisaddcred(1M)` command.
The cred table contains five columns named cname, auth_name, auth_type, public_data, and private_data. There is one record in this table for each identity mapping for an NIS+ principal. The current service supports three types of mappings:

**LOCAL** This mapping is used to map from the UID of a given process to the NIS+ principal name associated with that UID. If no mapping exists, the name nobody is returned. When the effective UID of the process is 0 (for example, the superuser), the NIS+ name associated with the host is returned. Notice that UIDs are sensitive to the context of the machine on which the process is executing.

**DES** This mapping is used to map to and from a Secure RPC “netname” into an NIS+ principal name. See secure_rpc(3NSL) for more information on netnames. Notice that since netnames contain the notion of a domain, they span NIS+ directories.

**DHnnn-m** Example: DH640-0, DH1024-0. Analogous to DES mappings, these are used to map netnames and NIS+ principal names for extended Diffie-Hellman keys. See nisauthconf(1M) for further information.

The NIS+ client library function nis_local_principal(3NSL) uses the cred.org_dir table to map the UNIX notion of an identity, a process’ UID, into an NIS+ principal name. Shell programs can use the program nisdefaults(1) with the -p switch to return this information.

Mapping from UIDs to an NIS+ principal name is accomplished by constructing a query of the form:

\[[auth\_type=LOCAL, auth\_name=\texttt{uid}],\text{cred.org\_dir.default\_domain}\].

This query will return a record containing the NIS+ principal name associated with this UID, in the machine’s default domain.

The NIS+ service uses the DES mapping to map the names associated with Secure RPC requests into NIS+ principal names. RPC requests that use Secure RPC include the netname of the client making the request in the RPC header. This netname has the form:

\texttt{unix.UID@domain}

The service constructs a query using this name of the form:

\[[auth\_type=DES, auth\_name=\texttt{netname}],\text{cred.org\_dir.domain}\].

where the domain part is extracted from the netname rather than using the default domain. This query is used to look up the mapping of this netname into an NIS+ principal name in the domain where it was created.
This mechanism of mapping UID and netnames into an NIS+ principal name guarantees that a client of the NIS+ service has only one principal name. This principal name is used as the basis for authorization which is described below. All objects in the NIS+ namespace and all entries in NIS+ tables must have an owner specified for them. This owner field always contains an NIS+ principal name.

**Group Names**

Like NIS+ principal names, NIS+ group names take the form:

```
group_name.domain
```

All objects in the NIS+ namespace and all entries in NIS+ tables may optionally have a group owner specified for them. This group owner field, when filled in, always contains the fully qualified NIS+ group name.

The NIS+ client library defines several interfaces (`nis_groups(3NSL)`) for dealing with NIS+ groups. These interfaces internally map NIS+ group names into an NIS+ simple name which identifies the NIS+ group object associated with that group name. This mapping can be shown as follows:

```
group.domain -> group.groups_dir.domain
```

This mapping eliminates collisions between NIS+ group names and NIS+ directory names. For example, without this mapping, a directory with the name `engineering.foo.com`, would make it impossible to have a group named `engineering.foo.com`. This is due to the restriction that within the NIS+ namespace, a name unambiguously identifies a single object. With this mapping, the NIS+ group name `engineering.foo.com` maps to the NIS+ object name `engineering.groups_dir.foo.com`.

The contents of a group object is a list of NIS+ principal names, and the names of other NIS+ groups. See `nis_groups(3NSL)` for a more complete description of their use.

**NIS+ SECURITY**

NIS+ defines a security model to control access to information managed by the service. The service defines access rights that are selectively granted to individual clients or groups of clients. Principal names and group names are used to define clients and groups of clients that may be granted or denied access to NIS+ information. These principals and groups are associated with NIS+ domains as defined below.

The security model also uses the notion of a class of principals called `nobody`, which contains all clients, whether or not they have authenticated themselves to the service. The class `world` includes any client who has been authenticated.

**Directories and Domains**

Some directories within the NIS+ namespace are referred to as NIS+ Domains. Domains are those NIS+ directories that contain the subdirectories `groups_dir` and `org_dir`. Further, the subdirectory `org_dir` should contain the table named `cred`. NIS+ Group names and NIS+ Principal names always include the NIS+ domain name after their first label.
The NIS+ name service uses Secure RPC for the integrity of the NIS+ service. This requires that users of the service and their machines must have a Secure RPC key pair associated with them. This key is initially generated with either the nisaddcred(1M) or nisclient(1M) commands and modified with the chkey(1) or nispasswd(1) commands.

The use of Secure RPC allows private information to be stored in the name service that will not be available to untrusted machines or users on the network.

In addition to the Secure RPC key, users need a mapping of their UID into an NIS+ principal name. This mapping is created by the system administrator using either the nisclient(1M) or the nisaddcred(1M) command.

Users that will be using machines in several NIS+ domains must insure that they have a local credential entry in each of those domains. This credential should be created with the NIS+ principal name of the user in the user’s “home” domain. For the purposes of NIS+ and Secure RPC, the home domain is defined to be the one where the user’s Secure RPC key pair is located.

Although extended Diffie-Hellman keys use an alternative to Secure RPC, administration is done through the same commands. See nisauthconf(1M).

The NIS+ service defines four access rights that can be granted or denied to clients of the service. These rights are read, modify, create, and destroy. These rights are specified in the object structure at creation time and may be modified later with the nischmod(1) command. In general, the rights granted for an object apply only to that object. However, for purposes of authorization, rights granted to clients reading directory and table objects are granted to those clients for all of the objects “contained” by the parent object. This notion of containment is abstract. The objects do not actually contain other objects within them. Notice that group objects do contain the list of principals within their definition.

Access rights are interpreted as follows:

- **read**: This right grants read access to an object. For directory and table objects, having read access on the parent object conveys read access to all of the objects that are direct children of a directory, or entries within a table.

- **modify**: This right grants modification access to an existing object. Read access is not required for modification. However, in many applications, one will need to read an object before modifying it. Such modify operations will fail unless read access is also granted.

- **create**: This right gives a client permission to create new objects where one had not previously existed. It is only used in conjunction with directory and table objects. Having create access for a table allows a client to add additional entries to the table. Having create access for a directory allows a client to add new objects to an NIS+ directory.
destroy

This right gives a client permission to destroy or remove an existing object or entry. When a client attempts to destroy an entry or object by removing it, the service first checks to see if the table or directory containing that object grants the client destroy access. If it does, the operation proceeds, if the containing object does not grant this right then the object itself is checked to see if it grants this right to the client. If the object grants the right, then the operation proceeds; otherwise the request is rejected.

Each of these rights may be granted to any one of four different categories.

owner

A right may be granted to the owner of an object. The owner is the NIS+ principal identified in the owner field. The owner can be changed with the nischown(1) command. Notice that if the owner does not have modification access rights to the object, the owner cannot change any access rights to the object, unless the owner has modification access rights to its parent object.

group owner

A right may be granted to the group owner of an object. This grants the right to any principal that is identified as a member of the group associated with the object. The group owner may be changed with the nischgrp(1) command. The object owner need not be a member of this group.

world

A right may be granted to everyone in the world. This grants the right to all clients who have authenticated themselves with the service.

nobody

A right may be granted to the nobody principal. This has the effect of granting the right to any client that makes a request of the service, regardless of whether they are authenticated or not.

Notice that for bootstrapping reasons, directory objects that are NIS+ domains, the org_dir subdirectory and the cred table within that subdirectory must have read access to the nobody principal. This makes navigation of the namespace possible when a client is in the process of locating its credentials. Granting this access does not allow the contents of other tables within org_dir to be read (such as the entries in the password table) unless the table itself gives "real" access rights to the nobody principal.

Additional capabilities are provided for granting access rights to clients for directories. These rights are contained within the object access rights (OAR) structure of the directory. This structure allows the NIS+ service to grant rights that are not granted by the directory object to be granted for objects contained by the directory of a specific type.

An example of this capability is a directory object which does not grant create access to all clients, but does grant create access in the OAR structure for group type objects to clients who are members of the NIS+ group associated with the directory. In this example the only objects that could be created as children of the directory would have to be of the type group.
Another example is a directory object that grants create access only to the owner of the
directory, and then additionally grants create access through the OAR structure for
objects of type table, link, group, and private to any member of the directory’s group.
This has the effect of giving nearly complete create access to the group with the
exception of creating subdirectories. This restricts the creation of new NIS+ domains
because creating a domain requires creating both a groups_dir and org_dir subdirectory.

Notice that there is currently no command line interface to set or change the OAR of
the directory object.

As with directories, additional capabilities are provided for granting access to entries
within tables. Rights granted to a client by the access rights field in a table object apply
to the table object and all of the entry objects “contained” by that table. If an access
right is not granted by the table object, it may be granted by an entry within the table.
This holds for all rights except create.

For example, a table may not grant read access to a client performing a
nis_list(3NSL) operation on the table. However, the access rights field of entries
within that table may grant read access to the client. Notice that access rights in an
entry are granted to the owner and group owner of the entry and not the owner or
group of the table. When the list operation is performed, all entries that the client has
read access to are returned. Those entries that do not grant read access are not
returned. If none of the entries that match the search criterion grant read access to the
client making the request, no entries are returned and the result status contains the
NIS_NOTFOUND error code.

Access rights that are granted by the rights field in an entry are granted for the entire
entry. However, in the table object an additional set of access rights is maintained for
each column in the table. These rights apply to the equivalent column in the entry. The
rights are used to grant access when neither the table nor the entry itself grant access.
The access rights in a column specification apply to the owner and group owner of the
entry rather than the owner and group owner of the table object.

When a read operation is performed, if read access is not granted by the table and is
not granted by the entry but is granted by the access rights in a column, that entry is
returned with the correct values in all columns that are readable and the string *NP*
(No Permission) in columns where read access is not granted.

As an example, consider a client that has performed a list operation on a table that
does not grant read access to that client. Each entry object that satisfied the search
criterion specified by the client is examined to see if it grants read access to the client.
If it does, it is included in the returned result. If it does not, then each column is
checked to see if it grants read access to the client. If any columns grant read access
to the client, data in those columns is returned. Columns that do not grant read access
have their contents replaced by the string *NP*. If none of the columns grant read
access, then the entry is not returned.
Most NIS+ operations have implied access control through the permissions on the objects that they manipulate. For example, in order to read an entry in a table, you must have read permission on that entry. However, some NIS+ operations by default perform no access checking at all and so are allowed for anyone.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Example of commands that use the operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS_CHECKPOINT</td>
<td>nisping -C</td>
</tr>
<tr>
<td>NIS_CPTIME</td>
<td>nisping,rpc.nisd</td>
</tr>
<tr>
<td>NIS_MKDIR</td>
<td>nismkdir</td>
</tr>
<tr>
<td>NIS_PING</td>
<td>nisping,rpc.nisd</td>
</tr>
<tr>
<td>NIS_RMDIR</td>
<td>nisrmdir</td>
</tr>
<tr>
<td>NIS_SERVSTATE</td>
<td>nisbackup,nisrestore</td>
</tr>
<tr>
<td>NIS_STATUS</td>
<td>nisstat,rpc.nispasswd</td>
</tr>
</tbody>
</table>

See nisopaccess(1) for a description of how to enforce access control to these NIS+ operations.

The following lists all commands and programming functions related to NIS+:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nisaddent(1M)</td>
<td>add /etc files and NIS maps into their corresponding NIS+ tables</td>
</tr>
<tr>
<td>niscat(l)</td>
<td>display NIS+ tables and objects</td>
</tr>
<tr>
<td>nischgrp(l)</td>
<td>change the group owner of a NIS+ object</td>
</tr>
<tr>
<td>nischmod(l)</td>
<td>change access rights on a NIS+ object</td>
</tr>
<tr>
<td>nischown(l)</td>
<td>change the owner of a NIS+ object</td>
</tr>
<tr>
<td>nischttl(l)</td>
<td>change the time to live value of a NIS+ object</td>
</tr>
<tr>
<td>nisdefaults(l)</td>
<td>display NIS+ default values</td>
</tr>
<tr>
<td>niserror(l)</td>
<td>display NIS+ error messages</td>
</tr>
<tr>
<td>nisgrep(l)</td>
<td>utilities for searching NIS+ tables</td>
</tr>
<tr>
<td>nisgrpadm(l)</td>
<td>NIS+ group administration command</td>
</tr>
<tr>
<td>nisln(l)</td>
<td>symbolically link NIS+ objects</td>
</tr>
<tr>
<td>nisls(l)</td>
<td>list the contents of a NIS+ directory</td>
</tr>
<tr>
<td>nismatch(l)</td>
<td>utilities for searching NIS+ tables</td>
</tr>
<tr>
<td>nismkdir(l)</td>
<td>create NIS+ directories</td>
</tr>
<tr>
<td>nisopaccess(l)</td>
<td>access control for protocol operations</td>
</tr>
<tr>
<td>nispasswd(l)</td>
<td>change NIS+ password information</td>
</tr>
</tbody>
</table>
nisrm(1)  remove NIS+ objects from the namespace
nisrdir(1)  remove NIS+ directories
nisshowcache(1M)  NIS+ utility to print out the contents of the shared cache file
nistbladm(1)  NIS+ table administration command
nistrot(1)  return the state of the NIS+ namespace using a conditional expression
aliasadm(1M)  manipulate the NIS+ aliases map
nis_cachemgr(1M)  NIS+ utility to cache location information about NIS+ servers
nisaddcred(1M)  create NIS+ credentials
nisaddent(1M)  create NIS+ tables from corresponding /etc files or NIS+ maps
nisauthconf(1M)  configure extended Diffie-Hellman keys
nisbackup(1M)  backup NIS+ directories
nisclient(1M)  initialize NIS+ credentials for NIS+ principals
nisd(1M)  NIS+ service daemon
nisd_resolv(1M)  NIS+ service daemon
nisinit(1M)  NIS+ client and server initialization utility
nislog(1M)  display the contents of the NIS+ transaction log
nisping(1M)  send ping to NIS+ servers
nispopulate(1M)  populate the NIS+ tables in a NIS+ domain
nisprefadm(1M)  NIS+ utility to set server preferences for NIS+ clients
nisrestore(1M)  restore NIS+ directory backup
nisserv(1M)  set up NIS+ servers
nissetup(1M)  initialize a NIS+ domain
nisshowcache(1M)  NIS+ utility to print out the contents of the shared cache file
nisstat(1M)  report NIS+ server statistics
nisupdkeys(1M)  update the public keys in a NIS+ directory object
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rpc.nisd(1M)</code></td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td><code>rpc.nisd_resolv(1M)</code></td>
<td>NIS+ service daemon</td>
</tr>
<tr>
<td><code>sysdns(1M)</code></td>
<td>System configuration</td>
</tr>
<tr>
<td><code>nis_add(3NSL)</code></td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td><code>nis_add_entry(3NSL)</code></td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td><code>nis_addmember(3NSL)</code></td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td><code>nis_checkpoint(3NSL)</code></td>
<td>Miscellaneous NIS+ log administration functions</td>
</tr>
<tr>
<td><code>nis_clone_object(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_creategroup(3NSL)</code></td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td><code>nis_destroy_object(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_destroygroup(3NSL)</code></td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td><code>nis_dir_cmp(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_domain_of(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_error(3NSL)</code></td>
<td>Display NIS+ error messages</td>
</tr>
<tr>
<td><code>nis_first_entry(3NSL)</code></td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td><code>nis_freenames(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_freeresult(3NSL)</code></td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td><code>nis_freeservlist(3NSL)</code></td>
<td>Miscellaneous NIS+ functions</td>
</tr>
<tr>
<td><code>nis_freetags(3NSL)</code></td>
<td>Miscellaneous NIS+ functions</td>
</tr>
<tr>
<td><code>nis_getnames(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_getservlist(3NSL)</code></td>
<td>Miscellaneous NIS+ functions</td>
</tr>
<tr>
<td><code>nis_groups(3NSL)</code></td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td><code>nis_ismember(3NSL)</code></td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td><code>nis_leaf_of(3NSL)</code></td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td><code>nis_lerror(3NSL)</code></td>
<td>Display some NIS+ error messages</td>
</tr>
<tr>
<td><code>nis_list(3NSL)</code></td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td><code>nis_local_directory(3NSL)</code></td>
<td>NIS+ local names</td>
</tr>
<tr>
<td><code>nis_local_group(3NSL)</code></td>
<td>NIS+ local names</td>
</tr>
<tr>
<td><code>nis_local_host(3NSL)</code></td>
<td>NIS+ local names</td>
</tr>
<tr>
<td><code>nis_local_names(3NSL)</code></td>
<td>NIS+ local names</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>nis_local_principal(3NSL)</td>
<td>NIS+ local names</td>
</tr>
<tr>
<td>nis_lookup(3NSL)</td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td>nis_mkdir(3NSL)</td>
<td>miscellaneous NIS+ functions</td>
</tr>
<tr>
<td>nis_modify(3NSL)</td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td>nis_modify_entry(3NSL)</td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td>nis_name_of(3NSL)</td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td>nis_names(3NSL)</td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td>nis_next_entry(3NSL)</td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td>nis_objects(3NSL)</td>
<td>NIS+ object formats</td>
</tr>
<tr>
<td>nis_perror(3NSL)</td>
<td>display NIS+ error messages</td>
</tr>
<tr>
<td>nis_ping(3NSL)</td>
<td>miscellaneous NIS+ log administration functions</td>
</tr>
<tr>
<td>nis_print_group_entry(3NSL)</td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td>nis_print_object(3NSL)</td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td>nis_remove(3NSL)</td>
<td>NIS+ namespace functions</td>
</tr>
<tr>
<td>nis_remove_entry(3NSL)</td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td>nis_removemember(3NSL)</td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td>nis_rmdir(3NSL)</td>
<td>miscellaneous NIS+ functions</td>
</tr>
<tr>
<td>nis_server(3NSL)</td>
<td>miscellaneous NIS+ functions</td>
</tr>
<tr>
<td>nis_servstate(3NSL)</td>
<td>miscellaneous NIS+ functions</td>
</tr>
<tr>
<td>nis_sperrno(3NSL)</td>
<td>display NIS+ error messages</td>
</tr>
<tr>
<td>nis_spererror(3NSL)</td>
<td>display NIS+ error messages</td>
</tr>
<tr>
<td>nis_spererror_r(3NSL)</td>
<td>display NIS+ error messages</td>
</tr>
<tr>
<td>nis_stats(3NSL)</td>
<td>miscellaneous NIS+ functions</td>
</tr>
<tr>
<td>nis_subr(3NSL)</td>
<td>NIS+ subroutines</td>
</tr>
<tr>
<td>nis_tables(3NSL)</td>
<td>NIS+ table functions</td>
</tr>
<tr>
<td>nis_verifygroup(3NSL)</td>
<td>NIS+ group manipulation functions</td>
</tr>
<tr>
<td>nisfiles(4)</td>
<td>NIS+ database files and directory structure</td>
</tr>
<tr>
<td>&lt;rpcsvc/nis_object.x&gt;</td>
<td>protocol description of an NIS+ object</td>
</tr>
<tr>
<td>&lt;rpcsvc/nis.x&gt;</td>
<td>defines the NIS+ protocol using the RPC</td>
</tr>
<tr>
<td></td>
<td>language as described in the ONC+ Developer’s</td>
</tr>
<tr>
<td></td>
<td>Guide</td>
</tr>
</tbody>
</table>
nis+(1)

<npcsvc/nis.h> should be included by all clients of the NIS+ service

**SEE ALSO**

nischown(1), nisdefaults(1), nismatch(1), nisopaccess(1), nispasswd(1),
newkey(1M), nisaddcred(1M), nisauthconf(1M), nisclient(1M),
nispopulate(1M), nisserver(1M), nis_add_entry(3NSL),
nis_domain_of(3NSL), nis_getnames(3NSL), nis_groups(3NSL),
nis_leaf_of(3NSL), nis_list(3NSL), nis_local_directory(3NSL),
nis_lookup(3NSL), nis_objects(3NSL)

*System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)*
- Describes how to make the transition from NIS to NIS+.

*ONC+ Developer's Guide*
- Describes the application programming interfaces for networks including NIS+.

*System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)*
- Describes how to plan for and configure an NIS+ namespace.

*System Administration Guide: IP Services*
- Describes IPv6 extensions to Solaris name services.

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
### NAME
niscat – display NIS+ tables and objects

### SYNOPSIS
niscat [-AhLMv] [-s sep] tablename...

niscat [-ALMP] -o name...

### DESCRIPTION
In the first synopsis, niscat displays the contents of the NIS+ tables named by `tablename`. In the second synopsis, it displays the internal representation of the NIS+ objects named by `name`.

Columns without values in the table are displayed by two adjacent separator characters.

### OPTIONS
The following options are supported:

- **-A**
  Displays the data within the table and all of the data in tables in the initial table’s concatenation path.

- **-h**
  Displays the header line prior to displaying the table. The header consists of the ‘#’ (hash) character followed by the name of each column. The column names are separated by the table separator character.

- **-L**
  Follows links. When this option is specified, if `tablename` or `name` names a LINK type object, the link is followed and the object or table named by the link is displayed.

- **-M**
  Master server only. This option specifies that the request should be sent to the master server of the named data. This guarantees that the most up-to-date information is seen at the possible expense of increasing the load on the master server and increasing the possibility of the NIS+ server being unavailable or busy for updates.

- **-o name**
  Displays the internal representation of the named NIS+ object(s). If `name` is an indexed name (see nismatch(1)), then each of the matching entry objects is displayed. This option is used to display access rights and other attributes of individual columns.

- **-P**
  Follows concatenation path. This option specifies that the request should follow the concatenation path of a table if the initial search is unsuccessful. This option is only useful when using an indexed name for `name` and the `-o` option.

- **-s sep**
  This option specifies the character to use to separate the table columns. If no character is specified, the default separator for the table is used.

- **-v**
  Displays binary data directly. This option displays columns containing binary data on the standard output. Without this option, binary data is displayed as the string ‘*BINARY*’.
EXAMPLE 1 Displaying the contents of the hosts table

```
example% niscat -h hosts.org_dir
cname name addr comment
client1 client1 192.168.201.100 Joe Smith
crunchy crunchy 192.168.201.44 Jane Smith
crunchy softy 192.168.201.44
```

The string *NF* is returned in those fields where the user has insufficient access rights.

EXAMPLE 2 Displaying on the standard output

Display the passwd.org_dir on the standard output.

```
example% niscat passwd.org_dir
```

EXAMPLE 3 Displaying table contents

Display the contents of table frodo and the contents of all tables in its concatenation path.

```
example% niscat -A frodo
```

EXAMPLE 4 Displaying table entries

Display the entries in the table groups.org_dir as NIS+ objects. Notice that the brackets are protected from the shell by single quotes.

```
example% niscat -o '[]groups.org_dir'
```

EXAMPLE 5 Displaying the table object

Display the table object of the passwd.org_dir table.

```
example% niscat -o passwd.org_dir
```

The previous example displays the passwd table object and not the passwd table. The table object includes information such as the number of columns, column type, searchable or not searchable separator, access rights, and other defaults.

EXAMPLE 6 Displaying the directory object

Display the directory object for org_dir, which includes information such as the access rights and replica information.

```
example% niscat -o org_dir
```

ENVIRONMENT VARIABLES

NIS_PATH

If this variable is set, and the NIS+ table name is not fully qualified, each directory specified will be searched until the table is found (see nisdefaults(1)).
niscat(1)

**EXIT STATUS**

niscat returns the following values:

- **0**: Successful completion
- **1**: An error occurred.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnissu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

nis+(1), nisdefaults(1), nismatch(1), nistbladm(1), nis_objects(3NSL), nis_tables(3NSL), attributes(5)

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nischgrp(1)

NAME
nischgrp – change the group owner of a NIS+ object

SYNOPSIS
nischgrp [-AfLP] group name...

DESCRIPTION
nischgrp changes the group owner of the NIS+ objects or entries specified by name to the specified NIS+ group. Entries are specified using indexed names (see nismatch(1)). If group is not a fully qualified NIS+ group name, it will be resolved using the directory search path (see nisdefaults(1)).

The only restriction on changing an object’s group owner is that you must have modify permissions for the object.

This command will fail if the master NIS+ server is not running.

The NIS+ server will check the validity of the group name prior to effecting the modification.

OPTIONS
The following options are supported:

- A          Modify all entries in all tables in the concatenation path that match the search criterion specified in name. This option implies the - P switch.
- f          Force the operation and fail silently if it does not succeed.
- L          Follow links and change the group owner of the linked object or entries rather than the group owner of the link itself.
- P          Follow the concatenation path within a named table. This option only makes sense when either name is an indexed name or the - L switch is also specified and the named object is a link pointing to entries.

EXAMPLES
EXAMPLE 1 Using the nischgrp Command

The following two examples show how to change the group owner of an object to a group in a different domain, and how to change it to a group in the local domain, respectively.

example% nischgrp newgroup.remote.domain object
example% nischgrp my-buds object

This example shows how to change the group owner for a password entry.

example% nischgrp admins ‘[uid-99],passwd.org_dir’

In the previous example, admins is a NIS+ group in the same domain.

The next two examples change the group owner of the object or entries pointed to by a link, and the group owner of all entries in the hobbies table.

example% nischgrp -L my-buds linkname
example% nischgrp my-buds ‘[1],hobbies’
ENVIRONMENT VARIABLES

NIS_PATH  If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found (see nisdefaults(1)).

EXIT STATUS

The following exit values are returned:

0  Successful operation.
1  Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), nischmod(1), nischown(1), nisdefaults(1), nisgrpadm(1), nismatch(1), nis_objects(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nischmod – change access rights on a NIS+ object

**SYNOPSIS**

```
nischmod [-AfLP] mode name...
```

**DESCRIPTION**

*nischmod* changes the access rights (mode) of the NIS+ objects or entries specified by *name* to *mode*. Entries are specified using indexed names (see *nismatch(1)*). Only principals with modify access to an object may change its mode.

*mode* has the following form:

```
rights [, rights]...
```

*rights* has the form:

```
[who] op permission [op permission] . . .
```

*who* is a combination of:

- **n** Nobody’s permissions.
- **o** Owner’s permissions.
- **g** Group’s permissions.
- **w** World’s permissions.
- **a** All, or owg.

If *who* is omitted, the default is *a*.

*op* is one of:

- **+** To grant the *permission*.
- **-** To revoke the *permission*.
- **=** To set the permissions explicitly.

*permission* is any combination of:

- **r** Read.
- **m** Modify.
- **c** Create.
- **d** Destroy.

Unlike the system *chmod(1)* command, this command does not accept an octal notation.

**OPTIONS**

The following options are supported:

- **-A** Modify all entries in all tables in the concatenation path that match the search criteria specified in *name*. This option implies the -P switch.
-f  Force the operation and fail silently if it does not succeed.
-L  Follow links and change the permission of the linked object or entries
     rather than the permission of the link itself.
-P  Follow the concatenation path within a named table. This option is only
     applicable when either name is an indexed name or the -L switch is also
     specified and the named object is a link pointing to an entry.

EXAMPLES

EXAMPLE 1 Using the nischmod Command
This example gives everyone read access to an object. (that is, access for owner, group, and all).
exampler nischmod a+r object
This example denies create and modify privileges to group and unauthenticated
clients (nobody).
exampler nischmod gn-cm object
In this example, a complex set of permissions are set for an object.
exampler nischmod o=rmcd,g=rm,w=rc,n=n-r object
This example sets the permissions of an entry in the password table so that the group
owner can modify them.
exampler nischmod g+m [uid=55],passwd.org_dir
The next example changes the permissions of a linked object.
exampler nischmod -L w+mr linkname

ENVIRONMENT VARIABLES

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found
(see nisdefaults(1)).

EXIT STATUS
The following exit values are returned:
0      Successful operation.
1      Operation failed.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**
nischown – change the owner of a NIS+ object

**SYNOPSIS**
nischown [-AfLP] owner name...

**DESCRIPTION**
nischown changes the owner of the NIS+ objects or entries specified by name to owner. Entries are specified using indexed names (see nismatch(1)). If owner is not a fully qualified NIS+ principal name (see nisaddcred(1M)), the default domain (see nisdefaults(1)) will be appended to it.

The only restriction on changing an object’s owner is that you must have modify permissions for the object. Note: If you are the current owner of an object and you change ownership, you may not be able to regain ownership unless you have modify access to the new object.

The command will fail if the master NIS+ server is not running.

The NIS+ server will check the validity of the name before making the modification.

**OPTIONS**
The following options are supported:

- **-A** Modify all entries in all tables in the concatenation path that match the search criteria specified in name. It implies the -P option.
- **-f** Force the operation and fail silently if it does not succeed.
- **-L** Follow links and change the owner of the linked object or entries rather than the owner of the link itself.
- **-P** Follow the concatenation path within a named table. This option is only meaningful when either name is an indexed name or the -L option is also specified and the named object is a link pointing to entries.

**EXAMPLES**
**EXAMPLE 1 Using the nischown Command**

The following two examples show how to change the owner of an object to a principal in a different domain, and to change it to a principal in the local domain, respectively.

```
example% nischown bob.remote.domain. object
example% nischown skippy object
```

The next example shows how to change the owner of an entry in the passwd table.

```
example% nischown bob.remote.domain. ’[uid=99],passwd.org_dir’
```

This example shows how to change the object or entries pointed to by a link.

```
example% nischown -L skippy linkname
```

**ENVIRONMENT VARIABLES**

**NIS_PATH**

If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found (see nisdefaults(1)).
nischown(1)

EXIT STATUS The following exit values are returned:
0 Successful operation.
1 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO nis+(1), nischgrp(1), nischmod(1), nischt1(1), nisdefaults(1), nisaddcred(1M), nismatch(1), nis_objects(3NSL), attributes(5)

NOTES NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nischt1l(1)

NAME

nischt1l – change the time to live value of a NIS+ object

SYNOPSIS

nischt1l [-AfLP] time name...

DESCRIPTION

nischt1l changes the time to live value (ttl) of the NIS+ objects or entries specified by name to time. Entries are specified using indexed names (see nismatch(1)).

The time to live value is used by object caches to expire objects within their cache. When an object is read into the cache, this value is added to the current time in seconds yielding the time when the cached object would expire. The object may be returned from the cache until the current time is earlier than the calculated expiration time. When the expiration time has been reached, the object will be flushed from the cache.

The time to live time may be specified in seconds or in days, hours, minutes, seconds format. The latter format uses a suffix letter of d, h, m, or s to identify the units of time. See the examples below for usage.

The command will fail if the master NIS+ server is not running.

Setting a high ttl value allows objects to stay persistent in caches for a longer period of time and can improve performance. However, when an object changes, in the worst case, the number of seconds in this attribute must pass before that change is visible to all clients. Setting a ttl value of 0 means that the object should not be cached at all.

A high ttl value is a week, a low value is less than a minute. Password entries should have ttl values of about 12 hours (easily allows one password change per day), entries in the RPC table can have ttl values of several weeks (this information is effectively unchanging).

Only directory and group objects are cached in this implementation.

OPTIONS

The following options are supported:

-A   Modify all tables in the concatenation path that match the search criterion specified in name. This option implies the -P switch.

-f   Force the operation and fail silently if it does not succeed.

-L   Follow links and change the time to live of the linked object or entries rather than the time to live of the link itself.

-P   Follow the concatenation path within a named table. This option only makes sense when either name is an indexed name or the -L switch is also specified and the named object is a link pointing to entries.

EXAMPLES

EXAMPLE 1 Changing the ttl of an Object

The following example shows how to change the ttl of an object using the seconds format and the days, hours, minutes, seconds format. The ttl of the second object is set to 1 day and 12 hours.
EXAMPLE 1 Changing the ttl of an Object

example% nischttl 184000 object
example% nischttl 1d12h object

EXAMPLE 2 Changing the ttl for a password Entry

This example shows how to change the ttl for a password entry.

example% nischttl 1h30m '[uid=99].passwd.org_dir'

EXAMPLE 3 Changing the ttl of Entries Pointed to by a Link

The next two examples change the ttl of the object or entries pointed to by a link, and the ttl of all entries in the hobbies table.

example% nischttl -L 12h linkname
example% nischttl 3600 '[],hobbies'

ENVIRONMENT

NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found. See nisdefaults(1).

EXIT STATUS

The following exit values are returned:

0  Successful operation.
1  Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), nischgrp(1), nischmod(1), nischown(1), nisdefaults(1), nismatch(1), nis_objects(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisdefaults(1)

NAME
nisdefaults – display NIS+ default values

SYNOPSIS
nisdefaults [-adghprstv]

DESCRIPTION
The nisdefaults utility prints the default values that are returned by calls to the NIS+ local name functions (see nis_local_names(3NSL)). With no options specified, all defaults will be printed in a verbose format. With options, only that option is displayed in a terse form suitable for shell scripts. See the example below.

OPTIONS
The following options are supported:
- a Print all defaults in a terse format.
- d Print the default domain name.
- g Print the default group name.
- h Print the default host name.
- p Print the default principal name.
- r Print the default access rights with which new objects will be created.
- s Print the default directory search path.
- t Print the default time to live value.
- v Print the defaults in a verbose format. This prepends an identifying string to the output.

EXAMPLES
EXAMPLE 1 Printing NIS+ defaults
The following prints the NIS+ defaults for a root process on machine example in the foo.bar. domain:
exemple# nisdefaults
Principal Name : example.foo.bar.
Domain Name : foo.bar.
Host Name : example.foo.bar.
Group Name :
Access Rights : −−−−−rmcdr−−−r−−−
Time to live : 12:00:00
Search Path : foo.bar.

EXAMPLE 2 Setting a variable in the shell script
This example sets a variable in a shell script to the default domain:

DOMAIN='nisdefaults -d'

EXAMPLE 3 Printing the default time to live in verbose format
This example prints out the default time to live in a verbose format:
EXAMPLE 3 Printing the default time to live in verbose format  (Continued)

example$ nisdefaults -tv
Time to live : 12:00:00

EXAMPLE 4 Printing the time to live in terse format

This example prints out the time to live in the terse format:

example$ nisdefaults -t
43200

Several environment variables affect the defaults associated with a process.

NIS_DEFAULTS  This variable contains a defaults string that will override the NIS+ standard defaults. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

    ttl=time
    This token sets the default time to live for objects that are created. The value time is specified in the format as defined by the nischttl(1) command. The default value is 12 hours.

    owner=ownername
    This token specifies that the NIS+ principal ownername should own created objects. The default for this value is the principal who is executing the command.

    group=groupname
    This token specifies that the group groupname should be the group owner for created objects. The default is NULL.

    access=rights
    This token specifies the set of access rights that are to be granted for created objects. The value rights is specified in the format as defined by the nischmod(1) command. The default value is: ----rmcdr---r--.

NIS_GROUP  This variable contains the name of the local NIS+ group. If the name is not fully qualified, the default domain will be appended to it.

NIS_PATH  This variable overrides the default NIS+ directory search path. It contains an ordered list of directories...
separated by ‘:’ (colon) characters. The ‘$’ (dollar sign) character is treated specially. Directory names that end in ‘$’ have the default domain appended to them, and a ‘$’ by itself is replaced by the list of directories between the default domain and the global root that are at least two levels deep. The default NIS+ directory search path is ‘$’.

Refer to the Name Expansion subsection in nis+(1) for more details.

ATTRIBUTE

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nischmod(1), nischttl(1), nis+(1), nis_local_names(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
niserror(1)

NAME  niserror – display NIS+ error messages

SYNOPSIS  niserror error-num

DESCRIPTION  niserror prints the NIS+ error associated with status value error-num on the standard output. It is used by shell scripts to translate NIS+ error numbers that are returned into text messages.

EXAMPLES  EXAMPLE 1 Using niserror

The following example prints the error associated with the error number 20:

example$ niserror 20
Not Found, no such name

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO  nis+(1), nis_error(3NSL), attributes(5)

NOTES  NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
The `nisgrpadm` utility is used to administer NIS+ groups. This command administers both groups and the groups’ membership lists. `nisgrpadm` can create, destroy, or list NIS+ groups. `nisgrpadm` can be used to administer a group’s membership list. It can add or delete principals to the group, or test principals for membership in the group.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they occupy a separate namespace. A group named `a.b.c.d.` is represented by a NIS+ group object named `a.groups_dir.b.c.d.`; the functions described here all expect the name of the group, not the name of the corresponding group object.

There are three types of group members:

- **An explicit** member is just a NIS+ principal-name. For example: `wickedwitch.west.oz`.
- **An implicit** ("domain") member, written `*.west.oz.`, means that all principals in the given domain belong to this member. No other forms of wildcarding are allowed; `wickedwitch.*.oz.` is invalid, as is `wickedwitch.west.*..` Note that principals in subdomains of the given domain are not included.
- **A recursive** ("group") member, written `@cowards.oz.`, refers to another group; all principals that belong to that group are considered to belong here.

Any member may be made **negative** by prefixing it with a minus sign (`-`). A group may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative group member of the group and belongs to no negative group members.

Principal names **must** be fully qualified, whereas groups can be abbreviated on all operations except `create`.

**OPTIONS**

The following options are supported:

- **-a** Adds the list of NIS+ principals specified to `group`. The principal name should be fully qualified.
- **-c** Creates `group` in the NIS+ namespace. The NIS+ group name should be fully qualified.
- **-d** Destroys (removes) `group` from the namespace.
- **-D defaults** When creating objects, this option specifies a different set of defaults to be used during this operation. The `defaults` string is a series of tokens separated by colons. These tokens represent the...
default values to be used for the generic object properties. All of
the legal tokens are described below.

ttl=time

This token sets the default time to
drive for objects that are created by
this command. The value time is
specified in the format as defined
by the nischttl(1) command. The
default value is 12 hours.

owner=ownername

This token specifies that the NIS+
principal ownername should own
the created object. Normally this
value is the same as the principal
who is executing the command.

group=groupname

This token specifies that the group
groupname should be the group
owner for the object that is created.
The default value is NULL.

access=rights

This token specifies the set of access
rights that are to be granted for the
given object. The value rights is
specified in the format as defined
by the nischmod(1) command. The
default value is

- - - - rmcdr- - - - r- - - .

-l Lists the membership list of the specified group. (See -M option.)
-M Master server only. Sends the lookup to the master server of the
named data. This guarantees that the most up to date information
is seen at the possible expense that the master server may be busy.
Note that the -M flag is applicable only with the -l flag.
-r Removes the list of principals specified from group. The principal
name should be fully qualified.
-s Work silently. Results are returned using the exit status of the
command. This status can be translated into a text string using the
niserror(1) command.
-t Displays whether the principals specified are members in group.

EXAMPLES

Administering Groups

EXAMPLE 1 Creating a group

This example shows how to create a group in the foo.com. domain:

eample% nisgrpadm -c my_buds.foo.com.
EXAMPLE 2  How to remove a group

This example shows how to remove the group from the current domain.

```bash
example% nisgrpadm -d freds_group
```

EXAMPLE 3  Adding to the group

This example shows how one would add two principals, bob and betty, to the group my_buds.foo.com.:

```bash
```

EXAMPLE 4  How to remove a principal from the group

This example shows how to remove betty from freds_group:

```bash
example% nisgrpadm -r freds_group betty.foo.com.
```

ENVIRONMENT VARIABLES

- **NIS_DEFAULTS**: This variable contains a defaults string that will override the NIS+ standard defaults.
- **NIS_PATH**: If this variable is set, and the NIS+ group name is not fully qualified, each directory specified will be searched until the group is found (see nisdefaults(1)).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), nischgrp(1), nischmod(1), nischttl(1), nisdefaults(1), niserror(1), nis_groups(3NSL), attributes(5)

DIAGNOSTICS

- **NIS_SUCCESS**: On success, this command returns an exit status of 0.
- **NIS_PERMISSION**: When you do not have the needed access right to change the group, the command returns this error.
- **NIS_NOTFOUND**: This is returned when the group does not exist.
- **NIS_TRYAGAIN**: This error is returned when the server for the group’s domain is currently checkpointing or otherwise in a read-only state. The command should be retried at a later date.
- **NIS_MODERROR**: This error is returned when the group was modified by someone else during the execution of the command.
Reissue the command and optionally recheck the group’s membership list.

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisln [-L] [-D defaults] name linkname

The nisln command links a NIS+ object named name to a NIS+ name linkname. If name is an indexed name (see nismatch(1)), the link points to entries within a NIS+ table. Clients wishing to look up information in the name service can use the FOLLOW_LINKS flag to force the client library to follow links to the name they point to. Further, all of the NIS+ administration commands accept the -L switch indicating they should follow links (see nis_names(3NSL) for a description of the FOLLOW_LINKS flag).

When creating the link, nisln verifies that the linked object exists. Once created, the linked object may be deleted or replaced and the link will not be affected. At that time, the link will become invalid and attempts to follow it will return NIS_LINKNAMEERROR to the client. When the path attribute in tables specifies a link rather than another table, the link will be followed if the flag FOLLOW_LINKS was present in the call to nis_list() (see nis_tables(3NSL)) and ignored if the flag is not present. If the flag is present and the link is no longer valid, a warning is sent to the system logger and the link is ignored.

The following options are supported:

-D defaults
   Specify a different set of defaults to be used for the creation of the link object. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

   ttl=time
   This token sets the default time to live for objects that are created by this command. The value time is specified in the format as defined by the nischttl(1) command. The default is 12 hours.

   owner=ownername
   This token specifies that the NIS+ principal ownername should own the created object. The default for this value is the principal who is executing the command.

   group=groupname
   This token specifies that the group groupname should be the group owner for the object that is created. The default is NULL.

   access=rights
   This token specifies the set of access rights that are to be granted for the given object. The value rights is specified in the format as defined by the nischmod(1) command. The default value is −−−−rmcdx−−−−r−−−. 
When present, this option specifies that this command should follow links. If name is itself a link, then this command will follow it to the linked object that it points to. The new link will point to that linked object rather than to name.

**EXAMPLE 1** Creating a link

In this example, we create a link in the domain foo.com named hosts that points to the object hosts.bar.com:

```
example% nisln hosts.bar.com hosts.foo.com.
```

**EXAMPLE 2** Making a link that points to an entry in the hosts table

In this example, we make a link example.foo.com that points to an entry in the hosts table in eng.foo.com:

```
example% nisln \[name=example\],hosts.eng.foo.com.' example.foo.com.
```

**ENVIRONMENT VARIABLES**

NIS\_PATH If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found (see nisdefaults(1)).

**EXIT STATUS**

The following exit values are returned:

0  Successful operation.
1  Operation failed.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

nisdefaults(1), nismatch(1), nisrm(1), nistbladm(1), nis\_names(3NSL), nis\_tables(3NSL), attributes(5)

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nisls – list the contents of a NIS+ directory

**SYNOPSIS**

`nisls [-dglLmMR] [name...]`

**DESCRIPTION**

For each `name` that is a NIS+ directory, `nisls` lists the contents of the directory. For each `name` that is a NIS+ object other than a directory, `nisls` simply echos the name. If no `name` is specified, the first directory in the search path is listed. See `nisdefaults(1)`.

**OPTIONS**

The following options are supported:

- `-d` Treat NIS+ directories like other NIS+ objects, rather than listing their contents.
- `-g` Display group owner instead of owner when listing in long format.
- `-l` List in long format. This option displays additional information about the objects such as their type, creation time, owner, and access rights.

The access rights are listed in the following order in long mode: nobody, owner, group owner, and world.

- `-L` This option specifies that links are to be followed. If `name` actually points to a link, it is followed to the linked object.
- `-m` Display modification time instead of creation time when listing in long format.
- `-M` Master only. This specifies that information is to be returned from the master server of the named object. This guarantees that the most up to date information is seen at the possible expense that the master server may be busy.
- `-R` List directories recursively. This option will reiterate the list for each subdirectory found in the process of listing each `name`.

**ENVIRONMENT VARIABLES**

- `NIS_PATH` If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found. See `nisdefaults(1)`.

**EXIT STATUS**

The following exit values are returned:

- **0** Successful operation.
- **1** Operation failed.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nismatch, nisgrep – utilities for searching NIS+ tables

**SYNOPSIS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nismatch</code></td>
<td><code>-AchMoPv</code> <code>-s</code></td>
<td>Key <code>tablename</code></td>
</tr>
<tr>
<td><code>nismatch</code></td>
<td><code>-AchMoPv</code> <code>-s</code></td>
<td>Column <code>colname</code> = key <code>tablename</code></td>
</tr>
<tr>
<td><code>nismatch</code></td>
<td><code>-AchMoPv</code> <code>-s</code></td>
<td>Indexed <code>indexedname</code></td>
</tr>
<tr>
<td><code>nisgrep</code></td>
<td><code>-AchiMov</code> <code>-s</code></td>
<td>Keypat <code>tablename</code></td>
</tr>
<tr>
<td><code>nisgrep</code></td>
<td><code>-AchiMov</code> <code>-s</code></td>
<td>Column <code>colname</code> = keypat <code>tablename</code></td>
</tr>
</tbody>
</table>

**DESCRIPTION**

The utilities `nismatch` and `nisgrep` can be used to search NIS+ tables. The command `nisgrep` differs from the `nismatch` command in its ability to accept regular expressions `keypat` for the search criteria rather than simple text matches. Because `nisgrep` uses a callback function, it is not constrained to searching only those columns that are specifically made searchable at the time of table creation. This makes it more flexible, but slower, than `nismatch`.

In `nismatch`, the server does the searching, whereas in `nisgrep` the server returns all the readable entries and then the client does the pattern-matching.

In both commands, the parameter `tablename` is the NIS+ name of the table to be searched. If only one key or key pattern is specified without the column name, then it is applied searching the first column. Specific named columns can be searched by using the `colname=key` syntax. When multiple columns are searched, only entries that match in all columns are returned. This is the equivalent of a logical join operation.

`nismatch` accepts an additional form of search criteria, `indexedname`, which is a NIS+ indexed name of the form:

\[
\text{[ } \text{colname=value, . . . ], tablename}\n\]

**OPTIONS**

The following options are supported:

- `-A` All data. Return the data within the table and all of the data in tables in the initial table’s concatenation path.
- `-c` Print only a count of the number of entries that matched the search criteria.
- `-h` Display a header line before the matching entries that contains the names of the table’s columns.
- `-i` Ignore upper/lower case distinction during comparisons.
- `-M` Master server only. Send the lookup to the master server of the named data. This guarantees that the most up to date information is seen at the possible expense that the master server may be busy.
- `-o` Display the internal representation of the matching NIS+ object(s).
Follow concatenation path. Specify that the lookup should follow the concatenation path of a table if the initial search is unsuccessful.

This option specifies the character to use to separate the table columns. If no character is specified, the default separator for the table is used.

Verbise. Do not suppress the output of binary data when displaying matching entries. Without this option binary data is displayed as the string *BINARY*.

EXAMPLE 1 Searching a table for a username

This example searches a table named passwd in the org_dir subdirectory of the zotz.com domain. It returns the entry that has the username of skippy. In this example, all the work is done on the server:

```
example% nismatch name=skippy passwd.org_dir.zotz.com.
```

EXAMPLE 2 Finding users using specific shells

This example is similar to the one above, except that it uses nisgrep to find all users in the table named passwd that are using either ksh(1) or csh(1):

```
example% nisgrep 'shell=[ck]sh' passwd.org_dir.zotz.com.
```

NIS_PATH

If this variable is set, and the NIS+ table name is not fully qualified, each directory specified will be searched until the table is found (see nisdefaults(1)).

The following exit values are returned:

- `0` Successfully matches some entries.
- `1` Successfully searches the table and no matches are found.
- `2` An error condition occurs. An error message is also printed.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

niscat(1), nisdefaults(1), nisls(1), nistbladm(1), nis_objects(3NSL), attributes(5)

No memory

An attempt to allocate some memory for the search failed.
The object with the name `tablename` was not a table object.

The regular expression in `keypat` was malformed.

The column named `colname` does not exist in the table named `tablename`.

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nismkdir(1)

NAME nismkdir – create NIS+ directories

SYNOPSIS nismkdir [-D defaults] [-m hostname] [-s hostname] dir

DESCRIPTION The nismkdir command creates new NIS+ subdirectories within an existing domain. It can also be used to create replicated directories. Without options, this command will create a subdirectory with the same master and the replicas as its parent directory.

It is advisable to use nisserver(1M) to create an NIS+ domain which consists of the specified directory along with the org_dir and groups_dir subdirectories.

The two primary aspects that are controlled when making a directory are its access rights, and its degree of replication.

A host that serves a NIS+ directory must be a NIS+ client in a directory above the one it is serving. The exceptions to this rule are the root NIS+ servers, which are both clients and servers of the same NIS+ directory.

When the host’s default domain is different from the default domain on the client where the command is executed, the hostname supplied as an argument to the -s or -m options must be fully qualified.

Special per-server and per-directory access restrictions may apply when this command updates the serving lists of the affected NIS+ servers. See nisopaccess(1).

OPTIONS The following options are supported:

-D defaults Specify a different set of defaults to be used when creating new directories. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

ttl=time This token sets the default time to live for objects that are created by this command. The value time is specified in the format as defined by the nischttl (1) command. The default value is 12h (12 hours).

owner=ownername This token specifies that the NIS+ principal ownername should own the created object. The default for this value is the principal who is executing the command.

group=groupname This token specifies that the group groupname should be the group owner for the object that is created. The default value is NULL.
access=rights

This token specifies the set of access rights that are to be granted for the given object. The value rights is specified in the format as defined by the nischmod(1) command. The default value is 

```
- - - -rmdcr- - r- - -.
```

-m hostname

If the directory named by dirname does not exist, then a new directory that is not replicated is created with host hostname as its master server.

If the directory name by dirname does exist, then the host named by hostname is made its master server.

-s hostname

Specify that the host hostname will be a replica for an existing directory named dirname.

**OPERANDS**

The following operand is supported:

```
dirname
```

The fully qualified NIS+ name of the directory that has to be created.

**EXAMPLES**

**EXAMPLE 1 Using the nismkdir Command**

To create a new directory bar under the foo.com. domain that shares the same master and replicas as the foo.com. directory one would use the command:

```
example% nismkdir bar.foo.com.
```

To create a new directory bar.foo.com. that is not replicated under the foo.com. domain one would use the command:

```
example% nismkdir -m myhost.foo.com. bar.foo.com.
```

To add a replica server of the bar.foo.com. directory, one would use the command:

```
example% nismkdir -s replica.foo.com. bar.foo.com.
```

**ENVIRONMENT VARIABLES**

**NIS_DEFAULTS**

This variable contains a defaults string that will override the NIS+ standard defaults. If the -D switch is used those values will then override both the NIS_DEFAULTS variable and the standard defaults.

**NIS_PATH**

If this variable is set, and the NIS+ directory name is not fully qualified, each directory specified will be searched until the directory is found (see nisdefaults(1)).

**EXIT STATUS**

The following exit values are returned:
nismkdir(1)

0   Successful operation.
1   Operation failed.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

NOTES
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**
nisopaccess – NIS+ operation access control administration command

**SYNOPSIS**
nisopaccess [-v] directory operation rights
nisopaccess [-v] [-r] directory operation
nisopaccess [-v] [-l] directory [operation]

**DESCRIPTION**
Most NIS+ operations have implied access control through the permissions on the objects that they manipulate. For example, in order to read an entry in a table, you must have read permission on that entry. However, some NIS+ operations by default perform no access checking at all and are allowed to all:

```
Operation Example of commands that use the operation
NIS_CHECKPOINT nisping -C
NIS_CPTIME nisping, rpc.nisd
NIS_MKDIR nismkdir
NIS_PING nisping, rpc.nisd
NIS_RMDIR nisrmdir
NIS_SERVSTATE nisbackup,nisrestore
NIS_STATUS nisstat, rpc.nispasswdd
```

The nisopaccess command can be used to enforce access control on these operations on a per NIS+ directory basis.

The **directory** argument should be the fully qualified name, including the trailing dot, of the NIS+ directory to which nisopaccess will be applied. As a short-hand method, if the directory name does not end in a trailing dot, for example “org_dir”, then the domain name is appended. The domain name is also appended to partial paths such as “org_dir.xyz”.

You can use upper or lower case for the **operation** argument. However, you cannot mix cases. The “NIS_” prefix may be omitted. For example, NIS_PING can be specified as NIS_PING, nis_ping, PING, or ping.

The **rights** argument is specified in the format defined by the nischmod(1) command. Since only the read (‘r’) rights are used to determine who has the right to perform the operation, the modify and delete rights may be used to control who can change access to the operation.

The access checking performed for each operation is as follows. When an operation requires access be checked on all directories served by its rpc.nisd(1M), access is denied if even one of the directories prohibits the operation.

```
NIS_CHECKPOINT Check specified directory, or all directories if there is no directory argument, as is the case when
```
NIS_CHECKPOINT is issued by the “nisping -Ca” command. Return NIS_PERMISSION when access is denied.

NIS_CPTIME
Check specified directory. It returns 0 when access is denied.

NIS_MKDIR
Check parent of specified directory. Returns NIS_PERMISSION when access is denied.

If the parent directory is not available locally, that is, it is not served by this rpc.nisd(1M), NIS_MKDIR access is allowed, though the operation will be executed only if this rpc.nisd is a known replica of the directory.

You should note that the NIS_MKDIR operation does not create a NIS+ directory; it adds a directory to the serving list for this rpc.nisd, if appropriate.

NIS_PING
Check specified directory. No return value.

NIS_RMDIR
Check specified directory. NIS_PERMISSION is returned when access denied.

The NIS_RMDIR operation does not remove a NIS+ directory; it deletes the directory from the serving list for this rpc.nisd, if appropriate.

NIS_SERVSTATE
Check access on all directories served by this rpc.nisd. If access is denied for a tag, "<permission denied>" is returned instead of the tag value.

NIS_STATUS
Same as for NIS_SERVSTATE.

Notice that older clients may not supply authentication information for some of the operations listed above. These clients are treated as “nobody” when access checking is performed.

The access control is implemented by creating a NIS+ table called “proto_op_access” in each NIS+ directory to which access control should be applied. The table can be manipulated using normal NIS+ commands. However, nisopaccess is the only supported interface for NIS+ operation access control.

OPTIONS
The following options are supported:

- List the access control for a single operation, or for all operations that have access control enabled.
- r Remove access control for a certain operation on the specified directory.
- v Verbose mode.
EXAMPLE 1 Enabling Access Control for the NIS_PING Operation

To enable access control for the NIS_PING operation on "org_dir.`domainname`." such that only the owner of the directory can perform a NIS_PING, or change the NIS_PING rights:

```
example% nisopaccess org_dir NIS_PING o=rmcd,g=,w=,n=
```

EXAMPLE 2 Listing the Access to NIS_PING

To list the access to the NIS_PING operation for org_dir:

```
example% nisopaccess -l org_dir NIS_PING
```

NIS_PING ------rmcd-------- owner.dom.ain. group.dom.ain.

EXAMPLE 3 Removing Access Control for NIS_PING

To remove access control for NIS_PING on org_dir:

```
example% nisopaccess -r org_dir NIS_PING
```

EXIT STATUS

The following exit values are returned:

0 Successful operation.

other Operation failed. The status is usually the return status from a NIS+ command such as nistbladm.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>
```

SEE ALSO

nis+(1), nischmod(1), nistbladm(1), rpc.nisd(1M), attributes(5)

NOTES

NIS+ might not be supported in future releases of the SolarisTM Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nispasswd – change NIS+ password information

SYNOPSIS

`nispasswd [-ghs] [-D domainname] [username]`
`nispasswd -a`
`nispasswd [-D domainname] [ -d [username]]`

DESCRIPTION

The `nispasswd` utility changes a password, gecos (finger) field (-g option), home directory (-h option), or login shell (-s option) associated with the `username` (invoker by default) in the NIS+ passwd table.

Additionally, the command can be used to view or modify aging information associated with the user specified if the invoker has the right NIS+ privileges.

`nispasswd` uses secure RPC to communicate with the NIS+ server, and therefore, never sends unencrypted passwords over the communication medium.

`nispasswd` does not read or modify the local password information stored in the `/etc/passwd` and `/etc/shadow` files.

When used to change a password, `nispasswd` prompts non-privileged users for their old password. It then prompts for the new password twice to forestall typing mistakes. When the old password is entered, `nispasswd` checks to see if it has “aged” sufficiently. If “aging” is insufficient, `nispasswd` terminates; see `getspnam(3C)`.

The old password is used to decrypt the username’s secret key. If the password does not decrypt the secret key, `nispasswd` prompts for the old secure-RPC password. It uses this password to decrypt the secret key. If this fails, it gives the user one more chance. The old password is also used to ensure that the new password differs from the old by at least three characters. Assuming aging is sufficient, a check is made to ensure that the new password meets construction requirements described below. When the new password is entered a second time, the two copies of the new password are compared. If the two copies are not identical, the cycle of prompting for the new password is repeated twice. The new password is used to re-encrypt the user’s secret key. Hence, it also becomes their secure-RPC password. Therefore, the secure-RPC password is no longer a different password from the user’s password.

Passwords must be constructed to meet the following requirements:

- Each password must have at least six characters. Only the first eight characters are significant.
- Each password must contain at least two alphabetic characters and at least one numeric or special character. In this case, “alphabetic” refers to all upper or lower case letters.
- Each password must differ from the user’s login `username` and any reverse or circular shift of that login `username`. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.
New passwords must differ from the old by at least three characters. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.

Network administrators, who own the NIS+ password table, may change any password attributes if they establish their credentials (see `keylogin(1)`) before invoking `nispasswd`. Hence, `nispasswd` does not prompt these privileged-users for the old password and they are not forced to comply with password aging and password construction requirements.

Any user may use the `-d` option to display password attributes for his or her own login name. The format of the display will be:

```
username status mm/dd/yy min max warn
```

or, if password aging information is not present,

```
username status
```

where

- `username` is the login ID of the user.
- `status` is the password status of `username`: "PS" stands for password exists or locked, "LK" stands for locked, and "NP" stands for no password.
- `mm/dd/yy` is the date password was last changed for `username`. (Note that all password aging dates are determined using Greenwich Mean Time (Universal Time) and, therefore, may differ by as much as a day in other time zones.)
- `min` is the minimum number of days required between password changes for `username`.
- `max` is the maximum number of days the password is valid for `username`.
- `warn` is the number of days relative to `max` before the password expires that the `username` will be warned.

The use of `nispasswd` is strongly discouraged. It is a wrapper around the `passwd(1)` command.

Using `passwd(1)` with the `-r nisplus` option will achieve the same result and will be consistent across all the different name services available. This is the recommended way to change the password in NIS+.

The login program, file access display programs (for example, `ls -l`), and network programs that require user passwords, for example, `rlogin(1)`, `ftp(1)`, and so on, use the standard `getpwnam(3C)` and `getspnam(3C)` interfaces to get password information. These programs will get the NIS+ password information, which is modified by `nispasswd`, only if the `passwd:` entry in the `/etc/nsswitch.conf` file includes `nisplus`. See `nsswitch.conf(4)` for more details.
The following options are supported:

- `a` Shows the password attributes for all entries. This will show only the entries in the NIS+ passwd table in the local domain that the invoker is authorized to "read".

- `d [username]` Displays password attributes for the caller or the user specified if the invoker has the right privileges.

- `D domainname` Consults the `passwd.org_dir` table in `domainname`. If this option is not specified, the default `domainname` returned by `nis_local_directory()` will be used. This `domainname` is the same as that returned by `domainname(1M)`.

- `f` Forces the user to change password at the next login by expiring the password for `username`.

- `g` Changes the gecos (finger) information.

- `h` Changes the home directory.

- `l` Locks the password entry for `username`. Subsequently, `login(1)` would disallow logins with this NIS+ password entry.

- `n min` Sets minimum field for `username`. The `min` field contains the minimum number of days between password changes for `username`. If `min` is greater than `max`, the user may not change the password. Always use this option with the `-x` option, unless `max` is set to `-1` (aging turned off). In that case, `min` need not be set.

- `s` Changes the login shell. By default, only the NIS+ administrator can change the login shell. The user will be prompted for the new login shell.

- `w warn` Sets `warn` field for `username`. The `warn` field contains the number of days before the password expires that the user will be warned whenever he or she attempts to login.

- `x max` Sets maximum field for `username`. The `max` field contains the number of days that the password is valid for `username`. The aging for `username` will be turned off immediately if `max` is set to `-1`. If it is set to `0`, then the user is forced to change the password at the next login session and aging is turned off.

The following exit values are returned:

0  Success.
1  Permission denied.
2  Invalid combination of options.
3  Unexpected failure. NIS+ passwd table unchanged.
4  NIS+ passwd table missing.
NIS+ is busy. Try again later.

Invalid argument to option.

Aging is disabled.

No memory.

System error.

Account expired.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

keylogin(1), login(1), nis+(1), nistbladm(1), passwd(1), rlogin(1),
domainname(1M), nisserver(1M), getpwnam(3C), getspnam(3C),
nis_local_directory(3NSL), nsswitch.conf(4), passwd(4), shadow(4),
attributes(5)

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
The `nisrm` command removes NIS+ objects named `name` from the NIS+ namespace. This command will fail if the NIS+ master server is not running. This command will not remove directories. See `nisrmdir(1)`. Nor will it remove non-empty tables. See `nistbladm(1)`. The following options are supported:

- `-i` Interactive mode. Like the system `rm(1)` command the `nisrm` command will ask for confirmation prior to removing an object. If the name specified by `name` is a non-fully qualified name this option is forced on. This prevents the removal of unexpected objects.

- `-f` Force. The removal is attempted, and if it fails for permission reasons, a `nischmod(1)` is attempted and the removal retried. If the command fails, it fails silently.

The following operand is supported:

- `name` A NIS+ named object.

**Examples**

**Example 1** Using the `nisrm` Command

Remove the objects `foo`, `bar`, and `baz` from the namespace:

```
example% nisrm foo bar baz
```

**Environment Variables**

- `NIS_PATH` If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found. See `nisdefaults(1)`. The following exit values are returned:

- `0` Successful operation.
- `1` Operation failed.

**Attributes**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**See Also**

`nis+(1), nischmod(1), nisdefaults(1), nisrmdir(1), nistbladm(1), rm(1), attributes(5)`. 

1068  man pages section 1: User Commands • Last Revised 10 Dec 2001
NOTES
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
### NAME
nisrmdir – remove NIS+ directories

### SYNOPSIS
```bash
nisrmdir [-if] [-s hostname] dirname
```

### DESCRIPTION
`nisrmdir` deletes existing NIS+ subdirectories. It can remove a directory outright, or simply remove replicas from serving a directory.

This command modifies the object that describes the directory `dirname`, and then notifies each replica to remove the directory named `dirname`. If the notification of any of the affected replicas fails, the directory object is returned to its original state unless the `-f` option is present.

This command will fail if the NIS+ master server is not running.

### OPTIONS
The following options are supported:

- `-i`
  - Interactive mode. Like the system `rm(1)` command the `nisrmdir` command will ask for confirmation prior to removing a directory. If the name specified by `dirname` is a non-fully qualified name this option is forced on. This prevents the removal of unexpected directories.

- `-f`
  - Force the command to succeed even though it may not be able to contact the affected replicas. This option should be used when a replica is known to be down and will not be able to respond to the removal notification. When the replica is finally rebooted it will read the updated directory object, note that it is no longer a replica for that directory, and stop responding to lookups on that directory. Cleanup of the files that held the now removed directory can be accomplished manually by removing the appropriate files in the `/var/nis` directory. See `nisfiles(4)` for more information.

- `-s hostname`
  - Specify that the host `hostname` should be removed as a replica for the directory named `dirname`. If this option is not present all replicas and the master server for a directory are removed and the directory is removed from the namespace.

Special per-server and per-directory access restrictions may apply when this command updates the serving lists of the affected NIS+ servers. For more information, see `nisopaccess(1)`.

### OPERANDS
The following operand is supported:

- `dirname`
  - An existing NIS+ directory.

### EXAMPLES
**EXAMPLE 1 Using the nisrmdir Command**

To remove a directory `bar` under the `foo.com` domain, one would use the command:

```bash
example% nisrmdir bar.foo.com
```
EXAMPLE 1 Using the nisrmdir Command  (Continued)

To remove a replica that is serving directory bar.foo.com. one would use the command:

example% nisrmdir -s replica.foo.com. bar.foo.com.

To force the removal of directory bar.foo.com. from the namespace, one would use the command:

example% nisrmdir -f bar.foo.com.

ENVIRONMENT VARIABLES

NIS_PATH If this variable is set, and the NIS+ directory name is not fully qualified, each directory specified will be searched until the directory is found. See nisdefaults(1).

EXIT STATUS

The following exit values are returned:

0   Successful operation.
1   Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO

nis+(1), nisdefaults(1), nisopaccess(1), nisrm(1), nisfiles(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
The `nistbladm` command is used to administer NIS+ tables. There are five primary operations that it performs: creating and deleting tables, adding entries to, modifying entries within, and removing entries from tables.

Though NIS+ does not place restrictions on the size of tables or entries, the size of data has an impact on the performance and the disk space requirements of the NIS+ server. NIS+ is not designed to store huge pieces of data, such as files; instead, pointers to files should be stored in NIS+.

NIS+ design is optimized to support 10,000 objects with a total size of 10M bytes. If the requirements exceed the above, it is suggested that the domain hierarchy be created, or the data stored in the tables be pointers to the actual data, instead of the data itself.

When creating tables, a table type, `type`, and a list of column definitions must be provided.

`type` is a string that is stored in the table and later used by the service to verify that entries being added to it are of the correct type.

Syntax for column definitions is:

```
colname=flags[access]
```

`flags` is a combination of:

- **S** Searchable. Specifies that searches can be done on the column’s values (see `nismatch(1)`).
- **I** Case-insensitive (only makes sense in combination with S). Specifies that searches should ignore case.
- **C** Crypt. Specifies that the column’s values should be encrypted.
Binary data (does not make sense in combination with \texttt{S}). If not set, the
column’s values are expected to be null terminated ASCII strings.

XDR encoded data (only makes sense in combination with \texttt{B}).

\textit{access} is specified in the format as defined by the \texttt{nischmod(1)} command.

When manipulating entries, this command takes two forms of entry name. The first
uses a series of space separated \texttt{colname=value} pairs that specify column values in the
entry. The second is a NIS+ indexed name, \texttt{indexdname}, of the form:

\{ \texttt{colname=value}, \ldots \}, \texttt{tablename}

\textbf{OPTIONS}

The following options are supported:

\begin{itemize}
  \item[-a | A] Adds entries to a NIS+ table. The difference between the lowercase
  `a' and the uppercase `A' is in the treatment of preexisting entries.
  The entry’s contents are specified by the \texttt{column=value} pairs on the
  command line. Values for all columns must be specified when
  adding entries to a table.

  Normally, NIS+ reports an error if an attempt is made to add an
  entry to a table that would overwrite an entry that already exists.
  This prevents multiple parties from adding duplicate entries and
  having one of them get overwritten. If you wish to force the add,
  the uppercase `A' specifies that the entry is to be added, even if it
  already exists. This is analogous to a modify operation on the
  entry.

  \item[-c] Creates a table named \texttt{tablename} in the namespace. The table that is
  created must have at least one column and at least one column
  must be searchable.

  \item[-d \texttt{tablename}] Destroys the table named \texttt{tablename}. The table that is being
  destroyed must be empty. The table’s contents can be deleted with
  the \texttt{-R} option below.

  \item[-e | E] Edits the entry in the table that is specified by \texttt{indexdname}.
  \texttt{indexdname} must uniquely identify a single entry. It is possible to
  edit the value in a column that would change the indexed name of
  an entry.

  The change (\texttt{colname=value}) may affect other entries in the table if
  the change results in an entry whose indexed name is different
  from \texttt{indexdname} and which matches that of another existing
  entry. In this case, the \texttt{-e} option will fail and an error will be
  reported. The \texttt{-E} option will force the replacement of the existing
  entry by the new entry (effectively removing two old entries and
  adding a new one).
\end{itemize}
A synonym for -E. This option has been superseded by the -E option.

Removes entries from a table. The xentry is specified by either a series of column=value pairs on the command line, or an indexed name that is specified as entryname. The difference between the interpretation of the lowercase ‘r’ versus the uppercase ‘R’ is in the treatment of non-unique entry specifications. Normally the NIS+ server will disallow an attempt to remove an entry when the search criterion specified for that entry resolves to more than one entry in the table. However, it is sometimes desirable to remove more than one entry, as when you are attempting to remove all of the entries from a table. In this case, using the uppercase ‘R’ will force the NIS+ server to remove all entries matching the passed search criterion. If that criterion is null and no column values specified, then all entries in the table will be removed.

Updates attributes of a table. This allows the concatenation path (-p), separation character (specified with the (-s)), column access rights, and table type string (-t) of a table to be changed. Neither the number of columns, nor the columns that are searchable may be changed.

When creating objects, this option specifies a different set of defaults to be used during this operation. The defaults string is a series of tokens separated by colons. These tokens represent the default values to be used for the generic object properties. All of the legal tokens are described below.

```
ttl=time
owner=ownername
group=groupname
access=rights
```

This token sets the default time to live for objects that are created by this command. The value time is specified in the format as defined by the nischttl(1) command. The default value is 12 hours.

This token specifies that the NIS+ principal ownername should own the created object. Normally this value is the same as the principal who is executing the command.

This token specifies that the group groupname should be the group owner for the object that is created. The default value is NULL.

This token specifies the set of access rights that are to be granted for the given object. The value rights is
specified in the format as defined by the nischmod(1) command. The default value is 
- - - -rmcdr- - -r- - -.

-p path
When creating or updating a table, this option specifies the table’s search path. When a nis_list() function is invoked, the user can specify the flag FOLLOW_PATH to tell the client library to continue searching tables in the table’s path if the search criteria used does not yield any entries. The path consists of an ordered list of table names, separated by colons. The names in the path must be fully qualified.

-s sep
When creating or updating a table, this option specifies the table’s separator character. The separator character is used by niscat(1) when displaying tables on the standard output. Its purpose is to separate column data when the table is in ASCII form. The default value is a space.

-t type
When updating a table, this option specifies the table’s type string.

EXAMPLE 1 Creating an Unmodifiable Table
This example creates a table named hobbies in the directory foo.com. of the type hobby_tbl with two searchable columns, name and hobby.

example% nistbladm -c hobby_tbl name=S,\  
   a+r,o+m hobby=S,a+r hobbies.foo.com.

The column name has read access for all (that is, owner, group, and world) and modify access for only the owner. The column hobby is readable by all, but not modifiable by anyone.

In this example, if the access rights had not been specified, the table’s access rights would have come from either the standard defaults or the NIS_DEFAULTS variable (see below).

EXAMPLE 2 Adding Entries to the Table
To add entries to this table:

example% nistbladm -a name=bob hobby=skiing hobbies.foo.com.
example% nistbladm -a name=sue hobby=skiing hobbies.foo.com.
example% nistbladm -a name=ted hobby=swimming hobbies.foo.com.

EXAMPLE 3 Adding the Concatenation Path
In the following example, the common root domain is foo.com (NIS+ requires at least two components to define the root domain) and the concatenation path for the subdomains bar and baz are added:
EXAMPLE 3 Adding the Concatenation Path  

(Continued)

element% nistbladm -u -p hobbies.bar.foo.com:hobbies.baz.foo.com. hobbies

EXAMPLE 4 Deleting Skiers from the List

To delete the skiers from our list:

example% nistbladm -R hobby=skiing hobbies.foo.com.

Note: The use of the -r option would fail because there are two entries with the value of skiing.

EXAMPLE 5 Naming a Column with no Flags Set

To create a table with a column that is named with no flags set, you supply only the name and the equals (=) sign as follows:

example% nistbladm -c notes_tbl name=S,a+r,o+m note= notes.foo.com.

This example created a table, named notes.foo.com., of type notes_tbl with two columns name and note. The note column is not searchable.

EXAMPLE 6 Protecting Terminal Characters

When entering data for columns in the form of a value string, it is essential that terminal characters be protected by single or double quotes. These are the characters equals (=), comma (,), left bracket ([), right bracket (]), and space ( ). These characters are parsed by NIS+ within an indexed name. These characters are protected by enclosing the entire value in double quote (" ) characters as follows:

example% nistbladm -a fullname="Joe User" nickname=Joe nicknames

If there is any doubt about how the string will be parsed, it is better to enclose it in quotes.

ENVIRONMENT VARIABLES

NIS_DEFAULTS
This variable contains a defaults string that will override the NIS+ standard defaults. If the -D switch is used those values will then override both the NIS_DEFAULTS variable and the standard defaults.

NIS_PATH
If this variable is set, and the NIS+ table name is not fully qualified, each directory specified will be searched until the table is found. See nisdefaults(1).

EXIT STATUS
The following exit values are returned:
Successful operation.

1 Operation failed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.

To modify one of the entries, say, for example, from "bob" to "robert":

example% nistbladm -m name=robert [name=bob],hobbies

Notice that "[name=bob], hobbies" is an indexed name, and that the characters '[ ' (open bracket) and ' ]' (close bracket) are interpreted by the shell. When typing entry names in the form of NIS+ indexed names, the name must be protected by using single quotes.

It is possible to specify a set of defaults such that you cannot read or modify the table object later.
nistest(1)

NAME
  nistest – return the state of the NIS+ namespace using a conditional expression

SYNOPSIS
  nistest [-ALMP] [-a rights | -t type] object
  nistest [-ALMP] [-a rights] indexedname
  nistest -c dir1 op dir2

DESCRIPTION
  nistest provides a way for shell scripts and other programs to test for the existence, type, and access rights of objects and entries. Entries are named using indexed names. See nismatch(1). With the -c option, directory names can be compared to test where they lie in relation to each other in the namespace.

OPTIONS
  The following options are supported:

- a rights  This option is used to verify that the current process has the desired or required access rights on the named object or entries. The access rights are specified in the same way as the nischmod(1) command.

- A          All data. This option specifies that the data within the table and all of the data in tables in the initial table’s concatenation path be returned. This option is only valid when using indexed names or following links.

- L          Follow links. If the object named by object or the tablename component of indexedname names a LINK type object, the link is followed when this switch is present.

- M          Master server only. This option specifies that the lookup should be sent to the master server of the named data. This guarantees that the most up to date information is seen at the possible expense that the master server may be busy.

- P          Follow concatenation path. This option specifies that the lookup should follow the concatenation path of a table if the initial search is unsuccessful. This option is only valid when using indexed names or following links.

- t type     This option tests the type of object. The value of type can be one of the following:

  D      Return true if the object is a directory object.
  G      Return true if the object is a group object.
  L      Return true if the object is a link object.
  P      Return true if the object is a private object.
  T      Return true if the object is a table object.

- c          Test whether or not two directory names have a certain relationship to each other, for example, higher than (ht) or lower than (lt). The complete list of values for op can be displayed by
using the -c option with no arguments.

**EXAMPLES**

**EXAMPLE 1** Using the `nistest` Command

When testing for access rights, `nistest` returns success (0) if the specified rights are granted to the current user. Thus, testing for access rights:

```bash
example$ nistest -a w=mr skippy.domain
```

Tests that all authenticated NIS+ clients have read and modify access to the object named `skippy.domain`.

Testing for access on a particular entry in a table can be accomplished using the indexed name syntax. The following example tests to see if an entry in the password table can be modified:

```bash
example$ nistest -a o=m '[uid=99],passwd.org_dir'
```

To test if a directory lies higher in the namespace than another directory, use the -c option with an op of `ht` (higher than) as in the following example (which would return true):

```bash
```

**ENVIRONMENT VARIABLES**

`NIS_PATH` If this variable is set, and the NIS+ name is not fully qualified, each directory specified will be searched until the object is found. See `nisdefaults(1)`.

**EXIT STATUS**

The following exit values are returned:

0 Successful operation.
1 Failure due to object not present, not of specified type, and/or no such access.
2 Failure due to illegal usage.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`nis+(1), nischmod(1), nisdefaults(1), nismatch(1), attributes(5)`

**NOTES**

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit [http://www.sun.com/directory/nisplus/transition.html](http://www.sun.com/directory/nisplus/transition.html).
The nl utility reads lines from the named file, or the standard input if no file is named, and reproduces the lines on the standard output. Lines are numbered on the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at the start of each logical page. A logical page consists of a header, a body, and a footer section. Empty sections are valid. Different line numbering options are independently available for header, body, and footer. For example, -b t (the default) numbers non-blank lines in the body section and does not number any lines in the header and footer sections.

The start of logical page sections are signaled by input lines containing nothing but the following delimiter character(s):

<table>
<thead>
<tr>
<th>Line contents</th>
<th>Start Of</th>
</tr>
</thead>
<tbody>
<tr>
<td>:::\</td>
<td>header</td>
</tr>
<tr>
<td>:\</td>
<td>body</td>
</tr>
<tr>
<td>:</td>
<td>footer</td>
</tr>
</tbody>
</table>

Unless optioned otherwise, nl assumes the text being read is in a single logical page body.

Command options may appear in any order and may be intermingled with an optional file name. Only one file may be named. The specified default is used when the option is not entered on the command line. /usr/xpg4/bin/nl options require option arguments. A SPACE character may separate options from option arguments. /usr/bin/nl options may have option arguments. If option-arguments of /usr/bin/nl options are not specified, these options result in the default. The supported options are:

- **-b type**
  - Specifies which logical page body lines are to be numbered.
  - Recognized types and their meanings are:
    - a: number all lines
    - t: number all non-empty lines
    - n: no line numbering
number only lines that contain the regular expression specified in \textit{exp}. See NOTES below.

Default \textit{type} for logical page body is \texttt{t} (text lines numbered).

\textbf{-f type} \hspace{1em} Same as \texttt{-b type} except for footer. Default \textit{type} for logical page footer is \texttt{n} (no lines numbered).

\textbf{-d delim} \hspace{1em} The two delimiter characters specifying the start of a logical page section may be changed from the default characters (\textbackslash{} : ) to two user-specified characters. If only one character is entered, the second character remains the default character (\textbackslash{}). No space should appear between the -d and the delimiter characters. To enter a backslash, use two backslashes.

\textbf{-h type} \hspace{1em} Same as \texttt{-b type} except for header. Default \textit{type} for logical page header is \texttt{n} (no lines numbered).

\textbf{-i incr} \hspace{1em} \textit{incr} is the increment value used to number logical page lines. Default \textit{incr} is 1.

\textbf{-l num} \hspace{1em} \textit{num} is the number of blank lines to be considered as one. For example, \texttt{-l2} results in only the second adjacent blank being numbered (if the appropriate \texttt{-ha, -ba, and/or -fa} option is set). Default \textit{num} is 1.

\textbf{-n format} \hspace{1em} \textit{format} is the line numbering format. Recognized values are:

- \texttt{ln} \hspace{1em} left justified, leading zeroes suppressed
- \texttt{rn} \hspace{1em} right justified, leading zeroes suppressed
- \texttt{rz} \hspace{1em} right justified, leading zeroes kept

Default \textit{format} is \texttt{rn} (right justified).

\textbf{-p} \hspace{1em} Do not restart numbering at logical page delimiters.

\textbf{-s sep} \hspace{1em} \textit{sep} is the character(s) used in separating the line number and the corresponding text line. Default \textit{sep} is a \texttt{TAB}.

\textbf{-v startnum} \hspace{1em} \textit{startnum} is the initial value used to number logical page lines. Default \textit{startnum} is 1.

\textbf{-w width} \hspace{1em} \textit{width} is the number of characters to be used for the line number. Default \textit{width} is 6.

\textbf{OPERANDS} \hspace{1em} The following operand is supported:

\textbf{file} \hspace{1em} A path name of a text file to be line-numbered.
EXAMPLE 1

An example of the nl command

The command:

```
example$ nl -v10 -i10 -d!+ filename1
```

will cause the first line of the page body to be numbered 10, the second line of the page body to be numbered 20, the third 30, and so forth. The logical page delimiters are !+.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of nl: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

/usr/lib/locale/locale/LC_COLLATE/CollTable

Collation table generated by localedef

/usr/lib/locale/locale/LC_COLLATE/coll.so

Shared object containing string transformation library routines

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
/usr/bin/nl
```

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

```
/usr/xpg4/bin/nl
```

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

pr(1), attributes(5), environ(5), regex(5), regexp(5), standards(5)

NOTES

Internationalized Regular Expressions are used in the POSIX and "C" locales. In other locales, Internationalized Regular Expressions are used if the following two conditions are met:

- `/usr/lib/locale/locale/LC_COLLATE/CollTable` is present.
- `/usr/lib/locale/locale/LC_COLLATE/coll.so` is not present.

Otherwise, Simple Regular Expressions are used.
Internationalized Regular Expressions are explained on `regex(5)`. Simple Regular Expressions are explained on `regexp(5)`.
nm(1)

NAME  nm - print name list of an object file

SYNOPSIS  
/usr/ccs/bin/nm [-ACdhlnPprRsTuVv] [-efox] [-g | -u] [-t format] 
          file...

/usr/xpg4/bin/nm [-ACdhlnPprRsTuVv] [-efox] [-g | -u] [-t format] 
          file...

DESCRIPTION  The nm utility displays the symbol table of each ELF object file that is specified by file.

If no symbolic information is available for a valid input file, the nm utility will report that fact, but not consider it an error condition.

OPTIONS  The output of nm may be controlled using the following options:

-A  Writes the full path name or library name of an object on each line.
-C  Demangles C++ symbol names before printing them out.
-D  Displays the SHT_DYNSYM symbol information. This is the symbol table used by ld.so.1 and is present even in stripped dynamic executables. By default, the SHT_SYMTAB symbol table is displayed.
-e  See NOTES below.
-f  See NOTES below.
-g  Writes only external (global) symbol information.
-h  Does not display the output heading data.
-l  Distinguishes between WEAK and GLOBAL symbols by appending a * to the key letter for WEAK symbols.
-n  Sorts external symbols by name before they are printed.
-o  Prints the value and size of a symbol in octal instead of decimal (equivalent to -t o).
-p  Produces easy to parse, terse output. Each symbol name is preceded by its value (blanks if undefined) and one of the letters:
   A  Absolute symbol.
   B  bss (uninitialized data space) symbol.
   C  COMMON symbol.
   D  Data object symbol.
   F  File symbol.
   N  Symbol has no type.
   L  Thread-Local storage symbol.
   S  Section symbol.
T    Text symbol.
U    Undefined.

If the symbol’s binding attribute is:

LOCAL  The key letter is lower case.
WEAK   The key letter is upper case. If the -l modifier is specified, the upper case key letter is followed by a *
GLOBAL The key letter is upper case.

-P    Writes information in a portable output format, as specified in Standard Output.
-r    Prepends the name of the object file or archive to each output line.
-R    Prints the archive name (if present), followed by the object file and symbol name. If the -r option is also specified, this option is ignored.
-s    Prints section name instead of section index.
-t format    Writes each numeric value in the specified format. The format is dependent on the single character used as the format option-argument:
             d    The offset is written in decimal (default).
             o    The offset is written in octal.
             x    The offset is written in hexadecimal.
-T    See NOTES below.
-u    Prints undefined symbols only.

/usr/ccs/bin/nm
/usr/xpg4/bin/nm

-1    Prints long listing for each undefined symbol. See OUTPUT below.
-v    Sorts external symbols by value before they are printed.
-V    Prints the version of the nm command executing on the standard error output.
-x    Prints the value and size of a symbol in hexadecimal instead of decimal (equivalent to -t x).

Options may be used in any order, either singly or in combination, and may appear anywhere in the command line. When conflicting options are specified (such as -v and -n, or -o and -x) the first is taken and the second ignored with a warning message to the user. (See -R for exception.)

OPERANDS

The following operand is supported:

file    A path name of an object file, executable file or object-file library.
This section describes the `nm` utility’s output options.

For each symbol, the following information will be printed:

**Index**
- The index of the symbol. (The index appears in brackets.)

**Value**
- The value of the symbol is one of the following:
  - A section offset for defined symbols in a relocatable file.
  - Alignment constraints for symbols whose section index is `SHN_COMMON`.
  - A virtual address in executable and dynamic library files.

**Size**
- The size in bytes of the associated object.

**Type**
- A symbol is of one of the following types:
  - **NOTYPE**
    - No type was specified.
  - **OBJECT**
    - A data object such as an array or variable.
  - **FUNC**
    - A function or other executable code.
  - **REGI**
    - A register symbol (SPARC only).
  - **SECTION**
    - A section symbol.
  - **FILE**
    - Name of the source file.
  - **COMMON**
    - An uninitialized common block.
  - **TLS**
    - A variable associated with Thread-Local storage.

**Bind**
- The symbol’s binding attributes.
  - **LOCAL symbols**
    - Have a scope limited to the object file containing their definition.
  - **GLOBAL symbols**
    - Are visible to all object files being combined.
  - **WEAK symbols**
    - Are essentially global symbols with a lower precedence than `GLOBAL`.

**Other**
- A field reserved for future use, currently containing 0.

**Shndx**
- Except for three special values, this is the section header table index in relation to which the symbol is defined. The following special values exist:
  - **ABS**
    - Indicates the symbol’s value will not change through relocation.
  - **COMMON**
    - Indicates an unallocated block and the value provides alignment constraints.
  - **UNDEF**
    - Indicates an undefined symbol.
Name    The name of the symbol.
Object Name  The name of the object or library if -A is specified.

If the -P option is specified, the previous information is displayed using the following portable format. The three versions differ depending on whether -t d, -t o, or -t x was specified, respectively:

"%s%s %d %d\n", library/object name, name, type, value, size "%s%s %o %o\n", library/object name, name, type, value, size "%s%s %x %x\n", library/object name, name, type, value, size

where library/object name is formatted as follows:

- If -A is not specified, library/object name is an empty string.
- If -A is specified and the corresponding file operand does not name a library:
  "*%s: ", file

- If -A is specified and the corresponding file operand names a library. In this case, object file names the object file in the library containing the symbol being described:
  "*%s[%s]: ", file, object file

If -A is not specified, then if more than one file operand is specified or if only one file operand is specified and it names a library, nm will write a line identifying the object containing the following symbols before the lines containing those symbols, in the form:

- If the corresponding file operand does not name a library:
  "*%s\n", file

- If the corresponding file operand names a library; in this case, object file is the name of the file in the library containing the following symbols:
  "*%s[%s]\n", file, object file

If -P is specified, but -t is not, the format is as if -t x had been specified.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of nm: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

  0  Successful completion.
  >0  An error occurred.
nm(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/nm

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

/usr/xpg4/bin/nm

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

ar(1), as(1), dump(1), ld(1), ld.so.1(1), ar(3HEAD), a.out(4), attributes(5), environ(5), standards(5)

NOTES

The following options are obsolete because of changes to the object file format and will be deleted in a future release.

- e Prints only external and static symbols. The symbol table now contains only static and external symbols. Automatic symbols no longer appear in the symbol table. They do appear in the debugging information produced by cc -g, which may be examined using dump(1).

- f Produces full output. Redundant symbols (such as .text, .data, and so forth), which existed previously, do not exist and producing full output will be identical to the default output.

- T By default, nm prints the entire name of the symbols listed. Since symbol names have been moved to the last column, the problem of overflow is removed and it is no longer necessary to truncate the symbol name.
The `nohup` utility invokes the named `command` with the arguments supplied. When the `command` is invoked, `nohup` arranges for the SIGHUP signal to be ignored by the process.

When invoked with the `-p` or `-g` flags, `nohup` arranges for processes already running as identified by a list of process IDs or a list of process group IDs to become immune to hangups.

The `nohup` utility can be used when it is known that `command` will take a long time to run and the user wants to log out of the terminal. When a shell exits, the system sends its children SIGHUP signals, which by default cause them to be killed. All stopped, running, and background jobs will ignore SIGHUP and continue running, if their invocation is preceded by the `nohup` command or if the process programatically has chosen to ignore SIGHUP.

Processes run by `/usr/bin/nohup` are immune to SIGHUP (hangup) and SIGQUIT (quit) signals.

Processes specified by ID are made immune to SIGHUP and SIGQUIT, and all output to the controlling terminal is redirected to nohup.out. If `-F` is specified, `nohup` will force control of each process. If `-a` is specified, `nohup` will change the signal disposition of SIGHUP and SIGQUIT even if the process has installed a handler for either signal.

Every process in the same process group as the processes specified by ID are made immune to SIGHUP and SIGQUIT, and all output to the controlling terminal is redirected to nohup.out. If `-F` is specified, `nohup` will force control of each process. If `-a` is specified, `nohup` will change the signal disposition of SIGHUP and SIGQUIT even if the process has installed a handler for either signal.

Processes run by `/usr/xpg4/bin/nohup` are immune to SIGHUP.

The `nohup` utility does not arrange to make processes immune to a SIGTERM (terminate) signal, so unless they arrange to be immune to SIGTERM or the shell makes them immune to SIGTERM, they will receive it.
If `nohup.out` is not writable in the current directory, output is redirected to $HOME/nohup.out. If a file is created, the file will have read and write permission (600, see chmod(1)). If the standard error is a terminal, it is redirected to the standard output, otherwise it is not redirected. The priority of the process run by nohup is not altered.

**OPTIONS**

The following options are supported:

- `-a` Always changes the signal disposition of target processes. This option is valid only when specified with `-p` or `-g`.
- `-F` Force. Grabs the target processes even if another process has control. This option is valid only when specified with `-p` or `-g`.
- `-g` Operates on a list of process groups. This option is not valid with `-p`.
- `-p` Operates on a list of processes. This option is not valid with `-g`.

**OPERANDS**

The following operands are supported:

- `pid` A decimal process ID to be manipulated by nohup `-p`.
- `pgid` A decimal process group ID to be manipulated by nohup `-g`.
- `command` The name of a command that is to be invoked. If the `command` operand names any of the special `shell_builtins(1)` utilities, the results are undefined.
- `argument` Any string to be supplied as an argument when invoking the `command` operand.

**EXAMPLES**

**EXAMPLE 1** Applying nohup to pipelines or command lists

It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done only by placing pipelines and command lists in a single file, called a shell script. One can then issue:

```bash
example$ nohup sh file
```

and the nohup applies to everything in `file`. If the shell script `file` is to be executed often, then the need to type `sh` can be eliminated by giving `file` execute permission.

Add an ampersand and the contents of file are run in the background with interrupts also ignored (see `sh(1)`):

```bash
example$ nohup file &
```

**EXAMPLE 2** Applying nohup `-p` to a process

```bash
example$ long_running_command &
example$ nohup -p 'pgrep long_running_command'
```
EXAMPLE 3 Applying nohup -g to a process group

```bash
example$ make &
example$ ps -o sid -p $$
 SID 81079
example$ nohup -g 'pgrep -s 81079 make'
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of nohup: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, PATH, NLSPATH, and PATH.

HOME Determine the path name of the user’s home directory: if the output file nohup.out cannot be created in the current directory, the nohup command will use the directory named by HOME to create the file.

EXIT STATUS
The following exit values are returned:

- **126** command was found but could not be invoked.
- **127** An error occurred in nohup, or command could not be found

Otherwise, the exit values of nohup will be those of the command operand.

FILES

- **nohup.out** The output file of the nohup execution if standard output is a terminal and if the current directory is writable.
- **$HOME/nohup.out** The output file of the nohup execution if standard output is a terminal and if the current directory is not writable.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
batch(1), chmod(1), csh(1), ksh(1), nice(1), pgrep(1), proc(1), ps(1), sh(1), shell_builtins(1), signal(3C), proc(4), attributes(5), environ(5), standards(5)
If you are running the Korn shell (ksh(1)) as your login shell, and have nohup’ed jobs running when you attempt to log out, you will be warned with the message:

You have jobs running.

You will then need to log out a second time to actually log out. However, your background jobs will continue to run.

The C-shell (csh(1)) has a built-in command nohup that provides immunity from SIGHUP, but does not redirect output to nohup.out. Commands executed with ‘&’ are automatically immune to HUP signals while in the background.

nohup does not recognize command sequences. In the case of the following command,

example$ nohup command1; command2

does not properly nohup command 1 and command 2. The command,

example$ nohup (command1; command2)

is syntactically incorrect.
nroff(1)

NAME
nroff – format documents for display or line-printer

SYNOPSIS

DESCRIPTION
The nroff utility formats text in the named files for typewriter-like devices. See also troff(1).

If no file argument is present, nroff reads the standard input. An argument consisting of a '-' is taken to be a file name corresponding to the standard input.

OPTIONS
The following options are supported. Options may appear in any order so long as they appear before the files.

-e produces equally-spaced words in adjusted lines, using full terminal resolution.

-h uses output TAB characters during horizontal spacing to speed output and reduces output character count. TAB settings are assumed to be every 8 nominal character widths.

-i reads the standard input after the input files are exhausted.

-q does not print output that was read from an .rd request.

-m name prepends the macro file /usr/share/lib/tmac/tmac.name to the input files.

-nN numbers first generated page N.

-opagelist prints only pages whose page numbers appear in the comma-separated list of numbers and ranges. A range N-M means pages N through M; an initial -N means from the beginning to page N; and a final N- means from N to the end.

-raN sets register a (one-character) to N.

-sN stops every N pages. nroff will halt prior to every N pages (default N=1) to allow paper loading or changing, and will resume upon receipt of a NEWLINE.

-Tname prepares output for a device of the specified name. Known names are:

37 Teletype Corporation Model 37 terminal — this is the default.

lp | tn300 GE — any line printer or terminal without half-line capability.

300 DASI-300.

300-12 DASI-300 — 12-pitch.

300S DASI-300S.
300S-12  DASI-300S.
382      DASI-382 (fancy DTC 382).
450      DASI-450 (Diablo Hyterm).
450-12   DASI-450 (Diablo Hyterm) — 12-pitch.
832      AJ 832.

-\uN Set the emboldening factor for the font mounted in position 3 to \(N\).
If \(N\) is missing, then set the emboldening factor to 0.

EXAMPLE 1 Formatting with a macro package

The following command formats users.guide using the -me macro package, and
stopping every 4 pages:

example% nroff -s4 -me users.guide

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the
execution of nroff: LC_CTYPE, LC_MESSAGES, and NLSPATH.

FILES

/usr/tmp/trtmp* temporary file (see NOTES)
/usr/share/lib/tmac/tmac.* standard macro files
/usr/share/lib/nterm/* terminal driving tables for nroff
/usr/share/lib/nterm/README index to terminal description files

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

checknr(1), col(1), eqn(1), man(1), tbl(1), troff(1), attributes(5), environ(5),
me(5), ms(5), term(5)

NOTES

/usr/tmp is currently a symbolic link to /var/tmp.

Previous documentation incorrectly described the numeric register \(yr\) as being the
"Last two digits of current year". \(yr\) is in actuality the number of years since 1900. To
correctly obtain the last two digits of the current year through the year 2099, the
definition given below of string register \(yy\) may be included in a document and
subsequently used to display a two-digit year. Notice that any other available one- or
two-character register name may be substituted for \(yy\).

```
." definition of new string register yy--last two digits of year
." use yr (# of years since 1900) if it is < 100
```
.ie \n\n(yr<100 .ds yy \n\n(yr
.el \{
    \* else, subtract 100 from yr, store in ny
    .nr ny \n(yr-100
    .ie \n\n(yr>9 \{
        \* use ny if it is two digits
        .ds yy \n\n        \* remove temporary number register ny
        .rr ny \}
    .el \{
        .ds yy 0
        \* if ny is one digit, append it to 0
        .as yy \n\n        .rr ny \}
\} \}
The `od` command copies sequentially each input file to standard output and transforms the input data according to the output types specified by the `-t` or `-bcCDdFfOoSsvXx` options. If no output type is specified, the default output is as if `-t o2` had been specified. Multiple types can be specified by using multiple `-bcCDdFfOoSsvXx` options. Output lines are written for each type specified in the order in which the types are specified. If no file is specified, the standard input is used.

For the purposes of this description, the following terms are used:

- **word**
  Refers to a 16-bit unit, independent of the word size of the machine.

- **long word**
  Refers to a 32-bit unit.

- **double long word**
  Refers to a 64-bit unit.

**OPTIONS**

The following options are supported:

- `-A address_base`
  Specifies the input offset base. The `address_base` option-argument must be a character. The characters `d`, `o` and `x` specify that the offset base will be written in decimal, octal or hexadecimal, respectively. The character `n` specifies that the offset will not be written. Unless `-A n` is specified, the output line will be preceded by the input offset, cumulative across input files, of the next byte to be written. In addition, the offset of the byte following the last byte written will be displayed after all the input data has been processed. Without the `-A address_base` option and the `[offset_string]` operand, the input offset base is displayed in octal.

- `-b`
  Interprets bytes in octal. This is equivalent to `-t o1`.

- `-c`
  Displays single-byte characters. Certain non-graphic characters appear as C-language escapes:

```
null \0
backspace \b
form-feed \f
new-line \n
\r
\t
```

Others appear as 3-digit octal numbers. For example:
Interprets bytes as single-byte or multibyte characters according to the current setting of the LC_CTYPE locale category. Printable multibyte characters are written in the area corresponding to the first byte of the character. The two-character sequence ** is written in the area corresponding to each remaining byte in the character, as an indication that the character is continued. Non-graphic characters appear the same as they would using the -C option.

-Interprets bytes as single-byte or multibyte characters according to the current setting of the LC_CTYPE locale category. Printable multibyte characters are written in the area corresponding to the first byte of the character. The two-character sequence ** is written in the area corresponding to each remaining byte in the character, as an indication that the character is continued. Certain non-graphic characters appear as C escapes:

- Interprets words in unsigned decimal. This is equivalent to -tu2.
- Interprets long words in unsigned decimal. This is equivalent to -tu4.
- Interprets long words in floating point. This is equivalent to -tf4.
- Interprets double long words in extended precision. This is equivalent to -tf8.
- Jumps over skip bytes from the beginning of the input. The od command will read or seek past the first skip bytes in the concatenated input files. If the combined input is not at least skip bytes long, the od command will write a diagnostic message to standard error and exit with a non-zero exit status.

By default, the skip option-argument is interpreted as a decimal number. With a leading 0x or 0X, the offset is interpreted as a hexadecimal number; otherwise, with a leading 0, the offset will be interpreted as an octal number. Appending the character b, k, or m to offset will cause it to be interpreted as a multiple of 512, 1024 or 1 048 576 bytes, respectively. If the skip number is
hexadecimal, any appended b is considered to be the final hexadecimal digit. The address is displayed starting at 0000000, and its base is not implied by the base of the skip option-argument.

-\texttt{N count} Formats no more than count bytes of input. By default, count is interpreted as a decimal number. With a leading $0x$ or $0X$, count is interpreted as a hexadecimal number; otherwise, with a leading 0, it is interpreted as an octal number. If count bytes of input (after successfully skipping, if -\texttt{j}skip is specified) are not available, it will not be considered an error. The \texttt{od} command will format the input that is available. The base of the address displayed is not implied by the base of the count option-argument.

-\texttt{-o} Interprets words in octal. This is equivalent to -\texttt{t o2}.

-\texttt{-O} Interprets long words in unsigned octal. This is equivalent to -\texttt{t o4}.

-\texttt{-s} Interprets words in signed decimal. This is equivalent to -\texttt{t d2}.

-\texttt{-S} Interprets long words in signed decimal. This is equivalent to -\texttt{t d4}.

-\texttt{-t type\_string} Specifies one or more output types. The type\_string option-argument must be a string specifying the types to be used when writing the input data. The string must consist of the type specification characters:

\begin{itemize}
\item \texttt{a} \textit{Named character}. Interprets bytes as named characters. Only the least significant seven bits of each byte will be used for this type specification. Bytes with the values listed in the following table will be written using the corresponding names for those characters.
\end{itemize}

### Named Characters in od

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Value</th>
<th>Name</th>
<th>Value</th>
<th>Name</th>
<th>Value</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\000</td>
<td>nul</td>
<td>\001</td>
<td>soh</td>
<td>\002</td>
<td>stx</td>
<td>\003</td>
<td>etx</td>
</tr>
<tr>
<td>\004</td>
<td>eot</td>
<td>\005</td>
<td>enq</td>
<td>\006</td>
<td>ack</td>
<td>\007</td>
<td>bel</td>
</tr>
<tr>
<td>\010</td>
<td>bs</td>
<td>\011</td>
<td>ht</td>
<td>\012</td>
<td>lf</td>
<td>\013</td>
<td>vt</td>
</tr>
<tr>
<td>\014</td>
<td>ff</td>
<td>\015</td>
<td>cr</td>
<td>\016</td>
<td>so</td>
<td>\017</td>
<td>si</td>
</tr>
<tr>
<td>\020</td>
<td>die</td>
<td>\021</td>
<td>dc1</td>
<td>\022</td>
<td>dc2</td>
<td>\023</td>
<td>dc3</td>
</tr>
<tr>
<td>\024</td>
<td>dc4</td>
<td>\025</td>
<td>nak</td>
<td>\026</td>
<td>syn</td>
<td>\027</td>
<td>etb</td>
</tr>
<tr>
<td>\030</td>
<td>can</td>
<td>\031</td>
<td>em</td>
<td>\032</td>
<td>sub</td>
<td>\033</td>
<td>esc</td>
</tr>
<tr>
<td>\034</td>
<td>fs</td>
<td>\035</td>
<td>gs</td>
<td>\036</td>
<td>rs</td>
<td>\037</td>
<td>us</td>
</tr>
</tbody>
</table>
Character. Interprets bytes as single-byte or multibyte characters specified by the current setting of the LC_CTYPE locale category. Printable multibyte characters are written in the area corresponding to the first byte of the character. The two-character sequence ** is written in the area corresponding to each remaining byte in the character, as an indication that the character is continued. Certain non-graphic characters appear as C escapes: \0, \a, \b, \f, \n, \r, \t, \v. Other non-printable characters appear as one three-digit octal number for each byte in the character.

The type specification characters d, f, o, u, and x can be followed by an optional unsigned decimal integer that specifies the number of bytes to be transformed by each instance of the output type.

Floating point. Can be followed by an optional F, D, or L indicating that the conversion should be applied to an item of type float, double, or long double, respectively.

Signed decimal, octal, unsigned decimal, and hexadecimal, respectively. Can be followed by an optional C, S, I, or L indicating that the conversion should be applied to an item of type char, short, int, or long, respectively.

Multiple types can be concatenated within the same type_string and multiple -t options can be specified. Output lines are written for each type specified in the order in which the type specification characters are specified.

Shows all input data (verbose). Without the -v option, all groups of output lines that would be identical to the immediately preceding output line (except for byte offsets), will be replaced with a line containing only an asterisk (*).

Interprets words in hex. This is equivalent to -t x2.

Interprets long words in hex. This is equivalent to -t x4.

The following operands are supported for both /usr/bin/od and /usr/xpg4/bin/od:

- Uses the standard input in addition to any files specified. When this operand is not given, the standard input is used only if no file
The following operands are supported for /usr/bin/od only:

file

A path name of a file to be read. If no file operands are specified, the standard input will be used. If there are no more than two operands, none of the -A, -j, -N, or -t options is specified, and any of the following are true:

1. the first character of the last operand is a plus sign (+)
2. the first character of the second operand is numeric
3. the first character of the second operand is x and the second character of the second operand is a lower-case hexadecimal character or digit
4. the second operand is named "x"
5. the second operand is named "."

then the corresponding operand is assumed to be an offset operand rather than a file operand.

Without the -N count option, the display continues until an end-of-file is reached.

The following operands are supported for /usr/xpg4/bin/od only:

file

Same as /usr/bin/od, except only one of the first two conditions must be true.

The offset_string operand specifies the byte offset in the file where dumping is to commence. The offset is interpreted in octal bytes by default. If offset begins with "0", it is interpreted in octal. If offset begins with "x" or "0x", it is interpreted in hexadecimal and any appended "b" is considered to be the final hexadecimal digit. If "." is appended, the offset is interpreted in decimal. If "b" or "B" is appended, the offset is interpreted in units of 512 bytes. If the file argument is omitted, the offset argument must be preceded by a plus sign (+). The address is displayed starting at the given offset. The radix of the address will be the same as the radix of the offset, if specified, otherwise it will be octal. Decimal overrides octal, and it is an error to specify both hexadecimal and decimal conversions in the same offset operand.
[+] [0] offset [.] [b|B]
+ [offset] [.]
[+] [0x][offset]
[+] [0x] offset [B]
+x [offset]
+x offset [B]

Description of offset_string is the same as for /usr/bin/od.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of od: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0  Successful completion.
>0  An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/od</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/od</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO
sed(1), attributes(5), environ(5), standards(5)
on(1)

NAME
on – execute a command on a remote system, but with the local environment

SYNOPSIS
on [-i] [-d] [-n] host command [argument] ...

DESCRIPTION
The on program is used to execute commands on another system, in an environment
similar to that invoking the program. All environment variables are passed, and the
current working directory is preserved. To preserve the working directory, the
working file system must be either already mounted on the host or be exported to it.
Relative path names will only work if they are within the current file system; absolute
path names may cause problems.

The standard input is connected to the standard input of the remote command, and
the standard output and the standard error from the remote command are sent to the
corresponding files for the on command.

OPTIONS
- i  Interactive mode. Use remote echoing and special character processing.
    This option is needed for programs that expect to be talking to a terminal.
    All terminal modes and window size changes are propagated.

- d  Debug mode. Print out some messages as work is being done.

- n  No Input. This option causes the remote program to get EOF when it reads
    from the standard input, instead of passing the standard input from the
    standard input of the on program. For example, - n is necessary when
    running commands in the background with job control.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnscu</td>
</tr>
</tbody>
</table>

SEE ALSO
chkey(1), rlogin(1), rsh(1), telnet(1), attributes(5)

DIAGNOSTICS
unknown host          Host name not found.
cannot connect to server  Host down or not running the server.
can’t find             Problem finding the working directory.
can’t locate mount point Problem finding current file system.
RPC: Authentication error
    The server requires DES authentication and you do not have a secret key registered with
    keyserv. Perhaps you logged in without a password. Try to keylogin. If that fails try to
    set your publickey with chkey.

Other diagnostic messages may be passed back from the server.

BUGS
When the working directory is remote mounted over NFS, a CTRL-Z hangs the
window.

1102  man pages section 1: User Commands  •  Last Revised 6 Nov 2000
Root cannot use on.
NAME | optisa - determine which variant instruction set is optimal to use

SYNOPSIS | optisa instruction_set...

DESCRIPTION | optisa prints which instruction_set out of the ones specified in the command will perform best on this machine. In this case, “best” is defined by the order in which instruction set names are returned by isalist(1). Possible values for instruction_set are given in isalist(5).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

EXIT STATUS | The following exit values are returned:

  0 | One of the instruction_set values you specified is printed by this command.

  1 | There is no output; that is, this machine cannot use any instruction_set that you specified with the optisa command.

SEE ALSO | isalist(1), uname(1), attributes(5), isalist(5)

NOTES | optisa is preferable to uname -p or uname -m (see uname(1)) in determining which of several binary versions of a given program should be used on the given machine.
### NAME
pack, pcat, unpack – compress and expand files

### SYNOPSIS

```
pack [-f] [-] file...
pcat file...
unpack file...
```

### DESCRIPTION

#### pack

The `pack` command attempts to store the specified files in a compressed form. Wherever possible (and useful), each input file `file` is replaced by a packed file `file.z` with the same access modes, access and modified dates, and owner as those of `file`. If `pack` is successful, `file` will be removed.

The amount of compression obtained depends on the size of the input file and the character frequency distribution. Because a decoding tree forms the first part of each `.z` file, it is usually not worthwhile to pack files smaller than three blocks, unless the character frequency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a larger character set and have a more uniform distribution of characters, show little compression, the packed versions being about 90% of the original size.

`pack` returns a value that is the number of files that it failed to compress.

No packing will occur if:

- the file appears to be already packed
- the file name has more than 14 - 2 bytes
- the file has links
- the file is a directory
- the file cannot be opened
- the file is empty
- no disk storage blocks will be saved by packing
- a file called `file.z` already exists
- the `.z` file cannot be created
- an I/O error occurred during processing.

The last segment of the file name must contain no more than 14 - 2 bytes to allow space for the appended `.z` extension. Directories cannot be compressed.

#### pcat

The `pcat` command does for packed files what `cat(1)` does for ordinary files, except that `pcat` cannot be used as a filter. The specified files are unpacked and written to the standard output.

`pcat` returns the number of files it was unable to unpack. Failure may occur if:

- the file cannot be opened;
- the file does not appear to be the output of `pack`.  

---

**User Commands**  1105
The unpack command expands files created by pack. For each file specified in the command, a search is made for a file called file.z (or just file, if file ends in .z). If this file appears to be a packed file, it is replaced by its expanded version. The new file has the .z suffix stripped from its name, and has the same access modes, access and modification dates, and owner as those of the packed file.

unpack returns a value that is the number of files it was unable to unpack. Failure may occur for the same reasons that it may in pcat, as well as for the following:
- a file with the “unpacked” name already exists;
- the unpacked file cannot be created.
- the filename (excluding the .z extension) has more than 14 bytes.

OPTIONS
The following options are supported by pack:
- f Forces packing of file. This is useful for causing an entire directory to be packed even if some of the files will not benefit. Packed files can be restored to their original form using unpack or pcat.

OPERANDS
The following operands are supported:
- file A path name of a file to be packed, unpacked, or pcated; file can include or omit the .z suffix.
- pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the – argument is used, an internal flag is set that causes the number of times each byte is used, its relative frequency, and the code for the byte to be printed on the standard output. Additional occurrences of – in place of file will cause the internal flag to be set and reset.

USAGE
See largefile(5) for the description of the behavior of pack, pcat, and unpack when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXAMPLES
EXAMPLE 1 Viewing a Packed File
To view a packed file named file.z use:

example% pcat file.z

or just:

example% pcat file

EXAMPLE 2 Making and Unpacked Copy:
To make an unpacked copy, say nnn, of a packed file named file.z (without destroying file.z) use the command:

example% pcat file >nnn
ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of pack, pcat, and unpack: LC_TYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred. The number of files the command failed to pack/unpack is returned.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO
cat(1), compress(1), zcat(1), attributes(5), environ(5), largefile(5)
pagesize(1)

NAME  pagesize – display the size or sizes of a page of memory

SYNOPSIS  /usr/bin/pagesize [-a]

DESCRIPTION  The pagesize utility prints the default size of a page of memory in bytes, as returned by getpagesize(3C). This program is useful in constructing portable shell scripts.

OPTIONS  The following option is supported:

- a  Prints out all possible hardware address translation sizes supported by the system.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  ppgsz(1), getpagesize(3C), getpagesizes(3C), attributes(5)
NAME
ens – print process arguments, environment variables, or auxiliary vector

SYNOPSIS
ens [ -aceFx ] [ pid | core... ]

DESCRIPTION
The ens utility examines a target process or process core file and prints arguments, environment variables and values, or the process auxiliary vector.

ens outputs unprintable characters as escaped octal in the format \xxx, unless the character is one of the characters specified in the “Escape Sequences” section of formats(5), in which case the character is printed as specified in that section.

ens attempts to be sensitive to the locale of the target process. If the target process and the ens process do not share a common character encoding, ens attempts to employ the iconv(3C) facility to generate a printable version of the extracted strings. In the event that such a conversion is impossible, strings are displayed as 7-bit ASCII.

OPTIONS
The following options are supported:

-a      Prints process arguments as contained in argv[] (default).
-c      Treats strings in the target process as though they were encoded in 7-bit ASCII, regardless of the locale of the target. The use of iconv(3C) is suppressed.
-e      Prints process environment variables and values as pointed at by the _environ symbol or by pr_envp in /proc/pid/psinfo.
-F      Force. Grabs the target process even if another process has control.
-x      Prints process auxiliary vector.

OPERANDS
The following operands are supported:

pid     Process ID list.
core    Process core file.

EXIT STATUS
The following exit values are returned:

0       Successful operation.
non-zero An error has occurred (such as no such process, permission denied, or invalid option).

FILES
/proc/pid/* Process information and control files.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesux (64-bit)</td>
</tr>
</tbody>
</table>
pargs(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

proc(1), iconv(3C), proc(4), ascii(5), attributes(5), environ(5), formats(5)
passwd (1)

NAME
passwd – change login password and password attributes

SYNOPSIS
passwd [-r files | -r ldap | -r nis | -r nisplus] [name]
passwd [-r files] [-egh] [name]
passwd [-r files] -s [-a]
passwd [-r files] -s [name]
passwd [-r files] [-d | -l] [-f] [-n min] [-w warn] [-x max] name
passwd -r ldap [-egh] [name]
passwd -r nis [-egh] [name]
passwd -r nisplus [-egh] [-D domainname] [name]
passwd -r nisplus -s [-a]
passwd -r nisplus [-D domainname] -s [name]
passwd -r nisplus [-l] [-f] [-n min] [-w warn] [-x max]
[-D domainname] name

DESCRIPTION
The passwd command changes the password or lists password attributes associated with the user’s login name. Additionally, privileged users may use passwd to install or change passwords and attributes associated with any login name.

When used to change a password, passwd prompts everyone for their old password, if any. It then prompts for the new password twice. When the old password is entered, passwd checks to see if it has "aged" sufficiently. If "aging" is insufficient, passwd terminates; see pwconv(1M), nistbladm(1), and shadow(4) for additional information.

When LDAP, NIS, or NIS+ is in effect on a system, passwd changes the NIS or NIS+ database. The NIS or NIS+ password may be different from the password on the local machine. If NIS or NIS+ is running, use passwd -r to change password information on the local machine.

The pwconv command creates and updates /etc/shadow with information from /etc/passwd. pwconv relies on a special value of ‘x’ in the password field of /etc/passwd. This value of ‘x’ indicates that the password for the user is already in /etc/shadow and should not be modified.

If aging is sufficient, a check is made to ensure that the new password meets construction requirements. When the new password is entered a second time, the two copies of the new password are compared. If the two copies are not identical, the cycle of prompting for the new password is repeated for, at most, two more times.

Passwords must be constructed to meet the following requirements:

- Each password must have PASSLENGTH characters, where PASSLENGTH is defined in /etc/default/passwd and is set to 6. Only the first eight characters are significant.
Each password must contain at least two alphabetic characters and at least one numeric or special character. In this case, “alphabetic” refers to all upper or lower case letters.

Each password must differ from the user’s login name and any reverse or circular shift of that login name. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.

If all requirements are met, by default, the passwd command will consult /etc/nsswitch.conf to determine in which repositories to perform password update. It searches the passwd and passwd_compat entries. The sources (repositories) associated with these entries will be updated. However, the password update configurations supported are limited to the following cases. Failure to comply with the configurations will prevent users from logging onto the system. The password update configurations are:

- passwd: files
- passwd: files ldap
- passwd: files nis
- passwd: files nisplus
- passwd: compat (==> files nis)
- passwd: compat (==> files ldap)
  - passwd_compat: ldap
- passwd: compat (==> files nisplus)
  - passwd_compat: nisplus

Network administrators, who own the NIS+ password table, may change any password attributes.

In the files case, super-users (for instance, real and effective uid equal to 0, see id(1M) and su(1M)) may change any password. Hence, passwd does not prompt privileged users for the old password. Privileged users are not forced to comply with password aging and password construction requirements. A privileged user can create a null password by entering a carriage return in response to the prompt for a new password. (This differs from passwd -d because the "password" prompt will still be displayed.) If NIS is in effect, superuser on the root master can change any password without being prompted for the old NIS passwd, and is not forced to comply with password construction requirements.

Normally, passwd entered with no arguments will change the password of the current user. When a user logs in and then invokes su(1M) to become super-user or another user, passwd will change the original user’s password, not the password of the super-user or the new user.
Any user may use the `-s` option to show password attributes for his or her own login name, provided they are using the `-r nisplus` argument. Otherwise, the `-s` argument is restricted to the superuser.

The format of the display will be:

```
name status mm/dd/yy min max warn
```

or, if password aging information is not present,

```
name status
```

where

- **name**  The login ID of the user.
- **status** The password status of name: **PS** stands for passworded or locked, **LK** stands for locked, and **NP** stands for no password.
- **mm/dd/yy** The date password was last changed for name. Notice that all password aging dates are determined using Greenwich Mean Time (Universal Time) and therefore may differ by as much as a day in other time zones.
- **min** The minimum number of days required between password changes for name. MINWEEKS is found in `/etc/default/passwd` and is set to `NULL`.
- **max** The maximum number of days the password is valid for name. MAXWEEKS is found in `/etc/default/passwd` and is set to `NULL`.
- **warn** The number of days relative to max before the password expires and the name will be warned.

### Security

passwd uses pam(3PAM) for password management. The PAM configuration policy, listed through `/etc/pam.conf`, specifies the password modules to be used for passwd. Here is a partial `pam.conf` file with entries for the `passwd` command using the `passwd-auth` module:

```
passwd auth required pam_passwd_auth.so.1
```

If there are no entries for the `passwd` service, then the entries for the "other" service will be used. If multiple password modules are listed, then the user may be prompted for multiple passwords.

### OPTIONS

The following options are supported:

- `-a` Shows password attributes for all entries. Use only with the `-s` option. *name* must not be provided. For the nisplus repository, this will show only the entries in the NIS+ password table in the local domain that the invoker is authorized to "read". For the files repository, this is restricted to the superuser.
**passwd(1)**

**-D domainname**  
Consults the `passwd.org_dir` table in `domainname`. If this option is not specified, the default `domainname` returned by `nis_local_directory(3NSL)` will be used. This domain name is the same as that returned by `domainname(1M)`.

**-e**  
Changes the login shell. For the `files` repository, this only works for the super-user. Normal users may change the `ldap`, `nis`, or `nisplus` repositories. The choice of shell is limited by the requirements of `getusershell(3C)`. If the user currently has a shell that is not allowed by `getusershell`, only root may change it.

**-g**  
Changes the gecos (finger) information. For the `files` repository, this only works for the superuser. Normal users may change the `ldap`, `nis`, or `nisplus` repositories.

**-h**  
Changes the home directory.

**-r**  
Specifies the repository to which an operation is applied. The supported repositories are `files`, `ldap`, `nis`, or `nisplus`.

**-s name**  
Shows password attributes for the login `name`. For the `nisplus` repository, this works for everyone. However for the `files` repository, this only works for the superuser. It does not work at all for the `nis` repository which does not support password aging.

**Privileged User Options**

Only a privileged user can use the following options:

**-d**  
Deletes password for `name` and unlocks the account. The login name `name` will not be prompted for password. It is only applicable to the `files` repository.

**-f**  
Forces the user to change password at the next login by expiring the password for `name`.

**-l**  
Locks password entry for `name`. See the `-d` option for unlocking the account.

**-n min**  
Sets minimum field for `name`. The `min` field contains the minimum number of days between password changes for `name`. If `min` is greater than `max`, the user may not change the password. Always use this option with the `-x` option, unless `max` is set to −1 (aging turned off). In that case, `min` need not be set.

**-w warn**  
Sets warn field for `name`. The `warn` field contains the number of days before the password expires and the user is warned. This option is not valid if password aging is disabled.

**-x max**  
Sets maximum field for `name`. The `max` field contains the number of days that the password is valid for `name`. The aging for `name` will be turned off immediately if `max` is set to −1. If it is set to 0, then the user is forced to change the password at the next login session.
and aging is turned off.

**OPERANDS**

The following operand is supported:

name

User login name.

**ENVIRONMENT VARIABLES**

If any of the LC_* variables, that is, LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY (see environ(5)), are not set in the environment, the operational behavior of passwd for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" (U.S. style) locale determines how passwd behaves.

**LC_CTYPE**

Determines how passwd handles characters. When LC_CTYPE is set to a valid value, passwd can display and handle text and filenames containing valid characters for that locale. passwd can display and handle Extended Unix Code (EUC) characters where any individual character can be 1, 2, or 3 bytes wide. passwd can also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only characters from ISO 8859-1 are valid.

**LC_MESSAGES**

Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).

**EXIT STATUS**

The passwd command exits with one of the following values:

0    Success.
1    Permission denied.
2    Invalid combination of options.
3    Unexpected failure. Password file unchanged.
4    Unexpected failure. Password file(s) missing.
5    Password file(s) busy. Try again later.
6    Invalid argument to option.
7    Aging option is disabled.
8    No memory.
9    System error.
10   Account expired.
passwd(1)

FILES
/etc/oshadow
/etc/shells
/etc/passwd  Password file.
/etc/shadow  Shadow password file.
/etc/default/passwd  Default values can be set for the following flags in /etc/default/passwd. For example: MAXWEEKS=26

MAXWEEKS  Maximum time period that password is valid.
MINWEEKS  Minimum time period before the password can be changed.
PASSLENGTH  Minimum length of password, in characters.
WARNWEEKS  Time period until warning of date of password’s ensuing expiration.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO  finger(1), login(1), nistbladm(1), domainname(1M), id(1M), passmgmt(1M), pwconv(1M), su(1M), useradd(1M), userdel(1M), usermod(1M), crypt(3C), getpwnam(3C), getspnam(3C), getusershell(3C), nis_local_directory(3NSL), pam(3PAM), loginlog(4), nsswitch.conf(4), pam.conf(4), passwd(4), shadow(4), attributes(5), environ(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_ldap(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

NOTES  The pam_unix(5) module might not be supported in a future release. Similar functionality is provided by pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5), pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), and pam_passwd_auth(5).

The nispasswd and yp passwd commands are wrappers around passwd. Use of nispasswd and yp passwd is discouraged. Use passwd -r repository_name instead.

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
**NAME**

paste – merge corresponding or subsequent lines of files

**SYNOPSIS**

`paste [-s] [-d list] file...`

**DESCRIPTION**

The `paste` utility will concatenate the corresponding lines of the given input files, and write the resulting lines to standard output.

The default operation of `paste` will concatenate the corresponding lines of the input files. The `NEWLINE` character of every line except the line from the last input file will be replaced with a `TAB` character.

If an EOF (end-of-file) condition is detected on one or more input files, but not all input files, `paste` will behave as though empty lines were read from the files on which EOF was detected, unless the `-s` option is specified.

**OPTIONS**

The following options are supported:

- `-d list`  
  Unless a backslash character ( \ ) appears in `list`, each character in `list` is an element specifying a delimiter character. If a backslash character appears in `list`, the backslash character and one or more characters following it are an element specifying a delimiter character as described below. These elements specify one or more delimiters to use, instead of the default `TAB` character, to replace the `NEWLINE` character of the input lines. The elements in `list` are used circularly. That is, when the list is exhausted, the first element from the list is reused.

When the `-s` option is specified:

- The last newline character in a file will not be modified.
- The delimiter will be reset to the first element of `list` after each `file` operand is processed.

When the option is not specified:

- The `NEWLINE` characters in the file specified by the last `file` will not be modified.
- The delimiter will be reset to the first element of `list` each time a line is processed from each file.

If a backslash character appears in `list`, it and the character following it will be used to represent the following delimiter characters:

- \n  Newline character.
- \t  Tab character.
- \\  Backslash character.
- \0  Empty string (not a null character). If \0 is immediately followed by the character x, the character X, or any character defined by the `LC_CTYPE` `digit` keyword, the results are unspecified.
If any other characters follow the backslash, the results are unspecified.

-s Concatenate all of the lines of each separate input file in command line order. The NEWLINE character of every line except the last line in each input file will be replaced with the TAB character, unless otherwise specified by the -d option.

**OPERANDS**
The following operand is supported:

file A path name of an input file. If - is specified for one or more of the files, the standard input will be used. The standard input will be read one line at a time, circularly, for each instance of -. Implementations support pasting of at least 12 file operands.

**USAGE**
See largefile(5) for the description of the behavior of `paste` when encountering files greater than or equal to 2 Gbyte \((2^{31}\) bytes).

**EXAMPLES**

**EXAMPLE 1** Listing a directory in one column
```
example% ls | paste -d " "
```

**EXAMPLE 2** Listing a directory in four columns
```
example% ls | paste -- -- --
```

**EXAMPLE 3** Combining pairs of lines from a file into single lines
```
example% paste -s -d \t \n file
```

**ENVIRONMENT VARIABLES**
See environ(5) for descriptions of the following environment variables that affect the execution of `paste`: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

**EXIT STATUS**
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

**SEE ALSO**
cut(1), grep(1), pr(1), attributes(5), environ(5), largefile(5), standards(5)

**DIAGNOSTICS**
"line too long" Output lines are restricted to 511 characters.
<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;too many files&quot;</td>
<td>Except for <code>-s</code> option, no more than 12 input files may be specified.</td>
</tr>
<tr>
<td>&quot;no delimiters&quot;</td>
<td>The <code>-d</code> option was specified with an empty list.</td>
</tr>
<tr>
<td>&quot;cannot open file&quot;</td>
<td>The specified file cannot be opened.</td>
</tr>
</tbody>
</table>
**NAME**  
patch – apply changes to files  

**SYNOPSIS**  
```bash
[-o outfile] [-p num] [-r rejectfile] [file]
```

**DESCRIPTION**  
The `patch` command reads a source (patch) file containing any of the three forms of difference (diff) listings produced by the `diff(1)` command (normal, context or in the style of `ed(1)`) and apply those differences to a file. By default, `patch` reads from the standard input. `patch` attempts to determine the type of the `diff` listing, unless overruled by a `-c`, `-e`, or `-n` option.  

If the patch file contains more than one patch, `patch` will attempt to apply each of them as if they came from separate patch files. (In this case the name of the patch file must be determinable for each `diff` listing.)  

**OPTIONS**  
The following options are supported:  

- `-b`  
  Saves a copy of the original contents of each modified file, before the differences are applied, in a file of the same name with the suffix `.orig` appended to it. If the file already exists, it will be overwritten. If multiple patches are applied to the same file, the `.orig` file will be written only for the first patch. When the `-o outfile` option is also specified, `file.orig` will not be created but, if `outfile` already exists, `outfile.orig` will be created.  

- `-c`  
  Interprets the patch file as a context difference (the output of the command `diff` when the `-c` or `-C` options are specified).  

- `-d dir`  
  Changes the current directory to `dir` before processing as described in **EXTENDED DESCRIPTION**.  

- `-D define`  
  Marks changes with the C preprocessor construct:  
  ```c
 #ifdef define
 ...
 #endif
  ```  
  The option-argument `define` will be used as the differentiating symbol.  

- `-e`  
  Interprets the patch file as an `ed` script, rather than a `diff` script.  

- `-i patchfile`  
  Reads the patch information from the file named by the path name `patchfile`, rather than the standard input.  

- `-l`  
  (The letter ell.) Causes any sequence of blank characters in the difference script to match any sequence of blank characters in the input file. Other characters will be matched exactly.  

- `-n`  
  Interprets the script as a normal difference.  

- `-N`  
  Ignores patches where the differences have already been applied to the file; by default, already-applied patches are rejected.
Instead of modifying the files (specified by the file operand or the difference listings) directly, writes a copy of the file referenced by each patch, with the appropriate differences applied, to outfile.

Multiple patches for a single file will be applied to the intermediate versions of the file created by any previous patches, and will result in multiple, concatenated versions of the file being written to outfile.

For all path names in the patch file that indicate the names of files to be patched, deletes num path name components from the beginning of each path name. If the path name in the patch file is absolute, any leading slashes are considered the first component (that is, -p 1 removes the leading slashes). Specifying -p 0 causes the full path name to be used. If -p is not specified, only the basename (the final path name component) is used.

Reverses the sense of the patch script. That is, assumes that the difference script was created from the new version to the old version. The -R option cannot be used with ed scripts. patch attempts to reverse each portion of the script before applying it. Rejected differences will be saved in swapped format. If this option is not specified, and until a portion of the patch file is successfully applied, patch attempts to apply each portion in its reversed sense as well as in its normal sense. If the attempt is successful, the user will be prompted to determine if the -R option should be set.

Overrides the default reject file name. In the default case, the reject file will have the same name as the output file, with the suffix .rej appended to it. See Patch Application.

Interprets the patch file as a unified context difference, that is, the output of the command diff when the -u or -U options are specified.

The following operand is supported:

file A path name of a file to patch.

The -R option will not work with ed scripts because there is too little information to reconstruct the reverse operation.

The -p option makes it possible to customize a patch file to local user directory structures without manually editing the patch file. For example, if the file name in the patch file was /curds/whey/srcblurfl/blurfl.c:

- Setting -p 0 gives the entire path name unmodified.
- Setting -p 1 gives:

  curds/whey/srcblurfl/blurfl.c
Without the leading slash, `-p` gives:

```
blurfl/blurfl.c
```

Not specifying `-p` at all gives:

```
blurfl.c
```

When using `-b` in some file system implementations, the saving of a `.orig` file may produce unwanted results. In the case of 12-, 13-, or 14-character file names, on file systems supporting 14-character maximum file names, the `.orig` file will overwrite the new file.

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `patch`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, `LC_TIME`, and `NLSPATH`.

**OUTPUT FILES**

The output of `patch` the save files (.orig suffixes) and the reject files (.rej suffixes) will be text files.

**EXTENDED DESCRIPTION**

A patch file may contain patching instructions for more than one file. File names are determined as specified in Patch Determination. When the `-b` option is specified, for each patched file, the original will be saved in a file of the same name with the suffix `.orig` appended to it.

For each patched file, a reject file may also be created as noted in Patch Application. In the absence of an `-r` option, the name of this file will be formed by appending the suffix `.rej` to the original file name.

**Patch File Format**

The patch file must contain zero or more lines of header information followed by one or more patches. Each patch must contain zero or more lines of file name identification in the format produced by `diff -c`, and one or more sets of `diff` output, which are customarily called hunks.

`patch` recognizes the following expression in the header information:

```
Index: pathname
```

The file to be patched is named `pathname`.

If all lines (including headers) within a patch begin with the same leading sequence of blank characters, `patch` will remove this sequence before proceeding. Within each patch, if the type of difference is context, `patch` recognizes the following expressions:

```
* * * filename timestamp
```

The patches arose from `filename`.

```
−−− filename timestamp
```

The patches should be applied to `filename`.

Each hunk within a patch must be the `diff` output to change a line range within the original file. The line numbers for successive hunks within a patch must occur in ascending order.
If no file operand is specified, `patch` performs the following steps to obtain a path name:

1. If the patch contains the strings *** and −−−, `patch` strips components from the beginning of each path name (depending on the presence or value of the `-p` option), then tests for the existence of both files in the current directory (or directory specified with the `-d` option).

2. If both files exist, `patch` assumes that no path name can be obtained from this step. If the header information contains a line with the string `Index:`, `patch` strips components from the beginning of the path name (depending on `-p`), then tests for the existence of this file in the current directory (or directory specified with the `-d` option).

3. If an SCCS directory exists in the current directory, `patch` will attempt to perform a `get -e SCCS/s.filename` command to retrieve an editable version of the file.

4. If no path name can be obtained by applying the previous steps, or if the path names obtained do not exist, `patch` will write a prompt to standard output and request a file name interactively from standard input.

If the `-c`, `-e`, `-n`, or `-u` option is present, `patch` will interpret information within each hunk as a context difference, an `ed` difference, a normal difference, or a unified context difference, respectively. In the absence of any of these options, `patch` determines the type of difference based on the format of information within the hunk.

For each hunk, `patch` begins to search for the place to apply the patch at the line number at the beginning of the hunk, plus or minus any offset used in applying the previous hunk. If lines matching the hunk context are not found, `patch` scans both forwards and backwards at least 1000 bytes for a set of lines that match the hunk context.

If no such place is found and it is a context difference, then another scan will take place, ignoring the first and last line of context. If that fails, the first two and last two lines of context will be ignored and another scan will be made. Implementations may search more extensively for installation locations.

If no location can be found, `patch` will append the hunk to the reject file. The rejected hunk will be written in context-difference format regardless of the format of the patch file. If the input was a normal or `ed-style` difference, the reject file may contain differences with zero lines of context. The line numbers on the hunks in the reject file may be different from the line numbers in the patch file since they will reflect the approximate locations for the failed hunks in the new file rather than the old one.

If the type of patch is an `ed` diff, the implementation may accomplish the patching by invoking the `ed` command.

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>One or more lines were written to a reject file.</td>
</tr>
</tbody>
</table>
patch(1)

>1 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO ed(1), diff(1), attributes(5), environ(5), standards(5)
The `pathchk` command will check that one or more path names are valid (that is, they could be used to access or create a file without causing syntax errors) and portable (that is, no filename truncation will result). More extensive portability checks are provided by the `-p` option.

By default, `pathchk` will check each component of each path operand based on the underlying file system. A diagnostic will be written for each path operand that:

- is longer than `PATH_MAX` bytes.
- contains any component longer than `NAME_MAX` bytes in its containing directory
- contains any component in a directory that is not searchable
- contains any character in any component that is not valid in its containing directory.

The format of the diagnostic message is not specified, but will indicate the error detected and the corresponding path operand.

It will not be considered an error if one or more components of a path operand do not exist as long as a file matching the path name specified by the missing components could be created that does not violate any of the checks specified above.

The following option is supported:

```
-p
```

Instead of performing checks based on the underlying file system, write a diagnostic for each path operand that:

- is longer than `_POSIX_PATH_MAX` bytes
- contains any component longer than `_POSIX_NAME_MAX` bytes
- contains any character in any component that is not in the portable filename character set.

The following operand is supported:

```
path
```

A path to be checked.

See `largefile(5)` for the description of the behavior of `pathchk` when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).

**EXAMPLE 1** Using the `pathchk` command

To verify that all paths in an imported data interchange archive are legitimate and unambiguous on the current system:

```bash
example$ pax -f archive | sed -e '/ == .*//s///' | xargs pathchk
if [$? -eq 0]
 then
 pax -r -f archive
else
```

User Commands 1125
EXAMPLE 1 Using the pathchk command (Continued)

```
EXAMPLE 1 Using the pathchk command (Continued)

 echo Investigate problems before importing files.
 exit 1
fi

To verify that all files in the current directory hierarchy could be moved to any system conforming to the X/Open specification that also supports the pax(1) command:

```
example% find . -print | xargs pathchk -p
if [ $? -eq 0 ]
   then
      pax -w -f archive .
   else
      echo Portable archive cannot be created.
      exit 1
fi

To verify that a user-supplied path names a readable file and that the application can create a file extending the given path without truncation and without overwriting any existing file:

```
example% case $# in
 -*C*) reset="";;
 *) reset="set +C"
 set -C;;
 esac
 test -r "path" && pathchk "$path.out" &&
 rm "$path.out" > "$path.out"
if [$? -ne 0]; then
 printf "%s: %s not found or %s.out fails \ncreation checks.\n" $0 "$path" "$path"
 "$reset # reset the noclobber option in case a trap
 # on EXIT depends on it
 exit 1
fi
$reset
PROCESSING < "$path" > "$path.out"
```

The following assumptions are made in this example:

1. PROCESSING represents the code that will be used by the application to use $path once it is verified that $path.out will work as intended.

2. The state of the noclobber option is unknown when this code is invoked and should be set on exit to the state it was in when this code was invoked. (The reset variable is used in this example to restore the initial state.)

3. Note the usage of:

```
rm "$path.out" > "$path.out"
```

   a. The pathchk command has already verified, at this point, that $path.out will not be truncated.
EXAMPLE 1 Using the pathchk command  (Continued)

b. With the noclobber option set, the shell will verify that $path.out does not already exist before invoking rm.

c. If the shell succeeded in creating $path.out, rm will remove it so that the application can create the file again in the PROCESSING step.

d. If the PROCESSING step wants the file to exist already when it is invoked, the:

   rm "$path.out" > "$path.out"

   should be replaced with:

   > "$path.out"

   which will verify that the file did not already exist, but leave $path.out in place for use by PROCESSING.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of pathchk: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

   0       All path operands passed all of the checks.

   >0      An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

pax(1), test(1), attributes(5), environ(5), largefile(5), standards(5)
The `pathconv` function converts an alias to its pathname. By default, it takes the alias as a string from the standard input.

### OPTIONS

- `-f` If `-f` is specified, the full path will be returned (this is the default).
- `-t` If `-t` is specified, `pathconv` will truncate a pathname specified in `string` in a format suitable for display as a frame title. This format is a shortened version of the full pathname, created by deleting components of the path from the middle of the string until it is under `DISPLAY` — 6 characters in length, and then inserting ellipses ( ... ) between the remaining pieces. Ellipses are also used to show truncation at the ends of the strings if necessary, unless the `-l` option is given.
- `-l` If `-l` is specified, `< and > will be used instead of ellipses ( ... ) to indicate truncation at the ends of the string generated by the `-t` option. Using `-l` allows display of the longest possible string while still notifying users it has been truncated.
- `-num` If `-n` is specified, `num` is the maximum length of the string (in characters) generated by the `-t` option. The argument `num` can be any integer from 1 to 255.
- `-v alias | string` If the `-v` option is used, then `alias` or `string` can be specified when `pathconv` is called. The argument `alias` must be an alias defined in the `alias_file` named when `fmli` was invoked. The argument `string` can only be used with the `-t` option and must be a pathname.

### EXAMPLES

#### EXAMPLE 1
A sample that uses `pathconv` to construct the menu title. It searches for `MYPATH` in the `alias_file` named when `fmli` command.

Here is a menu descriptor that uses `pathconv` to construct the menu title. It searches for `MYPATH` in the `alias_file` named when `fmli` was invoked:

```
menu=`pathconv -v MYPATH/ls`
```

where there is a line in `alias_file` that defines `MYPATH`. For example,

```
MYPATH=$HOME/bin:/usr/bin.
```

Here is a menu descriptor that takes `alias` from the standard input.

```
menu=`echo MYPATH/ls | pathconv`
```
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO fmll(1), attributes(5)
**NAME**
pax – portable archive interchange

**SYNOPSIS**

```
pax [-cdnv] [-f archive] [-s replstr] ... [pattern...]
pax -r [-cdiknuv] [-f archive] [-o options...][-p string] ... [-s replstr] ...[pattern...]
pax -w [-dituvX@] [-b blocksize] [-a] [-f archive] [-o options] ...[-s replstr] ... [-x format] [file...]
pax -r -w [-diklnuvX@] [-p string] ... [-s replstr] ... [file...] directory
```

**DESCRIPTION**
The `pax` command reads, writes and writes lists of the members of archive files and copy directory hierarchies. A variety of archive formats are supported. See the `-x format` option.

**Modes of Operations**
The action to be taken depends on the presence of the `-r` and `-w` options. The four combinations of `-r` and `-w` are referred to as the four modes of operation: list, read, write, and copy modes, corresponding respectively to the four forms shown in the SYNOPSIS.

**list**
In list mode (when neither `-r` nor `-w` are specified), `pax` writes the names of the members of the archive file read from the standard input, with path names matching the specified patterns, to standard output. If a named file has extended attributes, the extended attributes are also listed. If a named file is of type directory, the file hierarchy rooted at that file will be written out as well.

**read**
In read mode (when `-r` is specified, but `-w` is not), `pax` extracts the members of the archive file read from the standard input, with path names matching the specified patterns. If an extracted file is of type directory, the file hierarchy rooted at that file will be extracted as well. The extracted files are created relative to the current file hierarchy.

The ownership, access and modification times, and file mode of the restored files are discussed under the `-p` option.

**write**
In write mode (when `-w` is specified, but `-r` is not), `pax` writes the contents of the file operands to the standard output in an archive format. If no file operands are specified, a list of files to copy, one per line, will be read from the standard input. A file of type directory will include all of the files in the file hierarchy rooted at the file.

**copy**
In copy mode (when both `-r` and `-w` are specified), `pax` copies the file operands to the destination directory.

If no file operands are specified, a list of files to copy, one per line, will be read from the standard input. A file of type directory will include all of the files in the file hierarchy rooted at the file.
The effect of the copy is as if the copied files were written to an archive file and then subsequently extracted, except that there may be hard links between the original and the copied files. If the destination directory is a subdirectory of one of the files to be copied, the results are unspecified. It is an error if directory does not exist, is not writable by the user, or is not a directory.

In read or copy modes, if intermediate directories are necessary to extract an archive member, pax will perform actions equivalent to the mkdir(2) function, called with the following arguments:

- the intermediate directory used as the path argument
- the octal value of 777 or rwx (read, write, and execute permissions) as the mode argument (see chmod(1)).

If any specified pattern or file operands are not matched by at least one file or archive member, pax will write a diagnostic message to standard error for each one that did not match and exit with a non-zero exit status.

The supported archive formats are automatically detected on input. The default output archive format is tar(1).

If the selected archive format supports the specification of linked files, it is an error if these files cannot be linked when the archive is extracted. Any of the various names in the archive that represent a file can be used to select the file for extraction.

The following options are supported:

- `r` Reads an archive file from standard input.
- `w` Writes files to the standard output in the specified archive format.
- `a` Appends files to the end of the archive. This option will not work for some archive devices, such as 1/4-inch streaming tapes and 8mm tapes.
- `b blocksize` Blocks the output at a positive decimal integer number of bytes per write to the archive file. Devices and archive formats may impose restrictions on blocking. Blocking is automatically determined on input. Portable applications must not specify a blocksize value larger than 32256. Default blocking when creating archives depends on the archive format. See the -x option below.
- `c` Matches all file or archive members except those specified by the pattern or file operands.
- `d` Causes files of type directory being copied or archived or archive members of type directory being extracted to match only the file or archive member itself and not the file hierarchy rooted at the file.
pax(1)

- E archive  Specifies the path name of the input or output archive, overriding the default standard input (in list or read modes) or standard output (write mode).

- i  Interactively renames files or archive members. For each archive member matching a pattern operand or file matching a file operand, a prompt will be written to the file /dev/tty. The prompt will contain the name of the file or archive member. A line will then be read from /dev/tty. If this line is blank, the file or archive member will be skipped. If this line consists of a single period, the file or archive member will be processed with no modification to its name. Otherwise, its name will be replaced with the contents of the line. The pax command will immediately exit with a non-zero exit status if end-of-file is encountered when reading a response or if /dev/tty cannot be opened for reading and writing.

- k  Prevents the overwriting of existing files.

- l  Links files. In copy mode, hard links will be made between the source and destination file hierarchies whenever possible.

- n  Selects the first archive member that matches each pattern operand. No more than one archive member will be matched for each pattern, although members of type directory will still match the file hierarchy rooted at that file.

- o options  Reserved for special format-specific options.

- p string  Specifies one or more file characteristic options (privileges). The string option-argument must be a string specifying file characteristics to be retained or discarded on extraction. The string consists of the specification characters a, e, m, o, and p. Multiple characteristics can be concatenated within the same string and multiple -p options can be specified. The meaning of the specification characters are as follows:

- a  Does not preserve file access times.

- e  Preserves the user ID, group ID, file mode bits, access time, and modification time.

- m  Does not preserve file modification times.

- o  Preserves the user ID and group ID.

- p  Preserves the file mode bits. Other, implementation-dependent file-mode attributes may be preserved.
In the preceding list, “preserve” indicates that an attribute stored
in the archive will be given to the extracted file, subject to the
permissions of the invoking process. Otherwise, the attribute will
be determined as part of the normal file creation action.

If neither the e nor the o specification character is specified, or the
user ID and group ID are not preserved for any reason, pax will
not set the setuid and setgid bits of the file mode.

If the preservation of any of these items fails for any reason, pax
will write a diagnostic message to standard error. Failure to
preserve these items will affect the final exit status, but will not
cause the extracted file to be deleted.

If file-characteristic letters in any of the string option-arguments
are duplicated or conflict with each other, the ones given last will
take precedence. For example, if -p e m e is specified, file
modification times will be preserved.

- s replstr
Modifies file or archive member names named by pattern or file
operands according to the substitution expression replstr, which is
based on the ed(1) s (substitution) command, using the regular
expression syntax on the re(7) manual page. The concepts of
“address” and “line” are meaningless in the context of the pax
command, and must not be supplied. The format is:

- s / old/new/ [g p ]

where, as in ed, old is a basic regular expression and new can
contain an ampersand (&) or a \n backreference, where n is a digit.
The old string also is permitted to contain newline characters.

Any non-null character can be used as a delimiter ( / shown here).
Multiple - s expressions can be specified; the expressions will be
applied in the order specified, terminating with the first successful
substitution. The optional trailing g is as defined in the ed
command. The optional trailing p causes successful substitutions
to be written to standard error. File or archive member names that
substitute to the empty string are ignored when reading and
writing archives.

- t
Causes the access times of the archived files to be the same as they
were before being read by pax.

- u
Ignores files that are older (having a less recent file modification
time) than a pre-existing file or archive member with the same
name.
read mode An archive member with the same name as a file in the file system will be extracted if the archive member is newer than the file.

write mode An archive file member with the same name as a file in the file system will be superseded if the file is newer than the archive member.

copy mode The file in the destination hierarchy will be replaced by the file in the source hierarchy or by a link to the file in the source hierarchy if the file in the source hierarchy is newer.

-v In list mode, produces a verbose table of contents (see Standard Output). Otherwise, writes archive member path names and extended attributes to standard error (see Standard Error).

-x format Specifies the output archive format. The pax command recognizes the following formats:

cpio The extended cpio(1) interchange format. See the IEEE 1003.1(1990) specifications. The default blocksize for this format for character special archive files is 5120. Implementations support all blocksize values less than or equal to 32256 that are multiples of 512.

This archive format allows files with UIDs and GIDs up to 262143 to be stored in the archive. Files with UIDs and GIDs greater than this value will be archived with the UID and GID of 60001.

ustar The extended tar(1) interchange format. See the IEEE 1003.1(1990) specifications. The default blocksize for this format for character special archive files is 10240. Implementations support all blocksize values less than or equal to 32256 that are multiples of 512.

Any attempt to append to an archive file in a format different from the existing archive format will cause pax to exit immediately with a non-zero exit status.

This archive format allows files with UIDs and GIDs up to 2097151 to be stored in the archive. Files with UIDs and GIDs greater than this value will be archived with the UID and GID of 60001.
xustar

Similar to ustar. Will also allow archiving and extracting files whose size is greater than 8GB; whose UID, GID, devmajor, or devminor values are greater than 2097151; whose path (including filename) is greater than 255 characters; or whose linkname is greater than 100 characters. This option should not be used if the archive is to be extracted by an archiver that cannot handle the larger values.

-X

When traversing the file hierarchy specified by a path name, pax will not descend into directories that have a different device ID (st_dev, see stat(2)).

-@}

When traversing the file hierarchy specified by a path name, pax will descend into the attribute directory for any file with extended attributes. Extended attributes go into the archive as special files. When this flag is used during file extraction, any extended attributes associated with a file being extracted are also extracted. Extended attribute files can only be extracted from an archive as part of a normal file extract. Attempts to explicitly extract attribute records are ignored.

The options that operate on the names of files or archive members (-c, -i, -n, -s, -u and -v) interact as follows. In read mode, the archive members are selected based on the user-specified pattern operands as modified by the -c, -n and -u options. Then, any -s and -i options will modify, in that order, the names of the selected files. The -v option will write names resulting from these modifications.

In write mode, the files are selected based on the user-specified path names as modified by the -n and -u options. Then, any -s and -i options will, in that order, modify the names of these selected files. The -v option will write names resulting from these modifications.

If both the -u and -n options are specified, pax does not consider a file selected unless it is newer than the file to which it is compared.

OPERANDS

The following operands are supported:

directory The destination directory path name for copy mode.

file A path name of a file to be copied or archived.

pattern A pattern matching one or more path names of archive members.

A pattern must conform to the pattern matching notation found on the fnmatch(5) manual page. The default, if no pattern is specified, is to select all members in the archive.

OUTPUT

User Commands 1135
In write mode, if -f is not specified, the standard output will be the archive formatted according to cpio or ustar. (See -x format.)

In list mode, the table of contents of the selected archive members will be written to standard output using the following format:

"%s
" pathname

If the -v option is specified in list mode, the table of contents of the selected archive members will be written to standard output using the following formats:

For path names representing hard links to previous members of the archive:

"%s==%s
" ls -l listing, linkname

For all other path names:

pathname "%s
" ls -l listing

where ls -l listing is the format specified by the ls command with the -l option. When writing path names in this format, it is unspecified what is written for fields for which the underlying archive format does not have the correct information, although the correct number of blank-character-separated fields will be written.

In list mode, standard output will not be buffered more than a line at a time.

If -v is specified in read, write or copy modes, pax will write the path names it processes to the standard error output using the following format:

"%s
" pathname

These path names will be written as soon as processing is begun on the file or archive member, and will be flushed to standard error. The trailing newline character, which will not be buffered, will be written when the file has been read or written.

If the -s option is specified, and the replacement string has a trailing p, substitutions will be written to standard error in the following format:

"%s>>%s
" original pathname, new pathname

In all operating modes of pax, optional messages of unspecified format concerning the input archive format and volume number, the number of files, blocks, volumes and media parts as well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how non-printable characters in path names or linknames are written.
As a large language model, I can't provide a natural text representation of this document as it contains technical and somewhat complex information about the `pax` command. However, I can paraphrase the main points:

**ERRORS**

If `pax` cannot create a file or a link when reading an archive or cannot find a file when writing an archive, or cannot preserve the user ID, group ID, or file mode when the `-p` option is specified, a diagnostic message will be written to standard error and a non-zero exit status will be returned, but processing will continue. In the case where `pax` cannot create a link to a file, `pax` will not, by default, create a second copy of the file.

If the extraction of a file from an archive is prematurely terminated by a signal or error, `pax` may have only partially extracted the file or (if the `-n` option was not specified) may have extracted a file of the same name as that specified by the user, but which is not the file the user wanted. Additionally, the file modes of extracted directories may have additional bits from the read, write, execute mask set as well as incorrect modification and access times.

**USAGE**

The `-p` (privileges) option was invented to reconcile differences between historical `tar(1)` and `cpio(1)` implementations. In particular, the two utilities use `-m` in diametrically opposed ways. The `-p` option also provides a consistent means of extending the ways in which future file attributes can be addressed, such as for enhanced security systems or high-performance files. Although it may seem complex, there are really two modes that will be most commonly used:

- `pe` “Preserve everything”. This would be used by the historical superuser, someone with all the appropriate privileges, to preserve all aspects of the files as they are recorded in the archive. The `e` flag is the sum of `o` and `p`, and other implementation-dependent attributes.

- `pp` “Preserve” the file mode bits. This would be used by the user with regular privileges who wished to preserve aspects of the file other than the ownership. The file times are preserved by default, but two other flags are offered to disable these and use the time of extraction.

See `largefile(5)` for the description of the behavior of `pax` when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

**EXAMPLES**

**EXAMPLE 1** Copying the contents of the current directory

The following command:

```
example% pax -w -f /dev/rmt/1m .
```

copies the contents of the current directory to tape drive 1, medium density. (This assumes historical System V device naming procedures. The historical BSD device name would be `/dev/rmt9`).

**EXAMPLE 2** Copying the directory hierarchy

The following commands:

```
example$ mkdir newdir
example$ pax -rw olddir newdir
```
EXAMPLE 2 Copying the directory hierarchy (Continued)

copy the olddir directory hierarchy to newdir.

EXAMPLE 3 Reading an archive extracted relative to the current directory

The following command:

```
eexample% pax -r -s `^/usr//*,' -f a.pax
```

reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the current directory.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of pax: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

```
LC_COLLATE
```

 Determines the locale for the behaviour of ranges, equivalence classes, and multi-character collating elements used in the pattern matching expressions for the pattern operand, the basic regular expression for the -s option, and the extended regular expression defined for the yesexpr locale keyword in the LC_MESSAGES category.

EXIT STATUS

The following exit values are returned:

```
0 All files were processed successfully.
```

```
>0 An error occurred.
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

NAME
perl – Practical Extraction and Report Language

SYNOPSIS
perl [-sTuU] [-hv] [-V[:configvar]] [-cW] [-d[:debugger]]
    [-D[number/list]] [-pna] [-F[=pattern]] [-l[=octal]] [-O[=octal]] [-Idir]
    [-m[number]module] [-M['module'...']] [-P] [-S|--x[=dir]]
    [-i[extension]] [-e 'command'] [--] [programfile] [argument]...

DESCRIPTION
For ease of access, the Perl manual has been split up into several sections:

- perl overview (this section)
- Perl frequently asked questions
- Perl documentation table of contents
- Perl book information
- Perl syntax
- Perl data structures
- Perl operators and precedence
- Perl subroutines
- Perl built-in functions
- Perl references short introduction
- Perl data structures intro
- Perl regular expressions quick start
- Perl plain old documentation
- Perl style guide
- Perl traps for the unwary
- Perl execution and options
- Perl diagnostic messages
- Perl warnings and their control
- Perl debugging tutorial
- Perl debugging
- Perl predefined variables
- Perl data structures: arrays of arrays
- Perl regular expressions tutorial
- Perl regular expressions, the rest of the story
- Perl references, the rest of the story
- Perl formats
- Perl OO tutorial for beginners
- Perl OO tutorial, part 1
- Perl OO tutorial, part 2
- Perl objects
- Perl OO tricks and examples
- Perl objects hidden behind simple variables
- Perl interprocess communication
- Perl fork() information
- Perl number semantics
- Perl threads tutorial
- Perl portability guide
- Perl locale support
- Perl unicode support
The manpages listed above are installed in the /usr/perl5/man/ directory.

Extensive additional documentation for Perl modules is available. This additional documentation is also in the /usr/local/lib/perl5/man directory. Some of this additional documentation is distributed as standard with Perl, but you'll also find documentation for any customer-installed third-party modules there.

Notice that running catman(1M) on the Perl manual pages is not supported. For other Solaris-specific details, see the NOTES section below.
You can also use the supplied `/usr/perl5/bin/perldoc` script to view Perl information.

If something strange has gone wrong with your program and you’re not sure where you should look for help, try the `-w` switch first. It will often point out exactly where the trouble is.

Perl is a language optimized for scanning arbitrary text files, extracting information from those text files, and printing reports based on that information. It’s also a good language for many system management tasks. The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best features of C, `sed`, `awk`, and `sh`, so people familiar with those languages should have little difficulty with it. (Language historians will also note some vestiges of `csh`, Pascal, and even BASIC-PLUS.) Expression syntax corresponds quite closely to C expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data--if you’ve got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And the tables used by hashes (sometimes called “associative arrays”) grow as necessary to prevent degraded performance. Perl can use sophisticated pattern matching techniques to scan large amounts of data quickly. Although optimized for scanning text, Perl can also deal with binary data, and can make `dbm` files look like hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism that prevents many stupid security holes.

If you have a problem that would ordinarily use `sed` or `awk` or `sh`, but it exceeds their capabilities or must run a little faster, and you don’t want to write the silly thing in C, then Perl may be for you. There are also translators to turn your `sed` and `awk` scripts into Perl scripts.

But wait, there’s more...

Begun in 1993 (see the `perlhist` man page), Perl version 5 is nearly a complete rewrite that provides the following additional benefits:

- **Modularity and reusability using innumerable modules**  
  Described in the `perlmod` man page, the `perlmodlib` man page, and the `perlmodinstall` man page.

- **Embeddable and Extensible**  
  Described in the `perlembed` man page, the `perlxisut` man page, the `perlxs` man page, the `perlcall` man page, the `perlguts` man page, and the `xsubpp` man page.

- **Roll-your-own magic variables**  
  (Including multiple simultaneous DBM implementations) Described in the `perltie` man page and the `AnyDBM_File` man page.

- **Subroutines can now be overridden, autoloaded, and prototyped.** Described in the `perlsub` man page.
Arbitrarily nested data structures and anonymous functions. Described in the perlref man page, the perldsc man page, and the perl11ol man page.

Object-oriented programming
Described in the perlobj man page, the perltoot man page, and the perlbot man page.

Compilability into C code or Perl bytecode
Described in the B man page and the B::Bytecode man page.

Support for light-weight processes (threads)
Described in the perlthrtut man page and the Thread man page. Notice that the Perl shipped as part of Solaris does NOT have threads support enabled. If you require threads support, you should build and install your own Perl version (see the NOTES section below).

Support for internationalization, localization, and Unicode. Described in the perllocale man page and the utf8 man page.

Lexical scoping
Described in the perlsub man page.

Regular expression enhancements
Described in the perlre man page, with additional examples in the perlop man page.

Enhanced debugger and interactive Perl environment, with integrated editor support. Described in the perldebug man page.

POSIX 1003.1 compliant
Described in the POSIX man page.

Okay, that’s definitely enough hype.

AVAILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See the Supported Platforms entry in the perlport man page for a listing.

ENVIRONMENT
The Perl shipped with Solaris is installed under /usr/perl5 rather than the default /usr/local location. This is so that it can coexist with a customer-installed Perl in the default /usr/local location.

Any additional modules that you choose to install will be placed in the /usr/perl5/site_perl/5.6.1 directory. The /usr/perl5/vendor_perl directory is reserved for SMI-provided modules.

Notice that the Perl utility scripts such as perldoc and perlbug are in the /usr/perl5/bin directory, so if you wish to use them you need to include /usr/perl5/bin in your PATH environment variable.

See also the perlrun man page.
Larry Wall, with the help of oodles of other folks.

"@INC" Locations of Perl libraries

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpl5u SUNWpl5m</td>
</tr>
<tr>
<td></td>
<td>SUNWpl5p</td>
</tr>
<tr>
<td></td>
<td>SUNWopl5u SUNWopl5m</td>
</tr>
<tr>
<td></td>
<td>SUNWopl5p</td>
</tr>
<tr>
<td>Interface Stability</td>
<td></td>
</tr>
<tr>
<td>• Script interface</td>
<td>Evolving</td>
</tr>
<tr>
<td>• XSUB interface</td>
<td>Evolving</td>
</tr>
<tr>
<td>• Binary interface</td>
<td>Unstable</td>
</tr>
<tr>
<td>• Directory layout</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
- a2p awk to perl translator
- s2p sed to perl translator
- http://www.perl.com/ The Perl Home Page
- http://www.perl.com/CPAN The Comprehensive Perl Archive

DIAGNOSTICS
The "use warnings" pragma (and the -w switch) produces some lovely diagnostics.

See the perl diag man page for explanations of all Perl's diagnostics. The "use
diagnostics" pragma automatically turns Perl’s normally terse warnings and errors
into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the
next token or token type that was to be examined. (In a script passed to Perl via -e
switches, each -e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as
"Insecure dependency". See the perl sec man page.

Did we mention that you should definitely consider using the -w switch?

NOTES
Solaris 9 contains two versions of Perl, 5.005_03 (as shipped in Solaris 8) and 5.6.1.
/bin/perl is a link to the 5.6.1 interpreter, and /usr/perl5/bin is a link to the
/usr/perl5/5.6.1/bin directory. It is likely that version 5.005_03 will be removed
in a future release of Solaris.
Perl 5.6.1 has been built to be largefile-aware and to use 64-bit integers, although the interpreter itself is a 32-bit application (LP32). To view detailed configuration information, use `perl -V` and `perlbug -dv`.

Notice that 5.6.1 is binary incompatible with the 5.005_03 version, primarily due to the addition of largefile/64-bit integer support. Existing customer-installed XSUB-based modules will require recompilation, and non-XSUB modules will require reinstallation.

If you have any applications that require 5.005_03, you should make sure they explicitly use `/usr/perl5/5.005_03/bin/perl`. It is also possible to make 5.005_03 the default Perl version, although this is not recommended. The steps for this would be (as root):

```bash
rm /usr/bin/perl
ln -s ../perl5/5.00503/bin/perl /usr/bin/perl
rm /usr/perl5/bin
ln -s ./5.00503/bin /usr/perl5/bin
rm /usr/perl5/man
ln -s ./5.00503/man /usr/perl5/man
rm /usr/perl5/pod
ln -s ./5.00503/pod /usr/perl5/pod
```

If you wish to build and install your own version of Perl, you should NOT remove the 5.6.1 version of perl under `/usr/perl5`, as it is required by several system utilities. If you do not want to use the 5.005_03 version, you may remove that if you wish. The Perl package names are as follows:

- `SUNWpl5u` Perl 5.6.1
- `SUNWpl5p` Perl 5.6.1 (POD Documentation)
- `SUNWpl5m` Perl 5.6.1 (Manual pages)
- `SUNWopl5u` Perl 5.005_03
- `SUNWopl5p` Perl 5.005_03 (POD Documentation)
- `SUNWopl5m` Perl 5.005_03 (Manual pages)

The Perl motto is "There's more than one way to do it." Divining how many more is left as an exercise to the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for why.

**BUGS**

The `-w` switch is not mandatory.

Perl is at the mercy of your machine's definitions of various operations such as type casting, `atof()`, and floating-point output with `sprintf()`.

If your stdio requires a seek or `eof` between reads and writes on a particular stream, so does Perl. (This doesn't apply to `sysread()` and `syswrite()`.)
While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still a few arbitrary limits: a given variable name may not be longer than 251 characters. Line numbers displayed by diagnostics are internally stored as short integers, so they are limited to a maximum of 65535 (higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig program in the Perl source tree, or by perl -V) to <perlbug@perl.org>.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I said that.
pfexec(1)

NAME pfexec, pfsh, pfcsh, pfksh – execute a command in a profile

SYNOPSIS /usr/bin/pfexec command
           /usr/bin/pfsh [ options ] [ argument ...]
           /usr/bin/pfcsh [ options ] [ argument ...]
           /usr/bin/pfksh [ options ] [ argument ...]

DESCRIPTION The pfexec program is used to execute commands with the attributes specified by the user’s profiles in the exec_attr(4) database. It is invoked by the profile shells, pfsh, pfcsh, and pfksh which are linked to the Bourne shell, C shell, and Korn shell, respectively.

Profiles are searched in the order specified in the user’s entry in the user_attr(4) database. If the same command appears in more than one profile, the profile shell uses the first matching entry.

USAGE pfexec is used to execute commands with predefined process attributes, such as specific user or group IDs.

Refer to the sh(1), csh(1), and ksh(1) man pages for complete usage descriptions of the profile shells.

EXIT STATUS The following exit values are returned:

0  Successful completion.
1  An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), ksh(1), profiles(1), sh(1), exec_attr(4), prof_attr(4), user_attr(4), attributes(5)
The pg command is a filter that allows the examination of filenames one screenful at a time on a CRT. If the user types a RETURN, another page is displayed; other possibilities are listed below.

This command is different from previous paginators in that it allows you to back up and review something that has already passed. The method for doing this is explained below.

To determine terminal attributes, pg scans the terminfo(4) data base for the terminal type specified by the environment variable TERM. If TERM is not defined, the terminal type dumb is assumed.

- **-number**
  An integer specifying the size (in lines) of the window that pg is to use instead of the default. (On a terminal containing 24 lines, the default window size is 23).

- **-p string**
  pg uses string as the prompt. If the prompt string contains a %d, the first occurrence of %d in the prompt will be replaced by the current page number when the prompt is issued. The default prompt string is "":

- **-c**
  Home the cursor and clear the screen before displaying each page. This option is ignored if clear_screen is not defined for this terminal type in the terminfo(4) data base.

- **-e**
  pg does not pause at the end of each file.

- **-f**
  Normally, pg splits lines longer than the screen width, but some sequences of characters in the text being displayed (for instance, escape sequences for underlining) generate undesirable results. The -f option inhibits pg from splitting lines.

- **-n**
  Normally, commands must be terminated by a <newline> character. This option causes an automatic end of command as soon as a command letter is entered.

- **-r**
  Restricted mode. The shell escape is disallowed. pg prints an error message but does not exit.

- **-s**
  pg prints all messages and prompts in the standard output mode (usually inverse video).

- **+linenumber**
  Start up at linenumber.

- **+/pattern/+**
  Start up at the first line containing the regular expression pattern.

The following operands are supported:
filename  A path name of a text file to be displayed. If no filename is given, or if it is −, the standard input is read.

USAGE

Commands

The responses that may be typed when pg pauses can be divided into three categories: those causing further perusal, those that search, and those that modify the perusal environment.

Commands that cause further perusal normally take a preceding address, an optionally signed number indicating the point from which further text should be displayed. This address is interpreted in either pages or lines depending on the command. A signed address specifies a point relative to the current page or line, and an unsigned address specifies an address relative to the beginning of the file. Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> or <blank>  This causes one page to be displayed. The address is specified in pages.

(+1) Ź  With a relative address this causes pg to simulate scrolling the screen, forward or backward, the number of lines specified. With an absolute address this command prints a screenful beginning at the specified line.

(+1) d or ^D  Simulates scrolling half a screen forward or backward.

if  Skip i screens of text.

iz  Same as <newline> except that i, if present, becomes the new default number of lines per screenful.

The following perusal commands take no address.

. or ^L  Typing a single period causes the current page of text to be redisplayed.

$  Displays the last windowful in the file. Use with caution when the input is a pipe.

The following commands are available for searching for text patterns in the text. The regular expressions are described on the regex(5) manual page. They must always be terminated by a <newline>, even if the −n option is specified.

i/pattern/  Search forward for the ith (default i=1) occurrence of pattern. Searching begins immediately after the current page and continues to the end of the current file, without wrap-around.
\texttt{\textasciicircum{\textit{pattern}}}

Search backwards for the \textit{i}th (default \textit{i}=1) occurrence of \textit{pattern}. Searching begins immediately before the current page and continues to the beginning of the current file, without wrap-around. The \textasciicircum{} notation is useful for \textasciicircum{} adds 100 terminals which will not properly handle the ?.

After searching, \texttt{pg} will normally display the line found at the top of the screen. This can be modified by appending \texttt{n} or \texttt{b} to the search command to leave the line found in the middle or at the bottom of the window from now on. The suffix \texttt{t} can be used to restore the original situation.

The user of \texttt{pg} can modify the environment of perusal with the following commands:

\texttt{in} \hspace{1cm} Begin perusing the \textit{i}th next file in the command line. The \textit{i} is an unsigned number, default value is 1.

\texttt{ip} \hspace{1cm} Begin perusing the \textit{i}th previous file in the command line. \textit{i} is an unsigned number, default is 1.

\texttt{iw} \hspace{1cm} Display another window of text. If \textit{i} is present, set the window size to \textit{i}.

\texttt{s \ fileame} \hspace{1cm} Save the input in the named file. Only the current file being perused is saved. The white space between the \texttt{s} and \textit{filename} is optional. This command must always be terminated by a \texttt{<newline>}, even if the \texttt{-n} option is specified.

\texttt{h} \hspace{1cm} Help by displaying an abbreviated summary of available commands.

\texttt{q} or \texttt{Q} \hspace{1cm} Quit \texttt{pg}.

\texttt{!command} \hspace{1cm} \textit{Command} is passed to the shell, whose name is taken from the \texttt{SHELL} environment variable. If this is not available, the default shell is used. This command must always be terminated by a \texttt{<newline>}, even if the \texttt{-n} option is specified.

At any time when output is being sent to the terminal, the user can hit the quit key (normally \texttt{CTRL}-\texttt{\textbackslash}\ ) or the interrupt (break) key. This causes \texttt{pg} to stop sending output, and display the prompt. The user may then enter one of the above commands in the normal manner. Unfortunately, some output is lost when this is done, because any characters waiting in the terminal’s output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then \texttt{pg} acts just like \texttt{cat}(1), except that a header is printed before each file (if there is more than one).

See \texttt{largefile(5)} for the description of the behavior of \texttt{pg} when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).
EXAMPLE 1  An example of the `pg` command.

The following command line uses `pg` to read the system news:

```bash
example% news | pg -p "(Page %d):"
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `pg`: `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The following environment variables affect the execution of `pg`:

- **COLUMNS**: Determine the horizontal screen size. If unset or NULL, use the value of `TERM`, the window size, baud rate, or some combination of these, to indicate the terminal type for the screen size calculation.

- **LINES**: Determine the number of lines to be displayed on the screen. If unset or NULL, use the value of `TERM`, the window size, baud rate, or some combination of these, to indicate the terminal type for the screen size calculation.

- **SHELL**: Determine the name of the command interpreter executed for a command.

- **TERM**: Determine terminal attributes. Optionally attempt to search a system-dependent database, keyed on the value of the `TERM` environment variable. If no information is available, a terminal incapable of cursor-addressable movement is assumed.

EXIT STATUS

The following exit values are returned:

- **0**: Successful completion.
- **>0**: An error occurred.

FILES

- `/tmp/pg*` temporary file when input is from a pipe
- `/usr/share/lib/terminfo/?/*` terminal information database

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

`cat(1), grep(1), more(1), terminfo(4), attributes(5), environ(5), largefile(5), regex(5)`
While waiting for terminal input, pg responds to BREAK, CTRL-C, and CTRL-\ by terminating execution. Between prompts, however, these signals interrupt pg’s current task and place the user in prompt mode. These should be used with caution when input is being read from a pipe, since an interrupt is likely to terminate the other commands in the pipeline.

The terminal /, ^, or ? may be omitted from the searching commands.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O options, terminal settings may not be restored correctly.
The `pgrep` utility examines the active processes on the system and reports the process IDs of the processes whose attributes match the criteria specified on the command line. Each process ID is printed as a decimal value and is separated from the next ID by a delimiter string, which defaults to a newline. For each attribute option, the user can specify a set of possible values separated by commas on the command line. For example,

```
pgrep -G other,daemon
```

matches processes whose real group ID is `other` OR `daemon`. If multiple criteria options are specified, `pgrep` matches processes whose attributes match the logical AND of the criteria options. For example,

```
pgrep -G other,daemon -U root,daemon
```

matches processes whose attributes are:

(\text{real group ID is `other` OR `daemon`}) \text{ AND } \\
(\text{real user ID is `root` OR `daemon`})

`pkill` functions identically to `pgrep`, except that each matching process is signaled as if by `kill(1)` instead of having its process ID printed. A signal name or number may be specified as the first command line option to `pkill`.

**OPTIONS**

The following options are supported:

- `-d delim`
  Specifies the output delimiter string to be printed between each matching process ID. If no `-d` option is specified, the default is a newline character. The `-d` option is only valid when specified as an option to `pgrep`.

- `-f`
  The regular expression `pattern` should be matched against the full process argument string (obtained from the `/proc/nnnn/psinfo` file). If no `-f` option is specified, the expression is matched only against the name of the executable file (obtained from the `/proc/nnnn/psinfo` file).

- `-g pgrplist`
  Matches only processes whose process group ID is in the given list. If group 0 is included in the list, this is interpreted as the process group ID of the `pgrep` or `pkill` process.
-G gidlist Matches only processes whose real group ID is in the given list. Each group ID may be specified as either a group name or a numerical group ID.

-J projidlist Matches only processes whose project ID is in the given list. Each project ID may be specified as either a project name or a numerical project ID.

-l Long output format. Prints the process name along with the process ID of each matching process. The process name is obtained from the pr_psargs or pr_fname field, depending on whether the -f option was specified (see above). The -l option is only valid when specified as an option to pgrep.

-n Matches only the newest (most recently created) process that meets all other specified matching criteria. Cannot be used with option -o.

-o Matches only the oldest (earliest created) process that meets all other specified matching criteria. Cannot be used with option -n.

-P ppidlist Matches only processes whose parent process ID is in the given list.

-s sidlist Matches only processes whose process session ID is in in the given list. If ID 0 is included in the list, this is interpreted as the session ID of the pgrep or pkill process.

-t termlist Matches only processes which are associated with a terminal in the given list. Each terminal is specified as the suffix following "/dev/" of the terminal’s device path name in /dev. For example, term/a or pts/0.

-T taskidlist Matches only processes whose task ID is in the given list. If ID 0 is included in the list, this is interpreted as the task ID of the pgrep or pkill process.

-u euidlist Matches only processes whose effective user ID is in the given list. Each user ID may be specified as either a login name or a numerical user ID.

-U uidlist Matches only processes whose real user ID is in the given list. Each user ID may be specified as either a login name or a numerical user ID.

-v Reverses the sense of the matching. Matches all processes except those which meet the specified matching criteria.

-x Considers only processes whose argument string or executable file name exactly matches the specified pattern to be matching processes. The pattern match is considered to be exact when all characters in the process argument string or executable file name match the pattern.
pgrep(1)

**-signal** Specifies the signal to send to each matched process. If no signal is specified, SIGTERM is sent by default. The value of signal can be one of the symbolic names defined in signal(3HEAD) without the SIG prefix, or the corresponding signal number as a decimal value. The -signal option is only valid when specified as the first option to pkill.

**OPERANDS**

The following operand is supported:

**pattern** Specifies an Extended Regular Expression (ERE) pattern to match against either the executable file name or full process argument string. See regex(5) for a complete description of the ERE syntax.

**EXAMPLES**

**EXAMPLE 1** Obtaining a process ID

Obtain the process ID of sendmail:

```bash
example% pgrp -x -u root sendmail
283
```

**EXAMPLE 2** Terminating a process

Terminate the most recently created xterm:

```bash
example% pkill -n xterm
```

**EXIT STATUS**

The following exit values are returned:

- **0** One or more processes were matched.
- **1** No processes were matched.
- **2** Invalid command line options were specified.
- **3** A fatal error occurred.

**FILES**

/proc/nnnnn/psinfo Process information files

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

kill(1), proc(1), ps(1), truss(1), kill(2), signal(3HEAD), proc(4), attributes(5), regex(5)

**NOTES**

Both utilities match the ERE pattern argument against either the pr_fname or pr_psargs fields of the /proc/nnnnn/psinfo files. The lengths of these strings are limited according to definitions in <sys/procfs.h>. Patterns which can match strings longer than the current limits may fail to match the intended set of processes.
If the pattern argument contains ERE meta-characters which are also shell meta-characters, it may be necessary to enclose the pattern with appropriate shell quotes.

Defunct processes are never matched by either `pgrep` or `pkill`.

The current `pgrep` or `pkill` process will never consider itself a potential match.
pkginfo(1)

NAME
  pkginfo – display software package information

SYNOPSIS

  pkginfo [-q | -x | -l] [-p | -i] [-r] [-a arch] [-v version]
  [-c category...] [pkginst...]

  pkginfo [-d device] [-R root_path] [-q | -x | -l] [-a arch] [-v version]
  [-c category...] [pkginst...]

DESCRIPTION

pkginfo displays information about software packages that are installed on
the system (with the first synopsis) or that reside on a particular device or directory (with
the second synopsis).

Without options, pkginfo lists the primary category, package instance, and the names
of all completely installed and partially installed packages. It displays one line for
each package selected.

OPTIONS

The -p and -i options are meaningless if used in conjunction with the -d option.

The options -q, -x, and -l are mutually exclusive.

-a arch
  Specify the architecture of the package as arch.

-c category
  Display packages that match category. Categories are defined with
  the CATEGORY parameter in the pkginfo file. If more than one
  category is supplied, the package needs to match only one
  category in the list. The match is not case specific.

-d device
  Defines a device, device, on which the software resides. device can
  be an absolute directory pathname or the identifiers for tape,
  floppy disk, removable disk, and so forth. The special token spool
  may be used to indicate the default installation spool directory
  (/var/spool/pkg).

-i
  Display information for fully installed packages only.

-l
  Specify long format, which includes all available information
  about the designated package(s).

-p
  Display information for partially installed packages only.

-q
  Do not list any information. Used from a program to check
  whether or not a package has been installed.

-r
  List the installation base for relocatable packages.

-R root_path
  Defines the full path name of a directory to use as the root_path. All
  files, including package system information files, are relocated to a
  directory tree starting in the specified root_path.

-v version
  Specify the version of the package as version. The version is
  defined with the VERSION parameter in the pkginfo file. All
  compatible versions can be requested by preceding the version
  name with a tilde (~). Multiple white spaces are replaced with a
  single white space during version comparison.
Designate an extracted listing of package information. The listing contains the package abbreviation, package name, package architecture (if available) and package version (if available).

**OPERANDS**

pkginst

A package designation by its instance. An instance can be the package abbreviation or a specific instance (for example, inst.1 or inst.2). All instances of a package can be requested by inst.*. The asterisk character (*) is a special character to some shells and may need to be escaped. In the C-Shell, “*” must be surrounded by single quotes (’) or preceded by a backslash (\).

**EXIT STATUS**

0 Successful completion.

>0 An error occurred.

**FILES**

/var/spool/pkg default installation spool directory

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

pkgtrans(1), pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), pkginfo(4), attributes(5)

*Application Packaging Developer’s Guide*
The pkgmk utility produces an installable package to be used as input to the pkgadd(1M) command. The package contents will be in directory structure format.

pkgmk searches for the files listed in the prototype(4) file as described in the following conditions. Note: If a prototype file contains the explicit location of the file to include in the package, then the following search explanations do not apply.

1. If neither -b nor -r options are specified, the file name component of each file path listed in the prototype(4) file is expected to be found in the same directory as the prototype(4) file.

2. If -b is specified as a relative path (without a leading "/") then base_src_dir is prepended to the relative file paths from the prototype(4) file. The resulting path is searched for in the root_path directories. If a root_path is not specified, it defaults to "/".

3. If -b is specified as an absolute path (with a leading "/"), then base_src_dir is prepended to the relative paths from the prototype(4) file and the result is the location of the file. root_path is not searched.

4. If -r is specified, then full file paths are used from the prototype(4) file. Relative paths have base_src_dir prepended. If base_src_dir is not specified, it defaults to "". The resulting path is searched for in each directory of the root_path.

If you created your prototype file using "pkgproto a/relative/path" or "pkgproto a/relative/path=install/path", then you should use the -r root_path option to specify the location of a/relative/path so that pkgmk can correctly locate your source files.

The following options are supported:

- **-a arch**
  Overrides the architecture information provided in the pkginfo(4) file with arch.

- **-b base_src_dir**
  Prepends the indicated base_src_dir to locate relocatable objects on the source machine. Use this option to search for all objects in the prototype file. pkgmk expects to find the objects in /base_src_dir or to locate the objects by use of the -b and -r options, respectively.

- **-d device**
  Creates the package on device. device can be an absolute directory pathname or the identifiers for a floppy disk or removable disk.
(for example, `/dev/diskette`). The default device is the installation spool directory (`/var/spool/pkg`).

- `f prototype` Uses the file `prototype` as input to the command. The default `prototype` filename is `[Pp]rototype`.

- `l limit` Specifies the maximum size in 512 byte blocks of the output device as `limit`. By default, if the output file is a directory or a mountable device, `pkgmk` will employ the `df(1M)` command to dynamically calculate the amount of available space on the output device. This option is useful in conjunction with `pkgtrans(1)` to create a package with a datastream format.

- `o` Overwrites the same instance; package instance will be overwritten if it already exists.

- `p pstamp`Overrides the production stamp definition in the `pkginfo(4)` file with `pstamp`.

- `r root_path` Uses the indicated `root_path` with the source pathname appended to locate objects on the source machine, using a comma (,) as the separator for the path elements. If this option is specified, look for the full destination path in each of the directories specified. If neither `-b` nor `-r` is specified, look for the leaf filename in the current directory.

- `v version` Overrides the version information provided in the `pkginfo(4)` file with `version`.

- `variable=value` Places the indicated variable in the packaging environment. (See `prototype(4)` for definitions of variable specifications.)

**OPERANDS**

The following operand is supported:

- `pkginst` A package designation by its instance. An instance can be the package abbreviation or a specific instance (for example, `inst.1` or `inst.2`). All instances of a package can be requested by `inst.*`. The asterisk character (*) is a special character to some shells and may need to be escaped. In the C-Shell, "*" must be surrounded by single quotes (' ') or preceded by a backslash (\).

**EXIT STATUS**

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
Package information is provided on the command line with the `-a` option or in the `prototype(4)` file. If no architecture information is supplied, `pkgmk` uses the output of `uname -m` (see `uname(1)`).

Version information is provided on the command line with the `-v` option or in the `pkginfo(4)` file. If no version information is supplied, a default based on the current date will be provided.

Command line definitions for both architecture and version override the `prototype(4)` definitions.

**SEE ALSO**

`pkgparam(1), pkgproto(1), pkgtrans(1), uname(1), df(1M), pkgadd(1M), pkginfo(4), pkgmap(4), prototype(4), attributes(5)`

**Application Packaging Developer’s Guide**

Architecture information is provided on the command line with the `-a` option or in the `prototype(4)` file. If no architecture information is supplied, `pkgmk` uses the output of `uname -m` (see `uname(1)`).

Version information is provided on the command line with the `-v` option or in the `pkginfo(4)` file. If no version information is supplied, a default based on the current date will be provided.

Command line definitions for both architecture and version override the `prototype(4)` definitions.
pkgparam(1)

NAME
pkgparam – display package parameter values

SYNOPSIS
pkgparam [-v] [-d device] [-R root_path] pkginst [param...]

pkgparam -f filename [-v] [param...]

DESCRIPTION
pkgparam displays the value associated with the parameter or parameters requested
on the command line. The values are located in either the pkginfo(4) file for pkginst
or from the specific file named with the -f option.

One parameter value is shown per line. Only the value of a parameter is given unless
the -v option is used. With this option, the output of the command is in this format:

parameter1='value1'
parameter2='value2'
parameter3='value3'

If no parameters are specified on the command line, values for all parameters
associated with the package are shown.

OPTIONS
Options and arguments for this command are:

-d device Specify the device on which a pkginst is stored. It can be a directory
pathname or the identifiers for tape, floppy disk, or removable
disk (for example, /var/tmp, /dev/diskette, and
/dev/dsk/c1d0s0). The special token spool may be used to
represent the default installation spool directory
(/var/spool/pkg).

-f filename Read filename for parameter values.

-R root_path Defines the full path name of a subdirectory to use as the root_path.
All files, including package system information files, are relocated
to a directory tree starting in the specified root_path.

-v Verbose mode. Display name of parameter and its value.

OPERANDS
pkginst Defines a specific package instance for which parameter values
should be displayed.

param Defines a specific parameter whose value should be displayed.

ERRORS
If parameter information is not available for the indicated package, the command exits
with a non-zero status.

EXIT STATUS
0 Successful completion.
>0 An error occurred.
pkgparam(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

pkgmk(1), pkgproto(1), pkgtrans(1), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide

NOTES

With the -f option, you can specify the file from which parameter values should be extracted. This file should be in the same format as a pkginfo(4) file. For example, such a file might be created during package development and used while testing software during this stage.
**pkgproto**

**NAME**

pkgproto – generate prototype file entries for input to pkgmk command

**SYNOPSIS**

```
pkgproto [-i] [-c class] [path1]
pkgproto [-i] [-c class] [path1=path2...]
```

**DESCRIPTION**

pkgproto scans the indicated paths and generates prototype(4) file entries that may be used as input to the pkgmk(1) command.

If no paths are specified on the command line, standard input is assumed to be a list of paths. If the pathname listed on the command line is a directory, the contents of the directory is searched. However, if input is read from stdin, a directory specified as a pathname will not be searched.

**OPTIONS**

- `-i`
  
  Ignores symbolic links and records the paths as `ftype=f` (a file) versus `ftype=s` (symbolic link).

- `-c class`
  
  Maps the class of all paths to `class`.

**OPERANDS**

- `path1`
  
  Pathname where objects are located.

- `path2`
  
  Pathname which should be substituted on output for `path1`.

**EXAMPLES**

**EXAMPLE 1**

Examples of the use of `pkgproto`.1.

The following two examples show uses of `pkgproto` and a partial listing of the output produced.

**Example 1:**

```
example% pkgproto /bin=bin /usr/bin=usrbin /etc=etc
f none bin/sed=/bin/sed 0775 bin bin
f none bin/sh=/bin/sh 0755 bin daemon
f none bin/sort=/bin/sort 0755 bin bin
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin
f none usrbin/shl=/usr/bin/shl 4755 bin bin
d none etc/master.d 0755 root daemon
d none etc/master.d/kernel=/etc/master.d/kernel 0644 root daemon
d none etc/rc=/etc/rc 0744 root daemon
```

**Example 2:**

```
exameple$ find / -type d -print | pkgproto
d none / 755 root root
d none /bin 755 bin bin
d none /usr 755 root root
d none /usr/bin 755 bin bin
d none /etc 755 root root
d none /tmp 777 root root
```

**EXIT STATUS**

- `0`
  
  Successful completion.

- `>0`
  
  An error occurred.
pkgproto(1)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  pkgmk(1), pkgparam(1), pkgtrans(1), prototype(4), attributes(5)

Application Packaging Developer’s Guide

NOTES  By default, pkgproto creates symbolic link entries for any symbolic link encountered (ftype=s). When you use the -i option, pkgproto creates a file entry for symbolic links (ftype=f). The prototype(4) file would have to be edited to assign such file types as v (volatile), e (editable), or x (exclusive directory). pkgproto detects linked files. If multiple files are linked together, the first path encountered is considered the source of the link.

By default, pkgproto prints prototype entries on the standard output. However, the output should be saved in a file (named Prototype or prototype, for convenience) to be used as input to the pkgmk(1) command.
pkgtrans(1)

NAME
pkgtrans – translate package format

SYNOPSIS
pkgtrans [-inosg] [-k keystore] [-a alias] [-P passwd] device1 device2
          [pkginst...]

DESCRIPTION
The pkgtrans utility translates an installable package from one format to another. It translates:
- a file system format to a datastream
- a file system format to a signed datastream
- a datastream to a file system format
- one file system format to another file system format

OPTIONS
The options and arguments for this command are:

- i
  Copies only the pkginfo(4) and pkgmap(4) files.

- n
  Creates a new instance of the package on the destination device if any instance of this package already exists, up to the number specified by the MAXINST variable in the pkginfo(4) file.

- o
  Overwrites the same instance on the destination device. Package instance will be overwritten if it already exists.

- s
  Indicates that the package should be written to device2 as a datastream rather than as a file system. The default behavior is to write a file system format on devices that support both formats.

- g
  Sign resulting datastream.

- k keystore
  Use keystore to retrieve private key used to generate signature. If it not specified, default locations are searched to find the specified private key specified by -a. If no alias is given, and multiple keys exist in the key store, pkgtrans will abort. See KEYSTORE LOCATIONS and KEYSTORE AND CERTIFICATE FORMATS in pkgadd(1M) for more information on search locations and formats.

When running as a user other than root, the default base directory for certificate searching is ~/.pkg/security, where ~ is the home directory of the user invoking pkgtrans.

- a alias
  Use public key certificate associated with friendlyName alias, and the corresponding private key. See KEYSTORE LOCATIONS and KEYSTORE AND CERTIFICATE FORMATS in pkgadd(1M) for more information.

- P passwd
  Supply password used to decrypt the keystore. See PASS PHRASE ARGUMENTS in pkgadd(1M) for details on the syntax of the argument to this option.
pkgtrans(1)

OPERANDS

device1 Indicates the source device. The package or packages on this device will be translated and placed on device2. See DEVICE SPECIFIERS, below.

device2 Indicates the destination device. Translated packages will be placed on this device. See DEVICE SPECIFIERS, below.

pkginst Specifies which package instance or instances on device1 should be translated. The token all may be used to indicate all packages. pkginst.* can be used to indicate all instances of a package. If no packages are defined, a prompt shows all packages on the device and asks which to translate.

The asterisk character (*) is a special character to some shells and may need to be escaped. In the C-Shell, "*" must be surrounded by single quotes ('') or preceded by a backslash (\).

DEVICE SPECIFIERS

Packaging tools, including pkgtrans, pkgadd(1M), and pkgchk(1M), have options for specifying a package location by specifying the device on which it resides. Listed below are the device types that a package can be stored to and retrieved from. Note that source and destination devices cannot be the same.

directory Packages can be stored onto a directory by specifying an absolute path to a file system directory. The package contents reside in a directory within the specified directory. The package directory name must be identical to its PKG specification in the pkginfo(4) file. An example device specification of this type is /export/packages.

device Packages can be stored to a character or block device by specifying the device identifier as the device. Common examples of this device type are /dev/rmt/0r for a removable magnetic tape and /floppy/floppy0 for the first floppy disk on the system. pkgtrans can also produce regular file system files in a stream format, which is suitable for storage on a character device, web server, or as input to pkgadd(1M).

device alias Devices that have been specified in /etc/device.tab are eligible for being the recipient or source of a package. Common examples of this type of device specification are spool (the default package device location) and disk1. These names correspond to devices specified in /etc/device.tab.

EXAMPLES

EXAMPLE 1 Examples of the pkgtrans command

The following example translates all packages on the floppy drive /dev/diskette and places the translations on /tmp:

example% pkgtrans /dev/diskette /tmp all
### EXAMPLE 1 Examples of the pkgtrans command (Continued)

The following example translates packages pkg1 and pkg2 on /tmp and places their translations (that is, a datastream) on the 9track1 output device:

```bash
example% pkgtrans /tmp 9track1 pkg1 pkg2
```

The following example translates pkg1 and pkg2 on /tmp and places them on the diskette in a datastream format:

```bash
example% pkgtrans -s /tmp /dev/diskette pkg1 pkg2
```

The following example creates a signed package from pkg1 and pkg2, and reads the password from the $PASS environment variable:

```bash
example% pkgtrans -sg -k /tmp/keystore.p12 -alias foo -p env:PASS /tmp /tmp/signedpkg pkg1 pkg2
```

### ENVIRONMENT VARIABLES

The MAXINST variable is set in the pkginfo(4) file and declares the maximum number of package instances.

### EXIT STATUS

- **0** Successful completion.
- **>0** An error occurred.

### ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpkgcmdsu</td>
</tr>
<tr>
<td>Interface Stability:</td>
<td>Evolving</td>
</tr>
<tr>
<td>Command line</td>
<td>Evolving</td>
</tr>
<tr>
<td>Digitally signed stream package</td>
<td></td>
</tr>
</tbody>
</table>

### SEE ALSO

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), installf(1M), pkgadd(1M), pkgask(1M), pkgrm(1M), removef(1M), pkginfo(4), pkgmap(4), attributes(5)

### Application Packaging Developer’s Guide

### NOTES

By default, pkgtrans will not translate any instance of a package if any instance of that package already exists on the destination device. Using the `-n` option creates a new instance if an instance of this package already exists. Using the `-o` option overwrites an instance of this package if it already exists. Neither of these options are useful if the destination device is a datastream.
### NAME
plimit – get or set the resource limits of running processes

### SYNOPSIS
- `plimit [-km] pid...
- `plimit [-cdfnstv] soft,hard... pid...

### DESCRIPTION
If one or more of the `cdfnstv` options is specified, `plimit` sets the soft (current) limit and/or the hard (maximum) limit of the indicated resource(s) in the processes identified by the process-ID list, `pid`. Otherwise `plimit` reports the resource limits of the processes identified by the process-ID list, `pid`.

Only the owner of a process or the super-user is permitted either to get or to set the resource limits of a process. Only the super-user can increase the hard limit.

### OPTIONS
The following options are supported:

- `-k` On output, show file sizes in kilobytes (1024 bytes) rather than in 512-byte blocks.
- `-m` On output, show file and memory sizes in megabytes (1024*1024 bytes).

The remainder of the options are used to change specified resource limits. They each accept an argument of the form:

```
soft,hard
```

where `soft` specifies the soft (current) limit and `hard` specifies the hard (maximum) limit. If the hard limit is not specified, the comma may be omitted. If the soft limit is an empty string, only the hard limit is set. Each limit is either the literal string `unlimited`, or a number, with an optional scaling factor, as follows:

- `nk` `n` kilobytes
- `nm` `n` megabytes (minutes for CPU time)
- `nh` `n` hours (for CPU time only)
- `mm:ss` minutes and seconds (for CPU time only)

The soft limit cannot exceed the hard limit.

- `-c soft,hard` Set core file size limits (default unit is 512-byte blocks).
- `-d soft,hard` Set data segment (heap) size limits (default unit is kilobytes).
- `-f soft,hard` Set file size limits (default unit is 512-byte blocks).
- `-n soft,hard` Set file descriptor limits (no default unit).
- `-s soft,hard` Set stack segment size limits (default unit is kilobytes).
- `-t soft,hard` Set CPU time limits (default unit is seconds).
- `-v soft,hard` Set virtual memory size limits (default unit is kilobytes).
The following operands are supported.

pid Process ID list.

plimit returns the exit value zero on success, non-zero on failure (such as no such process, permission denied, or invalid option).

Files

/proc/pid/* process information and control files

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

See also

ulimit(1), proc(1), getrlimit(2), setrlimit(2), proc(4), attributes(5), plimit(1)
NAME
plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa, t300, t300s, t4013, t450, tek, vplot, hp7221plot – graphics filters for various plotters

SYNOPSIS
/usr/ucb/plot [-T <Terminal>]

DESCRIPTION
The plot utility reads plotting instructions (see plot(4B)) from the standard input and produces plotting instructions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal is tek.

ENVIRONMENT VARIABLES
Except for ver, the following terminal-types can be used with ‘lpr -g’ (see lpr(1B)) to produce plotted output:

2648 | 2648a | h8 | hp2648 | hp2648a
Hewlett Packard 2648 graphics terminal.

hp7221 | hp7 | h7 |
Hewlett Packard 7221 plotter.

300
DASI 300 or GSI terminal (Diablo mechanism).

300s | 300S
DASI 300s terminal (Diablo mechanism).

450
DASI Hyterm 450 terminal (Diablo mechanism).

4013
Tektronix 4013 storage scope.

4014 | tek
Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module. (Use 4013 for Tektronix 4014 or 4015 without the Enhanced Graphics Module).

aed
AED 512 color graphics terminal.

bgplot | bitgraph
BBN bitgraph graphics terminal.

crt
Any crt terminal capable of running vi(1).

dumb | un | unknown
Dumb terminals without cursor addressing or line printers.

gigi | vt125
DEC vt125 terminal.

implot
Imagen plotter.
var
  Benson Varian printer-plotter
ver
  Versatec D1200A printer-plotter. The output is scan-converted and suitable input to
  `lpr -v'.

FILES
/usr/ucb/aedplot
/usr/ucb/atoplot
/usr/ucb/bgplot
/usr/ucb/crtplot
/usr/ucb/dumbplot
/usr/ucb/gigiplot
/usr/ucb/hp7221plot
/usr/ucb/hpplot
/usr/ucb/implot
/usr/ucb/plot
/usr/ucb/plottoa
/usr/ucb/t300
/usr/ucb/t300s
/usr/ucb/t4013
/usr/ucb/t450
/usr/ucb/tek
/usr/ucb/vplot

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
  graph(1), tplot(1), vi(1), lpr(1B), plot(4B), attributes(5)
NAME
   pmap – display information about the address space of a process

SYNOPSIS
   /usr/bin/pmap [-rsF] [pid | core...]
   /usr/bin/pmap -x [-slF] [pid | core...]
   /usr/bin/pmap -S [-lF] [pid | core...]

DESCRIPTION
   The pmap utility prints information about the address space of a process.

OPTIONS
   The following options are supported:
     -a  Prints anonymous and swap reservations for shared mappings.
     -F  Force. Grabs the target process even if another process has control.
     -r  Prints the process’s reserved addresses.
     -s  Prints HAT page size information.

USAGE
   The pmap utility prints information about the address space of a process.

Process Mappings
   /usr/bin/pmap [-rsF] [pid | core...]

   By default, pmap displays the mappings in the virtual address order they are
   mapped into the process. The mapping size, flags and mapped object name are
   shown.

Process anon/locked mapping details
   /usr/bin/pmap -x [-aslF] [pid | core...]

   The -x option displays additional information per mapping. The size of each
   mapping, the amount of resident physical memory, the amount of anonymous
   memory, and the amount of memory locked is shown with this option.

Swap Reservations
   /usr/bin/pmap -S [-alF] [pid | core...]

   The -S option displays swap reservation information per mapping.

DISPLAY FORMATS
   One line of output is printed for each mapping within the process, unless the -s
   option is specified, where one line is printed for a contiguous mapping of each
   hardware translation page size.

   Virtual Address
      The first column of output represents the starting virtual address of each mapping.
      Virtual addresses are displayed in ascending order.

   Virtual Mapping Size
      The virtual size of each mapping.
Resident Physical Memory
The amount of physical memory resident for each mapping, including that which is shared with other address spaces.

Anonymous Memory
The amount of anonymous memory is reported for each mapping. Anonymous memory shared with other address spaces is not included, unless the -a option is specified.

Anonymous memory is reported for the process heap, stack, for ‘copy on write’ pages with mappings mapped with MAP_PRIVATE.

Locked
The number of pages locked within the mapping. Typical examples are memory locked with mlock() and System V shared memory created with SHM_SHARE_MMU.

Permissions/Flags
The virtual memory permissions are shown for each mapping. Valid permissions are:

r: The mapping may be read by the process.
w: The mapping may be written by the process.
x: Instructions that reside within the mapping may be executed by the process.

Flags showing additional information for each mapping may be displayed:
s: The mapping is shared such that changes made in the observed address space are committed to the mapped file, and are visible from all other processes sharing the mapping.
R: Swap space is not reserved for this mapping. Mappings created with MAP_NORESERVE and System V ISM shared memory mappings do not reserve swap space.

Mapping Name
A descriptive name for each mapping. The following major types of names are displayed for mappings:

- A mapped file: For mappings between a process and a file, the pmap command attempts to resolve the file name for each mapping. If the file name cannot be resolved, pmap displays the major and minor number of the device containing the file, and the file system inode number of the file.

- Anonymous memory: Memory not relating to any named object or file within the file system is reported as [ anon ].

The pmap command displays common names for certain known anonymous memory mappings, such as:

[ heap ] The process heap.
The process stack.

If the common name for the mapping is unknown, `pmap` displays `[ anon ]` as the mapping name.

- **System V Shared Memory:** Mappings created using System V shared memory system calls are reported with the names shown below:
  
  - `shmid=n:` The mapping is a System V shared memory mapping. The shared memory identifier that the mapping was created with is reported.
  
  - `ism shmid=n:` The mapping is an "Intimate Shared Memory" variant of System V shared memory. ISM mappings are created with the `SHM_SHARE_MMU` flag set, in accordance with `shmat(2)` (see `shmop(2)`).
  
  - `dism shmid=n:` The mapping is a pageable variant of ISM. Pageable ISM is created with the `SHM_PAGEABLE` flag set in accordance with `shmat(2)` (see `shmop(2)`).

- **Other:** Mappings of other objects, including devices such as frame buffers. No mapping name is shown for other mapped objects.

**EXAMPLES**

**EXAMPLE 1** Displaying process mappings

By default, `pmap` prints one line for each mapping within the address space of the target process. The following example displays the address space of a typical bourne shell:

```
example$ pmap 102905
102905: sh
 00010000 192K r-x-- /usr/bin/ksh
 00040000 8K rwx-- /usr/bin/ksh
 00042000 40K rwx-- [heap]
 FF180000 64K r-x-- /usr/lib/libc.so.1
 FF236000 24K rwx-- /usr/lib/libc.so.1
 FF23C000 8K rwx-- /usr/lib/libc.so.1
 FF250000 8K rwx-- [anon]
 FF260000 16K r-x-- /usr/lib/en_US.ISO8859-1.so.2
 FF272000 16K rwx-- /usr/lib/en_US.ISO8859-1.so.2
 FF280000 560K r-x-- /usr/lib/libnsl.so.1
 FF31C000 32K rwx-- /usr/lib/libnsl.so.1
 FF324000 32K rwx-- /usr/lib/libnsl.so.1
 FF340000 16K r-x-- /usr/lib/libc_psr.so.1
 FF350000 16K r-x-- /usr/lib/libmp.so.2
 FF364000 8K rwx-- /usr/lib/libmp.so.2
 FF380000 40K r-x-- /usr/lib/libsocket.so.1
 FF39A000 8K rwx-- /usr/lib/libsocket.so.1
 FF3A0000 8K r-x-- /usr/lib/libdl.so.1
 FF3B0000 8K rwx-- [anon]
 FF3C0000 152K r-x-- /usr/lib/ld.so.1
 FF3F6000 8K rwx-- /usr/lib/ld.so.1
 FFBFC000 16K rw--- [stack]

total 1880K
```
### EXAMPLE 2 Displaying memory allocation and mapping types

The `-x` option can be used to provide information about the memory allocation and mapping types per mapping. The amount of resident, non-shared anonymous, and locked memory is shown for each mapping:

```
example$ pmap -x 102908
```

```
Address Kbytes Resident Anon Locked Mode Mapped File
00010000 88 88 - - r-x-- sh
00036000 8 8 8 - rwx-- sh
00038000 16 16 16 - rwx-- [heap]
FF260000 16 16 - - r-x-- en_US.ISO8859-1.so.2
FF272000 16 16 - - rwx-- en_US.ISO8859-1.so.2
FF280000 664 624 - - r-x-- libc.so.1
FF336000 32 32 8 - rwx-- libc.so.1
FF360000 16 16 - - r-x-- libc_psr.so.1
FF380000 24 24 - - r-x-- libcgen.so.1
FF396000 8 8 - - rwx-- libcgen.so.1
FF3A0000 8 8 - - r-x-- libdl.so.1
FF3B0000 8 8 - - rwx-- [anon]
```

In the above example, the bourne shell has a resident memory size of 1032Kbytes. However, a large amount of the physical memory used by the shell is shared with other instances of shell. Another identical instance of the shell will share physical memory with the other shell where possible, and allocate anonymous memory for any non-shared portion. In the above example, each additional bourne shell uses approximately 56Kbytes of additional physical memory.

A more complex example shows the output format for a process containing different mapping types. In this example, the mappings are as follows:

```
00010000: Executable text, mapped from ‘maps’ program
00020000: Executable data, mapped from ‘maps’ program
00022000: Program heap
03000000: A mapped file, mapped MAP_SHARED
04000000: A mapped file, mapped MAP_PRIVATE
05000000: A mapped file, mapped MAP_PRIVATE | MAP_NORESERVE
06000000: Anonymous memory, created by mapping /dev/zero
07000000: Anonymous memory, created by mapping /dev/zero
```
EXAMPLE 2 Displaying memory allocation and mapping types

with MAP_NORESERVE

0800000: A DISM shared memory mapping, created with SHM_PAGEABLE
with 8MB locked via mlock(2)

0900000: A DISM shared memory mapping, created with SHM_PAGEABLE,
with 4MB of its pages touched.

0A00000: A DISM shared memory mapping, created with SHM_PAGEABLE,
with none of its pages touched.

0B00000: An ISM shared memory mapping, created with SHM_SHARE_MMU

EXAMPLE 3 Displaying Page Size Information

The -s option can be used to display the hardware translation page sizes for each
portion of the address space. (See memcntl(2) for further information on Solaris
multiple page size support).

In the example below, we can see that the majority of the mappings are using an
8K-Byte page size, while the heap is using a 4M-Byte page size.

Notice that non-contiguous regions of resident pages of the same page size are
reported as separate mappings. In the example below, the libc.so library is reported
as separate mappings, since only some of the libc.so text is resident.
### EXAMPLE 3
Displaying Page Size Information

(Continued)

```
example$ pmap -xs 15492
15492: ./maps

<table>
<thead>
<tr>
<th>Address</th>
<th>Kbytes</th>
<th>RSS</th>
<th>Anon</th>
<th>Locked</th>
<th>Pgsz</th>
<th>Mode</th>
<th>Mapped File</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010000</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>8K</td>
<td>r-x-</td>
<td>maps</td>
</tr>
<tr>
<td>00020000</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>8K</td>
<td>rwx-</td>
<td>maps</td>
</tr>
<tr>
<td>00022000</td>
<td>3960</td>
<td>3960</td>
<td>3960</td>
<td>-</td>
<td>8K</td>
<td>rwx-</td>
<td>[heap]</td>
</tr>
<tr>
<td>00400000</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
<td>-</td>
<td>4M</td>
<td>rwx-</td>
<td>[heap]</td>
</tr>
<tr>
<td>00C00000</td>
<td>4096</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>rwx-</td>
<td>[heap]</td>
</tr>
<tr>
<td>01000000</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
<td>-</td>
<td>4M</td>
<td>rwx-</td>
<td>[heap]</td>
</tr>
<tr>
<td>03000000</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>8</td>
<td>K</td>
<td>r-w-</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>04000000</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>8</td>
<td>K</td>
<td>r-w-</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>04080000</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>-</td>
<td>-</td>
<td>r-w-</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>05000000</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>8</td>
<td>K</td>
<td>r-w-R</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>05080000</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>-</td>
<td>-</td>
<td>r-w-R</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>06000000</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>8</td>
<td>K</td>
<td>r-w-</td>
<td>[anon]</td>
</tr>
<tr>
<td>07000000</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>8</td>
<td>K</td>
<td>r-w-R</td>
<td>[anon]</td>
</tr>
<tr>
<td>08000000</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
<td>-</td>
<td>8K</td>
<td>r-wx-</td>
<td>[dism shmid=0x5]</td>
</tr>
<tr>
<td>09000000</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
<td>-</td>
<td>8K</td>
<td>r-wx-</td>
<td>[dism shmid=0x4]</td>
</tr>
<tr>
<td>0A000000</td>
<td>4096</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>r-wx-</td>
<td>[dism shmid=0x2]</td>
</tr>
<tr>
<td>0B000000</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
<td>4</td>
<td>M</td>
<td>r-wxR</td>
<td>[ism shmid=0x3]</td>
</tr>
<tr>
<td>FF280000</td>
<td>136</td>
<td>136</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>libc.so.1</td>
</tr>
<tr>
<td>FF2A2000</td>
<td>120</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>r-x-</td>
<td>libc.so.1</td>
<td></td>
</tr>
<tr>
<td>FF2C0000</td>
<td>128</td>
<td>128</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>libc.so.1</td>
</tr>
<tr>
<td>FF2E0000</td>
<td>200</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>r-x-</td>
<td>libc.so.1</td>
<td></td>
</tr>
<tr>
<td>FF312000</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>libc.so.1</td>
</tr>
<tr>
<td>FF31E000</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>r-x-</td>
<td>libc.so.1</td>
<td></td>
</tr>
<tr>
<td>FF33A000</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>8</td>
<td>K</td>
<td>r-wx-</td>
<td>libc.so.1</td>
</tr>
<tr>
<td>FF390000</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>libc_psr.so.1</td>
</tr>
<tr>
<td>FF3A0000</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>libdl.so.1</td>
</tr>
<tr>
<td>FF3B0000</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>8K</td>
<td>r-wx-</td>
<td>[anon]</td>
</tr>
<tr>
<td>FF3C0000</td>
<td>152</td>
<td>152</td>
<td>-</td>
<td>8</td>
<td>K</td>
<td>r-x-</td>
<td>ld.so.1</td>
</tr>
<tr>
<td>FF3F6000</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8K</td>
<td>r-wx-</td>
<td>ld.so.1</td>
</tr>
<tr>
<td>FFBBFA00</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>8K</td>
<td>r-wx-</td>
<td>[stack]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total Kb</td>
<td>50464</td>
<td>42264</td>
<td>18888</td>
<td>16384</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

### EXAMPLE 4
Displaying swap reservations

The `-S` option can be used to describe the swap reservations for a process. The amount of swap space reserved is displayed for each mapping within the process. Swap reservations are reported as zero for shared mappings, since they are accounted for only once system wide.

```
example$ pmap -S 15492
15492: ./maps

<table>
<thead>
<tr>
<th>Address</th>
<th>Kbytes</th>
<th>Swap Mode</th>
<th>Mapped File</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010000</td>
<td>8</td>
<td>r-x-</td>
<td>maps</td>
</tr>
<tr>
<td>00020000</td>
<td>8</td>
<td>r-wx-</td>
<td>maps</td>
</tr>
<tr>
<td>00022000</td>
<td>20344</td>
<td>r-wx-</td>
<td>[heap]</td>
</tr>
<tr>
<td>03000000</td>
<td>1024</td>
<td>r-w-s-</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>04000000</td>
<td>1024</td>
<td>r-w-</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>05000000</td>
<td>1024</td>
<td>512 r-w-R</td>
<td>dev:0,2 ino:4628487</td>
</tr>
<tr>
<td>06000000</td>
<td>1024</td>
<td>1024 r-w-</td>
<td>[anon]</td>
</tr>
</tbody>
</table>
```

User Commands
EXAMPLE 4 Displaying swap reservations  (Continued)

The swap reservation information can be used to estimate the amount of virtual swap used by each additional process. Each process consumes virtual swap from a global virtual swap pool. Global swap reservations are reported by the ‘avail’ field of the swap(1M) command.

EXIT STATUS The following exit values are returned:

0 Successful operation.
non-zero An error has occurred.

FILES /proc/* process files
/usr/proc/lib/* proc tools supporting files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td></td>
</tr>
<tr>
<td>Command Syntax</td>
<td>Evolving</td>
</tr>
<tr>
<td>Output Format(s)</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

SEE ALSO ldd(1), mdb(1), proc(1), ps(1), swap(1M), memcntl(2), shmop(2), dlopen(3DL), proc(4), attributes(5)
NAME
postdaisy - PostScript translator for Diablo 630 daisy-wheel files

SYNOPSIS
postdaisy [-c num] [-f name] [-h num] [-m num] [-n num] [-o list]
[-p mode] [-r num] [-s num] [-v num] [-x num] [-y num] [file...]
/usr/lib/lp/postscript/postdaisy

DESCRIPTION
The postdaisy filter translates Diablo 630 daisy-wheel files into PostScript and writes the results on the standard output. If no files are specified, or if - is one of the input files, the standard input is read.

OPTIONS
-c num  Print num copies of each page. By default only one copy is printed.
-f name  Print files using font name. Any PostScript font can be used, although the best results will be obtained only with constant-width fonts. The default font is Courier.
-h num  Set the initial horizontal motion index to num. Determines the character advance and the default point size, unless the -s option is used. The default is 12.
-m num  Magnify each logical page by the factor num. Pages are scaled uniformly about the origin, which is located near the upper left corner of each page. The default magnification is 1.0.
-n num  Print num logical pages on each piece of paper, where num can be any positive integer. By default, num is set to 1.
-o list  Print pages whose numbers are given in the comma-separated list. The list contains single numbers N and ranges N1 – N2. A missing N1 means the lowest numbered page, a missing N2 means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of 3, then two sheets of paper would print, containing four page layouts. If you specified a page range of 3-4, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.
-p mode  Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.
-r num  Selects carriage return and line feed behavior. If num is 1, a line feed generates a carriage return. If num is 2, a carriage return generates a line feed. Setting num to 3 enables both modes.
-s num  Use point size num instead of the default value set by the initial horizontal motion index.
-v num  Set the initial vertical motion index to num. The default is 8.
-x num  Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed near the upper left corner of the
postdaisy(1)

page, with positive x to the right and positive y down the page. Positive
num moves everything right. The default offset is 0.25 inches.

-y num   Translate the origin num inches along the positive y axis. Positive num
moves text up the page. The default offset is −0.25 inches.

EXIT STATUS

The following exit values are returned:

0       Successful completion.
non-zero  An error occurred.

FILES

/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO
download(1), dpost(1), postdmd(1), postic(1), postmd(1), postprint(1),
postreverse(1), posttek(1), attributes(5)
postdmd – PostScript translator for DMD bitmap files

SYNOPSIS

```
 [-x num] [-y num] [file...]
```

```
/usr/lib/lp/postscript/postdmd
```

DESCRIPTION

`postdmd` translates DMD bitmap files, as produced by `dmdps`, or files written in the Ninth Edition bitfile (9.5) format into PostScript and writes the results on the standard output. If no files are specified, or if `-` is one of the input files, the standard input is read.

OPTIONS

- **-b num**  Pack the bitmap in the output file using `num` byte patterns. A value of 0 turns off all packing of the output file. By default, `num` is 6.

- **-c num**  Print `num` copies of each page. By default only one copy is printed.

- **-f**  Flip the sense of the bits in files before printing the bitmaps.

- **-m num**  Magnify each logical page by the factor `num`. Pages are scaled uniformly about the origin, which by default is located at the center of each page. The default magnification is 1.0.

- **-n num**  Print `num` logical pages on each piece of paper, where `num` can be any positive integer. By default `num` is set to 1.

- **-o list**  Print pages whose numbers are given in the comma-separated `list`. The list contains single numbers `N` and ranges `N1 - N2`. A missing `N1` means the lowest numbered page, a missing `N2` means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of 4, then two sheets of paper would print, containing four page layouts. If you specified a page range of 3 - 4, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.

- **-p mode**  Print files in either portrait or landscape mode. Only the first character of `mode` is significant. The default `mode` is portrait.

- **-x num**  Translate the origin `num` inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive `num` moves everything right. The default offset is 0 inches.

- **-y num**  Translate the origin `num` inches along the positive y axis. Positive `num` moves everything up the page. The default offset is 0.

Only one bitmap is printed on each logical page, and each of the input files must contain complete descriptions of at least one bitmap. Decreasing the pattern size using the `-b` option may help throughput on printers with fast processors (such as PS-810s), while increasing the pattern size will often be the right move on older models (such as PS-800s).
postdmd(1)

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO download(l), dpost(l), postdaisy(l), postio(l), postmd(l), postprint(l), postreverse(l), posttek(l), attributes(5)
NAME
postio – serial interface for PostScript printers

SYNOPSIS
[-P string] [-R num] [file...]

/usr/lib/lp/postscript/postio

DESCRIPTION
postio sends files to the PostScript printer attached to line. If no files are specified the
standard input is sent.

OPTIONS
The first group of options should be sufficient for most applications:

- D          Enable debug mode. Guarantees that everything read on line will
             be added to the log file (standard error by default).
- q          Prevents status queries while files are being sent to the printer.
             When status queries are disabled a dummy message is appended
             to the log file before each block is transmitted.
- b speed    Transmit data over line at baud rate speed. Recognized baud rates
             are 1200, 2400, 4800, 9600, and 19200. The default speed is 9600
             baud.
- B num      Set the internal buffer size for reading and writing files to num
             bytes. By default num is 2048 bytes.
- l line     Connect to the printer attached to line. In most cases there is no
             default and postio must be able to read and write line. If the
             line does not begin with a / it may be treated as a Datakit
             destination.
- L file     Data received on line gets put in file. The default log file is
             standard error. Printer or status messages that don’t show a
             change in state are not normally written to file but can be forced
             out using the -D option.
- P string   Send string to the printer before any of the input files. The default
             string is simple PostScript code that disables timeouts.
- R num      Run postio as a single process if num is 1 or as separate read and
             write processes if num is 2. By default postio runs as a single
             process.

The next two options are provided for users who expect to run postio on their own.
Neither is suitable for use in spooler interface programs:

- i          Run the program in interactive mode. Any files are sent first and followed
             by the standard input. Forces separate read and write processes and
             overrides many other options. To exit interactive mode use your interrupt
             or quit character. To get a friendly interactive connection with the printer
             type executive on a line by itself.
-t Data received on line and not recognized as printer or status information is written to the standard output. Forces separate read and write processes. Convenient if you have a PostScript program that will be returning useful data to the host.

The last option is not generally recommended and should only be used if all else fails to provide a reliable connection:

-S Slow the transmission of data to the printer. Severely limits throughput, runs as a single process, disables the -q option, limits the internal buffer size to 1024 bytes, can use an excessive amount of CPU time, and does nothing in interactive mode.

The best performance will usually be obtained by using a large internal buffer (the -B option) and by running the program as separate read and write processes (the -R 2 option). Inability to fork the additional process causes postio to continue as a single read/write process. When one process is used, only data sent to the printer is flow controlled.

The options are not all mutually exclusive. The -i option always wins, selecting its own settings for whatever is needed to run interactive mode, independent of anything else found on the command line. Interactive mode runs as separate read and write processes and few of the other options accomplish anything in the presence of the -i option. The -t option needs a reliable two way connection to the printer and therefore tries to force separate read and write processes. The -S option relies on the status query mechanism, so -q is disabled and the program runs as a single process.

In most cases postio starts by making a connection to line and then attempts to force the printer into the IDLE state by sending an appropriate sequence of ^T (status query), ^C (interrupt), and ^D (end of job) characters. When the printer goes IDLE, files are transmitted along with an occasional ^T (unless the -q option was used). After all the files are sent the program waits until it’s reasonably sure the job is complete. Printer generated error messages received at any time except while establishing the initial connection (or when running interactive mode) cause postio to exit with a non-zero status. In addition to being added to the log file, printer error messages are also echoed to standard error.

**EXAMPLES**

**EXAMPLE 1** Examples of the postio command.

Run as a single process at 9600 baud and send file1 and file2 to the printer attached to /dev/tty01:

```
example$ postio -l /dev/tty01 file1 file2
```

Same as above except two processes are used, the internal buffer is set to 4096 bytes, and data returned by the printer gets put in file log:

```
example$ postio -R 2 -B 4096 -l/dev/tty01 -L log file1 file2
```

Establish an interactive connection with the printer at Datakit destination my/printer:
EXAMPLE 1 Examples of the postio command.  (Continued)

```bash
example$ postio -i -l my/printer
```

Send file program to the printer connected to /dev/tty22, recover any data in file results, and put log messages in file log:

```bash
example$ postio -t -l /dev/tty22 -L log program > results
```

EXIT STATUS The following exit values are returned:

- 0  Successful completion.
- non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO download(1), dpost(1), postdaisy(1), postdmd(1), postmd(1), postprint(1), postreverse(1), posttek(1), attributes(5)

NOTES The input files are handled as a single PostScript job. Sending several different jobs, each with their own internal end of job mark (^D) is not guaranteed to work properly. postio may quit before all the jobs have completed and could be restarted before the last one finishes.

All the capabilities described above may not be available on every machine or even across the different versions of the UNIX system that are currently supported by the program.

There may be no default line, so using the -l option is strongly recommended. If omitted, postio may attempt to connect to the printer using the standard output. If Datakit is involved, the -b option may be ineffective and attempts by postio to impose flow control over data in both directions may not work. The -q option can help if the printer is connected to RADIUS. The -S option is not generally recommended and should be used only if all other attempts to establish a reliable connection fail.
postmd(1)

NAME  postmd – matrix display program for PostScript printers

SYNOPSIS  postmd [-b num] [-c num] [-d dimen] [-g list] [-i list] [-m num]  
[-n num] [-o list] [-p mode] [-w window] [-x num] [-y num] [file...]

/usr/lib/lp/postscript/postmd

DESCRIPTION  The postmd filter reads a series of floating point numbers from files, translates them
into a PostScript gray scale image, and writes the results on the standard output. In a
typical application, the numbers might be the elements of a large matrix, written in
row major order, while the printed image could help locate patterns in the matrix. If
no files are specified, or if - is one of the input files, the standard input is read.

OPTIONS  The following options are supported:

- b num  Packs the bitmap in the output file using num byte patterns. A
value of 0 turns off all packing of the output file. By default, num is
6.

- c num  Prints num copies of each page. By default, only one copy is
printed.

- d dimen  Sets the default matrix dimensions for all input files to dimen. The
dimen string can be given as rows or rowsxcolumns. If columns is
omitted it will be set to rows. By default, postmd assumes each
matrix is square and sets the number of rows and columns to the
square root of the number of elements in each input file.

- g list  list is a comma- or space-separated string of integers, each lying
between 0 and 255 inclusive, that assigns PostScript gray scales to
the regions of the real line selected by the - i option. 255
corresponds to white, and 0, to black. The postmd filter assigns a
default gray scale that omits white (that is, 255) and gets darker as
the regions move from left to right along the real line.

- i list  list is a comma-, space-, or slash(/)-separated string of N floating
point numbers that partition the real line into 2N+1 regions. The
list must be given in increasing numerical order. The partitions are
used to map floating point numbers read from the input files into
gray scale integers that are either assigned automatically by
postmd or arbitrarily selected using the - g option. The default
interval list is -1, 0, 1, which partitions the real line into seven
regions.

- m num  Magnifies each logical page by the factor num. Pages are scaled
uniformly about the origin which, by default, is located at the
center of each page. The default magnification is 1.0.

- n num  Prints num logical pages on each piece of paper, where num can be
any positive integer. By default, num is set to 1.
Prints pages whose numbers are given in the comma separated list. The list contains single numbers $N$ and ranges $N_1 - N_2$. A missing $N_1$ means the lowest numbered page, a missing $N_2$ means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of 4, then two sheets of paper would print, containing four page layouts. If you specified a page range of 3 - 4, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.

Prints files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.

window is a comma- or space-separated list of four positive integers that select the upper left and lower right corners of a submatrix from each of the input files. Row and column indices start at 1 in the upper left corner and the numbers in the input files are assumed to be written in row major order. By default, the entire matrix is displayed.

Translates the origin $num$ inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive $num$ moves everything right. The default offset is 0 inches.

Translates the origin $num$ inches along the positive y axis. Positive $num$ moves everything up the page. The default offset is 0.

An optional header can be supplied with each input file and is used to set the matrix dimensions, the partition of the real line, the gray scale map, and a window into the matrix. The header consists of keyword/value pairs, each on a separate line. It begins on the first line of each input file and ends with the first unrecognized string, which should be the first matrix element. Values set in the header take precedence, but apply only to the current input file. Recognized header keywords are dimension, interval, grayscale, and window. The syntax of the value string that follows each keyword parallels what is accepted by the -d, -i, -g, and -w options.
EXAMPLES

EXAMPLE 1 Generating an interval list

For example, suppose file initially contains the 1000 numbers in a 20x50 matrix. Then you can produce exactly the same output by completing three steps.

1. First, issue the following command line:

   
   example% postmd -d20x50 -i"-100 100" -g0,128,254,128,0 file

2. Second, prepend the following header to file:

   
   example% postmd -d20x50 -i"-100 100" -g0,128,254,128,0 file

3. Third, issue the following command line:

   
   example% postmd file

The interval list partitions the real line into five regions and the gray scale list maps numbers less than -100 or greater than 100 into 0 (that is, black), numbers equal to -100 or 100 into 128 (that is, 50 percent black), and numbers between -100 and 100 into 254 (that is, almost white).

FILES

/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

EXIT STATUS

The following exit values are returned:

0  Successful completion.
non-zero An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:


<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO

dpost(1), postdaisy(1), postdmd(1), postio(1), postprint(1), postreverse(1), posttek(1), attributes(5)

NOTES

The largest matrix that can be adequately displayed is a function of the interval and gray scale lists, the printer resolution, and the paper size. A 600 by 600 matrix is an optimistic upper bound for a two element interval list (that is, five regions) using 8.5 by 11 inch paper on a 300 dpi printer.

Using white (that is, 255) in a gray scale list is not recommended and won’t show up in the legend and bar graph that postmd displays below each image.
NAME
postplot – PostScript translator for plot(4B) graphics files

SYNOPSIS
postplot [-c num] [-f name] [-m num] [-n num] [-o list] [-p mode]
[-w num] [-x num] [-y num] [filename...]
/usr/lib/lp/postscript/postplot

DESCRIPTION
The postplot filter translates plot(1B) graphics filenames into PostScript and writes the results on the standard output. If no filenames are specified, or if – is one of the input filenames, the standard input is read.

OPTIONS
The following options are supported:
-c num  Print num copies of each page. By default, only one copy is printed.
-f name  Print text using font name. Any PostScript font can be used, although the best results will be obtained only with constant width fonts. The default font is Courier.
-m num  Magnify each logical page by the factor num. Pages are scaled uniformly about the origin which, by default, is located at the center of each page. The default magnification is 1.0.
-n num  Print num logical pages on each piece of paper, where num can be any positive integer. By default, num is set to 1.
-o list  Print pages whose numbers are given in the comma-separated list. The list contains single numbers N and ranges N1 – N2. A missing N1 means the lowest numbered page, a missing N2 means the highest.
-p mode  Print filenames in either portrait or landscape mode. Only the first character of mode is significant. The default mode is landscape.
-w num  Set the line width used for graphics to num points, where a point is approximately 1/72 of an inch. By default, num is set to 0 points, which forces lines to be one pixel wide.
-x num  Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive num moves everything right. The default offset is 0.0 inches.
-y num  Translate the origin num inches along the positive y axis. Positive num moves everything up the page. The default offset is 0.0.

OPERANDS
The following operand is supported:
filename  The graphics filename to be translated

EXIT STATUS
The following exit value is returned:
0  filename(s) were successfully processed.
postplot(1)

FILES
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/postplot.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWlps</td>
</tr>
</tbody>
</table>

SEE ALSO
download(1), dpost(1), plot(1B), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1), postreverse(1), plot(4B), attributes(5)

NOTES
The default line width is too small for write-white print engines, such as the one used by the PS-2400.
**NAME**
postprint – PostScript translator for text files

**SYNOPSIS**
postprint [-c num] [-f name] [-l num] [-m num] [-n num] [-o list]
[-p mode] [-r num] [-s num] [-t num] [-x num] [-y num] [file...]

/usr/lib/lp/postscript/postprint

**DESCRIPTION**
The postprint filter translates text files into PostScript and writes the results on the standard output. If no files are specified, or if – is one of the input files, the standard input is read.

**OPTIONS**
- `-c num` Print `num` copies of each page. By default, only one copy is printed.
- `-f name` Print files using font `name`. Any PostScript font can be used, although the best results will be obtained only with constant width fonts. The default font is Courier.
- `-l num` Set the length of a page to `num` lines. By default, `num` is 66. Setting `num` to 0 is allowed, and will cause `postprint` to guess a value, based on the point size that’s being used.
- `-m num` Magnify each logical page by the factor `num`. Pages are scaled uniformly about the origin, which is located near the upper left corner of each page. The default magnification is 1.0.
- `-n num` Print `num` logical pages on each piece of paper, where `num` can be any positive integer. By default, `num` is set to 1.
- `-o list` Print pages whose numbers are given in the comma-separated list. The list contains single numbers `N` and ranges `N1` – `N2`. A missing `N1` means the lowest numbered page, a missing `N2` means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of 4, then two sheets of paper would print, containing four page layouts. If you specified a page range of 3-4, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.
- `-p mode` Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.
- `-r num` Selects carriage return behavior. Carriage returns are ignored if `num` is 0, cause a return to column 1 if `num` is 1, and generate a newline if `num` is 2. The default `num` is 0.
- `-s num` Print files using point size `num`. When printing in landscape mode `num` is scaled by a factor that depends on the imaging area of the device. The default size for portrait mode is 10. Note that increasing point size increases virtual image size, so you either need to load larger paper, or use the `-l0` option to scale the number of lines per page.
- `-t num` Assume tabs are set every `num` columns, starting with the first column. By default, tabs are set every 8 columns.
Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed near the upper left corner of the page, with positive x to the right and positive y down the page. Positive num moves everything to the right. The default offset is 0.25 inches.

Translate the origin num inches along the positive y axis. Positive num moves text up the page. The default offset is −0.25 inches.

A new logical page is started after 66 lines have been printed on the current page, or whenever an ASCII form feed character is read. The number of lines per page can be changed using the -l option. Unprintable ASCII characters are ignored, and lines that are too long are silently truncated by the printer.

**EXAMPLES**

**EXAMPLE 1** Examples of postprint.

To print file1 and file2 in landscape mode, issue the following command:

```
example$ postprint -pland file1 file2
```

To print three logical pages on each physical page in portrait mode:

```
example$ postprint -n3 file
```

**EXIT STATUS**
The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>non-zero</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

**FILES**

```
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests
```

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

**SEE ALSO**
download(1), dpost(1), postdaisy(1), postdmd(1), postico(1), postmd(1), postreverse(1), posttek(1), attributes(5)
NAME
postreverse – reverse the page order in a PostScript file

SYNOPSIS
postreverse [-o list] [-r] [file]
/usr/lib/lp/postscript/postreverse

DESCRIPTION
The postreverse filter reverses the page order in files that conform to Adobe’s
Version 1.0 or Version 2.0 file structuring conventions, and writes the results on the
standard output. Only one input file is allowed and if no file is specified, the
standard input is read.

The postreverse filter can handle a limited class of files that violate page
independence, provided all global definitions are bracketed by %%BeginGlobal and
%%EndGlobal comments. In addition, files that mark the end of each page with
%%EndPage: label ordinal comments will also reverse properly, provided the
prologue and trailer sections can be located. If postreverse fails to find an
%%EndProlog or %%EndSetup comment, the entire file is copied, unmodified, to
the standard output.

Because global definitions are extracted from individual pages and put in the
prologue, the output file can be minimally conforming, even if the input file was
not.

OPTIONS
- o list     Select pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 – N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

- r          Do not reverse the pages in file.

EXAMPLES
EXAMPLE 1 Examples of postreverse.

  o select pages 1 to 100 from file and reverse the pages:
    example postreverse -o1-100 file

  To print four logical pages on each physical page and reverse all the pages:
    example postprint -n4 file | postreverse

  To produce a minimally conforming file from output generated by dpost without
reversing the pages:
    example dpost file | postreverse -r

EXIT STATUS
The following exit values are returned:

  0          Successful completion.
postreverse(1)

non-zero An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO
download(1), dpost(1), postdaisy(1), postmd(1), postio(1), postmk(1), postprint(1), posttek(1), attributes(5)

NOTES
No attempt has been made to deal with redefinitions of global variables or procedures. If standard input is used, the input file will be read three times before being reversed.
posttek – PostScript translator for Tektronix 4014 files

```
posttek [-c num] [-f name] [-m num] [-n num] [-o list] [-p mode]
[-w num] [-x num] [-y num] [file...]
```

The `posttek` filter translates Tektronix 4014 graphics files into PostScript and writes the results on the standard output. If no files are specified, or if - is one of the input files, the standard input is read.

**OPTIONS**

- `-c num` Print `num` copies of each page. By default, only one copy is printed.
- `-f name` Print text using font `name`. Any PostScript font can be used, although the best results will be obtained only with constant width fonts. The default font is Courier.
- `-m num` Magnify each logical page by the factor `num`. Pages are scaled uniformly about the origin which, by default, is located at the center of each page. The default magnification is `1.0`.
- `-n num` Print `num` logical pages on each piece of paper, where `num` can be any positive integer. By default, `num` is set to `1`.
- `-o list` Print pages whose numbers are given in the comma-separated `list`. The `list` contains single numbers `N` and ranges `N1 – N2`. A missing `N1` means the lowest numbered page, a missing `N2` means the highest. The page range is an expression of logical pages rather than physical sheets of paper. For example, if you are printing two logical pages to a sheet, and you specified a range of `4`, then two sheets of paper would print, containing four page layouts. If you specified a page range of `3-4`, when requesting two logical pages to a sheet; then only page 3 and page 4 layouts would print, and they would appear on one physical sheet of paper.
- `-p mode` Print files in either portrait or landscape `mode`. Only the first character of `mode` is significant. The default `mode` is landscape.
- `-w num` Set the line width used for graphics to `num` points, where a point is approximately 1/72 of an inch. By default, `num` is set to 0 points, which forces lines to be one pixel wide.
- `-x num` Translate the origin `num` inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive `num` moves everything right. The default offset is 0.0 inches.
- `-y num` Translate the origin `num` inches along the positive y axis. Positive `num` moves everything up the page. The default offset is 0.0.

**EXIT STATUS**

The following exit values are returned:

- `0` Successful completion.
- non-zero An error occurred.
posttek(1)

FILES
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWpsf</td>
</tr>
</tbody>
</table>

SEE ALSO
download(1), dpost(1), postdaisy(1), postdmd(1), postic(1), postmd(1),
postprint(1), postreverse(1), attributes(5)

NOTES
The default line width is too small for write-white print engines, such as the one used by the PS-2400.
NAME
ppgsz – set preferred stack and/or heap page size

SYNOPSIS
/usr/bin/ppgsz [-F] -o option[,option] cmd | -p pid...

DESCRIPTION
The ppgsz utility sets the preferred stack and/or heap page size for the target
process(es), that is, the launched cmd or the process(es) in the pid list. ppgsz stops the
target process(es) while changing the page size. See memcntl(2).

OPTIONS
The following options are supported:

- F
  Force. Sets the preferred page size options(s) for target process(es)
even if controlled by other process(es). Caution should be
exercised when using the -F flag. See proc(1).

- p pid
  Sets the preferred page size option(s) for the target process(es) in
the process-id (pid) list following the -p option. The pid list can
also consist of names in the /proc directory. Only the process
owner or the super-user is permitted to set page size.

  cmd is interpreted if -p is not specified. ppgsz launches cmd and
applies page size option(s) to the new process.

  The heap and stack preferred page sizes are inherited. Child
process(es) created (see fork(2)) from the launched process or the
target process(es) in the pid list after ppgsz completes will inherit
the preferred heap and stack page sizes. The preferred page sizes
are set back to the default system page size on exec(2) (see
getpagesize(3C)).

- o option[,option]
  The options are:

  heap=size
  This option specifies the preferred page size for
  the heap of the target process(es). heap is
declared to be the bss (uninitialized data) and
  the brk area that immediately follows the bss
  (see brk(2)). The preferred heap page size is
  set for the existing heap and for any additional
  heap memory allocated in the future. See
  NOTES.

  stack=size
  This option specifies the preferred page size for
  the stack of the target process(es). The
  preferred stack page size is set for the existing
  stack and newly allocated parts of the stack as
  it expands.

At least one of the above options must be specified.

  size must be a supported page size (see pagesize(1)) or 0, in
  which case the system will select an appropriate page size (see
  memcntl(2)).
size defaults to bytes and can be specified in octal (0), decimal, or hexadecimal (0x). The numeric value can be qualified with K, M, G, or T to specify Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively. 4194304, 0x400000, 4096K, 0x1000K, and 4M are different ways to specify 4 Megabytes.

EXAMPLE 1 Setting the preferred heap and stack page size

The following example sets the preferred heap page size to 4M and the preferred stack page size to 512K for all ora—owned processes running commands that begin with ora:

```bash
example% ppgsz -o heap=4M,stack=512K -p 'pgrep -u ora 'ora''
```

EXIT STATUS

If cmd is specified and successfully invoked (see exec(2)), the exit status of ppgsz will be the exit status of cmd. Otherwise, ppgsz will exit with one of the following values:

- **0**: Successfully set preferred page size(s) for processes in the pid list.
- **125**: An error occurred in ppgsz. Errors include: invalid argument, invalid page size(s) specified, and failure to set preferred page size(s) for one or more processes in the pid list or cmd.
- **126**: cmd was found but could not be invoked.
- **127**: cmd could not be found.

FILES

- `/proc/*`: Process files.
- `/usr/lib/ld/map.bssalign`: A template link-editor mapfile for aligning bss (see NOTES).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ld(1), mpss.so.1(1), pagesize(1), pgrep(1), pmap(1), proc(1), brk(2), exec(2), fork(2), memcntl(2), sbrk(2), getpagesize(3C), proc(4), attributes(5)

Linker and Libraries Guide

NOTES

Due to resource constraints, the setting of the preferred page size does not necessarily guarantee that the target process(es) will get the preferred page size. Use pmap(1) to view the actual heap and stack page sizes of the target process(es) (see pmap -s option).
Large pages are required to be mapped at addresses that are multiples of the size of the large page. Given that the heap is typically not large page aligned, the starting portions of the heap (below the first large page aligned address) are mapped with the system memory page size. See `getpagesize(3C)`.

To provide a heap that will be mapped with a large page size, an application can be built using a link-editor (`ld(1)` `mapfile` containing the `bss` segment declaration directive. Refer to the section “Mapfile Option” in the Linker and Libraries Guide for more details of this directive and the template `mapfile` provided in `/usr/lib/ld/map.bssalign`. Users are cautioned that an alignment specification may be machine-specific and may lose its benefit on different hardware platforms. A more flexible means of requesting the most optimal underlying page size may evolve in future releases.

`mpss.so.1(1)`, a preloadable shared object, can also be used to set the preferred stack and/or heap page sizes.
NAME  
pr - print files

SYNOPSIS
/usr/bin/pr [ + page] [-column] [-adFmt] [ -e [char] [gap]]  
[-h header] [ -i [char] [gap]] [-l lines] [ -n [char] [width]]  
[-o offset] [ -s [char] [gap]] [-w width] [-fp] [file...]

/usr/xpg4/bin/pr [ + page] [-column] [-c column] [-adFmt] [ -e  
[char] [gap]] [-h header] [ -i [char] [gap]] [-l lines] [ -n [char]  
[width]] [ -o offset] [ -s [char] [gap]] [-w width] [-fp] [file...]

DESCRIPTION
The pr utility is a printing and pagination filter. If multiple input files are specified,  
each is read, formatted, and written to standard output. By default, the input is  
separated into 66-line pages, each with:

- a 5-line header that includes the page number, date, time and the path name of the  
  file
- a 5-line trailer consisting of blank lines

If standard output is associated with a terminal, diagnostic messages will be deferred  
until the pr utility has completed processing.

When options specifying multi-column output are specified, output text columns will  
be of equal width; input lines that do not fit into a text column will be truncated. By  
default, text columns are separated with at least one blank character.

OPTIONS
The following options are supported. In the following option descriptions, column,  
lines, offset, page, and width are positive decimal integers; gap is a non-negative decimal  
integer. Some of the option-arguments are optional, and some of the option-arguments  
cannot be specified as separate arguments from the preceding option letter. In  
particular, the -s option does not allow the option letter to be separated from its  
argument, and the options -e, -i, and -n require that both arguments, if present, not  
be separated from the option letter.

The following options are supported for both /usr/bin/pr and  
/usr/xpg4/bin/pr:

+page  
Beginning output at page number page of the formatted input.

-column  
Produces multi-column output that is arranged in  
column columns (default is 1) and is written down each  
column in the order in which the text is received from  
the input file. This option should not be used with -m.  
The -e and -i options will be assumed for multiple  
text-column output. Whether or not text columns are  
produced with identical vertical lengths is unspecified,  
but a text column will never exceed the length of the  
page (see the -l option). When used with -t, use the  
minimum number of lines to write the output.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Modifies the effect of the <code>-column</code> option so that the columns are filled across the page in a round-robin order (for example, when <code>column</code> is 2, the first input line heads column 1, the second heads column 2, the third is the second line in column 1, and so forth).</td>
</tr>
<tr>
<td>-d</td>
<td>Produces output that is double-spaced; append an extra <code>NEWLINE</code> character following every <code>NEWLINE</code> character found in the input.</td>
</tr>
<tr>
<td>-e [ <code>char</code> ] [ <code>gap</code> ]</td>
<td>Expands each input <code>TAB</code> character to the next greater column position specified by the formula <code>n *gap+1</code>, where <code>n</code> is an integer &gt;0. If <code>gap</code> is 0 or is omitted, it defaults to 8. All <code>TAB</code> characters in the input will be expanded into the appropriate number of <code>SPACE</code> characters. If any non-digit character, <code>char</code>, is specified, it will be used as the input tab character.</td>
</tr>
<tr>
<td>-f</td>
<td>Uses a <code>FORMFEED</code> character for new pages, instead of the default behavior that uses a sequence of <code>NEWLINE</code> characters. Pauses before beginning the first page if the standard output is associated with a terminal.</td>
</tr>
<tr>
<td>-h <code>header</code></td>
<td>Uses the string <code>header</code> to replace the contents of the <code>file</code> operand in the page header.</td>
</tr>
<tr>
<td>-l <code>lines</code></td>
<td>Overrides the 66-line default and reset the page length to <code>lines</code>. If <code>lines</code> is not greater than the sum of both the header and trailer depths (in lines), <code>pr</code> will suppress both the header and trailer, as if the <code>-t</code> option were in effect.</td>
</tr>
<tr>
<td>-m</td>
<td>Merges files. Standard output will be formatted so <code>pr</code> writes one line from each file specified by <code>file</code>, side by side into text columns of equal fixed widths, in terms of the number of column positions. Implementations support merging of at least nine files.</td>
</tr>
<tr>
<td>-n [ <code>char</code> ] [ <code>width</code> ]</td>
<td>Provides <code>width</code>-digit line numbering (default for <code>width</code> is 5). The number will occupy the first <code>width</code> column positions of each text column of default output or each line of <code>-m</code> output. If <code>char</code> (any non-digit character) is given, it will be appended to the line number to separate it from whatever follows (default for <code>char</code> is a <code>TAB</code> character).</td>
</tr>
<tr>
<td>-o <code>offset</code></td>
<td>Each line of output will be preceded by <code>offset</code> &lt;space&gt;s. If the <code>-o</code> option is not specified, the default offset is 0. The space taken will be in addition to the output line width (see <code>-w</code> option below).</td>
</tr>
</tbody>
</table>
Pauses before beginning each page if the standard output is directed to a terminal. \texttt{pr} will write an \texttt{ALERT} character to standard error and wait for a carriage-return character to be read on /dev/tty).

-w width

Sets the width of the line to \texttt{width} column positions for multiple text-column output only. If the \texttt{-w} option is not specified and the \texttt{-s} option is not specified, the default width is 72. If the \texttt{-w} option is not specified and the \texttt{-s} option is specified, the default width is 512. For single column output, input lines will not be truncated.

The following options are supported for /usr/bin/pr only:

-F

Folds the lines of the input file. When used in multi-column mode (with the \texttt{-a} or \texttt{-m} options), lines will be folded to fit the current column’s width. Otherwise, they will be folded to fit the current line width (80 columns).

-i [ char ] [ gap ]

In output, replaces SPACE characters with TAB characters wherever one or more adjacent SPACE characters reach column positions \texttt{gap+1}, \texttt{2*gap+1}, \texttt{3*gap+1}, and so forth. If \texttt{gap} is 0 or is omitted, default TAB settings at every eighth column position are assumed. If any non-digit character, \texttt{char}, is specified, it will be used as the output TAB character.

The following options are supported for /usr/xpg4/bin/pr only:

-F

Uses a \texttt{FORMFEED} character for new pages, instead of the default behavior that uses a sequence of \texttt{NEWLINE} characters.

-i [ char ] [ gap ]

In output, replaces multiple SPACE characters with TAB characters wherever two or more adjacent SPACE characters reach column positions \texttt{gap+1}, \texttt{2*gap+1}, \texttt{3*gap+1}, and so forth. If \texttt{gap} is 0 or is omitted, default
TAB settings at every eighth column position are assumed. If any non-digit character, char, is specified, it will be used as the output TAB character.

OPERANDS
The following operand is supported:

file A path name of a file to be written. If no file operands are specified, or if a file operand is −, the standard input will be used.

EXAMPLES
EXAMPLE 1 Printing a numbered list of all files in the current directory
example% ls -a | pr -n -h "Files in $(pwd)."

EXAMPLE 2 Printing files in columns
This example prints file1 and file2 as a double-spaced, three-column listing headed by file list:
example% pr -3d -h "file list" file1 file2

EXAMPLE 3 Writing files with expanded column tabs
The following example writes file1 on file2, expanding tabs to columns 10, 19, 28,...
example% pr -e9 -t <file1 >file2

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of pr: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS
The following exit values are returned:

  0 Successful completion.
  >0 An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO expand(1), lp(1), attributes(5), environ(5), standards(5)
NAME
praliases – display system mail aliases

SYNOPSIS
praliases [-c configfile] [-f aliasfile] [key]

DESCRIPTION
The praliases utility displays system mail aliases. When no key is given, praliases displays the current system aliases, one per line, in no particular order. The form is key:value. If a key is given, only that key is looked up and the appropriate key:value is displayed if found.

OPTIONS
The following options are supported:

- c configfile        Specifies a sendmail configuration file.
- f aliasfile         Reads the specified file aliasfile instead of the default sendmail system aliases file.

OPERANDS
The following operands are supported:

key                        A specific alias key to look up.

EXIT STATUS
The following exit values are returned:

0   Successful operation.
>0  An error occurred.

FILES
/etc/mail/aliases        Default sendmail system aliases file
/etc/mail/aliases.db     Database versions of the
                         /etc/mail/aliases file
/etc/mail/aliases.dir    Database versions of the
                         /etc/mail/aliases file
/etc/mail/aliases.pag    Database versions of the
                         /etc/mail/aliases file
/etc/mail/sendmail.cf    Default sendmail configuration file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsndmumu</td>
</tr>
</tbody>
</table>

SEE ALSO
mailq(1), newaliases(1M), sendmail(1M), attributes(5)
prctl(1)

NAME
prctl – get or set the resource controls of running processes, tasks, and projects

SYNOPSIS
prctl [-t [basic | privileged | system]] [-e | -d action] [-r x]
[ -n name [-v value]] [-i idtype] [id...]

DESCRIPTION
The prctl utility allows the examination and modification of the resource controls
associated with an active process, task, or project on the system. It allows access to the
basic and privileged limits on the specified entity.

OPTIONS
The following options are supported:

-d | -e action
Disables (-d) or enables (-e) the specified action on the specified resource control.
The special token all is valid with the disable option to deactivate all actions on
the given resource control value.

The other defined actions for a resource are deny and signal=signum. The deny
action indicates that the resource control encountered will attempt to deny granting
the resource to the process, task, or project on a request for resources in excess of
the value provided by the -v option for the new resource control. In the
signal=signum action, signum is a signal number (or string representation of a
signal). deny actions may not be activated or deactivated if global flags indicate
that the deny action is unchangeable.

-i idtype
Specifies the type of the id operands. Valid idtypes are process, task, or
project. The default id type, if the -i option is omitted, is process.

-n name
Specifies the name of the resource control to get or set. If the name is unspecified, all
resource controls are retrieved.

-r
Replaces the first resource control value (matching with the -t privilege) with
the new value specified through the -v option.

-t [basic | privileged | system]
Specifies which resource control type to set. Unless the "lowerable" flag is set for a
resource control, only invocations by users (or setuid programs) who have
privileges equivalent to those of root can modify privileged resource controls. See
rctlblk_set_value(3C) for a description of the RCTL_GLOBAL_LOWERABLE
flag. If the type is not specified, basic is assumed. For a get operation, the values
of all resource control types, including system, are displayed if no type is
specified.

-v value
Specifies the value for the resource control for a set operation. If no value is
specified, then the modification (deletion, action enabling or disabling) will be
carried out on the lowest-valued resource control with the given type.
Deletes the specified resource control value. If the delete option is not provided, the default operation of `prctl` is to modify a resource control value of matching value and privilege, or insert a new value with the given privilege. The matching criteria are discussed more fully in `setrctl(2)`.

If none of the `-d`, `-e`, `-v`, or `-x` options is specified, the invocation is considered a get operation.

**OPERANDS**

The following operand is supported:

- **id**
  
The ID of the entity (process, task, or project) to interrogate. If the invoking user's credentials are unprivileged and the entity being interrogated possesses different credentials, the operation will fail. If no `id` is specified, an error message is returned.

**EXAMPLES**

**EXAMPLE 1** Displaying current resource control settings for a specific process

```
example$ pgrep sort
111759
example$ prctl 111759
111759: /usr/bin/sort
process.max-address-space [lowerable deny no-local-action]
 18446744073709551615 privileged deny
 18446744073709551615 system deny
process.max-file-descriptor [lowerable deny]
 256 basic deny
 65536 privileged deny
 2147483647 system deny
process.max-core-size [lowerable deny no-local-action]
 18446744073709551615 privileged deny
 18446744073709551615 system deny
process.max-stack-size [lowerable deny no-local-action]
 8388608 basic deny
 9223372036854775807 privileged deny
 9223372036854775807 system deny
process.max-data-size [lowerable deny no-local-action]
 18446744073709551615 privileged deny
 18446744073709551615 system deny
process.max-file-size [lowerable deny file-size]
 9223372036854775807 privileged signal=XFSZ deny
 9223372036854775807 system deny
process.max-cpu-time [lowerable no-deny cpu-time]
 18446744073709551615 privileged signal=XCPU
 18446744073709551615 system deny [infinite]
task.max-cpu-time [no-deny cpu-time]
 18446744073709551615 system deny [infinite]
task.max-lwps [no-basic no-local-action]
 2147483647 system deny
project.cpu-shares [no-basic no-local-action]
 10 privileged none
 65535 system deny
```
prctl(1)

**EXAMPLE 2** Displaying, replacing, and verifying the value of a specific control on an existing project

```bash
example# prctl -n project.cpu-shares -i project group.staff
111788: ksh
project.cpu-shares [no-basic no-local-action]
 1 privileged none
 65535 system deny
example# prctl -n project.cpu-shares -v 10 -r -i project group.staff
example# prctl -n project.cpu-shares -i project group.staff
111788: ksh
project.cpu-shares [no-basic no-local-action]
 10 privileged none
 65535 system deny
```

**EXIT STATUS**

The following exit values are returned:

- **0**  Success.
- **1**  Fatal error encountered.
- **2**  Invalid command line options were specified.

**FILES**
```
/proc/pid/* process information and control files
```

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

rctladm(1M), setrctl(2), rctlblk_get_local_action(3C), attributes(5)
preap – force a defunct process to be reaped by its parent

preap [-F] pid...

A defunct (or zombie) process is one whose exit status has yet to be reaped by its parent. The exit status is reaped via the wait(2), waitid(2), or waitpid(2) system call. In the normal course of system operation, zombies may occur, but are typically short-lived. This may happen if a parent exits without having reaped the exit status of some or all of its children. In that case, those children are reparented to PID 1. See init(1M), which periodically reaps such processes.

An irresponsible parent process may not exit for a very long time and thus leave zombies on the system. Since the operating system destroys nearly all components of a process before it becomes defunct, such defunct processes do not normally impact system operation. However, they do consume a small amount of system memory.

preap forces the parent of the process specified by pid to waitid(2) for pid, if pid represents a defunct process.

preap will attempt to prevent the administrator from unwisely reaping a child process which might soon be reaped by the parent, if:

- The process is a child of init(1M).
- The parent process is stopped and might wait on the child when it is again allowed to run.
- The process has been defunct for less than one minute.

The following option is supported:

- The following operand is supported:

| pid | Process ID list. |

The following exit values are returned by preap, which prints the exit status of each target process reaped:

<table>
<thead>
<tr>
<th>Exit Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successfully operation.</td>
</tr>
<tr>
<td>non-zero</td>
<td>Failure, such as no such process, permission denied, or invalid option.</td>
</tr>
</tbody>
</table>

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO proc(1), init(1M), wait(2), waitid(2), waitpid(2), proc(4), attributes(5)
WARNINGS

`preap` should be applied sparingly and only in situations in which the administrator or developer has confirmed that defunct processes will not be reaped by the parent process. Otherwise, applying `preap` may damage the parent process in unpredictable ways.
**NAME**
prex – control tracing and manipulate probe points in a process or the kernel

**SYNOPSIS**
prex [-o trace_file_name] [-l libraries] [-s kbytes_size] cmd [cmd-args...]
prex [-o trace_file_name] [-l libraries] [-s kbytes_size] -p pid
prex -k [-s kbytes_size]

**DESCRIPTION**
The **prex** command is the part of the Solaris tracing architecture that controls probes in a process or the kernel. See **tracing**(3TNF) for an overview of this tracing architecture, including example source code using it.

**prex** is the application used for external control of probes. It automatically preloads the **libtnfprobe** library. **prex** locates all the probes in a target executable or the kernel and provides an interface for the user to manipulate them. It allows a probe to be turned on for tracing, debugging, or both. Tracing generates a TNF (Trace Normal Form) trace file that can be converted to ASCII by **tnfdump**(1) and used for performance analysis. Debugging generates a line to standard error whenever the probe is hit at run time.

**prex** does not work on static executables. It only works on dynamic executables.

**Invoking prex**
There are three ways to invoke **prex**:

1. Use **prex** to start the target application **cmd**. In this case, the target application need not be built with a dependency on **libtnfprobe**. See **TNF_PROBE**(3TNF). **prex** sets the environment variable **LD_PRELOAD** to load **libtnfprobe** into the target process. See **ld**(1). **prex** then uses the environment variable **PATH** to find the target application.

2. Attach **prex** to a running application. In this case, the running target application should have **libtnfprobe** already linked in. Alternatively, the user may manually set **LD_PRELOAD** to include **libtnfprobe.so.1** prior to invoking the target.

3. Use **prex** with the **-k** option to set **prex** to kernel mode. **prex** can then be used to control probes in the Solaris kernel. In kernel mode, additional commands are defined, and some commands that are valid in other modes are invalid. See **Kernel Mode** below.

In a future release of **prex**, the command language may be moved to a syntax that is supported by an existing scripting language like **ksh**(1). In the meantime, the interface to **prex** is uncommitted.

- Commands should be in ASCII.
- Each command is terminated with the **NEWLINE** character.
- A command can be continued onto the next line by ending the previous line with the backslash ("\") character.
- Tokens in a command must be separated by whitespace (one or more spaces or tabs).
- The "#" character implies that the rest of the line is a comment.
Command Result
% prex a.out Attaches prex to your program and starts prex.
prex> enable $all Enables all the probes.
prex> quit resume Quits prex and resumes execution of program.

There are two different methods of communicating with prex:

- By specifications in a control file. During start-up, prex searches for a file named .prexrc in the directories specified below. prex does not stop at the first one it finds. This way a user can override any defaults that are set up. The search order is:
  
  $HOME/
  ./

- By typing commands at the prex prompt.

The command language for both methods is the same and is specified in USAGE. The commands that return output will not make sense in a control file. The output will go to standard output.

When using prex on a target process, the target will be in one of two states, running or stopped. This can be detected by the presence or absence of the prex> prompt. If the prompt is absent, it means that the target process is running. Typing Control-C will stop the target process and return the user to the prompt. There is no guarantee that Control-C will return to a prex prompt immediately. For example, if the target process is stopped on a job control stop (SIGSTOP), then Control-C in prex will wait until the target has been continued (SIGCONT). See Signals to Target Program below for more information on signals and the target process.

OPTIONS

The following options are supported:

-\k

  kernel mode: prex is used to control probes in the Solaris kernel. In kernel mode, additional commands are defined, and some commands valid in other modes are invalid. See Kernel Mode below.

-\l libraries

  The libraries mentioned are linked in to the target application using LD_PRELOAD (see 1d(1)). This option cannot be used when attaching to a running process. The argument to the -l option should be a space-separated string enclosed in double quotes. Each token in the string is a library name. It follows the LD_PRELOAD rules on how libraries should be specified and where they will be found.
File to be used for the trace output. $trace_file_name$ is assumed to be relative to the current working directory of prex (that is, the directory that the user was in when prex was started).

If prex attaches to a process that is already tracing, the new $trace_file_name$ (if provided) will not be used. If no $trace_file_name$ is specified, the default is /$TMPDIR/trace-pid where pid is the process id of the target program. If TMPDIR is not set, /tmp is used.

Maximum size of the output trace file in Kbytes. The default size of the trace $kbytes_size$ is 4096 (2^12) bytes or 4 Mbytes for normal usage, and 384 or 384 kbytes in kernel mode. The minimum size that can be specified is 128 Kbytes. The trace file can be thought of as a least recently used circular buffer. Once the file has been filled, newer events will overwrite the older ones.

This section describes the usage of the prex utility.

Probes are specified by a list of space-separated selectors. Selectors are of the form:

\[attribute=value\]

(See Tnf_Probe(3TNF)). The "attribute=" is optional. If it is not specified, it defaults to "keys=".

The attribute or value (generically called “spec”) can be any of the following:

- IDENT: Any sequence of letters, digits, _, \, ., % not beginning with a digit. IDENT implies an exact match.
- QUOTED_STR: Usually used to escape reserved words (any commands in the command language). QUOTED_STR implies an exact match and has to be enclosed in single quotes (').
- REGEXP: An ed(1) regular expression pattern match. REGEXP has to be enclosed in slashes (/ /), A / can be included in a REGEXP by escaping it with a backslash \.

The following grammar explains the syntax.

```
selector_list ::= | /* empty */
selector_list selector
selector ::= spec-selector /* whitespace around '=' opt */
spec ::= IDENT | QUOTED_STR | REGEXP
```

The terminals in the above grammar are:
This is a list of the remaining grammar that is needed to understand the syntax of the command language (defined in next subsection):

```
IDENT = [a-zA-Z_\.]([a-zA-Z0-9_\.]*)
QUOTED_STR = '\[\"\\n\"]* /* any string in single quotes */
REGEXP = '/[\"\\n]/' /* regexp's have to be in / */
```

1. Set Creation and Set Listing
   ```
 create $set_name selector_list
 list sets # list the defined sets
   ```
   **create** can be used to define a set which contains probes that match the **selector_list**. The set $all is pre-defined as /.*/ and it matches all the probes.

2. Function Listing
   ```
 list fcns # list the available fcn_handle
   ```
   The user can list the different functions that can be connected to probe points. Currently, only the debug function called &debug is available.

3. Commands to Connect and Disconnect Probe Functions
   ```
 connect &fcn_handle $set_name
 connect &fcn_handle selector_list
 clear $set_name
 clear selector_list
   ```
   The **connect** command is used to connect probe functions (which must be prefixed by '&') to probes. The probes are specified either as a single set (with a '$'), or by explicitly listing the probe selectors in the command. The probe function has to be one that is listed by the **list fcns** command. This command does not enable the probes. The **clear** command is used to disconnect all connected probe functions from the specified probes.

4. Commands to Toggle the Tracing Mode
   ```
 trace $set_name
 trace selector_list
 untrace $set_name
 untrace selector_list
   ```
   The **trace** and **untrace** commands are used to toggle the tracing action of a probe point (that is, whether a probe will emit a trace record or not if it is hit). This command does not enable the probes specified. Probes have tracing on by default. The most efficient way to turn off tracing is by using the **disable** command. **untrace** is useful if you want debug output but no tracing. If so, set the state of the probe to enabled, untraced, and the debug function connected.

5. Commands to Enable and Disable Probes
The enable and disable commands are used to control whether the probes perform the action that they have been set up for. To trace a probe, it has to be both enabled and traced (using the trace command). Probes are disabled by default. The list history command is used to list the probe control commands issued: connect, clear, trace, untrace, enable, and disable. These are the commands that are executed whenever a new shared object is brought in to the target program by dlopen(3DL). See the subsection, dlopen’ed Libraries, below for more information.

The following table shows the actions that result from specific combinations of tracing, enabling, and connecting:

<table>
<thead>
<tr>
<th>Enabled or Tracing State (On/Off)</th>
<th>Debug State (Connected/Cleared)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>In</td>
<td>In</td>
</tr>
<tr>
<td>Enabled</td>
<td>Connected</td>
<td>Tracing and Debugging</td>
</tr>
<tr>
<td>Enabled</td>
<td>On</td>
<td>Connected</td>
</tr>
<tr>
<td>Enabled</td>
<td>Off</td>
<td>Connected</td>
</tr>
<tr>
<td>Enabled</td>
<td>Off</td>
<td>Cleared</td>
</tr>
<tr>
<td>Disabled</td>
<td>On</td>
<td>Connected</td>
</tr>
<tr>
<td>Disabled</td>
<td>Off</td>
<td>Cleared</td>
</tr>
<tr>
<td>Disabled</td>
<td>Off</td>
<td>Connected</td>
</tr>
<tr>
<td>Disabled</td>
<td>Off</td>
<td>Cleared</td>
</tr>
</tbody>
</table>

6. List History

```
list history # lists probe control command history
```

The list history command displays a list of the probe control commands previously issued in the tracing session, for example, connect, clear, trace, disable. Commands in the history list are executed wherever a new shared object is brought into the target program by dlopen(3DL).

7. Commands to List Probes, List Values, or List Trace File Name

```
list spec_list probes $set_name # list probes $all
list spec_list probes selector_list # list name probes file=test.c
list values spec_list # list values keys given in spec_list
```

User Commands 1215
list tracefile  
# list tracefile

The first two commands list the selected attributes and values of the specified probes. They can be used to check the state of a probe. The third command lists the various values associated with the selected attributes. The fourth command lists the current tracefile.

8. Help Command

help topic

To get a list of the help topics that are available, invoke the help command with no arguments. If a topic argument is specified, help is printed for that topic.

9. Source a File

source filename

The source command can be used to source a file of prex commands. source can be nested (that is, a file can source another file). filename is a quoted string.

10. Process Control

continue  
# resumes the target process
quit kill  
# quit prex, kill target
quit resume  
# quit prex, continue target
quit suspend  
# quit prex, leave target suspended
quit  
# quit prex (continue or kill target)

The default quit will continue the target process if prex attached to it. Instead, if prex had started the target program, quit will kill the target process.

dlopen'ed Libraries

Probes in shared objects that are brought in by dlopen(3DL) are automatically set up according to the command history of prex. When a shared object is removed by a dlclose(3DL), prex again needs to refresh its understanding of the probes in the target program. This implies that there is more work to do for dlopen(3DL) and dlclose(3DL) —so they will take slightly longer. If a user is not interested in this feature and doesn’t want to interfere with dlopen(3DL) and dlclose(3DL), detach prex from the target to inhibit this feature.

Signals to Target Program

prex does not interfere with signals that are delivered directly to the target program. However, prex receives all signals normally generated from the terminal, for example, Control-C (SIGINT), and Control-Z (SIGSTOP), and does not forward them to the target program. To signal the target program, use the kill(1) command from a shell.

Interactions with Other Applications

Process managing applications like dbx, truss(1), and prex cannot operate on the same target program simultaneously. prex will not be able to attach to a target which is being controlled by another application. A user can trace and debug a program serially by the following method: first attach prex to target (or start target through prex), set up the probes using the command language, and then type quit suspend. The user can then attach dbx to the suspended process and debug it. A user
can also suspend the target by sending it a SIGSTOP signal, and then by typing quit resume to prex. In this case, the user should also send a SIGCONT signal after invoking dbx on the stopped process (else dbx will be hung).

There are a few failure points that are possible when writing out events to a trace file, for example, system call failures. These failures result in a failure code being set in the target process. The target process continues normally, but no trace records are written. Whenever a user enters Control-C to prex to get to a prex prompt, prex will check the failure code in the target and inform the user if there was a tracing failure.

If the target program does a fork(2), any probes that the child encounters will cause events to be logged to the same trace file. Events are annotated with a process id, so it will be possible to determine which process a particular event came from. In multi-threaded programs, there is a race condition with a thread doing a fork while the other threads are still running. For the trace file not to get corrupted, the user should either use fork1(2), or make sure that all other threads are quiescent when doing a fork(2),

If the target program itself (not any children it may fork(2)) does an exec(2), prex detaches from the target and exits. The user can reconnect prex with prex -p pid.

A vfork(2) is generally followed quickly by an exec(2) in the child, and in the interim, the child borrows the parent’s process while the parent waits for the exec(2). Any events logged by the child from the parent process will appear to have been logged by the parent.

Invoking prex with the -k flag causes prex to run in kernel mode. In kernel mode, prex controls probes in the Solaris kernel. See tnf_kernel_probes(4) for a list of available probes in the Solaris kernel. A few prex commands are unavailable in kernel mode; many other commands are valid in kernel mode only.

The -l, -o, and -p command-line options are not valid in kernel mode (that is, they may not be combined with the -k flag).

The rest of this section describes the differences in the prex command language when running prex in kernel mode.

1. prex will not stop the kernel

When prex attaches to a running user program, it stops the user program. Obviously, it cannot do this when attaching to the kernel. Instead, prex provides a “tracing master switch”: no probes will have any effect unless the tracing master switch is on. This allows the user to iteratively select probes to enable, then enable them all at once by turning on the master switch.

The command

```
ktrace [on | off]
```

is used to inspect and set the value of the master switch. Without an argument, prex reports the current state of the master switch.
Since `prex` will not stop or kill the kernel, the
`quit resume`
and
`quit kill`
commands are not valid in kernel mode.

2. No functions may be attached to probes in the kernel
   In particular, the debug function is unavailable in kernel mode.

3. Trace output is written to an in-core buffer
   In kernel mode, a trace output file is not generated directly, in order to allow
   probes to be placed in time-critical code. Instead, trace output is written to an
   in-core buffer, and copied out by a separate program, `tnfextract(1)`.
   The in-core buffer is not automatically created. The following `prex` command
   controls buffer allocation and deallocation:

   ```
 buffer [alloc [size] | dealloc]
   ```
   Without an argument, the `buffer` command reports the size of the currently
   allocated buffer, if any. With an argument of `alloc [size]`, `prex` allocates a buffer of
   the given size. `size` is in bytes, with an optional suffix of 'k' or 'm' specifying a
   multiplier of 1024 or 1048576, respectively. If no `size` is specified, the `size` specified
   on the command line with the `-s` option is used as a default. If the `-s` command
   line option was not used, the ”default default” is 384 kilobytes.
   With an argument of `dealloc`, `prex` deallocates the trace buffer in the kernel.

   `prex` will reject attempts to turn the tracing master switch on when no buffer is
   allocated, and to deallocate the buffer when the tracing master switch is on. `prex`
   will refuse to allocate a buffer when one is already allocated; use `buffer`
   `dealloc` first.

   `prex` will not allocate a buffer larger than one-half of a machine’s physical
   memory.

4. `prex` supports per-process probe enabling in the kernel
   In kernel mode, it is possible to select a set of processes for which probes are
   enabled. No trace output will be written when other processes traverse these probe
   points. This is called ”process filter mode”. By default, process filter mode is off,
   and all processes cause the generation of trace records when they hit an enabled
   probe.
   Some kernel events such as interrupts cannot be associated with a particular user
   process. By convention, these events are considered to be generated by process id
   0.
prex provides commands to turn process filter mode on and off, to get the current status of the process filter mode switch, to add and delete processes (by process id) from the process filter set, and to list the current process filter set.

The process filter set is maintained even when process filter mode is off, but has no effect unless process filter mode is on.

When a process in the process filter set exits, its process id is automatically deleted from the process filter set.

The command:

```
 pfilter [on | off | add pidlist | delete pidlist]
```

controls the process filter switch, and process filter set membership. With no arguments, pfilter prints the current process filter set and the state of the process filter mode switch:

- `on` or `off`: set the state of the process filter mode switch.
- `add pidlist`: add or delete processes from the process filter set. `pidlist` is a comma-separated list of one or more process ids.
- `delete pidlist`: delete processes from the process filter set.

EXAMPLES

See tracing(3TNF) for complete examples showing, among other things, the use of prex to do simple probe control.

When either the process or kernel is started, all probes are disabled.

EXAMPLE 1 Set creation and set listing

```
create $out name=/out/ # $out = probes with "out" in
 # value of "name" attribute
create $foo /page/ name=biodone # $foo = union of
 # probes with "page" in value of keys attribute
 # probes with "biodone" as value of "name" attribute
list sets # list the defined sets
list fcns # list the defined probe fcns
```

EXAMPLE 2 Commands to trace and connect probe functions

```
trace foobar=’on’ # exact match on foobar attribute
trace $all # trace all probes (predefined set $all)
connect &debug $foo # connect debug func to probes in $foo
```

EXAMPLE 3 Commands to enable and disable probes

```
enable $all # enable all probes
enable /vm/ name=alloc # enable the specified probes
disable $foo # disable probes in set $foo
list history # list probe control commands issued
```
EXAMPLE 4 Process control

continue  # resumes the target process
"C       # stop target; give control to prex
quit resume  # exit prex, leave process running
               # and resume execution of program

EXAMPLE 5 Kernel mode

buffer alloc 2m  # allocate a 2 Megabyte buffer
enable $all     # enable all probes
trace $all      # trace all probes
ktrace on       # turn tracing on
ktrace off      # turn tracing back off
pfiler on       # turn process filter mode on
pfiler add 1379  # add pid 1379 to process filter
ktrace on       # turn tracing on
               # (only pid 1379 will be traced)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtnfc (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWtnfcx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO ed(1), kill(1), ksh(1), ld(1), tnfdump(1), tnfextract(1), truss(1), exec(2),
          fork(2), fork1(2), vfork(2), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
          dlclose(3DL), dlopen(3DL), gethrtime(3C), libtnfctl(3TNF),
          tnf_process_disable(3TNF), tracing(3TNF), tnf_kernel_probes(4),
          attributes(5)

NOTES Currently, the only probe function that is available is the &debug function. When this
function is executed, it prints out the arguments sent in to the probe as well as the
value associated with the sunw%debug attribute in the detail field (if any) to stderr.

For example, for the following probe point:

TNF_PROBE_2(input_values, "testapp main",
           "sunw%debug 'have read input values successfully'",
           tnf_long, int_input, x,
           tnf_string, string_input, input);

If x was 100 and input was the string "success", then the output of the debug probe
function would be:
Some non-SPARC hardware lacks a true high-resolution timer, causing `gethrtime()` to return the same value multiple times in succession. This can lead to problems in how some tools interpret the trace file. This situation can be improved by interposing a version of `gethrtime()`, which causes these successive values to be artificially incremented by one nanosecond:

```c
hrtime_t
gethrtime()
{
 static mutex_t lock;
 static hrtime_t (*real_gethrtime)(void) = NULL;
 static hrtime_t last_time = 0;
 hrtime_t this_time;

 if (real_gethrtime == NULL) {
 real_gethrtime =
 (hrtime_t (*)(void)) dlsym(RTLD_NEXT, "gethrtime");
 }
 this_time = real_gethrtime();

 mutex_lock(&lock);
 if (this_time <= last_time)
 this_time = ++last_time;
 else
 last_time = this_time;
 mutex_unlock(&lock);
 return (this_time);
}
```

Of course, this does not increase the resolution of the timer, so timestamps for individual events are still relatively inaccurate. But this technique maintains ordering, so that if event A causes event B, B never appears to happen before or at the same time as A.

`dbx` is available with the Sun Workshop Products.

**BUGS**

`prex` should issue a notification when a process id has been automatically deleted from the filter set.

There is a known bug in `prex` which can result in this message:

```
Tracing shut down in target program due to an internal error - Please restart prex and target
```

When `prex` runs as root, and the target process is not root, and the tracefile is placed in a directory where it cannot be removed and re-created (a directory with the sticky bit on, like `/tmp`), then the target process will not be able to open the tracefile when it needs to. This results in tracing being disabled.
Changing any of the circumstances listed above should fix the problem. Either don’t run `prex` as root, or run the target process as root, or specify the tracefile in a directory other than `/tmp`. 
print(1)

NAME
print – shell built-in function to output characters to the screen or window

SYNOPSIS
ksh print [ -Rnprs \[n\] ] \[arg\...\]

DESCRIPTION
ksh The shell output mechanism. With no flags or with flag – or −, the arguments are
printed on standard output as described by echo(1).

OPTIONS
The following options are supported:
- \[-n\] suppresses new-line from being added to the output.
- \[-R\]
- \[-r\] (raw mode) ignore the escape conventions of echo. The -R option
  will print all subsequent arguments and options other than -n.
- \[-p\] causes the arguments to be written onto the pipe of the process
  spawned with | & instead of standard output.
- \[-s\] causes the arguments to be written onto the history file instead of
  standard output.
- \[-u[\[n\]\] flag can be used to specify a one digit file descriptor unit number \[n\]
on which the output will be placed. The default is 1.

EXIT STATUS
The following exit values are returned:
0 Successful operation.
>0 Output file is not open for writing.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
echo(1), ksh(1), attributes(5)
printenv(1B)

NAME
printenv – display environment variables currently set

SYNOPSIS
/usr/ucb/printenv [variable]

DESCRIPTION
printenv prints out the values of the variables in the environment. If a variable is
specified, only its value is printed.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), echo(1), sh(1), stty(1), tset(1B), attributes(5), environ(5)

DIAGNOSTICS
If a variable is specified and it is not defined in the environment, printenv returns an
exit status of 1.
printf(1)

NAME
printf – write formatted output
SYNOPSIS
printf format [argument…]
DESCRIPTION
The printf command writes formatted operands to the standard output. The argument operands are formatted under control of the format operand.

OPERANDS
The following operands are supported:

format
A string describing the format to use to write the remaining operands. The format operand is used as the format string described on the formats(5) manual page, with the following exceptions:

- A SPACE character in the format string, in any context other than a flag of a conversion specification, is treated as an ordinary character that is copied to the output.
- A character in the format string is treated as a character, not as a SPACE character.
- In addition to the escape sequences described on the formats(5) manual page (\, \a, \b, \f, \n, \r, \t, \v), \ddd, where \ddd is a one-, two- or three-digit octal number, is written as a byte with the numeric value specified by the octal number.
- The program does not precede or follow output from the d or u conversion specifications with blank characters not specified by the format operand.
- The program does not precede output from the o conversion specification with zeros not specified by the format operand.
- An additional conversion character, b, is supported as follows. The argument is taken to be a string that may contain backslash-escape sequences. The following backslash-escape sequences are supported:
  - the escape sequences listed on the formats(5) manual page (\, \a, \b, \f, \n, \r, \t, \v), which are converted to the characters they represent
  - \ddd, where \ddd is a zero-, one-, two- or three-digit octal number that is converted to a byte with the numeric value specified by the octal number
  - \c, which is written and causes printf to ignore any remaining characters in the string operand containing it, any remaining string operands and any additional characters in the format operand.

The interpretation of a backslash followed by any other sequence of characters is unspecified.

Bytes from the converted string are written until the end of the string or the number of bytes indicated by the precision specification is reached. If the precision is omitted, it is taken to be
infinite, so all bytes up to the end of the converted string are written. For each specification that consumes an argument, the next argument operand is evaluated and converted to the appropriate type for the conversion as specified below. The format operand is reused as often as necessary to satisfy the argument operands. Any extra c or s conversion specifications are evaluated as if a null string argument were supplied; other extra conversion specifications are evaluated as if a zero argument were supplied. If the format operand contains no conversion specifications and argument operands are present, the results are unspecified. If a character sequence in the format operand begins with a % character, but does not form a valid conversion specification, the behavior is unspecified.

The strings to be written to standard output, under the control of format. The argument operands are treated as strings if the corresponding conversion character is b, c or s. Otherwise, it is evaluated as a C constant, as described by the ISO C standard, with the following extensions:

- A leading plus or minus sign is allowed.
- If the leading character is a single- or double-quote, the value is the numeric value in the underlying codeset of the character following the single- or double-quote.

If an argument operand cannot be completely converted into an internal value appropriate to the corresponding conversion specification, a diagnostic message is written to standard error and the utility does not exit with a zero exit status, but continues processing any remaining operands and writes the value accumulated at the time the error was detected to standard output.

Notice that this printf utility, like the printf(3C) function on which it is based, makes no special provision for dealing with multi-byte characters when using the %c conversion specification or when a precision is specified in a %b or %s conversion specification. Applications should be extremely cautious using either of these features when there are multi-byte characters in the character set.

Field widths and precisions cannot be specified as *.

For compatibility with previous versions of SunOS 5.x, the $ format specifier is supported for formats containing only %s specifiers.

The %b conversion specification is not part of the ISO C standard; it has been added here as a portable way to process backslash escapes expanded in string operands as provided by the echo utility. See also the USAGE section of the echo(1) manual page for ways to use printf as a replacement for all of the traditional versions of the echo utility.
If an argument cannot be parsed correctly for the corresponding conversion specification, the printf utility reports an error. Thus, overflow and extraneous characters at the end of an argument being used for a numeric conversion are to be reported as errors.

It is not considered an error if an argument operand is not completely used for a c or s conversion or if a string operand’s first or second character is used to get the numeric value of a character.

EXAMPLE 1 Printing a series of prompts

To alert the user and then print and read a series of prompts:

```bash
example% printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone
```

EXAMPLE 2 Printing a table of calculations

To read out a list of right and wrong answers from a file, calculate the percentage correctly, and print them out. The numbers are right-justified and separated by a single tab character. The percentage is written to one decimal place of accuracy:

```bash
example% while read right wrong ; do
 percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
 printf "%2d right \t%2d wrong \t(%s\%%) \n" \n $right $wrong $percent
done < database_file
```

EXAMPLE 3 Printing number strings

The command:

```bash
example% printf "%5d%4d\n" 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1
```

produces:

```
 1 2 1
321 321
54321 0
```

Notice that the format operand is used three times to print all of the given strings and that a 0 was supplied by printf to satisfy the last %4d conversion specification.

EXAMPLE 4 Tabulating conversion errors

The printf utility tells the user when conversion errors are detected while producing numeric output; thus, the following results would be expected on an implementation with 32-bit twos-complement integers when %d is specified as the format operand:
EXAMPLE 4 Tabulating conversion errors (Continued)

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Standard</th>
<th>Diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>5</td>
<td>printf: 5a not completely converted</td>
</tr>
<tr>
<td>9999999999</td>
<td>2147483647</td>
<td>printf: 9999999999: Results too large</td>
</tr>
<tr>
<td>-9999999999</td>
<td>-2147483648</td>
<td>printf: -9999999999: Results too large</td>
</tr>
<tr>
<td>ABC</td>
<td>0</td>
<td>printf: ABC expected numeric value</td>
</tr>
</tbody>
</table>

Notice that the value shown on standard output is what would be expected as the return value from the function `strtol(3C)`. A similar correspondence exists between `%u` and `strtoul(3C)`, and `%e`, `%f` and `%g` and `strtod(3C).

EXAMPLE 5 Printing output for a specific locale

In a locale using the ISO/IEC 646:1991 standard as the underlying codeset, the command:

```
example% printf "%d\n" 3 +3 -3 \'3' \"+3 \"-3\n"
```

produces:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Numeric value of constant 3</td>
</tr>
<tr>
<td>3</td>
<td>Numeric value of constant 3</td>
</tr>
<tr>
<td>−3</td>
<td>Numeric value of constant −3</td>
</tr>
<tr>
<td>51</td>
<td>Numeric value of the character '3' in the ISO/IEC 646:1991 standard codeset</td>
</tr>
<tr>
<td>43</td>
<td>Numeric value of the character '+' in the ISO/IEC 646:1991 standard codeset</td>
</tr>
<tr>
<td>45</td>
<td>Numeric value of the character '-' in the ISO/IEC 646:1991 standard codeset</td>
</tr>
</tbody>
</table>

Notice that in a locale with multi-byte characters, the value of a character is intended to be the value of the equivalent of the `wchar_t` representation of the character.

If an argument operand cannot be completely converted into an internal value appropriate to the corresponding conversion specification, a diagnostic message is written to standard error and the utility does exit with a zero exit status, but continues processing any remaining operands and writes the value accumulated at the time the error was detected to standard output.

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `printf`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, `LC_NUMERIC`, and `NLSPATH`.

**EXIT STATUS**

The following exit values are returned: 1228
Successful completion.
>0 An error occurred.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

**SEE ALSO**
awk(1), bc(1), echo(1), printf(3C), strtod(3C), strtol(3C), strtoul(3C), attributes(5), environ(5), formats(5), standards(5)
priocntl(1)

NAME     priocntl – display or set scheduling parameters of specified process(es)

SYNOPSIS   priocntl -l
            priocntl -d [-i idtype] [idlist]
            priocntl -s [-c class] [class-specific options] [-i idtype] [idlist]
            priocntl -e [-c class] [class-specific options] command [argument(s)]

DESCRIPTION   The priocntl command displays or sets scheduling parameters of the specified
               process(es). It can also be used to display the current configuration information for the
               system’s process scheduler or execute a command with specified scheduling
               parameters.

               Processes fall into distinct classes with a separate scheduling policy applied to each
               class. The process classes currently supported are the real-time class, time-sharing
               class, interactive class, fair-share class, and the fixed priority class. The characteristics
               of these classes and the class-specific options they accept are described below in the
               USAGE section under the headings Real-Time Class, Time-Sharing Class,
               Inter-Active Class, Fair-Share Class, and Fixed-Priority Class. With
               appropriate permissions, the priocntl command can change the class and other
               scheduling parameters associated with a running process.

               In the default configuration, a runnable real-time process runs before any other
               process. Therefore, inappropriate use of real-time processes can have a dramatic
               negative impact on system performance.

               If an idlist is present, it must appear last on the command line and the elements of the
               list must be separated by white space. If no idlist is present, an idtype argument of pid,
               ppid, pgid, sid, taskid, class, uid, gid, or projid specifies the process ID,
               parent process ID, process group ID, session ID, task ID, class, user ID, group ID, or
               project ID, respectively, of the priocntl command itself.

               The command

               priocntl -d [-i idtype] [idlist]

               displays the class and class-specific scheduling parameters of the process(es) specified
               by idtype and idlist.

               The command

               priocntl -s [-c class] [class-specific options] \
                          [-i idtype] [idlist]

               sets the class and class-specific parameters of the specified processes to the values
               given on the command line. The -c class option specifies the class to be set. (The valid
               class arguments are RT for real-time, TS for time-sharing, IA for inter-active, FSS for
               fair-share, or FX for fixed-priority.)
The class-specific parameters to be set are specified by the class-specific options as explained under the appropriate heading below. If the -c class option is omitted, idtype and idlist must specify a set of processes which are all in the same class, otherwise an error results. If no class-specific options are specified, the process’s class-specific parameters are set to the default values for the class specified by -c class (or to the default parameter values for the process’s current class if the -c class option is also omitted).

In order to change the scheduling parameters of a process using priocntl the real or effective user ID (respectively, groupID) of the user invoking priocntl must match the real or effective user ID (respectively, groupID) of the receiving process or the effective user ID of the user must be super-user. These are the minimum permission requirements enforced for all classes. An individual class may impose additional permissions requirements when setting processes to that class or when setting class-specific scheduling parameters.

When idtype and idlist specify a set of processes, priocntl acts on the processes in the set in an implementation-specific order. If priocntl encounters an error for one or more of the target processes, it may or may not continue through the set of processes, depending on the nature of the error.

If the error is related to permissions, priocntl prints an error message and then continues through the process set, resetting the parameters for all target processes for which the user has appropriate permissions. If priocntl encounters an error other than permissions, it does not continue through the process set but prints an error message and exits immediately.

A special sys scheduling class exists for the purpose of scheduling the execution of certain special system processes (such as the swapper process). It is not possible to change the class of any process to sys. In addition, any processes in the sys class that are included in the set of processes specified by idtype and idlist are disregarded by priocntl. For example, if idtype were uid, an idlist consisting of a zero would specify all processes with a UID of 0, except processes in the sys class and (if changing the parameters using the -s option) the init process.

The init process (process ID 1) is a special case. In order for the priocntl command to change the class or other scheduling parameters of the init process, idtype must be pid and idlist must be consist of only a 1. The init process may be assigned to any class configured on the system, but the time-sharing class is almost always the appropriate choice. (Other choices may be highly undesirable; see the System Administration Guide: Basic Administration for more information.)

The command

\[\text{priocntl} -e [-c \text{class}] [\text{class-specific options}] \text{command} \\[\text{argument...}\]\]

executes the specified command with the class and scheduling parameters specified on the command line (arguments are the arguments to the command). If the -c class option is omitted the command is run in the user’s current class.
The following options are supported:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-c class</code></td>
<td>Specifies the <code>class</code> to be set. The valid <code>class</code> arguments are <code>RT</code> for real-time, <code>TS</code> for time-sharing, <code>IA</code> for inter-active, <code>FSS</code> for fair-share, or <code>FX</code> for fixed-priority. If the specified class is not already configured, it will be automatically configured.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>Displays the scheduling parameters associated with a set of processes.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Executes a specified command with the class and scheduling parameters associated with a set of processes.</td>
</tr>
<tr>
<td><code>-i idtype</code></td>
<td>This option, together with the <code>idlist</code> arguments (if any), specifies one or more processes to which the <code>priocntl</code> command is to apply. The interpretation of <code>idlist</code> depends on the value of <code>idtype</code>. The valid <code>idtype</code> arguments and corresponding interpretations of <code>idlist</code> are as follows:</td>
</tr>
<tr>
<td><code>-ipid</code></td>
<td><code>idlist</code> is a list of process IDs. The <code>priocntl</code> command applies to the specified processes.</td>
</tr>
<tr>
<td><code>-ippid</code></td>
<td><code>idlist</code> is a list of parent process IDs. The <code>priocntl</code> command applies to all processes whose parent process ID is in the list.</td>
</tr>
<tr>
<td><code>-ipgid</code></td>
<td><code>idlist</code> is a list of process group IDs. The <code>priocntl</code> command applies to all processes in the specified process groups.</td>
</tr>
<tr>
<td><code>-isid</code></td>
<td><code>idlist</code> is a list of session IDs. The <code>priocntl</code> command applies to all processes in the specified sessions.</td>
</tr>
<tr>
<td><code>-itaskid</code></td>
<td><code>idlist</code> is a list of task IDs. The <code>priocntl</code> command applies to all processes in the specified tasks.</td>
</tr>
<tr>
<td><code>-iclass</code></td>
<td><code>idlist</code> consists of a single class name (<code>RT</code> for real-time, <code>TS</code> for time-sharing, <code>IA</code> for inter-active, <code>FSS</code> for fair-share, or <code>FX</code> for fixed-priority). The <code>priocntl</code> command applies to all processes in the specified class.</td>
</tr>
<tr>
<td><code>-iuid</code></td>
<td><code>idlist</code> is a list of user IDs. The <code>priocntl</code> command applies to all processes with an effective user ID equal to an ID from the list.</td>
</tr>
<tr>
<td><code>-igid</code></td>
<td><code>idlist</code> is a list of group IDs. The <code>priocntl</code> command applies to all processes with an effective group ID equal to an ID from the list.</td>
</tr>
</tbody>
</table>
-i projid  
  *idlist* is a list of project IDs. The *priocntl* command applies to all processes with an effective project ID equal to an ID from the list.

- i all  
  The *priocntl* command applies to all existing processes. No *idlist* should be specified (if one is specified, it is ignored). The permission restrictions described below still apply.

If the -i *idtype* option is omitted when using the -d or -s options the default *idtype* of *pid* is assumed.

-1  
  Displays a list of the classes currently configured in the system along with class-specific information about each class. The format of the class-specific information displayed is described under USAGE.

-s  
  Sets the scheduling parameters associated with a set of processes.

The valid class-specific options for setting real-time parameters are:

  -p *rtpri*  
  Sets the real-time priority of the specified process(es) to *rtpri*.

  -t *tqntm* [-r *res*]  
  Sets the time quantum of the specified process(es) to *tqntm*. You may optionally specify a resolution as explained below.

  -q *tqsig*  
  Sets the real-time time quantum signal of the specified process(es) to *tqsig*.

The valid class-specific options for setting time-sharing parameters are:

  -m *tsuprilim*  
  Sets the user priority limit of the specified process(es) to *tsuprilim*.

  -p *tsupri*  
  Sets the user priority of the specified process(es) to *tsupri*.

The valid class-specific options for setting inter-active parameters are:

  -m *iauprilim*  
  Sets the user priority limit of the specified process(es) to *iauprilim*.

  -p *iaupri*  
  Sets the user priority of the specified process(es) to *iaupri*.

The valid class-specific options for setting fair-share parameters are:

  -m *fssuprilim*  
  Sets the user priority limit of the specified process(es) to *fssuprilim*.

  -p *fssupri*  
  Sets the user priority of the specified process(es) to *fssupri*.

The valid class-specific options for setting fixed-priority parameters are:

  -m *fxuprilim*  
  Sets the user priority limit of the specified process(es) to *fxuprilim*.

  -p *fxupri*  
  Sets the user priority of the specified process(es) to *fxupri*.
-t tqntm [-r res] Sets the time quantum of the specified process(es) to tqntm. You may optionally specify a resolution as explained below.

**Real-Time Class**

The real-time class provides a **fixed priority preemptive** scheduling policy for those processes requiring fast and deterministic response and absolute user/application control of scheduling priorities. If the real-time class is configured in the system, it should have exclusive control of the highest range of scheduling priorities on the system. This ensures that a runnable real-time process is given CPU service before any process belonging to any other class.

The real-time class has a range of real-time priority (rtpri) values that may be assigned to processes within the class. Real-time priorities range from 0 to \( x \), where the value of \( x \) is configurable and can be displayed for a specific installation that has already configured a real-time scheduler, by using the command

```
priocntl -l
```

The real-time scheduling policy is a **fixed priority** policy. The scheduling priority of a real-time process never changes except as the result of an explicit request by the user/application to change the rtpri value of the process.

For processes in the real-time class, the rtpri value is, for all practical purposes, equivalent to the scheduling priority of the process. The rtpri value completely determines the scheduling priority of a real-time process relative to other processes within its class. Numerically higher rtpri values represent higher priorities. Since the real-time class controls the highest range of scheduling priorities in the system, it is guaranteed that the runnable real-time process with the highest rtpri value is always selected to run before any other process in the system.

In addition to providing control over priority, priocntl provides for control over the length of the time quantum allotted to processes in the real-time class. The time quantum value specifies the maximum amount of time a process may run, assuming that it does not complete or enter a resource or event wait state (sleep). Notice that if another process becomes runnable at a higher priority, the currently running process may be preempted before receiving its full time quantum.

The command

```
priocntl -d [-i idtype] [idlist]
```

displays the real-time priority, time quantum (in millisecond resolution), and time quantum signal value for each real-time process in the set specified by idtype and idlist.

Any combination of the -p, -t [-r], and -q options may be used with priocntl -s or priocntl -e for the real-time class. If an option is omitted and the process is currently real-time, the associated parameter is unaffected. If an option is omitted
when changing the class of a process to real-time from some other class, the associated parameter is set to a default value. The default value for rtpri is 0 and the default for time quantum is dependent on the value of rtpri and on the system configuration; see rt_dptbl(4).

When using the -t tqntm option, you may optionally specify a resolution using the -r res option. (If no resolution is specified, millisecond resolution is assumed.) If res is specified, it must be a positive integer between 1 and 1,000,000,000 inclusively and the resolution used is the reciprocal of res in seconds. For example, specifying -t 10 -r 100 would set the resolution to hundredths of a second and the resulting time quantum length would be 10/100 seconds (one tenth of a second). Although very fine (nanosecond) resolution may be specified, the time quantum length is rounded up by the system to the next integral multiple of the system clock’s resolution. Requests for time quantums of zero or quantums greater than the (typically very large) implementation-specific maximum quantum result in an error.

The real-time time quantum signal can be used to notify runaway real-time processes about the consumption of their time quantum. Those processes, which are monitored by the real-time time quantum signal, receive the configured signal in the event of time quantum expiration. The default value (0) of the time quantum signal tqsig will denote no signal delivery. A positive value will denote the delivery of the signal specified by the value. Like kill(1) and other commands operating on signals, the -q tqsig option is also able to handle symbolically named signals, like XCPU or KILL.

In order to change the class of a process to real-time (from any other class), the user invoking priocntl must have super-user privilege. In order to change the rtpri value or time quantum of a real-time process, the user invoking priocntl must either be super-user, or must currently be in the real-time class (shell running as a real-time process) with a real or effective user ID matching the real or effective user ID of the target process.

The real-time priority, time quantum, and time quantum signal are inherited across the fork(2) and exec(2) system calls. When using the time quantum signal with a user defined signal handler across the exec(2) system call, the new image must install an appropriate user defined signal handler before the time quantum expires. Otherwise, unpredictable behavior would result.

The time-sharing scheduling policy provides for a fair and effective allocation of the CPU resource among processes with varying CPU consumption characteristics. The objectives of the time-sharing policy are to provide good response time to interactive processes and good throughput to CPU-bound jobs, while providing a degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (tsupri) values that may be assigned to processes within the class. User priorities range from $-x$ to $+x$, where the value of $x$ is configurable. The range for a specific installation can be displayed by using the command

```
priocntl -l
```
The purpose of the user priority is to provide some degree of user/application control over the scheduling of processes in the time-sharing class. Raising or lowering the tsupri value of a process in the time-sharing class raises or lowers the scheduling priority of the process. It is not guaranteed, however, that a time-sharing process with a higher tsupri value will run before one with a lower tsupri value. This is because the tsupri value is just one factor used to determine the scheduling priority of a time-sharing process. The system may dynamically adjust the internal scheduling priority of a time-sharing process based on other factors such as recent CPU usage.

In addition to the system-wide limits on user priority (displayed with priocntl -l), there is a per process user priority limit (tsuprilim), which specifies the maximum tsupri value that may be set for a given process.

The command

```
priocntl -d [-i idtype] [idlist]
```

displays the user priority and user priority limit for each time-sharing process in the set specified by idtype and idlist.

Any time-sharing process may lower its own tsuprilim (or that of another process with the same user ID). Only a time-sharing process with super-user privilege may raise a tsuprilim. When changing the class of a process to time-sharing from some other class, super-user privilege is required in order to set the initial tsuprilim to a value greater than zero.

Any time-sharing process may set its own tsupri (or that of another process with the same user ID) to any value less than or equal to the process’s tsuprilim. Attempts to set the tsupri above the tsuprilim (and/or set the tsuprilim below the tsupri) result in the tsupri being set equal to the tsuprilim which is being set.

Any combination of the -m and -p options may be used with priocntl -s or priocntl -e for the time-sharing class. If an option is omitted and the process is currently time-sharing, the associated parameter is normally unaffected. The exception is when the -p option is omitted and -m is used to set a tsuprilim below the current tsupri. In this case, the tsupri is set equal to the tsuprilim which is being set. If an option is omitted when changing the class of a process to time-sharing from some other class, the associated parameter is set to a default value. The default value for tsuprilim is 0 and the default for tsupri is to set it equal to the tsuprilim value which is being set.

The time-sharing user priority and user priority limit are inherited across the fork(2) and exec(2) system calls.

**Inter-Active Class**

The inter-active scheduling policy provides for a fair and effective allocation of the CPU resource among processes with varying CPU consumption characteristics while providing good responsiveness for user interaction. The objectives of the inter-active policy are to provide good response time to interactive processes and good
throughput to CPU-bound jobs. The priorities of processes in the inter-active class can be changed in the same manner as those in the time-sharing class, though the modified priorities will continue to be adjusted to provide good responsiveness for user interaction.

The inter-active user priority limit, \textit{iappri}, is equivalent to \textit{tsupri}. The inter-active per process user priority, \textit{iapprilim}, is equivalent to \textit{tsuprilim}.

Inter-active class processes that have the \textit{iamode} ("interactive mode") bit set are given a priority boost value of 10, which is factored into the user mode priority of the process when that calculation is made, that is, every time a process’s priority is adjusted. This feature is used by the X windowing system, which sets this bit for those processes that run inside of the current active window to give them a higher priority.

**Fair-Share Class**

The fair-share scheduling policy provides a fair allocation of system CPU resources among projects, independent of the number of processes they own. Projects are given ‘shares’ to control their entitlement to CPU resources. Resource usage is remembered over time, so that entitlement is reduced for heavy usage, and increased for light usage, with respect to other projects. CPU time is scheduled among processes according to their owner’s entitlements, independent of the number of processes each project owns.

The FSS scheduling class supports the notion of per-process user priority and user priority limit for compatibility with the time-share scheduler. The fair share scheduler attempts to provide an evenly graded effect across the whole range of user priorities. Processes with positive \textit{fssupri} values receive time slices less frequently than normal, while negative nice processes receive time slices more frequently than normal. Notice that user priorities do not interfere with shares. That is, changing a \textit{fssupri} value of a process is not going to affect its project’s overall CPU usage which only relates to the amount of shares it is allocated compared to other projects.

The priorities of processes in the fair-share class can be changed in the same manner as those in the time-share class.

**Fixed-Priority Class**

The fixed-priority class provides a fixed priority preemptive scheduling policy for those processes requiring that the scheduling priorities do not get dynamically adjusted by the system and that the user/application have control of the scheduling priorities.

The fixed-priority class shares the same range of scheduling priorities with the time-sharing class, by default. The fixed-priority class has a range of fixed-priority user priority (\textit{fxupri}) values that may be assigned to processes within the class. User priorities range from 0 to \textit{x}, where the value of \textit{x} is configurable. The range for a specific installation can be displayed by using the command

\texttt{priocntl -l}
The purpose of the user priority is to provide user/application control over the scheduling of processes in the fixed-priority class. For processes in the fixed-priority class, the $fxupri$ value is, for all practical purposes, equivalent to the scheduling priority of the process. The $fxupri$ value completely determines the scheduling priority of a fixed-priority process relative to other processes within its class. Numerically higher $fxupri$ values represent higher priorities.

In addition to the system-wide limits on user priority (displayed with `priocntl -l`), there is a per process user priority limit ($fxuprilim$), which specifies the maximum $fxupri$ value that may be set for a given process.

Any fixed-priority process may lower its own $fxupri$ (or that of another process with the same user ID). Only a process with super-user privilege may raise a $fxuprilim$. When changing the class of a process to fixed-priority from some other class, super-user privilege is required in order to set the initial $fxuprilim$ to a value greater than zero.

Any fixed-priority process may set its own $fxupri$ (or that of another process with the same user ID) to any value less than or equal to the process’s $fxuprilim$. Attempts to set the $fxupri$ above the $fxuprilim$ (and/or set the $fxuprilim$ below the $fxupri$) result in the $fxupri$ being set equal to the $fxuprilim$.

In addition to providing control over priority, `priocntl` provides for control over the length of the time quantum allotted to processes in the fixed-priority class. The time quantum value specifies the maximum amount of time a process may run, before surrendering the CPU, assuming that it does not complete or enter a resource or event wait state (sleep). Notice that if another process becomes runnable at a higher priority, the currently running process may be preempted before receiving its full time quantum.

Any combination of the `-m`, `-p`, and `-t` options may be used with `priocntl -s` or `priocntl -e` for the fixed-priority class. If an option is omitted and the process is currently fixed-priority, the associated parameter is normally unaffected. The exception is when the `-p` option is omitted and the `-m` option is used to set a $fxuprilim$ below the current $fxupri$. In this case, the $fxupri$ is set equal to the $fxuprilim$ which is being set. If an option is omitted when changing the class of a process to fixed-priority from some other class, the associated parameter is set to a default value. The default value for $fxuprilim$ is 0. The default for $fxupri$ is to set it equal to the $fxuprilim$ value which is being set. The default for time quantum is dependent on the $fxupri$ and on the system configuration. See `fx_dptbl(4)`.

The time quantum of processes in the fixed-priority class can be changed in the same manner as those in the real-time class.

The fixed-priority user priority, user priority limit, and time quantum are inherited across the `fork(2)` and `exec(2)` system calls.

**EXAMPLES**

Real-Time Class examples follow:
EXAMPLE 1 Setting the class of any non-real-time processes

This example sets the class of any non-real-time processes selected by `idtype` and `idlist` to real-time and sets their real-time priority to the default value of 0. The real-time priorities of any processes currently in the real-time class are unaffected. The time quantums of all of the specified processes are set to 1/10 seconds.

```
example% priocntl -s -c RT -t 1 -r 10 -i idtype idlist
```

EXAMPLE 2 Executing a command in real-time

This example executes `command` in the real-time class with a real-time priority of 15 and a time quantum of 20 milliseconds:

```
example% priocntl -e -c RT -p 15 -t 20 command
```

EXAMPLE 3 Executing a command in real-time with a specified quantum signal

This example executes `command` in the real-time class with a real-time priority of 11, a time quantum of 250 milliseconds, and where the specified real-time quantum signal is `SIGXCPU`:

```
example% priocntl -e -c RT -p 11 -t 250 -q XCPU command
```

Time-Sharing Class examples follow:

EXAMPLE 4 Setting the class of non-time-sharing processes

This example sets the class of any non-time-sharing processes selected by `idtype` and `idlist` to time-sharing and sets both their user priority limit and user priority to 0. Processes already in the time-sharing class are unaffected.

```
example% priocntl -s -c TS -i idtype idlist
```

EXAMPLE 5 Executing a command in the time-sharing class

This example executes `command` with the arguments `arguments` in the time-sharing class with a user priority limit of 0 and a user priority of −15:

```
example% priocntl -e -c TS -m 0 -p -15 command [arguments]
```

EXAMPLE 6 Executing a command in fixed-priority class

This example executes a command in the fixed-priority class with a user priority limit of 20 and user priority of 10 and time quantum of 250 milliseconds:

```
example% priocntl -e -c FX -m 20 -p 10 -t 250 command
```

EXIT STATUS

The following exit values are returned:
For options -d, -l, and -s:
0 Successful operation.
1 Error condition.

For option -e:
Return of the Exit Status of the executed command denotes successful operation. Otherwise,
1 Command could not be executed at the specified priority.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO
kill(1), nice(1), ps(1), exec(2), fork(2), priocntl(2), fx_dptbl(4),
rt_dptbl(4), attributes(5), FSS(7)

System Administration Guide: Basic Administration

DIAGNOSTICS
priocntl prints the following error messages:
Process(es) not found
  None of the specified processes exists.

Specified processes from different classes
  The -s option is being used to set parameters, the -c class option is not present,
  and processes from more than one class are specified.

Invalid option or argument
  An unrecognized or invalid option or option argument is used.
proc(1)

NAME
proc, pflags, pcred, pldd, psig, pstack, pfiles, pwdx, pstop, prun, pwait, ptree, ptime –
proc tools

SYNOPSIS
/usr/bin/pflags [-r] [pid | core...]
/usr/bin/pcred [pid | core...]
/usr/bin/pldd [-F] [pid | core...]
/usr/bin/psig [-n] pid...
/usr/bin/pstack [-F] [pid | core...]
/usr/bin/pfiles [-F] pid...
/usr/bin/pwdx [-F] pid...
/usr/bin/pstop pid...
/usr/bin/prun pid...
/usr/bin/pwait [-v] pid...
/usr/bin/ptree [-a] [pid | user...]
/usr/bin/ptime command [arg...]

DESCRIPTION
The proc tools are utilities that exercise features of /proc (see proc(4)). Most of them take a list of process-ids (pid). The tools that do take process-ids also accept /proc/nnn as a process-id, so the shell expansion /proc/* can be used to specify all processes in the system.

Some of the proc tools can also be applied to core files (see core(4)). The tools that apply to core files accept a list of either process IDs or names of core files or both.

See WARNINGS.

pflags
Print the /proc tracing flags, the pending and held signals, and other /proc status information for each lwp in each process.

pcred
Print the credentials (effective, real, saved UIDs and GIDs) of each process.

pldd
List the dynamic libraries linked into each process, including shared objects explicitly attached using dlopen(3DL). See also ldd(1).

psig
List the signal actions and handlers of each process. See signal(3HEAD).

pstack
Print a hex+symbolic stack trace for each lwp in each process.

pfiles
Report fstat(2) and fcntl(2) information for all open files in each process.

pwdx
Print the current working directory of each process.

pstop
Stop each process (PR_REQUESTED stop).
prun: Set each process running (inverse of pstop).

pwait: Wait for all of the specified processes to terminate.

ptree: Print the process trees containing the specified pids or users, with child processes indented from their respective parent processes. An argument of all digits is taken to be a process-id, otherwise it is assumed to be a user login name. Default is all processes.

ptime: Time the command, like time(1), but using microstate accounting for reproducible precision. Unlike time(1), children of the command are not timed.

**OPTIONS**
The following options are supported:

- **-a** (ptree only) All. Includes children of process 0.
- **-F** Force. Grabs the target process even if another process has control.
- **-n** (psig only) Displays signal handler addresses rather than names.
- **-r** (pflags only) If the process is stopped, displays its machine registers.
- **-v** (pwait only) Verbose. Reports terminations to standard output.

**USAGE**
These proc tools stop their target processes while inspecting them and reporting the results: pfiles, pldd, and pstack. A process can do nothing while it is stopped. Thus, for example, if the X server is inspected by one of these proc tools running in a window under the X server's control, the whole window system can become deadlocked because the proc tool would be attempting to print its results to a window that cannot be refreshed. Logging in from another system using rlogin(1) and killing the offending proc tool would clear up the deadlock in this case.

See WARNINGS.

Caution should be exercised when using the **-F** flag. Imposing two controlling processes on one victim process can lead to chaos. Safety is assured only if the primary controlling process, typically a debugger, has stopped the victim process and the primary controlling process is doing nothing at the moment of application of the proc tool in question.

Some of the proc tools can also be applied to core files, as shown by the synopsis above. A core file is a snapshot of a process's state and is produced by the kernel prior to terminating a process with a signal or by the gcore(1) utility. Some of the proc tools may need to derive the name of the executable corresponding to the process which dumped core or the names of shared libraries associated with the process. These files are needed, for example, to provide symbol table information for pstack(1). If the proc tool in question is unable to locate the needed executable or shared library, some symbol information will be unavailable for display. Similarly, if a
core file from one operating system release is examined on a different operating system release, the run-time link-editor debugging interface (librtld_db) may not be able to initialize. In this case, symbol information for shared libraries will not be available.

**EXIT STATUS** The following exit values are returned:

- 0: Successful operation.
- non-zero: An error has occurred.

**FILES**

- `/proc/*`: process files
- `/usr/proc/lib/*`: proc tools supporting files

**ATTRIBUTES** See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWesxu (64-bit)</td>
</tr>
</tbody>
</table>

**SEE ALSO**
gcore(1), ldd(1), pargs(1), pgrep(1), pkill(1), pmap(1), ppreap(1), ps(1), pwd(1), rlogin(1), time(1), truss(1), wait(1), fcntl(2), fstat(2), dlopen(3DL), signal(3HEAD), core(4), proc(4), attributes(5)

**WARNINGS** The following proc tools stop their target processes while inspecting them and reporting the results: pfiles, pldd, pmap, and pstack.

A process can do nothing while it is stopped. Stopping a heavily used process in a production environment, even for a short amount of time, can cause severe bottlenecks and even hangs of these processes, causing them to be unavailable to users. Some databases could also terminate abnormally. Thus, for example, a database server under heavy load could hang when one of the database processes is traced using the above mentioned proc tools. Because of this, stopping a UNIX process in a production environment should be avoided.

A process being stopped by these tools can be identified by issuing `/usr/bin/ps -efLL` and looking for "T" in the first column. Notice that certain processes, for example "sched", can show the "T" status by default most of the time.
The `prof` command interprets a profile file produced by the `monitor` function. The symbol table in the object file `prog` (a.out by default) is read and correlated with a profile file (mon.out by default). For each external text symbol the percentage of time spent executing between the address of that symbol and the address of the next is printed, together with the number of times that function was called and the average number of milliseconds per call.

The mutually exclusive options `-a`, `-c`, `-n`, and `-t` determine the type of sorting of the output lines:

- `-a` Sort by increasing symbol address.
- `-c` Sort by decreasing number of calls.
- `-n` Sort lexically by symbol name.
- `-t` Sort by decreasing percentage of total time (default).

The mutually exclusive options `-o` and `-x` specify the printing of the address of each symbol monitored:

- `-o` Print each symbol address (in octal) along with the symbol name.
- `-x` Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options `-g` and `-l` control the type of symbols to be reported. The `-l` option must be used with care; it applies the time spent in a static function to the preceding (in memory) global function, instead of giving the static function a separate entry in the report. If all static functions are properly located, this feature can be very useful. If not, the resulting report may be misleading.

Assume that `A` and `B` are global functions and only `A` calls static function `S`. If `S` is located immediately after `A` in the source code (that is, if `S` is properly located), then, with the `-l` option, the amount of time spent in `A` can easily be determined, including the time spent in `S`. If, however, both `A` and `B` call `S`, then, if the `-l` option is used, the report will be misleading; the time spent during `B`'s call to `S` will be attributed to `A`, making it appear as if more time had been spent in `A` than really had. In this case, function `S` cannot be properly located.

- `-g` List the time spent in static (non-global) functions separately. The `-g` option function is the opposite of the `-l` function.
- `-l` Suppress printing statically declared functions. If this option is given, time spent executing in a static function is allocated to the closest global function loaded before the static function in the executable. This option is the default. It is the opposite of the `-g` function and should be used with care.

The following options may be used in any combination:
Demangle C++ symbol names before printing them out.

Suppress the heading normally printed on the report. This is useful if the report is to be processed further.

Use file mdata instead of mon.out as the input profile file.

Print a summary of several of the monitoring parameters and statistics on the standard error output.

Print prof version information on the standard error output.

Include all symbols in the profile range, even if associated with zero number of calls and zero time.

A program creates a profile file if it has been link edited with the -p option of cc(1B). This option to the cc(1B) command arranges for calls to monitor at the beginning and end of execution. It is the call to monitor at the end of execution that causes the system to write a profile file. The number of calls to a function is tallied if the -p option was used when the file containing the function was compiled.

A single function may be split into subfunctions for profiling by means of the MARK macro. See prof(5).

The name of the file created by a profiled program is controlled by the environment variable PROFDIR. If PROFDIR is not set, mon.out is produced in the directory current when the program terminates. If PROFDIR=string, string/pid.progname is produced, where progname consists of argv[0] with any path prefix removed, and pid is the process ID of the program. If PROFDIR is set, but null, no profiling output is produced.

FILES

mon.out default profile file

a.out default namelist (object) file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO

c(1B), gprof(1), exit(2), pcsample(2), profil(2), malloc(3C), malloc(3MALLOCC), monitor(3C), attributes(5), prof(5)

NOTES

The times reported in successive identical runs may show variances because of varying cache-hit ratios that result from sharing the cache with other processes. Even if a program seems to be the only one using the machine, hidden background or asynchronous processes may blur the data. In rare cases, the clock ticks initiating recording of the program counter may "beat" with loops in a program, grossly distorting measurements. Call counts are always recorded precisely, however.
Only programs that call `exit` or return from `main` are guaranteed to produce a profile file, unless a final call to `monitor` is explicitly coded.

The times for static functions are attributed to the preceding external text symbol if the `-g` option is not used. However, the call counts for the preceding function are still correct; that is, the static function call counts are not added to the call counts of the external function.

If more than one of the options `-t`, `-c`, `-a`, and `-n` is specified, the last option specified is used and the user is warned.

`LD_LIBRARY_PATH` must not contain `/usr/lib` as a component when compiling a program for profiling. If `LD_LIBRARY_PATH` contains `/usr/lib`, the program will not be linked correctly with the profiling versions of the system libraries in `/usr/lib/libp`. See `gprof(1)`.

Functions such as `mcount()`, `_mcount()`, `moncontrol()`, `_moncontrol()`, `monitor()`, and `_monitor()` may appear in the `prof` report. These functions are part of the profiling implementation and thus account for some amount of the runtime overhead. Since these functions are not present in an unprofiled application, time accumulated and call counts for these functions may be ignored when evaluating the performance of an application.

**64-bit profiling**

64-bit profiling may be used freely with dynamically linked executables, and profiling information is collected for the shared objects if the objects are compiled for profiling. Care must be applied to interpret the profile output, since it is possible for symbols from different shared objects to have the same name. If duplicate names are seen in the profile output, it is better to use the `-s` (summary) option, which prefixes a module id before each symbol that is duplicated. The symbols can then be mapped to appropriate modules by looking at the modules information in the summary.

If the `-a` option is used with a dynamically linked executable, the sorting occurs on a per-shared-object basis. Since there is a high likelihood of symbols from different shared objects to have the same value, this results in an output that is more understandable. A blank line separates the symbols from different shared objects, if the `-s` option is given.

**32-bit profiling**

32-bit profiling may be used with dynamically linked executables, but care must be applied. In 32-bit profiling, shared objects cannot be profiled with `prof`. Thus, when a profiled, dynamically linked program is executed, only the "main" portion of the image is sampled. This means that all time spent outside of the "main" object, that is, time spent in a shared object, will not be included in the profile summary; the total time reported for the program may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared objects should be minimized whenever a program is profiled with `prof`. If desired, the program should be linked to the profiled version of a library (or to the standard
archive version if no profiling version is available), instead of the shared object to get profile information on the functions of a library. Versions of profiled libraries may be supplied with the system in the /usr/lib/libp directory. Refer to compiler driver documentation on profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C library spends 100 units of time in some libc routine, say, malloc(). Suppose malloc() is called only from routine B and B consumes only 1 unit of time. Suppose further that routine A consumes 10 units of time, more than any other routine in the "main" (profiled) portion of the image. In this case, prof will conclude that most of the time is being spent in A and almost no time is being spent in B. From this it will be almost impossible to tell that the greatest improvement can be made by looking at routine B and not routine A. The value of the profiler in this case is severely degraded; the solution is to use archives as much as possible for profiling.
profiles(1)

<table>
<thead>
<tr>
<th>NAME</th>
<th>profiles – print execution profiles for a user</th>
</tr>
</thead>
</table>

| SYNOPSIS   | profiles [-l] [ user …]                      |

| DESCRIPTION | The profiles command prints on standard output the names of the execution profiles that have been assigned to you or to the optionally-specified user or role name. Profiles are a bundling mechanism used to enumerate the commands and authorizations needed to perform a specific function. Along with each listed executable are the process attributes, such as the effective user and group IDs, with which the process runs when started by a privileged command interpreter. The profile shells are pfcs, pfks, and pfexec. See the pfexec(1) man page. Profiles can contain other profiles defined in prof_attr(4).

Multiple profiles can be combined to construct the appropriate access control. When profiles are assigned, the authorizations are added to the existing set. If the same command appears in multiple profiles, the first occurrence, as determined by the ordering of the profiles, is used for process-attribute settings. For convenience, a wildcard can be specified to match all commands.

When profiles are interpreted, the profile list is loaded from user_attr(4). If any default profile is defined in /etc/security/policy.conf (see policy.conf(4)), the list of default profiles will be added to the list loaded from user_attr(4). Matching entries in prof_attr(4) provide the authorizations list, and matching entries in exec_attr(4) provide the commands list.

| OPTIONS     | -l Lists the commands in each profile followed by the special process attributes such as user and group IDs. |

| EXAMPLES    | EXAMPLE 1Sample output |

The output of the profiles command has the following form:

```
example% profiles tester01 tester02

tester01 : Audit Management, All Commands
tester02 : Device Management, All Commands
example%
```

**EXAMPLE 2 Using the list option**

```
extexample% profiles -l tester01 tester02

tester01:
 Audit Management:
 /usr/sbin/audit euid=root
testuser01:/usr/sbin/auditconfig euid=root egid=sys
 All Commands:
 *

tester02:
 Device Management:
 /usr/bin/allocate: euid-root
 /usr/bin/deallocate: euid-root
 All Commands
 *
example%
```
EXIT STATUS
The following exit values are returned:
0 Successful completion.
1 An error occurred.

FILES
/etc/security/exec_attr
/etc/security/prof_attr
/etc/user_attr
/etc/security/policy.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
auths(1), pfexec(1), roles(1), getprofattr(3SECDB), exec_attr(4), policy.conf(4), prof_attr(4), user_attr(4), attributes(5)
NAME     projects – print project membership of user

SYNOPSIS  projects [-dv] [ user]

DESCRIPTION The projects command prints on standard output the projects to which the
invoking user or an optionally specified user belongs. Each user belongs to some set of
projects specified in the project(4) file and possibly in the associated NIS maps and
LDAP databases for project information.

OPTIONS The following options are supported:
-d          Prints only default project.
-v          Prints project descriptions along with project names.

OPERANDS The following operand is supported:
user        Displays project memberships for the specified user.

EXAMPLES  EXAMPLE 1 Displaying membership for a specified user
example$ projects paul
default beatles wings
example$ projects ringo
default beatles
example$ projects -d paul
beatles

EXIT STATUS The following exit values are returned:
0          Successful completion.
1          A fatal error occurred during execution.
2          Invalid command line options were specified.

FILES   /etc/project Local database containing valid project definitions for this
         machine.

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO getdefaultproj(3PROJECT), getprojent(3PROJECT), project(4),
attributes(5)
NAME | ps – report process status

SYNOPSIS | ps [-AcdelfLpy] [ -g grplist ] [ -n namelist ] [ -o format ] ... [ -p proclist ]
[ -s sidlist ] [ -t term ] [ -u uidlist ] [ -U uidlist ] [ -G gidlist ]

DESCRIPTION | The ps command prints information about active processes. Without options, ps prints information about processes that have the same effective user ID and the same controlling terminal as the invoker. The output contains only the process ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the information that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can be either separated by commas or else enclosed in quotes and separated by commas or spaces. Values for proclist and grplist must be numeric.

OPTIONS | The following options are supported:

- `-a` | Lists information about all processes most frequently requested: all those except session leaders and processes not associated with a terminal.
- `-A` | Lists information for all processes. Identical to `-e`, below.
- `-c` | Prints information in a format that reflects scheduler properties as described in priocntl(1). The `-c` option affects the output of the `-f` and `-l` options, as described below.
- `-d` | Lists information about all processes except session leaders.
- `-e` | Lists information about every process now running.
- `-f` | Generates a full listing. (See below for significance of columns in a full listing.)
- `-g grplist` | Lists only process data whose group leader’s ID number(s) appears in grplist. (A group leader is a process whose process ID number is identical to its process group ID number.)
- `-G gidlist` | Lists information for processes whose real group ID numbers are given in gidlist. The gidlist must be a single argument in the form of a blank- or comma-separated list.
- `-j` | Prints session ID and process group ID.
- `-l` | Generates a long listing. (See below.)
- `-L` | Prints information about each light weight process (lwp) in each selected process. (See below.)
- `-n namelist` | Specifies the name of an alternative system namelist file in place of the default. This option is accepted for compatibility, but is ignored.
- `-o format` | Prints information according to the format specification given in format. This is fully described in DISPLAY FORMATS.
options can be specified; the format specification will be interpreted as the space-character-separated concatenation of all the format option-arguments.

-\texttt{ps proclist} Lists only process data whose process ID numbers are given in \texttt{proclist}.

-\texttt{p} Prints the number of the processor to which the process or lwp is bound, if any, under an additional column header, \texttt{PSR}.

-\texttt{s sidlist} Lists information on all session leaders whose IDs appear in \texttt{sidlist}.

-\texttt{t term} Lists only process data associated with \texttt{term}. Terminal identifiers are specified as a device file name, and an identifier. For example, \texttt{term/a}, or \texttt{pts/0}.

-\texttt{u uidlist} Lists only process data whose effective user ID number or login name is given in \texttt{uidlist}. In the listing, the numerical user ID will be printed unless you give the -\texttt{f} option, which prints the login name.

-\texttt{U uidlist} Lists information for processes whose real user ID numbers or login names are given in \texttt{uidlist}. The \texttt{uidlist} must be a single argument in the form of a blank- or comma-separated list.

-\texttt{y} Under a long listing (-\texttt{l}), omits the obsolete \texttt{F} and \texttt{ADDR} columns and includes an \texttt{RSS} column to report the resident set size of the process. Under the -\texttt{y} option, both \texttt{RSS} and \texttt{SZ} (see below) will be reported in units of kilobytes instead of pages.

Many of the options shown are used to select processes to list. If any are specified, the default list will be ignored and \texttt{ps} will select the processes represented by the inclusive OR of all the selection-criteria options.

Under the -\texttt{f} option, \texttt{ps} tries to determine the command name and arguments given when the process was created by examining the user block. Failing this, the command name is printed, as it would have appeared without the -\texttt{f} option, in square brackets.

The column headings and the meaning of the columns in a \texttt{ps} listing are given below; the letters \texttt{f} and \texttt{l} indicate the option (full or long, respectively) that causes the corresponding heading to appear; \texttt{all} means that the heading always appears. \textit{Note:} These two options determine only what information is provided for a process; they do not determine which processes will be listed.

\begin{itemize}
\item \texttt{F (l)} Flags (hexadecimal and additive) associated with the process. These flags are available for historical purposes; no meaning should be currently ascribed to them.
\item \texttt{S (l)} The state of the process:
\begin{itemize}
\item \texttt{O} Process is running on a processor.
\item \texttt{S} Sleeping: process is waiting for an event to complete.
\end{itemize}
\end{itemize}
R Runnable: process is on run queue.
Z Zombie state: process terminated and parent not
waiting.
T Process is stopped, either by a job control signal or
because it is being traced.

UID (f,l) The effective user ID number of the process (the login name is
printed under the -f option).
PID (all) The process ID of the process (this datum is necessary in order to
kill a process).
PPID (f,l) The process ID of the parent process.
C (f,l) Processor utilization for scheduling (obsolete). Not printed when
the -c option is used.
CLS (f,l) Scheduling class. Printed only when the -c option is used.
PRI (l) The priority of the process. Without the -c option, higher numbers
mean lower priority. With the -c option, higher numbers mean
higher priority.
NI (l) Nice value, used in priority computation. Not printed when the -c
option is used. Only processes in the certain scheduling classes
have a nice value.
ADDR (l) The memory address of the process.
SZ (l) The total size of the process in virtual memory, including all
mapped files and devices, in pages. See pagesize(1).
WCHAN (l) The address of an event for which the process is sleeping (if blank,
the process is running).
STIME (f) The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours before the
ps inquiry is executed is given in months and days.)
TTY (all) The controlling terminal for the process (the message, ?, is printed
when there is no controlling terminal).
TIME (all) The cumulative execution time for the process.
CMD (all) The command name (the full command name and its arguments,
up to a limit of 80 characters, are printed under the -f option).

The following two additional columns are printed when the -j option is specified:
PGID The process ID of the process group leader.
SID The process ID of the session leader.

The following two additional columns are printed when the -L option is specified:
**ps(1)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWP</td>
<td>The lwp ID of the lwp being reported.</td>
</tr>
<tr>
<td>NLWP</td>
<td>The number of lwps in the process (if <code>-f</code> is also specified).</td>
</tr>
</tbody>
</table>

Under the `-L` option, one line is printed for each lwp in the process and the time-reporting fields `STIME` and `TIME` show the values for the lwp, not the process. A traditional single-threaded process contains only one lwp.

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked `<defunct>`.

**-o format**

The `-o` option allows the output format to be specified under user control.

The format specification must be a list of names presented as a single argument, blank- or comma-separated. Each variable has a default header. The default header can be overridden by appending an equals sign and the new text of the header. The rest of the characters in the argument will be used as the header text. The fields specified will be written in the order specified on the command line, and should be arranged in columns in the output. The field widths will be selected by the system to be at least as wide as the header text (default or overridden value). If the header text is null, such as `-o user=`, the field width will be at least as wide as the default header text. If all header text fields are null, no header line will be written.

The following names are recognized in the POSIX locale:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>The effective user ID of the process. This will be the textual user ID, if it can be obtained and the field width permits, or a decimal representation otherwise.</td>
</tr>
<tr>
<td>ruser</td>
<td>The real user ID of the process. This will be the textual user ID, if it can be obtained and the field width permits, or a decimal representation otherwise.</td>
</tr>
<tr>
<td>group</td>
<td>The effective group ID of the process. This will be the textual group ID, if it can be obtained and the field width permits, or a decimal representation otherwise.</td>
</tr>
<tr>
<td>rgroup</td>
<td>The real group ID of the process. This will be the textual group ID, if it can be obtained and the field width permits, or a decimal representation otherwise.</td>
</tr>
<tr>
<td>pid</td>
<td>The decimal value of the process ID.</td>
</tr>
<tr>
<td>ppid</td>
<td>The decimal value of the parent process ID.</td>
</tr>
<tr>
<td>pgid</td>
<td>The decimal value of the process group ID.</td>
</tr>
<tr>
<td>pcpu</td>
<td>The ratio of CPU time used recently to CPU time available in the same period, expressed as a percentage. The meaning of “recently” in this context is unspecified. The CPU time available is determined in an unspecified manner.</td>
</tr>
<tr>
<td>vsz</td>
<td>The total size of the process in virtual memory, in kilobytes.</td>
</tr>
</tbody>
</table>
### ps(1)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nice</td>
<td>The decimal value of the system scheduling priority of the process. See <code>nice(1)</code>.</td>
</tr>
</tbody>
</table>
| etime | In the POSIX locale, the elapsed time since the process was started, in the form:  

\[
[ \text{dd}:hh:mm:ss]
\]

where  
- \(dd\) is the number of days  
- \(hh\) is the number of hours  
- \(mm\) is the number of minutes  
- \(ss\) is the number of seconds  

The \(dd\) field will be a decimal integer. The \(hh, mm,\) and \(ss\) fields will be two-digit decimal integers padded on the left with zeros. |
| time | In the POSIX locale, the cumulative CPU time of the process in the form:  

\[
[ \text{dd}:hh:mm:ss]
\]

The \(dd, hh, mm,\) and \(ss\) fields will be as described in the `etime` specifier. |
| tty | The name of the controlling terminal of the process (if any) in the same format used by the `who(1)` command. |
| comm | The name of the command being executed (\(argv[0]\) value) as a string. |
| args | The command with all its arguments as a string. The implementation may truncate this value to the field width; it is implementation-dependent whether any further truncation occurs. It is unspecified whether the string represented is a version of the argument list as it was passed to the command when it started, or is a version of the arguments as they may have been modified by the application. Applications cannot depend on being able to modify their argument list and having that modification be reflected in the output of `ps`. The Solaris implementation limits the string to 80 bytes; the string is the version of the argument list as it was passed to the command when it started. |

The following names are recognized in the Solaris implementation:  
- \(f\) Flags (hexadecimal and additive) associated with the process.  
- \(s\) The state of the process.  
- \(c\) Processor utilization for scheduling (obsolete).
uid
The effective user ID number of the process as a decimal integer.

ru+id
The real user ID number of the process as a decimal integer.

gid
The effective group ID number of the process as a decimal integer.

rgid
The real group ID number of the process as a decimal integer.

projid
The project ID number of the process as a decimal integer.

project
The project ID of the process as a textual value if that value can be obtained; otherwise as a decimal integer.

sid
The process ID of the session leader.

taskid
The task ID of the process.

class
The scheduling class of the process.

pri
The priority of the process. Higher numbers mean higher priority.

opri
The obsolete priority of the process. Lower numbers mean higher priority.

lwp
The decimal value of the lwp ID. Requesting this formatting option causes one line to be printed for each lwp in the process.

nlwp
The number of lwps in the process.

psr
The number of the processor to which the process or lwp is bound.

pset
The ID of the processor set to which the process or lwp is bound.

addr
The memory address of the process.

osz
The total size of the process in virtual memory, in pages.

wchan
The address of an event for which the process is sleeping (if --, the process is running).

stime
The starting time or date of the process, printed with no blanks.

rss
The resident set size of the process, in kilobytes.

pmem
The ratio of the process’s resident set size to the physical memory on the machine, expressed as a percentage.

fname
The first 8 bytes of the base name of the process’s executable file.

Only comm and args are allowed to contain blank characters; all others, including the Solaris implementation variables, are not.

The following table specifies the default header to be used in the POSIX locale corresponding to each format specifier.
The following table lists the Solaris implementation format specifiers and the default header used with each.

<table>
<thead>
<tr>
<th>Format Specifier</th>
<th>Default Header</th>
<th>Format Specifier</th>
<th>Default Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>addr</td>
<td>ADDR</td>
<td>projid</td>
<td>PROJID</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>project</td>
<td>PROJECT</td>
</tr>
<tr>
<td>class</td>
<td>CLS</td>
<td>psr</td>
<td>PSR</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>rgid</td>
<td>RGID</td>
</tr>
<tr>
<td>fname</td>
<td>COMMAND</td>
<td>rss</td>
<td>RSS</td>
</tr>
<tr>
<td>gid</td>
<td>GID</td>
<td>ruid</td>
<td>RUID</td>
</tr>
<tr>
<td>lwp</td>
<td>LWP</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>nlwp</td>
<td>NLWP</td>
<td>sid</td>
<td>SID</td>
</tr>
<tr>
<td>opri</td>
<td>PRI</td>
<td>stime</td>
<td>STIME</td>
</tr>
<tr>
<td>osz</td>
<td>SZ</td>
<td>taskid</td>
<td>TASKID</td>
</tr>
<tr>
<td>pmem</td>
<td>%MEM</td>
<td>uid</td>
<td>UID</td>
</tr>
<tr>
<td>pri</td>
<td>PRI</td>
<td>wchan</td>
<td>WCHAN</td>
</tr>
</tbody>
</table>

**EXAMPLES**

**EXAMPLE 1** An example of the `ps` command

The command:

```
example% ps -o user,pid,ppid=MOM -o args
```
EXAMPLE 1 An example of the `ps` command (Continued)

writes the following in the POSIX locale:

```
USER PID MOM COMMAND
helene 34 12 ps -o uid,pid,ppid=MOM -o args
```

The contents of the `COMMAND` field need not be the same due to possible truncation.

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `ps`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, `LC_TIME`, and `NLSPATH`.

COLUMNS

Override the system-selected horizontal screen size, used to determine the number of text columns to display.

EXIT STATUS

The following exit values are returned:

- `0`  Successful completion.
- `>0`  An error occurred.

FILES

`/dev/pts/*`

terminal ("tty") names searcher files

`/dev/term/*`

`/etc/passwd`

UID information supplier

`/proc/*`

process control files

`/tmp/ps_data`

internal data structure

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled (see USAGE)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`kill(1)`, `nice(1)`, `pagesize(1)`, `pgrep(1)`, `priocntl(1)`, `who(1)`, `getty(1M)`, `proc(4)`, `ttysrch(4)`, `attributes(5)`, `environ(5)`, `standards(5)`

NOTES

Things can change while `ps` is running. The snapshot it gives is true only for a split-second, and it may not be accurate by the time you see it. Some data printed for defunct processes is irrelevant.

If no options to select processes are specified, `ps` will report all processes associated with the controlling terminal. If there is no controlling terminal, there will be no report other than the header.
ps -ef or ps -ostime may not report the actual start of a tty login session, but rather an earlier time, when a getty was last respawned on the tty line.

ps is CSI-enabled except for login names (usernames).
**NAME**
ps – display the status of current processes

**SYNOPSIS**
/usr/ucb/ps [-aceglnrSuUvwx] [-t term] [num]

**DESCRIPTION**
The ps command displays information about processes. Normally, only those processes that are running with your effective user ID and are attached to a controlling terminal (see termio(7I)) are shown. Additional categories of processes can be added to the display using various options. In particular, the -a option allows you to include processes that are not owned by you (that do not have your user ID), and the -x option allows you to include processes without controlling terminals. When you specify both -a and -x, you get processes owned by anyone, with or without a controlling terminal. The -r option restricts the list of processes printed to running and runnable processes.

ps displays in tabular form the process ID, under PID; the controlling terminal (if any), under TT; the cpu time used by the process so far, including both user and system time, under TIME; the state of the process, under S; and finally, an indication of the COMMAND that is running.

The state is given by a single letter from the following:

- **O** Process is running on a processor.
- **S** Sleeping. Process is waiting for an event to complete.
- **R** Runnable. Process is on run queue.
- **Z** Zombie state. Process terminated and parent not waiting.
- **T** Traced. Process stopped by a signal because parent is tracing it.

**OPTIONS**
The following options must all be combined to form the first argument:

- **-a** Includes information about processes owned by others.
- **-c** Displays the command name rather than the command arguments.
- **-e** Displays the environment as well as the arguments to the command.
- **-g** Displays all processes. Without this option, ps only prints interesting processes. Processes are deemed to be uninteresting if they are process group leaders. This normally eliminates top-level command interpreters and processes waiting for users to login on free terminals.
- **-l** Displays a long listing, with fields F, PPID, CP, PRI, NI, SZ, RSS, and WCHAN as described below.
- **-n** Produces numerical output for some fields. In a user listing, the USER field is replaced by a UID field.
- **-r** Restricts output to running and runnable processes.
- **-S** Displays accumulated CPU time used by this process and all of its reaped children.
### ps(1B)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t term</td>
<td>Lists only process data associated with the terminal, <code>term</code>. Terminal identifiers may be specified in one of two forms: the device's file name (for example, <code>tty04</code> or <code>term/14</code>) or, if the device's file name starts with <code>tty</code>, just the digit identifier (for example, <code>04</code>).</td>
</tr>
<tr>
<td>-u</td>
<td>Displays user-oriented output. This includes fields <code>USER</code>, <code>%CPU</code>, <code>%MEM</code>, <code>SZ</code>, <code>RSS</code>, and <code>START</code> as described below.</td>
</tr>
<tr>
<td>-U</td>
<td>Obsolete. This option no longer has any effect. It causes <code>ps</code> to exit without printing the process listing.</td>
</tr>
<tr>
<td>-v</td>
<td>Displays a version of the output containing virtual memory. This includes fields <code>SIZE</code>, <code>%CPU</code>, <code>%MEM</code>, and <code>RSS</code>, described below.</td>
</tr>
<tr>
<td>-w</td>
<td>Uses a wide output format (132 columns rather than 80). If the option letter is repeated, that is, <code>-ww</code>, uses arbitrarily wide output. This information is used to decide how much of long commands to print.</td>
</tr>
<tr>
<td>-x</td>
<td>Includes processes with no controlling terminal.</td>
</tr>
<tr>
<td>num</td>
<td>A process number may be given, in which case the output is restricted to that process. This option must be supplied last.</td>
</tr>
</tbody>
</table>

**DISPLAY FORMATS**

Fields that are not common to all output formats:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
<td>Name of the owner of the process.</td>
</tr>
<tr>
<td>%CPU</td>
<td>CPU use of the process. This is a decaying average over up to a minute of previous (real) time.</td>
</tr>
<tr>
<td>NI</td>
<td>Process scheduling increment (see <code>getpriority(3C)</code> and <code>nice(3UCB)</code>).</td>
</tr>
<tr>
<td>SIZE</td>
<td>The total size of the process in virtual memory, including all mapped files and devices, in kilobyte units.</td>
</tr>
<tr>
<td>SZ</td>
<td>Same as <code>SIZE</code>.</td>
</tr>
<tr>
<td>RSS</td>
<td>Real memory (resident set) size of the process, in kilobyte units.</td>
</tr>
<tr>
<td>UID</td>
<td>Numerical user-ID of process owner.</td>
</tr>
<tr>
<td>PPID</td>
<td>Numerical ID of parent of process.</td>
</tr>
<tr>
<td>CP</td>
<td>Short-term CPU utilization factor (used in scheduling).</td>
</tr>
<tr>
<td>PRI</td>
<td>The priority of the process (higher numbers mean lower priority).</td>
</tr>
<tr>
<td>START</td>
<td>The starting time of the process, given in hours, minutes, and seconds. A process begun more than 24 hours before the <code>ps</code> inquiry is executed is given in months and days.</td>
</tr>
<tr>
<td>WCHAN</td>
<td>The address of an event for which the process is sleeping (if blank, the process is running).</td>
</tr>
</tbody>
</table>
ps(1B)

%MEM The ratio of the process’s resident set size to the physical memory on the machine, expressed as a percentage.

F Flags (hexadecimal and additive) associated with the process. These flags are available for historical purposes; no meaning should be currently ascribed to them.

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked <defunct>; otherwise, ps tries to determine the command name and arguments given when the process was created by examining the user block.

FILES /dev/tty*

/etc/passwd UID information supplier

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO kill(1), ps(1), whodo(1M), getpriority(3C), nice(3UCB), proc(4), attributes(5), termio(7I)

NOTES Things can change while ps is running. The picture ps gives is only a close approximation to the current state. Some data printed for defunct processes is irrelevant.
The `pvs` utility displays any internal version information contained within an ELF file. Commonly, these files are dynamic executables and shared objects, and possibly relocatable objects. This version information can fall into one of two categories:

- **Version definitions**
- **Version dependencies**

Version definitions describe the interfaces made available by an ELF file. Each version definition is associated to a set of global symbols provided by the file. Version definitions may be assigned to a file during its creation by the link-editor using the `-M` option and the associated `mapfile` directives (see the Linker and Libraries Guide for more details).

Version dependencies describe the binding requirements of dynamic objects on the version definitions of any shared object dependencies. When a dynamic object is built with a shared object, the link-editor records information within the dynamic object indicating that the shared object is a dependency. This dependency must be satisfied at runtime. If the shared object also contains version definitions, then those version definitions that satisfy the global symbol requirements of the dynamic object will also be recorded in the dynamic object being created. At process initialization, the runtime linker will use any version dependencies as a means of validating the interface requirements of the dynamic objects used to construct the process.

### OPTIONS

The following options are supported. If neither the `-d` or `-r` options are specified, both will be enabled.

- **-C** Demangles C++ symbol names.
- **-d** Prints version definition information.
- **-l** When used with the `-s` option, prints any symbols that have been reduced from global to local binding due to versioning. By convention, these symbol entries are located in the `.symtab` section, and fall between the `FILE` symbol representing the output file, and the `FILE` symbol representing the first input file used to generate the output file. These reduced symbol entries are assigned the fabricated version definition `_REDUCED_`. No reduced symbols will be printed if the file has been stripped (see `strip(1)`), or if the symbol entry convention cannot be determined.
- **-n** Normalizes version definition information. By default, all version definitions within the object are displayed. However, version definitions may inherit other version definitions, and under normalization only the head of each inheritance list is displayed.
- **-N name** Prints only the information for the given version definition `name` and any of its inherited version definitions (when used with the `-d` option), or for the given dependency file `name` (when used with the `-r` option).
-o
Creates one-line version definition output. By default, file, version
definitions, and any symbol output is indented to ease human inspection.
This option prefixes each output line with the file and version definition
name and may be more useful for analysis with automated tools.

-r
Prints version dependency (requirements) information.

-s
Prints the symbols associated with each version definition. Any data
symbols are accompanied with the size, in bytes, of the data item.

-v
Verbose output. Indicates any weak version definitions, and any version
definition inheritance. When used with the -N and -d options, the
inheritance of the base version definition is also shown. When used with
the -s option, the version symbol definition is also shown.

OPERANDS
The following operands are supported.

file
The ELF file about which internal version information is displayed.

EXAMPLES
EXAMPLE 1 Displaying version definitions

The following example displays the version definitions of libelf.so.1:

% pvs -d /usr/lib/libelf.so.1
libelf.so.1;
SUNW_1.1

EXAMPLE 2 Creating a one-liner display

A normalized, one-liner display, suitable for creating a mapfile version control
directive, can be created using the -n and -o options:

% pvs -don /usr/lib/libelf.so.1
/usr/lib/libelf.so.1 - SUNW_1.1;

EXAMPLE 3 Displaying version requirements

The following example displays the version requirements of ldd and pvs:

% pvs -r /usr/bin/ldd /usr/bin/pvs
/usr/bin/ldd:
libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);
/usr/bin/pvs:
libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);

EXIT STATUS
If the requested version information is not found, a non-zero value is returned;
otherwise a 0 value is returned.

Version information is determined not found when any of the following is true:

- the -d option is specified and no version definitions are found;
the -r option is specified and no version requirements are found;
- neither the -d nor -r option is specified and no version definitions or version requirements are found.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

**SEE ALSO**

ld(1), ldd(1), strip(1), elf(3ELF), attributes(5)

*Linker and Libraries Guide*
**NAME**

pwd – return working directory name

**SYNOPSIS**

/usr/bin/pwd

**DESCRIPTION**

The `pwd` utility writes an absolute path name of the current working directory to standard output.

Both the Bourne shell, `sh(1)`, and the Korn shell, `ksh(1)`, also have a built-in `pwd` command.

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `pwd`: `LANG`, `LC_ALL`, `LC_MESSAGES`, and `NLSPATH`.

**EXIT STATUS**

The following exit values are returned:

- 0  Successful completion.
- >0  An error occurred.

If an error is detected, output will not be written to standard output, a diagnostic message will be written to standard error, and the exit status will not be 0.

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`cd(1)`, `ksh(1)`, `sh(1)`, `shell_builtins(1)`, `attributes(5)`, `environ(5)`, `standards(5)`

**DIAGNOSTICS**

"Cannot open .." and "Read error in .." indicate possible file system trouble and should be referred to a UNIX system administrator.

**NOTES**

If you move the current directory or one above it, `pwd` may not give the correct response. Use the `cd(1)` command with a full path name to correct this situation.
NAME
ranlib – convert archives to random libraries

SYNOPSIS
/usr/ccs/bin/ranlib archive

DESCRIPTION
The ranlib utility was used in SunOS 4.x to add a table of contents to archive libraries, which converted each archive to a form that could be linked more rapidly. This is no longer needed, as the ar(1) command automatically provides all the functionality ranlib used to provide.

This script is provided as a convenience for software developers who need to maintain Makefiles that are portable across a variety of operating systems.

EXIT STATUS
ranlib has exit status 0.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO
ar(1), ar(3HEAD), attributes(5)
### NAME
capstat – report resource cap enforcement daemon statistics

### SYNOPSIS
capstat [-g] [interval [count]]

### DESCRIPTION
The `capstat` command reports on the projects capped by `capd(1M)`. Each report contains statistics that pertain to the project and paging statistics. Paging refers to the act of relocating portions of memory, called pages, to or from physical memory. `capd` pages out the most infrequently used pages.

The paging statistics in the first report issued show the activity since the daemon was started. Subsequent reports reflect the activity since the last report was issued.

Reports are issued every `interval` seconds up to the quantity specified by `count`, or forever if `count` is not specified.

`capd` is an optional feature.

### OPTIONS
The following command-line option is supported:

```
-g Global statistics. Reports the minimum memory utilization for memory cap enforcement (see `capadm(1M)` and reports current memory utilization as a percentage of installed physical memory.
```

### OUTPUT
The following list defines the column headings in the `capstat` report and provides information about how to interpret the report.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The project ID of the capped project.</td>
</tr>
<tr>
<td>project</td>
<td>The project name.</td>
</tr>
<tr>
<td>nproc</td>
<td>The number of processes in the project since the last report.</td>
</tr>
<tr>
<td>vm</td>
<td>The total virtual memory size of the project’s processes, including all mapped files and devices, in kilobytes (K), megabytes (M), or gigabytes (G).</td>
</tr>
<tr>
<td>rss</td>
<td>The total resident set size (RSS) of the project’s processes, in kilobytes (K), megabytes (M), or gigabytes (G).</td>
</tr>
<tr>
<td>cap</td>
<td>The RSS cap for the project. See <code>capd(1M)</code> for information about how to specify memory caps.</td>
</tr>
<tr>
<td>at</td>
<td>The total amount of memory that <code>capd</code> attempted to page out. Paging refers to the act of relocating portions of memory, called pages, to or from physical memory. <code>capd</code> pages out the most infrequently used pages.</td>
</tr>
<tr>
<td>avgat</td>
<td>The average amount of memory that <code>capd</code> attempted to page out during each sample cycle. The rate at which <code>capd</code> samples RSS can be set with <code>capadm(1M)</code>.</td>
</tr>
<tr>
<td>pg</td>
<td>An estimate of the total amount of memory that <code>capd</code> successfully paged out.</td>
</tr>
</tbody>
</table>
An estimate of the average amount of memory that rcapd successfully paged out during each sample cycle. The rate at which rcapd samples process RSS sizes can be set with rcapadm.

**OPERANDS**

The following operands are supported:

- **interval**
  Specifies the reporting interval in seconds. The default interval is 5 seconds.

- **count**
  Specifies the number of reports to produce. By default, rcapstat reports statistics until a termination signal is received or until the rcapd process exits.

**EXAMPLES**

**EXAMPLE 1** Using rcapstat to report cap and project information

Caps are defined for two projects associated with two users. user1 has a cap of 50 megabytes and user2 has a cap of 10 megabytes.

The following command produces five reports at 5-second sampling intervals.

```bash
example# rcapstat 5 5
```

<table>
<thead>
<tr>
<th>id</th>
<th>project</th>
<th>nproc</th>
<th>vm</th>
<th>rss</th>
<th>cap</th>
<th>at</th>
<th>avgat</th>
<th>pg</th>
<th>avgpg</th>
</tr>
</thead>
<tbody>
<tr>
<td>112270 user1 24 123M 35M 50M 50M 0K 3312K 0K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78194 user2 1 2368K 1856K 10M 0K 0K 0K 0K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first three lines of output constitute the first report, which contains the cap and project information for the two projects and paging statistics since rcapd was started.

The `at` and `pg` columns are a number greater than zero for user1 and zero for user2, which indicates that at some time in the daemon's history, user1 exceeded its cap but user2 did not.

The subsequent reports show no significant activity.

**EXAMPLE 2** Using rcapstat to monitor the RSS of a project

```bash
example# rcapstat 5 5
```

<table>
<thead>
<tr>
<th>id</th>
<th>project</th>
<th>nproc</th>
<th>vm</th>
<th>rss</th>
<th>cap</th>
<th>at</th>
<th>avgat</th>
<th>pg</th>
<th>avgpg</th>
</tr>
</thead>
<tbody>
<tr>
<td>376565 user1 57 209M 46M 10M 440M 220M 5528K 2764K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376565 user1 57 209M 44M 10M 394M 131M 4912K 1637K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376565 user1 56 207M 43M 10M 440M 147M 6048K 2016K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376565 user1 56 207M 42M 10M 522M 174M 4368K 1456K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User Commands 1269
EXAMPLE 2 Using rcapstat to monitor the RSS of a project

The project user1 has an RSS in excess of its physical memory cap. The nonzero values in the pg column indicate that rcapd is consistently paging out memory as it attempts to meet the cap by lowering the physical memory utilization of the project’s processes. However, rcapd is unsuccessful, as indicated by the varying rss values that do not show a corresponding decrease. This means that the application’s resident memory is being actively used, forcing rcapd to affect the working set. Under this condition, the system continues to experience high page fault rates, and associated I/O, until the working set size (WSS) is reduced, the cap is raised, or the application changes its memory access pattern. Notice that a page fault occurs when either a new page must be created, or the system must copy in a page from the swap device.

EXAMPLE 3 Determining the working set size of a project

This example is a continuation of Example 1, and it uses the same project.

By inhibiting cap enforcement, either by raising the cap of a project or by changing the minimum physical memory utilization for cap enforcement (see rcapaadm(1M)), the resident set can become the working set. The rss column might stabilize to show the project WSS, as shown in the previous example. The WSS is the minimum cap value that allows the project’s processes to operate without perpetually incurring page faults.

EXIT STATUS

The following exit values are returned:

0  Successful completion.
1  An error occurred.
2  Invalid command-line options were specified.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcapu</td>
</tr>
</tbody>
</table>

SEE ALSO  
rcapadm(1M), rcapd(1M), attributes(5)


NOTES  
If the interval specified to rcapstat is shorter than the reporting interval specified to rcapd (with rcapadm(1M)), the output for some intervals can be zero. This is because rcapd does not update statistics more frequently than the interval specified with rcapadm, and this interval is independent of (and less precise than) the sampling interval used by rcapstat.
The `rcp` command copies files between machines. Each `filename` or `directory` argument is either a remote file name of the form:

```
hostname:path
```

or a local file name (containing no `:` (colon) characters, or `/` (backslash) before any `:` (colon) characters).

The `hostname` can be an IPv4 or IPv6 address string. See `inet(7P)` and `inet6(7P)`. Since IPv6 addresses already contain colons, the `hostname` should be enclosed in a pair of square brackets when an IPv6 address is used. Otherwise, the first occurrence of a colon can be interpreted as the separator between `hostname` and `path`. For example,

```
[1080::8:800:200C:417A]:tmp/file
```

If a `filename` is not a full path name, it is interpreted relative to your home directory on `hostname`. A `path` on a remote host may be quoted using `\`, `,`, or `'`, so that the metacharacters are interpreted remotely.

`rcp` does not prompt for passwords; your current local user name must exist on `hostname` and allow remote command execution by `rsh(1)`.

`rcp` handles third party copies, where neither source nor target files are on the current machine. Hostnames may also take the form

```
username@hostname:filename
```

specifies the name to be used, the hostname, and the domain in which that host resides. File names that are not full path names will be interpreted relative to the home directory of the user named `username`, on the remote host.

**OPTIONS**

The following options are supported:

- `-p`  Attempts to give each copy the same modification times, access times, modes, and ACLs if applicable as the original file.

- `-r`  Copies each subtree rooted at `filename`; in this case the destination must be a directory.

**USAGE**

See `largefile(5)` for the description of the behavior of `rcp` when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

The `rcp` command is IPv6-enabled. See `ip6(7P)`. 
### rcp(1)

**FILES**

`$HOME/.profile`

**ATTRIBUTES**

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`cpio(1), ftp(1), rlogin(1), rsh(1), setfacl(1), tar(1), hosts.equiv(4), attributes(5), largefile(5), inet(7P), inet6(7P), ip6(7P)`

**NOTES**

`rcp` is meant to copy between different hosts. Attempting to `rcp` a file onto itself, as with:

```
example% rcp tmp/file myhost:/tmp/file
```

results in a severely corrupted file.

`rcp` may not correctly fail when the target of a copy is a file instead of a directory.

`rcp` can become confused by output generated by commands in a `$HOME/.profile` on the remote host.

`rcp` requires that the source host have permission to execute commands on the remote host when doing third-party copies.

`rcp` does not properly handle symbolic links. Use `tar` or `cpio` piped to `rsh` to obtain remote copies of directories containing symbolic links or named pipes. See `tar(1)` and `cpio(1)`.

If you forget to quote metacharacters intended for the remote host, you will get an incomprehensible error message.

`rcp` will fail if you copy ACLs to a file system that does not support ACLs.

`rcp` is CSI-enabled except for the handling of username, hostname, and domain.
The **rdist** utility maintains copies of files on multiple hosts. It preserves the owner, group, mode, and modification time of the master copies, and can update programs that are executing. (Note: rdist does not propagate ownership or mode changes when the file contents have not changed.) Normally, a copy on a remote host is updated if its size or modification time differs from the original on the local host. (With the -y option (younger mode), only the modification times are checked, not the size. See **OPTIONS** below.)

There are two forms of the **rdist** command. In the first form shown in the **SYNOPSIS** section above, **rdist** reads the indicated *distfile* for instructions on updating files and/or directories. If *distfile* is ‘-’, the standard input is used. If no -f option is present, **rdist** first looks in its working directory for *distfile*, and then for **Distfile**, for instructions.

The second form shown in **SYNOPSIS** uses the -c option and specifies paths as command line options.

In order to be able to use **rdist** across machines, each host machine must have a */etc/hosts.equiv* file, or the user must have an entry in the {.rhosts} file in the home directory. See **hosts.equiv**(4) for more information.

### OPTIONS

The following options are supported:

- **-b**
  Binary comparison. Performs a binary comparison and updates files if they differ, rather than merely comparing dates and sizes.

- **-c pathname ... [login @]hostname[:destpath]**
  Copies each *pathname* to the named host; if *destpath* is specified, it will not update any *pathname* on the named host. (Relative filenames are taken as relative to your home directory.) If the ‘login @’ prefix is given, the update is performed with the user ID of login. If the ‘:destpath’ is given, the remote file is installed as that *pathname*.

- **-d macro=value**
  Defines *macro* to have *value*. This option is used to define or override macro definitions in the *distfile*. *value* can be the empty string, one name, or a list of names surrounded by parentheses and separated by white space.

- **-D**
  Enables debugging.
-f distfile
   Uses the description file distfile. A ‘-’ as the distfile argument denotes the standard
   input.

-h
   Follows symbolic links. Copies the file that the link points to rather than the link
   itself.

-i
   Ignores unresolved links. rdist will normally try to maintain the link structure of
   files being transferred and warn the user if all the links cannot be found.

-m host
   Limits which machines are to be updated. Multiple -m arguments can be given to
   limit updates to a subset of the hosts listed in the distfile.

-n
   Prints the commands without executing them. This option is useful for debugging a
   distfile.

-q
   Quiet mode. Does not display the files being updated on the standard output.

-R
   Removes extraneous files. If a directory is being updated, removes files on the
   remote host that do not correspond to those in the master (local) directory. This is
   useful for maintaining truly identical copies of directories.

-v
   Verifies that the files are up to date on all the hosts. Any files that are out of date are
   displayed, but no files are updated, nor is any mail sent.

-w
   Whole mode. The whole file name is appended to the destination directory name.
   Normally, only the last component of a name is used when renaming files. This
   preserves the directory structure of the files being copied, instead of flattening the
   directory structure. For instance, renaming a list of files such as dir1/dir2 to
   dir3 would create files dir3/dir1 and dir3/dir2 instead of dir3 and dir3.
   When the -w option is used with a filename that begins with -, everything except
   the home directory is appended to the destination name.

-y
   Younger mode. Does not update remote copies that are younger than the master
   copy, but issues a warning message instead. Only modification times are checked.
   No comparison of size is made.

**USAGE**

**White Space**

Characters

NEWLINE, TAB, and SPACE characters are all treated as white space; a mapping
continues across input lines until the start of the next mapping: either a single filename
followed by a ‘-’ or the opening parenthesis of a filename list.

**Comments**

Comments begin with # and end with a NEWLINE.
Distfiles

The distfile contains a sequence of entries that specify the files to be copied, the destination files to be copied, the destination hosts, and what operations to perform to do the updating. Each entry has one of the following formats:

```
variable_name = name_list
[label:] source_list -> destination_list command_list
[label:] source_list :: time_stamp_file command_list
```

The first format is used for defining variables. The second format is used for distributing files to other hosts. The third format is used for making lists of files that have been changed since some given date.

The source list specifies a list of files and/or directories on the local host that are to be used as the master copy for distribution. The destination list is the list of hosts to which these files are to be copied. Each file in the source list is added to a list of changes if the file is out of date on the host that is being updated (second format) or if the file is newer than the time stamp file (third format). Labels are optional. They are used to identify a command for partial updates. The colon (:) is used after an optional label, while the double colon (::) is used for making lists of files that have been changed since a certain date (specified by the date/time of the time_stamp file).

Typically, only notify is used with the ‘::’ format of the command line.

Macros

rdist has a limited macro facility. Macros are only expanded in filename or hostname lists, and in the argument lists of certain primitives. Macros cannot be used to stand for primitives or their options, or the ‘-’ or ‘::’ symbols.

A macro definition is a line of the form:

```
macro = value
```

A macro reference is a string of the form:

```
${macro}
```

although (as with make(IS)) the braces can be omitted if the macro name consists of just one character.

Metacharacters

The shell meta-characters: [, ], { }, * and ? are recognized and expanded (on the local host only) just as they are with csh(1). Metacharacters can be escaped by prepending a backslash.

The – character is also expanded in the same way as with csh; however, it is expanded separately on the local and destination hosts.

Filenames

File names that do not begin with ‘/’ or ‘~’ are taken to be relative to user’s home directory on each destination host; they are not relative to the current working directory. Multiple file names must be enclosed within parentheses.

Primitives

The following primitives can be used to specify actions rdist is to take when updating remote copies of each file.
install [-b] [-h] [-i] [-R] [-v] [-w] [-y] [name]
Copy out of date files and directories (recursively). If no name operand is given, the name of the local file is given to the remote host’s copy. If absent from the remote host, parent directories in a filename’s path are created. To help prevent disasters, a non-empty directory on a target host is not replaced with a regular file or a symbolic link by rdist. However, when using the -R option, a non-empty directory is removed if the corresponding filename is completely absent on the master host.

The options for install have the same semantics as their command line counterparts, but are limited in scope to a particular map. The login name used on the destination host is the same as the local host unless the destination name is of the format login@host. In that case, the update is performed under the username login.

notify address . . .
Send mail to the indicated email address of the form:

user@host

that lists the files updated and any errors that may have occurred. If an address does not contain a ‘@host’ suffix, rdist uses the name of the destination host to complete the address.

except filename . . .
Omit from updates the files named as arguments.

except _pat pattern . . .
Omit from updates the filenames that match each regular-expression pattern (see ed(1) for more information on regular expressions). Note that ‘\’ and ‘$’ characters must be escaped in the distfile. Shell variables can also be used within a pattern, however shell filename expansion is not supported.

special [filename] . . . "command-line "
Specify a Bourne shell, sh(1) command line to execute on the remote host after each named file is updated. If no filename argument is present, the command-line is performed for every updated file, with the shell variable FILE set to the file’s name on the local host. The quotation marks allow command-line to span input lines in the distfile; multiple shell commands must be separated by semicolons (;).

The default working directory for the shell executing each command-line is the user’s home directory on the remote host.

IPv6
The rdist command is IPv6-enabled. See ip6(7P).

EXAMPLES

EXAMPLE 1 A sample distfile
The following sample distfile instructs rdist to maintain identical copies of a shared library, a shared-library initialized data file, several include files, and a directory, on hosts named hermes and magus. On magus, commands are executed as super-user.
rdist(1)

EXAMPLE 1 A sample distfile (Continued)

rdist notifies merlin@druid whenever it discovers that a local file has changed
to a timestamp file. (Parentheses are used when the source or destination list
contains zero or more names separated by white-space.)

HOSTS = ( hermes root@magus )

FILES = ( /usr/local/lib/libcant.so.1.1
            /usr/local/lib/libcant.sa.1.1 /usr/local/include/*.h
            /usr/local/bin )

(${FILES}) -> (${HOSTS})
install -R ;
${FILES} :: /usr/local/lib/timestamp
        notify merlin@druid ;

FILES
/.rhosts user’s trusted hosts and users
/etc/host.equiv system trusted hosts and users
/tmp/rdist* temporary file for update lists

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

SEE ALSO

csh(1), ed(1), make(1S), sh(1), stat(2), hosts.equiv(4), attributes(5), ip6(7P)

DIAGNOSTICS

A complaint about mismatch of rdist version numbers may really stem from some
problem with starting your shell, for example, you are in too many groups.

WARNINGS

The super-user does not have its accustomed access privileges on NFS mounted file
systems. Using rdist to copy to such a file system may fail, or the copies may be
owned by user “nobody”.

BUGS

Source files must reside or be mounted on the local host.

There is no easy way to have a special command executed only once after all files in a
directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

rdist aborts on files that have a negative modification time (before Jan 1, 1970).

There should be a “force” option to allow replacement of non-empty directories by
regular files or symlinks. A means of updating file modes and owners of otherwise
identical files is also needed.
**NAME**
read – read a line from standard input

**SYNOPSIS**

```
/usr/bin/read [-r] var...
```

sh  
```
read name...
```

csh  
```
set variable = $<
```

ksh  
```
read [-prsu [n]] [name ? prompt] [name...]
```

**DESCRIPTION**

The `read` utility will read a single line from standard input.

By default, unless the `-r` option is specified, backslash (`\`) acts as an escape character. If standard input is a terminal device and the invoking shell is interactive, `read` will prompt for a continuation line when:

- The shell reads an input line ending with a backslash, unless the `-r` option is specified.
- A here-document is not terminated after a NEWLINE character is entered.

The line will be split into fields as in the shell. The first field will be assigned to the first variable `var`, the second field to the second variable `var`, and so forth. If there are fewer `var` operands specified than there are fields, the leftover fields and their intervening separators will be assigned to the last `var`. If there are fewer fields than `vars`, the remaining `vars` will be set to empty strings.

The setting of variables specified by the `var` operands will affect the current shell execution environment. If it is called in a subshell or separate utility execution environment, such as one of the following:

```
(read foo)
nohup read ...
find . -exec read ... \
```

it will not affect the shell variables in the caller’s environment.

The standard input must be a text file.

sh  
One line is read from the standard input and, using the internal field separator, IFS (normally space or tab), to delimit word boundaries, the first word is assigned to the first `name`, the second word to the second `name`, and so on, with leftover words assigned to the last `name`. Lines can be continued using `\newline`. Characters other than NEWLINE can be quoted by preceding them with a backslash. These backslashes are removed before words are assigned to `names`, and no interpretation is done on the character that follows the backslash. The return code is 0, unless an end-of-file is encountered.

csh  
The notation:

```
set variable = $<
```
loads one line of standard input as the value for \textit{variable}. (See \texttt{csh(1)}).

\textbf{ksh} The shell input mechanism. One line is read and is broken up into fields using the characters in \texttt{IFS} as separators. The escape character, (\texttt{	extbackslash}), is used to remove any special meaning for the next character and for line continuation. In raw mode, \texttt{-r}, the \texttt{	extbackslash} character is not treated specially. The first field is assigned to the first \textit{name}, the second field to the second \textit{name}, and so on, with leftover fields assigned to the last \textit{name}. The \texttt{-p} option causes the input line to be taken from the input pipe of a process spawned by the shell using |&. If the \texttt{-s} flag is present, the input will be saved as a command in the history file. The flag \texttt{-u} can be used to specify a one digit file descriptor unit \textit{n} to read from. The file descriptor can be opened with the \texttt{exec} special command. The default value of \textit{n} is 0. If \textit{name} is omitted, \texttt{REPLY} is used as the default \textit{name}. The exit status is 0 unless the input file is not open for reading or an end-of-file is encountered. An end-of-file with the \texttt{-p} option causes cleanup for this process so that another can be spawned. If the first argument contains a \texttt{?}, the remainder of this word is used as a \textit{prompt} on standard error when the shell is interactive. The exit status is 0 unless an end-of-file is encountered.

\textbf{OPTIONS} The following option is supported:

\texttt{-r} Does not treat a backslash character in any special way. Considers each backslash to be part of the input line.

\textbf{OPERANDS} The following operand is supported:

\texttt{var} The name of an existing or non-existing shell variable.

\textbf{EXAMPLES} \textbf{EXAMPLE 1} An example of the read command

The following example for \texttt{/usr/bin/read} prints a file with the first field of each line moved to the end of the line:

\begin{verbatim}
example$ while read -r xx yy
do   printf "\%s %s\n" "$yy" "$xx"
done < input_file
\end{verbatim}

\textbf{ENVIRONMENT VARIABLES} See environ(5) for descriptions of the following environment variables that affect the execution of read: \texttt{LANG}, \texttt{LC\_ALL}, \texttt{LC\_CTYPE}, \texttt{LC\_MESSAGES}, and \texttt{NLSPATH}.

\texttt{IFS} Determines the internal field separators used to delimit fields.

\texttt{PS2} Provides the prompt string that an interactive shell will write to standard error when a line ending with a backslash is read and the \texttt{-r} option was not specified, or if a here-document is not terminated after a newline character is entered.

\textbf{EXIT STATUS} The following exit values are returned:

\begin{verbatim}
0   Successful completion.
>0   End-of-file was detected or an error occurred.
\end{verbatim}
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO  csh(1), ksh(1), line(1), set(1), sh(1), attributes(5), environ(5), standards(5)
readfile(1F)

NAME    | readfile, longline – reads file, gets longest line

SYNOPSIS | readfile filename
            longline [filename]

DESCRIPTION | The readfile function reads filename and copies it to stdout. No translation of NEWLINE is done. It keeps track of the longest line it reads and if there is a subsequent call to longline, the length of that line, including the NEWLINE character, is returned.

The longline function returns the length, including the NEWLINE character, of the longest line in filename. If filename is not specified, it uses the file named in the last call to readfile.

EXAMPLES | EXAMPLE 1 Typical use of readfile and longline

Here is a typical use of readfile and longline in a text frame definition file:

```
 .
 .
 text="'readfile myfile'"
columns='longline'
 .
 .
```

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | cat(1), attributes(5)

DIAGNOSTICS | If filename does not exist, readfile will return FALSE (that is, the expression will have an error return).

longline returns 0 if a readfile has not previously been issued.

NOTES | More than one descriptor can call readfile in the same frame definition file. In text frames, if one of those calls is made from the text descriptor, then a subsequent use of longline will always get the longest line of the file read by the readfile associated with the text descriptor, even if it was not the most recent use of readfile.
readonly(1)

NAME
readonly – shell built-in function to protect the value of the given variable from reassignment

SYNOPSIS
sh  readonly [name...]
ksh **readonly [ name [ = value]...]”

DESCRIPTION
sh The given names are marked readonly and the values of the these names may not be changed by subsequent assignment. If no arguments are given, a list of all readonly names is printed.

ksh The given names are marked readonly and these names cannot be changed by subsequent assignment.

On this man page, ksh(1) commands that are preceded by one or two ** (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO ksh(1), sh(1), typeset(1), attributes(5)
refer(1)

<table>
<thead>
<tr>
<th>NAME</th>
<th>refer — expand and insert references from a bibliographic database</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>refer is a preprocessor for nroff(1), or troff(1), that finds and formats references. The input files (standard input by default) are copied to the standard output, except for lines between ‘.’ [‘ and ‘.’ ]’ command lines, Such lines are assumed to contain keywords as for lookbib(1), and are replaced by information from a bibliographic data base. The user can avoid the search, override fields from it, or add new fields. The reference data, from whatever source, is assigned to a set of troff strings. Macro packages such as ms(5) print the finished reference text from these strings. A flag is placed in the text at the point of reference. By default, the references are indicated by numbers. When refer is used with eqn(1), neqn, or tbl(1), refer should be used first in the sequence, to minimize the volume of data passed through pipes.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>-b Bare mode — do not put any flags in text (neither numbers or labels).</td>
</tr>
<tr>
<td></td>
<td>-e Accumulate references instead of leaving the references where encountered, until a sequence of the form:</td>
</tr>
</tbody>
</table>
|          | .[
|          | $LIST$
|          | .] |
|          | is encountered, and then write out all references collected so far. Collapse references to the same source. |
|          | -n Do not search the default file. |
|          | -ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted, all author names are reversed. |
|          | -cstring Capitalize (with SMALL CAPS) the fields whose key-letters are in string. |
|          | -kx Instead of numbering references, use labels as specified in a reference data line beginning with the characters %x; By default, x is L. |
|          | -lm,n Instead of numbering references, use labels from the senior author’s last name and the year of publication. Only the first m letters of the last name and the last n digits of the date are used. If either of m or n is omitted, the entire name or date, respectively, is used. |
|          | -p filename Take the next argument as a file of references to be searched. The default file is searched last. |
-skeys  Sort references by fields whose key-letters are in the keys string, and permute reference numbers in the text accordingly. Using this option implies the -e option. The key-letters in keys may be followed by a number indicating how many such fields are used, with a + sign taken as a very large number. The default is AD, which sorts on the senior author and date. To sort on all authors and then the date, for instance, use the options ‘-sA+T’.

FILES
/usr/lib/refer   directory of programs
/usr/lib/refer/papers directory of default publication lists and indexes

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
addbib(1), eqn(1), indxbib(1), lookbib(1), nroff(1), roffbib(1), sortbib(1), tbl(1), troff(1), attributes(5)
The `regcmp` command performs a function similar to `regcmp` and, in most cases, precludes the need for calling `regcmp` from C programs. Bypassing `regcmp` saves on both execution time and program size. The command `regcmp` compiles the regular expressions in `filename` and places the output in `filename.i`.

If the `-` option is used, the output is placed in `filename.c`. The format of entries in `filename` is a name (C variable) followed by one or more blanks followed by one or more regular expressions enclosed in double quotes. The output of `regcmp` is C source code. Compiled regular expressions are represented as `extern char` vectors. `filename.i` files may thus be included in C programs, or `filename.c` files may be compiled and later loaded. In the C program that uses the `regcmp` output, `regex(abc, line)` applies the regular expression named `abc` to `line`. Diagnostics are self-explanatory.

### Examples

**Example 1** Examples of the `regcmp` command.

```c
name "([A-Za-z][A-Za-z0-9_]*)$0"
telno " \{0,1\}\{2-9\}[01]\{1-9\}\{0,1\}\{0,1\}" "\{2-9\}[0-9]{2}\{1-9\}\{0,1\}"
 "\{0-9\}\{4\}\{1-9\}\{0,1\}"
```

The three arguments to `telno` shown above must all be entered on one line.

In the C program that uses the `regcmp` output,

```c
regex(telno, line, area, exch, rest)
```

applies the regular expression named `telno` to `line`.

### Environment Variables

A general description of the usage of the LC_* environmental variables can be found in `environ(5)`.

- **LC_CTYPE** Determines how `regcmp` handles characters. When `LC_CTYPE` is set to a valid value, `regcmp` can display and handle text and filenames containing valid characters for that locale.

- **LC_MESSAGES** Determines how diagnostic and informative messages are presented. This includes the language and style of the messages, and the correct form of affirmative and negative responses. In the "C" locale, the messages are presented in the default form found in the program itself (in most cases, U.S. English).
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

regcmp(3C), attributes(5), environ(5)
regex(1F)

NAME    regex – match patterns against a string

SYNOPSIS  regex [-e] [ -v "string"] [ pattern template] ... pattern [template]

DESCRIPTION  The regex command takes a string from the standard input, and a list of pattern / template pairs, and runs regex() to compare the string against each pattern until there is a match. When a match occurs, regex writes the corresponding template to the standard output and returns TRUE. The last (or only) pattern does not need a template. If that is the pattern that matches the string, the function simply returns TRUE. If no match is found, regex returns FALSE.

The argument pattern is a regular expression of the form described in regex(). In most cases, pattern should be enclosed in single quotes to turn off special meanings of characters. Note that only the final pattern in the list may lack a template.

The argument template may contain the strings $m0 through $m9, which will be expanded to the part of pattern enclosed in ( . . . )$0 through ( . . . )$9 constructs (see examples below). Note that if you use this feature, you must be sure to enclose template in single quotes so that FMLI does not expand $m0 through $m9 at parse time. This feature gives regex much of the power of cut(1), paste(1), and grep(1), and some of the capabilities of sed(1). If there is no template, the default is $m0$m1$m2$m3$m4$m5$m6$m7$m8$m9.

OPTIONS  The following options are supported:

   -e          Evaluates the corresponding template and writes the result to the standard output.

   -v "string"  Uses string instead of the standard input to match against patterns.

EXAMPLES  EXAMPLE 1 Cutting letters out of a string

To cut the 4th through 8th letters out of a string (this example will output strin and return TRUE):

    `regex -v "my string is nice" ^.{3}(.{5})$0 $m0`

EXAMPLE 2 Validating input in a form

In a form, to validate input to field 5 as an integer:

    valid=`regex -v "$F5" ^[0-9]+$`

EXAMPLE 3 Translating an environment variable in a form

In a form, to translate an environment variable which contains one of the numbers 1, 2, 3, 4, 5 to the letters a, b, c, d, e:

    value=`regex -v "$VAR1" 1 a 2 b 3 c 4 d 5 e '.' '*' 'Error'`

Note the use of the pattern `.*` to mean "anything else".
EXAMPLE 4 Using backquoted expressions

In the example below, all three lines constitute a single backquoted expression. This expression, by itself, could be put in a menu definition file. Since backquoted expressions are expanded as they are parsed, and output from a backquoted expression (the `cat` command, in this example) becomes part of the definition file being parsed, this expression would read `/etc/passwd` and make a dynamic menu of all the login ids on the system.

```
'cat /etc/passwd | regex "^([^:]*):.*$"
name=$m0
action=\'message "$m0 is a user"\''
```

DIAGNOSTICS

If none of the patterns match, `regex` returns FALSE, otherwise TRUE.

NOTES

Patterns and templates must often be enclosed in single quotes to turn off the special meanings of characters. Especially if you use the `$m0` through `$m9` variables in the template, since FMLI will expand the variables (usually to `""`) before `regex` even sees them.

Single characters in character classes (inside `[ ]`) must be listed before character ranges, otherwise they will not be recognized. For example, `[a-zA-Z\_/]` will not find underscores (`_`) or slashes (`/`), but `[\_/a-zA-Z]` will.

The regular expressions accepted by `regcmp` differ slightly from other utilities (that is, `sed`, `grep`, `awk`, `ed`, and so forth).

`regex` with the `-e` option forces subsequent commands to be ignored. In other words, if a backquoted statement appears as follows:

```
'regex -e ...; command1; command2'
```

`command1` and `command2` would never be executed. However, dividing the expression into two:

```
'regex -e ...``command1; command2```
```

would yield the desired result.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO `awk(1), cut(1), grep(1), paste(1), sed(1), regcmp(3C), attributes(5)`
NAME | reinit – runs an initialization file

SYNOPSIS | reinit filename

DESCRIPTION | The reinit command is used to change the values of descriptors defined in the initialization file that was named when fmli was invoked and/or define additional descriptors. FMLI will parse and evaluate the descriptors in filename, and then continue running the current application. The argument filename must be the name of a valid FMLI initialization file.

The reinit command does not re-display the introductory frame or change the layout of screen labels for function keys.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO | attributes(5)
renice – alter priority of running processes

SYNOPSIS

renice [-n increment] [-i idtype] ID...
renice [-n increment] [-g | -p | -u] ID...
renice priority [-p] pid... [-g gid...] [-p pid...] [-u user...]
renice priority -g gid... [-g gid...] [-p pid...] [-u user...]
renice priority -u user... [-g gid...] [-p pid...] [-u user...]

DESCRIPTION

The renice command alters the scheduling priority of one or more running processes. By default, the processes to be affected are specified by their process IDs.

If the first operand is a number within the valid range of priorities (−20 to 20), renice will treat it as a priority (as in all but the first synopsis form). Otherwise, renice will treat it as an ID (as in the first synopsis form).

Users other than the privileged user may only alter the priority of processes they own, and can only monotonically increase their “nice value” within the range 0 to 19. This prevents overriding administrative fias. The privileged user may alter the priority of any process and set the priority to any value in the range −20 to 19. Useful priorities are: 19 (the affected processes will run only when nothing else in the system wants to); 0 (the “base” scheduling priority); and any negative value (to make things go very fast). 20 is an acceptable nice value, but will be rounded down to 19.

OPTIONS

renice supports the following option features:

- The first operand, priority, must precede the options and can have the appearance of a multi-digit option.
- The -g, -p, and -u options can each take multiple option-arguments.
- The pid option-argument can be used without its -p option.
- The -i option can be used to specify the ID type for the ID list. This is preferred in specifying ID type over the use of the -g | -p | -u syntax, which is now obsolete. See NOTES.

The following options are supported:

- -g Interprets all operands or just the gid arguments as unsigned decimal integer process group IDs.
- -i This option, together with the ID list arguments, specifies a class of processes to which the renice command is to apply. The interpretation of the ID list depends on the value of idtype. The valid idtype arguments are: pid, pgid, uid, gid, sid, taskid, and projid.
- -n increment Specifies how the system scheduling priority of the specified process or processes is to be adjusted. The increment option-argument is a positive or negative decimal integer that will be used to modify the system scheduling priority of the specified

User Commands 1291
process or processes. Positive increment values cause a lower system scheduling priority. Negative increment values may require appropriate privileges and will cause a higher system scheduling priority.

-\(p\) Interprets all operands or just the pid arguments as unsigned decimal integer process IDs. The -\(p\) option is the default if no options are specified.

-\(u\) Interprets all operands or just the user argument as users. If a user exists with a user name equal to the operand, then the user ID of that user will be used in further processing. Otherwise, if the operand represents an unsigned decimal integer, it will be used as the numeric user ID of the user.

**OPERANDS**

The following operands are supported:

- **ID** A process ID, process group ID or user name/user ID, depending on the option selected.

- **priority** The value specified is taken as the actual system scheduling priority, rather than as an increment to the existing system scheduling priority. Specifying a scheduling priority higher than that of the existing process may require appropriate privileges.

**EXAMPLES**

**EXAMPLE 1** Adjusting the scheduling priority of process IDs

Adjust the system scheduling priority so that process IDs 987 and 32 would have a lower scheduling priority:

```
example\% renice -n 5 -p 987 32
```

**EXAMPLE 2** Adjusting the scheduling priority of group IDs

Adjust the system scheduling priority so that group IDs 324 and 76 would have a higher scheduling priority, if the user has the appropriate privileges to do so:

```
example\% renice -n -4 -g 324 76
```

**EXAMPLE 3** Adjusting the scheduling priority of a user ID and user name

Adjust the system scheduling priority so that numeric user ID 8 and user sas would have a lower scheduling priority:

```
example\% renice -n 4 -u 8 sas
```

**ENVIRONMENT VARIABLES**

See environ(5) for descriptions of the following environment variables that affect the execution of renice: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

**EXIT STATUS**

The following exit values are returned:
Successful completion.

An error occurred.

FILES
/etc/passwd  map user names to user IDs

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
nice(1), passwd(1), priocntl(1), attributes(5), environ(5), standards(5)

NOTES
The renice syntax

```
renice [-n increment] [-i idtype] ID ...
```

is preferred over the old syntax

```
renice [-n increment] [-g | -p | -u] ID ...
```

which is now obsolete.

If you make the priority very negative, then the process cannot be interrupted.

To regain control you must make the priority greater than 0.

Users other than the privileged user cannot increase scheduling priorities of their own processes, even if they were the ones that decreased the priorities in the first place.

The priocntl command subsumes the function of renice.
reset(1F)

NAME reset – reset the current form field to its default values

SYNOPSIS reset

DESCRIPTION The reset function changes the entry in a field of a form to its default value; that is, the value displayed when the form was opened.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
NAME
rlogin – remote login

SYNOPSIS
rlogin [-8EL] [-ec ] [-l username] hostname

DESCRIPTION
rlogin establishes a remote login session from your terminal to the remote machine
named hostname.

Hostnames are listed in the hosts database, which may be contained in the
/etc/hosts and /etc/inet/ipnodes files, the Network Information Service (NIS)
hosts map, the Internet domain name server, or a combination of these. Each host
has one official name (the first name in the database entry), and optionally one or more
nicknames. Either official hostnames or nicknames may be specified in hostname.

Each remote machine may have a file named /etc/hosts.equiv containing a list of
trusted hostnames with which it shares usernames. Users with the same username on
both the local and remote machine may rlogin from the machines listed in the
remote machine’s /etc/hosts.equiv file without supplying a password. Individual
users may set up a similar private equivalence list with the file .rhosts in their home
directories. Each line in this file contains two names: a hostname and a username
separated by a space. An entry in a remote user’s .rhosts file permits the user
named username who is logged into hostname to log in to the remote machine as the
remote user without supplying a password. If the name of the local host is not found
in the /etc/hosts.equiv file on the remote machine, and the local hostname and
hostname are not found in the remote user’s .rhosts file, then the remote machine
will prompt for a password. Hostnames listed in /etc/hosts.equiv and .rhosts
files must be the official hostnames listed in the hosts database; nicknames may not be
used in either of these files.

For security reasons, the .rhosts file must be owned by either the remote user or by
root.

The remote terminal type is the same as your local terminal type (as given in your
environment TERM variable). The terminal or window size is also copied to the remote
system if the server supports the option, and changes in size are reflected as well. All
echoing takes place at the remote site, so that (except for delays) the remote login is
transparent. Flow control using CTRL-S and CTRL-Q and flushing of input and output
on interrupts are handled properly.

OPTIONS
The following options are supported:

-8
Pass eight-bit data across the net instead of seven-bit data.

-ec
Specify a different escape character, c, for the line used to
disconnect from the remote host.

-E
Stop any character from being recognized as an escape character.

-1 username
Specify a different username for the remote login. If you do not use
this option, the remote username used is the same as your local
username.

-L
Allow the rlogin session to be run in “litout” mode.
rlogin(1)

**Escape Sequences**

Lines that you type which start with the tilde character are “escape sequences” (the escape character can be changed using the -e option):

- . Disconnect from the remote host. This is not the same as a logout, because the local host breaks the connection with no warning to the remote end.

- susp Suspend the login session (only if you are using a shell with Job Control). susp is your “suspend” character, usually CTRL-Z; see tty(1).

- dsusp Suspend the input half of the login, but output will still be seen (only if you are using a shell with Job Control). dsusp is your “deferred suspend” character, usually CTRL-Y; see tty(1).

**OPERANDS**

**hostname** The remote machine on which rlogin establishes the remote login session.

**FILES**

/etc/passwd contains information about users’ accounts

/usr/hosts/* for hostname version of the command

/etc/hosts.equiv list of trusted hostnames with shared usernames

/etc/nologin message displayed to users attempting to login during machine shutdown

$HOME/.rhosts private list of trusted hostname/username combinations

/etc/hosts hosts database

/etc/inet/ipnodes hosts database

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

**SEE ALSO**

rsh(1), stty(1), tty(1), in.named(1M), hosts(4), ipnodes(4), hosts.equiv(4), nologin(4), attributes(5)

**DIAGNOSTICS**

The following message indicates that the machine is in the process of being shutdown and logins have been disabled:

NO LOGINS: System going down in N minutes

**NOTES**

When a system is listed in hosts.equiv, its security must be as good as local security. One insecure system listed in hosts.equiv can compromise the security of the entire system.
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name has changed.

This implementation can only use the TCP network service.
The `rm` utility removes the directory entry specified by each file argument. If a file has no write permission and the standard input is a terminal, the full set of permissions (in octal) for the file are printed followed by a question mark. This is a prompt for confirmation. If the answer begins with `y` (for yes), the file is deleted, otherwise the file remains.

If file is a symbolic link, the link will be removed, but the file or directory to which it refers will not be deleted. Users do not need write permission to remove a symbolic link, provided they have write permissions in the directory.

If multiple files are specified and removal of a file fails for any reason, `rm` will write a diagnostic message to standard error, do nothing more to the current file, and go on to any remaining files.

If the standard input is not a terminal, the utility will operate as if the `-f` option is in effect.

The `rmdir` utility will remove the directory entry specified by each dirname operand, which must refer to an empty directory.

Directories will be processed in the order specified. If a directory and a subdirectory of that directory are specified in a single invocation of `rmdir`, the subdirectory must be specified before the parent directory so that the parent directory will be empty when `rmdir` tries to remove it.

The following options are supported for `/usr/bin/rm` and `/usr/xpg4/bin/rm`:

- `-r` Recursively removes directories and subdirectories in the argument list. The directory will be emptied of files and removed. The user is normally prompted for removal of any write-protected files which the directory contains. The write-protected files are removed without prompting, however, if the `-f` option is used, or if the standard input is not a terminal and the `-i` option is not used.

Symbolic links that are encountered with this option will not be traversed.

If the removal of a non-empty, write-protected directory is attempted, the utility will always fail (even if the `-f` option is used), resulting in an error message.

- `-R` Same as `-r` option.
The following options are supported for /usr/bin/rm only:

- **f**: Removes all files (whether write-protected or not) in a directory without prompting the user. In a write-protected directory, however, files are never removed (whatever their permissions are), but no messages are displayed. If the removal of a write-protected directory is attempted, this option will not suppress an error message.

- **i**: Interactive. With this option, rm prompts for confirmation before removing any files. It overrides the -f option and remains in effect even if the standard input is not a terminal.

The following options are supported for /usr/xpg4/bin/rm only:

- **f**: Does not prompt for confirmation. Does not write diagnostic messages or modify the exit status in the case of non-existent operands. Any previous occurrences of the -i option will be ignored.

- **i**: Prompts for confirmation. Any occurrences of the -f option will be ignored.

The following options are supported for /usr/bin/rmdir only:

- **p**: Allows users to remove the directory dirname and its parent directories which become empty. A message is printed to standard error if all or part of the path could not be removed.

- **s**: Suppresses the message printed on the standard error when -p is in effect.

**OPERANDS**
The following operands are supported:

- **file**: A path name of a directory entry to be removed.
- **dirname**: A path name of an empty directory to be removed.

**USAGE**
See largefile(5) for the description of the behavior of rm and rmdir when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

When a UFS file system is mounted with logging enabled, file system transactions that free blocks from files might not actually add those freed blocks to the file system’s free list until some unspecified time in the future. This behavior improves file system performance but does not conform to the POSIX, Single UNIX Specification, SPARC Conformance Definition, System V Application Binary Interface, System V Interface Definition, and X/Open Portability Guide Standards, which require that freed space be available immediately. To enable standards conformance regarding file deletions or to address the problem of not being able to grow files on a relatively full UFS file system even after files have been deleted, disable UFS logging (see mount_ufs(1M)).

**EXAMPLES**
EXAMPLE 1 Removing directories

The following command:
```
example% rm a.out core
```
removes the directory entries `a.out` and `core`.

EXAMPLE 2 Removing a directory without prompting

The following command:
```
example% rm -rf junk
```
removes the directory `junk` and all its contents, without prompting.

EXAMPLE 3 Removing empty directories

If a directory `a` in the current directory is empty, except that it contains a directory `b`, and `a/b` is empty except that it contains a directory `c`, the following command will remove all three directories:
```
example% rmdir -p a/b/c
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `rm` and `rmdir`: `LANG`, `LC_ALL`, `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>If the <code>-f</code> option was not specified, all the named directory entries were removed; otherwise, all the existing named directory entries were removed.</td>
</tr>
<tr>
<td>&gt;0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/rm</th>
<th>/usr/bin/rmdir</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/rm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE TYPE</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>CSI</td>
</tr>
<tr>
<td>Interface Stability</td>
</tr>
</tbody>
</table>
All messages are generally self-explanatory.

It is forbidden to remove the files "." and " .." in order to avoid the consequences of inadvertently doing something like the following:

```
example$ rm -r .*
```

A `−` permits the user to mark explicitly the end of any command line options, allowing `rm` to recognize file arguments that begin with a `−`. As an aid to BSD migration, `rm` will accept `−−` as a synonym for `−`. This migration aid may disappear in a future release. If a `−−` and a `−` both appear on the same command line, the second will be interpreted as a file.
The `rmformat` utility is used to format, label, partition, and perform other miscellaneous functions on removable, rewritable media that include floppy drives, IOMEGA Zip/Jaz products, and the PCMCIA memory and ata cards. In addition, the `rmformat` utility should also be used with all USB mass storage devices, including USB hard drives. This utility can also be used for the verification and surface analysis and for repair of the bad sectors found during verification if the drive or the driver supports bad block management.

`rmformat` provides functionality to read/write protect the media with or without a password. The password protection enabling or disabling is possible only with selective rewritable media such as the IOMEGA Zip/Jaz products.

After formatting, `rmformat` writes the label, which covers the full capacity of the media as one slice on floppy and PCMCIA memory cards to maintain compatibility with the behavior of `fdformat`. On Zip/Jaz devices, the driver exports one slice covering the full capacity of the disk as default. `rmformat` does not write the label on Zip/Jaz media, unless explicitly requested. The partition information can be changed with the help of other options provided by `rmformat`.

The following options are supported:

- `--label` Labels the media with a SUNOS label. A SUNOS volume label name is restricted to 8 characters. For writing a DOS Volume label, the user should use `mkfs_pcfs(1M)`.

- `--blockno` Corrects and repairs the given block. This correct and repair option may not be applicable to all devices supported by `rmformat`, as some devices may have a drive with bad block management capability and others may have this option implemented in the driver. If the drive or driver supports bad block management, a best effort is made to rectify the bad block. If the bad block still cannot be rectified, a message is displayed to indicate the failure to repair. The block number can be provided in decimal, octal, or hexadecimal format.

The normal floppy and PCMCIA memory and ata cards do not support bad block management.

- `--D` Formats a 720KB (3.5 inch) double density diskette. This is the default for double density type drives. This option is needed if the drive is a high or extended-density type.
Ejects the media upon completion. This feature may not be available if the drive does not support motorized eject.

-quick | long | force

Formats the media.

The quick option starts a format without certification or format with limited certification of certain tracks on the media.

The long option starts a complete format. For some devices this might include the certification of the whole media by the drive itself.

The force option to format is provided to start a long format without user confirmation before the format is started. For drives which have a password protection mechanism, it clears the password while formatting. This feature is useful when a password is no longer available. On those media which do not have such password protection, force starts a long format.

In legacy media such as floppy drives, all options start a long format depending on the mode (Extended Density mode, High Density mode, or Double Density mode) with which the floppy drive operates by default. On PCMCIA memory cards, all options start a long format.

-H

Formats a 1.44 MB (3.5 inch) high density diskette. This is the default for high density type drives. It is needed if the drive is the Extended Density type.

-P

Prints the protection status of the media. This option prints information whether the media is write, read, or password protected.

-R enable | disable

Enables read/write protection with a password or disables the password read/write protection. This always works in interactive mode, as the password is requested from the user in an interactive manner to maintain security.

A password length of 32 bytes (maximum) is allowed for the IOMEGA products that support this feature. This option is applicable only for IOMEGA products. IOMEGA products do not allow read/write protection without a password. On the devices which do not have such software read/write protect facility, warnings indicating the non-availability of this feature are provided.

-s filename

Enables the user to lay out the partition information in the SUNOS label.

The user should provide a file as input with information about each slice in a format providing byte offset, size required, tags, and flags, as follows:

slices: n = offset, size [, flags, tags]
where \( n \) is the slice number, \( \text{offset} \) is the byte offset at which the slice \( n \) starts, and \( \text{size} \) is the required size for slice \( n \). Both \( \text{offset} \) and \( \text{size} \) must be a multiple of 512 bytes. These numbers can be represented as decimal, hexadecimal, or octal numbers. No floating point numbers are accepted. Details about maximum number of slices can be obtained from the System Administration Guide: Basic Administration.

To specify the \( \text{size} \) or \( \text{offset} \) in kilobytes, megabytes, or gigabytes, add \( \text{KB, MB, GB} \), respectively. A number without a suffix is assumed to be a byte offset. The flags are represented as follows:

\[ \begin{align*}
\text{wm} &= \text{read-write, mountable} \\
\text{wu} &= \text{read-write, unmountable} \\
\text{ru} &= \text{read-only, unmountable}
\end{align*} \]

The tags are represented as follows: unassigned, boot, root, swap, usr, backup, stand, var, home, alternates.

The tags and flags can be omitted from the four tuple when finer control on those values is not required. It is required to omit both or include both. If the tags and flags are omitted from the four tuple for a particular slice, a default value for each is assumed. The default value for flags is \( \text{wm} \) and for tags is \( \text{unassigned} \).

Either full tag names can be provided or an abbreviation for the tags can be used. The abbreviations can be the first two or more letters from the standard tag names. \text{rmformat} is case insensitive in handling the defined tags and flags.

Slice specifications are separated by, for example:

```plaintext
slices: 0 = 0, 30MB, "wm", "home" :
 1 = 30MB, 51MB :
 2 = 0, 100MB, "wm", "backup" :
 6 = 81MB, 19MB
```

\text{rmformat} does the necessary checking to detect any overlapping partitions or illegal requests to addresses beyond the capacity of the media under consideration. There can be only one slice information entry for each slice \( n \). If multiple slice information entries for the same slice \( n \) are provided, an appropriate error message is displayed. The slice 2 is the backup slice covering the whole disk capacity. The pound sign character, \#, can be used to describe a line of comments in the input file. If the line starts with \#, then \text{rmformat} ignores all the characters following \# until the end of the line.

Partitioning some of the media with very small capacity is permitted, but be cautious in using this option on such devices.

\texttt{-U}

Performs \texttt{umount} on any file systems and then formats. See \texttt{mount(1M)}. This option unmounts all the mounted slices and issues a long format on the device requested.
rmformat(1)

-\v  read  | write
  Verifies each block of media after format. The write verification is a destructive
  mechanism. The user is queried for confirmation before the verification is started.
  The output of this option is a list of block numbers, which are identified as bad.

  The read verification only verifies the blocks and report the blocks which are prone
  to errors.

  The list of block numbers displayed can be used with the -c option for repairing.

-\w  enable  | disable
  Enables or disables the write protection on media. On devices that do not have a
  software write protect facility, a message indicating non-availability of this feature
  is displayed.

-\W  enable  | disable
  Enables or disables write protection with password. This option always works in
  interactive mode, as a password is requested from the user to maintain security.

  A maximum password length of 32 bytes is allowed for IOMEGA products that
  support this feature. On devices that do not have the write protection with
  password, the software displays appropriate messages indicating the
  non-availability of such features.

OPERANDS

The following operand is supported:

\devname
  \devname can be provided as absolute device pathname or relative
  pathname for the device from the current working directory or the
  nickname as exported by the System Volume manager. See
  vold(1M).

  For floppy devices, to access the first drive use
  /dev/rdiskette0 (for systems without volume management) or
  floppy0 (for systems with volume management). Specify
  /dev/rdiskette1 (for systems without volume management) or
  floppy1 (for systems with volume management) to use the
  second drive.

  For systems without volume management running, the user can
  also provide the absolute device pathname as
  /dev/rdsn/c?t?d?s? or the appropriate relative device
  pathname from the current working directory.

EXAMPLES

EXAMPLE 1 Formatting a diskette

example$ rmformat -F quick /dev/rdiskette

Formatting will erase all the data on disk.
Do you want to continue? (y/n): y
EXAMPLE 2 Formatting a Zip drive

```
example$ rmformat -F quick /vol/dev/aliases/zip0
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
```

EXAMPLE 3 Formatting a diskette for a UFS file system

The following example formats a diskette and creates a UFS file system:

```
example$ rmformat -F quick /vol/dev/aliases/floppy0
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
/usr/sbin/newfs /vol/dev/aliases/floppy0
newfs: construct a new file system /dev/rdiskette: (y/n)? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors
1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -P ufs -o b-#) at:
 32, 640, 1184, 1792, 2336,
```

EXAMPLE 4 Formatting removable media for a PCFS file system

The following example shows how to create an alternate fdisk partition:

```
example$ rmformat -F quick /dev/rdsk/c0t4d0s2:c
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
fdisk /dev/rdsk/c0t4d0s2:c
mkfs -F pcfs /dev/rdsk/c0t4d0s2:c
Construct a new FAT file system on /dev/rdsk/c0t4d0s2:c: (y/n)? y
```

The following example describes how to create a PCFS file system without an fdisk partition:

```
example$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
mkfs -F pcfs -onofdisk, size=2 /dev/rdiskette
Construct a new FAT file system on /dev/rdiskette: (y/n)? y
```

EXAMPLE 5 Enabling or disabling read or write protection

The following example shows how to enable write protection and set a password on a Zip drive:

```
example$ rmformat -W enable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx
```
EXAMPLE 5 Enabling or disabling read or write protection (Continued)

The following example shows how to disable write protection and remove the password on a Zip drive:

```
example$ rmformat -W disable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
```

The following example shows how to enable read protection and set a password on a Zip drive:

```
example$ rmformat -R enable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx
```

The following example shows how to disable read protection and remove the password on a Zip drive:

```
example$ rmformat -R disable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
```

FILES

- `/vol/dev/diskette0` Directory providing block device access for the media in floppy drive 0.
- `/vol/dev/rdiskette0` Directory providing character device access for the media in floppy drive 0.
- `/vol/dev/aliases` Directory providing symbolic links to the character devices for the different media under the control of volume management using appropriate alias.
- `/vol/dev/aliases/floppy0` Symbolic link to the character device for the media in floppy drive 0.
- `/vol/dev/aliases/zip0` Symbolic link to the character device for the media in Zip drive 0.
- `/vol/dev/aliases/jaz0` Symbolic link to the character device for the media in Jaz drive 0.
- `/dev/rdiskette` Symbolic link providing character device access for the media in the primary floppy drive, usually drive 0.
- `/vol/dev/dsk` Directory providing block device access for the PCMCIA memory and ata cards and removable media devices.
- `/vol/dev/rdsk` Directory providing character device access for the PCMCIA memory and ata cards and removable media devices.
Symbolic link to the character device for the PCMCIA memory card in socket S, where S represents a PCMCIA socket number.

Symbolic link to the generic removable media device that is not a Zip, Jaz, CD-ROM, floppy, DVD-ROM, PCMCIA memory card, and so forth.

Directory providing character device access for the PCMCIA memory and ata cards and other removable devices.

Directory providing block device access for the PCMCIA memory and ata cards and other removable media devices.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

cpio(1), eject(1), fdformat(1), tar(1), volcancel(1), volcheck(1), volmissing(1), volrmmount(1), format(1M), mkfs_pcfs(1M), mount(1M), newfs(1M), prtvtoc(1M), rmmount(1M), rpc_smserved(1M), vold(1M), rmmount.conf(4), vold.conf(4), attributes(5), scsa2usb(7D), sd(7D), pcfs(7FS), udfs(7FS)

System Administration Guide: Basic Administration

NOTES

A rewritable media or PCMCIA memory card or PCMCIA ata card containing a ufs file system created on a SPARC-based system (using newfs(1M)) is not identical to a rewritable media or PCMCIA memory card containing a ufs file system created on an x86 based system. Do not interchange any removable media containing ufs between these platforms; use cpio(1) or tar(1) to transfer files on diskettes or memory cards between them. For interchangeable filesystems refer to pcfs(7FS) and udfs(7FS).

BUGS

Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA memory cards. Therefore, a diskette or memory card is unusable if rmformat finds an error (bad sector).
roffbib prints out all records in a bibliographic database, in bibliography format rather than as footnotes or endnotes. Generally it is used in conjunction with sortbib(1):

```
example% sortbib database | roffbib
```

roffbib accepts all options understood by nroff(1) except -i and -q.

- **-e**
  Produce equally-spaced words in adjusted lines using full terminal resolution.

- **-h**
  Use output tabs during horizontal spacing to speed output and reduce output character count. TAB settings are assumed to be every 8 nominal character widths.

- **-m filename**
  Prepend the macro file `/usr/share/lib/tmac/tmac.name` to the input files. There should be a space between the `-m` and the macro filename. This set of macros will replace the ones defined in `/usr/share/lib/tmac/tmac.bib`.

- **-np**
  Number first generated page `p`.

- **-olist**
  Print only page numbers that appear in the comma-separated list of numbers and ranges. A range `N–M` means pages `N` through `M`; an initial `-N` means from the beginning to page `N`; a final `N–` means from page `N` to end.

- **-Q**
  Queue output for the phototypesetter. Page offset is set to 1 inch.

- **-raN**
  Set register `a` (one-character) to `N`. The command-line argument `-ra1` will number the references starting at 1.

   Four command-line registers control formatting style of the bibliography, much like the number registers of ms(5). The flag `-rv2` will double space the bibliography, while `-rv1` will double space references but single space annotation paragraphs. The line length can be changed from the default 6.5 inches to 6 inches with the `-rl6i` argument, and the page offset can be set from the default of 0 to one inch by specifying `-ro1i` (capital O, not zero).

- **-sN**
  Halt prior to every `N` pages for paper loading or changing (default `N = 1`). To resume, enter NEWLINE or RETURN.

- **-Term**
  Specify `term` as the terminal type.

- **-V**
  Send output to the Versatec. Page offset is set to 1 inch.
roffbib(1)

-x If abstracts or comments are entered following the %X field key, roffbib will format them into paragraphs for an annotated bibliography. Several %X fields may be given if several annotation paragraphs are desired.

FILES /usr/share/lib/tmac/tmac.bib file of macros used by nroff/troff

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO addbib(1), indexbib(1), lookbib(1), nroff(1) refer(1), sortbib(1), troff(1), attributes(5)

BUGS Users have to rewrite macros to create customized formats.
The command `roles` prints on standard output the roles that you or the optionally-specifed user have been granted. Roles are special accounts that correspond to a functional responsibility rather than to an actual person (referred to as a normal user).

Each user may have zero or more roles. Roles have most of the attributes of normal users and are identified like normal users in `passwd(4)` and `shadow(4)`. Each role must have an entry in the `user_attr(4)` file that identifies it as a role. Roles can have their own authorizations and profiles. See `auths(1)` and `profiles(1)`.

Roles are not allowed to log into a system as a primary user. Instead, a user must log in as him—or herself and assume the role. The actions of a role are attributable to the normal user. When auditing is enabled, the audited events of the role contain the audit ID of the original user who assumed the role.

A role may not assume itself or any other role. Roles are not hierarchical. However, rights profiles (see `prof_attr(4)`) are hierarchical and can be used to achieve the same effect as hierarchical roles.

Roles must have valid passwords and one of the shells that interprets profiles: either `pfcsh`, `pfksh`, or `pfsh`. See `pfexec(1)`.

Role assumption may be performed using `su(1M)`, `rlogin(1)`, or some other service that supports the `PAM_RUSER` variable. Successful assumption requires knowledge of the role’s password and membership in the role. Role assignments are specified in `user_attr(4)`.

**EXAMPLE 1** Sample output

The output of the `roles` command has the following form:

```
example% roles tester01 tester02
 tester01 : admin
 tester02 : secadmin, root
example%
```

**EXIT STATUS** The following exit values are returned:

- 0 Successful completion.
- 1 An error occurred.

**FILES**

- `/etc/user_attr`
- `/etc/security/auth_attr`
- `/etc/security/prof_attr`
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

auths(1), pfexec(1), profiles(1), rlogin(1), su(1M), getauusername(3BSM), auth_attr(4), passwd(4), prof_attr(4), shadow(4), user_attr(4), attributes(5)
rpcgen(1)

NAME
rpcgen – an RPC protocol compiler

SYNOPSIS
rpcgen infile

rpcgen [-a] [-A] [-b] [-C] [ -D name [ = value] ] [-i size] [ -I

rpcgen [-c | -h | -l | -m | -t | -Sc | -Ss | -Sm] [-o outfile] [infile]

rpcgen [-s nettype] [-o outfile] [infile]

rpcgen [-n netid] [-o outfile] [infile]

DESCRIPTION
The rpcgen utility is a tool that generates C code to implement an RPC protocol. The input to rpcgen is a language similar to C known as RPC Language (Remote Procedure Call Language).

The rpcgen utility is normally used as in the first synopsis where it takes an input file and generates three output files. If the infile is named proto.x, then rpcgen generates a header in proto.h, XDR routines in proto_xdr.c, server-side stubs in proto_svc.c, and client-side stubs in proto_clnt.c. With the -T option, it also generates the RPC dispatch table in proto_tbl.i.

rpcgen can also generate sample client and server files that can be customized to suit a particular application. The -Sc, -Ss, and -Sm options generate sample client, server and makefile, respectively. The -a option generates all files, including sample files. If the infile is proto.x, then the client side sample file is written to proto_client.c, the server side sample file to proto_server.c and the sample makefile to makefile.proto.

The server created can be started both by the port monitors (for example, inetd or listen) or by itself. When it is started by a port monitor, it creates servers only for the transport for which the file descriptor 0 was passed. The name of the transport must be specified by setting up the environment variable PM_TRANSPORT. When the server generated by rpcgen is executed, it creates server handles for all the transports specified in the NETPATH environment variable, or if it is unset, it creates server handles for all the visible transports from the /etc/netconfig file. Note: the transports are chosen at run time and not at compile time. When the server is self-started, it backgrounds itself by default. A special define symbol RPC_SVC_FG can be used to run the server process in foreground.

The second synopsis provides special features which allow for the creation of more sophisticated RPC servers. These features include support for user-provided #defines and RPC dispatch tables. The entries in the RPC dispatch table contain:
- pointers to the service routine corresponding to that procedure
- a pointer to the input and output arguments
- the size of these routines

A server can use the dispatch table to check authorization and then to execute the service routine. A client library may use the dispatch table to deal with the details of storage management and XDR data conversion.
The other three synopses shown above are used when one does not want to generate all the output files, but only a particular one. See the EXAMPLES section below for examples of rpccgen usage. When rpccgen is executed with the -s option, it creates servers for that particular class of transports. When executed with the -n option, it creates a server for the transport specified by netid. If infile is not specified, rpccgen accepts the standard input.

All the options mentioned in the second synopsis can be used with the other three synopses, but the changes will be made only to the specified output file.

The C preprocessor cc -E is run on the input file before it is actually interpreted by rpccgen. For each type of output file, rpccgen defines a special preprocessor symbol for use by the rpccgen programmer:

- **RPC_HDR** defined when compiling into headers
- **RPC_XDR** defined when compiling into XDR routines
- **RPC_SVC** defined when compiling into server-side stubs
- **RPC_CLNT** defined when compiling into client-side stubs
- **RPC_TBL** defined when compiling into RPC dispatch tables

Any line beginning with "%%" is passed directly into the output file, uninterpreted by rpccgen, except that the leading "%%" is stripped off. To specify the path name of the C preprocessor, use the -Y flag.

For every data type referred to in infile, rpccgen assumes that there exists a routine with the string xdr_ prepended to the name of the data type. If this routine does not exist in the RPC/XDR library, it must be provided. Providing an undefined data type allows customization of XDR routines.

### OPTIONS

The following options are supported:

- **-a** Generates all files, including sample files.
- **-A** Enables the Automatic MT mode in the server main program. In this mode, the RPC library automatically creates threads to service client requests. This option generates multithread-safe stubs by implicitly turning on the -M option. Server multithreading modes and parameters can be set using the rpc_control(3NSL) call. rpccgen generated code does not change the default values for the Automatic MT mode.
- **-b** Backward compatibility mode. Generates transport-specific RPC code for older versions of the operating system.
- **-c** Compiles into XDR routines.
- **-C** Generates header and stub files which can be used with ANSI C compilers. Headers generated with this flag can also be used with C++ programs.
-D name [=value]
Defines a symbol name. Equivalent to the #define directive in the source. If no value is given, value is defined as 1. This option may be specified more than once.

-h
Compiles into C data-definitions (a header). The -T option can be used in conjunction to produce a header which supports RPC dispatch tables.

-i size
Size at which to start generating inline code. This option is useful for optimization. The default size is 5.

-I
Compiles support for inetd(1M) in the server side stubs. Such servers can be self-started or can be started by inetd. When the server is self-started, it backgrounds itself by default. A special define symbol RPC_SVC_FG can be used to run the server process in foreground, or the user may simply compile without the -I option.

If there are no pending client requests, the inetd servers exit after 120 seconds (default). The default can be changed with the -K option. All of the error messages for inetd servers are always logged with syslog(3C).

Note: This option is supported for backward compatibility only. It should always be used in conjunction with the -b option which generates backward compatibility code. By default (that is, when -b is not specified), rpcgen generates servers that can be invoked through portmonitors.

-K seconds
By default, services created using rpcgen and invoked through port monitors wait 120 seconds after servicing a request before exiting. That interval can be changed using the -K flag. To create a server that exits immediately upon servicing a request, use -K 0. To create a server that never exits, the appropriate argument is -K -1.

When monitoring for a server, some portmonitors, like listen(1M), always spawn a new process in response to a service request. If it is known that a server will be used with such a monitor, the server should exit immediately on completion. For such servers, rpcgen should be used with -K 0.

-l
Compiles into client-side stubs.

-L
When the servers are started in foreground, uses syslog(3C) to log the server errors instead of printing them on the standard error.
rpcgen(1)

- m Compiles into server-side stubs, but do not generate a “main” routine. This option is useful for doing callback-routines and for users who need to write their own “main” routine to do initialization.

- M Generates multithread-safe stubs for passing arguments and results between rpcgen-generated code and user written code. This option is useful for users who want to use threads in their code.

- N This option allows procedures to have multiple arguments. It also uses the style of parameter passing that closely resembles C. So, when passing an argument to a remote procedure, you do not have to pass a pointer to the argument, but can pass the argument itself. This behavior is different from the old style of rpcgen-generated code. To maintain backward compatibility, this option is not the default.

- n netid Compiles into server-side stubs for the transport specified by netid. There should be an entry for netid in the netconfig database. This option may be specified more than once, so as to compile a server that serves multiple transports.

- o outfile Specifies the name of the output file. If none is specified, standard output is used (-c, -h, -l, -m, -n, -s, -Sc, -Sm, -Ss, and -t modes only).

- s nettype Compiles into server-side stubs for all the transports belonging to the class nettype. The supported classes are netpath, visible, circuit_n, circuit_v, datagram_n, datagram_v, tcp, and udp (see rpc(3NSL) for the meanings associated with these classes). This option may be specified more than once. Note: The transports are chosen at run time and not at compile time.

- Sc Generates sample client code that uses remote procedure calls.

- Sm Generates a sample Makefile which can be used for compiling the application.

- Ss Generates sample server code that uses remote procedure calls.

- t Compiles into RPC dispatch table.

- T Generates the code to support RPC dispatch tables.

The options - c, - h, - l, - m, - s, - Sc, - Sm, - Ss, and - t are used exclusively to generate a particular type of file, while the options - D and - T are global and can be used with the other options.

- v Displays the version number.

- Y pathname Gives the name of the directory where rpcgen will start looking for the C preprocessor.

1316 man pages section 1: User Commands • Last Revised 7 Dec 2001
OPERANDS

The following operand is supported:

infile input file

EXAMPLES

EXAMPLE 1 Generating the output files and dispatch table

The following entry

example% rpcgen -T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c, and prot_tbl.i.

EXAMPLE 2 Sending headers to standard output

The following example sends the C data-definitions (header) to the standard output:

example% rpcgen -h prot.x

EXAMPLE 3 Sending a test version

To send the test version of the -DTEST, server side stubs for all the transport belonging to the class datagram_n to standard output, use:

example% rpcgen -s datagram_n -DTEST prot.x

EXAMPLE 4 Creating server side stubs

To create the server side stubs for the transport indicated by netid tcp, use:

example% rpcgen -n tcp -o prot_svc.c prot.x

EXIT STATUS

0 Successful operation.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO

c(1B), inetd(1M), listen(1M), rpc(3NSL), rpc_control(3NSL), rpc_svc_calls(3NSL), syslog(3C), netconfig(4), attributes(5)

rpm2cpio(1)

NAME    rpm2cpio – convert Red Hat Package (RPM) to cpio archive

SYNOPSIS rpm2cpio [file.rpm]

DESCRIPTION The rpm2cpio utility converts the .rpm file specified as its sole argument to a cpio archive on standard output. (See NOTES.) If no argument is given, an rpm stream is read from standard input. In both cases, rpm2cpio will fail and print a usage message if the standard output is a terminal. Therefore, the output is usually redirected to a file or piped through the cpio(1) utility.

EXAMPLES

EXAMPLE 1 Converting an rpm file

```bash
example% rpm2cpio Device3Dfx-1.1-2.src.rpm | cpio -itv
CPIO archive found:
-rw-r--r-- 1 root root 2635 Sep 13 16:39 1998, 3dfx.gif
-rw-r--r-- 1 root root 11339 Sep 27 16:03 1998, Dev3Dfx.tar.gz
-rw-r--r-- 1 root root 1387 Sep 27 16:04 1998, Device3Dfx-1.1-2.spec
31 blocks
```

EXAMPLE 2 Converting from standard input

```bash
example% rpm2cpio < Device3Dfx-1.1-2.src.rpm | cpio -itv
CPIO archive found:
-rw-r--r-- 1 root root 2635 Sep 13 16:39 1998, 3dfx.gif
-rw-r--r-- 1 root root 11339 Sep 27 16:03 1998, Dev3Dfx.tar.gz
-rw-r--r-- 1 root root 1387 Sep 27 16:04 1998, Device3Dfx-1.1-2.spec
31 blocks
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrpm</td>
</tr>
</tbody>
</table>

SEE ALSO cpio(1), attributes(5)

NOTES rpm2cpio handles versions 3 and 4 RPMs.
**NAME**
rsh, remsh, remote_shell – remote shell

**SYNOPSIS**

```bash
rsh [-n] [-l username] hostname command
rsh hostname [-n] [-l username] command
remsh [-n] [-l username] hostname command
remsh hostname [-n] [-l username] command
hostnaye [-n] [-l username] command
```

**DESCRIPTION**

`rsh` connects to the specified `hostname` and executes the specified `command`. `rsh` copies its standard input to the remote command, the standard output of the remote command to its standard output, and the standard error of the remote command to its standard error. Interrupt, quit, and terminate signals are propagated to the remote command. `rsh` normally terminates when the remote command does.

If you omit `command`, instead of executing a single command, `rsh` logs you in on the remote host using `rlogin(1)`.

`rsh` will not return the exit status code of `command`.

Shell metacharacters which are not quoted are interpreted on the local machine, while quoted metacharacters are interpreted on the remote machine. See EXAMPLES.

If there is no locale setting in the initialization file of the login shell (`.cshrc,...`) for a particular user, `rsh` always executes the command in the “C” locale instead of using the default locale of the remote machine.

**OPTIONS**
The following options are supported:

- `-l username` Uses `username` as the remote username instead of your local username. In the absence of this option, the remote username is the same as your local username.

- `-n` Redirects the input of `rsh` to `/dev/null`. You sometimes need this option to avoid unfortunate interactions between `rsh` and the shell which invokes it. For example, if you are running `rsh` and invoke a `rsh` in the background without redirecting its input away from the terminal, it will block even if no reads are posted by the remote command. The `-n` option will prevent this.

The type of remote shell (sh, rsh, or other) is determined by the user’s entry in the file `/etc/passwd` on the remote system.

**OPERANDS**
The following operand is supported:

- `command` The command to be executed on the specified `hostname`.

**USAGE**

See `largefile(5)` for the description of the behavior of `rsh` and `remsh` when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).
The `rsh` and `remsh` commands are IPv6-enabled. See `ip6(7P)`.

Hostnames are given in the `hosts` database, which may be contained in the `/etc/hosts` file, the Internet domain name database, or both. Each host has one official name (the first name in the database entry) and optionally one or more nicknames. Official hostnames or nicknames may be given as `hostname`.

If the name of the file from which `rsh` is executed is anything other than `rsh`, `rsh` takes this name as its `hostname` argument. This allows you to create a symbolic link to `rsh` in the name of a host which, when executed, will invoke a remote shell on that host. By creating a directory and populating it with symbolic links in the names of commonly used hosts, then including the directory in your shell’s search path, you can run `rsh` by typing `hostname` to your shell.

If `rsh` is invoked with the basename `remsh`, `rsh` will check for the existence of the file `/usr/bin/remsh`. If this file exists, `rsh` will behave as if `remsh` is an alias for `rsh`. If `/usr/bin/remsh` does not exist, `rsh` will behave as if `remsh` is a host name.

Each remote machine may have a file named `/etc/hosts.equiv` containing a list of trusted hostnames with which it shares usernames. Users with the same username on both the local and remote machine may run `rsh` from the machines listed in the remote machine’s `/etc/hosts file. Individual users may set up a similar private equivalence list with the file `.rhosts` in their home directories. Each line in this file contains two names: a `hostname` and a `username` separated by a space. The entry permits the user named `username` who is logged into `hostname` to use `rsh` to access the remote machine as the remote user. If the name of the local host is not found in the `/etc/hosts.equiv` file on the remote machine, and the local username and hostname are not found in the remote user’s `.rhosts` file, then the access is denied. The hostnames listed in the `/etc/hosts.equiv` and `.rhosts` files must be the official hostnames listed in the `hosts` database; nicknames may not be used in either of these files.

You cannot log in using `rsh` as a trusted user from a trusted hostname if the trusted user account is locked.

`rsh` will not prompt for a password if access is denied on the remote machine unless the `command` argument is omitted.

**EXAMPLES**

**EXAMPLE 1** Using `rsh` to append files

The following command:

```bash
example% rsh lizard cat lizard.file >> example.file
```

appends the remote file `lizard.file` from the machine called `lizard` to the file called `example.file` on the machine called `example`, while the command:

```bash
example% rsh lizard cat lizard.file ">>* lizard.file2
```

appends the remote file `lizard.file` from the machine called `lizard` to the file called `lizard.file2` on the remote machine `lizard`.
EXAMPLE 1 Using rsh to append files  (Continued)

appends the file lizard.file on the machine called lizard to the file
lizard.file2 which also resides on the machine called lizard.

EXIT STATUS
The following exit values are returned:

0  Successful completion.
1  An error occurred.

FILES
/etc/hosts     Internet host table
/etc/hosts.equiv trusted remote hosts and users
/etc/passwd    system password file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO
on(1), rlogin(1), telnet(1), vi(1), in.named(1M), hosts(4), hosts.equiv(4),
ipnodes(4), attributes(5), largefile(5), ip6(7P)

NOTES
When a system is listed in hosts.equiv, its security must be as good as local
security. One insecure system listed in hosts.equiv can compromise the security of
the entire system.

You cannot run an interactive command (such as vi(1)). Use rlogin if you wish to do
this.

Stop signals stop the local rsh process only. This is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.

The current local environment is not passed to the remote shell.

Sometimes the -n option is needed for reasons that are less than obvious. For
example, the command:

eample: rsh somehost dd if=/dev/nrmt0 bs=20b | tar xvp8f ~

will put your shell into a strange state. Evidently, what happens is that the tar
terminates before the rsh. The rsh then tries to write into the “broken pipe” and,
instead of terminating neatly, proceeds to compete with your shell for its standard
input. Invoking rsh with the -n option avoids such incidents.
This bug occurs only when `rsh` is at the beginning of a pipeline and is not reading standard input. Do not use the `-n` if `rsh` actually needs to read standard input. For example:

```bash
example% tar cf - | rsh sundial dd of=/dev/rmt0 obs=20b
```

does not produce the bug. If you were to use the `-n` in a case like this, `rsh` would incorrectly read from `/dev/null` instead of from the pipe.
run(1F)

NAME run – run an executable

SYNOPSIS run [-s] [-e] [-n] [-t string] program

DESCRIPTION The run command runs program, using the PATH variable to find it. By default, when program has completed, the user is prompted (Press ENTER to continue), before being returned to FMLI. The argument program is a system executable followed by its options (if any).

OPTIONS The following options are supported:

- e If -e is specified, the user will be prompted before returning to FMLI only if there is an error condition.

- n If -n is specified, the user will never be prompted before returning to FMLI (useful for programs like vi, in which the user must do some specific action to exit in the first place).

- s The -s option means "silent", implying that the screen will not have to be repainted when program has completed. Note that the -s option should only be used when program does not write to the terminal. In addition, when -s is used, program cannot be interrupted, even if it recognizes interrupts.

- t string If -t is specified, string is the name this process will have in the pop-up menu generated by the frm-list command. This feature requires the executable facesuspend (see face(1)) to suspend the process and return to the FMLI application.

EXAMPLES EXAMPLE 1 Sample output of run command

Here is a menu that uses run:

menu="Edit special System files"
name="Password file"
action='run -e vi /etc/passwd'
name="Group file"
action='run -e vi /etc/group'
name="My .profile"
action='run -n vi $HOME/.profile'

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>
run(1F)

SEE ALSO  face(1), attributes(5)
runat - execute command in extended attribute name space

/usr/bin/runat file [command]

 DESCRIPTION

The runat utility is used to execute shell commands in a file's hidden attribute directory. Effectively, this utility changes the current working directory to be the hidden attribute directory associated with the file argument and then executes the specified command in the bourne shell (/bin/sh). If no command argument is provided, an interactive shell is spawned. The environment variable $SHELL defines the shell to be spawned. If this variable is undefined, the default shell, /bin/sh, is used.

The file argument can be any file, including a directory, that can support extended attributes. It is not necessary that this file have any attributes, or be prepared in any way, before invoking the runat command.

 OPERANDS

The following operands are supported:

 file Any file, including a directory, that can support extended attributes.

 command The command to be executed in an attribute directory.

 ERRORS

A non-zero exit status will be returned if runat cannot access the file argument, or the file argument does not support extended attributes.

 USAGE

See fsattr(5) for a detailed description of extended file attributes.

The process context created by the runat command has its current working directory set to the hidden directory containing the file's extended attributes. The parent of this directory (the ".." entry) always refers to the file provided on the command line. As such, it may not be a directory. Therefore, commands (such as pwd) that depend upon the parent entry being well-formed (that is, referring to a directory) may fail.

In the absence of the command argument, runat will spawn a new interactive shell with its current working directory set to be the provided file's hidden attribute directory. Notice that some shells (such as zsh and tcsh) are not well behaved when the directory parent is not a directory, as described above. These shells should not be used with runat.

 EXAMPLES

 EXAMPLE 1 Using runat to list extended attributes on a file

e sample runat file.1 ls -l

e sample runat file.1 ls

 EXAMPLE 2 Creating extended attributes

e sample runat file.2 cp /tmp/attrdata attr.1

e sample runat file.2 cat /tmp/attrdata > attr.1
EXAMPLE 3 Copying an attribute from one file to another

```
example% runat file.2 cat attr.1 | runat file.1 "cat > attr.1"
```

EXAMPLE 4 Using runat to spawn an interactive shell

```
example% runat file.3 /bin/sh
```

This spawns a new shell in the attribute directory for file.3. Notice that the shell will not be able to determine what your current directory is. To leave the attribute directory, either exit the spawned shell or change directory (cd) using an absolute path.

Recommended methods for performing basic attribute operations:

- **display**
  - `runat file ls [options]`

- **read**
  - `runat file cat attribute`

- **create/modify**
  - `runat file cp absolute-file-path attribute`

- **delete**
  - `runat file rm attribute`

- **permission changes**
  - `runat file chmod mode attribute`
  - `runat file chgrp group attribute`
  - `runat file chown owner attribute`

- **interactive shell**
  - `runat file /bin/sh`
  - or set your `$SHELL` to `/bin/sh` and
  - `runat file`

The above list includes commands that are known to work with runat. While many other commands may work, there is no guarantee that any beyond this list will work. Any command that relies on being able to determine its current working directory is likely to fail. Examples of such commands follow:

EXAMPLE 5 Using man in an attribute directory

```
example% runat file.1 man runat
getcwd: Not a directory
```

EXAMPLE 6 Spawning a tcsh shell in an attribute directory

```
example% runat file.3 /usr/bin/tcsh
tcsh: Not a directory
tcsh: Trying to start from "/home/user"
```
EXAMPLE 6 Spawning a tcsh shell in an attribute directory (Continued)

A new tcsh shell has been spawned with the current working directory set to the user's home directory.

EXAMPLE 7 Spawning a zsh shell in an attribute directory

```bash
example% runat file.3 /usr/bin/zsh
```

While the command appears to have worked, zsh has actually just changed the current working directory to '/'. This can be seen by using /bin/pwd:

```bash
example% /bin/pwd
```

ENVIRONMENT VARIABLES

SHELL Specifies the command shell to be invoked by runat.

EXIT STATUS

The following exit values are returned:

- **125** The attribute directory of the file referenced by the file argument cannot be accessed.
- **126** The exec of the provided command argument failed.

Otherwise, the exit status returned is the exit status of the shell invoked to execute the provided command.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

open(2), attributes(5), fsattr(5)

NOTES

It is not always obvious why a command fails in runat when it is unable to determine the current working directory. The errors resulting can be confusing and ambiguous (see the tcsh and zsh examples above).
NAME | rup – show host status of remote machines (RPC version)

SYNOPSIS | rup [-hlt]

rup [host...]

DESCRIPTION | rup gives a status similar to uptime for remote machines. It broadcasts on the local network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup will only query the list of specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is normally started up from inetd(1M).

In the absence of a name service, such as LDAP or NIS, rup displays host names as numeric IP addresses.

OPTIONS | -h Sort the display alphabetically by host name.

-1 Sort the display by load average.

-t Sort the display by up time.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmde</td>
</tr>
</tbody>
</table>

SEE ALSO | runtime(1), inetd(1M), attributes(5)

Solaris 9 9/04 Installation Guide

BUGS | Broadcasting does not work through gateways.
**NAME**
rup – show host status of remote machines (RPC version)

**SYNOPSIS**

```
rup [-hlt]
```

```
rup [host...]
```

**DESCRIPTION**

**rup** gives a status similar to **uptime** for remote machines. It broadcasts on the local network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be changed by specifying one of the options listed below.

When **host** arguments are given, rather than broadcasting **rup** only queries the list of specified hosts.

A remote host will only respond if it is running the **rstatd** daemon, which is normally started up from **inetd**(1M).

**OPTIONS**

- `-h`
  Sort the display alphabetically by host name.

- `-l`
  Sort the display by load average.

- `-t`
  Sort the display by up time.

**ATTRIBUTES**

See **attributes**(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
runtime(1), inetd(1M), attributes(5)

**BUGS**

Broadcasting does not work through gateways.
ruptime(1)

NAME  ruptime – show host status of local machines

SYNOPSIS  ruptime [-ar] [-l | -t | -u]

DESCRIPTION  The ruptime utility gives a status line like uptime (see uptime(1)) for each machine on the local network; these are formed from packets broadcast by each host on the network approximately every three minutes.

Machines for which no status report has been received for 11 minutes are shown as being down.

Normally, the listing is sorted by host name, but this order can be changed by specifying one of the options listed below.

OPTIONS  The following options are supported:

  -a  Counts even those users who have been idle for an hour or more.
  -r  Reverses the sorting order.
  -l | -t | -u  These options are mutually exclusive. The use of one overrides the previous one(s).
    -l  Sorts the display by load average.
    -t  Sorts the display by up time.
    -u  Sorts the display by number of users.

FILES  /var/spool/rwho/whod.*  data files

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWicmdc</td>
</tr>
</tbody>
</table>

SEE ALSO  uptime(1), rwho(1), in.rwhod(1M), attributes(5)
The `rusage` command is similar to `time(1)`. It runs the given `command`, which must be specified; that is, `command` is not optional as it is in the C shell’s timing facility. When the command is complete, `rusage` displays the real (wall clock), the system CPU, and the user CPU times which elapsed during execution of the command, plus other fields in the `rusage` structure, all on one long line. Times are reported in seconds and hundredths of a second.

**EXAMPLE 1** The format of `rusage` output

The example below shows the format of `rusage` output.

```
example% rusage wc /usr/share/man/man1/csh (1)
3045 13423 78071 /usr/share/man/man1/csh (1)
2.26 real 0.80 user 0.36 sys 11 pf 38 pr 0 sw 11 rb 0 wb 16 vcx 37
 icx 24 mx 0 ix 1230 id 9 is
example%
```

Each of the fields identified corresponds to an element of the `rusage` structure, as described in `getrusage(3C)`, as follows:

- **real**: elapsed real time
- **user**: user time used
- **sys**: system time used
- **pf**: page faults requiring physical I/O
- **pr**: page faults not requiring physical I/O
- **sw**: swaps
- **rb**: block input operations
- **wb**: block output operations
- **vcx**: voluntary context switches
- **icx**: involuntary context switches
- **mx**: maximum resident set size
- **ix**: currently 0
- **id**: integral resident set size
- **is**: currently 0
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), time(1), getusage(3C), attributes(5)

BUGS

When the command being timed is interrupted, the timing values displayed may be inaccurate.
rusers(1)

NAME
rusers – who is logged in on remote machines

SYNOPSIS
rusers [-ahilu] host...

DESCRIPTION
The rusers command produces output similar to who(1), but for remote machines. The listing is in the order that responses are received, but this order can be changed by specifying one of the options listed below.

The default is to print out the names of the users logged in. When the -l flag is given, additional information is printed for each user:

userid hostname : terminal login_date login_time idle_time login_host

If hostname and login host are the same value, the login_host field is not displayed. Likewise, if hostname is not idle, the idle_time is not displayed.

A remote host will only respond if it is running the rusersd daemon, which may be started up from inetd(1M) or listen(1M).

In the absence of a name service, such as LDAP or NIS, rusers displays host names as numeric IP addresses.

OPTIONS
-a Give a report for a machine even if no users are logged on.
-h Sort alphabetically by host name.
-i Sort by idle time.
-l Give a longer listing in the style of who(1).
-u Sort by number of users.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

SEE ALSO
who(1), inetd(1M), listen(1M), pmadm(1M), sacadm(1M), attributes(5)
rwho(1)

NAME     rwho – who is logged in on local machines

SYNOPSIS  rwho [-a]

DESCRIPTION  The rwho command produces output similar to who(1), but for all machines on your network. If no report has been received from a machine for 5 minutes, rwho assumes the machine is down, and does not report users last known to be logged into that machine.

If a user has not typed to the system for a minute or more, rwho reports this idle time. If a user has not typed to the system for an hour or more, the user is omitted from the output of rwho unless the -a flag is given.

OPTIONS  -a  Report all users whether or not they have typed to the system in the past hour.

FILES  /var/spool/rwho/whod.*  information about other machines

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
</tbody>
</table>

SEE ALSO  finger(1), uptime(1), who(1), in.rwho(1M), attributes(5)

NOTES  rwho does not work through gateways.

The directory /var/spool/rwho must exist on the host from which rwho is run.

This service takes up progressively more network bandwidth as the number of hosts on the local net increases. For large networks, the cost becomes prohibitive.

The rwho service daemon, in.rwhod(1M), must be enabled for this command to return useful results.
NAME  |  sag – system activity graph


DESCRIPTION  |  The sag utility graphically displays the system activity data stored in a binary data file by a previous sar(1) run. Any of the sar data items may be plotted singly or in combination, as cross plots or versus time. Simple arithmetic combinations of data may be specified. sag invokes sar and finds the desired data by string-matching the data column header (run sar to see what is available). The sag utility requires a graphic terminal to draw the graph, and uses tplot(1) to produce its output. When running Solaris 2.x and OpenWindows, perform the following steps:

1. Run an "xterm" as a Tektronics terminal: prompt# xterm -t
2. In the "xterm" window, run sag specifying a tek terminal: prompt# sag -T tek

OPTIONS  |  The following options are supported and passed through to sar (see sar(1)):

- **e time**  |  Select data up to time. Default is 18:00.
- **f file**  |  Use file as the data source for sar. Default is the current daily data file /usr/adm/sa/sadd.
- **i sec**  |  Select data at intervals as close as possible to sec seconds.
- **s time**  |  Select data later than time in the form hh[:mm]. Default is 08:00.
- **T term**  |  Produce output suitable for terminal term. See tplot(1) for known terminals. Default for term is $TERM.
- **x spec**  |  x axis specification with spec in the form:

  name [op name]...[lo hi]

  name is either a string that will match a column header in the sar report, with an optional device name in square brackets, for example,
  r+w/s[dsk-1], or an integer value. op is + * or / surrounded by blank spaces. Up to five names may be specified. Parentheses are not recognized.
  Contrary to custom, + and – have precedence over * and /.
  Evaluation is left to right. Thus, A/A+B*100 is evaluated as (A/(A+B))*100, and A+B/C+D is (A+B)/(C+D). lo and hi are optional numeric scale limits. If unspecified, they are deduced from the data.

  Enclose spec in double-quotes (" ") if it includes white space.

  A single spec is permitted for the x axis. If unspecified, time is used.

- **y spec**  |  y axis specification with spec in the same form as for -x. Up to 5 spec arguments separated by a semi-colon (;) may be given for -y. The -y default is:

  -y"%usr0100;%usr+%sys0100;%usr+%sys+%wio0100"
EXAMPLES

EXAMPLE 1 Examples of the `sag` command.

To see today's CPU utilization:

```
example$ sag
```

To see activity over 15 minutes of all disk drives:

```
example$ TS='date +%H:%M'
example$ sar -o /tmp/tempfile 60 15
example$ TE='date +%H:%M'
example$ sag -f /tmp/tempfile -s $TS -e $TE -y "r+w/s[dsk]"
```

FILES

```
/usr/adm/sa/sadd
```
daily data file for day dd

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

`sar(1), tplot(1), attributes(5)`
**NAME**

sar – system activity reporter

**SYNOPSIS**

```
sar [-aAbcdgkmpqruvwy] [-o filename] t [n]
sar [-aAbcdgkmpqruvwy] [-e time] [-f filename] [-i sec] [-s time]
```

**DESCRIPTION**

In the first instance, **sar** samples cumulative activity counters in the operating system at `n` intervals of `t` seconds, where `t` should be 5 or greater. If `t` is specified with more than one option, all headers are printed together and the output may be difficult to read. (If the sampling interval is less than 5, the activity of **sar** itself may affect the sample.) If the `-o` option is specified, it saves the samples in `filename` in binary format. The default value of `n` is 1.

In the second instance, no sampling interval is specified. **sar** extracts data from a previously recorded `filename`, either the one specified by the `-e` option or, by default, the standard system activity daily data file `/var/adm/sa/sadd` for the current day `dd`. The starting and ending times of the report can be bounded using the `-e` and `-s` arguments with `time` specified in the form `hh:mm:ss`. The `-i` option selects records at `sec` second intervals. Otherwise, all intervals found in the data file are reported.

**OPTIONS**

The following options modify the subsets of information reported by **sar**.

- `-a` Report use of file access system routines: `iget/s, namei/s, dirblk/s`
- `-A` Report all data. Equivalent to `-abcdgkmpqruvwy`.
- `-b` Report buffer activity:
  - `bread/s, bwrit/s` transfers per second of data between system buffers and disk or other block devices.
  - `lread/s, lwrit/s` accesses of system buffers.
  - `%rcache, %wcache` cache hit ratios, that is, `(1 − bread/lread)` as a percentage.
- `-c` Report system calls:
  - `scall/s` system calls of all types.
  - `sread/s, swrit/s, fork/s, exec/s` specific system calls.
  - `rchar/s, wchar/s` characters transferred by read and write system calls. No incoming or outgoing `exec(2)` and `fork(2)` calls are reported.
- `-d` Report activity for each block device (for example, disk or tape drive) with the exception of XDC disks and tape drives. When
data is displayed, the device specification dsk- is generally used to
represent a disk drive. The device specification used to represent a
tape drive is machine dependent. The activity data reported is:

%busy, avque
    portion of time device was busy servicing a transfer request,
    average number of requests outstanding during that time.
read/s, write/s, blks/s
    number of read/write transfers from or to device, number of
    bytes transferred in 512-byte units.
avwait
    average wait time in milliseconds.
avserv
    average service time in milliseconds.

For more general system statistics, use iostat(1M), sar(1M), or
vmstat(1M).

See System Administration Guide: Basic Administration
for naming
conventions for disks.

-e time
    Select data up to time. Default is 18:00.
-f filename
    Use filename as the data source for sar. Default is the current daily
data file /var/adm/sa/sa.<date>.
-g
    Report paging activities:

    pgout/s    page-out requests per second.
    ppgout/s   pages paged-out per second.
    pgfree/s   pages per second placed on the free list by the
                page stealing daemon.
    pgscan/s   pages per second scanned by the page stealing
                daemon.
    %ufs_ipf   the percentage of UFS inodes taken off the
                freelist by iget which had reusable pages
                associated with them. These pages are
                flushed and cannot be reclaimed by processes. Thus,
                this is the percentage of igets with page
                flushes.

-i sec
    Select data at intervals as close as possible to sec seconds.
-k
    Report kernel memory allocation (KMA) activities:

    sml_mem, alloc, fail
        information about the memory pool reserving and allocating
        space for small requests: the amount of memory in bytes KMA
has for the small pool, the number of bytes allocated to satisfy
requests for small amounts of memory, and the number of
requests for small amounts of memory that were not satisfied
(failed).

lg_mem, alloc, fail
    information for the large memory pool (analogous to the
    information for the small memory pool).

ovsz_alloc, fail
    the amount of memory allocated for oversize requests and the
    number of oversize requests which could not be satisfied
    (because oversized memory is allocated dynamically, there is
    not a pool).

-m
    Report message and semaphore activities:
    msg/s, sema/s  primitives per second.

-o filename
    Save samples in file, filename, in binary format.

-p
    Report paging activities:
    atch/s  page faults per second that are satisfied by
            reclaiming a page currently in memory
            (attaches per second).
    pgin/s  page-in requests per second.
    ppgin/s pages paged-in per second.
    pflt/s  page faults from protection errors per second
            (illegal access to page) or "copy-on-writes".
    vflt/s  address translation page faults per second
            (valid page not in memory).
    slock/s faults per second caused by software lock
            requests requiring physical I/O.

-q
    Report average queue length while occupied, and percent of time
    occupied:
    runq-sz, %runocc  run queue of processes in memory
                      and runnable.
    swpq-sz, %swpocc these are no longer reported by
                      sar.

-r
    Report unused memory pages and disk blocks:
    freemem  average pages available to user
             processes.
    freeswap disk blocks available for page
             swapping.
sar(1)

- s time  Select data later than time in the form hh:mm. Default is 08:00.
- u  Report CPU utilization (the default):
    %usr, %sys, %wio, %idle
    portion of time running in user mode, running in system mode,
    idle with some process waiting for block I/O, and otherwise
    idle.
- v  Report status of process, i-node, file tables:
    proc-sz, inod-sz, file-sz, lock-sz
    entries/size for each table, evaluated once at sampling point.
    ov
    overflows that occur between sampling points for each table.
- w  Report system swapping and switching activity:
    swpin/s, swpot/s, bswin/s, bswot/s
    number of transfers and number of 512-byte units transferred
    for swapsins and swapouts (including initial loading of some
    programs).
    pswch/s
    process switches.
- y  Report TTY device activity:
    rawch/s, canch/s, outch/s
    input character rate, input character rate processed by canon,
    output character rate.
    rcvin/s, xmtin/s, mdmin/s
    receive, transmit and modem interrupt rates.

EXAMPLES

EXAMPLE 1 Viewing system activity
To see today’s CPU activity so far:
example% sar

EXAMPLE 2 Watching system activity evolve
To watch CPU activity evolve for 10 minutes and save data:
example% sar -o temp 60 10

EXAMPLE 3 Reviewing disk and tape activity
To later review disk and tape activity from that period:
example% sar -d -f temp

FILES
/var/adm/sa/sadd  daily data file, where dd are digits representing the day
    of the month
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO

sag(1), iostat(1M), sar(1M), vmstat(1M), exec(2), fork(2), attributes(5)

System Administration Guide: Basic Administration

NOTES

The sum of CPU utilization might vary slightly from 100 because of rounding errors in the production of a percentage figure.
sccs(1)

NAME    sccs – front end for the Source Code Control System (SCCS)

SYNOPSIS /usr/ccs/bin/sccs [-r] [-dry] [-p] [subdir] subcommand [option...]
        [file...]

        /usr/xpg4/bin/sccs [-r] [-d] [-p subdir] subcommand [option...]
        [file...]

DESCRIPTION The sccs command is a comprehensive, straightforward front end to the various
utility programs of the Source Code Control System (SCCS).

sccs applies the indicated subcommand to the history file associated with each of the
indicated files.

The name of an SCCS history file is derived by prepending the ‘s.’ prefix to the
filename of a working copy. The sccs command normally expects these ‘s . files’ to
reside in an SCCS subdirectory. Thus, when you supply sccs with a file argument, it
normally applies the subcommand to a file named s . file in the SCCS subdirectory. If
file is a path name, sccs looks for the history file in the SCCS subdirectory of that file’s
parent directory. If file is a directory, however, sccs applies the subcommand to every
s . file file it contains. Thus, the command:

example% sccs get program.c

would apply the get subcommand to a history file named SCCS/s . program.c,
while the command:

example% sccs get SCCS

would apply it to every s . file in the SCCS subdirectory.

Options for the sccs command itself must appear before the subcommand argument.
Options for a given subcommand must appear after the subcommand argument. These
options are specific to each subcommand, and are described along with the
subcommands themselves (see Subcommands below).

Running Setuid The sccs command also includes the capability to run “setuid” to provide additional
protection. However, this does not apply to subcommands such as sccs-admin(1),
since this would allow anyone to change the authorizations of the history file.
Commands that would do so always run as the real user.

OPTIONS The following options are supported:

/usr/ccs/bin/sccs
- dry          Defines the root portion of the path name for SCCS history files.
The default root portion is the current directory. rootprefix is
prepended to the entire file argument, even if file is an absolute
path name. - d overrides any directory specified by the
PROJECTDIR environment variable (see ENVIRONMENT
VARIABLES below).

/usr/xpg4/bin/sccs
- d rootprefix
Deﬁnes the (sub)directory within which a history ﬁle is expected to reside. SCCS is the default. (See EXAMPLES below).

-r
Runs sccs with the real user ID, rather than set to the effective user ID.

OPERANDS
The following operands are supported:

subcommand
An SCCS utility name or the name of one of the pseudo-utilities listed in USAGE.

options
An option or option-argument to be passed to subcommand.

operands
An operand to be passed to subcommand.

USAGE
The usage for sccs is described below.

Subcommands
Many of the following sccs subcommands invoke programs that reside in /usr/ccs/bin. Many of these subcommands accept additional arguments that are documented in the reference page for the utility program the subcommand invokes.

admin
Modify the flags or checksum of an SCCS history ﬁle. Refer to sccs-admin(1) for more information about the admin utility. While admin can be used to initialize a history ﬁle, you may ﬁnd that the create subcommand is simpler to use for this purpose.

cdc -rsid [-y[comment]]

Annotate (change) the delta commentary. Refer to sccs-cdc(1). The fix subcommand can be used to replace the delta, rather than merely annotating the existing commentary.

-check [-b] [-u[username]]

-user Commands 1343
check [-b] [-u [username] | -U]
  Check for files currently being edited. Like info and tell, but returns an exit
code, rather than producing a listing of files. check returns a non-zero exit status if
anything is being edited.
  -b          Ignore branches.

-username

/u[username]

Check only files being edited by you. When
username is specified, check only files being edited
by that user. For /usr/xpg4/bin/sccs, the -U
option is equivalent to -u <current_user>.

clean [-b]
  Remove everything in the current directory that can be retrieved from an SCCS
history. Does not remove files that are being edited.
  -b          Do not check branches to see if they are being edited. 'clean -b' is
dangerous when branch versions are kept in the same directory.

comb
  Generate scripts to combine deltas. Refer to sccs-comb(1).

create
  Create (initialize) history files. create performs the following steps:
  - Renames the original source file to ,program.c in the current directory.
  - Create the history file called s.program.c in the SCCS subdirectory.
  - Performs an 'sccs get' on program.c to retrieve a read-only copy of the
    initial version.

deledit [-s] [-y[comment]]
  Equivalent to an 'sccs delta' and then an 'sccs edit'. deledit checks in a
delta, and checks the file back out again, but leaves the current working copy of the
file intact.
  -s          Silent. Do not report delta numbers or statistics.
  -y [comment] Supply a comment for the delta commentary. If -y is omitted,
delta prompts for a comment. A null comment results in an
empty comment field for the delta.

delget [-s] [-y[comment]]
  Perform an 'sccs delta' and then an 'sccs get' to check in a delta and retrieve
read-only copies of the resulting new version. See the deledit subcommand for a
description of -s and -y. sccs performs a delta on all the files specified in the
argument list, and then a get on all the files. If an error occurs during the delta,
the get is not performed.

delta [-s] [-y[comment]]
  Check in pending changes. Records the line-by-line changes introduced while the
file was checked out. The effective user ID must be the same as the ID of the person
who has the file checked out. Refer to sccs-delta(1). See the deledit
subcommand for a description of -s and -y.

```
/usr/ccs/bin/sccs diffs [-C][-I][-c date-time][-r sid] diff-options
```

```
/usr/xpg4/bin/sccs diffs [-C][-I][-c date-time|-c date-time]
 [-r sid][-r sid] diff-options
```

Compare (in `diff` (1) format) the working copy of a file that is checked out for editing, with a version from the SCCS history. Use the most recent checked-in version by default. The `diffs` subcommand accepts the same options as `diff`.

Any -r, -c, -i, -x, and -t options are passed to subcommand get. A -C option is passed to `diff` as -c. An -I option is passed to `diff` as -i.

```
/usr/ccs/bin/sccs -c date-time
```

```
/usr/xpg4/bin/sccs -c date-time|-c date-time
```

Use the most recent version checked in before the indicated date and time for comparison. `date-time` takes the form: `yy[mm][dd][hh][mm][ss]`]. Omitted units default to their maximum possible values; that is -c7502 is equivalent to -c750228235959.

```
/usr/ccs/bin/sccs -r sid
```

```
/usr/xpg4/bin/sccs -r sid | -r sid
```

Use the version corresponding to the indicated delta for comparison.

```
/usr/ccs/bin/sccs edit
```

```
/usr/xpg4/bin/sccs edit
```

`sccs edit` extracts a version of the file that is writable by you, and creates a pfile in the SCCS subdirectory as lock on the history, so that no one else can check that version in or out. ID keywords are retrieved in unexpanded form. `edit` accepts the same options as `get`, below. Refer to `sccs-get(1)` for a list of ID keywords and their definitions.

```
/usr/ccs/bin/sccs enter
```

```
/usr/xpg4/bin/sccs enter
```

Similar to `create`, but omits the final `sccs get`. This may be used if an `sccs edit` is to be performed immediately after the history file is initialized.

```
/usr/ccs/bin/sccs fix -r sid
```

```
/usr/xpg4/bin/sccs fix -r sid | -r sid
```

Revise a (leaf) delta. Remove the indicated delta from the SCCS history, but leave a working copy of the current version in the directory. This is useful for incorporating trivial updates for which no audit record is needed, or for revising the delta commentary. `fix` must be followed by a -r option, to specify the SID of the delta to remove. The indicated delta must be the most recent (leaf) delta in its branch. Use `fix` with caution since it does not leave an audit trail of differences (although the previous commentary is retained within the history file).

```
/usr/ccs/bin/sccs get [-ekmps] [-G newname] [-c date-time][-r[sid]]
```

```
/usr/xpg4/bin/sccs get [-ekmps][-G newname| -G newname]
 [-c date-time|-c date-time][-r sid|-r sid]
```

User Commands 1345
Retrieve a version from the SCCS history. By default, this is a read-only working copy of the most recent version. ID keywords are in expanded form. Refer to sccs-get(1), which includes a list of ID keywords and their definitions.

-\texttt{e} Retrieve a version for editing. Same as sccs edit.
-\texttt{G newname | -G newname} Use newname as the name of the retrieved version.
-\texttt{k} Retrieve a writable copy but do not check out the file. ID keywords are unexpanded.
-\texttt{m} Precede each line with the SID of the delta in which it was added.
-\texttt{p} Produce the retrieved version on the standard output. Reports that would normally go to the standard output (delta IDs and statistics) are directed to the standard error.
-\texttt{s} Silent. Do not report version numbers or statistics.

\texttt{/usr/ccs/bin/sccs} -c date-time
\texttt{/usr/xpg4/bin/sccs} -c date-time | -c date-time
Retrieve the latest version checked in prior to the date and time indicated by the date-time argument. date-time takes the form: \texttt{yy[mm[dd[ hh[mm[ss]]]]]}.

\texttt{/usr/ccs/bin/sccs} -r[sid]
Retrieve the version corresponding to the indicated SID. If no sid is specified, the latest sid for the specified file is retrieved.

\texttt{/usr/xpg4/bin/sccs} -r sid | -r sid
Retrieve the version corresponding to the indicated SID.

help message-code | sccs-command
help stuck
Supply more information about SCCS diagnostics. help displays a brief explanation of the error when you supply the code displayed by an SCCS diagnostic message. If you supply the name of an SCCS command, it prints a usage line. help also recognizes the keyword stuck. Refer to sccs-help(1).

\texttt{/usr/ccs/bin/sccs} info [-b] [-u[username]]
\texttt{/usr/xpg4/bin/sccs} info [-b] [-u [ username] | -u]
Display a list of files being edited, including the version number checked out, the version to be checked in, the name of the user who holds the lock, and the date and time the file was checked out.
-\texttt{b} Ignore branches.
\texttt{/usr/ccs/bin/sccs} -u[username]
\texttt{/usr/xpg4/bin/sccs} -u [username] | -U
List only files checked out by you. When username is specified, list only files checked out by that user. For /usr/xpg4/bin/sccs, the -U option is equivalent to -u \texttt{<current_user>}.
print
Print the entire history of each named file. Equivalent to an ‘sccs
prs -e’ followed by an ‘sccs get -p -m’.

/usr/ccs/bin/sccs
pr s [-e][ -c date-time] [-r sid]
/usr/xpg4/bin/sccs
pr s [-e] [ -c date-time | -c date-time] [-r sid | -r sid]
Peruse (display) the delta table, or other portion of an s. file. Refer to sccs-prs(1).
- e Display delta table information for all deltas earlier than the one
specified with - r (or all deltas if none is specified).
- l Display information for all deltas later than, and including, that
specified by - c or - r.

/usr/ccs/bin/sccs
- c date-time
/usr/xpg4/bin/sccs
- c date-time | - c date-time
Specify the latest delta checked in before the indicated date and time. The
date-time argument takes the form: yy[mm[dd][hh][mm][ss] ] ]

/usr/ccs/bin/sccs
- r sid
/usr/xpg4/bin/sccs
- r sid | - r sid Specify a given delta by SID.

/pr t [-y]
Display the delta table, but omit the MR field (see sccsfile(4) for more
information on this field). Refer to sccs-prt(1).
- y Display the most recent delta table entry. The format is a single output
line for each file argument, which is convenient for use in a pipeline
with awk(1) or sed(1).

/usr/ccs/bin/sccs
rmdel - r sid
/usr/xpg4/bin/sccs
rmdel - r sid
Remove the indicated delta from the history file. That delta must be the most recent
(leaf) delta in its branch. Refer to sccs-rmdel(1).
sact
Show editing activity status of an SCCS file. Refer to sccs-sact(1).
sccsdiff - r old-sid - r new-sid diff-options
Compare two versions corresponding to the indicated SIDs (deltas) using diff.
Refer to sccs-sccsdiff(1).

tell [- b] [- u[username]] ]
/usr/ccs/bin/sccs
tell [- b] [- u[username] | - u]
/usr/xpg4/bin/sccs
Display the list of files that are currently checked out, one file per line.
- b Ignore branches.
- u[username] List only files checked out to you. When username is
 specified, list only files checked out to that user. For


**unedit**

“Undo” the last edit or ‘get -e’, and return the working copy to its previous condition. unedit backs out all pending changes made since the file was checked out.

**unget**

Same as unedit. Refer to sccs-unget(1).

**val**

Validate the history file. Refer to sccs-val(1).

**what**

Display any expanded ID keyword strings contained in a binary (object) or text file. Refer to what(1) for more information.

**EXAMPLES**

**EXAMPLE 1** Checking out, editing, and checking in a file

To check out a copy of `program.c` for editing, edit it, and then check it back in:

```
example% sccs edit program.c
1.1
new delta 1.2
14 lines

example% vi program.c
your editing session

example% sccs delget program.c
comments? clarified cryptic diagnostic
1.2
3 inserted
2 deleted
12 unchanged
1.2
15 lines
```

**EXAMPLE 2** Defining the root portion of the command pathname

sccs converts the command:

```
example% sccs -d/usr/src/include get stdio.h
```

to:

```
/usr/ccs/bin/get /usr/src/include/SCCS/s_stdio.h
```

**EXAMPLE 3** Defining the resident subdirectory

The command:

```
example% sccs -pprivate get include/stdio.h
```

becomes:

```
/usr/ccs/bin/get include/private/s_stdio.h
```
EXAMPLE 4 Initializing a history file

To initialize the history file for a source file named `program.c`, make the SCCS subdirectory, and then use 'sccs create':

```bash
example% mkdir SCCS
example% sccs create program.c
program.c:
1.1
14 lines
```

After verifying the working copy, you can remove the backup file that starts with a comma:

```bash
example% diff program.c ,program.c
example% rm ,program.c
```

EXAMPLE 5 Retrieving a file from another directory

To retrieve a file from another directory into the current directory:

```bash
example% sccs get /usr/src/sccs/cc.c
```

or:

```bash
example% sccs -p /usr/src/sccs/ get cc.c
```

EXAMPLE 6 Checking out all files

To check out all files under SCCS in the current directory:

```bash
example% sccs edit SCCS
```

EXAMPLE 7 Checking in all files

To check in all files currently checked out to you:

```bash
example% sccs delta 'sccs tell -u'
```

EXAMPLE 8 Entering multiple lines of comments

If using `-y` to enter a comment, for most shells, enclose the comment in single or double quotes. In the following example, `Myfile` is checked in with a two-line comment:

```bash
example% sccs deledit Myfile -y"Entering a multi-line comment"
No id keywords (cm7)
1.2
2 inserted
0 deleted
14 unchanged
1.2
```
EXAMPLE 8 Entering multiple lines of comments (Continued)

new delta 1.3

Displaying the SCCS history of `Myfile`:

```
example% sccs prt Myfile
SCCS/s.Myfile:
D 1.2 01/04/20 16:37:07 me 2 1 00002/00000/00014
Entering a multi-line comment
D 1.1 01/04/15 13:23:32 me 1 0 00014/00000/00000
date and time created 01/04/15 13:23:32 by me
```

If `-y` is not used and `sccs` prompts for a comment, the newlines must be escaped using the backslash character (`\`):

```
example% sccs deledit Myfile
comments? Entering a \ multi-line comment
No id keywords (cm7)
1.2
0 inserted
0 deleted
14 unchanged
1.2
new delta 1.3
```

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `sccs`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

- **PROJECTDIR**
  - If contains an absolute path name (beginning with a slash), `sccs` searches for SCCS history files in the directory given by that variable.
  - If `PROJECTDIR` does not begin with a slash, it is taken as the name of a user, and `sccs` searches the `src` or `source` subdirectory of that user’s home directory for history files. If such a directory is found, it is used. Otherwise, the value is used as a relative path name.

**EXIT STATUS**

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

**FILES**

- **SCCS** SCCS subdirectory
- **SCCS/d.file** temporary file of differences
SCCS/p.file  lock (permissions) file for checked-out versions
SCCS/q.file  temporary file
SCCS/a.file  SCCS history file
SCCS/x.file  temporary copy of the a.file
SCCS/z.file  temporary lock file
/usrc/ccs/bin/*  SCCS utility programs

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/ccs/bin/sccs</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/sccs</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4t</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO
awk(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-get(1), sccs-help(1), sccs-prs(1), sccs-rmdel(1), sccs-sact(1),
sccs-sccsdiff(1), sccs-unget(1), sccs-va(1), sed(1), what(1), sccsfile(4),
attributes(5), environ(5), standards(5)
NAME | SCCS-admin, admin – create and administer SCCS history files

SYNOPSIS | `/usr/ccs/bin/admin [-bhnz] [-a username | groupid...] [-d flag] ... [-e username | groupid...] [-f flag [value]] ... [-i [filename]] [-m mr-list] [-r release] [-t [description-file]] [-y [comment]] `s.filename`

DESCRIPTION | The `admin` command creates or modifies the flags and other parameters of SCCS history files. Filenames of SCCS history files begin with the `s.` prefix, and are referred to as `s.` files, or "history" files.

The named `s.` file is created if it does not exist already. Its parameters are initialized or modified according to the options you specify. Parameters not specified are given default values when the file is initialized, otherwise they remain unchanged.

If a directory name is used in place of the `s.filename` argument, the `admin` command applies to all `s.` files in that directory. Unreadable `s.` files produce an error. The use of `-` as the `s.filename` argument indicates that the names of files are to be read from the standard input, one `s.` file per line.

OPTIONS | The following options are supported:

- `-a username | groupid`
  Adds a user name, or a numerical group ID, to the list of users who may check deltas in or out. If the list is empty, any user is allowed to do so.

- `-b`
  Forces encoding of binary data. Files that contain ASCII NUL or other control characters, or that do not end with a NEWLINE, are recognized as binary data files. The contents of such files are stored in the history file in encoded form. See `uuencode(1C)` for details about the encoding. This option is normally used in conjunction with `-i` to force `admin` to encode initial versions not recognized as containing binary data.

- `-d flag`
  Deletes the indicated flag from the SCCS file. The `-d` option may be specified only for existing `s.` files. See `-f` for the list of recognized flags.

- `-e username | groupid`
  Erases a user name or group ID from the list of users allowed to make deltas.

- `-f flag [value]`
  Sets the indicated flag to the (optional) `value` specified. The following flags are recognized:

  - `-b`
    Enables branch deltas. When `-b` is set, branches can be created using the `-b` option of the SCCS `get` command (see `sccs-get(1)`).

  - `-c ceil`
    Sets a ceiling on the releases that can be checked out. `ceil` is a number less than or equal to 9999. If `c` is not set, the ceiling is 9999.
**sccs-admin(1)**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sid</code></td>
<td>Specifies the default delta number, or SID, to be used by an SCCS <code>get</code> command.</td>
</tr>
<tr>
<td><code>floor</code></td>
<td>Sets a floor on the releases that can be checked out. The floor is a number greater than 0 but less than 9999. If <code>f</code> is not set, the floor is 1.</td>
</tr>
<tr>
<td><code>i</code></td>
<td>Treats the <code>'No id keywords (ge6)'</code> message issued by an SCCS <code>get</code> or <code>delta</code> command as an error rather than a warning.</td>
</tr>
<tr>
<td><code>j</code></td>
<td>Allows concurrent updates.</td>
</tr>
<tr>
<td><code>la</code></td>
<td>Locks the indicated list of releases against deltas. If <code>a</code> is used, this flag locks out deltas to all releases. An SCCS <code>get -e</code> command fails when applied against a locked release.</td>
</tr>
<tr>
<td><code>module</code></td>
<td>Supplies a value for the module name to which the <code>%M%</code> keyword is to expand. If the <code>m</code> flag is not specified, the value assigned is the name of the SCCS file with the leading <code>.</code> removed.</td>
</tr>
<tr>
<td><code>n</code></td>
<td>Creates empty releases when releases are skipped. These null (empty) deltas serve as anchor points for branch deltas.</td>
</tr>
<tr>
<td><code>q</code></td>
<td>Supplies a value to which the <code>%Q%</code> keyword is to expand when a read-only version is retrieved with the SCCS <code>get</code> command.</td>
</tr>
<tr>
<td><code>snumber</code></td>
<td>Specifies how many lines of code are scanned for the SCCS keyword.</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Supplies a value for the module type to which the <code>%Y%</code> keyword is to expand.</td>
</tr>
<tr>
<td><code>v</code></td>
<td>Specifies a validation <code>program</code> for the MR numbers associated with a new delta. The optional <code>program</code> specifies the name of an MR number validity checking <code>program</code>. If this flag is set when creating an SCCS file, the <code>-m</code> option must also be used, in which case the list of MRs may be empty.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Specifies the SCCS keywords to be expanded. If no <code>value</code> is specified, no keywords will be expanded.</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>Checks the structure of an existing <code>.file</code> (see <code>sccsfile(4)</code>), and compares a newly computed check-sum with one stored in the first line of that file. <code>-h</code> inhibits writing on the file and so nullifies the effect of any other options.</td>
</tr>
</tbody>
</table>
-i [filename]
  Initializes the history file with text from the indicated file. This text constitutes the initial delta, or set of checked-in changes. If filename is omitted, the initial text is obtained from the standard input. Omitting the -i option altogether creates an empty file. You can only initialize one file with text using -i. This option implies the -n option.

-m mr-list
  Inserts the indicated Modification Request (MR) numbers into the commentary for the initial version. When specifying more than one MR number on the command line, mr-list takes the form of a quoted, space-separated list. A warning results if the v flag is not set or the MR validation fails.

-n
  Creates a new SCCS history file.

-r release
  Specifies the release for the initial delta. -r may be used only in conjunction with -i. The initial delta is inserted into release 1 if this option is omitted. The level of the initial delta is always 1. Initial deltas are named 1.1 by default.

-t [description-file]
  Inserts descriptive text from the file description-file. When -t is used in conjunction with -n, or -i to initialize a new file, the description-file must be supplied. When modifying the description for an existing file: a -t option without a description-file removes the descriptive text, if any; a -t option with a description-file replaces the existing text.

-y [comment]
  Inserts the indicated comment in the "Comments:" field for the initial delta. Valid only in conjunction with -i or -n. If -y option is omitted, a default comment line is inserted that notes the date and time the history file was created.

-z
  Recomputes the file check-sum and stores it in the first line of the file. Caution: It is important to verify the contents of the history file (see sccs-val(1), and the print subcommand in sccs(1)), since using -z on a truly corrupted file may prevent detection of the error.

EXAMPLES

EXAMPLE 1 Preventing SCCS keyword expansion
In the following example, 10 lines of file will be scanned and only the W,Y,X keywords will be interpreted:

```
example$ sccs admin -fs10 file
example$ sccs admin -fyW,Y,X file
example$ get file
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of alias and unalias: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.
EXIT STATUS
The following exit values are returned:

0  Successful completion.
1  An error occurred.

FILES
s.*  history file
SCCS/s.*  history file in SCCS subdirectory
z.*  temporary lock file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1),
sccs-rmdel(1), sccs-val(1), sccsfile(4), attributes(5), environ(5),
standards(5)

DIAGNOSTICS
Use the SCCS help command for explanations (see sccs-help(1)).

WARNINGS
The last component of all SCCS filenames must have the ‘s.’ prefix. New SCCS files are given mode 444 (see chmod(1)). All writing done by admin is to a temporary file with an x. prefix, created with mode 444 for a new SCCS file, or with the same mode as an existing SCCS file. After successful execution of admin, the existing s.file is removed and replaced with the x.file. This ensures that changes are made to the SCCS file only when no errors have occurred.

It is recommended that directories containing SCCS files have permission mode 755, and that the s. files themselves have mode 444. The mode for directories allows only the owner to modify the SCCS files contained in the directories, while the mode of the s. files prevents all modifications except those performed using SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the owner to allow use of a text editor. However, extreme care must be taken when doing this. The edited file should always be processed by an ‘admin -h’ command to check for corruption, followed by an ‘admin -z’ command to generate a proper check-sum. Another ‘admin -h’ command is recommended to ensure that the resulting s.file is valid.

admin also uses a temporary lock s.file, starting with the ‘z.’ prefix, to prevent simultaneous updates to the s.file. See sccs-get(1) for further information about the ‘z.file’.

sccs-admin(1)
NAME  sccs-cdc, cdc – change the delta commentary of an SCCS delta

SYNOPSIS /usr/ccs/bin/cdc -r sid [-m mr-list] [-y [comment]] s.filename...

DESCRIPTION cdc annotates the delta commentary for the SCCS delta ID (SID) specified by the -r option in each named s.file.

If the v flag is set in the s.file, you can also use cdc to update the Modification Request (MR) list.

If you checked in the delta, or, if you own the file and directory and have write permission, you can use cdc to annotate the commentary.

Rather than replacing the existing commentary, cdc inserts the new comment you supply, followed by a line of the form:

*** CHANGED *** yy/mm/dd hh/mm/ss username

above the existing commentary.

If a directory is named as the s.filename argument, the cdc command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). If `-` is given as the s.filename argument, each line of the standard input is taken as the name of an SCCS history file to be processed, and the -m and -y options must be used.

OPTIONS  -r sid Specify the SID of the delta to change.

- m mr-list Specify one or more MR numbers to add or delete. When specifying more than one MR on the command line, mr-list takes the form of a quoted, space-separated list. To delete an MR number, precede it with a `!` character (an empty MR list has no effect). A list of deleted MRs is placed in the comment section of the delta commentary. If -m is not used and the standard input is a terminal, cdc prompts with MRs? for the list (before issuing the comments? prompt). -m is only useful when the v flag is set in the s.file. If that flag has a value, it is taken to be the name of a program to validate the MR numbers. If that validation program returns a non-zero exit status, cdc terminates and the delta commentary remains unchanged.

- y[comment] Use comment as the annotation in the delta commentary. The previous comments are retained; the comment is added along with a notation that the commentary was changed. A null comment leaves the commentary unaffected. If -y is not specified and the standard input is a terminal, cdc prompts with comment? for the text of the notation to be added. An unescaped NEWLINE character terminates the annotation text.
EXAMPLE 1 Changing the annotated commentary

The following command:

```
example$ cdc -r1.6 -y"corrected commentary" s.program.c
```

produces the following annotated commentary for delta 1.6 in `s.program.c`:

```
D 1.6 88/07/05 23:21:07 username 9 0 00001/00000/00000
MRs:
COMMENTS:
corrected commentary
*** CHANGED *** 88/07/07 14:09:41 username

performance enhancements in main()
```

FILES

`z.file`  temporary lock file

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>
```

SEE ALSO

`sccs(1), sccs-admin(1), sccs-comb(1), sccs-delta(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), what(1), sccsfile(4), attributes(5)`

DIAGNOSTICS

Use the SCCS help command for explanations (see `sccs-help(1)`).
NAME | sccs-comb, comb – combine SCCS deltas

SYNOPSIS | /usr/ccs/bin/comb [-os] [-csid-list] [-psid] s.filename...

DESCRIPTION | comb generates a shell script (see sh(1)) that you can use to reconstruct the indicated s. files. This script is written to the standard output.

If a directory name is used in place of the s.filename argument, the comb command applies to all s. files in that directory. Unreadable s. files produce an error; processing continues with the next file (if any). The use of ‘− ’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s. file per line.

If no options are specified, comb preserves only the most recent (leaf) delta in a branch, and the minimal number of ancestors needed to preserve the history.

OPTIONS | The following options are supported:

- For each ‘get -e’ generated, access the reconstructed file at the release of the delta to be created. Otherwise, the reconstructed file is accessed at the most recent ancestor. The use of -o may decrease the size of the reconstructed s. file. It may also alter the shape of the delta tree of the original file.

- s Generate scripts to gather statistics, rather than combining deltas. When run, the shell scripts report: the file name, size (in blocks) after combining, original size (also in blocks), and the percentage size change, computed by the formula:

\[
100 \times (\text{original} - \text{combined}) / \text{original}
\]

This option can be used to calculate the space that will be saved, before actually doing the combining.

- csid-list Include the indicated list of deltas. All other deltas are omitted. sid-list is a comma-separated list of SCCS delta IDs (SIDs). To specify a range of deltas, use a ’− ’ separator instead of a comma, between two SIDs in the list.

- psID The SID of the oldest delta to be preserved.

FILES | s. COMB reconstructed SCCS file
comb???? temporary file

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

1358 man pages section 1: User Commands • Last Revised 1 Nov 1999
Use the SCCS help command for explanations (see sccs-help(1)).

**BUGS**

`comb` may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possible for the reconstructed file to actually be larger than the original.

**SEE ALSO**

sccs(1), sccs-admin(1), sccs-cdc(1), sccs-delta(1), sccs-help(1),

sccs-prs(1), sccs-prt(1), sccs-rmde(1), sccs-sccsdiff(1), what(1),

sccsfile(4), attributes(5)
NAME
sccs-delta, delta – make a delta to an SCCS file

SYNOPSIS
/usr/ccs/bin/delta [-dnps] [-g sid-list | -gsid-list] [-m mr-list
| -mmr-list] [-x sid | -xsid] [-y [comment]] s.filename...

/usr/xpg4/bin/delta [-dnps] [-g sid-list | -gsid-list] [-m mr-list
| -mmr-list] [-x sid | -xsid] [-y [comment]] s.filename...

DESCRIPTION
The delta utility checks in a record of the line-by-line differences made to a
checked-out version of a file under SCCS control. These changes are taken from the
writable working copy that was retrieved using the SCCS get command (see
sccs-get(1)). This working copy does not have the ‘s.’ prefix, and is also referred to
as a g-file.

If a directory name is used in place of the s.filename argument, the delta command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line
requires −y, and in some cases, −m).

delta may issue prompts on the standard output depending upon the options
specified and the flags that are set in the s.file (see sccs-admin(1), and the −m and
−y options below, for details).

/usr/xpg4/bin/delta
The SID of the delta is not echoed to stdout.

OPTIONS
The following options are supported:

- d
Use command diff(1) instead of bdiff(1).
Returns exit status 2 if s.filename argument
is not specified.

- n
Retain the edited g-file, which is normally
removed at the completion of processing.

- p
Display line-by-line differences (in diff(1)
format) on the standard output.

- s
Silent. Do not display warning or
confirmation messages. Do not suppress
error messages (which are written to
standard error).

- g sid-list | -gsid-list
Specify a list of deltas to omit when the file
is accessed at the SCCS version ID (SID)
created by this delta. sid-list is a
comma-separated list of SIDs. To specify a
range of deltas, use a ‘−’ separator instead
of a comma, between two SIDs in the list.

- m mr-list | -mmr-list
If the SCCS file has the v flag set (see
sccs-admin(1)), you must supply one or
more Modification Request (MR) numbers for the new delta. When specifying more than one MR number on the command line, `mr-list` takes the form of a quoted, space-separated list. If `-m` is not used and the standard input is a terminal, `delta` prompts with `MRs?` for the list (before issuing the `comments?` prompt). If the `v` flag in the `s.file` has a value, it is taken to be the name of a program to validate the MR numbers. If that validation program returns a non-zero exit status, `delta` terminates without checking in the changes.

```
-r sid | -rsid
```
When two or more versions are checked out, specify the version to check in. This SID value can be either the SID specified on the `get` command line, or the SID of the new version to be checked in as reported by `get`. A diagnostic results if the specified SID is ambiguous, or if one is required but not supplied.

```
-y[comment]
```
Supply a comment for the delta table (version log). A null comment is accepted, and produces an empty commentary in the log. If `-y` is not specified and the standard input is a terminal, `delta` prompts with `comments?`. An unescaped NEWLINE terminates the comment.

**ENVIRONMENT VARIABLES**

See `environ(5)` for descriptions of the following environment variables that affect the execution of `delta`: `LANG`, `LC_ALL`, `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

**EXIT STATUS**

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>1</td>
<td>An error occurred and the <code>-d</code> option had not been specified.</td>
</tr>
<tr>
<td>2</td>
<td>An error occurred, the <code>-d</code> option had been specified, and the <code>s.filename</code> argument was not specified.</td>
</tr>
</tbody>
</table>

**FILES**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.file</td>
<td>temporary file of differences</td>
</tr>
<tr>
<td>p.file</td>
<td>lock file for a checked-out version</td>
</tr>
<tr>
<td>q.file</td>
<td>temporary file</td>
</tr>
<tr>
<td>s.file</td>
<td>SCCS history file</td>
</tr>
</tbody>
</table>
sccs-delta(1)

x.file temporary copy of the s.file
z.file temporary file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/ccs/bin/delta</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/delta</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4t</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO
bdiff(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-get(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sccsdiff(1), sccs-unget(1),
sccs(1), what(1), sccsfile(4), attributes(5), environ(5), standards(5)

DIAGNOSTICS
Use the SCCS help command for explanations (see sccs-help(1)).

WARNINGS
Lines beginning with an ASCII SOH character (binary 001) cannot be placed in the
SCCS file unless the SOH is escaped. This character has special meaning to SCCS (see
sccsfile(4)) and produces an error.
sccs-get, get – retrieve a version of an SCCS file

SYNOPSIS
/usr/ccs/bin/get [-begkmnpst] [ -1 [p]] [-asequence] [-c date-time
| - cdate-time] [-Gg-file] [-i sid-list | -isid-list] [-r [sid]] [-x sid-list
| -xsd-list] s.filename...

/usr/xpg4/bin/get [-begkmnpst] [ -l [p]] [-asequence] [-c date-time
| - cdate-time] [-Gg-file] [-i sid-list | -isid-list] [-r sid | -xsid]
[-x sid-list | -xsd-list] s.filename...

DESCRIPTION
The get utility retrieves a working copy from the SCCS history file, according to the
specified options.

For each s.filename argument, get displays the SCCS delta ID (SID) and number of
lines retrieved.

If a directory name is used in place of the s.filename argument, the get command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘-‘ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

The retrieved file normally has the same filename base as the s.file, less the prefix,
and is referred to as the g-file.

For each file processed, get responds (on the standard output) with the SID being
accessed, and with the number of lines retrieved from the s.file.

OPTIONS
The following options are supported:

-asequence
Retrieves the version corresponding to the indicated
delta sequence number. This option is used primarily
by the SCCS comb command (see sccs-comb(1)). For
users, -r is an easier way to specify a version. The -a
option supersedes the -r option when both are used.

-b
Creates a new branch. Used with the -e option to
indicate that the new delta should have a SID in a new
branch. Instead of incrementing the level for version to
be checked in, get indicates in the p.file that the delta
to be checked in should either initialize a new branch
and sequence (if there is no existing branch at the
current level), or increment the branch component of
the SID. If the b flag is not set in the s.file, this option
is ignored.

-c date-time | -cdate-time
Retrieves the latest version checked in prior to the date
and time indicated by the date-time argument. date-time
takes the form:

User Commands 1363
Units omitted from the indicated date and time default to their maximum possible values; that is -c7502 is equivalent to -c750228235959. Values of yy in the range 69–99 refer to the twentieth century. Values in the range 00–68 refer to the twenty-first century. Any number of non-numeric characters may separate the various 2 digit components. If white-space characters occur, the date-time specification must be quoted.

-e
Retrieves a version for editing. With this option, get places a lock on the .file, so that no one else can check in changes to the version you have checked out. If the j flag is set in the .file, the lock is advisory: get issues a warning message. Concurrent use of 'get -e' for different SIDs is allowed. However, get will not check out a version of the file if a writable version is present in the directory. All SCCS file protections stored in the .file, including the release ceiling, floor, and authorized user list, are honored by 'get -e'.

-g
Gets the SCCS version ID, without retrieving the version itself. Used to verify the existence of a particular SID.

-G newname
Uses newname as the name of the retrieved version.

-i sid-list | -i sid-list
Specifies a list of deltas to include in the retrieved version. The included deltas are noted in the standard output message. sid-list is a comma-separated list of SIDs. To specify a range of deltas, use a ‘−’ separator instead of a comma, between two SIDs in the list.

-k
Suppresses expansion of ID keywords. -k is implied by the -e.

-l & p
Retrieves a summary of the delta table (version log) and write it to a listing file, with the ‘.’ prefix (called ‘.file’). When -lp is used, write the summary onto the standard output.

-m
Precedes each retrieved line with the SID of the delta in which it was added to the file. The SID is separated from the line with a TAB.

-n
Precedes each line with the %%ID keyword and a TAB. When both the -m and -n options are used, the ID keyword precedes the SID, and the line of text.

-p
Writes the text of the retrieved version to the standard output. All messages that normally go to the standard output are written to the standard error instead.
Suppresses all output normally written on the standard output. However, fatal error messages (which always go to the standard error) remain unaffected.

-re
Retrieves the most recently created (top) delta in a given release (for example: -r1).

-r[sid]
Retrieves the version corresponding to the indicated SID (delta).

The SID for a given delta is a number, in Dewey decimal format, composed of two or four fields: the release and level fields, and for branch deltas, the branch and sequence fields. For instance, if 1.2 is the SID, 1 is the release, and 2 is the level number. If 1.2.3.4 is the SID, 3 is the branch and 4 is the sequence number.

You need not specify the entire SID to retrieve a version with get. When you omit -r altogether, or when you omit both release and level, get normally retrieves the highest release and level. If the d flag is set to an SID in the s file and you omit the SID, get retrieves the default version indicated by that flag.

When you specify a release but omit the level, get retrieves the highest level in that release. If that release does not exist, get retrieves highest level from the next-highest existing release.

Similarly with branches, if you specify a release, level and branch, get retrieves the highest sequence in that branch.

Same as for /usr/ccs/bin/get except that SID is mandatory.

Excludes the indicated deltas from the retrieved version. The excluded deltas are noted in the standard output message. sid-list is a comma-separated list of SIDs. To specify a range of deltas, use a ‘−’ separator instead of a comma, between two SIDs in the list.

The output format for /usr/ccs/bin/get is as follows:

"%s\n%d lines\n", <SID>, <number of lines>

The output format for /usr/xpg4/bin/get is as follows:

"%s\n%d", <SID>, <number of lines>
Usage guidelines are as follows:

In the absence of -e or -k, get expands the following ID keywords by replacing them with the indicated values in the text of the retrieved source.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A%</td>
<td>Shorthand notation for an ID line with data for what(1): %Z%YY %M% %I%Z%</td>
</tr>
<tr>
<td>%B%</td>
<td>SID branch component</td>
</tr>
<tr>
<td>%C%</td>
<td>Current line number. Intended for identifying messages output by the program such as &quot;this shouldn’t have happened&quot; type errors. It is not intended to be used on every line to provide sequence numbers.</td>
</tr>
<tr>
<td>%D%</td>
<td>Current date: YY/MM/DD</td>
</tr>
<tr>
<td>%E%</td>
<td>Date newest applied delta was created: YY/MM/DD</td>
</tr>
<tr>
<td>%F%</td>
<td>SCCS .file name</td>
</tr>
<tr>
<td>%G%</td>
<td>Date newest applied delta was created: MM/DD/YY</td>
</tr>
<tr>
<td>%H%</td>
<td>Current date: MM/DD/YY</td>
</tr>
<tr>
<td>%I%</td>
<td>SID of the retrieved version: %R%.%L%.%B%.%S%</td>
</tr>
<tr>
<td>%L%</td>
<td>SID level component</td>
</tr>
<tr>
<td>%M%</td>
<td>Module name: either the value of the m flag in the .file (see sccs-admin(1)), or the name of the .file less the prefix</td>
</tr>
<tr>
<td>%P%</td>
<td>Fully qualified .file name</td>
</tr>
<tr>
<td>%Q%</td>
<td>Value of the q flag in the .file</td>
</tr>
<tr>
<td>%R%</td>
<td>SID Release component</td>
</tr>
<tr>
<td>%S%</td>
<td>SID Sequence component</td>
</tr>
<tr>
<td>%T%</td>
<td>Current time: hh:mm:ss</td>
</tr>
<tr>
<td>%U%</td>
<td>Time the newest applied delta was created: hh:mm:ss</td>
</tr>
<tr>
<td>%W%</td>
<td>Shorthand notation for an ID line with data for what: %Z%%M% %I%</td>
</tr>
<tr>
<td>%Y%</td>
<td>Module type: value of the t flag in the .file</td>
</tr>
<tr>
<td>%Z%</td>
<td>4-character string: ‘@(#)' , recognized by what</td>
</tr>
</tbody>
</table>

The table below explains how the SCCS identification string is determined for retrieving and creating deltas.
## Determination of SCCS Identification String

<table>
<thead>
<tr>
<th>SID Specified</th>
<th>-b Option Used</th>
<th>Other Conditions</th>
<th>SID Retrieved</th>
<th>SID of Delta to be Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>none (3)</td>
<td>no</td>
<td>R defaults to mR</td>
<td>mR.mL</td>
<td>mR.(mL+1)</td>
</tr>
<tr>
<td>none (3)</td>
<td>yes</td>
<td>R defaults to mR</td>
<td>mR.mL</td>
<td>mR.mL.(mB+1).1</td>
</tr>
<tr>
<td>R</td>
<td>no</td>
<td>R &gt; mR</td>
<td>mR.mL</td>
<td>R.1 (4)</td>
</tr>
<tr>
<td>R</td>
<td>no</td>
<td>R = mR</td>
<td>mR.mL</td>
<td>mR.(mL+1)</td>
</tr>
<tr>
<td>R</td>
<td>yes</td>
<td>R &gt; mR</td>
<td>mR.mL</td>
<td>mR.mL.(mB+1).1</td>
</tr>
<tr>
<td>R</td>
<td>yes</td>
<td>R = mR</td>
<td>mR.mL</td>
<td>mR.mL.(mB+1).1</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>R &lt; mR and R does not exist</td>
<td>hR.mL (5)</td>
<td>hR.mL.(mB+1).1</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>Trunk succ. (6) in release &gt; R and R exists</td>
<td>R.mL</td>
<td>R.mL.(mB+1).1</td>
</tr>
<tr>
<td>R.L</td>
<td>no</td>
<td>No trunk succ.</td>
<td>R.L</td>
<td>R.(L+1)</td>
</tr>
<tr>
<td>R.L</td>
<td>yes</td>
<td>No trunk succ.</td>
<td>R.L</td>
<td>R.(L+1).1</td>
</tr>
<tr>
<td>R.L</td>
<td>-</td>
<td>Trunk succ. in release ≥ R</td>
<td>R.L</td>
<td>R.(L+1).1</td>
</tr>
<tr>
<td>R.L.B</td>
<td>no</td>
<td>No branch succ.</td>
<td>R.L.B.mS</td>
<td>R.L.B.(mS+1)</td>
</tr>
<tr>
<td>R.L.B</td>
<td>yes</td>
<td>No branch succ.</td>
<td>R.L.B.mS</td>
<td>R.L.(mB+1).1</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>no</td>
<td>No branch succ.</td>
<td>R.L.B.S</td>
<td>R.L.B.(S+1)</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>yes</td>
<td>No branch succ.</td>
<td>R.L.B.S</td>
<td>R.L.(mB+1).1</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>-</td>
<td>Branch succ.</td>
<td>R.L.B.S</td>
<td>R.L.(mB+1).1</td>
</tr>
</tbody>
</table>

(1) ‘R’, ‘L’, ‘B’, and ‘S’ are the ‘release’, ‘level’, ‘branch’, and ‘sequence’ components of the SID, respectively; ‘m’ means ‘maximum’. Thus, for example, ‘R.mL’ means ‘the maximum level number within release R’; ‘R.L.(mB+1).1’ means ‘the first sequence number on the new branch (that is, maximum branch number plus one) of level L within release R’. **Note:** If the SID specified is of the form ‘R.L’, ‘R.L.B’, or ‘R.L.B.S’, each of the specified components must exist.

(2) The -b option is effective only if the b flag is present in the file. An entry of ‘-’ means ‘irrelevant’.

(3) This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, the SID obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the other cases in this table applies.

---

**User Commands**
sccs-get(1)

(4) Forces creation of the first delta in a new release.

(5) 'hR' is the highest existing release that is lower than the specified, nonexistent, release R.

(6) Successor.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of get: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

FILES
"g-file" version retrieved by get
1 . file file containing extracted delta table info
p . file permissions (lock) file
z . file temporary copy of s . file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/ccs/bin/get</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/get</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4t</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

DIAGNOSTICS
Use the SCCS help command for explanations (see sccs-help(1)).

BUGS
If the effective user has write permission (either explicitly or implicitly) in the directory containing the SCCS files, but the real user does not, only one file may be named when using -e.
NAME | sccs-help, help – ask for help regarding SCCS error or warning messages
SYNOPSIS | /usr/ccs/bin/help [argument…]
DESCRIPTION | The help utility retrieves information to further explain errors messages and warnings from SCCS commands. It also provides some information about SCCS command usage. If no arguments are given, help prompts for one.

An argument may be a message number (which normally appears in parentheses following each SCCS error or warning message), or an SCCS command name. help responds with an explanation of the message or a usage line for the command.

When all else fails, try ‘/usr/ccs/bin/help stuck’.
FILES | /usr/lib/help directory containing files of message text
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

NAME
sccs-prs, prs – display selected portions of an SCCS history

SYNOPSIS
/usr/ccs/bin/prs [-ael] [-c date-time] [-d dataspec] [-r sid] s.filename...

DESCRIPTION
The prs utility displays part or all of the SCCS file (see sccsfile(4)) in a user supplied format.

If a directory utility name is used in place of the s.filename argument, the prs command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s.file per line.

OPTIONS
In the absence of options, prs displays the delta table (version log). In the absence of -d, or -l, prs displays the entry for each delta indicated by the other options.

- a Includes all deltas, including those marked as removed (see sccs-rmdel(1)).
- e Requests information for all deltas created earlier than, and including, the delta indicated with -r or -c.
- l Requests information for all deltas created later than, and including, the delta indicated with -r or -c.
- cdate-time Either options -e or -l must be used with this option.
- cdate-time displays information on the deltas checked in either prior to and including the date and time indicated by the date-time argument (option -e); or later than and including the date and time indicated (option -l). date-time takes the form:

    yy[mm][dd][hh][mm][ss][ ] ] ]

Units omitted from the indicated date and time default to their maximum possible values; that is -c7502 is equivalent to -c750228235959. Any number of non-numeric characters may separate the various 2 digit components. If white-space characters occur, the date-time specification must be quoted. Values of yy in the range 69–99 refer to the twentieth century. Values in the range of 00–68 refer to the twenty-first century.

- dataspec Produce a report according to the indicated data specification. dataspec consists of a (quoted) text string that includes embedded data keywords of the form 'key:' (see Data Keywords, below). prs expands these keywords in the output it produces. To specify a TAB character in the output, use \t; to specify a NEWLINE in the output, use \n.

- xsid Specifies the SCCS delta ID (SID) of the delta for which information is desired. If no SID is specified, the most recently created delta is used.
Usage of `prs` is described below.

Data Keywords

Data keywords specify which parts of an SCCS file are to be retrieved. All parts of an SCCS file (see `sccsfile(4)`) have an associated data keyword. A data keyword may appear any number of times in a data specification argument to `-d`. These data keywords are listed in the table below:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Data Item</th>
<th>File Section*</th>
<th>Value</th>
<th>Format**</th>
</tr>
</thead>
<tbody>
<tr>
<td>:A:</td>
<td>a format for the <code>what</code> string:</td>
<td>N/A</td>
<td>:Z::Y::M::I::Z:</td>
<td>S</td>
</tr>
<tr>
<td>:B:</td>
<td>branch number</td>
<td>D</td>
<td>mmm</td>
<td>S</td>
</tr>
<tr>
<td>:BD:</td>
<td>body</td>
<td>B</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:BF:</td>
<td>branch flag</td>
<td>F</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:CB:</td>
<td>ceiling boundary</td>
<td>F</td>
<td>:R:</td>
<td>S</td>
</tr>
<tr>
<td>:C:</td>
<td>comments for delta</td>
<td>D</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:D:</td>
<td>date delta created</td>
<td>D</td>
<td>:Dy::Dm::Dd:</td>
<td>S</td>
</tr>
<tr>
<td>:Dd:</td>
<td>day delta created</td>
<td>D</td>
<td>m</td>
<td>S</td>
</tr>
<tr>
<td>:Dg:</td>
<td>deltas ignored (seq #)</td>
<td>D</td>
<td>:DS::DS::...</td>
<td>S</td>
</tr>
<tr>
<td>:DI:</td>
<td>seq-no. of deltas included, excluded, ignored</td>
<td>D</td>
<td>:Dn::Dx::Dg:</td>
<td>S</td>
</tr>
<tr>
<td>:DL:</td>
<td>delta line statistics</td>
<td>D</td>
<td>:Li::Ld::Lu:</td>
<td>S</td>
</tr>
<tr>
<td>:Dm:</td>
<td>month delta created</td>
<td>D</td>
<td>m</td>
<td>S</td>
</tr>
<tr>
<td>:Dn:</td>
<td>deltas included (seq #)</td>
<td>D</td>
<td>:DS::DS::...</td>
<td>S</td>
</tr>
<tr>
<td>:DP:</td>
<td>predecessor delta seq-no.</td>
<td>D</td>
<td>mmm</td>
<td>S</td>
</tr>
<tr>
<td>:DS:</td>
<td>default SID</td>
<td>F</td>
<td>:I:</td>
<td>S</td>
</tr>
<tr>
<td>:DS:</td>
<td>delta sequence number</td>
<td>D</td>
<td>mmm</td>
<td>S</td>
</tr>
<tr>
<td>:Dt:</td>
<td>delta information</td>
<td>D</td>
<td>:DT::I::D::T::P:::DS::DP:</td>
<td>S</td>
</tr>
<tr>
<td>:DT:</td>
<td>delta type</td>
<td>D</td>
<td>D or R</td>
<td>S</td>
</tr>
<tr>
<td>:Dx:</td>
<td>deltas excluded (seq #)</td>
<td>D</td>
<td>:DS::...</td>
<td>S</td>
</tr>
<tr>
<td>:Dy:</td>
<td>year delta created</td>
<td>D</td>
<td>m</td>
<td>S</td>
</tr>
<tr>
<td>:F:</td>
<td>s. file name</td>
<td>N/A</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:FB:</td>
<td>floor boundary</td>
<td>F</td>
<td>:R:</td>
<td>S</td>
</tr>
<tr>
<td>:FD:</td>
<td>file descriptive text</td>
<td>C</td>
<td>text</td>
<td>M</td>
</tr>
</tbody>
</table>
# sccs-prs(1)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Data Item</th>
<th>File Section*</th>
<th>Value</th>
<th>Format**</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FL:</td>
<td>flag list</td>
<td>F</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:GB:</td>
<td>gotten body</td>
<td>B</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:I:</td>
<td>SCCS delta ID (SID)</td>
<td>D</td>
<td>:R::L::B::S::</td>
<td>S</td>
</tr>
<tr>
<td>:J:</td>
<td>joint edit flag</td>
<td>F</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:KF:</td>
<td>keyword error/warning flag</td>
<td>F</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:L:</td>
<td>level number</td>
<td>D</td>
<td>mnnn</td>
<td>S</td>
</tr>
<tr>
<td>:Ld:</td>
<td>lines deleted by delta</td>
<td>D</td>
<td>mnnmn</td>
<td>S</td>
</tr>
<tr>
<td>:Li:</td>
<td>lines inserted by delta</td>
<td>D</td>
<td>mnnmn</td>
<td>S</td>
</tr>
<tr>
<td>:LK:</td>
<td>locked releases</td>
<td>F</td>
<td>:R:...</td>
<td>S</td>
</tr>
<tr>
<td>:Lu:</td>
<td>lines unchanged by delta</td>
<td>D</td>
<td>mnnmn</td>
<td>S</td>
</tr>
<tr>
<td>:M:</td>
<td>module name</td>
<td>F</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:MF:</td>
<td>MR validation flag</td>
<td>F</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:MP:</td>
<td>MR validation program</td>
<td>F</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:MR:</td>
<td>MR numbers for delta</td>
<td>D</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:ND:</td>
<td>null delta flag</td>
<td>F</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:Q:</td>
<td>user defined keyword</td>
<td>F</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:P:</td>
<td>user who created delta</td>
<td>D</td>
<td>username</td>
<td>S</td>
</tr>
<tr>
<td>:PN:</td>
<td>s.. file's pathname</td>
<td>N/A</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:R:</td>
<td>release number</td>
<td>D</td>
<td>mnnn</td>
<td>S</td>
</tr>
<tr>
<td>:S:</td>
<td>sequence number</td>
<td>D</td>
<td>mnnn</td>
<td>S</td>
</tr>
<tr>
<td>:T:</td>
<td>time delta created</td>
<td>D</td>
<td>:Th::Tm::Ts::</td>
<td>S</td>
</tr>
<tr>
<td>:Th:</td>
<td>hour delta created</td>
<td>D</td>
<td>mn</td>
<td>S</td>
</tr>
<tr>
<td>:Tm:</td>
<td>minutes delta created</td>
<td>D</td>
<td>mn</td>
<td>S</td>
</tr>
<tr>
<td>:Ts:</td>
<td>seconds delta created</td>
<td>D</td>
<td>mn</td>
<td>S</td>
</tr>
<tr>
<td>:UN:</td>
<td>user names</td>
<td>U</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:W:</td>
<td>a form of what string</td>
<td>N/A</td>
<td>:Z::M:\t::I:</td>
<td>S</td>
</tr>
<tr>
<td>:Y:</td>
<td>module type flag</td>
<td>F</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:Z:</td>
<td>what string delimiter</td>
<td>N/A</td>
<td>@(#)</td>
<td>S</td>
</tr>
</tbody>
</table>

*B = body, D = delta table, F = flags, U = user names
**S = simple format, M = multi-line format

EXAMPLE 1 Displaying delta entries

The following command:

```
example$ /usr/ccs/bin/prs -e -d*:I:\t:P:* program.c
```

produces:

```
1.6 username
1.5 username...
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of prs: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

FILES

```
/tmp/pr?????
```

temporary file

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prt(1),
sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5),
environ(5), standards(5)

DIAGNOSTICS

Use the SCCS help command for explanations (see sccs-help(1)).
sccs-prt(1)

NAME  sccs-prt, prt – display delta table information from an SCCS file

SYNOPSIS  /usr/ccs/bin/prt [-abdefistu] [-c date-time] [-r date-time] [-y sid] s.file...

DESCRIPTION  prt prints selected portions of an SCCS file. By default, it prints the delta table (version log).

If a directory name is used in place of the s.filename argument, the prt command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s.file per line.

OPTIONS  If any option other than -y, -c, or -r is supplied, the name of each file being processed (preceded by one NEWLINE and followed by two NEWLINE characters) appears above its contents.

If none of the -u, -f, -t, or -b options are used, -d is assumed. -s, -i are mutually exclusive, as are -c and -r.

- a  Display log entries for all deltas, including those marked as removed.

- b  Print the body of the s.file.

- d  Print delta table entries. This is the default.

- e  Everything. This option implies -d, -i, -u, -f, and -t.

- f  Print the flags of each named s.file.

- i  Print the serial numbers of included, excluded, and ignored deltas.

- s  Print only the first line of the delta table entries; that is, only up to the statistics.

- t  Print the descriptive text contained in the s.file.

- u  Print the user-names and/or numerical group IDs of users allowed to make deltas.

- cdate-time  Exclude delta table entries that are specified cutoff date and time. Each entry is printed as a single line, preceded by the name of the SCCS file. This format (also produced by -r , and -y ) makes it easy to sort multiple delta tables in chronological order. When both -y and -c, or -y and -r are supplied, prt stops printing when the first of the two conditions is met.

- xdate-time  Exclude delta table entries that are newer than the specified cutoff date and time.

- ysid  Exclude delta table entries made prior to the SID specified. If no delta in the table has the specified SID, the entire table is printed. If no SID is specified, the most recent delta is printed.
The following format is used to print those portions of the $s$ file that are specified by the various options.

- NEWLINE
- Type of delta (D or R)
- SPACE
- SCCS delta ID (SID)
- TAB
- Date and time of creation in the form: $yy/mm/dd hh/mm/ss$
- SPACE
- Username the delta’s creator
- TAB
- Serial number of the delta
- SPACE
- Predecessor delta’s serial number
- TAB
- Line-by-line change statistics in the form: inserted/deleted/unchanged
- NEWLINE
- List of included deltas, followed by a NEWLINE (only if there were any such deltas and the -i options was used)
- List of excluded deltas, followed by a NEWLINE (only if there were any such deltas and the -i options was used)
- List of ignored deltas, followed by a NEWLINE (only if there were any such deltas and the -i options was used)
- List of modification requests (MRs), followed by a NEWLINE (only if any MR numbers were supplied).
- Lines of the delta commentary (if any), followed by a NEWLINE.

EXAMPLE 1 Examples of prt.

The following command:

```bash
example% /usr/ccs/bin/prt -y program.c
```

produces a one-line display of the delta table entry for the most recent version:

```
s.program.c: D 1.6 88/07/06 21:39:39 username 5 4 00159/00080/00636...
```
sccs-prt(1)

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO  sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

DIAGNOSTICS  Use the SCCS help command for explanations (see sccs-help(1)).
NAME | sccs-rmde1, rmde1 – remove a delta from an SCCS file

SYNOPSIS | /usr/ccs/bin/rmde1 -rsid s.filename...

DESCRIPTION | The rmde1 utility removes the delta specified by the SCCS delta ID (SID) supplied with -r. The delta to be removed must be the most recent (leaf) delta in its branch. In addition, the SID must not be that of a version checked out for editing; it must not appear in any entry of the version lock file (p.file).

If you created the delta, or, if you own the file and directory and have write permission, you can remove it with rmde1.

If a directory name is used in place of the s.filename argument, the rmde1 command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s.file per line.

OPTIONS | The following option is supported:

-rsid | Remove the version corresponding to the indicated SID (delta).

ENVIRONMENT VARIABLES | See environ(5) for descriptions of the following environment variables that affect the execution of rmde1: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPath.

FILES | p.file permissions file
s.file history file
z.file temporary copy of the s.file

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNW_sprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO | sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-sccsdiff(1), sccs-unget(1),
what(1), sccsfile(4), attributes(5), environ(5), standards(5)

DIAGNOSTICS | Use the SCCS help command for explanations (see sccs-help(1)).
NAME  sccs-sact, sact – show editing activity status of an SCCS file

SYNOPSIS  /usr/ccs/bin/sact s.filename...

DESCRIPTION  The sact utility informs the user of any SCCS files that are checked out for editing.

The output for each named file consists of five fields separated by SPACE characters.

- SID of a delta that currently exists in the SCCS file, to which changes will be made to make the new delta
- SID for the new delta to be created
- Username of the person who has the file checked out for editing.
- Date that the version was checked out.
- Time that the version was checked out.

If a directory name is used in place of the s.filename argument, the sact command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s.file per line.

ENVIRONMENT VARIABLES  See environ(5) for descriptions of the following environment variables that affect the execution of sact: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO  sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), what(1), sccsfile(4), attributes(5), environ(5), standards(5)

DIAGNOSTICS  Use the SCCS help command for explanations (see sccs-help(1)).
NAME | sccs-sccsdiff, sccsdiff – compare two versions of an SCCS file
SYNOPSIS | /usr/ccs/bin/sccsdiff [-p] -rsid -rsid [diff-options] s.filename
DESCRIPTION | sccsdiff compares two versions of an SCCS file and displays the differences between the two versions. Any number of SCCS files may be specified. The options specified apply to all named s.files.
OPTIONS | The following options are supported:
-p | Pipe output for each file through pr(1).
-rsid | Specify a version corresponding to the indicated SCCS delta ID (SID) for comparison. Versions are passed to diff(1) in the order given.
diff-options | Pass options to diff(1), including: -b, -c, -e, -f, -h, -u, -C number, -U number, and -D string.
FILES | /tmp/get?????? temporary files
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO | diff(1), sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), what(1), sccsfile(4), attributes(5)

DIAGNOSTICS | filename: No differences If the two versions are the same.
Use the SCCS help command for explanations of other messages. See sccs-help(1).
sccs-unget(1)

NAME  sccs-unget, unget – undo a previous get of an SCCS file

SYNOPSIS  /usr/ccs/bin/unget [-ns] [-rsid] s.filename...

DESCRIPTION  The unget utility undoes the effect of a get-e command executed before the creation of the pending delta.

If a directory name is used in place of the s.filename argument, the unget command applies to all s.files in that directory. Unreadable s.files produce an error; processing continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the names of files are to be read from the standard input, one s.file per line.

OPTIONS  The following options are supported:

- n  Retains the retrieved version, which is otherwise removed.
- s  Suppress display of the SCCS delta ID (SID).
- rsid  When multiple versions are checked out, this option specifies which pending delta to abort. A diagnostic results if the specified SID is ambiguous, or if it is necessary but omitted from the command line.

ENVIRONMENT VARIABLES  See environ(5) for descriptions of the following environment variables that affect the execution of unget: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>


DIAGNOSTICS  Use the SCCS help command for explanations (see sccs-help(1)).

1380  man pages section 1: User Commands • Last Revised 11 Oct 1990
NAME  
sccs-val, val – validate an SCCS file

SYNOPSIS
/usr/ccs/bin/val -
  /usr/ccs/bin/val [-s] [-m name] [-r sid] [-y type] s.filename...

DESCRIPTION
The val utility determines if the specified s.files meet the characteristics specified by
the indicated arguments. val can process up to 50 files on a single command line.

val has a special argument, ‘-’, which reads the standard input until the end-of-file
condition is detected. Each line read is independently processed as if it were a
command line argument list.

val generates diagnostic messages on the standard output for each command line and
file processed and also returns a single 8–bit code upon exit as described below.

The 8-bit code returned by val is a disjunction of the possible errors, that is, it can be
interpreted as a bit string where (moving from left to right) the bits set are interpreted
as follows:
  bit 0 = missing file argument
  bit 1 = unknown or duplicate option
  bit 2 = corrupted s.file
  bit 3 = can not open file or file not in s.file format
  bit 4 = the SCCS delta ID (SID) is invalid or ambiguous
  bit 5 = the SID does not exist
  bit 6 = mismatch between %Y% and -y argument
  bit 7 = mismatch between %M% and -m argument

val can process two or more files on a given command line, and in turn can process
multiple command lines (when reading the standard input). In these cases, an
aggregate code is returned which is the logical OR of the codes generated for each
command line and file processed.

OPTIONS
The following options are supported:

- s  Silent. Suppresses the normal error or warning messages.
- m name  Compares name with the %M% ID keyword in the s.file.
- r sid  Checks to see if the indicated SID is ambiguous, invalid, or absent from the
         s.file.
- y type  Compares type with the %Y% ID keyword.

ENVIRONMENT
VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of val: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
sccs-val(1)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO sccs(1), sccs-admin(1), sccs-delta(1), sccs-get(1), sccs-help(1), what(1), sccsfile(4), attributes(5), environ(5), standards(5)

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).
scp(1)

NAME
   scp – secure copy (remote file copy program)

SYNOPSIS
   [-o option] [ [user1@]host1: ]file1 [ [user2@]host2: ]file2 [...]

DESCRIPTION
   The scp utility copies files between hosts on a network. It uses ssh(1) for
data transfer, and uses the same authentication and provides the same security as ssh(1).
Unlike rcp(1), scp will ask for passwords or passphrases if they are needed for
authentication.

   Any file name may contain a host and user specification to indicate that the file is to be
copied to/from that host. Copies between two remote hosts are permitted.

OPTIONS
   The following options are supported:
   -4      Forces scp to use IPv4 addresses only.
   -6      Forces scp to use IPv6 addresses only.
   -B      Selects batch mode. (Prevents asking for passwords or
           passphrases.)
   -c cipher      Selects the cipher to use for encrypting the data transfer. This
                   option is directly passed to ssh(1).
   -C      Compression enable. Passes the -C flag to ssh(1) to enable
           compression.
   -i identity_file      Selects the file from which the identity (private key) for RSA
                         authentication is read. This option is directly passed to ssh(1).
   -o option      The given option is directly passed to ssh(1).
   -p      Preserves modification times, access times, and modes from the
           original file.
   -P port      Specifies the port to connect to on the remote host. Notice that this
               option is written with a capital ‘P’, because -p is already reserved
               for preserving the times and modes of the file in rcp(1).
   -q      Disables the progress meter.
   -r      Recursively copies entire directories.
   -S program      Specifies the name of the program to use for the encrypted
                   connection. The program must understand ssh(1) options.
   -v      Verbose mode. Causes scp and ssh(1) to print debugging
           messages about their progress. This is helpful in debugging
           connection, authentication, and configuration problems.

OPERANDS
   The following operands are supported:
   host1, host2,...      The name(s) of the host from or to which the file is to be copied.
   file1, file2,...      The file(s) to be copied.
**scp(1)**

**EXIT STATUS**
The following exit values are returned:

0  Successful completion.

1  An error occurred.

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
rcp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssdh(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.

**AUTHORS**
scp is based on the rcp(1) program in the BSD source code from the Regents of the University of California. The authors are Timo Rinne and Tatu Ylonen.
NAME       script – make record of a terminal session

SYNOPSIS   `script [-a] [filename]`

DESCRIPTION `script` makes a record of everything printed on your screen. The record is written to `filename`. If no file name is given, the record is saved in the file `typescript`.

The `script` command forks and creates a sub-shell, according to the value of `$SHELL`, and records the text from this session. The script ends when the forked shell exits or when CTRL-D is typed.

OPTIONS  
-`a`    Append the session record to `filename`, rather than overwrite it.

NOTES    `script` places everything that appears on the screen in `filename`, including prompts.

ATTRIBUTES See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO `attributes(5)`
**NAME**

`sdiff` – print differences between two files side-by-side

**SYNOPSIS**

```
sdiff [-l] [-s] [-o output] [-w n] filename1 filename2
```

**DESCRIPTION**

`sdiff` uses the output of the `diff` command to produce a side-by-side listing of two files indicating lines that are different. Lines of the two files are printed with a blank gutter between them if the lines are identical, a `<` in the gutter if the line appears only in `filename1`, a `>` in the gutter if the line appears only in `filename2`, and a `|` for lines that are different. (See the EXAMPLES section below.)

**OPTIONS**

- `-l`  
  Print only the left side of any lines that are identical.

- `-s`  
  Do not print identical lines.

- `-o output`  
  Use the argument `output` as the name of a third file that is created as a user-controlled merge of `filename1` and `filename2`. Identical lines of `filename1` and `filename2` are copied to `output`. Sets of differences, as produced by `diff`, are printed; where a set of differences share a common gutter character. After printing each set of differences, `sdiff` prompts the user with a `%` and waits for one of the following user-typed commands:

- `l`  
  Append the left column to the output file.

- `r`  
  Append the right column to the output file.

- `s`  
  Turn on silent mode; do not print identical lines.

- `v`  
  Turn off silent mode.

- `e l`  
  Call the editor with the left column.

- `e r`  
  Call the editor with the right column.

- `e b`  
  Call the editor with the concatenation of left and right.

- `e`  
  Call the editor with a zero length file.

- `q`  
  Exit from the program.

On exit from the editor, the resulting file is concatenated to the end of the `output` file.

- `-w n`  
  Use the argument `n` as the width of the output line. The default line length is 130 characters.

**USAGE**

See `largefile(5)` for the description of the behavior of `sdiff` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

**EXAMPLES**

**EXAMPLE 1** An example of the `sdiff` command.

A sample output of `sdiff` follows.

```
x | y
a a
b <
```
EXAMPLE 1 An example of the sdiff command. (Continued)

```bash
c <
d d
> c
```

ENVIRONMENT VARIABLES

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the operational behavior of sdiff for each corresponding locale category is determined by the value of the LANG environment variable. If LC_ALL is set, its contents are used to override both the LANG and the other LC_* variables. If none of the above variables is set in the environment, the "C" locale determines how sdiff behaves.

LC_CTYPE Determines how sdiff handles characters. When LC_CTYPE is set to a valid value, sdiff can display and handle text and filenames containing valid characters for that locale.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

diff(1), ed(1), attributes(5), environ(5), largefile(5)
### NAME

sed – stream editor

### SYNOPSIS

```
/usr/bin/sed [-n] script [file...]
```

```
/usr/bin/sed [-n] [-e script] ... [-f script_file] ... [file...]
```

```
/usr/xpg4/bin/sed [-n] script [file...]
```

```
/usr/xpg4/bin/sed [-n] [-e script] ... [-f script_file] ... [file...]
```

### DESCRIPTION

The `sed` utility is a stream editor that reads one or more text files, makes editing changes according to a script of editing commands, and writes the results to standard output. The script is obtained from either the `script` operand string, or a combination of the option-arguments from the `-e script` and `-f script_file` options.

The `sed` utility is a text editor. It cannot edit binary files or files containing ASCII NUL (`\0`) characters or very long lines.

### OPTIONS

The following options are supported:

- `-e script`  
  `script` is an edit command for `sed`. See USAGE below for more information on the format of `script`. If there is just one `-e` option and no `-f` options, the flag `-e` may be omitted.

- `-f script_file`  
  Takes the script from `script_file`. `script_file` consists of editing commands, one per line.

- `-n`  
  Suppresses the default output.

Multiple `-e` and `-f` options may be specified. All commands are added to the script in the order specified, regardless of their origin.

### OPERANDS

The following operands are supported:

- `file`  
  A path name of a file whose contents will be read and edited. If multiple `file` operands are specified, the named files will be read in the order specified and the concatenation will be edited. If no `file` operands are specified, the standard input will be used.

- `script`  
  A string to be used as the script of editing commands. The application must not present a `script` that violates the restrictions of a text file except that the final character need not be a `NEWLINE` character.

### USAGE

A script consists of editing commands, one per line, of the following form:

```
[address [, address]] command [arguments]
```

Zero or more blank characters are accepted before the first address and before `command`. Any number of semicolons are accepted before the first address.
In normal operation, `sed` cyclically copies a line of input (less its terminating \texttt{NEWLINE} character) into a \textit{pattern space} (unless there is something left after a \texttt{D} command), applies in sequence all commands whose \textit{addresses} select that pattern space, and copies the resulting pattern space to the standard output (except under \texttt{-n}) and deletes the pattern space. Whenever the pattern space is written to standard output or a named file, `sed` will immediately follow it with a \texttt{NEWLINE} character.

Some of the commands use a \textit{hold space} to save all or part of the \textit{pattern space} for subsequent retrieval. The \textit{pattern} and \textit{hold spaces} will each be able to hold at least 8192 bytes.

### sed Addresses

An \textit{address} is either empty, a decimal number that counts input lines cumulatively across files, a \$ that addresses the last line of input, or a context address, which consists of a /\textit{regular expression}/ as described on the \texttt{regexp(5)} manual page.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches the first address through the next pattern space that matches the second address. Thereafter the process is repeated, looking again for the first address. (If the second address is a number less than or equal to the line number selected by the first address, only the line corresponding to the first address is selected.)

Typically, address are separated from each other by a comma (,). They may also be separated by a semicolon (;).

### sed Regular Expressions

`sed` supports the basic regular expressions described on the \texttt{regexp(5)} manual page, with the following additions:

\begin{itemize}
  \item \texttt{\textbackslash cREc} \hspace{1em} In a context address, the construction \texttt{\textbackslash cREc}, where \texttt{c} is any character other than a backslash or \texttt{NEWLINE} character, is identical to \texttt{/RE/}. If the character designated by \texttt{c} appears following a backslash, then it is considered to be that literal character, which does not terminate the RE. For example, in the context address \texttt{\textbackslash xabc\textbackslash xdefx}, the second \texttt{x} stands for itself, so that the regular expression is \texttt{abc\textbackslash xdef}.
  \item \texttt{\textbackslash n} \hspace{1em} The escape sequence \texttt{\textbackslash n} matches a \texttt{NEWLINE} character embedded in the pattern space. A literal \texttt{NEWLINE} character must not be used in the regular expression of a context address or in the substitute command.
\end{itemize}

Editing commands can be applied only to non-selected pattern spaces by use of the negation command \texttt{!} (described below).

In the following list of functions the maximum number of permissible addresses for each function is indicated.

The \texttt{x} and \texttt{w} commands take an optional \texttt{rfile} (or \texttt{wfile}) parameter, separated from the command letter by one or more blank characters.
Multiple commands can be specified by separating them with a semicolon (;) on the same command line.

The `text` argument consists of one or more lines, all but the last of which end with `\` to hide the NEWLINE. Each embedded NEWLINE character in the text must be preceded by a backslash. Other backslashes in text are removed and the following character is treated literally. Backslashes in text are treated like backslashes in the replacement string of an `s` command, and may be used to protect initial blanks and tabs against the stripping that is done on every script line. The `rfile` or `wfile` argument must terminate the command line and must be preceded by exactly one blank. The use of the `wfile` parameter causes that file to be initially created, if it does not exist, or will replace the contents of an existing file. There can be at most 10 distinct `wfile` arguments.

Regular expressions match entire strings, not just individual lines, but a NEWLINE character is matched by `\n` in a `sed` RE. A NEWLINE character is not allowed in an RE. Also notice that `\n` cannot be used to match a NEWLINE character at the end of an input line; NEWLINE characters appear in the pattern space as a result of the `N` editing command.

Two of the commands take a `command-list`, which is a list of `sed` commands separated by NEWLINE characters, as follows:

```
{ command
 command
}
```

The `{` can be preceded with blank characters and can be followed with white space. The `commands` can be preceded by white space. The terminating `}` must be preceded by a NEWLINE character and can be preceded or followed by `<blank>`s. The braces may be preceded or followed by `<blank>`s. The command may be preceded by `<blank>`s, but may not be followed by `<blank>`s.

The following table lists the functions, with the maximum number of permissible addresses.

<table>
<thead>
<tr>
<th>Max Address</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a <code>\ text</code></td>
<td>Append by executing N command or beginning a new cycle. Place <code>text</code> on the output before reading the next input line.</td>
</tr>
<tr>
<td>2</td>
<td>b <code>label</code></td>
<td>Branch to the <code>:</code> command bearing the <code>label</code>. If <code>label</code> is empty, branch to the end of the script. Labels are recognized unique up to eight characters.</td>
</tr>
<tr>
<td>2</td>
<td>c <code>\ text</code></td>
<td>Change. Delete the pattern space. Place <code>text</code> on the output. Start the next cycle.</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>Delete the pattern space. Start the next cycle.</td>
</tr>
<tr>
<td>Max Address</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>Delete the initial segment of the pattern space through the first new-line. Start the next cycle. (See the \n command below.)</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>Replace the contents of the pattern space by the contents of the hold space.</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>Append the contents of the hold space to the pattern space.</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>Replace the contents of the hold space by the contents of the pattern space.</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>Append the contents of the pattern space to the hold space.</td>
</tr>
<tr>
<td>1</td>
<td>i \text</td>
<td>Insert. Place \text on the standard output.</td>
</tr>
<tr>
<td>2</td>
<td>l</td>
<td>/usr/bin/sed: List the pattern space on the standard output in an unambiguous form. Non-printable characters are displayed in octal notation and long lines are folded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/usr/xpg4/bin/sed: List the pattern space on the standard output in an unambiguous form. Non-printable characters are displayed in octal notation and long lines are folded. The characters (, \a, \b, \f, \r, \t, and \v) are written as the corresponding escape sequences. Non-printable characters not in that table will be written as one three-digit octal number (with a preceding backslash character) for each byte in the character (most significant byte first). If the size of a byte on the system is greater than nine bits, the format used for non-printable characters is implementation dependent. Long lines are folded, with the point of folding indicated by writing a backslash followed by a NEWLINE; the length at which folding occurs is unspecified, but should be appropriate for the output device. The end of each line is marked with a $.</td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>Copy the pattern space to the standard output if default output is not suppressed. Replace the pattern space with the next line of input.</td>
</tr>
</tbody>
</table>
# sed(1)

<table>
<thead>
<tr>
<th>Max Address</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N</td>
<td>Append the next line of input to the pattern space with an embedded new-line. (The current line number changes.) If no next line of input is available, the N command verb shall branch to the end of the script and quit without starting a new cycle and without writing the pattern space.</td>
</tr>
<tr>
<td>2</td>
<td>p</td>
<td>Print. Copy the pattern space to the standard output.</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>Copy the initial segment of the pattern space through the first new-line to the standard output.</td>
</tr>
<tr>
<td>1</td>
<td>q</td>
<td>Quit. Branch to the end of the script. Do not start a new cycle.</td>
</tr>
<tr>
<td>2</td>
<td>x rfile</td>
<td>Read the contents of rfile. Place them on the output before reading the next input line. If rfile does not exist or cannot be read, it is treated as if it were an empty file, causing no error condition.</td>
</tr>
<tr>
<td>2</td>
<td>t label</td>
<td>Test. Branch to the : command bearing the label if any substitutions have been made since the most recent reading of an input line or execution of a t. If label is empty, branch to the end of the script.</td>
</tr>
<tr>
<td>2</td>
<td>w wfile</td>
<td>Write. Append the pattern space to wfile. The first occurrence of w will cause wfile to be cleared. Subsequent invocations of w will append. Each time the sed command is used, wfile is overwritten.</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>Exchange the contents of the pattern and hold spaces.</td>
</tr>
<tr>
<td>2</td>
<td>i command</td>
<td>Don’t. Apply the command (or group, if command is { }) only to lines not selected by the address(es).</td>
</tr>
<tr>
<td>0</td>
<td>: label</td>
<td>This command does nothing; it bears a label for b and t commands to branch to.</td>
</tr>
<tr>
<td>1</td>
<td>=</td>
<td>Place the current line number on the standard output as a line.</td>
</tr>
<tr>
<td>2</td>
<td>{command-list}</td>
<td>Execute command-list only when the pattern space is selected.</td>
</tr>
<tr>
<td>0</td>
<td>#</td>
<td>An empty command is ignored.</td>
</tr>
<tr>
<td>0</td>
<td>#</td>
<td>If a # appears as the first character on a line of a script file, then that entire line is treated as a comment, with one exception: if a # appears on the first line and the character after the # is an n, then the default output will be suppressed. The rest of the line after #n is also ignored. A script file must contain at least one non-comment line.</td>
</tr>
</tbody>
</table>
Max Addr  Command (Using strings) and Description

2  
\b/regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression in the pattern space. Any character other than backslash or newline can be used instead of a slash to delimit the RE and the replacement. Within the RE and the replacement, the RE delimiter itself can be used as a literal character if it is preceded by a backslash.

An ampersand (&) appearing in the replacement will be replaced by the string matching the RE. The special meaning of & in this context can be suppressed by preceding it by backslash. The characters \n, where n is a digit, will be replaced by the text matched by the corresponding backreference expression. For each backslash (\) encountered in scanning replacement from beginning to end, the following character loses its special meaning (if any). It is unspecified what special meaning is given to any character other than &, \ or digits.

A line can be split by substituting a NEWLINE character into it. The application must escape the NEWLINE character in the replacement by preceding it with backslash. A substitution is considered to have been performed even if the replacement string is identical to the string that it replaces.

flags is zero or more of:

n n = 1 - 512. Substitute for just the nth occurrence of the regular expression.

g Global. Substitute for all nonoverlapping instances of the regular expression rather than just the first one. If both g and n are specified, the results are unspecified.

p Print the pattern space if a replacement was made.

p Copy the initial segment of the pattern space through the first new-line to the standard output.

w write Append the pattern space to write if a replacement was made. The first occurrence of w will cause write to be cleared. Subsequent invocations of w will append. Each time the sed command is used, write is overwritten.

2  
\y/string1/ string2 /

Transform. Replace all occurrences of characters in string1 with the corresponding characters in string2. string1 and string2 must have the same number of characters, or if any of the characters in string1 appear more than once, the results are undefined. Any character other than backslash or NEWLINE can be used instead of slash to delimit the strings. Within string1 and string2, the delimiter itself can be used as a literal character if it is preceded by a backslash. For example, \y/abc/ABC/ replaces a with A, b with B, and c with C.

See largefile(5) for the description of the behavior of sed when encountering files greater than or equal to 2 Gbyte (\(2^{31}\) bytes).
EXAMPLE 1 An example sed script

This sed script simulates the BSD `cat -s` command, squeezing excess blank lines from standard input.

```bash
sed -n ':
 # Write non-empty lines.
 /^.*$/ { p d }
 # Write a single empty line, then look for more empty lines.
 /^$/ p
 # Get next line, discard the held <newline> (empty line),
 # and look for more empty lines.
 :Empty
 /^$/ {
 N
 s/./
 b Empty
 }
 # Write the non-empty line before going back to search
 # for the first in a set of empty lines.
 p
'
```

ENVIRONMENT VARIABLES
See `environ(5)` for descriptions of the following environment variables that affect the execution of `sed`: `LANG`, `LC_ALL`, `LC_COLLATE`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>/usr/bin/sed</th>
<th>/usr/xpg4/bin/sed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Not enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
```

1394 man pages section 1: User Commands • Last Revised 23 Jul 1998
SEE ALSO 

awk(1), ed(1), grep(1), attributes(5), environ(5), largefile(5), regexp(5), standards(5)
sed – stream editor

**SYNOPSIS**

```
sed [-n] [-e script] [-f filename] [filename]...
```

**DESCRIPTION**

The *sed* utility copies the *filenames* (standard input default) to the standard output, edited according to a script of commands.

**OPTIONS**

The following options are supported:

- `-n` Suppresses the default output.
- `-e script` Script is an edit command for *sed*. If there is just one `-e` option and no `-f` options, the `-e` flag may be omitted.
- `-f filename` Takes the script from *filename*.

**sed Scripts**

`sed` scripts consist of editing commands, one per line, of the following form:

```
[address [, address]] function [arguments]
```

In normal operation, *sed* cyclically copies a line of input into a *pattern space* (unless there is something left after a `D` command), sequentially applies all commands with *addresses* matching that pattern space until reaching the end of the script, copies the pattern space to the standard output (except under `-n`), and finally, deletes the pattern space.

Some commands use a *hold space* to save all or part of the pattern space for subsequent retrieval.

An *address* is either:

- a decimal number line count, which is cumulative across input files;
- a `$`, which addresses the last input line;
- or a context address, which is a `/regular expression/` as described on the `regexp(5)` manual page, with the following exceptions:

```
\?RE? In a context address, the construction `/regular expression?`, where ? is any character, is identical to `/regular expression/`. Note: in the context address `/xabc\xdefx`, the second x stands for itself, so that the regular expression is `abc\xdef`.

\n Matches a NEWLINE embedded in the pattern space.

. Matches any character except the NEWLINE ending the pattern space.

null A command line with no address selects every pattern space.
```
Selects each pattern space that matches.

Selects the inclusive range from the first pattern space matching `address1` to the first pattern space matching `address2`. Selects only one line if `address1` is greater than or equal to `address2`.

If the first nonwhite character in a line is a ‘#’ (pound sign), `sed` treats that line as a comment, and ignores it. If, however, the first such line is of the form:

```
#n
```

`sed` runs as if the `-n` flag were specified.

The maximum number of permissible addresses for each function is indicated in parentheses in the list below.

An argument denoted `text` consists of one or more lines, all but the last of which end with `\` to hide the NEWLINE. Backslashes in text are treated like backslashes in the replacement string of an `s` command, and may be used to protect initial SPACE and TAB characters against the stripping that is done on every script line.

An argument denoted `rfilename` or `wfilename` must terminate the command line and must be preceded by exactly one SPACE. Each `wfilename` is created before processing begins. There can be at most 10 distinct `wfilename` arguments.

### Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code> \ <code>text</code></td>
<td>Append: place <code>text</code> on the output before reading the next input line.</td>
</tr>
<tr>
<td><code>b label</code></td>
<td>Branch to the ‘:’ command bearing the <code>label</code>. Branch to the end of the script if <code>label</code> is empty.</td>
</tr>
<tr>
<td><code>c \ </code> <code>text</code></td>
<td>Change: delete the pattern space. With 0 or 1 address or at the end of a 2 address range, place <code>text</code> on the output. Start the next cycle.</td>
</tr>
<tr>
<td><code>d</code></td>
<td>Delete the pattern space. Start the next cycle.</td>
</tr>
<tr>
<td><code>D</code></td>
<td>Delete the initial segment of the pattern space through the first NEWLINE. Start the next cycle.</td>
</tr>
<tr>
<td><code>g</code></td>
<td>Replace the contents of the pattern space by the contents of the hold space.</td>
</tr>
<tr>
<td><code>G</code></td>
<td>Append the contents of the hold space to the pattern space.</td>
</tr>
<tr>
<td><code>h</code></td>
<td>Replace the contents of the hold space by the contents of the pattern space.</td>
</tr>
<tr>
<td><code>H</code></td>
<td>Append the contents of the pattern space to the hold space.</td>
</tr>
<tr>
<td><code>i</code> \ <code>text</code></td>
<td>Insert: place <code>text</code> on the standard output.</td>
</tr>
</tbody>
</table>
List the pattern space on the standard output in an unambiguous form. Non-printing characters are spelled in two digit ASCII and long lines are folded.

Copy the pattern space to the standard output. Replace the pattern space with the next line of input.

Append the next line of input to the pattern space with an embedded newline. (The current line number changes.)

Print: copy the pattern space to the standard output.

Copy the initial segment of the pattern space through the first NEWLINE to the standard output.

Quit: branch to the end of the script. Do not start a new cycle.

Read the contents of \texttt{rfilename}. Place them on the output before reading the next input line.

Substitute the replacement string for instances of the regular expression in the pattern space. Any character may be used instead of `'/'. For a fuller description see \texttt{regexp(5)}. \texttt{flags} is zero or more of:

- \texttt{n} \texttt{n=1 − 512. Substitute for just the nth occurrence of the regular expression.}
- \texttt{g} \texttt{Global: substitute for all nonoverlapping instances of the regular expression rather than just the first one.}
- \texttt{p} \texttt{Print the pattern space if a replacement was made.}
- \texttt{w wfilename} \texttt{Write: append the pattern space to wfilename if a replacement was made.}

Test: branch to the `: command bearing the \texttt{label} if any substitutions have been made since the most recent reading of an input line or execution of a \texttt{t}. If \texttt{label} is empty, branch to the end of the script.

Write: append the pattern space to \texttt{wfilename}.

Exchange the contents of the pattern and hold spaces.

Transform: replace all occurrences of characters in \texttt{string1} with the corresponding character in \texttt{string2}. The lengths of \texttt{string1} and \texttt{string2} must be equal.

Do not: apply the function (or group, if \texttt{function} is `\{`) only to lines not selected by the address(es).

This command does nothing. It bears a \texttt{label} for \texttt{b} and \texttt{t} commands to branch to. Note: The maximum length of \texttt{label} is seven characters.
Place the current line number on the standard output as a line.

Execute the following commands through a matching ‘}’ only when the pattern space is selected. Commands are separated by ‘;’.

An empty command is ignored.

Large Files

See largefile(5) for the description of the behavior of sed when encountering files greater than or equal to 2 Gbyte ($2^{31}$ bytes).

DIAGNOSTICS

Too many commands
The command list contained more than 200 commands.

Too much command text
The command list was too big for sed to handle. Text in the a, c, and i commands, text read in by r commands, addresses, regular expressions and replacement strings in s commands, and translation tables in y commands all require sed to store data internally.

Command line too long
A command line was longer than 4000 characters.

Too many line numbers
More than 256 decimal number linecounts were specified as addresses in the command list.

Too many files in w commands
More than 10 different files were specified in w commands or w options for s commands in the command list.

Too many labels
More than 50 labels were specified in the command list.

Unrecognized command
A command was not one of the ones recognized by sed.

Extra text at end of command
A command had extra text after the end.

Illegal line number
An address was neither a decimal number linecount, a $, nor a context address.

Space missing before filename
There was no space between an r or w command, or the w option for a s command, and the filename specified for that command.

Too many {’s
There were more { than } in the list of commands to be executed.

Too many }’s
There were more } than { in the list of commands to be executed.
No addresses allowed
   A command that takes no addresses had an address specified.

Only one address allowed
   A command that takes one address had two addresses specified.

"\digit" out of range
   The number in a \n item in a regular expression or a replacement string in an s command was greater than 9.

Bad number
   One of the endpoints in a range item in a regular expression (that is, an item of the form \{n\} or \{n,m\}) was not a number.

Range endpoint too large
   One of the endpoints in a range item in a regular expression was greater than 255.

More than 2 numbers given in \{ \}
   More than two endpoints were given in a range expression.

} expected after \n
   A \ appeared in a range expression and was not followed by a }.

First number exceeds second in \{ \}
   The first endpoint in a range expression was greater than the second.

Illegal or missing delimiter
   The delimiter at the end of a regular expression was absent.

\( \) imbalance
   There were more \( than \), or more \) than \(, in a regular expression.

[ ] imbalance
   There were more [ than ], or more ] than [, in a regular expression.

First RE may not be null
   The first regular expression in an address or in a s command was null (empty).

Ending delimiter missing on substitution
   The ending delimiter in a s command was absent.

Ending delimiter missing on string
   The ending delimiter in a y command was absent.

Transform strings not the same size
   The two strings in a y command were not the same size.

Suffix too large - 512 max
   The suffix in a s command, specifying which occurrence of the regular expression should be replaced, was greater than 512.

Label too long
   A label in a command was longer than 8 characters.

Duplicate labels
   The same label was specified by more than one : command.
File name too long
The filename specified in a r or w command, or in the w option for a s command, was longer than 1024 characters.

Output line too long
An output line was longer than 4000 characters long.

Too many appends or reads after line n
More than 20 a or r commands were to be executed for line n.

Hold space overflowed.
More than 4000 characters were to be stored in the hold space.

FILES
usr/ucb/sed BSD sed

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
awk(1), grep(1), lex(1), attributes(5), largefile(5), regexp(5)

BUGS
There is a combined limit of 200 -e and -f arguments. In addition, there are various internal size limits which, in rare cases, may overflow. To overcome these limitations, either combine or break out scripts, or use a pipeline of sed commands.
NAME

set, unset, setenv, unsetenv, export – shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents

SYNOPSIS

sh

set [-aefhknx] [argument] ...
unset [name...]
export [name...]

csh

set [ var [ = value] ]
set var [n] = word
unset pattern
setenv [ VAR [word] ]
unsetenv variable

ksh

set [-aefhmnpstuvx] [-o option] ... [-A name] [arg...]
unset [-f] name...

**export [ name [=value] ] ...

DESCRIPTION

The sh built-in command has the following options:

- Do not change any of the flags; useful in setting $1 to --.
- a Mark variables which are modified or created for export.
- e Exit immediately if a command exits with a non-zero exit status.
- f Disable file name generation.
- h Locate and remember function commands as functions are defined (function commands are normally located when the function is executed).
- k All keyword arguments are placed in the environment for a command, not just those that precede the command name.
- n Read commands but do not execute them.
- t Exit after reading and executing one command.
- u Treat unset variables as an error when substituting.
- v Print shell input lines as they are read.
- x Print commands and their arguments as they are executed.

Using + rather than – causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $=. The remaining arguments are positional parameters and are assigned, in order, to $1, $2, ...

. . . . . If no arguments are given the values of all names are printed.
For each name, unset removes the corresponding variable or function value. The variables PATH, PS1, PS2, MAILCHECK, and IF cannot be unset.

With the export built-in, the given names are marked for automatic export to the environment of subsequently executed commands. If no arguments are given, variable names that have been marked for export during the current shell’s execution are listed. Function names are not exported.

With no arguments, set displays the values of all shell variables. Multiword values are displayed as a parenthesized list. With the var argument alone, set assigns an empty (null) value to the variable var. With arguments of the form var = value set assigns value to var, where value is one of:

- word A single word (or quoted string).
- (wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set var [n]=word replaces the n’th word in a multiword value with word.

unset removes variables whose names match (filename substitution) pattern. All variables are removed by ‘unset *’; this has noticeably distasteful side effects.

With no arguments, setenv displays all environment variables. With the VAR argument, setenv sets the environment variable VAR to an empty (null) value. (By convention, environment variables are normally given upper-case names.) With both VAR and word arguments specified, setenv sets VAR to word, which must be either a single word or a quoted string. The PATH variable can take multiple word arguments, separated by colons (see EXAMPLES). The most commonly used environment variables, USER, TERM, and PATH, are automatically imported to and exported from the csh variables user, term, and path. Use setenv if you need to change these variables. In addition, the shell sets the PWD environment variable from the csh variable cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the C shell. See environ(5) for descriptions of these environment variables.

unsetenv removes variable from the environment. As with unset, pattern matching is not performed.

The flags for the set built-in have meaning as follows:

- **-A** Array assignment. Unset the variable name and assign values sequentially from the list arg. If +A is used, the variable name is not unset first.
- **-a** All subsequent variables that are defined are automatically exported.
- **-e** If a command has a non-zero exit status, execute the ERR trap, if set, and exit. This mode is disabled while reading profiles.
- **-f** Disables file name generation.
Each command becomes a tracked alias when first encountered.

All variable assignment arguments are placed in the environment for a command, not just those that precede the command name.

Background jobs will run in a separate process group and a line will print upon completion. The exit status of background jobs is reported in a completion message. On systems with job control, this flag is turned on automatically for interactive shells.

Read commands and check them for syntax errors, but do not execute them. Ignored for interactive shells.

The following argument can be one of the following option names:

- `allexport` Same as `-a`.
- `errexit` Same as `-e`.
- `bgnice` All background jobs are run at a lower priority. This is the default mode. `emacs` Puts you in an `emacs` style in-line editor for command entry.
- `gemacs` Puts you in a `gemacs` style in-line editor for command entry.
- `ignoreeof` The shell will not exit on end-of-file. The command `exit` must be used.
- `keyword` Same as `-k`.
- `markdirs` All directory names resulting from file name generation have a trailing `/` appended.
- `monitor` Same as `-m`.
- `noclobber` Prevents redirection `>` from truncating existing files. Require `>` to truncate a file when turned on.
- `noexec` Same as `-n`.
- `noglob` Same as `-f`.
- `nolog` Do not save function definitions in history file.
- `nounset` Same as `-u`.
- `privileged` Same as `-p`.
- `verbose` Same as `-v`.
- `trackall` Same as `-h`.
- `vi` Puts you in insert mode of a `vi` style in-line editor until you hit escape character `033`. This puts you in control mode. A return sends the line.
viraw

Each character is processed as it is typed in vi mode.

xtrace

Same as -x.

If no option name is supplied then the current option settings are printed.

-\p Disables processing of the $HOME/.profile file and uses the file /etc/suid_profile instead of the ENV file. This mode is on whenever the effective uid is not equal to the real uid, or when the effective gid is not equal to the real gid. Turning this off causes the effective uid and gid to be set to the real uid and gid.

-\s Sort the positional parameters lexicographically.

-\t Exit after reading and executing one command.

-\u Treat unset parameters as an error when substituting.

-\v Print shell input lines as they are read.

-\x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to a value beginning with −. If no arguments follow this flag then the positional parameters are unset.

Using + rather than − causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $−. Unless -A is specified, the remaining arguments are positional parameters and are assigned, in order, to $1 $2 ... If no arguments are given then the names and values of all variables are printed on the standard output.

The variables given by the list of names are unassigned, i.e., their values and attributes are erased. readonly variables cannot be unset. If the -f, flag is set, then the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special meaning even if they are subsequently assigned.

When using unset, the variables given by the list of names are unassigned, i.e., their values and attributes are erased. readonly variables cannot be unset. If the -f, flag is set, then the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special meaning even if they are subsequently assigned.

With the export built-in, the given names are marked for automatic export to the environment of subsequently-executed commands.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

**EXAMPLES**

csh
The following example sets the PATH variable to search for files in the /bin, /usr/bin, /usr/sbin, and /usr/ucb/bin directories, in that order.

    setenv PATH "/bin:/usr/bin:/usr/sbin:usr/ucb/bin"

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
csh(1), ksh(1), read(1), sh(1), typeset(1), attributes(5), environ(5)
NAME  set, unset – set and unset local or global environment variables

SYNOPSIS  

        set [ -l variable [ =value]] ...  
        set [ -e variable [ =value]] ...  
        set [ -f file variable [ =value]] ...  
        unset -l variable...  
        unset -f file variable...

DESCRIPTION  The `set` command sets `variable` in the environment, or adds `variable=value` to `file`. If `variable` is not equated it to a value, `set` expects the value to be on `stdin`. The `unset` command removes `variable`. Note that the FMLI predefined, read-only variables (such as `ARG1`), may not be set or unset.

Note that at least one of the above options must be used for each variable being set or unset. If you set a variable with the `-f filename` option, you must thereafter include `filename` in references to that variable. For example, `$\{(file) VARIABLE\}`.

FMLI inherits the UNIX environment when invoked.

OPTIONS  

- `l`  Sets or unsets the specified variable in the local environment. Variables set with `-l` will not be inherited by processes invoked from FMLI.

- `e`  Sets the specified variable in the UNIX environment. Variables set with `-e` will be inherited by any processes started from FMLI. Note that these variables cannot be `unset`.

- `f file`  Sets or unsets the specified variable in the global environment. The argument `file` is the name, or pathname, of a file containing lines of the form `variable=value`. `file` will be created if it does not already exist. Note that no space intervenes between `-f` and `file`.

EXAMPLES  

**EXAMPLE 1**  A sample output of `set` command.

Storing a selection made in a menu:

```
name=Selection 2
action=`set -l SELECTION=2'close
```

NOTES  

Variables set to be available to the UNIX environment (those set using the `-e` option) can only be set for the current fmli process and the processes it calls.

When using the `-f` option, unless `file` is unique to the process, other users of FMLI on the same machine will be able to expand these variables, depending on the read/write permissions on `file`.

A variable set in one frame may be referenced or unset in any other frame. This includes local variables.
set(1F)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

SEE ALSO

env(1), sh(1), attributes(5)
**NAME**
setcolor – redefine or create a color

**SYNOPSIS**
```
setcolor color red_level green_level blue_level
```

**DESCRIPTION**
The `setcolor` command takes four arguments: `color`, which must be a string naming the color; and the arguments `red_level`, `green_level`, and `blue_level`, which must be integer values defining, respectively, the intensity of the red, green, and blue components of `color`. Intensities must be in the range of 0 to 1000. If you are redefining an existing color, you must use its current name (default color names are: black, blue, green, cyan, red, magenta, yellow, and white). `setcolor` returns the color’s name string.

**EXAMPLES**
**EXAMPLE 1** A sample output of `setcolor` command.
The following is an example of the arguments that `setcolor` takes:
```
'setcolor blue 100 24 300'
```

**ATTRIBUTES**
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

**SEE ALSO**
attributes(5)
setfacl – modify the Access Control List (ACL) for a file or files

**SYNOPSIS**

```
setfacl [-r] -s acl_entries file
setfacl [-r] -md acl_entries file
setfacl [-r] -f acl_filefile
```

**DESCRIPTION**

For each file specified, `setfacl` will either replace its entire ACL, including the default ACL on a directory, or it will add, modify, or delete one or more ACL entries, including default entries on directories.

When the `setfacl` command is used, it may result in changes to the file permission bits. When the user ACL entry for the file owner is changed, the file owner class permission bits will be modified. When the group ACL entry for the file group class is changed, the file group class permission bits will be modified. When the other ACL entry is changed, the file other class permission bits will be modified.

If you use the `chmod(1)` command to change the file group owner permissions on a file with ACL entries, both the file group owner permissions and the ACL mask are changed to the new permissions. Be aware that the new ACL mask permissions may change the effective permissions for additional users and groups who have ACL entries on the file.

A directory may contain default ACL entries. If a file or directory is created in a directory that contains default ACL entries, the newly created file will have permissions generated according to the intersection of the default ACL entries and the permissions requested at creation time. The `umask(1)` will not be applied if the directory contains default ACL entries. If a default ACL is specified for a specific user (or users), the file will have a regular ACL created. Otherwise, only the mode bits will be initialized according to the intersection described above. The default ACL should be thought of as the maximum discretionary access permissions that may be granted.

**acl_entries Syntax**

For the `-m` and `-s` options, `acl_entries` are one or more comma-separated ACL entries.

An ACL entry consists of the following fields separated by colons:

- **entry_type**: Type of ACL entry on which to set file permissions. For example, `entry_type` can be `user` (the owner of a file) or `mask` (the ACL mask).
- **uid or gid**: User name or user identification number. Or, group name or group identification number.
- **perms**: Represents the permissions that are set on `entry_type`. `perms` can be indicated by the symbolic characters `rwx` or a number (the same permissions numbers used with the `chmod` command).

The following table shows the valid ACL entries (default entries may only be specified for directories):
## ACL Entry Description

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u[ser]:perms</td>
<td>File owner permissions.</td>
</tr>
<tr>
<td>g[roup]:perms</td>
<td>File group owner permissions.</td>
</tr>
<tr>
<td>o[ther]:perms</td>
<td>Permissions for users other than the file owner or members of file group owner.</td>
</tr>
<tr>
<td>m[ask]:perms</td>
<td>The ACL mask. The mask entry indicates the maximum permissions allowed for users (other than the owner) and for groups. The mask is a quick way to change permissions on all the users and groups.</td>
</tr>
<tr>
<td>u[ser]:uid:perms</td>
<td>Permissions for a specific user. For uid, you can specify either a user name or a numeric UID.</td>
</tr>
<tr>
<td>g[roup]:gid:perms</td>
<td>Permissions for a specific group. For gid, you can specify either a group name or a numeric GID.</td>
</tr>
<tr>
<td>d[efault]:u[ser]:perms</td>
<td>Default file owner permissions.</td>
</tr>
<tr>
<td>d[efault]:g[roup]:perms</td>
<td>Default file group owner permissions.</td>
</tr>
<tr>
<td>d[efault]:o[ther]:perms</td>
<td>Default permissions for users other than the file owner or members of the file group owner.</td>
</tr>
<tr>
<td>d[efault]:m[ask]:perms</td>
<td>Default ACL mask.</td>
</tr>
<tr>
<td>d[efault]:u[ser]:uid:perms</td>
<td>Default permissions for a specific user. For uid, you can specify either a user name or a numeric UID.</td>
</tr>
<tr>
<td>d[efault]:g[roup]:gid:perms</td>
<td>Default permissions for a specific group. For gid, you can specify either a group name or a numeric GID.</td>
</tr>
</tbody>
</table>

For the `-d` option, `acl_entries` are one or more comma-separated ACL entries without permissions. Note that the entries for file owner, file group owner, ACL mask, and others may not be deleted.

## OPTIONS

The options have the following meaning:

- `-d acl_entries` Deletes one or more entries from the file. The entries for the file owner, the file group owner, and others may not be deleted from the ACL. Notice that deleting an entry does not necessarily have the same effect as removing all permissions from the entry.

- `-f acl_file` Seta a file’s ACL with the ACL entries contained in the file named `acl_file`. The same constraints on specified entries hold as with the `-s` option. The entries are not required to be in any specific order in the file. Also, if you specify a dash `-' for `acl_file`, standard input is used to set the file’s ACL.
The character "#" in acl_file may be used to indicate a comment. All characters, starting with the "#" until the end of the line, will be ignored. Note that if the acl_file has been created as the output of the getfacl(1) command, any effective permissions, which will follow a "#", will be ignored.

-\m acl_entries

Adds one or more new ACL entries to the file, and/or modifies one or more existing ACL entries on the file. If an entry already exists for a specified uid or gid, the specified permissions will replace the current permissions. If an entry does not exist for the specified uid or gid, an entry will be created. When using the -m option to modify a default ACL, you must specify a complete default ACL (user, group, other, mask, and any additional entries) the first time.

-r

Recalculates the permissions for the ACL mask entry. The permissions specified in the ACL mask entry are ignored and replaced by the maximum permissions necessary to grant the access to all additional user, file group owner, and additional group entries in the ACL. The permissions in the additional user, file group owner, and additional group entries are left unchanged.

-s acl_entries

Sets a file's ACL. All old ACL entries are removed and replaced with the newly specified ACL. The entries need not be in any specific order. They will be sorted by the command before being applied to the file.

Required entries:

- Exactly one user entry specified for the file owner.
- Exactly one group entry for the file group owner.
- Exactly one other entry specified.

If there are additional user and group entries:

- Exactly one mask entry specified for the ACL mask that indicates the maximum permissions allowed for users (other than the owner) and groups.
- Must not be duplicate user entries with the same uid.
- Must not be duplicate group entries with the same gid.

If file is a directory, the following default ACL entries may be specified:

- Exactly one default user entry for the file owner.
- Exactly one default group entry for the file group owner.
- Exactly one default mask entry for the ACL mask.
- Exactly one default other entry.
There may be additional default user entries and additional default group entries specified, but there may not be duplicate additional default user entries with the same uid, or duplicate default group entries with the same gid.

EXAMPLE 1 Adding read permission only

The following example adds one ACL entry to file abc, which gives user shea read permission only.

```
setfacl -m user:shea:r abc
```

EXAMPLE 2 Replacing a file’s entire ACL

The following example replaces the entire ACL for the file abc, which gives shea read access, the file owner all access, the file group owner read access only, the ACL mask read/write access, and others no access.

```
setfacl -s user:shea:rwx, user::rwx, group::rw-, mask::r-- , other::---- abc
```

Notice that after this command, the file permission bits are rwxr------. Even though the file group owner was set with read/write permissions, the ACL mask entry limits it to have only read permissions. The mask entry also specifies the maximum permissions available to all additional user and group ACL entries. Once again, even though the user shea was set with all access, the mask limits it to have only read permissions. The ACL mask entry is a quick way to limit or open access to all the user and group entries in an ACL. For example, by changing the mask entry to read/write, both the file group owner and user shea would be given read/write access.

EXAMPLE 3 Setting the same ACL on two files

The following example sets the same ACL on file abc as the file xyz.

```
getfacl xyz | setfacl -f abc
```

FILES
/etc/passwd password file
/etc/group group file

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
getfacl(1), umask(1), aclcheck(3SEC), aclsort(3SEC), group(4), passwd(4), attributes(5), chmod(1)
NAME

setpgrp – set process group ID

SYNOPSIS

setpgrp command [arg...]

DESCRIPTION

If the current process is not already a session leader, the setpgrp utility sets the process group ID and session ID to the current process ID and does an exec() of command and its argument(s), if any.

OPERANDS

The following operands are supported:

command The name of a command to be invoked.

arg An option or argument to command.

EXIT STATUS

The following exit values are returned:

1 Error executing the setpgrp utility or during exec() of command.

Otherwise, the exit status will be that of command.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

exec(2), setpgrp(2), attributes(5)
**NAME** | sftp – secure file transfer program
---|---
**SYNOPSIS** | `sftp [-vC] [-o ssh_option] [hostname | user@hostname]`
**DESCRIPTION** | The `sftp` utility is an interactive file transfer program with a user interface similar to `ftp(1)` that uses the `ssh(1)` command to create a secure connection to the server.

`sftp` implements the SSH File Transfer Protocol as defined in IETF draft-ietf-secsh-filexfer. There is no relationship between the protocol used by `sftp` and the FTP protocol (RFC959) provided by `ftp(1)`.

**OPTIONS** | The following options are supported:
- `-C` Enables compression, using the `-C` flag in `ssh(1)`.
- `-o ssh_option` Specifies an option to be directly passed to `ssh(1)`.
- `-v` Raises logging level. This option is also passed to `ssh(1)`.

**OPERANDS** | The following operands are supported:
`hostname` | The name of the host to which `sftp` connects and logs into.
`user@hostname` | The name of the host to which `sftp` connects and logs into.

**INTERACTIVE COMMANDS** | Once in interactive mode, `sftp` understands a set of commands similar to those of `ftp(1)`. Commands are case insensitive and pathnames may be enclosed in quotes if they contain spaces.

- `cd path` Changes remote directory to `path`.
- `lcd path` Changes local directory to `path`.
- `chgrp grp path` Changes group of file `path` to `grp`. `grp` must be a numeric GID.
- `chmod mode path` Changes permissions of file `path` to `mode`.
- `chown own path` Changes owner of file `path` to `own`. `own` must be a numeric UID.
- `help` Displays help text.
- `get [flags] remote-path [local-path]` Retrieves the `remote-path` and stores it on the local machine. If the local path name is not specified, it is given the same name it has on the remote machine. If the `-P` flag is specified, then the file’s full permission and access time are copied too.
- `lls [ls-options [path]]` Displays local directory listing of either `path` or current directory if `path` is not specified.
mkdir path
    Creates local directory specified by path.

lpwd
    Prints local working directory.

ls [path]
    Displays remote directory listing of either path or current directory if path is not specified.

lumask umask
    Sets local umask to umask.

mkdir path
    Creates remote directory specified by path.

put [flags] local-path [local-path]
    Uploads local-path and stores it on the remote machine. If the remote path name is not specified, it is given the same name it has on the local machine. If the -P flag is specified, then the file's full permission and access time are copied too.

pwd
    Displays remote working directory.

exit
    Quits sftp.

quit
    Quits sftp.

rename oldpath newpath
    Renames remote file from oldpath to newpath.

rmdir path
    Removes remote directory specified by path.

rm path
    Deletes remote file specified by path.

! command
    Executes command in local shell.

! ?
    Escapes to local shell.

? ?
    Synonym for help.

**EXIT STATUS**
The following exit values are returned:
0     Successful completion.
1     An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
</tbody>
</table>

SEE ALSO

ftp(1), scp(1), ssh(1), ssh-add(1), ssh-keygen(1), ssdh(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.

AUTHOR

Damien Miller
sh(1)

<table>
<thead>
<tr>
<th>NAME</th>
<th>sh, jsh – standard and job control shell and command interpreter</th>
</tr>
</thead>
</table>
| SYNOPTIS | /usr/bin/sh [-acefhiknprstuvx] [argument...]
| | /usr/xpg4/bin/sh [ ± abCefhikmnoprstuvx] [ ± o option...] [-c string] [arg...]
| | /usr/bin/jsh [-acefhikprstuvx] [argument...]
| DESCRIPTION | The /usr/bin/sh utility is a command programming language that executes commands read from a terminal or a file.
| | The /usr/xpg4/bin/sh utility is a standards compliant shell. This utility provides all the functionality of ksh(1), except in cases discussed in ksh(1) where differences in behavior exist.
| | The jsh utility is an interface to the shell that provides all of the functionality of sh and enables job control (see Job Control section below).
| | Arguments to the shell are listed in the Invocation section below.
| Definitions | A blank is a tab or a space. A name is a sequence of ASCII letters, digits, or underscores, beginning with a letter or an underscore. A parameter is a name, a digit, or any of the characters * , @ , # , ? , − , $ , and ! .
| USAGE | Commands
| | A simple-command is a sequence of non-blank words separated by blanks. The first word specifies the name of the command to be executed. Except as specified below, the remaining words are passed as arguments to the invoked command. The command name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit status if it terminates normally, or (octal) 200 + status if it terminates abnormally. See signal(3HEAD) for a list of status values.
| | A pipeline is a sequence of one or more commands separated by | . The standard output of each command but the last is connected by a pipe(2) to the standard input of the next command. Each command is run as a separate process. The shell waits for the last command to terminate. The exit status of a pipeline is the exit status of the last command in the pipeline.
| | A list is a sequence of one or more pipelines separated by ; , & , && , or | | , and optionally terminated by ; or & . Of these four symbols, ; and & have equal precedence, which is lower than that of && and | | . The symbols && and | | also have equal precedence. A semicolon ( ; ) causes sequential execution of the preceding pipeline, that is, the shell waits for the pipeline to finish before executing any commands following the semicolon. An ampersand ( & ) causes asynchronous execution of the preceding pipeline, that is, the shell does not wait for that pipeline to finish. The symbol && ( | | ) causes the list following it to be executed only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of newlines may appear in a list, instead of semicolons, to delimit commands.
A command is either a simple-command or one of the following. Unless otherwise stated, the value returned by a command is that of the last simple-command executed in the command.

**for** name [ in word ... ] do list done

Each time a for command is executed, name is set to the next word taken from the in word list. If in word ... is omitted, then the for command executes the do list once for each positional parameter that is set (see Parameter Substitution section below). Execution ends when there are no more words in the list.

**case** word in [ pattern [ | pattern ] ] list ; ; ]... esac

A case command executes the list associated with the first pattern that matches word. The form of the patterns is the same as that used for file-name generation (see File Name Generation section), except that a slash, a leading dot, or a dot immediately following a slash need not be matched explicitly.

**if** list ; then list ; [ elif list ; then list ; ]... [ else list ; ] fi

The list following if is executed and, if it returns a zero exit status, the list following the first then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list following the next then is executed. Failing that, the else list is executed. If no else list or then list is executed, then the if command returns a zero exit status.

**while** list do list done

A while command repeatedly executes the while list and, if the exit status of the last command in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list are executed, then the while command returns a zero exit status; until may be used in place of while to negate the loop termination test.

**(list)**

Execute list in a sub-shell.

**( list; )**

list is executed in the current (that is, parent) shell. The { must be followed by a space.

**name ( ) { list; }**

Define a function which is referenced by name. The body of the function is the list of commands between { and }. The { must be followed by a space. Execution of functions is described below (see Execution section). The { and } are unnecessary if the body of the function is a command as defined above, under Commands.

The following words are only recognized as the first word of a command and when not quoted:
if then else elif fi case esac for while until do done { }

A word beginning with # causes that word and all the following characters up to a newline to be ignored.

The shell reads commands from the string between two grave accents ('') and the standard output from these commands may be used as all or part of a word. Trailing newlines from the standard output are removed.

No interpretation is done on the string before the string is read, except to remove backslashes (\) used to escape other characters. Backslashes may be used to escape a grave accent ('') or another backslash (\) and are removed before the command string is read. Escaping grave accents allows nested command substitution. If the command substitution lies within a pair of double quotes (" . . . ' . . . "'), a backslash used to escape a double quote (\") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a newline character (\newline), both the backslash and the newline are removed (see the later section on Quoting). In addition, backslashes used to escape dollar signs (\$) are removed. Since no parameter substitution is done on the command string before it is read, inserting a backslash to escape a dollar sign has no effect. Backslashes that precede characters other than \, ', ", newline, and $ are left intact when the command string is read.

The character $ is used to introduce substitutable parameters. There are two types of parameters, positional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be assigned values by set. Keyword parameters (also known as variables) may be assigned values by writing:

\begin{verbatim}
name=value [ name=value ]
\end{verbatim}

Pattern-matching is not performed on value. There cannot be a function and a variable with the same name.

\begin{verbatim}
${parameter}
\end{verbatim}

The value, if any, of the parameter is substituted. The braces are required only when parameter is followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If parameter is * or @, all the positional parameters, starting with $1, are substituted (separated by spaces). Parameter $0 is set from argument zero when the shell is invoked.

\begin{verbatim}
${parameter :−word}
\end{verbatim}

If parameter is set and is non-null, substitute its value; otherwise substitute word.

\begin{verbatim}
${parameter :=word}
\end{verbatim}

If parameter is not set or is null set it to word; the value of the parameter is substituted. Positional parameters may not be assigned in this way.
\$\{\texttt{parameter} : ?\texttt{word} \} \quad \text{If} \ \texttt{parameter} \ \text{is set and is non-null, substitute its value; otherwise, print} \ \texttt{word} \ \text{and exit from the shell. If} \ \texttt{word} \ \text{is omitted, the message "parameter null or not set" is printed.}

\$\{\texttt{parameter} : +\texttt{word} \} \quad \text{If} \ \texttt{parameter} \ \text{is set and is non-null, substitute} \ \texttt{word} ; \ \text{otherwise substitute nothing.}

In the above, \texttt{word} \ is not evaluated unless it is to be used as the substituted string, so that, in the following example, \texttt{pwd} \ is executed only if \texttt{d} \ is not set or is null:

\begin{verbatim}
echo \$\{d:-'pwd'\}
\end{verbatim}

If the colon (:) is omitted from the above expressions, the shell only checks whether \texttt{parameter} \ is set or not.

The following parameters are automatically set by the shell.

\begin{itemize}
  \item \# \quad \text{The number of positional parameters in decimal.}
  \item \- \quad \text{Flags supplied to the shell on invocation or by the \texttt{set} command.}
  \item \? \quad \text{The decimal value returned by the last synchronously executed command.}
  \item \$ \quad \text{The process number of this shell.}
  \item \! \quad \text{The process number of the last background command invoked.}
\end{itemize}

The following parameters are used by the shell. The parameters in this section are also referred to as environment variables.

\begin{itemize}
  \item \texttt{HOME} \quad \text{The default argument (home directory) for the \texttt{cd} command, set to the user’s login directory by \texttt{login(1)} from the password file (see \texttt{passwd(4)}).}
  \item \texttt{PATH} \quad \text{The search path for commands (see Execution section below).}
  \item \texttt{CDPATH} \quad \text{The search path for the \texttt{cd} command.}
  \item \texttt{MAIL} \quad \text{If this parameter is set to the name of a mail file \texttt{and} the \texttt{MAILPATH} parameter is not set, the shell informs the user of the arrival of mail in the specified file.}
  \item \texttt{MAILCHECK} \quad \text{This parameter specifies how often (in seconds) the shell will check for the arrival of mail in the files specified by the \texttt{MAILPATH} or \texttt{MAIL} parameters. The default value is 600 seconds (10 minutes). If set to 0, the shell will check before each prompt.}
  \item \texttt{MAILPATH} \quad \text{A colon-separated list of file names. If this parameter is set, the shell informs the user of the arrival of mail in any of the specified files. Each file name can be followed by \% and a message that will be printed when the modification time changes. The default message is, \texttt{you have mail}.}
\end{itemize}
Primary prompt string, by default "$ ".

Secondary prompt string, by default " > ".

Internal field separators, normally space, tab, and newline (see Blank Interpretation section).

If this parameter is set to the name of a file writable by the user, the shell will write an accounting record in the file for each shell procedure executed.

When the shell is invoked, it scans the environment (see Environment section below) for this name.

See environ(5) for descriptions of the following environment variables that affect the execution of sh: LC_CTYPE and LC_MESSAGES.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, and IFS. Default values for HOME and MAIL are set by login(1).

After parameter and command substitution, the results of substitution are scanned for internal field separator characters (those found in IFS) and split into distinct arguments where such characters are found. Explicit null arguments ("" or ' ') are retained. Implicit null arguments (those resulting from parameters that have no values) are removed.

A command’s input and output may be redirected using a special notation interpreted by the shell. The following may appear anywhere in a simple-command or may precede or follow a command and are not passed on as arguments to the invoked command.

Note: Parameter and command substitution occurs before word or digit is used.

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1). If the file does not exist, it is created; otherwise, it is truncated to zero length.

Use file word as standard output. If the file exists, output is appended to it by first seeking to the EOF. Otherwise, the file is created.

Open file word for reading and writing as standard input.

After parameter and command substitution is done on word, the shell input is read up to the first line that literally matches the resulting word, or to an EOF. If, however, the hyphen (−) is appended to <<:  

1. leading tabs are stripped from word before the shell input is read (but after parameter and command substitution is done on word);  
2. leading tabs are stripped from the shell input as it is read and before each line is compared with word; and
3. shell input is read up to the first line that literally matches the resulting word, or to an EOF.

If any character of word is quoted (see Quoting section later), no additional processing is done to the shell input. If no characters of word are quoted:

1. parameter and command substitution occurs;
2. (escaped) \newlines are removed; and
3. \ must be used to quote the characters \, $, and ‘.

The resulting document becomes the standard input.

<&digit  Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

<&−  The standard input is closed. Similarly for the standard output using >&−.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right. For example:

... 1>&xx 2>&1

first associates file descriptor 1 with file xx. It associates file descriptor 2 with the file associated with file descriptor 1 (that is, xx). If the order of redirections were reversed, file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with file xx.

Using the terminology introduced on the first page, under Commands, if a command is composed of several simple commands, redirection will be evaluated for the entire command before it is evaluated for each simple command. That is, the shell evaluates redirection for the entire list, then each pipeline within the list, then each command within each pipeline, then each list within each command.

If a command is followed by &, the default standard input for the command is the empty file, /dev/null. Otherwise, the environment for the execution of a command contains the file descriptors of the invoking shell as modified by input/output specifications.
Before a command is executed, each command word is scanned for the characters *, ?, and [. If one of these characters appears the word is regarded as a pattern. The word is replaced with alphabetically sorted file names that match the pattern. If no file name is found that matches the pattern, the word is left unchanged. The character . at the start of a file name or immediately following a /, as well as the character / itself, must be matched explicitly.

- `*` Matches any string, including the null string.
- `?` Matches any single character.
- `[]` Matches any one of the enclosed characters. A pair of characters separated by – matches any character lexically between the pair, inclusive. If the first character following the opening [ is a !, any character not enclosed is matched.

Notice that all quoted characters (see below) must be matched explicitly in a filename.

The following characters have a special meaning to the shell and cause termination of a word unless quoted:

`; & ( ) | ^ < > newline space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a backslash (\) or inserting it between a pair of quote marks (‘‘ or “”). During processing, the shell may quote certain characters to prevent them from taking on a special meaning. Backslashes used to quote a single character are removed from the word before the command is executed. The pair \newline is removed from a word before command and parameter substitution.

All characters enclosed between a pair of single quote marks (‘‘), except a single quote, are quoted by the shell. Backslash has no special meaning inside a pair of single quotes. A single quote may be quoted inside a pair of double quote marks (for example, "’”), but a single quote can not be quoted inside a pair of single quotes.

Inside a pair of double quote marks (“”), parameter and command substitution occurs and the shell quotes the results to avoid blank interpretation and file name generation. If $* is within a pair of double quotes, the positional parameters are substituted and quoted, separated by quoted spaces ("$1  $2 ..."). However, if $@ is within a pair of double quotes, the positional parameters are substituted and quoted, separated by unquoted spaces ("$1" "$2" ...). \ quotes the characters \, ``, (comma), and $. The pair \newline is removed before parameter and command substitution. If a backslash precedes characters other than \, ``, (comma), $, and newline, then the backslash itself is quoted by the shell.

When used interactively, the shell prompts with the value of PS1 before reading a command. If at any time a newline is typed and further input is needed to complete a command, the secondary prompt (that is, the value of PS2) is issued.
Environment

The environment (see environ(5)) is a list of name-value pairs that is passed to an executed program in the same way as a normal argument list. The shell interacts with the environment in several ways. On invocation, the shell scans the environment and creates a parameter for each name found, giving it the corresponding value. If the user modifies the value of any of these parameters or creates new parameters, none of these affects the environment unless the export command is used to bind the shell’s parameter to the environment (see also set -a). A parameter may be removed from the environment with the unset command. The environment seen by any executed command is thus composed of any unmodified name-value pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assignments to parameters. Thus:

```
TERM=450 command
```

and

```
(export TERM; TERM=450; command
```

are equivalent as far as the execution of command is concerned if command is not a Special Command. If command is a Special Command, then

```
TERM=450 command
```

will modify the TERM variable in the current shell.

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the command name. The following example first prints a=b c and c:

```
echo a=b c
a=b c
set -k
echo a=b c
c
```

Signals

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by &. Otherwise, signals have the values inherited by the shell from its parent, with the exception of signal 11 (but see also the trap command below).

Execution

Each time a command is executed, the command substitution, parameter substitution, blank interpretation, input/output redirection, and filename generation listed above are carried out. If the command name matches the name of a defined function, the function is executed in the shell process (note how this differs from the execution of
shell script files, which require a sub-shell for invocation). If the command name does not match the name of a defined function, but matches one of the Special Commands listed below, it is executed in the shell process.

The positional parameters $1, $2, . . . are set to the arguments of the function. If the command name matches neither a Special Command nor the name of a defined function, a new process is created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative directory names are separated by a colon (:). The default path is /usr/bin. The current directory is specified by a null path name, which can appear immediately after the equal sign, between two colon delimiters anywhere in the path list, or at the end of the path list. If the command name contains a / the search path is not used. Otherwise, each directory in the path is searched for an executable file. If the file has execute permission but is not an a.out file, it is assumed to be a file containing shell commands. A sub-shell is spawned to read it. A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by the shell (to help avoid unnecessary execs later). If the command was found in a relative directory, its location must be re-determined whenever the current directory changes. The shell forgets all remembered locations whenever the PATH variable is changed or the hash -r command is executed (see below).

Input/output redirection is now permitted for these commands. File descriptor 1 is the default output location. When Job Control is enabled, additional Special Commands are added to the shell’s environment (see Job Control section below).

: No effect; the command does nothing. A zero exit code is returned.

. filename
Read and execute commands from filename and return. The search path specified by PATH is used to find the directory containing filename.

bg [ %jobid ... ]
When Job Control is enabled, the bg command is added to the user’s environment to manipulate jobs. Resumes the execution of a stopped job in the background. If %jobid is omitted the current job is assumed. (See Job Control section below for more detail.)

break [ n ]
Exit from the enclosing for or while loop, if any. If n is specified, break n levels.

cd [ argument ]
Change the current directory to argument. The shell parameter HOME is the default argument. The shell parameter CDPATH defines the search path for the directory containing argument. Alternative directory names are separated by a colon (:). The default path is <null> (specifying the current directory). Note: The current directory is specified by a null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else in the path list. If argument begins with a / the search path is not used. Otherwise, each directory in the path is searched for argument.

`chdir [dir]`

`chdir` changes the shell’s working directory to directory `dir`. If no argument is given, change to the home directory of the user. If `dir` is a relative pathname not found in the current directory, check for it in those directories listed in the `CDPATH` variable. If `dir` is the name of a shell variable whose value starts with a /, change to the directory named by that value.

`continue [n]`

Resume the next iteration of the enclosing for or while loop. If `n` is specified, resume at the `n`-th enclosing loop.

`echo [arguments ...]`

The words in `arguments` are written to the shell’s standard output, separated by space characters. See `echo(1)` for fuller usage and description.

`eval [argument ...]`

The arguments are read as input to the shell and the resulting command(s) executed.

`exec [argument ...]`

The command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and, if no other arguments are given, cause the shell input/output to be modified.

`exit [n]`

Causes the calling shell or shell script to exit with the exit status specified by `n`. If `n` is omitted the exit status is that of the last command executed (an EOF will also cause the shell to exit.)

`export [name ...]`

The given `name`s are marked for automatic export to the environment of subsequently executed commands. If no arguments are given, variable names that have been marked for export during the current shell’s execution are listed. (Variable names exported from a parent shell are listed only if they have been exported again during the current shell’s execution.) Function names are not exported.

`fg [%jobid ...]`

When Job Control is enabled, the `fg` command is added to the user’s environment to manipulate jobs. This command resumes the execution of a stopped job in the foreground and also moves an executing background job into the foreground. If `%jobid` is omitted, the current job is assumed. (See Job Control section below for more detail.)

`getopts`

Use in shell scripts to support command syntax standards (see `intro(1)`). This command parses positional parameters and checks for legal options. See `getoptcvt(1)` for usage and description.
For each name, the location in the search path of the command specified by name is determined and remembered by the shell. The -r option causes the shell to forget all remembered locations. If no arguments are given, information about remembered commands is presented. Hits is the number of times a command has been invoked by the shell process. Cost is a measure of the work required to locate a command in the search path. If a command is found in a "relative" directory in the search path, after changing to that directory, the stored location of that command is recalculated. Commands for which this will be done are indicated by an asterisk (*) adjacent to the hits information. Cost will be incremented when the recalculation is done.

Reports all jobs that are stopped or executing in the background. If %jobid is omitted, all jobs that are stopped or running in the background will be reported. (See Job Control section below for more detail.)

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes. Signals are either given by number or by names (as given in signal(3HEAD) stripped of the prefix "SIG" with the exception that SIGCHD is named CHLD). If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will be sent a CONT (continue) signal if it is stopped. The argument job can be the process id of a process that is not a member of one of the active jobs. See Job Control section below for a description of the format of job. In the second form, kill -l, the signal numbers and names are listed. (See kill(1)).

Equivalent to 'exec login argument....' See login(1) for usage and description.

Equivalent to exec newgrp argument. See newgrp(1) for usage and description.

Print the current working directory. See pwd(1) for usage and description.

One line is read from the standard input and, using the internal field separator, IFS (normally space or tab), to delimit word boundaries, the first word is assigned to the first name, the second word to the second name, and so forth, with leftover words assigned to the last name. Lines can be continued using \newline. Characters other than newline can be quoted by preceding them with a backslash. These backslashes are removed before words are assigned to names, and no interpretation is done on the character that follows the backslash. The return code is 0, unless an EOF is encountered.
readonly [name ...]

The given names are marked readonly and the values of these names may not be changed by subsequent assignment. If no arguments are given, a list of all readonly names is printed.

return [n]

Causes a function to exit with the return value specified by n. If n is omitted, the return status is that of the last command executed.

set [ -aefkntuvx [argument ...]]

- a Mark variables which are modified or created for export.
- e Exit immediately if a command exits with a non-zero exit status.
- f Disable file name generation.
- h Locate and remember function commands as functions are defined (function commands are normally located when the function is executed).
- k All keyword arguments are placed in the environment for a command, not just those that precede the command name.
- n Read commands but do not execute them.
- t Exit after reading and executing one command.
- u Treat unset variables as an error when substituting.
- v Print shell input lines as they are read.
- x Print commands and their arguments as they are executed.
- Do not change any of the flags; useful in setting $1 to −.

Using + rather than − causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $−. The remaining arguments are positional parameters and are assigned, in order, to $1, $2, . . . If no arguments are given, the values of all names are printed.

shift [n]

The positional parameters from $n+1 . . . are renamed $1 . . . . If n is not given, it is assumed to be 1.

stop pid . . .

Halt execution of the process number pid. (see ps(1)).

suspend

Stops the execution of the current shell (but not if it is the login shell).

test

Evaluate conditional expressions. See test(1) for usage and description.

times

Print the accumulated user and system times for processes run from the shell.
The command `argument` is to be read and executed when the shell receives numeric or symbolic signal(s) (n). (Note: `argument` is scanned once when the trap is set and once when the trap is taken.) Trap commands are executed in order of signal number or corresponding symbolic names. Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an error. If `argument` is absent, all trap(s) n are reset to their original values. If `argument` is the null string, this signal is ignored by the shell and by the commands it invokes. If n is 0, the command `argument` is executed on exit from the shell. The `trap` command with no arguments prints a list of commands associated with each signal number.

For each `name`, indicate how it would be interpreted if used as a command name.

- `ulimit [-HS] [-a | -cdfnstv]` limits
- `ulimit [-HS] [-c | -d | -f | -n | -s | -t | -v]` limits

`ulimit` prints or sets hard or soft resource limits. These limits are described in `getrlimit(2)`.

If `limit` is not present, `ulimit` prints the specified limits. Any number of limits may be printed at one time. The `-a` option prints all limits.

If `limit` is present, `ulimit` sets the specified limit to `limit`. The string `unlimited` requests the largest valid limit. Limits may be set for only one resource at a time. Any user may set a soft limit to any value below the hard limit. Any user may lower a hard limit. Only a super-user may raise a hard limit. (See `su(1M)`.)

The `-H` option specifies a hard limit. The `-S` option specifies a soft limit. If neither option is specified, `ulimit` will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If no option is specified, the file size limit is printed or set.

- `-c` maximum core file size (in 512-byte blocks)
- `-d` maximum size of data segment or heap (in kbytes)
- `-f` maximum file size (in 512-byte blocks)
- `-n` maximum file descriptor plus 1
- `-s` maximum size of stack segment (in kbytes)
- `-t` maximum CPU time (in seconds)
- `-v` maximum size of virtual memory (in kbytes)

Run the `sysdef(1M)` command to obtain the maximum possible limits for your system. The values reported are in hexadecimal, but can be translated into decimal numbers using the `bc(1)` utility. See `swap(1M)`.)
As an example of `ulimit`, to limit the size of a core file dump to 0 Megabytes, type the following:

```
ulimit -c 0
```

`umask [ nnn ]`

The user file-creation mask is set to `nnn` (see `umask(1)`). If `nnn` is omitted, the current value of the mask is printed.

`unset [ name ... ]`

For each `name`, remove the corresponding variable or function value. The variables `PATH`, `PS1`, `PS2`, `MAILCHECK`, and `IFS` cannot be unset.

`wait [ n ]`

Wait for your background process whose process id is `n` and report its termination status. If `n` is omitted, all your shell’s currently active background processes are waited for and the return code will be zero.

### Invocation

If the shell is invoked through `exec(2)` and the first character of argument zero is `−`, commands are initially read from `/etc/profile` and from `$HOME/.profile`, if such files exist. Thereafter, commands are read as described below, which is also the case when the shell is invoked as `/usr/bin/sh`. The flags below are interpreted by the shell on invocation only. **Note:** Unless the `-c` or `-s` flag is specified, the first argument is assumed to be the name of a file containing commands, and the remaining arguments are passed as positional parameters to that command file:

- `-c string`  
  If the `-c` flag is present commands are read from `string`.

- `-i`  
  If the `-i` flag is present or if the shell input and output are attached to a terminal, this shell is *interactive*. In this case, `TERMINATE` is ignored (so that `kill 0` does not kill an interactive shell) and `INTERRUPT` is caught and ignored (so that `wait` is interruptible). In all cases, `QUIT` is ignored by the shell.

- `-p`  
  If the `-p` flag is present, the shell will not set the effective user and group IDs to the real user and group IDs.

- `-r`  
  If the `-r` flag is present the shell is a restricted shell (see `rsh(1M)`).

- `-s`  
  If the `-s` flag is present or if no arguments remain, commands are read from the standard input. Any remaining arguments specify the positional parameters. Shell output (except for Special Commands) is written to file descriptor 2.

The remaining flags and arguments are described under the `set` command above.

### Job Control (jsh)

When the shell is invoked as `jsh`, Job Control is enabled in addition to all of the functionality described previously for `sh`. Typically, Job Control is enabled for the interactive shell only. Non-interactive shells typically do not benefit from the added functionality of Job Control.
With Job Control enabled, every command or pipeline the user enters at the terminal is called a **job**. All jobs exist in one of the following states: foreground, background, or stopped. These terms are defined as follows:

1. A job in the foreground has read and write access to the controlling terminal.
2. A job in the background is denied read access and has conditional write access to the controlling terminal (see `stty(1)`).
3. A stopped job is a job that has been placed in a suspended state, usually as a result of a `SIGTSTP` signal (see `signal(3HEAD)`).

Every job that the shell starts is assigned a positive integer, called a **job number** which is tracked by the shell and will be used as an identifier to indicate a specific job. Additionally, the shell keeps track of the current and previous jobs. The current job is the most recent job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

`%jobid`

where **jobid** may be specified in any of the following formats:

- `%` or `+` For the current job.
- `-` For the previous job.
- `?<string>` Specify the job for which the command line uniquely contains `string`.
- `n` For job number `n`.
- `pref` Where `pref` is a unique prefix of the command name. For example, if the command `ls -l name` were running in the background, it could be referred to as `%ls`. `pref` cannot contain blanks unless it is quoted.

When Job Control is enabled, the following commands are added to the user’s environment to manipulate jobs:

- `bg [%jobid ...]` Resumes the execution of a stopped job in the background. If `%jobid` is omitted the current job is assumed.
- `fg [%jobid ...]` Resumes the execution of a stopped job in the foreground, also moves an executing background job into the foreground. If `%jobid` is omitted the current job is assumed.
- `jobs [-p | -l] [%jobid ...]` `jobs -x command [arguments]` Reports all jobs that are stopped or executing in the background. If `%jobid` is omitted, all jobs that are stopped or running in the background will be reported. The following options will modify/enhance the output of `jobs`:
Report the process group ID and working directory of the jobs.

-p Report only the process group ID of the jobs.

-x Replace any jobid found in command or arguments with the corresponding process group ID, and then execute command passing it arguments.

kill [ -signal ] %jobid
   Builtin version of kill to provide the functionality of the kill command for processes identified with a jobid.

stop %jobid ...
   Stops the execution of a background job(s).

suspend
   Stops the execution of the current shell (but not if it is the login shell).

wait [ %jobid ... ]
   wait builtin accepts a job identifier. If %jobid is omitted wait behaves as described above under Special Commands.

Large File Behavior
   See largefile(5) for the description of the behavior of sh and jsh when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

EXIT STATUS
   Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell returns the exit status of the last command executed (see also the exit command above).

jsh Only
   If the shell is invoked as jsh and an attempt is made to exit the shell while there are stopped jobs, the shell issues one warning:

       There are stopped jobs.

   This is the only message. If another exit attempt is made, and there are still stopped jobs they will be sent a SIGHUP signal from the kernel and the shell is exited.

FILES
   $HOME/.profile
   /dev/null
   /etc/profile
   /tmp/sh*

ATTRIBUTES
   See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/sh, /usr/bin/jsh</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
<td></td>
</tr>
</tbody>
</table>
The use of `setuid` shell scripts is strongly discouraged.

Words used for filenames in input/output redirection are not interpreted for filename generation (see File Name Generation section above). For example, `cat file1 >a*` will create a file named `a*`.

Because commands in pipelines are run as separate processes, variables set in a pipeline have no effect on the parent shell.

If you get the error message, “cannot fork, too many processes”, try using the `wait(1)` command to clean up your background processes. If this doesn’t help, the system process table is probably full or you have too many active foreground processes. There is a limit to the number of process ids associated with your login, and to the number the system can keep track of.

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a directory in the search path before the directory where the original command was found, the shell will continue to `exec` the original command. Use the `hash` command to correct this situation.

The Bourne shell has a limitation on the effective UID for a process. If this UID is less than 100 (and not equal to the real UID of the process), then the UID is reset to the real UID of the process.

Because the shell implements both foreground and background jobs in the same process group, they all receive the same signals, which can lead to unexpected behavior. It is, therefore, recommended that other job control shells be used, especially in an interactive environment.

When the shell executes a shell script that attempts to execute a non-existent command interpreter, the shell returns an erroneous diagnostic message that the shell script file does not exist.
NAME  shell – run a command using shell

SYNOPSIS  shell command [command] ...

DESCRIPTION  The shell function concatenate its arguments, separating each by a space, and passes this string to the shell ($SHELL if set, otherwise /usr/bin/sh).

EXAMPLES  EXAMPLE 1 A sample output of shell command.

Since the Form and Menu Language does not directly support background processing, the shell function can be used instead.

'shell "build prog > /dev/null &"'

If you want the user to continue to be able to interact with the application while the background job is running, the output of an executable run by shell in the background must be redirected: to a file if you want to save the output, or to /dev/null if you don’t want to save it (or if there is no output), otherwise your application may appear to be hung until the background job finishes processing.

shell can also be used to execute a command that has the same name as an FMLI built-in function.

NOTES  The arguments to shell will be concatenate using spaces, which may or may not do what is expected. The variables set in local environments will not be expanded by the shell because ”local” means ”local to the current process.”

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  sh(1), attributes(5)
The shell command interpreters `csh(1)`, `ksh(1)`, and `sh(1)` have special built-in commands. The commands `case`, `for`, `foreach`, `function`, `if`, `repeat`, `select`, `switch`, `until`, and `while` are commands in the syntax recognized by the shells. They are described in the Commands section of the manual pages of the respective shells. The remaining commands listed in the table below are built into the shells for reasons such as efficiency or data sharing between command invocations. They are described on their respective manual pages.

<table>
<thead>
<tr>
<th>Command</th>
<th>Shell(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>csh, ksh</td>
</tr>
<tr>
<td>bg</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>break</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>case</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>cd</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>chdir</td>
<td>csh, sh</td>
</tr>
<tr>
<td>continue</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>dirs</td>
<td>csh</td>
</tr>
<tr>
<td>echo</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>eval</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>exec</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>exit</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>export</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>fc</td>
<td>ksh</td>
</tr>
<tr>
<td>fg</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>for</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>foreach</td>
<td>csh</td>
</tr>
<tr>
<td>function</td>
<td>ksh</td>
</tr>
<tr>
<td>getopt</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>glob</td>
<td>csh</td>
</tr>
<tr>
<td>goto</td>
<td>csh</td>
</tr>
<tr>
<td>hash</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>Command</td>
<td>Shell</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>hashstat</td>
<td>csh</td>
</tr>
<tr>
<td>history</td>
<td>csh</td>
</tr>
<tr>
<td>if</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>jobs</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>kill</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>let</td>
<td>ksh</td>
</tr>
<tr>
<td>limit</td>
<td>csh</td>
</tr>
<tr>
<td>login</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>logout</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>nice</td>
<td>csh</td>
</tr>
<tr>
<td>newgrp</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>notify</td>
<td>csh</td>
</tr>
<tr>
<td>onintr</td>
<td>csh</td>
</tr>
<tr>
<td>popd</td>
<td>csh</td>
</tr>
<tr>
<td>print</td>
<td>ksh</td>
</tr>
<tr>
<td>pushd</td>
<td>csh</td>
</tr>
<tr>
<td>pwd</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>read</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>readonly</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>rehash</td>
<td>csh</td>
</tr>
<tr>
<td>repeat</td>
<td>csh</td>
</tr>
<tr>
<td>return</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>select</td>
<td>ksh</td>
</tr>
<tr>
<td>set</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>setenv</td>
<td>csh</td>
</tr>
<tr>
<td>shift</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>source</td>
<td>csh</td>
</tr>
<tr>
<td>stop</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>suspend</td>
<td>csh, ksh, sh</td>
</tr>
</tbody>
</table>
shell_builtins(1)

<table>
<thead>
<tr>
<th>Command</th>
<th>Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch</td>
<td>csh</td>
</tr>
<tr>
<td>test</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>time</td>
<td>csh</td>
</tr>
<tr>
<td>times</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>trap</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>type</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>typeset</td>
<td>ksh</td>
</tr>
<tr>
<td>ulimit</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>umask</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>unalias</td>
<td>csh, ksh</td>
</tr>
<tr>
<td>unhash</td>
<td>csh</td>
</tr>
<tr>
<td>unlimit</td>
<td>csh</td>
</tr>
<tr>
<td>unset</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>unsetenv</td>
<td>csh</td>
</tr>
<tr>
<td>until</td>
<td>ksh, sh</td>
</tr>
<tr>
<td>wait</td>
<td>csh, ksh, sh</td>
</tr>
<tr>
<td>whence</td>
<td>ksh</td>
</tr>
<tr>
<td>while</td>
<td>csh, ksh, sh</td>
</tr>
</tbody>
</table>

**Bourne Shell, sh, Special Commands**

Input/output redirection is now permitted for these commands. File descriptor 1 is the default output location. When Job Control is enabled, additional *Special Commands* are added to the shell’s environment.

In addition to these built-in reserved command words, *sh* also uses:

: Null command. This command is interpreted, but performs no action.

**C shell, csh**

Built-in commands are executed within the C shell. If a built-in command occurs as any component of a pipeline except the last, it is executed in a subshell. In addition to these built-in reserved command words, *csh* also uses:

: Null command. This command is interpreted, but performs no action.
Input/Output redirection is permitted. Unless otherwise indicated, the output is written on file descriptor 1 and the exit status, when there is no syntax error, is zero.

Commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

In addition to these built-in reserved command words, ksh also uses:

* : [ arg ... ] The command only expands parameters.
* . file [ arg ... ] Read the complete file then execute the commands. The commands are executed in the current shell environment. The search path specified by PATH is used to find the directory containing file. If any arguments arg are given, they become the positional parameters. Otherwise, the positional parameters are unchanged. The exit status is the exit status of the last command executed. the loop termination test.

SEE ALSO intro(1), alias(1), break(1), cd(1), chmod(1), csh(1), echo(1), exec(1), exit(1), find(1), getoptcvt(1), getopta(1), glob(1), hash(1), history(1), jobs(1), kill(1), ksh(1), let(1), limit(1), login(1), logout(1), newgrp(1), nice(1), nohup(1), print(1), pwd(1), read(1), readonly(1), set(1), sh(1), shift(1), suspend(1), test(1B), time(1), times(1), trap(1), typeset(1), umask(1), wait(1), chdir(2), chmod(2), creat(2), umask(2), getopt(3C), profile(4), environ(5)
NAME     shift – shell built-in function to traverse either a shell’s argument list or a list of field-separated words

SYNOPSIS     

sh    shift [n]
csh   shift [variable]
ksh   * shift [n]

DESCRIPTION

sh    The positional parameters from $n+1... are renamed $1... If n is not given, it is assumed to be 1.
csh   The components of argv, or variable, if supplied, are shifted to the left, discarding the first component. It is an error for the variable not to be set or to have a null value.
ksh   The positional parameters from $n+1 $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

ATTRIBUTES     See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO     csh(1), ksh(1), sh(1), attributes(5)
shutdown(1B)

NAME
shutdown – close down the system at a given time

SYNOPSIS
/usr/ucb/shutdown [-fhknr] time [warning-message...]

DESCRIPTION
shutdown provides an automated procedure to notify users when the system is to be
shut down. time specifies when shutdown will bring the system down; it may be the
word now (indicating an immediate shutdown), or it may specify a future time in one
of two formats: +number and hour:min. The first form brings the system down in
number minutes, and the second brings the system down at the time of day indicated
in 24-hour notation.

At intervals that get closer as the apocalypse approaches, warning messages are
displayed at terminals of all logged-in users, and of users who have remote mounts on
that machine.

At shutdown time a message is written to the system log daemon, syslogd(1M),
containing the time of shutdown, the instigator of the shutdown, and the reason. Then
a terminate signal is sent to init, which brings the system down to single-user mode.

OPTIONS
As an alternative to the above procedure, these options can be specified:
- f Arrange, in the manner of fastboot(1B), that when the system is
  rebooted, the file systems will not be checked.
- h Execute halt(1M).
- k Simulate shutdown of the system. Do not actually shut down the system.
- n Prevent the normal sync(2) before stopping.
- r Execute reboot(1M).

FILES
/etc/rmtab remote mounted file system table

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
fastboot(1B), login(1), halt(1M), reboot(1M), syslogd(1M), sync(2), rmtab(4),
attributes(5)

NOTES
Only allows you to bring the system down between now and 23:59 if you use the
absolute time for shutdown.
size(1)

NAME  size – print section sizes in bytes of object files

SYNOPSIS  size [-f] [-F] [-n] [-o] [-V] [-x] filename...

DESCRIPTION  The size command produces segment or section size information in bytes for each loaded section in ELF object files. size prints out the size of the text, data, and bss (uninitialized data) segments (or sections) and their total.

size processes ELF object files entered on the command line. If an archive file is input to the size command, the information for each object file in the archive is displayed.

When calculating segment information, the size command prints out the total file size of the non-writable segments, the total file size of the writable segments, and the total memory size of the writable segments minus the total file size of the writable segments.

If it cannot calculate segment information, size calculates section information. When calculating section information, it prints out the total size of sections that are allocatable, non-writable, and not NOBITS, the total size of the sections that are allocatable, writable, and not NOBITS, and the total size of the writable sections of type NOBITS. NOBITS sections do not actually take up space in the filename.

If size cannot calculate either segment or section information, it prints an error message and stops processing the file.

OPTIONS  The following options are supported:

- f  Prints out the size of each allocatable section, the name of the section, and the total of the section sizes. If there is no section data, size prints out an error message and stops processing the file.

- F  Prints out the size of each loadable segment, the permission flags of the segment, then the total of the loadable segment sizes. If there is no segment data, size prints an error message and stops processing the file.

- n  Prints out non-loadable segment or non-allocatable section sizes. If segment data exists, size prints out the memory size of each loadable segment or file size of each non-loadable segment, the permission flags, and the total size of the segments. If there is no segment data, size prints out, for each allocatable and non-allocatable section, the memory size, the section name, and the total size of the sections. If there is no segment or section data, size prints an error message and stops processing.

- o  Prints numbers in octal, not decimal.

- V  Prints the version information for the size command on the standard error output.

- x  Prints numbers in hexadecimal, not decimal.

EXAMPLES  The examples below are typical size output.
EXAMPLE 1 Producing size information

example size filename
2724 + 88 + 0 = 2812

EXAMPLE 2 Producing allocatable section size information

example size -f filename
26(.text) + 5(.init) + 5(.fini) = 36

EXAMPLE 3 Producing loadable segment size information

example size -F filename
2724(r-x) + 88(rwx) + 0(rwx) = 2812 . . . (If statically linked)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO

as(1), cc(1B), ld(1), ar(3HEAD), a.out(4), attributes(5)

NOTES

Since the size of bss sections is not known until link-edit time, the size command will not give the true total size of pre-linked objects.
NAME
sleep – suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
The sleep utility will suspend execution for at least the integral number of seconds
specified by the time operand.

OPERANDS
The following operands are supported:

time A non-negative decimal integer specifying the number of seconds for
which to suspend execution.

EXAMPLES
EXAMPLE 1 Suspending command execution for a time
To execute a command after a certain amount of time:

example$ (sleep 105; command)&

EXAMPLE 2 Executing a command every so often

example$ while true
do
    command
    sleep 37
done

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the
execution of sleep: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 The execution was successfully suspended for at least time seconds, or a
  SIGALRM signal was received (see NOTES).
>0 An error has occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
wait(1), alarm(2), sleep(3C), wait(3UCB), attributes(5), environ(5),
standards(5)

NOTES
If the sleep utility receives a SIGALRM signal, one of the following actions will be
taken:

- Terminate normally with a zero exit status.
- Effectively ignore the signal.

The `sleep` utility will take the standard action for all other signals.
smart2cfg(1)

NAME  smart2cfg – Compaq Smart-2 EISA/PCI and Smart-2SL PCI Array Controller ioctl
       utility

SYNOPSIS  smart2cfg -c [controller_num]
 smart2cfg -d [controller_num]
 smart2cfg -h
 smart2cfg -l logical_drive_num [controller_num]
 smart2cfg -p physical_drive_num bus_num [controller_num]

DESCRIPTION  The smart2cfg utility issues controller-specific ioctls to the Compaq Smart-2
       EISA/PCI and Smart-2SL PCI array controller using the smartii(7D) driver.

       smart2cfg provides information about the Smart-2 and Smart-2SL controllers
       installed on the system, the Logical and Physical drives as well as the details of the
       ReadWrite cache present on each controller. The utility is text based and is driven by
       command line arguments. smart2cfg and the smartii(7D) driver communicate
       using ioctls. smart2cfg also supports multiple commands.

OPTIONS  The following options are supported:

       -c controller_num
                Prints cache details of the cache on controller controller_num.

       -d controller_num
                Prints details of all the physical disks, all the logical drives, and the cache on
                controller controller_num.

       -h
                Provides on-line help for the smart2cfg utility.

       -l logical_drive_num controller_num
                Prints logical drive details of the drive logical_drive_num on controller
                controller_num.

       -p physical_drive_num bus_num controller_num
                Prints physical drive details of the disk physical_drive_num on bus bus_num on
                controller controller_num.

EXAMPLES  EXAMPLE 1 Providing details of the physical disk

       To provide details of the physical disk with SCSI ID 0, on Bus 0, on controller 0:
       example$ smart2cfg -p -0 0 0

       EXAMPLE 2 Providing logical drive details

       To provide logical drive details of logical drive 0 on controller 0:
       example$ smart2cfg -l 0 0
smart2cfg(1)

**EXAMPLE 3** Providing cache details

To provide cache details of controller 0:

```
example% smart2cfg -c 0
```

**EXAMPLE 4** Providing information of all physical disks, logical drives, and cache on a controller

To provide information on all physical disks, logical drives, and cache on controller 0:

```
smart2cfg -d
```

**EXAMPLE 5** Providing details of the disk

To provide details of the disk with SCSI ID 0, on Bus 0, on controller 0, and logical drive details of logical drive 0 on controller 1:

```
example% smart2cfg -p 0 0 0 -l 0 1
```

**FILES**

`/devices/eisa/smartii@<instance>,<ioaddr>:ioctlnode`

`/devices/pci@0,<bus_num>/pci1014,22@<device_num>/pcie11,4030@0:ioctlnode`

`/devices/pci@0,<bus_num>/pci1014,22@<device_num>/pcie11,4031@0:ioctlnode`

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>x86</td>
</tr>
</tbody>
</table>

**SEE ALSO**

attributes(5), smartii(7D)

**NOTES**

If the controller is not specified, the first controller is taken as default.
soelim(1)

NAME    soelim -- resolve and eliminate .so requests from nroff or troff input

SYNOPSIS  soelim [filename...]

DESCRIPTION  soelim reads the specified files or the standard input and performs the textual
inclusion implied by the nroff(1) directives of the form

  .so somefile

when they appear at the beginning of input lines. This is useful since programs such
as tbl(1) do not normally do this; it allows the placement of individual tables in
separate files to be run as a part of a large document.

An argument consisting of ‘−’ is taken to be a file name corresponding to the standard
input.

Note: Inclusion can be suppressed by using ‘ ’ instead of ‘ . ’, that is,

  so /usr/share/lib/tmac/tmac.s

EXAMPLES  EXAMPLE 1 A sample of the soelim command.

A sample usage of soelim would be

  example$ soelim exum?.n | tbl | nroff -ms | col | lpr

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO  more(1), nroff(1), tbl(1), attributes(5)
NAME
solregis – Solaris user registration

SYNOPSIS
/usr/dt/bin/solregis [-dc]

DESCRIPTION
The solregis command initiates the Solaris user registration procedure. This allows
users to register with Sun Microsystems and receive information about Solaris.
Normally, solregis is executed in conditional mode as a part of desktop login so
that users are prompted at desktop start up time to register, unless they have already
done so.

OPTIONS
The following options are supported:

-d   Delay display of the initial screen until a window manager has asserted
     control of the X display.

-c   Conditional mode. If specified, solregis will exit without any dialog
     displayed if: (1) $HOME/.solregis/disable exists, (2) DISABLE=1 is
     specified in /etc/default/solregis, or (3) the user has already
     registered.

USAGE
The following resources can control the behavior and appearance of solregis:

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Value Type</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disable</td>
<td>Boolean</td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>localeChoices</td>
<td>LocaleChoices</td>
<td>Int</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>action0</td>
<td>Action</td>
<td>String</td>
<td></td>
<td>/usr/dt/bin/hotjava</td>
</tr>
</tbody>
</table>
| initialURL0 | URL         | String     |      | file:///usr/dt/app-config/\    
|           |             |            |      | /solregis/EReg.html         |
| localeChoicesm | LocaleChoice | String |     | null      |
| actionn   | Action      | String     |      | null for n>0 |
| initialURLn | URL         | String     |      | null for n>0 |
| printContext | PrintContext | String |      | thisorgunit |

disable
If TRUE, when executed in conditional mode
solregis simply exits without displaying anything.

localeChoices
Specifies the number of localeChoices, action, and initialURL sets. The first set is 0, so if
localeChoices is 1, localeChoice0, action0, and initialURL0 are the only active resources. If
localeChoices is 1, none of the localeChoices strings are displayed, and action0, and so forth. are
used. If `localeChoices` is greater than 1, each `localeChoice` string is made an element in an exclusive choice list and the index of the selected item controls which `action` and `initialURL` resources are applied.

**localeChoice**
Specifies the string presented to the user for this choice.

**action**
Specifies the file name of the command to be executed (normally expected to be a World Wide Web browser) when the user selects "Register Now", or the special string "print". If "print" is specified, the `initialURL` string must be a file name on the local system, naming a file which is to be printed after prompting the user for a print destination.

**initialURL**
Specifies the argument to be passed to `action` for initial registration. This will normally be the Universal Resource Locator for the initial page to be displayed by the World Wide Web browser.

**printContext**
XFN naming context under which the printers to display to the user if the special "print" action are named, in the service/printer context. For example, if the default printContext "thisorgunit" is used, the printers in `thisorgunit/service/printer` are displayed.

**ENVIRONMENT VARIABLES**
See environ(5) for descriptions of the following environment variables that affect the execution of `solregis`:

- `HOME`
- `LANG`
- `LC_MESSAGES`
- `NLSPATH`

**EXIT STATUS**
The following exit values are returned:

- `0`
  Successful completion.
- `>0`
  An error occurred.

**FILES**

- `/etc/default/solregis`
  Default values.
- `~/solregis/uprops`
  User registration information.
- `~/solregis/disable`
  Users disabled from registration.
- `/usr/dt/app-defaults/C/Solregis`
  Default locale resources.
- `/usr/dt/app-defaults/$LANG/Solregis`
  Default localized resources.
/etc/dt/app-defaults/C/Solregis
Default installation resources.

/usr/dt/app-defaults/$LANG/Solregis
Localized installation resources.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsregu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5), environ(5)
sort(1)

**NAME**

sort – sort, merge, or sequence check text files

**SYNOPSIS**

```
/usr/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-S kmem]
 [-t char] [-T directory] [-y [kmem]] [-z recsz [+pos1 [-pos2]]]
 [file...]
```

```
/usr/xpg4/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-S kmem]
 [-t char] [-T directory] [-y [kmem]] [-z recsz [+pos1 [-pos2]]]
 [file...]
```

**DESCRIPTION**
The `sort` command sorts lines of all the named files together and writes the result on the standard output.

Comparisons are based on one or more sort keys extracted from each line of input. By default, there is one sort key, the entire input line. Lines are ordered according to the collating sequence of the current locale.

**OPTIONS**
The following options alter the default behavior:

```
/usr/bin/sort
 -c Checks that the single input file is ordered as specified by the arguments and the collating sequence of the current locale. The exit code is set and no output is produced unless the file is out of sort.
```

```
/usr/xpg4/bin/sort
 -c Same as /usr/bin/sort except no output is produced under any circumstances.
```

```
 -m Merges only. The input files are assumed to be already sorted.
```

```
 -o output Specifies the name of an output file to be used instead of the standard output. This file can be the same as one of the input files.
```

```
 -S kmem Specifies the maximum amount of swap-based memory used for sorting, in kilobytes (the default unit). kmem can also be specified directly as a number of bytes (b), kilobytes (k), megabytes (m), gigabytes (g), or terabytes (t); or as a percentage (%) of the installed physical memory.
```

```
 -T directory Specifies the directory in which to place temporary files.
```

```
 -u Unique: suppresses all but one in each set of lines having equal keys. If used with the -c option, checks that there are no lines with duplicate keys in addition to checking that the input file is sorted.
```

```
 -y kmem (obsolete). This option was used to specify the amount of main memory initially used by sort. Its functionality is not appropriate for a virtual memory system; memory usage for sort is now specified using the -S option.
```

```
 -z recsz (obsolete). This option was used to prevent abnormal termination when lines longer than the system-dependent default buffer size are encountered. Because sort automatically allocates buffers large enough to hold the longest line, this option has no effect.
```
The default sort order depends on the value of `LC_COLLATE`. If `LC_COLLATE` is set to `C`, sorting will be in ASCII order. If `LC_COLLATE` is set to `en_US`, sorting is case insensitive except when the two strings are otherwise equal and one has an uppercase letter earlier than the other. Other locales will have other sort orders.

The following options override the default ordering rules. When ordering options appear independent of any key field specifications, the requested field ordering rules are applied globally to all sort keys. When attached to a specific key (see Sort Key Options), the specified ordering options override all global ordering options for that key. In the obsolescent forms, if one or more of these options follows a `+pos1` option, it will affect only the key field specified by that preceding option.

- **-d**  
  "Dictionary" order: only letters, digits, and blanks (spaces and tabs) are significant in comparisons.

- **-f**  
  Folds lower-case letters into upper case.

- **-i**  
  Ignores non-printable characters.

- **-M**  
  Compares as months. The first three non-blank characters of the field are folded to upper case and compared. For example, in English the sorting order is "JAN" < "FEB" < . . . < "DEC". Invalid fields compare low to "JAN". The `-M` option implies the `-b` option (see below).

- **-n**  
  Restricts the sort key to an initial numeric string, consisting of optional blank characters, optional minus sign, and zero or more digits with an optional radix character and thousands separators (as defined in the current locale), which will be sorted by arithmetic value. An empty digit string is treated as zero. Leading zeros and signs on zeros do not affect ordering.

- **-r**  
  Reverses the sense of comparisons.

### Field Separator Options

The treatment of field separators can be altered using the following options:

- **-b**  
  Ignores leading blank characters when determining the starting and ending positions of a restricted sort key. If the `-b` option is specified before the first sort key option, it is applied to all sort key options. Otherwise, the `-b` option can be attached independently to each `-k field_start, field_end, or +pos1 or −pos2 option-argument (see below).

- **-t char**  
  Use `char` as the field separator character. `char` is not considered to be part of a field (although it can be included in a sort key). Each occurrence of `char` is significant (for example, `<char><char>` delimits an empty field). If `-t` is not specified, blank characters are used as default field separators; each maximal non-empty sequence of blank characters that follows a non-blank character is a field separator.
Sort keys can be specified using the options:

- `k keydef`  
The `keydef` argument is a restricted sort key field definition. The format of this definition is:

```
-k field_start [type] [, field_end [type]]
```

where:

- `field_start` and `field_end` define a key field restricted to a portion of the line.

- `type` is a modifier from the list of characters bdfilmnr. The b modifier behaves like the -b option, but applies only to the `field_start` or `field_end` to which it is attached and characters within a field are counted from the first non-blank character in the field. (This applies separately to `first_character` and `last_character`.) The other modifiers behave like the corresponding options, but apply only to the key field to which they are attached. They have this effect if specified with `field_start`, `field_end` or both. If any modifier is attached to a `field_start` or to a `field_end`, no option applies to either.

When there are multiple key fields, later keys are compared only after all earlier keys compare equal. Except when the -u option is specified, lines that otherwise compare equal are ordered as if none of the options -d, -f, -i, -n or -k were present (but with -x still in effect, if it was specified) and with all bytes in the lines significant to the comparison.

The notation:

```
-k field_start [type] [, field_end [type]]
```

defines a key field that begins at `field_start` and ends at `field_end` inclusive, unless `field_start` falls beyond the end of the line or after `field_end`, in which case the key field is empty. A missing `field_end` means the last character of the line.

A field comprises a maximal sequence of non-separating characters and, in the absence of option -t, any preceding field separator.

The `field_start` portion of the `keydef` option-argument has the form:

```
field_number [. first_character]
```

Fields and characters within fields are numbered starting with 1. `field_number` and `first_character`, interpreted as positive decimal integers, specify the first character to be used as part of a sort key. If `first_character` is omitted, it refers to the first character of the field.
The field_end portion of the keydef option-argument has the form:

\[ \text{field_number} [\cdot \text{last_character}] \]

The field_number is as described above for field_start. last_character, interpreted as a non-negative decimal integer, specifies the last character to be used as part of the sort key. If last_character evaluates to zero or . last_character is omitted, it refers to the last character of the field specified by field_number.

If the -b option or b type modifier is in effect, characters within a field are counted from the first non-blank character in the field. (This applies separately to first_character and last_character.)

\[ [+\text{pos1} [-\text{pos2}]] \] (obsolete). Provide functionality equivalent to the -kkeydef option.

pos1 and pos2 each have the form \( m \cdot n \) optionally followed by one or more of the flags bdfiMnr. A starting position specified by \( +m \cdot n \) is interpreted to mean the \( n+1 \)st character in the \( m+1 \)st field. A missing \( .n \) means \( .0 \), indicating the first character of the \( m+1 \)st field. If the b flag is in effect \( n \) is counted from the first non-blank in the \( m+1 \)st field; \( +m \cdot 0b \) refers to the first non-blank character in the \( m+1 \)st field.

A last position specified by \( -m \cdot n \) is interpreted to mean the \( n \)th character (including separators) after the last character of the \( m \)th field. A missing \( .n \) means \( .0 \), indicating the last character of the \( m \)th field. If the b flag is in effect \( n \) is counted from the last leading blank in the \( m+1 \)st field; \( -m \cdot 1b \) refers to the first non-blank in the \( m+1 \)st field.

The fully specified \( +\text{pos1} -\text{pos2} \) form with type modifiers T and U:

\[ +w.xT -y.zU \]

is equivalent to:

undefined \( \quad (z==0 \land U \text{ contains } b \land -t \text{ is present}) \)

\( -k w+1.x+1T,y.0U \quad (z==0 \text{ otherwise}) \)

\( -k w+1.x+1T,y+1.zU \quad (z > 0) \)

Implementations support at least nine occurrences of the sort keys (the -k option and obsolescent \( +\text{pos1} \) and \( -\text{pos2} \)) which are significant in command line order. If no sort key is specified, a default sort key of the entire line is used.

**OPERANDS**

The following operand is supported:

\[ \text{file} \]

A path name of a file to be sorted, merged or checked. If no file operands are specified, or if a file operand is - , the standard input will be used.
See largefile(5) for the description of the behavior of sort when encountering files greater than or equal to 2 Gbyte (231 bytes).

In the following examples, first the preferred and then the obsolete way of specifying sort keys are given as an aid to understanding the relationship between the two forms.

**EXAMPLE 1** Sorting with the second field as a sort key

Either of the following commands sorts the contents of infile with the second field as the sort key:

```
example% sort -k 2,2 infile
example% sort +1 -2 infile
```

**EXAMPLE 2** Sorting in reverse order

Either of the following commands sorts, in reverse order, the contents of infile1 and infile2, placing the output in outfile and using the second character of the second field as the sort key (assuming that the first character of the second field is the field separator):

```
example% sort -r -o outfile -k 2.2,2.2 infile1 infile2
example% sort -r -o outfile +1.1 -1.2 infile1 infile2
```

**EXAMPLE 3** Sorting using a specified character in one of the files

Either of the following commands sorts the contents of infile1 and infile2 using the second non-blank character of the second field as the sort key:

```
example% sort -k 2.2b,2.2b infile1 infile2
example% sort +1.1b -1.2b infile1 infile2
```

**EXAMPLE 4** Sorting by numeric user ID

Either of the following commands prints the passwd(4) file (user database) sorted by the numeric user ID (the third colon-separated field):

```
example% sort -t : -k 3,3n /etc/passwd
example% sort -t : +2 -3n /etc/passwd
```

**EXAMPLE 5** Printing sorted lines excluding lines that duplicate a field

Either of the following commands prints the lines of the already sorted file infile, suppressing all but one occurrence of lines having the same third field:

```
example% sort -um -k 3.1,3.0 infile
example% sort -um +2.0 -3.0 infile
```
EXAMPLE 6 Sorting by host IP address

Either of the following commands prints the hosts(4) file (IPv4 hosts database), sorted by the numeric IP address (the first four numeric fields):

```
example$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n /etc/hosts
example$ sort -t . +0 -1n +1 -2n +2 -3n +3 -4n /etc/hosts
```

Since ‘.’ is both the field delimiter and, in many locales, the decimal separator, failure to specify both ends of the field will lead to results where the second field is interpreted as a fractional portion of the first, and so forth.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of sort: LANG, LC_ALL, LC_COLLATE, LC_MESSAGES, and NLSPATH.

- **LC_CTYPE**: Determine the locale for the interpretation of sequences of bytes of text data as characters (for example, single- versus multi-byte characters in arguments and input files) and the behavior of character classification for the -b, -d, -f, -i and -n options.
- **LC_NUMERIC**: Determine the locale for the definition of the radix character and thousands separator for the -n option.

EXIT STATUS

The following exit values are returned:

- **0**: All input files were output successfully, or -c was specified and the input file was correctly sorted.
- **1**: Under the -c option, the file was not ordered as specified, or if the -c and -u options were both specified, two input lines were found with equal keys.
- **>1**: An error occurred.

FILES

/var/tmp/stm???

temporary files

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/bin/sort</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/xpg4/bin/sort</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
sort(1)

SEE ALSO comm(1), join(1), uniq(1), nl_langinfo(3C), strftime(3C), hosts(4), passwd(4), attributes(5), environ(5), largefile(5), standards(5)

DIAGNOSTICS Comments and exits with non-zero status for various trouble conditions (for example, when input lines are too long), and for disorders discovered under the -c option.

NOTES When the last line of an input file is missing a new-line character, sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

One can tune sort performance for a specific scenario using the -S option. However, one should note in particular that sort has greater knowledge of how to use a finite amount of memory for sorting than the virtual memory system. Thus, a sort invoked to request an extremely large amount of memory via the -S option could perform extremely poorly.

As noted, certain of the field modifiers (such as -M and -d) cause the interpretation of input data to be done with reference to locale-specific settings. The results of this interpretation can be unexpected if one's expectations are not aligned with the conventions established by the locale. In the case of the month keys, sort does not attempt to compensate for "approximate" month abbreviations. The precise month abbreviations from nl_langinfo(3C) or strftime(3C) are the only ones recognized. For printable or dictionary order, if these concepts are not well-defined by the locale, an empty sort key may be the result, leading to the next key being the significant one for determining the appropriate ordering.
NAME

sortbib – sort a bibliographic database

SYNOPSIS

sortbib [-s KEYS] database...

DESCRIPTION

sortbib sorts files of records containing refer key-letters by user-specified keys. Records may be separated by blank lines, or by ‘.’, ‘[’ and ‘]’ delimiters, but the two styles may not be mixed together. This program reads through each database and pulls out key fields, which are sorted separately. The sorted key fields contain the file pointer, byte offset, and length of corresponding records. These records are delivered using disk seeks and reads, so sortbib may not be used in a pipeline to read standard input.

The most common key-letters and their meanings are given below.

%A Author’s name
%B Book containing article referenced
%C City (place of publication)
%D Date of publication
%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number
%H Header commentary, printed before reference
%I Issuer (publisher)
%J Journal containing article
%K Keywords to use in locating reference
%L Label field used by -k option of refer
%M Bell Labs Memorandum (undefined)
%N Number within volume
%O Other commentary, printed at end of reference
%P Page number(s)
%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)
%S Series title
%T Title of article or book
%V Volume number
%X Abstract — used by roffbib, not by refer
%Y,Z Ignored by refer
sortbib(1)

By default, sortbib alphabetizes by the first %A and the %D fields, which contain the senior author and date.

sortbib sorts on the last word on the %A line, which is assumed to be the author’s last name. A word in the final position, such as ‘jr.’ or ‘ed.’, will be ignored if the name beforehand ends with a comma. Authors with two-word last names or unusual constructions can be sorted correctly by using the nroff convention ‘\0’ in place of a blank. A %Q field is considered to be the same as %A, except sorting begins with the first, not the last, word. sortbib sorts on the last word of the %D line, usually the year. It also ignores leading articles (like ‘A’ or ‘The’) when sorting by titles in the %T or %J fields; it will ignore articles of any modern European language. If a sort-significant field is absent from a record, sortbib places that record before other records containing that field.

No more than 16 databases may be sorted together at one time. Records longer than 4096 characters will be truncated.

OPTIONS
- sKEYS Specify new KEYS. For instance, - sATD will sort by author, title, and date, while - sA+D will sort by all authors, and date. Sort keys past the fourth are not meaningful.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
addbib(1), indxbib(1), lookbib(1), refer(1), roffbib(1), attributes(5)

BUGS
Records with missing author fields should probably be sorted by title.
sotruss(1)

NAME
sotruss – trace shared library procedure calls

SYNOPSIS
/usr/bin/sotruss [-f] [-F bindfromlist] [-T bindtolist] [-o outputfile]
execute [ executable arguments...]

DESCRIPTION
sotruss executes the specified command and produces a trace of the library calls that
it performs. Each line of the trace output reports what bindings are occurring between
dynamic objects as each procedure call is executed. sotruss traces all of the
procedure calls that occur between dynamic objects via the Procedure Linkage Table, so
only those procedure calls which are bound via the Procedure Linkage Table will be
 traced. See Linker and Libraries Guide

OPTIONS
- F bindfromlist
   A colon-separated list of libraries that are to be traced. Only calls from
   these libraries will be traced. The default is to trace calls from the main executable only.

- T bindtolist
   A colon-separated list of libraries that are to be traced. Only calls to these libraries will be traced. The default
   is to trace all calls.

- o outputfile
   sotruss output will be directed to the outputfile. If this
   option is combined with the -f option then the pid of
   the executing program will be placed at the end of the
   filename. By default sotruss output is placed on
   stderr.

- f
   Follow all children created by fork() and print
   truss output on each child process. This option will
   also cause a pid to be output on each truss output
   line.

EXAMPLES
EXAMPLE 1 An example of sotruss.

   A simple example shows the tracing of a simple ls command:

   $ sotruss ls | more
   ls -> libc.so.1:*atexit(0x8f7d7d1c, 0x23c00, 0x0)
   ls -> libc.so.1:*atexit(0x1392c, 0x8f7d7d1c, 0x8f621bb0)
   ls -> libc.so.1:*setlocale(0x6, 0x1396c, 0x8f621ba8)
   ls -> libc.so.1:*textdomain(0x13970, 0x1396c, 0x8f621ba8)
   ls -> libc.so.1:*time(0x0, 0x8f61f6fc, 0x8f621ba8)
   ls -> libc.so.1:*isatty(0x1, 0x8f61f6fc, 0x0)
   ls -> libc.so.1:*getopt(0x1, 0x8f61ff6fc, 0x13980)
   ls -> libc.so.1:*malloc(0x100, 0x0, 0x0)
   ls -> libc.so.1:*malloc(0x9000, 0x0, 0x0)
   ls -> libc.so.1:*lstat64(0x23ee8, 0x8f61f6fc, 0x0)
   ls -> libc.so.1:*printf(0x13a64, 0x26208, 0x23ef0)
   ls -> libc.so.1:*printf(0x13a64, 0x26448, 0x23ef0)
   ls -> libc.so.1:*exit(0x0, 0x24220, 0x2421c)

User Commands  1461
sotruss(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO  ld.so.1(1), truss(1), whocalls(1), fork(2), attributes(5)

*Linker and Libraries Guide*
The spell command collects words from the named files and looks them up in a spelling list. Words that neither occur among nor are derivable (by applying certain inflections, prefixes, or suffixes) from words in the spelling list are written to the standard output.

If there are no file arguments, words to check are collected from the standard input. spell ignores most troff(1), tbl(1), and eqn(1) constructs. Copies of all output words are accumulated in the history file (spellhist), and a stop list filters out misspellings (for example, their=thy—y+ier) that would otherwise pass.

By default, spell (like deroff(1)) follows chains of included files (.so and .nx troff(1) requests), unless the names of such included files begin with /usr/lib.

The standard spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is also more effective in respect to proper names and popular technical words. Coverage of the specialized vocabularies of biology, medicine and chemistry is light.

Three programs help maintain and check the hash lists used by spell:

- **hashmake**: Reads a list of words from the standard input and writes the corresponding nine-digit hash code on the standard output.
- **spellin**: Reads n hash codes from the standard input and writes a compressed spelling list on the standard output.
- **hashcheck**: Reads a compressed spelling_list and recreates the nine-digit hash codes for all the words in it. It writes these codes on the standard output.

The following options are supported:

- **-b**: Check British spelling. Besides preferring "centre," "colour," "programme," "speciality," "travelled," and so forth, this option insists upon -ise in words like "standardise."

- **-i**: Cause deroff(1) to ignore .so and .nx commands. If deroff(1) is not present on the system, then this option is ignored.

- **-l**: Follow the chains of all included files.

- **-v**: Print all words not literally in the spelling list, as well as plausible derivations from the words in the spelling list.
spell(1)

-\xspace Print every plausible stem, one per line, with = preceding each word.

+local_file Specify a set of words that are correct spellings (in addition to spell's own spelling list) for each job. local_file is the name of a user-provided file that contains a sorted list of words, one per line. Words found in local_file are removed from spell's output. Use sort(1) to order local_file in ASCII collating sequence. If this ordering is not followed, some entries in local_file may be ignored.

OPERANDS The following operands are supported:

file A path name of a text file to check for spelling errors. If no files are named, words are collected from the standard input.

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of spell: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES

D_SPELL=/usr/lib/spell/hlist[ab]
hashed spelling lists, American & British

S_SPELL=/usr/lib/spell/hstop
hashed stop list

H_SPELL=/var/adm/spellhist
history file

/usr/share/lib/dict/words
master dictionary

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO deroff(1), eqn(1), sort(1), tbl(1), troff(1), attributes(5), environ(5)

NOTES Misspelled words can be monitored by default by setting the H_SPELL variable in /usr/bin/spell to the name of a file that has permission mode 666.

spell works only on English words defined in the U.S. ASCII codeset.

Because copies of all output are accumulated in the spellhist file, spellhist may grow quite large and require purging.
The spelling list’s coverage is uneven; new installations may wish to monitor the output for several months to gather local additions.

British spelling was done by an American.
NAME    spline – interpolate smooth curve

SYNOPSIS  spline [-aknp] ...

DESCRIPTION  spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It produces a similar set, which is approximately equally spaced and includes the input set, on the standard output. The cubic spline output (R. W. Hamming, *Numerical Methods for Scientists and Engineers*, 2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to look smooth when plotted, for example by `graph(1)`.

OPTIONS
-a  Supply abscissas automatically (they are missing from the input); spacing is given by the next argument, or is assumed to be 1 if next argument is not a number.
-k  The constant \( k \) used in the boundary value computation
    \[
    (2nd \text{ deriv. at end}) = k \times (2nd \text{ deriv. next to end})
    \]
    is set by the next argument. By default \( k = 0 \).
-n  Space output points so that approximately \( n \) intervals occur between the lower and upper \( x \) limits. (Default \( n = 100 \).)
-p  Make output periodic, that is, match derivatives at ends. First and last input values should normally agree.
-x  Next 1 (or 2) arguments are lower (and upper) \( x \) limits. Normally these limits are calculated from the data. Automatic abcissas start at lower limit (default 0).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO  graph(1), attributes(5)


DIAGNOSTICS  When data is not strictly monotonic in \( x \), spline reproduces the input without interpolating extra points.

BUGS  A limit of 1000 input points is enforced silently.
split(1)

NAME
split – split a file into pieces

SYNOPSIS
split [-linecount | -l linecount] [-a suffixlength] [ file [name]]

split [ -b n | nk | nm] [-a suffixlength] [ file [name]]

DESCRIPTION
The split utility reads file and writes it in linecount-line pieces into a set of
output-files. The name of the first output-file is name with aa appended, and so on
lexicographically, up to zz (a maximum of 676 files). The maximum length of name is 2
characters less than the maximum filename length allowed by the filesystem. See statvfs(2). If no output name is given, x is used as the default (output-files will be
called xaa, xab, and so forth).

OPTIONS
The following options are supported:

- - linecount | -l linecount Number of lines in each piece. Defaults to 1000 lines.
- -a suffixlength Uses suffixlength letters to form the suffix portion of the
filenames of the split file. If -a is not specified, the
default suffix length is 2. If the sum of the name
operand and the suffixlength option-argument would
create a filename exceeding NAME_MAX bytes, an error
will result; split will exit with a diagnostic message
and no files will be created.

- -b n Splits a file into pieces n bytes in size.
- -b nk Splits a file into pieces n*1024 bytes in size.
- -b nm Splits a file into pieces n*1048576 bytes in size.

OPERANDS
The following operands are supported:

file The path name of the ordinary file to be split. If no input file is given or file
is -, the standard input will be used.

name The prefix to be used for each of the files resulting from the split
operation. If no name argument is given, x will be used as the prefix of the
output files. The combined length of the basename of prefix and suffixlength
cannot exceed NAME_MAX bytes. See OPTIONS.

USAGE
See largefile(5) for the description of the behavior of split when encountering
files greater than or equal to 2 Gbyte (2^31 bytes).

ENVIRONMENT
See environ(5) for descriptions of the following environment variables that affect the
execution of split: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

 0  Successful completion.

>0  An error occurred.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO csplit(1), statvfs(2), attributes(5), environ(5), largefile(5), standards(5)
The `srchtxt` utility is used to display all the text strings in message data bases, or to search for a text string in message data bases (see `mkmsgs(1)`). These data bases are files in the directory `/usr/lib/locale/locale/LC_MESSAGES` (see `setlocale(3C)`), unless a file name given with the `-m` option contains a `/`. The directory `locale` can be viewed as the name of the language in which the text strings are written. If the `-l` option is not specified, the files accessed will be determined by the value of the environment variable `LC_MESSAGES`. If `LC_MESSAGES` is not set, the files accessed will be determined by the value of the environment variable `LANG`. If `LANG` is not set, the files accessed will be in the directory `/usr/lib/locale//C/LC_MESSAGES`, which contains default strings.

If no `text` argument is present, then all the text strings in the files accessed will be displayed.

If the `-s` option is not specified, the displayed text is prefixed by message sequence numbers. The message sequence numbers are enclosed in angle brackets:

```
<msgfile:msgnum>
```

- `msgfile`: name of the file where the displayed text occurred
- `msgnum`: sequence number in `msgfile` where the displayed text occurred

This display is in the format used by `gettext(1)` and `gettext(3C)`.

**Options**

- `-s`  Suppress printing of the message sequence numbers of the messages being displayed.
- `-l locale`  Access files in the directory `/usr/lib/locale/locale/LC_MESSAGES`. If `-m msgfile` is also supplied, `LOCALE` is ignored for `msgfiles` containing a `/`.
- `-m msgfile`  Access files specified by one or more `msgfiles`. If `msgfile` contains a `/` character, then `msgfile` is interpreted as a pathname; otherwise, it will be assumed to be in the directory determined as described above. To specify more than one `msgfile`, separate the file names using commas.

- `text`  Search for the text string specified by `text` and display each one that matches. `text` can take the form of a regular expression; see `regexp(5)`.

**Examples**

**Example 1 Using `srchtxt`**

If message files have been installed in a locale named `french` by using `mkmsgs(1)`, then you could display the entire set of text strings in the `french` locale `(/usr/lib/locale/french/LC_MESSAGES/*)` by typing:

```bash
example$ srchtxt -l french
```
EXAMPLE 1 Using `srchtxt` (Continued)

EXAMPLE 2 Using `srchtxt`

If a set of error messages associated with the operating system have been installed in the file `UX` in the french locale (`/usr/lib/locale/french/LC_MESSAGES/UX`), then, using the value of the `LANG` environment variable to determine the locale to be searched, you could search that file in that locale for all error messages dealing with files by typing:

```
example% setenv LANG=french; export LANG
example% srchtxt -m UX "*[Ff]ichier"
```

If `/usr/lib/locale/french/LC_MESSAGES/UX` contained the following strings:

```
Erreur E/S
Liste d’arguments trop longue
Fichier inexistant
Argument invalide
Trop de fichiers ouverts
Fichier trop long
Trop de liens
Argument hors du domaine
Identificateur supprim
Etreinte fatale

.
.
.
```

then the following strings would be displayed:

```
<UX:3>Fichier inexistant
<UX:5>Trop de fichiers ouverts
<UX:6>Fichier trop long
```

EXAMPLE 3 Using `srchtxt`

If a set of error messages associated with the operating system have been installed in the file `UX` and a set of error messages associated with the INGRESS data base product have been installed in the file `ingress` both in the german locale, then you could search for the pattern `[Dd]atei` in both the files `UX` and `ingress` in the german locale by typing:

```
example% srchtxt -l german -m UX,ingress "*[Dd]atei"
```

ENVIRONMENT V ARIABLES

See environ(5) for a description of the `LC_CTYPE` environment variable that affects the execution of `srchtxt`.

FILES

```
/usr/lib/locale/C/LC_MESSAGES/*
 default locale created by mkmsgs(1)

/usr/lib/locale/german/LC_MESSAGES/*
 message files created by mkmsgs(1)
```
ATTIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
</tbody>
</table>

SEE ALSO

exstr(1), gettext(1), locale(1), mkmsgs(1), gettext(3C), setlocale(3C), attributes(5), environ(5), locale(5), regexp(5)

DIAGNOSTICS

The error messages produced by srchtxt are intended to be self-explanatory. They indicate an error in the command line or errors encountered while searching for a particular locale and/or message file.
NAME
ssh – OpenSSH secure shell client (remote login program)

SYNOPSIS
ssh [-l login_name] [ hostname | user@hostname] [ command]
ssh -aflgknqtvxACNPTX246 [-c cipher_spec] [-e escape_char] [-i identity_file]
[-l login_name] [-o option] [-p] [-L port:host:port]
[-R port:host:port] [hostname | user@hostname] [command]

DESCRIPTION
ssh (Secure Shell) is a program for logging into a remote machine and for executing
commands on a remote machine. It is intended to replace rlogin and rsh, and to
provide secure encrypted communications between two untrusted hosts over an
insecure network. X11 connections and arbitrary TCP/IP ports can also be forwarded
over the secure channel.

ssh connects and logs into the specified hostname. The user must prove his or her
identity to the remote machine using one of several methods depending on the
protocol version used:

SSH protocol
version 1
First, if the machine the user logs in from is listed in /etc/hosts.equiv or
/etc/shosts.equiv on the remote machine, and the user names are the same on
both sides, the user is immediately permitted to log in. Second, if .rhosts or
.shosts exists in the user’s home directory on the remote machine and contains a
line containing the name of the client machine and the name of the user on that
machine, the user is permitted to log in. This form of authentication alone is normally
not allowed by the server because it is not secure.

The second (and primary) authentication method is the rhosts or hosts.equiv
method combined with RSA-based host authentication. It means that if the login
would be permitted by $HOME/.rhosts, $HOME/.shosts, /etc/hosts.equiv, or
/etc/shosts.equiv, and if additionally the server can verify the client’s host key
(see /etc/ssh_known_hosts in the FILES section), only then is login permitted.
This authentication method closes security holes due to IP spoofing, DNS spoofing,
and routing spoofing.

Note to the administrator: /etc/hosts.equiv, $HOME/.rhosts, and the
rlogin/rsh protocol in general, are inherently insecure and should be disabled if
security is desired.

As a third authentication method, ssh supports RSA-based authentication. The
scheme is based on public-key cryptography. There are cryptosystems where
encryption and decryption are done using separate keys, and it is not possible to
derive the decryption key from the encryption key. RSA is one such system. The idea
is that each user creates a public/private key pair for authentication purposes.
The server knows the public key, and only the user knows the private key. The file
$HOME/.ssh/authorized_keys lists the public keys that are permitted for logging
in. When the user logs in, the ssh program tells the server which key pair it would
like to use for authentication. The server checks if this key is permitted, and if so,
sends the user (actually the ssh program running on behalf of the user) a challenge in
the form of a random number, encrypted by the user’s public key. The challenge can only be decrypted using the proper private key. The user’s client then decrypts the challenge using the private key, proving that he or she knows the private key but without disclosing it to the server.

`ssh` implements the RSA authentication protocol automatically. The user creates his or her RSA key pair by running `ssh-keygen(1)`. This stores the private key in `$HOME/.ssh/identity` and the public key in `$HOME/.ssh/identity.pub` in the user’s home directory. The user should then copy the `identity.pub` to `$HOME/.ssh/authorized_keys` in his or her home directory on the remote machine (the `authorized_keys` file corresponds to the conventional `$HOME/.rhosts` file, and has one key per line, though the lines can be very long). After this, the user can log in without giving the password. RSA authentication is much more secure than `rhosts` authentication.

The most convenient way to use RSA authentication may be with an authentication agent. See `ssh-agent(1)` for more information.

If other authentication methods fail, `ssh` prompts the user for a password. The password is sent to the remote host for checking. However, since all communications are encrypted, the password cannot be seen by someone listening on the network.

When a user connects using the protocol version 2, different authentication methods are available. At first, the client attempts to authenticate using the public key method. If this method fails, password authentication is tried.

The public key method is similar to RSA authentication described in the previous section except that the DSA algorithm is used instead of the patented RSA algorithm. The client uses his private DSA key `$HOME/.ssh/id_dsa` to sign the session identifier and sends the result to the server. The server checks whether the matching public key is listed in `$HOME/.ssh/authorized_keys` and grants access if both the key is found and the signature is correct. The session identifier is derived from a shared Diffie-Hellman value and is known only to the client and the server.

If public key authentication fails or is not available, a password can be sent encrypted to the remote host for proving the user’s identity. This protocol 2 implementation does not yet support Kerberos or S/Key authentication.

Protocol 2 provides additional mechanisms for confidentiality (the traffic is encrypted using 3DES, Blowfish, CAST128 or Arcfour) and integrity (`hmac-sha1`, `hmac-md5`). Notice that protocol 1 lacks a strong mechanism for ensuring the integrity of the connection.

When the user’s identity has been accepted by the server, the server either executes the given command, or logs into the machine and gives the user a normal shell on the remote machine. All communication with the remote command or shell will be automatically encrypted.
If a pseudo-terminal has been allocated (normal login session), the user can disconnect with ~, and suspend ssh with ~^Z. All forwarded connections can be listed with ~#.

If the session blocks waiting for forwarded X11 or TCP/IP connections to terminate, ssh can be backgrounded with ~&, although this should not be used while the user shell is active, as it can cause the shell to hang. All available escapes can be listed with ~?.

A single tilde character can be sent as -- (or by following the tilde by a character other than those described above). The escape character must always follow a newline to be interpreted as special. The escape character can be changed in configuration files or on the command line.

If no pseudo tty has been allocated, the session is transparent and can be used to reliably transfer binary data. On most systems, setting the escape character to "none" will also make the session transparent even if a tty is used.

The session terminates when the command or shell in the remote machine exits and all X11 and TCP/IP connections have been closed. The exit status of the remote program is returned as the exit status of ssh.

X11 and TCP forwarding

If the user is using X11 (the DISPLAY environment variable is set), the connection to the X11 display is automatically forwarded to the remote side in such a way that any X11 programs started from the shell (or command) will go through the encrypted channel, and the connection to the real X server will be made from the local machine. The user should not manually set DISPLAY. Forwarding of X11 connections can be configured on the command line or in configuration files.

The DISPLAY value set by ssh will point to the server machine, but with a display number greater than zero. This is normal behavior, because ssh creates a "proxy" X server on the server machine for forwarding the connections over the encrypted channel.

ssh will also automatically set up Xauthority data on the server machine. For this purpose, it will generate a random authorization cookie, store it in Xauthority on the server, and verify that any forwarded connections carry this cookie and replace it by the real cookie when the connection is opened. The real authentication cookie is never sent to the server machine (and no cookies are sent in the plain).

If the user is using an authentication agent, the connection to the agent is automatically forwarded to the remote side unless disabled on the command line or in a configuration file.

Forwarding of arbitrary TCP/IP connections over the secure channel can be specified either on the command line or in a configuration file. One possible application of TCP/IP forwarding is a secure connection to an electronic purse. Another possible application is going through firewalls.

Server authentication

ssh automatically maintains and checks a database containing identifications for all hosts it has ever been used with. RSA host keys are stored in $HOME/.ssh/known_hosts in the user's home directory. Additionally, the file

1474 man pages section 1: User Commands • Last Revised 25 Feb 2002
/etc/ssh_known_hosts is automatically checked for known hosts. Any new hosts are automatically added to the user’s file. If a host’s identification ever changes, ssh warns about this and disables password authentication to prevent a trojan horse from getting the user’s password. Another purpose of this mechanism is to prevent man-in-the-middle attacks which could otherwise be used to circumvent the encryption. The StrictHostKeyChecking option (see below) can be used to prevent logins to machines whose host key is not known or has changed.

OPTIONS

The following options are supported:

-2
Forces ssh to try protocol version 2 only.

-4
Forces ssh to use IPv4 addresses only.

-6
Forces ssh to use IPv6 addresses only.

-a
Disables forwarding of the authentication agent connection.

-A
Enables forwarding of the authentication agent connection. This can also be specified on a per-host basis in a configuration file.

-c blowfish | 3des
Selects the cipher to use for encrypting the session. 3des is used by default. It is believed to be secure. 3des (triple-des) is an encrypt-decrypt-encrypt triple with three different keys. It is presumably more secure than the des cipher, which is no longer fully supported in ssh. blowfish is a fast block cipher, it appears very secure and is much faster than 3des.

-c 3des-cbc,blowfish-cbc,aes128-cbc
Additionally, for protocol version 2 a comma-separated list of ciphers can be specified in order of preference. Protocol version 2 supports 3DES, Blowfish, and AES 128 in CBC mode.

-C
Requests compression of all data (including stdin, stdout, stderr, and data for forwarded X11 and TCP/IP connections). The compression algorithm is the same used by gzip(1). (The gzip man page is available in the SUNWsfman package.) The “level” can be controlled by the CompressionLevel option (see below). Compression is desirable on modem lines and other slow connections, but will only slow down things on fast networks. The default value can be set on a host-by-host basis in the configuration files. See the Compress option below.

-e ch | ^ch | none
Sets the escape character for sessions with a pty (default: ‘~’). The escape character is only recognized at the beginning of a line. The escape character followed by a dot (‘.’) closes the connection. If followed by control-Z, the escape character suspends
the connection. If followed by itself, the escape character sends itself once. Setting
the character to "none" disables any escapes and makes the session fully
transparent.

- f
  Requests ssh to go to background just before command execution. This is useful if
  ssh is going to ask for passwords or passphrases, but the user wants it in the
  background. This implies the -n option. The recommended way to start X11
  programs at a remote site is with something like ssh -f host xterm.

- g
  Allows remote hosts to connect to local forwarded ports.

- i identity_file
  Selects the file from which the identity (private key) for RSA authentication is read.
  Default is $HOME/.ssh/id_rsa in the user's home directory. Identity files may
  also be specified on a per-host basis in the configuration file. It is possible to have
  multiple -i options (and multiple identities specified in configuration files).

- l login_name
  Specifies the user to log in as on the remote machine. This also may be specified on
  a per-host basis in the configuration file.

- L port:host:port
  Specifies that the given port on the local (client) host is to be forwarded to the given
  host and port on the remote side. This works by allocating a socket to listen to the
  port on the local side. Then, whenever a connection is made to this port, the
  connection is forwarded over the secure channel and a connection is made to host
  port hostport from the remote machine. Port forwardings can also be specified in the
  configuration file. Only root can forward privileged ports. IPv6 addresses can be
  specified with an alternative syntax: port/host/hostport.

- n
  Redirects stdin from /dev/null (actually, prevents reading from stdin). This must
  be used when ssh is run in the background. A common trick is to use this to run
  X11 programs on a remote machine. For example,

  ssh -n shadows.cs.hut.fi emacs &

  will start an emacs on shadows.cs.hut.fi, and the X11 connection will be
  automatically forwarded over an encrypted channel. The ssh program will be put
  in the background. This does not work if ssh needs to ask for a password or
  passphrase. See also the -f option.)

- N
  Does not execute a remote command. This is useful if you just want to forward
  ports (protocol version 2 only).

- o option
  Can be used to give options in the format used in the configuration file. This is
  useful for specifying options for which there is no separate command-line flag. The
  option has the same format as a line in the configuration file.
-p port
  Specifies the port to connect to on the remote host. This can be specified on a per-host basis in the configuration file.

-P
  Uses a non-privileged port for outgoing connections. This can be used if your firewall does not permit connections from privileged ports. Notice that this option turns off RhostsAuthentication and RhostsRSAAuthentication.

-q
  Quiet mode. Causes all warning and diagnostic messages to be suppressed. Only fatal errors are displayed.

-R port:host:port
  Specifies that the given port on the remote (server) host is to be forwarded to the given host and port on the local side. This works by allocating a socket to listen to the port on the remote side. Then, whenever a connection is made to this port, the connection is forwarded over the secure channel and a connection is made to host hostport from the local machine. Port forwardings can also be specified in the configuration file. Privileged ports can be forwarded only when logging in as root on the remote machine.

-t
  Forces pseudo-tty allocation. This can be used to execute arbitrary screen-based programs on a remote machine, which can be very useful, for example, when implementing menu services.

-T
  Disables pseudo-tty allocation (protocol version 2 only).

-v
  Verbose mode. Causes ssh to print debugging messages about its progress. This is helpful in debugging connection, authentication, and configuration problems. Multiple -v options increase the verbosity. Maximum is 3.

-x
  Disables X11 forwarding.

-X
  Enables X11 forwarding. This can also be specified on a per-host basis in a configuration file.

**ENVIRONMENT VARIABLES**

`ssh` will normally set the following environment variables:

**DISPLAY**

The DISPLAY variable indicates the location of the X11 server. It is automatically set by `ssh` to point to a value of the form `hostname:n` where `hostname` indicates the host where the shell runs, and `n` is an integer greater than or equal to 1. `ssh` uses this special value to forward X11 connections over the secure channel. The user should normally not set DISPLAY explicitly, as that will render the X11 connection insecure (and will require the user to manually copy any required authorization cookies).
**HOME** Set to the path of the user’s home directory.

**LOGNAME** Synonym for USER. Set for compatibility with systems that use this variable.

**MAIL** Set to point to the user’s mailbox.

**PATH** Set to the default PATH, as specified when compiling ssh.

**SSH_AUTH_SOCK** Indicates the path of a unix-domain socket used to communicate with the agent.

**SSH_CLIENT** Identifies the client end of the connection. The variable contains three space-separated values: client ip-address, client port number, and server port number.

**SSH_TTY** This is set to the name of the tty (path to the device) associated with the current shell or command. If the current session has no tty, this variable is not set.

**TZ** The timezone variable is set to indicate the present timezone if it was set when the daemon was started, that is, the daemon passes the value on to new connections.

**USER** Set to the name of the user logging in.

Additionally, ssh reads $HOME/.ssh/environment and adds lines of the format VARNAME=value to the environment.

**EXIT STATUS**

The following exit values are returned:

0   Successful completion.
1   An error occurred.

**FILES**

$HOME/.ssh/known_hosts
Records host keys for all hosts the user has logged into that are not in /etc/ssh_known_hosts. See sshd(1M).

$HOME/.ssh/identity
$HOME/.ssh/id_dsa
Contains the RSA and the DSA authentication identity of the user. These files contain sensitive data and should be readable by the user but not accessible by others (read/write/execute). Notice that ssh ignores a private key file if it is accessible by others. It is possible to specify a passphrase when generating the key. The passphrase will be used to encrypt the sensitive part of this file using 3DES.

$HOME/.ssh/identity.pub
$HOME/.ssh/id_dsa.pub
Contains the public key for authentication, that is, the public part of the identity file in human-readable form. The contents of the $HOME/.ssh/identity.pub file should be added to $HOME/.ssh/authorized_keys on all machines where you wish to log in using RSA authentication. The contents of the $HOME/.ssh/id_dsa.pub file should be added to
$HOME/.ssh/authorized_keys on all machines where you wish to log in using DSA authentication. These files are not sensitive and can, but need not, be readable by anyone. These files are never used automatically and are not necessary. They are provided only for the convenience of the user.

$HOME/.ssh/config
This is the per-user configuration file. The format of this file is described above. This file is used by the ssh client. This file does not usually contain any sensitive information, but the recommended permissions are read/write for the user and not accessible by others.

$HOME/.ssh/authorized_keys
Lists the DSA keys that can be used for logging in as this user. This file is not highly sensitive, but the recommended permissions are read/write for the user and not accessible by others.

/etc/ssh/ssh_known_hosts
Systemwide list of known host keys. /etc/ssh_known_hosts contains RSA keys. This file should be prepared by the system administrator to contain the public host keys of all machines in the organization and should be world-readable. The file contains public keys, one per line, in the following format, with fields separated by spaces: system name, number of bits in modulus, public exponent, modulus, and optional comment field. When different names are used for the same machine, all such names should be listed, separated by commas. See sshd(1M).

The canonical system name (as returned by name servers) is used by sshd(1M) to verify the client host when logging in. Other names are needed because ssh does not convert the user-supplied name to a canonical name before checking the key, to prevent someone with access to the name servers from being able to fool host authentication.

/etc/ssh/ssh_config
Systemwide configuration file. This file provides defaults for those values that are not specified in the user's configuration file, and for those users who do not have a configuration file.

This file must be world-readable.

$HOME/.rhosts
This file is used in .rhosts authentication to list the host/user pairs that are permitted to log in. (Notice that this file is also used by rlogin and rsh, which makes using this file insecure.) Each line of the file contains a host name (in the canonical form returned by name servers), and then a user name on that host, separated by a space. On some machines, this file may need to be world-readable if the user's home directory is on an NFS partition, because sshd(1M) reads it as root. Additionally, this file must be owned by the user and must not have write permissions for anyone else. The recommended permission for most machines is read/write for the user and not accessible by others.
Notice that, by default, `sshd(1M)` will be installed so that it requires successful RSA host authentication before permitting `.rhosts` authentication. If your server machine does not have the client's host key in `/etc/ssh_known_hosts`, you can store it in `$HOME/.ssh/known_hosts`. The easiest way to do this is to connect back to the client from the server machine using ssh. This will automatically add the host key to `$HOME/.ssh/known_hosts`.

`$HOME/.ssh/hosts`

This file is used exactly the same way as `.rhosts`. The purpose for having this file is to be able to use rhosts authentication with ssh without permitting login with rlogin(1) or rsh(1).

`/etc/hosts.equiv`

This file is used during `.rhosts` authentication. It contains canonical hosts names, one per line. (See sshd(1M) for the full format description). If the client host is found in this file, login is automatically permitted, provided that client and server user names are the same. In addition, successful RSA host authentication is normally required. This file should only be writable by root.

`/etc/ssh/hosts.equiv`

This file is processed exactly as `/etc/hosts.equiv`. This file may be useful to permit logins using ssh but not using rsh or rlogin.

`/etc/ssh/sshrc`

Commands in this file are executed by ssh when the user logs in just before the user's shell or command is started. See sshd(1M) for more information.

`$HOME/.ssh/rc`

Commands in this file are executed by ssh when the user logs in just before the user's shell or command is started. See sshd(1M) for more information.

`$HOME/.ssh/environment`

Contains additional definitions for environment variables. See ENVIRONMENT VARIABLES.

**ATTRIBUTES**

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
</tbody>
</table>

**SEE ALSO**

rlogin(1), rsh(1), scp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), telnet(1), sshd(1M), ssh_config(4), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.
OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, added newer features and created Open SSH. Markus Friedl contributed the support for SSH protocol versions 1.4 and 2.0.
**NAME**
ssh-add – add RSA or DSA identities for the authentication agent

**SYNOPSIS**
```bash
ssh-add [-lLdD] [file]
```

**DESCRIPTION**
The `ssh-add` utility adds RSA or DSA identities to the authentication agent, `ssh-agent(1)`. When run without arguments, it attempts to add all of the files

- `$HOME/.ssh/identity` (RSA v1),
- `$HOME/.ssh/id_rsa` (RSA v2), and
- `$HOME/.ssh/id_dsa` (DSA v2)

that exist. If more than one of the private keys exists, an attempt to decrypt each with the same passphrase will be made before reprompting for a different passphrase. The passphrase is read from the user’s tty or by running the program defined in `SSH_ASKPASS` (see below).

The authentication agent must be running.

**OPTIONS**
The following options are supported:

- `-d` Instead of adding the identity, this option removes the identity from the agent.
- `-D` Deletes all identities from the agent.
- `-l` Lists fingerprints of all identities currently represented by the agent.
- `-L` Lists public key parameters of all identities currently represented by the agent.

**ENVIRONMENT VARIABLES**

- **DISPLAY**
  If `ssh-add` needs a passphrase, it will read the passphrase from the current terminal if it was run from a terminal. If `ssh-add` does not have a terminal associated with it but `DISPLAY` and `SSH_ASKPASS` are set, it will execute the program specified by `SSH_ASKPASS` and open an X11 window to read the passphrase. This is particularly useful when calling `ssh-add` from a `.Xsession` or related script.

- **SSH_ASKPASS**
  If `ssh-add` needs a passphrase, it will read the passphrase from the current terminal if it was run from a terminal. If `ssh-add` does not have a terminal associated with it but `DISPLAY` and `SSH_ASKPASS` are set, it will execute the program specified by `SSH_ASKPASS` and open an X11 window to read the passphrase. This is particularly useful when calling `ssh-add` from a `.Xsession` or related script.

**EXIT STATUS**
The following exit values are returned:

- **0** Successful completion.
- **1** An error occurred.

**FILES**
These files should not be readable by anyone but the user. Notice that `ssh-add` ignores a file if it is accessible by others. It is possible to specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of this file.

If these files are stored on a network file system it is assumed that either the protection provided in the file themselves or the transport layer of the network file system provides sufficient protection for the site policy. If this is not the case, then it is recommended the key files are stored on removable media or locally on the relevant hosts.

Recommended names for the DSA and RSA key files:
$HOME/.ssh/identity
Contains the RSA authentication identity of the user for protocol version 1.

$HOME/.ssh/identity.pub
Contains the public part of the RSA authentication identity of the user for protocol version 1.

$HOME/.ssh/id_dsa
Contains the private DSA authentication identity of the user.

$HOME/.ssh/id_dsa.pub
Contains the public part of the DSA authentication identity of the user.

$HOME/.ssh/id_rsa
Contains the private RSA authentication identity of the user.

$HOME/.ssh/id_rsa.pub
Contains the public part of the RSA authentication identity of the user.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
</tbody>
</table>

SEE ALSO
ssh(1), ssh-agent(1), ssh-keygen(1), sshd(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.

AUTHORS
OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, added newer features and created Open SSH. Markus Friedl contributed the support for SSH protocol versions 1.4 and 2.0.
**NAME**
ssh-agent – authentication agent

**SYNOPSIS**
ssh-agent [-c | -s ] [-k] [ command [args...]]

**DESCRIPTION**
ssh-agent is a program to hold private keys used for public key authentication (RSA, DSA). ssh-agent is often started at the beginning of a login session. All other windows or programs are started as clients to the ssh-agent program. Through use of environment variables, the agent can be located and automatically used for authentication when logging in to other machines using ssh(1). (See System Administration Guide: Security Services.)

If a command line is given, this is executed as a subprocess of the agent. When the command dies, so does the agent.

The agent initially does not have any private keys. Keys are added using ssh-add(1), which sends the identity to the agent. Several identities can be stored in the agent; the agent can automatically use any of these identities. Use the -l option in ssh-add(1) to display the identities currently held by the agent.

The agent is run in the user’s local host. Authentication data need not be stored on any other machine, and authentication passphrases never go over the network. However, if the connection to the agent is forwarded over SSH remote logins, the user can use the privileges given by the identities anywhere in the network in a secure way.

There are two main ways to get an agent setup. Either you let the agent start a new subcommand into which some environment variables are exported, or you let the agent print the needed shell commands (either sh(1) or csh(1) syntax can be generated) which can be evalled in the calling shell. Later, use ssh(1) to look at these variables and use them to establish a connection to the agent.

A unix-domain socket is created (/tmp/ssh-XXXXXXXXX/agent.pid) and the name of this socket is stored in the SSH_AUTH_SOCK environment variable. The socket is made accessible only to the current user. This method is easily abused by root or another instance of the same user.

The SSH_AGENT_PID environment variable holds the agent’s PID.

The agent exits automatically when the command given on the command line terminates.

**OPTIONS**
The following options are supported:

- **-c**
  Generates C-shell commands on stdout. This is the default if SHELL indicates that it is a csh style of shell.

- **-k**
  Kills the current agent (given by the SSH_AGENT_PID environment variable)

- **-s**
  Generates Bourne shell commands on stdout. This is the default if SHELL does not indicate that it is a csh style of shell.

**EXIT STATUS**
The following exit values are returned:

1484 man pages section 1: User Commands • Last Revised 14 Oct 2002
Successful completion.

1 An error occurred.

FILES
/tmp/ssh-XXXXXXXXX/agent.pid
Unix-domain sockets used to contain the connection to the authentication agent.
These sockets should only be readable by the owner. The sockets are removed when
the agent exits.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
</tbody>
</table>

SEE ALSO ssh(1), ssh-add(1), ssh-keygen(1), sshd(1M), attributes(5)

System Administration Guide: Security Services

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

AUTHORS OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.
Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song
removed many bugs, added newer features and created Open SSH. Markus Friedl
contributed the support for SSH protocol versions 1.4 and 2.0.
NAME | ssh-http-proxy-connect – Secure Shell proxy for HTTP  
SYNOPSIS | /usr/lib/ssh/ssh-http-proxy-connect [-h http_proxy_host]  
| | [-p http_proxy_port] connect_host connect_port  
DESCRIPTION | A proxy command for ssh(1) that uses HTTP CONNECT. Typical use is where  
| | connections external to a network are only allowed via a proxy web server.  
OPTIONS | The following options are supported:  
| | -h http_proxy_host Specifies the proxy web server through which to  
| | connect. Overrides the HTTPPROXY and http_proxy  
| | environment variables if they are set.  
| | -p http_proxy_port Specifies the port on which the proxy web server runs.  
| | If not specified, port 80 is assumed. Overrides the  
| | HTTPPROXYPORT and http_proxy environment  
| | variables if they are set.  
OPERANDS | The following operands are supported:  
| | http_proxy_host The host name or IP address (IPv4 or IPv6) of the  
| | proxy.  
| | http_proxy_port The numeric port number to connect to on  
| | http_proxy_host.  
| | connect_host The name of the remote host to which the proxy web  
| | server is to connect you.  
| | connect_port The numeric port number of the proxy web server to  
| | connect you to on http_proxy_host.  
EXAMPLES | The recommended way to use a proxy connection command is to configure the  
| | ProxyCommand in ssh_config(4) (see Example 1 and Example 2). Example 3 shows  
| | how the proxy command can be specified on the command line when running ssh(1).  
| | EXAMPLE 1 Setting the proxy from the environment  
| | The following example uses ssh-http-proxy-connect in ssh_config(4) when  
| | the proxy is set from the environment:  
| | Host playtime.foo.com  
| | | ProxyCommand /usr/lib/ssh/ssh-http-proxy-connect \  
| | | playtime.foo.com 22  
| | EXAMPLE 2 Overriding proxy environment variables  
| | The following example uses ssh-http-proxy-connect in ssh_config(4) to  
| | override (or if not set) proxy environment variables:  
| | Host playtime.foo.com  
| | | ProxyCommand /usr/lib/ssh/ssh-http-proxy-connect -h webcache \
EXAMPLE 2 Overriding proxy environment variables (Continued)

-p 8080 playtime.foo.com 22

EXAMPLE 3 Using the command line

The following example uses ssh-http-proxy-connect from the ssh(1) command line:

example$ ssh -o 'ProxyCommand="/usr/lib/ssh/ssh-http-proxy-connect \ 
-h webcache -p 8080 playtime.foo.com 22"' playtime.foo.com

ENVIRONMENT VARIABLES

HTTPPROXY Takes the http_proxy_host operand to specify the default proxy host. Overrides http_proxy if both are set.

HTTPPROXYPOR T Takes the http_proxy_port operand to specify the default proxy port. Ignored if HTTPPROXY is not set.

http_proxy URL format for specifying proxy host and port.

EXIT STATUS

The following exit values are returned:

0 Successful completion.
1 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

ssh(1), ssh-socks5-proxy-connect(1), ssh_config(4), attributes(5)
**NAME**

ssh-keygen — authentication key generation

**SYNOPSIS**

```
ssh-keygen [-q] [-t type] [-b bits] [-N new_passphrase] [-C comment]
 [-f output_keyfile]

ssh-keygen -x [-f input_keyfile]

ssh-keygen -X [-f input_keyfile]

ssh-keygen -y [-f input_keyfile]

ssh-keygen -c [-P passphrase] [-C comment] [-f keyfile]

ssh-keygen -l [-f input_keyfile]
```

**DESCRIPTION**

The `ssh-keygen` utility generates and manages authentication keys for `ssh(1)`. `ssh-keygen` defaults to generating an RSA key for use by protocol 2.0.

Each user wishing to use SSH with RSA or DSA authentication normally runs this once to create the authentication key in `$HOME/.ssh/identity` or `$HOME/.ssh/id_dsa`. The system administrator may also use this to generate host keys.

Ordinarily, this program generates the key and asks for a file in which to store the private key. The public key is stored in a file with the same name but with the `.pub` extension appended. The program also asks for a passphrase. The passphrase may be empty to indicate no passphrase (host keys must have empty passphrases), or it may be a string of arbitrary length. Good passphrases are 10-30 characters long and are not simple sentences or otherwise easy to guess. (English prose has only 1-2 bits of entropy per word, and provides very poor passphrases.) The passphrase can be changed later by using the `-p` option.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, you will have to generate a new key and copy the corresponding public key to other machines.

For RSA, there is also a comment field in the key file that is only for convenience to the user to help identify the key. The comment can tell what the key is for, or whatever is useful. The comment is initialized to “user@host” when the key is created, but can be changed using the `-c` option.

After a key is generated, instructions below detail where to place the keys to activate them.

**OPTIONS**

The following options are supported:

- `-b bits`
  Specifies the number of bits in the key to create. The minimum number is 512 bits. Generally, 1024 bits is considered sufficient. Key sizes above that no longer improve security but make things slower. The default is 1024 bits.
-c Requests changing the comment in the private and public key files. The program will prompt for the file containing the private keys, for the passphrase if the key has one, and for the new comment.

-C comment Provides the new comment.

-f Specifies the filename of the key file.

-l Shows the fingerprint of the specified private or public key file.

-N new_passphrase Provides the new passphrase.

-p Requests changing the passphrase of a private key file instead of creating a new private key. The program will prompt for the file containing the private key, for the old passphrase, and will prompt twice for the new passphrase.

-P passphrase Provides the (old) passphrase.

-q Silences ssh-keygen. Used by /etc/rc when creating a new key.

-t type Specifies the algorithm used for the key, where type is one of rsa, dsa, and rsal. Type rsal is used only for the SSHv1 protocol.

-x Reads a private OpenSSH DSA format file and prints an SSH2-compatible public key to stdout.

-X Reads an unencrypted SSH2-compatible private (or public) key file and prints an OpenSSH compatible private (or public) key to stdout.

-y Reads a private OpenSSH DSA format file and prints an OpenSSH DSA public key to stdout.

EXIT STATUS The following exit values are returned:

0 Successful completion.

1 An error occurred.

FILES $HOME/.ssh/identity
This file contains the RSA private key for the SSHv1 protocol. This file should not be readable by anyone but the user. It is possible to specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of this file using 3DES. This file is not automatically accessed by ssh-keygen, but it is offered as the default file for the private key. sshd(1M) will read this file when a login attempt is made.

$HOME/.ssh/identity.pub
This file contains the RSA public key for the SSHv1 protocol. The contents of this file should be added to $HOME/.ssh/authorized_keys on all machines where you wish to log in using RSA authentication. There is no need to keep the contents of this file secret.
$HOME/.ssh/id_dsa
$HOME/.ssh/id_rsa
These files contain, respectively, the DSA or RSA private key for the SSHv2 protocol. These files should not be readable by anyone but the user. It is possible to specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of the file using 3DES. Neither of these files is automatically accessed by ssh-keygen but is offered as the default file for the private key. sshd(1M) will read this file when a login attempt is made.

$HOME/.ssh/id_dsa.pub
$HOME/.ssh/id_rsa.pub
These files contain, respectively, the DSA or RSA public key for the SSHv2 protocol. The contents of these files should be added, respectively, to $HOME/.ssh/authorized_keys on all machines where you wish to log in using DSA or RSA authentication. There is no need to keep the contents of these files secret.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshsucu</td>
</tr>
</tbody>
</table>

SEE ALSO
ssh(1), ssh-add(1), ssh-agent(1), sshd(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is /var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating environment has been installed anywhere other than the default, modify the given path to access the file at the installed location.
NAME

ssh-socks5-proxy-connect – Secure Shell proxy for SOCKS5

SYNOPSIS

/usr/lib/ssh/ssh-socks5-proxy-connect [-h socks5_proxy_host]
   [-p socks5_proxy_port] connect_host connect_port

DESCRIPTION

A proxy command for ssh(1) that uses SOCKS5 (RFC 1928). Typical use is where
connections external to a network are only allowed via a socks gateway server.

This proxy command does not provide any of the SOCKS5 authentication mechanisms
defined in RFC 1928. Only anonymous connections are possible.

OPTIONS

The following options are supported:

-h socks5_proxy_host       Specifies the proxy web server through which to
                           connect. Overrides the SOCKS5_SERVER environment
                           variable.

-p socks5_proxy_port       Specifies the port on which the proxy web server runs.
                           If not specified, port 80 is assumed.Overrides the
                           SOCKS5_PORT environment variable.

OPERANDS

The following operands are supported:

socks5_proxy_host          The host name or IP address (IPv4 or IPv6) of the
                           proxy.

socks5_proxy_port          The numeric port number to connect to on
                           socks5_proxy_host.

connect_host               The name of the remote host to which the socks
                           gateway is to connect you.

connect_port               The numeric port number of the socks gateway to
                           connect you to on connect_host.

EXAMPLES

The recommended way to use a proxy connection command is to configure the
ProxyCommand in ssh_config(4) (see Example 1 and Example 2). Example 3 shows
how the proxy command can be specified on the command line when running ssh(1).

EXAMPLE 1 Setting the proxy from the environment

The following example uses ssh-socks5-proxy-connect in ssh_config(4) when
the proxy is set from the environment:

Host playtime.foo.com
   ProxyCommand /usr/lib/ssh/ssh-socks5-proxy-connect \
                   playtime.foo.com 22

EXAMPLE 2 Overriding proxy environment variables

The following example uses ssh-socks5-proxy-connect in ssh_config(4) to
override (or if not set) proxy environment variables:
EXAMPLE 2 Overriding proxy environment variables  (Continued)

Host playtime.foo.com
    ProxyCommand /usr/lib/ssh/ssh-socks5-proxy-connect -h socks-gw \
                 -p 1080 playtime.foo.com 22

EXAMPLE 3 Using the command line

The following example uses ssh-socks5-proxy-connect from the ssh(1) command line:

example$ ssh -o 'ProxyCommand=/usr/lib/ssh/ssh-socks5-proxy-connect \ 
              -h socks-gw -p 1080 playtime.foo.com 22' playtime.foo.com

ENVIRONMENT VARIABLES

| SOCKET5_SERVER | Takes socks5_proxy_host operand to specify the default proxy host. |
| SOCKET5_PORT   | Takes socks5_proxy_port operand to specify the default proxy port. |

EXIT STATUS

The following exit values are returned:

0    Successful completion.
1    An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsshu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO ssh(1), ssh-http-proxy-connect(1), ssh_config(4), attributes(5)
NAME

strchg, strconf – change or query stream configuration

SYNOPSIS

strchg -h module1 [ , module2...]

strchg -p [-a | -u module]

strchg -f filename

strconf [-m | -t module]

DESCRIPTION

These commands are used to alter or query the configuration of the stream associated with the user’s standard input. The strchg command pushes modules on and/or pops modules off the stream. The strconf command queries the configuration of the stream. Only the super-user or owner of a STREAMS device may alter the configuration of that stream.

Invoked without any arguments, strconf prints a list of all the modules in the stream as well as the topmost driver. The list is printed with one name per line where the first name printed is the topmost module on the stream (if one exists) and the last item printed is the name of the driver.

OPTIONS

The following options apply to strchg and, -h, -f, and -p are mutually exclusive.

- h module1 [ , module2 ... ]  
  Mnemonic for push, pushes modules onto a stream. It takes as arguments the names of one or more pushable streams modules. These modules are pushed in order; that is, module1 is pushed first, module2 is pushed second, etc.

- p  
  Mnemonic for pop, pops modules off the stream. With the -p option alone, strchg pops the topmost module from the stream.

- a module  
  Pop all the modules above the topmost driver off the stream. This option requires the -p option.

- u module  
  All modules above, but not including module are popped off the stream. This option requires the -p option.

- f filename  
  Specify a filename that contains a list of modules representing the desired configuration of the stream. Each module name must appear on a separate line where the first name represents the topmost module and the last name represents the module that should be closest to the driver. strchg will determine the current configuration of the stream and pop and push the necessary modules in order to end up with the desired configuration.

The following options apply to strconf and, -m and -t are mutually exclusive.

- m module  
  Determine if the named module is present on a stream. If it is, strconf prints the message yes and returns zero. If not,
strchg(1)

strconf prints the message no and returns a non-zero value. The -t and -m options are mutually exclusive.

-t module  Print only the topmost module (if one exists). The -t and -m options are mutually exclusive.

EXAMPLE 1 Using the strchg Command

The following command pushes the module ldterm on the stream associated with the user's standard input:

example% strchg -h ldterm

The following command pops the topmost module from the stream associated with /dev/term/24. The user must be the owner of this device or the super user.

example% strchg -p < /dev/term/24

If the file fileconf contains the following:

```
ttcompat
ldterm
ptem
```

then the command

```
example% strchg -f fileconf
```

will configure the user's standard input stream so that the module ptem is pushed over the driver, followed by ldterm and ttcompat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver on the stream; for a stream that has only the module ldterm pushed above the zs driver, it would produce the following output:

```
ldterm
zs
```

The following command asks if ldterm is on the stream:

```
example% strconf -m ldterm
```

and produces the following output while returning an exit status of 0:

```
yes
```

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  attributes(5), streamio(7I)
**strchg(1)**

**DIAGNOSTICS**  
strchg returns zero on success. It prints an error message and returns non-zero status for various error conditions, including usage error, bad module name, too many modules to push, failure of an ioctl on the stream, or failure to open filename from the -f option.

strconf returns zero on success (for the -m or -t option, "success" means the named or topmost module is present). It returns a non-zero status if invoked with the -m or -t option and the module is not present. It prints an error message and returns non-zero status for various error conditions, including usage error or failure of an ioctl on the stream.

**NOTES**  
If the user is neither the owner of the stream nor the super-user, the strchg command will fail. If the user does not have read permissions on the stream and is not the super user, the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that does not function as expected. For ttys, if the line discipline module is not pushed in the correct place, one could have a terminal that does not respond to any commands.
strings(1)

NAME  strings – find printable strings in an object or binary file

SYNOPSIS  strings [-a | -] [-t format | -o] [-n number | -number] [file...]

DESCRIPTION  The strings utility looks for ASCII strings in a binary file. A string is any sequence of 
4 or more printing characters ending with a newline or a null character.

strings is useful for identifying random object files and many other things.

OPTIONS  The following options are supported:

-a | -  Look everywhere in the file for strings. If this flag is 
 omitted, strings only looks in the initialized data 
 space of object files.

-n number | -number  Use a number as the minimum string length rather than 
 the default, which is 4.

-o  Equivalent to -t d option.

-t format  Write each string preceded by its byte offset from the 
 start of the file. The format is dependent on the single 
 character used as the format option-argument:

    d  The offset will be written in decimal.
    o  The offset will be written in octal.
    x  The offset will be written in hexadecimal.

OPERANDS  The following operand is supported:

file  A path name of a regular file to be used as input. If no file operand is 
 specified, the strings utility will read from the standard input.

ENVIRONMENT VARIABLES  See environ(5) for descriptions of the following environment variables that affect the 
 execution of strings: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS  The following exit values are returned:

0  Successful completion.

>0  An error occurred.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
The algorithm for identifying strings is extremely primitive.

For backwards compatibility, the options -a and – are interchangeable.
NAME
strip – strip symbol table, debugging and line number information from an object file

SYNOPSIS
/usr/ccs/bin/strip [-blrVx] file...

DESCRIPTION
The strip command removes the symbol table, debugging information, and line number information from ELF object files. Once this stripping process has been done, no symbolic debugging access will be available for that file; therefore, this command is normally run only on production modules that have been debugged and tested.

If strip is executed on a common archive file (see ar(3HEAD)) in addition to processing the members, strip will remove the archive symbol table. The archive symbol table must be restored by executing the ar(1) command with the -s option before the archive can be linked by the ld(1) command. strip will produce appropriate warning messages when this situation arises.

strip is used to reduce the file storage overhead taken by the object file.

OPTIONS
The amount of information stripped from the ELF object file can be controlled by using any of the following options:

-b Same effect as the default behavior. This option is obsolete and will be removed in the next release.
-l Strip line number information only; do not strip the symbol table or debugging information.
-r Same effect as the default behavior. This option is obsolete and will be removed in the next release.
-V Print, on standard error, the version number of strip.
-x Do not strip the symbol table; debugging and line number information may be stripped.

OPERANDS
The following operand is supported:
file A path name referring to an executable file.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of strip: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/tmp/strp* temporary files
ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

ar(1), as(1), ld(1), elf(3ELF), tmpnam(3C), a.out(4), ar(3HEAD), attributes(5), environ(5), standards(5)

NOTES

The symbol table section will not be removed if it is contained within a segment, or the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained within a segment, or their associated relocation section is contained within a segment.
NAME  stty – set the options for a terminal
SYNOPSIS  
/usr/bin/stty [-a] [-g]  
/usr/bin/stty [modes]  
/usr/xpg4/bin/stty [-a | -g]  
/usr/xpg4/bin/stty [modes]  

DESCRIPTION  The stty utility sets certain terminal I/O options for the device that is the current standard input. Without arguments, stty reports the settings of certain options.  

In this report, if a character is preceded by a caret (^), then the value of that option is the corresponding control character (for example, "^h" is Control-H; in this case, recall that Control-H is the same as the "back-space" key). The sequence "^" means that an option has a null value.  

See termio(7I) for detailed information about the modes listed from Control Modes through Local Modes. For detailed information about the modes listed under Hardware Flow Control Modes and Clock Modes, below, see termiox(7I).  

Operands described in the Combination Modes section are implemented using options in the earlier sections. Notice that many combinations of options make no sense, but no sanity checking is performed. Hardware flow control and clock modes options may not be supported by all hardware interfaces.  

OPTIONS  The following options are supported:  
- a  Writes to standard output all of the option settings for the terminal.  
- g  Reports current settings in a form that can be used as an argument to another stty command. Emits termios-type output if the underlying driver supports it. Otherwise, it emits termio-type output.  

OPERANDS  The following mode operands are supported:  
Control Modes  
parenb(-parenb)  Enable (disable) parity generation and detection.  
parext(-parext)  Enable (disable) extended parity generation and detection for mark and space parity.  
parodd(-parodd)  Select odd (even) parity, or mark (space) parity if parext is enabled.  
cs5 cs6 cs7 cs8  Select character size (see termio(7I)).  
0  Hang up line immediately.  
hupcl (-hupcl)  Hang up (do not hang up) connection on last close.  
hup (-hup)  Same as hupcl(-hupcl).  
cstopb(-cstopb)  Use two (one) stop bits per character.  
cread(-cread)  Enable (disable) the receiver.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>crtc</strong>t<strong>s</strong>c<strong>t</strong>s (-crtc<strong>s</strong>c<strong>t</strong>s)</td>
<td>Enable output hardware flow control. Raise the RTS (Request to Send) modem control line. Suspends output until the CTS (Clear to Send) line is raised.</td>
</tr>
<tr>
<td><strong>crts</strong>x<strong>o</strong>ff (-crts<strong>x</strong>o**ff)</td>
<td>Enable input hardware flow control. Raise the RTS (Request to Send) modem control line to receive data. Suspends input when RTS is low.</td>
</tr>
<tr>
<td><strong>cloc</strong>a<strong>l</strong> (-cloc<strong>a</strong>l)</td>
<td>Assume a line without (with) modem control.</td>
</tr>
<tr>
<td><strong>defeucw</strong></td>
<td>Set the widths of multibyte characters to the values defined in the current locale specified by LC_CTYPE. Internally, width is expressed in terms of bytes per character, and screen or display columns per character.</td>
</tr>
<tr>
<td><strong>110 300 600 1200 1800 2400 4800 9600 19200 38400 357600 76800 115200 153600 230400 307200 460800</strong></td>
<td>Set terminal baud rate to the number given, if possible. (All speeds are not supported by all hardware interfaces.)</td>
</tr>
<tr>
<td><strong>ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400 57600 76800 115200 153600 230400 307200 460800</strong></td>
<td>Set terminal input baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the input baud rate is set to 0, the input baud rate will be specified by the value of the output baud rate.</td>
</tr>
<tr>
<td><strong>ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400 57600 76800 115200 153600 230400 307200 460800</strong></td>
<td>Set terminal output baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the output baud rate is set to 0, the line will be hung up immediately.</td>
</tr>
<tr>
<td><strong>ignbrk (-ignbrk)</strong></td>
<td>Ignore (do not ignore) break on input.</td>
</tr>
<tr>
<td><strong>brkint (-brkint)</strong></td>
<td>Signal (do not signal) INTR on break.</td>
</tr>
<tr>
<td><strong>ignpar (-ignpar)</strong></td>
<td>Ignore (do not ignore) parity errors.</td>
</tr>
<tr>
<td><strong>parmrk (-parmrk)</strong></td>
<td>Mark (do not mark) parity errors (see termio(7I)).</td>
</tr>
<tr>
<td><strong>inpck (-inpck)</strong></td>
<td>Enable (disable) input parity checking.</td>
</tr>
<tr>
<td><strong>istrip (-istrip)</strong></td>
<td>Strip (do not strip) input characters to seven bits.</td>
</tr>
</tbody>
</table>
inlcr (-inlcr) Map (do not map) NL to CR on input.
igncr (-igncr) Ignore (do not ignore) CR on input.
icrnl (-icrnl) Map (do not map) CR to NL on input.
 iuclc (-iuclc) Map (do not map) upper-case alphabets to lower case on input.
ixon (-ixon) Enable (disable) START/STOP output control. Output is stopped by sending STOP control character and started by sending the START control character.
ixany (-ixany) Allow any character (only DC1) to restart output.
ixoff (-ixoff) Request that the system send (not send) START/STOP characters when the input queue is nearly empty/full.
imaxbel (-imaxbel) Echo (do not echo) BEL when the input line is too long.
opost (-opost) Post-process output (do not post-process output; ignore all other output modes).
olcuc (-olcuc) Map (do not map) lower-case alphabets to upper case on output.
onlcr (-onlcr) Map (do not map) NL to CR-NL on output.
ocrnl (-ocrnl) Map (do not map) CR to NL on output.
onocr (-onocr) Do not (do) output CRs at column zero.
onlret (-onlret) On the terminal NL performs (does not perform) the CR function.
ofill (-ofill) Use fill characters (use timing) for delays.
ofdel (-ofdel) Fill characters are DELs (NULs).
bs0 bs1 Select style of delay for backspaces (see termio(7I)).
ff0 ff1 Select style of delay for form-feeds (see termio(7I)).
vt0 vt1 Select style of delay for vertical tabs (see termio(7I)).
isig (-isig) Enable (disable) the checking of characters against the special control characters INTR, QUIT, SWTCH, and SUSP.

Output Modes

Local Modes
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icanon (-icanon)</td>
<td>Enable (disable) canonical input (ERASE and KILL processing). Does not set MIN or TIME.</td>
</tr>
<tr>
<td>xcase (-xcase)</td>
<td>Canonical (unprocessed) upper/lower-case presentation.</td>
</tr>
<tr>
<td>echo (-echo)</td>
<td>Echo back (do not echo back) every character typed.</td>
</tr>
<tr>
<td>echoe (-echoe)</td>
<td>Echo (do not echo) ERASE character as a backspace-space-backspace string. Note: This mode will erase the ERASEd character on many CRT terminals; however, it does not keep track of column position and, as a result, it may be confusing for escaped characters, tabs, and backspaces.</td>
</tr>
<tr>
<td>echok (-echok)</td>
<td>Echo (do not echo) NL after KILL character.</td>
</tr>
<tr>
<td>lfc (-lfc)</td>
<td>The same as echok (-echok); obsolete.</td>
</tr>
<tr>
<td>echonl (-echonl)</td>
<td>Echo (do not echo) NL.</td>
</tr>
<tr>
<td>noflsh (-noplsh)</td>
<td>Disable (enable) flush after INTR, QUIT, or SUSP.</td>
</tr>
<tr>
<td>stwrap (-stwrap)</td>
<td>Disable (enable) truncation of lines longer than 79 characters on a synchronous line.</td>
</tr>
<tr>
<td>tostop (-tostop)</td>
<td>Send (do not send) SIGTTOU when background processes write to the terminal.</td>
</tr>
<tr>
<td>echoctl (-echoctl)</td>
<td>Echo (do not echo) control characters as ^char, delete as ^?.</td>
</tr>
<tr>
<td>echopt (-echopt)</td>
<td>Echo (do not echo) erase character as character is “erased”.</td>
</tr>
<tr>
<td>echoke (-echoke)</td>
<td>BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.</td>
</tr>
<tr>
<td>flusho (-flusho)</td>
<td>Output is (is not) being flushed.</td>
</tr>
<tr>
<td>pendin (-pendin)</td>
<td>Retype (do not retype) pending input at next read or input character.</td>
</tr>
<tr>
<td>iexten (-iexten)</td>
<td>Enable (disable) special control characters not currently controlled by icanon, isig, ixon, or ixoff: VEOlZ, VSWTCH, VREPRINT, VDISCARD, VDSUSP, VWERASE, and VLNEXT.</td>
</tr>
<tr>
<td>stflush (-stflush)</td>
<td>Enable (disable) flush on a synchronous line after every write(2).</td>
</tr>
<tr>
<td>stapl (-stapl)</td>
<td>Use application mode (use line mode) on a synchronous line.</td>
</tr>
<tr>
<td>rtsxoff (-rtxoff)</td>
<td>Enable (disable) RTS hardware flow control on input.</td>
</tr>
</tbody>
</table>

**Hardware Flow Control Modes**
### Clock Modes

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsxon (-ctsxon)</td>
<td>Enable (disable) CTS hardware flow control on output.</td>
</tr>
<tr>
<td>dtrxoff (-dtrxoff)</td>
<td>Enable (disable) DTR hardware flow control on input.</td>
</tr>
<tr>
<td>cdxon (-cdxon)</td>
<td>Enable (disable) CD hardware flow control on output.</td>
</tr>
<tr>
<td>isxoff (-isxoff)</td>
<td>Enable (disable) isochronous hardware flow control on input.</td>
</tr>
<tr>
<td>xcibrg</td>
<td>Get transmit clock from internal baud rate generator.</td>
</tr>
<tr>
<td>xctset</td>
<td>Get the transmit clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.</td>
</tr>
<tr>
<td>xcrset</td>
<td>Get transmit clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.</td>
</tr>
<tr>
<td>rcibrg</td>
<td>Get receive clock from internal baud rate generator.</td>
</tr>
<tr>
<td>rctset</td>
<td>Get receive clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.</td>
</tr>
<tr>
<td>rcrset</td>
<td>Get receive clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.</td>
</tr>
<tr>
<td>tsetcoff</td>
<td>Transmitter signal element timing clock not provided.</td>
</tr>
<tr>
<td>tsetcrbrg</td>
<td>Output receive baud rate generator on transmitter signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.</td>
</tr>
<tr>
<td>tsetctbrg</td>
<td>Output transmit baud rate generator on transmitter signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.</td>
</tr>
<tr>
<td>tsetctset</td>
<td>Output transmit signal element timing (DCE source) on transmitter signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.</td>
</tr>
<tr>
<td>tsetcrset</td>
<td>Output receiver signal element timing (DCE source) on transmitter signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.</td>
</tr>
<tr>
<td>rsetcoff</td>
<td>Receiver signal element timing clock not provided.</td>
</tr>
<tr>
<td>rsetcrbrg</td>
<td>Output receive baud rate generator on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.</td>
</tr>
<tr>
<td>rsetctbrg</td>
<td>Output transmit baud rate generator on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.</td>
</tr>
<tr>
<td>rsetctset</td>
<td>Output transmitter signal element timing (DCE source) on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.</td>
</tr>
</tbody>
</table>
**rsetcrset**  
Output receiver signal element timing (DCE source) on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.

**control-character c**  
Set control-character to c, where:

- control-character is ctab, discard, dsusp, eof, eol, eol2, erase, intr, kill, lnext, quit, reprint, start, stop, susp, swtch, or werase (ctab is used with -stappl, see termio(7I)).

- c

  If c is a single character, the control character will be set to that character.

  In the POSIX locale, if c is preceded by a caret (^) indicating an escape from the shell and is one of those listed in the ^c column of the following table, then its value used (in the Value column) is the corresponding control character (for example, "^d" is a CTRL-D). "^?" is interpreted as DEL and "^-" is interpreted as undefined.

<table>
<thead>
<tr>
<th>^c</th>
<th>Value</th>
<th>^c</th>
<th>Value</th>
<th>^c</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, A</td>
<td>&lt;SOH&gt;</td>
<td>1, L</td>
<td>&lt;FF&gt;</td>
<td>w, W</td>
<td>&lt;ETB&gt;</td>
</tr>
<tr>
<td>b, B</td>
<td>&lt;STX&gt;</td>
<td>m, M</td>
<td>&lt;CR&gt;</td>
<td>x, X</td>
<td>&lt;CAN&gt;</td>
</tr>
<tr>
<td>c, C</td>
<td>&lt;ETX&gt;</td>
<td>n, N</td>
<td>&lt;SO&gt;</td>
<td>y, Y</td>
<td>&lt;EM&gt;</td>
</tr>
<tr>
<td>d, D</td>
<td>&lt;EOT&gt;</td>
<td>o, O</td>
<td>&lt;SI&gt;</td>
<td>z, Z</td>
<td>&lt;SUB&gt;</td>
</tr>
<tr>
<td>e, E</td>
<td>&lt;ENQ&gt;</td>
<td>p, P</td>
<td>&lt;DLE&gt;</td>
<td>[</td>
<td>&lt;ESC&gt;</td>
</tr>
<tr>
<td>f, F</td>
<td>&lt;ACK&gt;</td>
<td>q, Q</td>
<td>&lt;DC1&gt;</td>
<td>\</td>
<td>&lt;PS&gt;</td>
</tr>
<tr>
<td>g, G</td>
<td>&lt;BEL&gt;</td>
<td>r, R</td>
<td>&lt;DC2&gt;</td>
<td>]</td>
<td>&lt;GS&gt;</td>
</tr>
<tr>
<td>h, H</td>
<td>&lt;BS&gt;</td>
<td>s, S</td>
<td>&lt;DC3&gt;</td>
<td>^</td>
<td>&lt;RS&gt;</td>
</tr>
<tr>
<td>i, I</td>
<td>&lt;HT&gt;</td>
<td>t, T</td>
<td>&lt;DC4&gt;</td>
<td>_</td>
<td>&lt;US&gt;</td>
</tr>
<tr>
<td>j, J</td>
<td>&lt;LF&gt;</td>
<td>u, U</td>
<td>&lt;NAK&gt;</td>
<td>?</td>
<td>&lt;DEL&gt;</td>
</tr>
<tr>
<td>k, K</td>
<td>&lt;VT&gt;</td>
<td>v, V</td>
<td>&lt;SYN&gt;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**min number**  
**time number**  
Set the value of min or time to number. MIN and TIME are used in Non-Canonical mode input processing (-icanon).
### Combination Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line $i$</td>
<td>Set line discipline to $i$ ($0 &lt; i &lt; 127$).</td>
</tr>
<tr>
<td>saved settings</td>
<td>Set the current terminal characteristics to the saved settings produced by the <code>-g</code> option.</td>
</tr>
<tr>
<td>evenp or parity</td>
<td>Enable <code>parenb</code> and <code>cs7</code>, or disable <code>parodd</code>.</td>
</tr>
<tr>
<td>oddp</td>
<td>Enable <code>parenb</code>, <code>cs7</code>, and <code>parodd</code>.</td>
</tr>
<tr>
<td>spacep</td>
<td>Enable <code>parenb</code>, <code>cs7</code>, and <code>parext</code>.</td>
</tr>
<tr>
<td>markp</td>
<td>Enable <code>parenb</code>, <code>cs7</code>, <code>parodd</code>, and <code>parext</code>.</td>
</tr>
<tr>
<td>-parity, or -evenp</td>
<td>Disable <code>parenb</code>, and set <code>cs8</code>.</td>
</tr>
<tr>
<td>-oddp</td>
<td>Disable <code>parenb</code> and <code>parodd</code>, and set <code>cs8</code>.</td>
</tr>
<tr>
<td>-spacep</td>
<td>Disable <code>parenb</code> and <code>parext</code>, and set <code>cs8</code>.</td>
</tr>
<tr>
<td>-markp</td>
<td>Disable <code>parenb</code>, <code>parodd</code>, and <code>parext</code>, and set <code>cs8</code>.</td>
</tr>
<tr>
<td>raw (-raw or cooked)</td>
<td>Enable (disable) raw input and output. Raw mode is equivalent to setting:</td>
</tr>
<tr>
<td></td>
<td><code>stty cs8 -icanon min 1 time 0 -isig -xcase \</code></td>
</tr>
<tr>
<td></td>
<td><code>-inpck -opost</code></td>
</tr>
<tr>
<td>/usr/bin/stty</td>
<td>nl (-nl) Unset (set) <code>icrnl</code>, <code>onlcr</code>. In addition <code>-nl</code> unsets <code>inlcr</code>, <code>igncr</code>, <code>ocrnl</code>, and <code>onlret</code>.</td>
</tr>
<tr>
<td>/usr/xpg4/bin/stty</td>
<td>nl (-nl) Set (unset) <code>icrnl</code>. In addition, <code>-nl</code> unsets <code>inlcr</code>, <code>igncr</code>, <code>ocrnl</code>, and <code>onlret</code>; <code>-nl</code> sets <code>onlcr</code>, and <code>nl</code> unsets <code>onlcr</code>.</td>
</tr>
<tr>
<td>lcase (-lcase)</td>
<td>Set (unset) <code>xcase</code>, <code>iuclc</code>, and <code>olcuc</code>.</td>
</tr>
<tr>
<td>LCASE (-LCASE)</td>
<td>Same as lcase (-lcase).</td>
</tr>
<tr>
<td>tabs (-tabs or tab3)</td>
<td>Preserve (expand to spaces) tabs when printing.</td>
</tr>
<tr>
<td>ek</td>
<td>Reset ERASE and KILL characters back to normal <code>#</code> and <code>@</code>.</td>
</tr>
<tr>
<td>sane</td>
<td>Resets all modes to some reasonable values.</td>
</tr>
<tr>
<td>term</td>
<td>Set all modes suitable for the terminal type <code>term</code>, where <code>term</code> is one of <code>tty33</code>, <code>tty37</code>, <code>vt05</code>, <code>tn300</code>, <code>ti700</code>, or <code>tek</code>.</td>
</tr>
<tr>
<td>async</td>
<td>Set normal asynchronous communications where clock settings are <code>xcibrg</code>, <code>rcibrg</code>, <code>tsetcoff</code> and <code>rsetcoff</code>.</td>
</tr>
</tbody>
</table>

### Window Size

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rows $n$</td>
<td>Set window size to $n$ rows.</td>
</tr>
<tr>
<td>columns $n$</td>
<td>Set window size to $n$ columns.</td>
</tr>
</tbody>
</table>
cols n    Set window size to \( n \) columns. Note that `cols` is a shorthand alias for columns.
ypixels n  Set vertical window size to \( n \) pixels.
xpixels n  Set horizontal window size to \( n \) pixels.

**USAGE**
The `-g` flag is designed to facilitate the saving and restoring of terminal state from the shell level. For example, a program may:

```bash
saveterm="$(stty -g)" # save terminal state
stty (new settings) # set new state
... # ... # ...
stty $saveterm # restore terminal state
```

Since the `-a` format is so loosely specified, scripts that save and restore terminal settings should use the `-g` option.

**ENVIRONMENT VARIABLES**
See `environ(5)` for descriptions of the following environment variables that affect the execution of `stty`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

**EXIT STATUS**
The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

**ATTRIBUTES**
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

**SEE ALSO**
tabs(1), ioctl(2), write(2), getwidth(3C), attributes(5), environ(5), standards(5), ldterm(7M), termio(7I), termiox(7I)
NAME  |  stty – set the options for a terminal
SYNOPSIS |  /usr/ucb/stty [-a] [-g] [-h] [modes]
DESCRIPTION |  stty sets certain terminal I/O options for the device that is the current standard output; without arguments, it reports the settings of certain options.

OPTIONS |  In this report, if a character is preceded by a caret (^), then the value of that option is the corresponding CTRL character (for example, “^h” is CTRL-H; in this case, recall that CTRL-H is the same as the “back-space” key.) The sequence “^;” means that an option has a null value.

-a  |  Report all of the option settings.

-g  |  Report current settings in a form that can be used as an argument to another stty command.

-h  |  Report all the option settings with the control characters in an easy to read column format.

Options in the last group are implemented using options in the previous groups. Note: Many combinations of options make no sense, but no sanity checking is performed. Hardware flow control and clock modes options may not be supported by all hardware interfaces. The options are selected from the following:

Special Requests |  all  Reports the same option settings as stty without arguments, but with the control characters in column format.

|  everything  Everything stty knows about is printed. Same as -h option.

|  speed  The terminal speed alone is reported on the standard output.

|  size  The terminal (window) sizes are printed on the standard output, first rows and then columns. This option is only appropriate if currently running a window system.

|  size and speed always report on the settings of /dev/tty, and always report the settings to the standard output.

Control Modes |  parenb (-parenb)  Enable (disable) parity generation and detection.

|  parext (-parext)  Enable (disable) extended parity generation and detection for mark and space parity.

|  parodd (-parodd)  Select odd (even) parity, or mark (space) parity if parext is enabled.

|  cs5 cs6 cs7 cs8  Select character size (see termio(7)).

|  0  Hang up line immediately.
Set terminal baud rate to the number given, if possible. (All speeds are not supported by all hardware interfaces.)

`ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb`

Set terminal input baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the input baud rate is set to zero, the input baud rate will be specified by the value of the output baud rate.

`ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb`

Set terminal output baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the baud rate is set to zero, the line will be hung up immediately.

`hupcl (-hupcl)`
Hang up (do not hang up) connection on last close.

`hup (-hup)`
Same as `hupcl (-hupcl)`.

`cstopb (-cstopb)`
Use two (one) stop bits per character.

`cread (-cread)`
Enable (disable) the receiver.

`clocal (-clocal)`
Assume a line without (with) modem control.

`crtscts (-crtscts)`
Enable hardware flow control. Raise the RTS (Request to Send) modem control line. Suspends output until the CTS (Clear to Send) line is raised.

`loblk (-loblk)`
Block (do not block) output from a non-current layer.

**Input Modes**

- `ignbrk (-ignbrk)` Ignore (do not ignore) break on input.
- `brkint (-brkint)` Signal (do not signal) INTR on break.
- `ignpar (-ignpar)` Ignore (do not ignore) parity errors.
- `parmrk (-parmrk)` Mark (do not mark) parity errors (see `termio(7I)`).
- `inpck (-inpck)` Enable (disable) input parity checking.
- `istrip (-istrip)` Strip (do not strip) input characters to seven bits.
- `inlcr (-inlcr)` Map (do not map) NL to CR on input.
- `igncr (-igncr)` Ignore (do not ignore) CR on input.
- `icrnl (-icrnl)` Map (do not map) CR to NL on input.
### Output Modes

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iuclc</td>
<td>Map (do not map) upper-case alphabetics to lower case on input.</td>
</tr>
<tr>
<td>ixon</td>
<td>Enable (disable) START/STOP output control. Output is stopped by sending an STOP and started by sending an START.</td>
</tr>
<tr>
<td>ixany</td>
<td>Allow any character (only START) to restart output.</td>
</tr>
<tr>
<td>decctlq</td>
<td>Same as -ixany.</td>
</tr>
<tr>
<td>ixoff</td>
<td>Request that the system send (not send) START/STOP characters when the input queue is nearly empty/full.</td>
</tr>
<tr>
<td>tandem</td>
<td>Same as ixoff.</td>
</tr>
<tr>
<td>imaxbel</td>
<td>Echo (do not echo) BEL when the input line is too long.</td>
</tr>
<tr>
<td>iexten</td>
<td>Enable (disable) extended (implementation-defined) functions for input data.</td>
</tr>
<tr>
<td>opost</td>
<td>Post-process output (do not post-process output; ignore all other output modes).</td>
</tr>
<tr>
<td>olcuc</td>
<td>Map (do not map) lower-case alphabetics to upper case on output.</td>
</tr>
<tr>
<td>onlcr</td>
<td>Map (do not map) NL to CR-NL on output.</td>
</tr>
<tr>
<td>ocrnl</td>
<td>Map (do not map) CR to NL on output.</td>
</tr>
<tr>
<td>onocr</td>
<td>Do not (do) output CRs at column zero.</td>
</tr>
<tr>
<td>onlret</td>
<td>On the terminal NL performs (does not perform) the CR function.</td>
</tr>
<tr>
<td>ofill</td>
<td>Use fill characters (use timing) for delays.</td>
</tr>
<tr>
<td>ofdel</td>
<td>Fill characters are DELs (NULs).</td>
</tr>
<tr>
<td>cr0 cr1</td>
<td>Select style of delay for carriage returns (see termio(7I)).</td>
</tr>
<tr>
<td>cr2 cr3</td>
<td></td>
</tr>
<tr>
<td>nl0 nl1</td>
<td>Select style of delay for line-feeds (see termio(7I)).</td>
</tr>
<tr>
<td>tab0 tab1</td>
<td>Select style of delay for horizontal tabs (see termio(7I)).</td>
</tr>
<tr>
<td>tab2 tab3</td>
<td></td>
</tr>
<tr>
<td>bs0 bs1</td>
<td>Select style of delay for backspaces (see termio(7I)).</td>
</tr>
<tr>
<td>ff0 ff1</td>
<td>Select style of delay for form-feeds (see termio(7I)).</td>
</tr>
<tr>
<td>vt0 vt1</td>
<td>Select style of delay for vertical tabs (see termio(7I)).</td>
</tr>
</tbody>
</table>

### Local Modes

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isig</td>
<td>Enable (disable) the checking of characters against the special control characters INTR, QUIT, and SWTCH.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>icanon (-icanon)</td>
<td>Enable (disable) canonical input (ERASE and KILL processing). Does not set MIN or TIME.</td>
</tr>
<tr>
<td>cbreak (-cbreak)</td>
<td>Equivalent to -icanon min 1 time 0.</td>
</tr>
<tr>
<td>xcase (-xcase)</td>
<td>Canonical (unprocessed) upper/lower-case presentation.</td>
</tr>
<tr>
<td>echo (-echo)</td>
<td>Echo back (do not echo back) every character typed.</td>
</tr>
<tr>
<td>echoe (-echoe)</td>
<td>Echo (do not echo) ERASE character as a backspace-space-backspace string. Note: This mode will erase the ERASEed character on many CRT terminals; however, it does not keep track of column position and, as a result, may be confusing on escaped characters, tabs, and backspaces.</td>
</tr>
<tr>
<td>crterase (-crterase)</td>
<td>Same as echoe.</td>
</tr>
<tr>
<td>echok (-echok)</td>
<td>Echo (do not echo) NL after KILL character.</td>
</tr>
<tr>
<td>1fkc (-1fkc)</td>
<td>The same as echok (-echok); obsolete.</td>
</tr>
<tr>
<td>echonl (-echonl)</td>
<td>Echo (do not echo) NL.</td>
</tr>
<tr>
<td>noflush (-noflush)</td>
<td>Disable (enable) flush after INTR, QUIT, or SWTCH.</td>
</tr>
<tr>
<td>stwrap (-stwrap)</td>
<td>Disable (enable) truncation of lines longer than 79 characters on a synchronous line. (Does not apply to the 3B2.)</td>
</tr>
<tr>
<td>tostop (-tostop)</td>
<td>Send (do not send) SIGTTOU for background processes.</td>
</tr>
<tr>
<td>echoctl (-echoctl)</td>
<td>Echo (do not echo) control characters as ^char, delete as ^?</td>
</tr>
<tr>
<td>ctlecho (-ctlecho)</td>
<td>Same as echoctl.</td>
</tr>
<tr>
<td>echoprt (-echoprt)</td>
<td>Echo (do not echo) erase character as character is “erased”.</td>
</tr>
<tr>
<td>prterase (-prterase)</td>
<td>Same as echoprt.</td>
</tr>
<tr>
<td>echoke (-echoke)</td>
<td>BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.</td>
</tr>
<tr>
<td>crttkill (-crttkill)</td>
<td>Same as echoke.</td>
</tr>
<tr>
<td>flusho (-flusho)</td>
<td>Output is (is not) being flushed.</td>
</tr>
<tr>
<td>pendin (-pendin)</td>
<td>Retype (do not retype) pending input at next read or input character.</td>
</tr>
<tr>
<td>stflush (-stflush)</td>
<td>Enable (disable) flush on a synchronous line after every write(2). (Does not apply to the 3B2.)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>stapl(-stapl)</code></td>
<td>Use application mode (use line mode) on a synchronous line. (Does not apply to the 3B2.)</td>
</tr>
<tr>
<td><code>rtsxoff(-rtsxoff)</code></td>
<td>Enable (disable) RTS hardware flow control on input.</td>
</tr>
<tr>
<td><code>ctxon(-ctxon)</code></td>
<td>Enable (disable) CTS hardware flow control on output.</td>
</tr>
<tr>
<td><code>dterxoff(-dterxoff)</code></td>
<td>Enable (disable) DTER hardware flow control on input.</td>
</tr>
<tr>
<td><code>rlsdxon(-rlsdxon)</code></td>
<td>Enable (disable) RLSD hardware flow control on output.</td>
</tr>
<tr>
<td><code>isxoff(-isxoff)</code></td>
<td>Enable (disable) isochronous hardware flow control on input.</td>
</tr>
<tr>
<td><code>xcibrg</code></td>
<td>Get transmit clock from internal baud rate generator.</td>
</tr>
<tr>
<td><code>xctset</code></td>
<td>Get the transmit clock from transmitter signal element timing (DCE source) lead, CcITT V.24 circuit 114, EIA-232-D pin 15.</td>
</tr>
<tr>
<td><code>xcrset</code></td>
<td>Get transmit clock from receiver signal element timing (DCE source) lead, CcITT V.24 circuit 115, EIA-232-D pin 17.</td>
</tr>
<tr>
<td><code>rcibrg</code></td>
<td>Get receive clock from internal baud rate generator.</td>
</tr>
<tr>
<td><code>rctset</code></td>
<td>Get receive clock from transmitter signal element timing (DCE source) lead, CcITT V.24 circuit 114, EIA-232-D pin 15.</td>
</tr>
<tr>
<td><code>rcrset</code></td>
<td>Get receive clock from receiver signal element timing (DCE source) lead, CcITT V.24 circuit 115, EIA-232-D pin 17.</td>
</tr>
<tr>
<td><code>tsetcoff</code></td>
<td>Transmitter signal element timing clock not provided.</td>
</tr>
<tr>
<td><code>tsetcrc</code></td>
<td>Output receive clock on transmitter signal element timing (DTE source) lead, CcITT V.24 circuit 113, EIA-232-D pin 24, clock source.</td>
</tr>
<tr>
<td><code>tsetxcx</code></td>
<td>Output transmit clock on transmitter signal element timing (DTE source) lead, CcITT V.24 circuit 113, EIA-232-D pin 24, clock source.</td>
</tr>
<tr>
<td><code>rsetcoff</code></td>
<td>Receiver signal element timing clock not provided.</td>
</tr>
<tr>
<td><code>rsetcrc</code></td>
<td>Output receive clock on receiver signal element timing (DTE source) lead, CcITT V.24 circuit 128, no EIA-232-D pin, clock source.</td>
</tr>
<tr>
<td><code>rsetxcx</code></td>
<td>Output transmit clock on receiver signal element timing (DTE source) lead, CcITT V.24 circuit 128, no EIA-232-D pin, clock source.</td>
</tr>
</tbody>
</table>
### Control Assignments

**control-character** `c`  
Set `control-character` to `c`, where `control-character` is intr, quit, erase, kill, eof, eol, eol2, swtch, start, stop, susp, dsusp, rprnt, flush, werase, lnext, min, ctab, time, or brk (ctab is used with -stappl; min and time are used with -icanon; see termio(7I)). If `c` is preceded by an (escaped from the shell) caret (`^`), then the value used is the corresponding CTRL character (for example, `'^d'` is a CTRL-d); `'^?'` is interpreted as DEL and `'^~'` is interpreted as undefined.

### Combination Modes

**line** `i`  
Set line discipline to `i` (0 < `i` < 127).

**evenp or parity**  
Enable parenb and cs7.

**-evenp, or -parity**  
Disable parenb, and set cs8.

**even (-even)**  
Same as evenp (-evenp).

**oddp**  
Enable parenb, cs7, and parodd.

**-oddp**  
Disable parenb and parodd, and set cs8.

**odd (-odd)**  
Same as oddp (-oddp).

**spacep**  
Enable parenb, cs7, and parext.

**-spacep**  
Disable parenb and parext, and set cs8.

**markp**  
Enable parenb, cs7, parodd, and parext.

**-markp**  
Disable parenb, parodd, and parext, and set cs8.

**raw (-raw or cooked)**  
Enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, SWTCH, EOT, or output post processing).

**nl (-nl)**  
Unset (set) icrnl, onlcr. In addition -nl unsets inlcr, igncr, ocrnl, and onlret.

**lcase (-lcase)**  
Set (unset) xcase, iucic, and olcuc.

**LCASE (-LCASE)**  
Same as lcase (-lcase).

**tabs (-tabs or tab3)**  
Preserve (expand to spaces) tabs when printing.

**ek**  
Reset ERASE and KILL characters back to normal # and @.

**sane**  
Resets all modes to some reasonable values.

**term**  
Set all modes suitable for the terminal type `term`, where `term` is one of tty33, tty37, vt05, tn300, ti700, or tek.

---

**stty(1B)**
async
Set normal asynchronous communications where clock settings are xcibrg, rcibrg, tsetcoff and rsetcoff.

litout (-litout)
Disable (enable) parenb, istrip, and opost, and set cs8 (cs7).

pass8 (-pass8)
Disable (enable) parenb and istrip, and set cs8 (cs7).

crt
Set options for a CRT (echoe, echoctl, and, if >= 1200 baud, echoke.)

dec
Set all modes suitable for Digital Equipment Corp. operating systems users ERASE, KILL, and INTR characters to ^?, ^U, and ^C, decctlq, and crt.)

Window Size
rowsn
Set window size to n rows.
columnsn
Set window size to n columns.
colsn
An alias for columns n.
ypixelsn
Set vertical window size to n pixels.
xpixelsn
Set horizontal window size to n pixels.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO tabs(1), ioctl(2), attributes(5), termio(7I), termiox(7I)
The `sum` utility calculates and prints a 16-bit checksum for the named file and the number of 512-byte blocks in the file. It is typically used to look for bad spots, or to validate a file communicated over some transmission line.

The following options are supported:

- `-r` Use an alternate (machine-dependent) algorithm in computing the checksum.

The following operands are supported:

- `file` A path name of a file. If no files are named, the standard input is used.

See `largefile(5)` for the description of the behavior of `sum` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

See `environ(5)` for descriptions of the following environment variables that affect the execution of `sum`: `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

The following exit values are returned.

- `0` Successful completion.
- `>0` An error occurred.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Portable applications should use `cksum(1)`.

`sum` and `usr/ucb/sum` (see `sum(1B)`) return different checksums.
NAME  sum – calculate a checksum for a file

SYNOPSIS  /usr/ucb/sum file...

DESCRIPTION  sum calculates and displays a 16-bit checksum for the named file and displays the size of the file in kilobytes. It is typically used to look for bad spots, or to validate a file communicated over some transmission line. The checksum is calculated by an algorithm which may yield different results on machines with 16-bit ints and machines with 32-bit ints, so it cannot always be used to validate that a file has been transferred between machines with different-sized ints.

USAGE  See largefile(5) for the description of the behavior of sum when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO  sum(1), wc(1), attributes(5), largefile(5)

DIAGNOSTICS  Read error is indistinguishable from EOF on most devices; check the block count.

NOTES  sum and /usr/bin/sum (see sum(1)) return different checksums.

This utility is obsolete.
NAME  | suspend – shell built-in function to halt the current shell

SYNOPSIS

sh  suspend

csh suspend

ksh suspend

DESCRIPTION

sh  Stops the execution of the current shell (but not if it is the login shell).

csh  Stop the shell in its tracks, much as if it had been sent a stop signal with ^z. This is most often used to stop shells started by su.

ksh  Stops the execution of the current shell (but not if it is the login shell).

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO  csh(1), kill(1), ksh(1), sh(1), su(1M), attributes(5)
symorder(1)

NAME  symorder – rearrange a list of symbols

SYNOPSIS  symorder [-s] objectfile symbolfile

DESCRIPTION  symorder was used in SunOS 4.x specifically to cut down on the overhead of getting symbols from vmunix. This is no longer applicable as kernel symbol entries are dynamically obtained through /dev/ksyms.

This script is provided as a convenience for software developers who need to maintain scripts that are portable across a variety of operating systems.

EXIT STATUS  symorder has exit status 0.

ATTRIBUTES  See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
</tbody>
</table>

SEE ALSO  nlist(3ELF), attributes(5), ksym(7D).
sysV-make – maintain, update, and regenerate groups of programs

SYNOPSIS

/usr/lib/svr4.make [-f makefile] [-eiknpqrst] [names]

DESCRIPTION

This is the “vanilla” System V version of make. If the environment variable USE_SVR4_MAKE is set, then the command make will invoke this version of make.
(See also the ENVIRONMENT section.)

make allows the programmer to maintain, update, and regenerate groups of computer programs. make executes commands in makefile to update one or more target names (names are typically programs). If the -f option is not present, then makefile, Makefile, and the Source Code Control System (SCCS) files s.makefile and s.Makefile are tried in order. If makefile is ‘-‘ the standard input is taken. More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prerequisite files of a target are added recursively to the list of targets. Missing files are deemed to be outdated.

The following list of four directives can be included in makefile to extend the options provided by make. They are used in makefile as if they were targets:

?.DEFAULT: If a file must be made but there are no explicit commands or relevant built-in rules, the commands associated with the name ?.DEFAULT are used if it exists.

?.IGNORE: Same effect as the -i option.

?.PRECIOUS: Dependents of the ?.PRECIOUS entry will not be removed when quit or interrupt are hit.

?.SILENT: Same effect as the -s option.

Options

The options for make are listed below:

-e

Environment variables override assignments within makefiles.

-f makefile

Description filename (makefile is assumed to be the name of a description file).

-i

Ignore error codes returned by invoked commands.

-k

Abandon work on the current entry if it fails, but continue on other branches that do not depend on that entry.

-n

No execute mode. Print commands, but do not execute them. Even command lines beginning with an '@' are printed.

-p

Print out the complete set of macro definitions and target descriptions.

-q

Question. make returns a zero or non-zero status code depending on whether or not the target file has been updated.

-r

Do not use the built-in rules.
sysV-make(1)

Creating the makefile

- `s` Silent mode. Do not print command lines before executing.
- `t` Touch the target files (causing them to be updated) rather than issue the usual commands.

The makefile invoked with the -f option is a carefully structured file of explicit instructions for updating and regenerating programs, and contains a sequence of entries that specify dependencies. The first line of an entry is a blank-separated, non-null list of targets, then a `:` , then a (possibly null) list of prerequisite files or dependencies. Text following a `:` and all following lines that begin with a tab are shell commands to be executed to update the target. The first non-empty line that does not begin with a tab or `#` begins a new dependency or macro definition. Shell commands may be continued across lines with a backslash-new-line (`\-NEWLINE`) sequence. Everything printed by make (except the initial TAB) is passed directly to the shell as is. Thus,

```
echo a\
b
```

will produce

```
ab
```

exactly the same as the shell would.

Number-sign (#) and NEWLINE surround comments including contained `\-NEWLINE` sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that they in turn depend on their corresponding source files (a.c and b.c) and a common file incl.h:

```
pgm: a.o b.o
c c a.o b.o -o pgm
a.o: incl.h a.c
c c -c a.c
b.o: incl.h b.c
c c -c b.c
```

Command lines are executed one at a time, each by its own shell. The SHELL environment variable can be used to specify which shell make should use to execute commands. The default is `/usr/bin/sh`. The first one or two characters in a command can be the following: `@`, `!`, `@!`, or `!@`. If `@` is present, printing of the command is suppressed. If `!` is present, make ignores an error. A line is printed when it is executed unless the -s option is present, or the entry .SILENT: is included in makefile, or unless the initial character sequence contains a `@`. The -n option specifies
printing without execution; however, if the command line has the string \$(MAKE) in it, the line is always executed (see the discussion of the MAKEFLAGS macro in the make Environment sub-section below). The -t (touch) option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is present, if the entry .IGNORE: is included in makefile, or if the initial character sequence of the command contains ‘-’, the error is ignored. If the -k option is present, work is abandoned on the current entry, but continues on other branches that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of the directive .PRECIOUS.

make Environment

The environment is read by make. All variables are assumed to be macro definitions and are processed as such. The environment variables are processed before any makefile and after the internal rules; thus, macro assignments in a makefile override environment variables. The -e option causes the environment to override the macro assignments in a makefile. Suffixes and their associated rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any legal input option (except -f and -p) defined for the command line. Further, upon invocation, make “invents” the variable if it is not in the environment, puts the current options into it, and passes it on to invocations of commands. Thus, MAKEFLAGS always contains the current input options. This feature proves very useful for “super-makes”. In fact, as noted above, when the -n option is used, the command \$(MAKE) is executed anyway; hence, one can perform a make -n recursively on a whole software system to see what would have been executed. This result is possible because the -n is put in MAKEFLAGS and passed to further invocations of \$(MAKE) . This usage is one way of debugging all of the makefiles for a software project without actually doing anything.

Include Files

If the string include appears as the first seven letters of a line in a makefile, and is followed by a blank or a tab, the rest of the line is assumed to be a filename and will be read by the current invocation, after substituting for any macros.

Macros

Entries of the form string1 = string2 are macro definitions. string2 is defined as all characters up to a comment character or an unescaped NEWLINE. Subsequent appearances of \$(string1[:subst1=[subst2]]) are replaced by string2. The parentheses are optional if a single-character macro name is used and there is no substitute sequence. The optional subst1=subst2 is a substitute sequence. If it is specified, all non-overlapping occurrences of subst1 in the named macro are replaced by subst2. Strings (for the purposes of this type of substitution) are delimited by BLANKs, TABs, NEWLINE characters, and beginnings of lines. An example of the use of the substitute sequence is shown in the Libraries sub-section below.
There are five internally maintained macros that are useful for writing rules for building targets.

\$*

The macro $* stands for the filename part of the current dependent with the suffix deleted. It is evaluated only for inference rules.

\$@

The $@ macro stands for the full target name of the current target. It is evaluated only for explicitly named dependencies.

\$<

The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module that is outdated with respect to the target (the "manufactured" dependent file name). Thus, in the .c.o rule, the $< macro would evaluate to the .c file. An example for making optimized .o files from .c files is:

.c.o:
  cc -c -O $*.c

or:

.c.o:
  cc -c -O $<

\$?

The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the list of prerequisites that are outdated with respect to the target, and essentially those modules that must be rebuilt.

\$%

The $% macro is only evaluated when the target is an archive library member of the form lib(file.o). In this case, $@ evaluates to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is appended to any of the four macros, the meaning is changed to "directory part" for D and "file part" for F. Thus, $(@(D) refers to the directory part of the string $@. If there is no directory part, ./ is generated. The only macro excluded from this alternative form is $?.

Certain names (for instance, those ending with .o) have inferable prerequisites such as .c, .s, etc. If no update commands for such a file appear in makefile, and if an inferable prerequisite exists, that prerequisite is compiled to make the target. In this case, make has inference rules that allow building files from other files by examining the suffixes and determining an appropriate inference rule to use. The current default inference rules are:

```
.c .c~ .f .f~ .s .s~ .sh .sh~ .C .C~
.c.a .c.o .c~a .c~c .c~.o .f.a .f.o .f~a .f~f .f~.o
.h~.h .l.c .l.o .l~.c .l~.l .l~.o .s.a .s.o .s~a .s~.o
```
The internal rules for `make` are contained in the source file `make.rules` for the `make` program. These rules can be locally modified. To print out the rules compiled into the `make` on any machine in a form suitable for recompilation, the following command is used:

```
make -pf 2>/dev/null </dev/null
```

A tilde in the above rules refers to an SCCS file (see `sccsfile(4)`). Thus, the rule `.c~.o` would transform an SCCS C source file into an object file (.o). Because the .s of the SCCS files is a prefix, it is incompatible with the `make` suffix point of view. Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, `.c:`) is the definition of how to build `x` from `x.c`. In effect, the other suffix is null. This feature is useful for building targets from only one source file, for example, shell procedures and simple C programs.

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant: the first possible name for which both a file and a rule exist is inferred as a prerequisite. The default list is:

```
.SUFFIXES: .o .c .c~ .y .y~ .l .l~ .s .s~ .sh .sh~ .h .h~ .f .f~ .C .C~ .Y .Y~ .L .L~
```

Here again, the above command for printing the internal rules will display the list of suffixes implemented on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no dependencies clears the list of suffixes.

### Inference Rules

The first example can be done more briefly.

```
pgm: a.o b.o
 cc a.o b.o -o pgm
a.o b.o: incl.h
```

This abbreviation is possible because `make` has a set of internal rules for building files. The user may add rules to this list by simply putting them in the `makefile`.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any resulting commands. For example, `CFLAGS`, `LFLAGS`, and `YFLAGS` are used for compiler options to `cc(1B)`. Again, the previous method for examining the current rules is recommended.
The inference of prerequisites can be controlled. The rule to create a file with suffix .o from a file with suffix .c is specified as an entry with .c.o: as the target and no dependents. Shell commands associated with the target define the rule for making a .o file from a .c file. Any target that has no slashes in it and starts with a dot is identified as a rule and not a true target.

If a target or dependency name contains parentheses, it is assumed to be an archive library, the string within parentheses referring to a member within the library. Thus, lib(file.o) and $(LIB)(file.o) both refer to an archive library that contains file.o. (This example assumes the LIB macro has been previously defined.) The expression $(LIB)(file1.o file2.o) is not legal. Rules pertaining to archive libraries have the form .XX.a where the XX is the suffix from which the archive member is to be made. An unfortunate by-product of the current implementation requires the XX to be different from the suffix of the archive member. Thus, one cannot have lib(file.o) depend upon file.o explicitly. The most common use of the archive interface follows. Here, we assume the source files are all C type source:

```
lib: lib(file1.o) lib(file2.o) lib(file3.o)
 @echo lib is now up-to-date
.c.a:
 $(CC) -c $(CFLAGS) $< $(AR) $(ARFLAGS) $@ $*.o
 rm -f $*.o
```

In fact, the .c.a rule listed above is built into make and is unnecessary in this example. A more interesting, but more limited example of an archive library maintenance construction follows:

```
lib: lib(file1.o) lib(file2.o) lib(file3.o)
 $(CC) -c $(CFLAGS) $(?:.o=.c)
 $(AR) $(ARFLAGS) lib $?
 rm $?
 @echo lib is now up-to-date
.c.a:
```

Here the substitution mode of the macro expansions is used. The $? list is defined to be the set of object filenames (inside lib) whose C source files are outdated. The substitution mode translates the .o to .c. (Unfortunately, one cannot as yet transform to .c~; however, this transformation may become possible in the future.) Also note the disabling of the .c.a: rule, which would have created each object file, one by one. This particular construct speeds up archive library maintenance considerably. This type of construct becomes very cumbersome if the archive library contains a mix of assembly programs and C programs.

### USE_SVR4_MAKE

If this environment variable is set, then the make command will invoke this System V version of make. If this variable is not set, then the default version of make(1S) is invoked.

```
USE_SVR4_MAKE can be set as follows (Bourne shell):
$ USE_SVR4_MAKE=``''; export USE_SVR4_MAKE
```

### ENVIRONMENT VARIABLES

- **USE_SVR4_MAKE**

  If this environment variable is set, then the make command will invoke this System V version of make. If this variable is not set, then the default version of make(1S) is invoked.

  ```
 USE_SVR4_MAKE can be set as follows (Bourne shell):
 $ USE_SVR4_MAKE=``''; export USE_SVR4_MAKE
  ```

or (C shell):

% setenv USE_SVR4_MAKE

FILES

[Mm]akefile
s.[Mm]akefile
default makefiles
/usr/bin/sh
default shell for make
/usr/share/lib/make/make.rules
default rules for make

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO

cc(1B), cd(1), make(1S), sh(1), printf(3C), sccsfile(4), attributes(5)

NOTES

Some commands return non-zero status inappropriately; use -i or the ‘-’ command line prefix to overcome the difficulty.

Filenames containing the characters ‘=’, ‘:’, and ‘@’ will not work. Commands that are directly executed by the shell, notably cd(1), are ineffectual across NEWLINEs in make. The syntax lib(file1.o file2.o file3.o) is illegal. You cannot build lib(file.o) from file.o.
NAME

tabs – set tabs on a terminal

SYNOPSIS

tabs [-n | -n file | [-code] | -a | -a2 | -c | -c2 | -c3 | -f | -p | -s

DESCRIPTION

The `tabs` utility sets the tab stops on the user’s terminal according to a tab
specification, after clearing any previous settings. The user’s terminal must have
remotely settable hardware tabs.

OPTIONS

The following options are supported. If a given flag occurs more than once, the last
value given takes effect:

- `-T type`
  `tabs` needs to know the type of terminal in order to set tabs and
  margins. `type` is a name listed in `term`(5). If no `-T` flag is supplied,
  `tabs` uses the value of the environment variable `TERM`. If the value
  of `TERM` is `NULL` or `TERM` is not de
  fi
  ned in the environment (see `environ`(5)), `tabs` uses `ansi+tabs`
  as the terminal type to
  provide a sequence that will work for many terminals.

- `+m [n]`
  The margin argument may be used for some terminals. It causes
  all tabs to be moved over `n` columns by making column `n+1` the
  left margin. If `+m` is given without a value of `n`, the value assumed
  is `10`. For a TermiNet, the first value in the tab list should be `1`, or
  the margin will move even further to the right. The normal
  (leftmost) margin on most terminals is obtained by `+m0`. The
  margin for most terminals is reset only when the `+m` flag is given
  explicitly.

Tab Specification

Four types of tab specification are accepted. They are described below: canned,
repetitive (`-n`), arbitrary (`n1,n2,...`), and file (`-file`).

If no tab specification is given, the default value is `-8`, that is, UNIX system
“standard” tabs. The lowest column number is `1`. Note: For `tabs`, column `1` always
refers to the leftmost column on a terminal, even one whose column markers begin at
`0`, for example, the DASI 300, DASI 300s, and DASI 450.

Canned -`code`

Use one of the codes listed below to select a canned set of tabs. If more than one code
is specified, the last code option will be used. The legal codes and their meanings are
as follows:

- `-a 1,10,16,36,72` Assembler, IBM S/370, first format
- `-a2 1,10,16,40,72` Assembler, IBM S/370, second format
- `-c 1,8,12,16,20,55` COBOL, normal format
COBOL compact format (columns 1-6 omitted). Using this code, the first typed character corresponds to card column 7, one space gets you to column 8, and a tab reaches column 12. Files using this tab setup should include a format specification as follows (see \texttt{fspec(4)}):

\begin{verbatim}
<:t-c2 m6 s66 d:>
\end{verbatim}

COBOL compact format (columns 1-6 omitted), with more tabs than \texttt{-c2}. This is the recommended format for COBOL. The appropriate format specification is (see \texttt{fspec(4)}):

\begin{verbatim}
<:t-c3 m6 s66 d:>
\end{verbatim}

FORTRAN

\begin{verbatim}
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
\end{verbatim}

PL/I

\begin{verbatim}
-s 1,10,55
\end{verbatim}

SNOBOL

\begin{verbatim}
-u 1,12,20,44
\end{verbatim}

UNIVAC 1100 Assembler

\textbf{Repetitive}\ 
\texttt{-n}\ 

A \textit{repetitive} specification requests tabs at columns 1+n, 1+2*n, etc., where \textit{n} is a single-digit decimal number. Of particular importance is the value 8: this represents the UNIX system “standard” tab setting, and is the most likely tab setting to be found at a terminal. When \texttt{-0} is used, the tab stops are cleared and no new ones are set.

\textbf{Arbitrary}\ 
See OPERANDS.

\textbf{File}\ 
\texttt{-file}\ 

If the name of a \textit{file} is given, \texttt{tabs} reads the first line of the file, searching for a format specification (see \texttt{fspec(4)}). If it finds one there, it sets the tab stops according to it, otherwise it sets them as \texttt{-8}. This type of specification may be used to make sure that a tabbed file is printed with correct tab settings, and would be used with the \texttt{pr} command:

\begin{verbatim}
example% tabs -file file
\end{verbatim}

Tab and margin setting is performed via the standard output.
The following operand is supported:

\( n1, n2, \ldots \)  

The arbitrary format consists of tab-stop values separated by commas or spaces. The tab-stop values must be positive decimal integers in ascending order. Up to 40 numbers are allowed. If any number (except the first one) is preceded by a plus sign, it is taken as an increment to be added to the previous value. Thus, the formats \( 1, 10, 20, 30 \) and \( 1, 10, +10, +10 \) are considered identical.

**EXAMPLE 1** Using the tabs command

The following command is an example using `-code` (*canned* specification) to set tabs to the settings required by the IBM assembler: columns 1, 10, 16, 36, 72:

```
example% tabs -a
```

The next command is an example of using `-n` (*repetitive* specification), where \( n \) is 8, causes tabs to be set every eighth position: \( 1+(1\times8), 1+(2\times8), \ldots \) which evaluate to columns 9, 17, \ldots:

```
example% tabs -8
```

This command uses \( n1, n2, \ldots \) (*arbitrary* specification) to set tabs at columns 1, 8, and 36:

```
example% tabs 1,8,36
```

The last command is an example of using `-file` (*file* specification) to indicate that tabs should be set according to the first line of `$/HOME/fspec.list/att4425` (see `fspec(4)`).

```
example% tabs -$HOME/fspec.list/att4425
```

**ENVIRONMENT VARIABLES**  
See `environ(5)` for descriptions of the following environment variables that affect the execution of `tabs`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.  

**TERM**  
Determine the terminal type. If this variable is unset or null, and if the `-T` option is not specified, terminal type `ansi+tabs` will be used.

**EXIT STATUS**  
The following exit values are returned:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>&gt;0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>

**ATTRIBUTES**  
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>
### Interface Stability

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

### Notes

There is no consistency among different terminals regarding ways of clearing tabs and setting the left margin.

**tabs** clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 64.

The `tabspec` used with the `tabs` command is different from the one used with the `newform` command. For example, `tabs -8` sets every eighth position; whereas `newform -i-8` indicates that tabs are set every eighth position.

### See Also

- expand(1)
- newform(1)
- pr(1)
- stty(1)
- tput(1)
- fspec(4)
- terminfo(4)
- attributes(5)
- environ(5)
- term(5)
- standards(5)
NAME

tail – deliver the last part of a file

SYNOPSIS

/usr/bin/tail [ ± number [lbcr]] [file]
/usr/bin/tail [-lbcr] [file]
/usr/bin/tail [ ± number [lbcf]] [file]
/usr/bin/tail [-lbcf] [file]
/usr/xpg4/bin/tail [-f | -r] [-c number | -n number] [file]
/usr/xpg4/bin/tail [ ± number [l | b | c] [f]] [file]
/usr/xpg4/bin/tail [ ± number [l] [f | r]] [file]

DESCRIPTION

The tail utility copies the named file to the standard output beginning at a designated place. If no file is named, the standard input is used.

Copying begins at a point in the file indicated by the -c number, -n number, or + number options (if + number is specified, begins at distance number from the beginning; if - number is specified, from the end of the input; if number is NULL, the value 10 is assumed). number is counted in units of lines or byte according to the -c or -n options, or lines, blocks, or bytes, according to the appended option l, b, or c. When no units are specified, counting is by lines.

OPTIONS

The following options are supported for both /usr/bin/tail and /usr/xpg4/bin/tail. The -r and -f options are mutually exclusive. If both are specified on the command line, the -f option will be ignored.

- b Units of blocks.
- c Units of bytes.
- f Follow. If the input-file is not a pipe, the program will not terminate after the line of the input-file has been copied, but will enter an endless loop, wherein it sleep for a second and then attempts to read and copy further records from the input-file. Thus it may be used to monitor the growth of a file that is being written by some other process.
- l Units of lines.
- r Reverse. Copies lines from the specified starting point in the file in reverse order. The default for r is to print the entire file in reverse order.

The following options are supported for /usr/xpg4/bin/tail only:

- c number The number option-argument must be a decimal integer whose sign affects the location in the file, measured in bytes, to begin the copying:
  + Copying starts relative to the beginning of the file.
  - Copying starts relative to the end of the file.
  none Copying starts relative to the end of the file.
The origin for counting is 1; that is, \(-c+1\) represents the first byte of the file, \(-c-1\) the last.

\(-n\) \textit{number}

Equivalent to \(-c\) \textit{number}, except the starting location in the file is measured in lines instead of bytes. The origin for counting is 1. That is, \(-n+1\) represents the first line of the file, \(-n-1\) the last.

**OPERANDS**

The following operand is supported:

\textit{file} \quad A path name of an input file. If no \textit{file} operands are specified, the standard input will be used.

**USAGE**

See \texttt{largefile(5)} for the description of the behavior of \texttt{tail} when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

**EXAMPLES**

\textbf{EXAMPLE 1 Using the tail Command}

The following command will print the last ten lines of the file \textit{fred}, followed by any lines that are appended to \textit{fred} between the time \texttt{tail} is initiated and killed.

\texttt{example\% tail -f fred}

The next command will print the last 15 bytes of the file \textit{fred}, followed by any lines that are appended to \textit{fred} between the time \texttt{tail} is initiated and killed:

\texttt{example\% tail -15cf fred}

**ENVIRONMENT VARIABLES**

See \texttt{environ(5)} for descriptions of the following environment variables that affect the execution of \texttt{tail}: \texttt{LANG}, \texttt{LC_ALL}, \texttt{LC_CTYPE}, \texttt{LC_MESSAGES}, and \texttt{NLSPATH}.

**EXIT STATUS**

The following exit values are returned:

0 \quad \text{Successful completion.}

>0 \quad \text{An error occurred.}

**ATTRIBUTES**

See \texttt{attributes(5)} for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>/usr/bin/tail</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/usr/xpg4/bin/tail</th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>
SEE ALSO  |  cat(1), head(1), more(1), pg(1), dd(1M), attributes(5), environ(5), largefile(5), standards(5)

NOTES     |  Piped tails relative to the end of the file are stored in a buffer, and thus are limited in length. Various kinds of anomalous behavior may happen with character special files.
The `talk` utility is a two-way, screen-oriented communication program.

When first invoked, `talk` sends a message similar to:

```
Message from TalkDaemon@her_machine at time...
talk: connection requested by your_address
talk: respond with: talk your_address
```

to the specified `address`. At this point, the recipient of the message can reply by typing:

```
talk your_address
```

Once communication is established, the two parties can type simultaneously, with their output displayed in separate regions of the screen. Characters are processed as follows:

- Typing the alert character will alert the recipient’s terminal.
- Typing Control-L will cause the sender’s screen regions to be refreshed.
- Typing the erase and kill characters will affect the sender’s terminal in the manner described by the termios(3C) interface.
- Typing the interrupt or end-of-file (EOF) characters will terminate the local `talk` utility. Once the `talk` session has been terminated on one side, the other side of the `talk` session will be notified that the `talk` session has been terminated and will be able to do nothing except exit.
- Typing characters from LC_CTYPE classifications print or space will cause those characters to be sent to the recipient’s terminal.
- When and only when the `stty iexten` local mode is enabled, additional special control characters and multi-byte or single-byte characters are processed as printable characters if their wide character equivalents are printable.
- Typing other non-printable characters will cause them to be written to the recipient’s terminal as follows: control characters will appear as a caret (^) followed by the appropriate ASCII character, and characters with the high-order bit set will appear in “meta” notation. For example, \003 is displayed as ^C and \372 as M-z.

Permission to be a recipient of a `talk` message can be denied or granted by use of the `mesg(1)` utility. However, a user’s privilege may further constrain the domain of accessibility of other users’ terminals. Certain commands, such as `pr(1)`, disallow messages in order to prevent interference with their output. `talk` will fail when the user lacks the appropriate privileges to perform the requested action.
Certain block-mode terminals do not have all the capabilities necessary to support the simultaneous exchange of messages required for talk. When this type of exchange cannot be supported on such terminals, the implementation may support an exchange with reduced levels of simultaneous interaction or it may report an error describing the terminal-related deficiency.

OPERANDS

The following operands are supported:

address

The recipient of the talk session. One form of address is the username, as returned by the who(1) utility. If you wish to talk to someone on your own machine, then username is just the person’s login name. If you wish to talk to a user on another host, then username is one of the following forms:

- host: user
- host . user
- host : user
- user @host

although user@host is perhaps preferred.

terminal

If the recipient is logged in more than once, terminal can be used to indicate the appropriate terminal name. If terminal is not specified, the talk message will be displayed on one or more accessible terminals in use by the recipient. The format of terminal will be the same as that returned by who.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of talk: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM

Determine the name of the invoker’s terminal type. If this variable is unset or null, an unspecified terminal type will be used.

EXIT STATUS

The following exit values are returned:

0  Successful completion.

>0  An error occurred, or talk was invoked on a terminal incapable of supporting it.

FILES

/etc/hosts  host name database
/var/adm/utmpx  user and accounting information for talk

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmds</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
Typing Control-L redraws the screen, while the erase, kill, and word kill characters will work in `talk` as normal. To exit, type an interrupt character. `talk` then moves the cursor to the bottom of the screen and restores the terminal to its previous state.

**SEE ALSO**

`mail(1), msg(1), pr(1), stty(1), who(1), write(1), termios(3C), attributes(5), environ(5), standards(5)`

**NOTES**

Typing Control-L redraws the screen, while the erase, kill, and word kill characters will work in `talk` as normal. To exit, type an interrupt character. `talk` then moves the cursor to the bottom of the screen and restores the terminal to its previous state.
### NAME

**tar** – create tape archives and add or extract files

### SYNOPSIS

```
tar c[bBDeEfFhiklnopQvwX@[0-7]] [block] [tarfile] [exclude-file]
 {-I include-file | -C directory | file | file...}
```

```
tar r[bBDeEfFhiklnqvw@[0-7]] [block] { -I include-file | -C directory | file | file...}
```

```
tar t[BefFhiklnqvX[0-7]] [tarfile] [exclude-file] { -I include-file | file...}
```

```
tar u[bBDeEfFhiklnqvw@[0-7]] [block] [tarfile] file...
```

```
tar x[BefFhiklmnopqvwX[0-7]] [tarfile] [exclude-file] [file...]
```

### DESCRIPTION

The **tar** command archives and extracts files to and from a single file called a **tarfile**. A tarfile is usually a magnetic tape, but it can be any file. **tar**’s actions are controlled by the **key** argument. The **key** is a string of characters containing exactly one function letter (c, r, t, u, or x) and zero or more function modifiers (letters or digits), depending on the function letter used. The **key** string contains no SPACE characters. Function modifier arguments are listed on the command line in the same order as their corresponding function modifiers appear in the **key** string.

The `-I include-file`, `-C directory file`, and **file** arguments specify which files or directories are to be archived or extracted. In all cases, appearance of a directory name refers to the files and (recursively) subdirectories of that directory. Arguments appearing within braces `{...}` indicate that one of the arguments must be specified.

### OPTIONS

The following options are supported:

- **-I include-file**
  
  Opens **include-file** containing a list of files, one per line, and treats it as if each file appeared separately on the command line. Be careful of trailing white spaces. Also beware of leading white spaces, since, for each line in the included file, the entire line (apart from the newline) will be used to match against the initial string of files to include. In the case where excluded files (see X function modifier) are also specified, they take precedence over all included files. If a file is specified in both the **exclude-file** and the **include-file** (or on the command line), it will be excluded.

- **-C directory file**

  Performs a **chdir** (see **cd**(1)) operation on **directory** and performs the **c** (create) or **x** (replace) operation on **file**. Use short relative path names for **file**. If **file** is `.` , archive all files in **directory**. This option enables archiving files from multiple directories not related by a close common parent.

### OPERANDS

The following operands are supported:
A path name of a regular file or directory to be archived (when the \texttt{c}, \texttt{r} or \texttt{u} functions are specified), extracted (\texttt{x}) or listed (\texttt{t}). When \texttt{file} is the path name of a directory, the action applies to all of the files and (recursively) subdirectories of that directory.

When a file is archived, and the \texttt{E} flag (see \texttt{Function Modifiers}) is not specified, the filename cannot exceed 256 characters. In addition, it must be possible to split the name between parent directory names so that the prefix is no longer than 155 characters and the name is no longer than 100 characters. If \texttt{E} is specified, a name of up to \texttt{PATH_MAX} characters may be specified.

For example, a file whose basename is longer than 100 characters could not be archived without using the \texttt{E} flag. A file whose directory portion is 200 characters and whose basename is 50 characters could be archived (without using \texttt{E}) if a slash appears in the directory name somewhere in character positions 151-156.

The function portion of the key is specified by one of the following letters:

\begin{itemize}
\item \texttt{c} \hspace{1cm} Create. Writing begins at the beginning of the tarfile, instead of at the end.
\item \texttt{r} \hspace{1cm} Replace. The named files are written at the end of the tarfile. A file created with extended headers must be updated with extended headers (see \texttt{E} flag under \texttt{Function Modifiers}). A file created without extended headers cannot be modified with extended headers.
\item \texttt{t} \hspace{1cm} Table of Contents. The names of the specified files are listed each time they occur in the tarfile. If no \texttt{file} argument is given, the names of all files and any associated extended attributes in the tarfile are listed. With the \texttt{v} function modifier, additional information for the specified files is displayed.
\item \texttt{u} \hspace{1cm} Update. The named files are written at the end of the tarfile if they are not already in the tarfile, or if they have been modified since last written to that tarfile. An update can be rather slow. A tarfile created on a 5.x system cannot be updated on a 4.x system. A file created with extended headers must be updated with extended headers (see \texttt{E} flag under \texttt{Function Modifiers}). A file created without extended headers cannot be modified with extended headers.
\item \texttt{x} \hspace{1cm} Extract or restore. The named files are extracted from the tarfile and written to the directory specified in the tarfile, relative to the current directory. Use the relative path names of files and directories to be extracted.
\end{itemize}

Absolute path names contained in the tar archive are unpacked using the absolute path names, that is, the leading forward slash (/) is not stripped off.
If a named file matches a directory whose contents has been written to the tarfile, this directory is recursively extracted. The owner, modification time, and mode are restored (if possible); otherwise, to restore owner, you must be the super-user. Character-special and block-special devices (created by mknod(1M)) can only be extracted by the super-user. If no file argument is given, the entire content of the tarfile is extracted. If the tarfile contains several files with the same name, each file is written to the appropriate directory, overwriting the previous one. Filename substitution wildcards cannot be used for extracting files from the archive. Rather, use a command of the form:

```
tar xvf ... /dev/rmt/0 "\tar tf ... /dev/rmt/0 | \n grep 'pattern' \\n```

When extracting tapes created with the r or u functions, directory modification times may not be set correctly. These same functions cannot be used with many tape drives due to tape drive limitations such as the absence of backspace or append capabilities.

When using the r, u, or x function modifier, the named files must match exactly the corresponding files in the tarfile. For example, to extract ./thisfile, you must specify ./thisfile, and not thisfile. The t function displays how each file was archived.

Function Modifiers

The characters below may be used in conjunction with the letter that selects the desired function.

- **b**

 Blocking Factor. Use when reading or writing to raw magnetic archives (see f below). The block argument specifies the number of 512-byte tape blocks to be included in each read or write operation performed on the tarfile. The minimum is 1, the default is 20. The maximum value is a function of the amount of memory available and the blocking requirements of the specific tape device involved (see mtio(7I) for details.) The maximum cannot exceed INT_MAX/512 (4194303).

 When a tape archive is being read, its actual blocking factor will be automatically detected, provided that it is less than or equal to the nominal blocking factor (the value of the block argument, or the default value if the b modifier is not specified). If the actual blocking factor is greater than the nominal blocking factor, a read error will result. See Example 5 in EXAMPLES.

- **B**

 Block. Force tar to perform multiple reads (if necessary) to read exactly enough bytes to fill a block. This function modifier enables tar to work across the Ethernet, since pipes and sockets return partial blocks even when more data is coming. When reading from standard input, ‘−’, this function modifier is selected by default to ensure that tar can recover from short reads.
Data change warnings. Used with c, r, or u options. Ignored with t or x options. If the size of a file changes while the file is being archived, treat this condition as a warning instead of as an error. A warning message will still be written, but the exit status is not affected.

Error. Exit immediately with a positive exit status if any unexpected errors occur. The SYSV3 environment variable overrides the default behavior. (See ENVIRONMENT VARIABLES section below.)

Write a tarfile with extended headers. (Used with c, r, or u options; ignored with t or x options.) When a tarfile is written with extended headers, the modification time is maintained with a granularity of microseconds rather than seconds. In addition, filenames no longer than PATH_MAX characters that could not be archived without E, and file sizes greater than 8GB, are supported. The E flag is required whenever the larger files and/or files with longer names, or whose UID/GID exceed 2097151, are to be archived, or if time granularity of microseconds is desired.

File. Use the tarfile argument as the name of the tarfile. If f is specified, /etc/default/tar is not searched. If f is omitted, tar will use the device indicated by the TAPE environment variable, if set; otherwise, it will use the default values defined in /etc/default/tar. The number matching the archiveN string is used as the output device with the blocking and size specifications from the file. For example,

```
tar -c 2/tmp/*
```

writes the output to the device specified as archive2 in /etc/default/tar.

If the name of the tarfile is ‘−’, tar writes to the standard output or reads from the standard input, whichever is appropriate. tar can be used as the head or tail of a pipeline. tar can also be used to move hierarchies with the command:

```
example$ cd fromdir; tar cf - . | (cd todir; tar xfBp -)
```

With one F argument, tar excludes all directories named SCCS and RCS from the tarfile. With two arguments, FF, tar excludes all directories named SCCS and RCS, all files with .o as their suffix, and all files named errs, core, and a.out. The SYSV3 environment variable overrides the default behavior. (See ENVIRONMENT VARIABLES section below.)

Follow symbolic links as if they were normal files or directories. Normally, tar does not follow symbolic links.
i
Ignore directory checksum errors.

k size
Requires tar to use the size argument as the size of an archive in
kilobytes. This is useful when the archive is intended for a fixed
size device such as floppy disks. Large files are then split across
volumes if they do not fit in the specified size.

l
Link. Output error message if unable to resolve all links to the files
being archived. If l is not specified, no error messages are printed.

m
Modify. The modification time of the file is the time of extraction.
This function modifier is valid only with the x function.

n
The file being read is a non-tape device. Reading of the archive is
faster since tar can randomly seek around the archive.

o
Ownership. Assign to extracted files the user and group identifiers
of the user running the program, rather than those on tar file. This
is the default behavior for users other than root. If the o function
modifier is not set and the user is root, the extracted files will take
on the group and user identifiers of the files on tar file (see
chown(1) for more information). The o function modifier is only
valid with the x function.

p
Restore the named files to their original modes, and ACLs if
applicable, ignoring the present umask(1). This is the default
behavior if invoked as super-user with the x function letter
specified. If super-user, SETUID, and sticky information are also
extracted, and files are restored with their original owners and
permissions, rather than owned by root. When this function
modifier is used with the c function, ACLs are created in the tar file
along with other information. Errors will occur when a tar file with
ACLs is extracted by previous versions of tar.

P
Suppress the addition of a trailing "/" on directory entries in the
archive.

q
Stop after extracting the first occurrence of the named file. tar will
normally continue reading the archive after finding an occurrence
of a file.

v
Verbose. Output the name of each file preceded by the function
letter. With the t function, v provides additional information
about the tarfile entries. The listing is similar to the format
produced by the -l option of the ls(1) command.

w
What. Output the action to be taken and the name of the file, then
await the user’s confirmation. If the response is affirmative, the
action is performed; otherwise, the action is not performed. This
function modifier cannot be used with the t function.
Exclude. Use the `exclude-file` argument as a file containing a list of relative path names for files (or directories) to be excluded from the tarfile when using the functions `c`, `x`, or `t`. Be careful of trailing white spaces. Also beware of leading white spaces, since, for each line in the excluded file, the entire line (apart from the newline) will be used to match against the initial string of files to exclude. Multiple `x` arguments may be used, with one `exclude-file` per argument. In the case where included files (see `-I include-file` option) are also specified, the excluded files take precedence over all included files. If a file is specified in both the `exclude-file` and the `include-file` (or on the command line), it will be excluded.

Include extended attributes in archive. By default, `tar` does not place extended attributes in the archive. With this flag, `tar` will look for extended attributes on the files to be placed in the archive and add them to the archive. Extended attributes go in the archive as special files with a special type label. When this modifier is used with the `x` function, extended attributes are extracted from the tape along with the normal file data. Extended attribute files can only be extracted from an archive as part of a normal file extract. Attempts to explicitly extract attribute records are ignored.

Select an alternative drive on which the tape is mounted. The default entries are specified in `/etc/default/tar`. If no digit or `f` function modifier is specified, the entry in `/etc/default/tar` with digit "0" is the default.

See `largefile(5)` for the description of the behavior of `tar` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

The automatic determination of the actual blocking factor may be fooled when reading from a pipe or a socket (see the `B` function modifier below).

1/4" streaming tape has an inherent blocking factor of one 512-byte block. It can be read or written using any blocking factor.

This function modifier works for archives on disk files and block special devices, among others, but is intended principally for tape devices.

For information on `tar` header format, see `archives(4)`.

EXAMPLE 1 Creating an archive of your home directory

The following is an example using `tar` to create an archive of your home directory on a tape mounted on drive `/dev/rmt/0`:

```
exampet cd
exampet tar cvf /dev/rmt/0 .
messages from tar
```
EXAMPLE 1 Creating an archive of your home directory (Continued)

The `c` function letter means create the archive. The `v` function modifier outputs messages explaining what `tar` is doing. The `f` function modifier indicates that the tarfile is being specified (`/dev/rmt/0` in this example). The dot (.) at the end of the command line indicates the current directory and is the argument of the `f` function modifier.

Display the table of contents of the tarfile with the following command:

```
example% tar tvf /dev/rmt/0
```

The output will be similar to the following for the POSIX locale:

```
rw-r--r-- 1677/40 2123 Nov 7 18:15 ./test.c ...
```

The columns have the following meanings:

- column 1 is the access permissions to `.test.c`
- column 2 is the user-id/group-id of `.test.c`
- column 3 is the size of `.test.c` in bytes
- column 4 is the modification date of `.test.c`. When the LC_TIME category is not set to the POSIX locale, a different format and date order field may be used.
- column 5 is the name of `.test.c`

To extract files from the archive:

```
example% tar xvf /dev/rmt/0
```

If there are multiple archive files on a tape, each is separated from the following one by an EOF marker. To have `tar` read the first and second archives from a tape with multiple archives on it, the non-rewinding version of the tape device name must be used with the `f` function modifier, as follows:

```
example% tar xvf /dev/rmt/0n read first archive from tape
messages from tar
example% tar xvf /dev/rmt/0n read second archive from tape
messages from tar
```

Notice that in some earlier releases, the above scenario did not work correctly, and intervention with `mt(1)` between `tar` invocations was necessary. To emulate the old behavior, use the non-rewind device name containing the letter `b` for BSD behavior. See the Close Operations section of the `mtio(7I)` manual page.
EXAMPLE 2 Archiving files from /usr/include and from /etc to default tape drive 0

To archive files from /usr/include and from /etc to default tape drive 0:
```
example% tar c -C /usr include -C /etc .
```

The table of contents from the resulting tar file would produce output like the following:
```
include/
include/a.out.h
and all the other files in /usr/include ...
./chown and all the other files in /etc
```

To extract all files in the include directory:
```
example% tar xv include
x include/, 0 bytes, 0 tape blocks 
    and all files under include ...
```

EXAMPLE 3 Transferring files across the network

The following is an example using tar to transfer files across the network. First, here is how to archive files from the local machine (example) to a tape on a remote system (host):
```
example% tar cvfb -20 files | \
    rsh host dd of=/dev/rmt/0 obs=20b
messages from tar
```

In the example above, we are creating a tarfile with the c key letter, asking for verbose output from tar with the v function modifier, specifying the name of the output tarfile using the f function modifier (the standard output is where the tarfile appears, as indicated by the ‘−’ sign), and specifying the blocksize (20) with the b function modifier. If you want to change the blocksize, you must change the blocksize arguments both on the tar command and on the dd command.

EXAMPLE 4 Retrieving files from a tape on the remote system back to the local system

The following is an example that uses tar to retrieve files from a tape on the remote system back to the local system:
```
example% rsh -n host dd if=/dev/rmt/0 bs=20b | \
    tar xvfBf -20 files
messages from tar
```

In the example above, we are extracting from the tarfile with the x key letter, asking for verbose output from tar with the v function modifier, telling tar it is reading from a pipe with the B function modifier, specifying the name of the input tarfile using the f function modifier (the standard input is where the tarfile appears, as indicated by the
EXAMPLE 4 Retrieving files from a tape on the remote system back to the local system
(Continued)

‘−’ sign), and specifying the blocksize (20) with the b function modifier.

EXAMPLE 5 Creating an archive of the home directory

The following example creates an archive of the home directory on /dev/rmt/0 with an actual blocking factor of 19:

```
example% tar cvfb /dev/rmt/0 19 $HOME
```

To recognize this archive’s actual blocking factor without using the b function modifier:

```
example% tar tvf /dev/rmt/0
```

```
tar: blocksize = 19
...
```

To recognize this archive’s actual blocking factor using a larger nominal blocking factor:

```
example% tar tvf /dev/rmt/0 30
```

```
tar: blocksize = 19
...
```

To recognize this archive’s actual blocking factor using a nominal blocking factor that is too small:

```
example% tar tvf /dev/rmt/0 10
```

```
tar: tape read error
```

ENVIRONMENT VARIABLES

SYSV3

This variable is used to override the default behavior of tar, provide compatibility with INTERACTIVE UNIX Systems and SCO UNIX installation scripts, and should not be used in new scripts. (It is intended for compatibility purposes only.) When set, the following options behave differently:

- **F filename**
 - Uses filename to obtain a list of command line switches and files on which to operate.

- **e**
 - Prevents files from being split across volumes. If there is insufficient room on one volume, tar prompts for a new volume. If the file will not fit on the new volume, tar exits with an error.

See environ(5) for descriptions of the following environment variables that affect the execution of tar: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS

The following exit values are returned:
Successful completion.

>0 An error occurred.

FILES
/dev/rmt/[0-7][b][n]
/dev/rmt/[0-7][l][b][n]
/dev/rmt/[0-7][m][b][n]
/dev/rmt/[0-7][h][b][n]
/dev/rmt/[0-7][u][b][n]
/dev/rmt/[0-7][c][b][n]
/etc/default/tar

Settings may look like this:

archive0=/dev/rmt/0
archive1=/dev/rmt/0n
archive2=/dev/rmt/1
archive3=/dev/rmt/1n
archive4=/dev/rmt/0
archive5=/dev/rmt/0n
archive6=/dev/rmt/1
archive7=/dev/rmt/1n

/etc/default/tar

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Stable</td>
</tr>
</tbody>
</table>

SEE ALSO

ar(1), basename(1), cd(1), chown(1), cpio(1), csh(1),dirname(1), ls(1), mt(1),
pax(1), setfacl(1), umask(1), mknod(1M), vold(1M), archives(4),
attributes(5), environ(5), fsattr(5), largefile(5), mtio(7I)

DIAGNOSTICS

Diagnostic messages are output for bad key characters and tape read/write errors, and
for insufficient memory to hold the link tables.

NOTES

There is no way to access the n-th occurrence of a file.

Tape errors are handled ungracefully.
When the Volume Management daemon is running, accesses to floppy devices through the conventional device names (for example, /dev/rdiskette) may not succeed. See vold(1M) for further details.

The tar archive format allows UIDs and GIDs up to 2097151 to be stored in the archive header. Files with UIDs and GIDs greater than this value will be archived with the UID and GID of 60001.

If an archive is created that contains files whose names were created by processes running in multiple locales, a single locale that uses a full 8-bit codeset (for example, the en_US locale) should be used both to create the archive and to extract files from the archive.

Neither the -r option nor the -u option can be used with quarter-inch archive tapes, since these tape drives cannot backspace.
NAME
tbl – format tables for nroff or troff

SYNOPSIS
tbl [-me] [-mm] [-ms] [filename]...

DESCRIPTION
tbl is a preprocessor for formatting tables for nroff(1) or troff(1). The input filenames are copied to the standard output, except that lines between .TS and .TE command lines are assumed to describe tables and are reformatted.

If no arguments are given, tbl reads the standard input, so tbl may be used as a filter. When tbl is used with eqn(1) or neqn, the tbl command should be first, to minimize the volume of data passed through pipes.

OPTIONS
- *me* Copy the -me macro package to the front of the output file.
- *mm* Copy the -mm macro package to the front of the output file.
- *ms* Copy the -ms macro package to the front of the output file.

EXAMPLES

EXAMPLE 1 Using tbl

As an example, letting ‘@’ (at-sign) represent a TAB, which should be typed as an actual TAB character in the input file

```plaintext
.TS
  c s s
  c c s
  c c c
  l n n.
Household Population
Town Households @Number@Size
Bedminster@789@3.26
Bernards Twp.@3087@3.74
Bernardsville@2018@3.30
Bound Brook@3425@3.04
Branchburg@1644@3.49
.TE
```

yields

<table>
<thead>
<tr>
<th>Household Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Bedminster</td>
</tr>
<tr>
<td>Bernards Twp.</td>
</tr>
<tr>
<td>Bernardsville</td>
</tr>
<tr>
<td>Bound Brook</td>
</tr>
<tr>
<td>Branchburg</td>
</tr>
</tbody>
</table>

User Commands 1547
FILES
/usr/share/lib/tmac/e -me macros
/usr/share/lib/tmac/m -mm macros
/usr/share/lib/tmac/s -ms macros

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO
eqn(1), nroff(1), troff(1), attributes(5)
The tcopy utility copies the magnetic tape mounted on the tape drive specified by the source argument. The only assumption made about the contents of a tape is that there are two tape marks at the end.

When only a source drive is specified, tcopy scans the tape, and displays information about the sizes of records and tape files. If a destination is specified, tcopy makes a copy of the source tape onto the destination tape, with blocking preserved. As it copies, tcopy produces the same output as it does when only scanning a tape.

The tcopy utility requires the use of Berkeley-compatible device names. For example,

```
example% tcopy /dev/rmt/1b /dev/rmt/2b
```

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO
mt(1), ioctl(2), attributes(5)

NOTES
 tcopy will only run on systems supporting an associated set of ioctl(2) requests.
NAME tee – replicate the standard output

SYNOPSIS tee [-ai] [file...]

DESCRIPTION The tee utility will copy standard input to standard output, making a copy in zero or more files. tee will not buffer its output. The options determine if the specified files are overwritten or appended to.

OPTIONS The following options are supported.
- a Appends the output to the files rather than overwriting them.
- i Ignores interrupts.

OPERANDS The following operands are supported:
file A path name of an output file. Processing of at least 13 file operands will be supported.

USAGE See largefile(5) for the description of the behavior of tee when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of tee: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 The standard input was successfully copied to all output files.
>0 The number of files that could not be opened or whose status could not be obtained.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO cat(1), attributes(5), environ(5), largefile(5), standards(5)
The `telnet` utility communicates with another host using the TELNET protocol. If `telnet` is invoked without arguments, it enters command mode, indicated by its prompt, `telnet>`. In this mode, it accepts and executes its associated commands. See `USAGE`, `telnet Commands`, below. If it is invoked with arguments, it performs an open command with those arguments.

If, for example, a `host` is specified as `@hop1@hop2@host`, the connection goes through hosts `hop1` and `hop2`, using loose source routing to end at `host`. If a leading `!` is used, the connection follows strict source routing. Note that when `telnet` uses IPv6, it can only use loose source routing, and the connection ignores the `!`.

Once a connection has been opened, `telnet` enters input mode. In this mode, text typed is sent to the remote host. The input mode entered will be either "line mode", "character at a time", or "old line by line", depending upon what the remote system supports.

In "line mode", character processing is done on the local system, under the control of the remote system. When input editing or character echoing is to be disabled, the remote system will relay that information. The remote system will also relay changes to any special characters that happen on the remote system, so that they can take effect on the local system.

In "character at a time" mode, most text typed is immediately sent to the remote host for processing.

In "old line by line" mode, all text is echoed locally, and (normally) only completed lines are sent to the remote host. The "local echo character" (initially `^E`) may be used to turn off and on the local echo. (Use this mostly to enter passwords without the password being echoed.).

If the "line mode" option is enabled, or if the `localchars` toggle is TRUE (the default in "old line by line" mode), the user’s `quit`, `intr`, and `flush` characters are trapped locally, and sent as TELNET protocol sequences to the remote side. If "line mode" has ever been enabled, then the user’s `susp` and `eof` are also sent as TELNET protocol sequences. `quit` is then sent as a TELNET ABORT instead of BREAK. The options `toggle autoflush` and `toggle autosynch` cause this action to flush subsequent output to the terminal (until the remote host acknowledges the TELNET sequence); and to flush previous terminal input, in the case of `quit` and `intr`.

While connected to a remote host, the user can enter `telnet` command mode by typing the `telnet` escape character (initially `^]`). When in command mode, the normal terminal editing conventions are available. Pressing RETURN at the `telnet` command prompt causes `telnet` to exit command mode.

The following options are supported:
-s Specifies an 8-bit data path. Negotiating the TELNET BINARY option is attempted for both input and output.

-c Disables the reading of the user's telnetrc file. (See the toggle skiprc command on this reference page.)

-d Sets the initial value of the debug toggle to TRUE.

-e escape_char Sets the initial escape character to escape_char. escape_char may also be a two character sequence consisting of '^' followed by one character. If the second character is '?', the DEL character is selected. Otherwise, the second character is converted to a control character and used as the escape character. If the escape character is the null string (that is, -e ''), it is disabled.

-E Stops any character from being recognized as an escape character.

-l user When connecting to a remote system that understands the ENVIRON option, then user will be sent to the remote system as the value for the ENVIRON variable USER.

-L Specifies an 8-bit data path on output. This causes the BINARY option to be negotiated on output.

-n tracefile Opens tracefile for recording trace information. See the set tracefile command below.

-r Specifies a user interface similar to rlogin. In this mode, the escape character is set to the tilde (~) character, unless modified by the -e option. The rlogin escape character is only recognized when it is preceded by a carriage return. In this mode, the telnet escape character, normally '^', must still precede a telnet command. The rlogin escape character can also be followed by '.\r' or '^Z', and, like rlogin(1), closes or suspends the connection, respectively. This option is an uncommitted interface and may change in the future.

USAGE

telnet Commands

The commands described in this section are available with telnet. It is necessary to type only enough of each command to uniquely identify it. (This is also true for arguments to the mode, set, toggle, unset, environ, and display commands.)

open [-l user] [[@hop1 [@hop2 ...]]@host [port]]

Open a connection to the named host. If no port number is specified, telnet will attempt to contact a TELNET server at the default port. The host specification may be either a host name (see hosts(4), ipnodes(4)) or an Internet address specified in the "dot notation" (see inet(7P) or inet6(7P)). If the host is specified as @hop1@hop2@host, the connection goes through hosts hop1 and hop2, using loose source routing to end at host. The "@" symbol is required as a separator between the hosts specified. If a leading ! is used with IPv4, the connection follows strict source routing.
The -l option passes the user as the value of the ENVIRON variable USER to the remote system.

close
Close any open TELNET session and exit telnet. An EOF (in command mode) will also close a session and exit.

quit
Same as close.

z
Suspend telnet. This command only works when the user is using a shell that supports job control, such as sh(1).

mode type
The remote host is asked for permission to go into the requested mode. If the remote host is capable of entering that mode, the requested mode will be entered.

The argument type is one of the following:

character Disable the TELNET LINEMODE option, or, if the remote side does not understand the LINEMODE option, then enter "character at a time" mode.

line Enable the TELNET LINEMODE option, or, if the remote side does not understand the LINEMODE option, then attempt to enter "old-line-by-line" mode.

isig (-isig) Attempt to enable (disable) the TRAPSIG mode of the LINEMODE option. This requires that the LINEMODE option be enabled.

edit (-edit) Attempt to enable (disable) the EDIT mode of the LINEMODE option. This requires that the LINEMODE option be enabled.

softtabs (-softtabs) Attempt to enable (disable) the SOFT_TAB mode of the LINEMODE option. This requires that the LINEMODE option be enabled.

litecho (-litecho) Attempt to enable (disable) the LIT_ECHO mode of the LINEMODE option. This requires that the LINEMODE option be enabled.

? Prints out help information for the mode command.

status
Show the current status of telnet. This includes the peer one is connected to, as well as the current mode.

display
[argument ...] Display all, or some, of the set and toggle values (see toggle argument ...).
? [command] Get help. With no arguments, telnet prints a help summary. If a
command is specified, telnet will print the help information for just that
class.

send argument . . .
Send one or more special character sequences to the remote host. The following are
the arguments that can be specified (more than one argument may be specified at a
time):

- escape Send the current telnet escape character (initially ^]).
- synch Send the TELNET SYNCH sequence. This sequence discards all
 previously typed, but not yet read, input on the remote system.
 This sequence is sent as TCP urgent data and may not work if
 the remote system is a 4.2 BSD system. If it does not work, a
 lower case "r" may be echoed on the terminal.
- brk or break Send the TELNET BRK (Break) sequence, which may have
 significance to the remote system.
- ip Send the TELNET IP (Interrupt Process) sequence, which aborts
 the currently running process on the remote system.
- abort Send the TELNET ABORT (Abort Process) sequence.
- ao Send the TELNET AO (Abort Output) sequence, which
 flushes all output from the remote system to the user’s terminal.
- ayt Send the TELNET AYT (Are You There) sequence, to which the
 remote system may or may not respond.
- ec Send the TELNET EC (Erase Character) sequence, which erases
 the last character entered.
- el Send the TELNET EL (Erase Line) sequence, which should
 cause the remote system to erase the line currently being
 entered.
- eof Send the TELNET EOF (End Of File) sequence.
- eor Send the TELNET EOR (End Of Record) sequence.
- ga Send the TELNET GA (Go Ahead) sequence, which probably has
 no significance for the remote system.
- getstatus If the remote side supports the TELNET STATUS command,
 getstatus will send the subnegotiation to request that the
 server send its current option status.
- nop Send the TELNET NOP (No Operation) sequence.
- susp Send the TELNET SUSP (Suspend Process) sequence.
do option
dont option
will option
wont option

Send the TELNET protocol option negotiation indicated. Option may be the text name of the protocol option, or the number corresponding to the option. The command will be silently ignored if the option negotiation indicated is not valid in the current state. If the `option` is given as 'help' or '?', the list of option names known is listed. This command is mostly useful for unusual debugging situations.

`?`
Print out help information for the `send` command.

set argument [value]
unset argument

Set any one of a number of telnet variables to a specific value. The special value "off" turns off the function associated with the variable. The values of variables may be interrogated with the `display` command. If `value` is omitted, the value is taken to be true, or "on". If the `unset` form is used, the value is taken to be false, or "off."
The variables that may be specified are:

echo
This is the value (initially ^E) that, when in "line by line" mode, toggles between local echoing of entered characters for normal processing, and suppressing echoing of entered characters, for example, entering a password.

escape
This is the telnet escape character (initially ^]) that enters telnet command mode when connected to a remote system.

interrupt
If telnet is in localchars mode (see `toggle`, `localchars`) and the interrupt character is typed, a TELNET IP sequence (see `send` and `ip`) is sent to the remote host. The initial value for the interrupt character is taken to be the terminal's intr character.

quit
If telnet is in localchars mode and the quit character is typed, a TELNET BRK sequence (see `send`, `brk`) is sent to the remote host. The initial value for the quit character is taken to be the terminal's quit character.

flushoutput
If telnet is in localchars mode and the flushoutput character is typed, a TELNET AO sequence (see `send`, `ao`) is sent to the remote host. The initial value for the flush character is taken to be the terminal's flush character.

erase
If telnet is in localchars mode and operating in "character at a time" mode, then when the `erase` character is typed, a TELNET EC sequence (see `send`, `ec`) is sent to the remote system. The initial value for the erase character is taken to be the terminal's erase character.
kill

If telnet is in `localchars` mode and operating in "character at a time" mode, then when the `kill` character is typed, a TELNET EL sequence (see `send`, `el`) is sent to the remote system. The initial value for the `kill` character is taken to be the terminal's `kill` character.

eof

If telnet is operating in "line by line" mode, entering the `eof` character as the first character on a line sends this character to the remote system. The initial value of `eof` is taken to be the terminal's `eof` character.

ayt

If telnet is in `localchars` mode, or `LINEMODE` is enabled, and the status character is typed, a TELNET AYT ("Are You There") sequence is sent to the remote host. (See `send`, `ayt` above.) The initial value for `ayt` is the terminal's status character.

forw1

forw2

If telnet is operating in `LINEMODE`, and the `forw1` or `forw2` characters are typed, this causes the forwarding of partial lines to the remote system. The initial values for the forwarding characters come from the terminal’s `eol` and `eol2` characters.

lnext

If telnet is operating in `LINEMODE` or "old line by line" mode, then the `lnext` character is assumed to be the terminal's `lnext` character. The initial value for the `lnext` character is taken to be the terminal's `lnext` character.

reprint

If telnet is operating in `LINEMODE` or "old line by line" mode, then the `reprint` character is assumed to be the terminal's `reprint` character. The initial value for `reprint` is taken to be the terminal's `reprint` character.

rlogin

This is the `rlogin` escape character. If set, the normal telnet escape character is ignored, unless it is preceded by this character at the beginning of a line. The `rlogin` character, at the beginning of a line followed by a "." closes the connection. When followed by a "Z, the `rlogin` command suspends the telnet command. The initial state is to disable the `rlogin` escape character.

start

If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then the `start` character is taken to be the terminal's `start` character. The initial value for the `kill` character is taken to be the terminal's `start` character.

stop

If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then the `stop` character is taken to be the terminal's `stop` character. The initial value for the `kill` character is taken to be the terminal's `stop` character.
If telnet is in localchars mode, or LINEMODE is enabled, and the suspend character is typed, a TELNET SUSP sequence (see send, susp above) is sent to the remote host. The initial value for the suspend character is taken to be the terminal’s suspend character.

tracefile This is the file to which the output, generated when the netdata or the debug option is TRUE, will be written. If tracefile is set to "-", then tracing information will be written to standard output (the default).

worderase If telnet is operating in LINEMODE or "old line by line" mode, then this character is taken to be the terminal’s worderase character. The initial value for the worderase character is taken to be the terminal’s worderase character.

? Displays the legal set and unset commands.

slc state
The slc (Set Local Characters) command is used to set or change the state of special characters when the TELNET LINEMODE option has been enabled. Special characters are characters that get mapped to TELNET commands sequences (like ip or quit) or line editing characters (like erase and kill). By default, the local special characters are exported. The following values for state are valid:

check Verifies the settings for the current special characters. The remote side is requested to send all the current special character settings. If there are any discrepancies with the local side, the local settings will switch to the remote values.

export Switches to the local defaults for the special characters. The local default characters are those of the local terminal at the time when telnet was started.

import Switches to the remote defaults for the special characters. The remote default characters are those of the remote system at the time when the TELNET connection was established.

? Prints out help information for the slc command.

toggle argument ...
Toggle between TRUE and FALSE the various flags that control how telnet responds to events. More than one argument may be specified. The state of these flags may be interrogated with the display command. Valid arguments are:

autoflush If autoflush and localchars are both TRUE, then when the ao, intr, or quit characters are recognized (and transformed into TELNET sequences; see set for details), telnet refuses to display any data on the user’s terminal until the remote system acknowledges (using a TELNET Timing Mark option) that it has processed those TELNET sequences. The initial value for this
toggle is TRUE if the terminal user has not done an "stty noflsh". Otherwise, the value is FALSE (see stty(1)).

autosynch
If autosynch and localchars are both TRUE, then when either the interrupt or quit characters are typed (see set for descriptions of interrupt and quit), the resulting TELNET sequence sent is followed by the TELNET SYNCH sequence. This procedure should cause the remote system to begin throwing away all previously typed input until both of the TELNET sequences have been read and acted upon. The initial value of this toggle is FALSE.

binary
Enable or disable the TELNET BINARY option on both input and output.

inbinary
Enable or disable the TELNET BINARY option on input.

outbinary
Enable or disable the TELNET BINARY option on output.

crlf
Determines how carriage returns are sent. If the value is TRUE, then carriage returns will be sent as <CR><LF>. If the value is FALSE, then carriage returns will be send as <CR><NUL>. The initial value for this toggle is FALSE.

crmod
Toggle RETURN mode. When this mode is enabled, most RETURN characters received from the remote host will be mapped into a RETURN followed by a line feed. This mode does not affect those characters typed by the user, only those received from the remote host. This mode is useful only for remote hosts that send RETURN but never send LINEFEED. The initial value for this toggle is FALSE.

debug
Toggle socket level debugging (only available to the super-user). The initial value for this toggle is FALSE.

localchars
If this toggle is TRUE, then the flush, interrupt, quit, erase, and kill characters (see set) are recognized locally, and transformed into appropriate TELNET control sequences, respectively ao, ip, brk, ec, and el (see send). The initial value for this toggle is TRUE in "line by line" mode, and FALSE in "character at a time" mode. When the LINEMODE option is enabled, the value of localchars is ignored, and assumed always to be TRUE. If LINEMODE has ever been enabled, then quit is sent as abort, and eof and suspend are sent as eof and susp (see send above).

netdata
Toggle the display of all network data (in hexadecimal format). The initial value for this toggle is FALSE.

options
Toggle the display of some internal TELNET protocol processing (having to do with telnet options). The initial value for this toggle is FALSE.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prettydump</td>
<td>When the netdata toggle is enabled, if prettydump is enabled, the output from the netdata command will be formatted in a more user readable format. Spaces are put between each character in the output. The beginning of any TELNET escape sequence is preceded by an asterisk (*) to aid in locating them.</td>
</tr>
<tr>
<td>skiprc</td>
<td>When the skiprc toggle is TRUE, TELNET skips the reading of the .telnetrc file in the user’s home directory when connections are opened. The initial value for this toggle is FALSE.</td>
</tr>
<tr>
<td>termdata</td>
<td>Toggles the display of all terminal data (in hexadecimal format). The initial value for this toggle is FALSE.</td>
</tr>
<tr>
<td>?</td>
<td>Display the legal toggle commands.</td>
</tr>
</tbody>
</table>

environ argument...

The **environ** command is used to manipulate variables that may be sent through the **TELNET ENVIRON** option. The initial set of variables is taken from the users environment. Only the **DISPLAY** and **PRINTER** variables are exported by default. Valid arguments for the **environ** command are:

- **define variable value** Define **variable** to have a value of **value**. Any variables defined by this command are automatically exported. The **value** may be enclosed in single or double quotes, so that tabs and spaces may be included.
- **undefine variable** Remove **variable** from the list of environment variables.
- **export variable** Mark the **variable** to be exported to the remote side.
- **unexport variable** Mark the **variable** to not be exported unless explicitly requested by the remote side.
- **list** List the current set of environment variables. Those marked with an asterisk (*) will be sent automatically. Other variables will be sent only if explicitly requested.
- **?** Prints out help information for the **environ** command.

logout Sends the **telnet logout** option to the remote side. This command is similar to a **close** command. However, if the remote side does not support the **logout** option, nothing happens. If, however, the remote side does support the **logout** option, this command should cause the remote side to close the **TELNET** connection. If the remote side also supports the concept of suspending a user’s session for later reattachment, the **logout** argument indicates that the remote side should
terminate the session immediately.

FILES

$HOME/.telnetrc
file that contains commands to be executed before initiating a telnet session

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtnc</td>
</tr>
</tbody>
</table>

SEE ALSO

rlogin(1), sh(1), stty(1), hosts(4), ipnodes(4), nologin(4), telnetrc(4), attributes(5), inet(7P), inet6(7P)

DIAGNOSTICS

NO LOGINS: System going down in N minutes

The machine is in the process of being shut down and logins have been disabled.

NOTES

On some remote systems, echo has to be turned off manually when in "line by line" mode.

In "old line by line" mode, or LINEMODE, the terminal’s EOF character is only recognized (and sent to the remote system) when it is the first character on a line.
The `test` utility evaluates the `condition` and indicates the result of the evaluation by its exit status. An exit status of zero indicates that the condition evaluated as true and an exit status of 1 indicates that the condition evaluated as false.

In the first form of the utility shown using the SYNOPSIS:

```
test [ condition ]
```

the square brackets denote that `condition` is an optional operand and are not to be entered on the command line.

In the second form of the utility shown using the SYNOPSIS:

```
[ [ condition ] ]
```

the first open square bracket, `[`, is the required utility name. `condition` is optional, as denoted by the inner pair of square brackets. The final close square bracket, `]`, is a required operand.

See `largefile(5)` for the description of the behavior of `test` when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

The `test` and `[` utilities evaluate the condition `condition` and, if its value is true, set exit status to 0. Otherwise, a non-zero (false) exit status is set. `test` and `[` also set a non-zero exit status if there are no arguments. When permissions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the last SYNOPSIS line) must be separate arguments to these commands. Normally these arguments are separated by spaces.

OPERANDS

The primaries listed below with two elements of the form:

```
-<primary_operator> <primary_operand>
```

are known as *unary primaries*. The primaries with three elements in either of the two forms:
primary_operand -primary_operator primary_operand
primary_operand primary_operator primary_operand

are known as binary primaries.

If any file operands except for -h and -L primaries refer to symbolic links, the
symbolic link is expanded and the test is performed on the resulting file.

If you test a file you own (the -r -w or -x tests), but the permission tested does not
have the owner bit set, a non-zero (false) exit status will be returned even though the
file may have the group or other bit set for that permission.

The = and != primaries have a higher precedence than the unary primaries. The = and
!= primaries always expect arguments; therefore, = and != cannot be used as an
argument to the unary primaries.

The following primaries can be used to construct condition:

- **a** file True if file exists. (Not available in sh.)
- **b** file True if file exists and is a block special file.
- **c** file True if file exists and is a character special file.
- **d** file True if file exists and is a directory.
- **e** file True if file exists. (Not available in sh.)
- **f** file True if file exists and is a regular file. Alternatively, if
/usr/bin/sh users specify /usr/ucb before
/usr/bin in their PATH environment variable, then
test will return true if file exists and is
(not-a-directory). The csh test and [built-ins
always use this alternative behavior.
- **g** file True if file exists and its set group ID flag is set.
- **G** file True if file exists and its group matches the effective
group ID of this process. (Not available in sh.)
- **h** file True if file exists and is a symbolic link.
- **k** file True if file exists and has its sticky bit set.
- **L** file True if file exists and is a symbolic link.
- **n** string True if the length of string is non-zero.
- **o** option True if option named option is on. (Not available in csh
or sh.)
- **O** file True if file exists and is owned by the effective user ID
of this process. (Not available in sh.)
- **p** file True if file is a named pipe (FIFO).
-r file
True if *file* exists and is readable.

-s file
True if *file* exists and has a size greater than zero.

-S file
True if *file* exists and is a socket. (Not available in `sh`.)

-t [file_descriptor]
True if the file whose file descriptor number is `file_descriptor` is open and is associated with a terminal. If `file_descriptor` is not specified, 1 is used as a default value.

-u file
True if *file* exists and its set-user-ID flag is set.

-w file
True if *file* exists and is writable. True will indicate only that the write flag is on. The *file* will not be writable on a read-only file system even if this test indicates true.

-x file
True if *file* exists and is executable. True will indicate only that the execute flag is on. If *file* is a directory, true indicates that *file* can be searched.

-z string
True if the length of string *string* is zero.

file1 -nt file2
True if *file1* exists and is newer than *file2*. (Not available in `sh`.)

file1 -ot file2
True if *file1* exists and is older than *file2*. (Not available in `sh`.)

file1 -ef file2
True if *file1* and *file2* exist and refer to the same file. (Not available in `sh`.)

string
True if the string *string* is not the null string.

string1 = string2
True if the strings *string1* and *string2* are identical.

string1 ≠ string2
True if the strings *string1* and *string2* are not identical.

n1 -eq n2
True if the integers *n1* and *n2* are algebraically equal.

n1 -ne n2
True if the integers *n1* and *n2* are not algebraically equal.

n1 -gt n2
True if the integer *n1* is algebraically greater than the integer *n2*.

n1 -ge n2
True if the integer *n1* is algebraically greater than or equal to the integer *n2*.

n1 -lt n2
True if the integer *n1* is algebraically less than the integer *n2*.

n1 -le n2
True if the integer *n1* is algebraically less than or equal to the integer *n2*.

User Commands 1563
condition1 -a condition2 True if both condition1 and condition2 are true. The -a binary primary is left associative and has higher precedence than the -o binary primary.

condition1 -o condition2 True if either condition1 or condition2 is true. The -o binary primary is left associative.

These primaries can be combined with the following operators:

! condition True if condition is false.

(condition) True if condition is true. The parentheses () can be used to alter the normal precedence and associativity. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.

The algorithm for determining the precedence of the operators and the return value that will be generated is based on the number of arguments presented to test. (However, when using the [...] form, the right-bracket final argument will not be counted in this algorithm.)

In the following list, $1, $2, $3 and $4 represent the arguments presented to test as a condition, condition1, or condition2.

0 arguments: Exit false (1).

1 argument: Exit true (0) if $1 is not null. Otherwise, exit false.

2 arguments:
- If $1 is !, exit true if $2 is null, false if $2 is not null.
- If $1 is a unary primary, exit true if the unary test is true, false if the unary test is false.
- Otherwise, produce unspecified results.

3 arguments:
- If $2 is a binary primary, perform the binary test of $1 and $3.
- If $1 is !, negate the two-argument test of $2 and $3.
- Otherwise, produce unspecified results.

4 arguments:
- If $1 is !, negate the three-argument test of $2, $3, and $4.
- Otherwise, the results are unspecified.

USAGE Scripts should be careful when dealing with user-supplied input that could be confused with primaries and operators. Unless the application writer knows all the cases that produce input to the script, invocations like test "$1" -a "$2" should be written as test "$1" && test "$2" to avoid problems if a user supplied values such as $1 set to ! and $2 set to the null string. That is, in cases where maximal
portability is of concern, replace `test expr1 -a expr2` with `test expr1 && test expr2`, and replace `test expr1 -o expr2` with `test expr1 || test expr2`. But notice that, in `test`, `-a` has higher precedence than `-o`, while `&&` and `||` have equal precedence in the shell.

Parentheses or braces can be used in the shell command language to effect grouping.

Parentheses must be escaped when using `sh`. For example:

```
test \( expr1 -a expr2 \) -o expr3
```

This command is not always portable outside XSI-conformant systems. The following form can be used instead:

```
( test expr1 && test expr2 ) || test expr3
```

The two commands:
```
test "$1"
test ! "$1"
```

could not be used reliably on some historical systems. Unexpected results would occur if such a string condition were used and `$1` expanded to `, `, or a known unary primary. Better constructs are, respectively,
```
test -n "$1"
test -z "$1"
```

Historical systems have also been unreliable given the common construct:
```
test "$response" = "expected string"
```

One of the following is a more reliable form:
```
test "X$response" = "Xexpected string"
test "expected string" = "$response"
```

Notice that the second form assumes that `expected string` could not be confused with any unary primary. If `expected string` starts with `-`, `, `, or even `=`, the first form should be used instead. Using the preceding rules without the marked extensions, any of the three comparison forms is reliable, given any input. (However, observe that the strings are quoted in all cases.)

Because the string comparison binary primaries, `=` and `! =`, have a higher precedence than any unary primary in the >4 argument case, unexpected results can occur if arguments are not properly prepared. For example, in
```
test -d $1 -o -d $2
```

If `$1` evaluates to a possible directory name of `=`, the first three arguments are considered a string comparison, which causes a syntax error when the second `-d` is encountered. One of the following forms prevents this; the second is preferred:
test(1)

test \(-d \"\$1\" \) -o \(-d \"\$2\" \)
test -d \"\$1\" || test -d \"\$2\"

Also in the >4 argument case:
test \"\$1\" = \"bat\" -a \"\$2\" = \"ball\"

Syntax errors will occur if \$1 evaluates to (or !. One of the following forms prevents
this; the third is preferred:
test \"X\$1\" = \"Xbat\" -a \"X\$2\" = \"Xball\"
test \"\$1\" = \"bat\" && test \"\$2\" = \"ball\"
test \"X\$1\" = \"Xbat\" && test \"X\$2\" = \"Xball\"

EXAMPIES In the if command examples, three conditions are tested, and if all three evaluate as
true or successful, then their validities are written to the screen. The three tests are:
- if a variable set to 1 is greater than 0,
- if a variable set to 2 is equal to 2, and
- if the word ‘root’ is included in the text file /etc/passwd.

EXAMPIE 1 Using /usr/bin/test
Perform a mkdir if a directory does not exist:
test ! -d tempdir && mkdir tempdir

Wait for a file to become non-readable:
while test -r thefile
do
 sleep 30
done
echo ‘thefile’ is no longer readable’

Perform a command if the argument is one of three strings (two variations), using the
open bracket version [of the test command:
if [\"\$1\" = \"pear\"] || [\"\$1\" = \"grape\"] || [\"\$1\" = \"apple\"]
then
case \"\$1\" in
 pear|grape|apple)
 command
esac

The test built-in The two forms of the test built-in follow the Bourne shell’s if example.

EXAMPLE 2 Using the sh built-in
ZERO=0 ONE=1 TWO=2 ROOT=root
if [\$ONE -gt \$ZERO]
EXAMPLE 2 Using the sh built-in

(Continued)

[$TWO -eq 2]
grep $ROOT /etc/passwd >&1 > /dev/null # discard output
then
 echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \
 "a user-name in the password file"
else
 echo "At least one of the three test conditions is false"
fi

EXAMPLE 3 Using the test built-in

Examples of the test built-in:

test `grep $ROOT /etc/passwd >&1 /dev/null` # discard output
echo $? # test for success
[`grep nosuchname /etc/passwd >&1 /dev/null`]
echo $? # test for failure

csh

EXAMPLE 4 Using the csh built-in

@ ZERO = 0; @ ONE = 1; @ TWO = 2; set ROOT = root
grep $ROOT /etc/passwd >&1 /dev/null # discard output
$status must be tested for immediately following grep
if ("$status" == "0" && $ONE > $ZERO && $TWO == 2) then
 echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \
 "a user-name in the password file"
echo "$status"
else
 echo "At least one of the three test conditions is false"
fi

ksh

EXAMPLE 5 Using the ksh built-in

ZERO=0 ONE=1 TWO=$((ONE+ONE)) ROOT=root
if ((ONE > ZERO)) # arithmetical comparison
 [[$TWO == 2]] # string comparison
 [`grep $ROOT /etc/passwd >&1 /dev/null`] # discard output
then
 echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \
 "a user-name in the password file"
else
 echo "At least one of the three test conditions is false"
fi
EXAMPLE 6 Using /usr/bin/test for the -e option

If one really wants to use the -e option in sh, use /usr/bin/test, as in the following:

```bash
if [ ! -h $PKG_INSTALL_ROOT$rLink ] && /usr/bin/test -e $PKG_INSTALL_ROOT/usr/bin/$rFile ; then
  ln -s $rFile $PKG_INSTALL_ROOT$rLink
fi
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of test: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

- 0 condition evaluated to true.
- 1 condition evaluated to false or condition was missing.
- 1> An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), ksh(1), sh(1), test(1B), attributes(5), environ(5), largefile(5), standards(5)

NOTES
The not-a-directory alternative to the -f option is a transition aid for BSD applications and may not be supported in future releases.
NAME

test – condition evaluation command

SYNOPSIS

/usr/ucb/test expression

DESCRIPTION

test evaluates the expression expression and, if its value is true, sets 0 (true) exit status; otherwise, a non-zero (false) exit status is set. test also sets a non-zero exit status if there are no arguments. When permissions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPIS line) must be separate arguments to the test command; normally these items are separated by spaces.

USAGE

Primitives

The following primitives are used to construct expression:

- \(r \) filename
 True if filename exists and is readable.

- \(w \) filename
 True if filename exists and is writable.

- \(x \) filename
 True if filename exists and is executable.

- \(f \) filename
 True if filename exists and is a regular file. Alternatively, if /usr/bin/sh users specify /usr/ucb before /usr/bin in their PATH environment variable, then test will return true if filename exists and is (not -a directory). This is also the default for /usr/bin/csh users.

- \(d \) filename
 True if filename exists and is a directory.

- \(c \) filename
 True if filename exists and is a character special file.

- \(b \) filename
 True if filename exists and is a block special file.

- \(p \) filename
 True if filename exists and is a named pipe (fifo).

- \(u \) filename
 True if filename exists and its set-user-ID bit is set.

- \(g \) filename
 True if filename exists and its set-group-ID bit is set.

- \(k \) filename
 True if filename exists and its sticky bit is set.

- \(s \) filename
 True if filename exists and has a size greater than zero.

- \(t \) [fildes]
 True if the open file whose file descriptor number is fildes (1 by default) is associated with a terminal device.

- \(z \) s1
 True if the length of string s1 is zero.

- \(n \) s1
 True if the length of the string s1 is non-zero.

s1 = s2
True if strings s1 and s2 are identical.

s1 != s2
True if strings s1 and s2 are not identical.
s1 True if s1 is not the null string.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, -gt, -ge, -lt, and -le may be used in place of -eq.

Operators These primaries may be combined with the following operators:

! Unary negation operator.

-a Binary and operator.

-o Binary or operator (-a has higher precedence than -o).

(expression) Parentheses for grouping. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.

 ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO find(1), sh(1), attributes(5)

NOTES The not-a-directory alternative to the -f option is a transition aid for BSD applications and may not be supported in future releases.

If you test a file you own (the -r, -w, or -x tests), but the permission tested does not have the owner bit set, a non-zero (false) exit status will be returned even though the file may have the group or other bit set for that permission. The correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators, and = and != always expect arguments; therefore, = and != cannot be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first argument is examined; the others are ignored, unless a -a or a -o is the second argument.
NAME
test – condition evaluation command

SYNOPSIS
test expression

DESCRIPTION
test evaluates the expression expression and if its value is true, sets a 0 (TRUE) exit status; otherwise, a non-zero (FALSE) exit status is set; test also sets a non-zero exit status if there are no arguments. When permissions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line) must be separate arguments to test. Normally these items are separated by spaces.

USAGE
Primitives
The following primitives are used to construct expression:

- `r filename` True if filename exists and is readable.
- `w filename` True if filename exists and is writable.
- `x filename` True if filename exists and is executable.
- `f filename` True if filename exists and is a regular file.
- `d filename` True if filename exists and is a directory.
- `c filename` True if filename exists and is a character special file.
- `b filename` True if filename exists and is a block special file.
- `p filename` True if filename exists and is a named pipe (FIFO).
- `u filename` True if filename exists and its set-user-ID bit is set.
- `g filename` True if filename exists and its set-group-ID bit is set.
- `k filename` True if filename exists and its sticky bit is set.
- `s filename` True if filename exists and has a size greater than 0.
- `t [fdes]` True if the open file whose file descriptor number is fdes (1 by default) is associated with a terminal device.
- `z s1` True if the length of string s1 is 0.
-n $s1$ True if the length of the string $s1$ is non-zero.

$s1 = s2$ True if strings $s1$ and $s2$ are identical.

$s1 != s2$ True if strings $s1$ and $s2$ are *not* identical.

$s1$ True if $s1$ is *not* the null string.

$n1 -eq n2$ True if the integers $n1$ and $n2$ are algebraically equal. Any of the comparisons $-ne, -gt, -ge, -lt, and -le$ may be used in place of $-eq$.

Operators

These primaries may be combined with the following operators:

- !
 Unary negation operator.

- \land
 Binary *and* operator.

- \lor
 Binary *or* operator (\land has higher precedence than \lor).

- *(expression)*
 Parentheses for grouping. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

find(1), sh(1), attributes(5)

NOTES

If you test a file you own (the -r, -w, or -x tests), but the permission tested does not have the *owner* bit set, a non-zero (false) exit status will be returned even though the file may have the *group* or *other* bit set for that permission. The correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators, and = and ! = always expect arguments; therefore, = and != cannot be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first argument is examined; the others are ignored, unless a -a or a -o is the second argument.
tftp – trivial file transfer program

SYNOPSIS tftp [host [port]]

DESCRIPTION tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which allows users to transfer files to and from a remote machine. The remote host and optional port may be specified on the command line, in which case tftp uses host as the default host, and if specified, port as the default port, for future transfers. See the connect command below.

USAGE Once tftp is running, it issues the prompt tftp> and recognizes the following commands:

Commands

 connect host-name [port]

 Set the host, and optionally port, for transfers. The TFTP protocol, unlike the FTP protocol, does not maintain connections between transfers; thus, the connect command does not actually create a connection, but merely remembers what host is to be used for transfers. You do not have to use the connect command; the remote host can be specified as part of the get or put commands.

 mode transfer-mode

 Set the mode for transfers; transfer-mode may be one of ascii or binary. The default is ascii.

 put filename
 put localfile remotefile
 put filename1 filename2 ... filenameN remote-directory

 Transfer a file, or a set of files, to the specified remote file or directory. The destination can be in one of two forms: a filename on the remote host if the host has already been specified, or a string of the form:

 host:filename

 to specify both a host and filename at the same time. If the latter form is used, the specified host becomes the default for future transfers. If the remote-directory form is used, the remote host is assumed to be running the UNIX system.

 The host can be a host name (see hosts(4) or ipnodes(4)) or an IPv4 or IPv6 address string (see inet(7P) or inet6(7P)). Since IPv6 addresses already contain "::", the host should be enclosed in square brackets when an IPv6 address is used. Otherwise, the first occurrence of a colon will be interpreted as the separator between the host and the filename. For example,

 [1080::8:800:200c:417A]:myfile

 Files may be written only if they already exist and are publicly writable. See in.tftpd(1M).

 get filename
 get remotename localname
 get filename1 filename2 filename3 ... filenameN
Get a file or set of files (three or more) from the specified remote sources. source can be in one of two forms: a filename on the remote host if the host has already been specified, or a string of the form:

`host:filename`

to specify both a host and filename at the same time. If the latter form is used, the last host specified becomes the default for future transfers. See the `put` command regarding specifying a `host`.

quit
Exit tftp. An EOF also exits.

verbose
Toggle verbose mode.

trace
Toggle packet tracing.

status
Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii
Shorthand for mode ascii.

binary
Shorthand for mode binary.

blksize transfer-blocksize
The value of the transfer blocksize option to negotiate with the server. A value of 0 disables the negotiation of this option.

srexmt server-retransmission-timeout
The value of the retransmission timeout option to request that the server uses. A value of 0 disables the negotiation of this option.

tsize
A toggle that sends the transfer size option to the server. By default, the option is not sent. The transfer size option is not sent with a `write` request when the `transfer-mode` is ascii.

```
? [ command-name ... ]
Print help information.
```
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtftp</td>
</tr>
</tbody>
</table>

SEE ALSO

in.tftpd(1M), hosts(4), ipnodes(4), attributes(5), inet(7P), inet6(7P)

Malkin, G. and Harkin, A. RFC 2349, TFTP Timeout Interval and Transfer Size Options. The Internet Society. May 1998

NOTES

The default transfer-mode is ascii. This differs from pre-SunOS 4.0 and pre-4.3BSD systems, so explicit action must be taken when transferring non-ASCII binary files such as executable commands.

Because there is no user-login or validation within the TFTP protocol, many remote sites restrict file access in various ways. Approved methods for file access are specific to each site, and therefore cannot be documented here.

When using the get command to transfer multiple files from a remote host, three or more files must be specified. If two files are specified, the second file is used as a local file.
time(1)

NAME time – time a simple command

SYNOPSIS time [-p] utility [argument...]

DESCRIPTION The time utility invokes utility operand with argument, and writes a message to
 standard error that lists timing statistics for utility. The message includes the following
 information:

 - The elapsed (real) time between invocation of utility and its termination.
 - The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields
 returned by the times() function for the process in which utility is executed.
 - The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields
 returned by the times() function for the process in which utility is executed.

 When time is used as part of a pipeline, the times reported are unspecified, except
 when it is the sole command within a grouping command in that pipeline. For
 example, the commands on the left are unspecified; those on the right report on
 utilities a and c, respectively:

 time a | b | c { time a } | b | c
 a | b | time c a | b | (time c)

OPTIONS The following option is supported:

 -p Writes the timing output to standard error in the following format:

 real %f
 <real seconds>, <user seconds>,
 <system seconds>

OPERANDS The following operands are supported:

 utility The name of the utility that is to be invoked.
 argument Any string to be supplied as an argument when invoking utility.

USAGE The time utility returns exit status 127 if an error occurs so that applications can
 distinguish “failure to find a utility” from “invoked utility exited with an error
 indication.” The value 127 was chosen because it is not commonly used for other
 meanings. Most utilities use small values for “normal error conditions” and the values
 above 128 can be confused with termination due to receipt of a signal. The value 126
 was chosen in a similar manner to indicate that the utility could be found, but not
 invoked.

EXAMPLES EXAMPLE 1 Using the time command

 It is frequently desirable to apply time to pipelines or lists of commands. This can be
 done by placing pipelines and command lists in a single file. This single file can then
 be invoked as a utility, and the time applies to everything in the file.

 Alternatively, the following command can be used to apply time to a complex
 command:
EXAMPLE 1 Using the time command

```
example% time sh -c 'complex-command-line'
```

EXAMPLE 2 Using time in the csh shell

The following two examples show the differences between the csh version of time and the version in /usr/bin/time. These examples assume that csh is the shell in use.

```
example% time find / -name csh.1 -print
/usr/share/man/man1/csh.1
95.0u 692.0s 1:17:52 16% 0+0k 0+0io 0pf+0w
```

See csh(1) for an explanation of the format of time output.

```
example% /usr/bin/time find / -name csh.1 -print
/usr/share/man/man1/csh.1
real 1:23:31.5
user 1:33.2
sys 11:28.2
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of time: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, NLSPATH, and PATH.

EXIT STATUS
If utility is invoked, the exit status of time will be the exit status of utility. Otherwise, the time utility will exit with one of the following values:

- 1-125 An error occurred in the time utility.
- 126 utility was found but could not be invoked.
- 127 utility could not be found.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
csh(1), shell_builtins(1), timex(1), times(2), attributes(5), environ(5), standards(5)

NOTES
When the time command is run on a multiprocessor machine, the total of the values printed for user and sys can exceed real. This is because on a multiprocessor machine it is possible to divide the task between the various processors.
When the command being timed is interrupted, the timing values displayed may not always be accurate.

BUGS

Elapsed time is accurate to the second, while the CPU times are measured to the 100th second. Thus the sum of the CPU times can be up to a second larger than the elapsed time.
times (1)

NAME
 times – shell built-in function to report time usages of the current shell

SYNOPSIS
 sh times
 ksh times

DESCRIPTION
 sh Print the accumulated user and system times for processes run from the shell.
 ksh Print the accumulated user and system times for the shell and for processes run from
 the shell.

 On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
 treated specially in the following ways:

 1. Variable assignment lists preceding the command remain in effect when the
 command completes.
 2. I/O redirections are processed after variable assignments.
 3. Errors cause a script that contains them to abort.
 4. Words, following a command preceded by ** that are in the format of a variable
 assignment, are expanded with the same rules as a variable assignment. This
 means that tilde substitution is performed after the = sign and word splitting and
 file name generation are not performed.

ATTRIBUTES
 See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
 ksh(1), sh(1), time(1), attributes(5)
NAME
timex – time a command; report process data and system activity

SYNOPSIS

timex [-o] [-p [-fhkmrt]] [-s] command

DESCRIPTION

The given command is executed; the elapsed time, user time and system time spent in execution are reported in seconds. Optionally, process accounting data for the command and all its children can be listed or summarized, and total system activity during the execution interval can be reported.

The output of timex is written on standard error.

OPTIONS

The following options are supported:

- o Report the total number of blocks read or written and total characters transferred by command and all its children. This option works only if the process accounting software is installed.

- p List process accounting records for command and all its children. This option works only if the process accounting software is installed. Suboptions f, h, k, m, r, and t modify the data items reported. The options are as follows:

 - f Print the fork(2)/exec(2) flag and system exit status columns in the output.

 - h Instead of mean memory size, show the fraction of total available CPU time consumed by the process during its execution. This “hog factor” is computed as (total CPU time)/(elapsed time).

 - k Instead of memory size, show total kcore-minutes.

 - m Show mean core size (the default).

 - r Show CPU factor (user time/(system-time + user-time)).

 - t Show separate system and user CPU times. The number of blocks read or written and the number of characters transferred are always reported.

- s Report total system activity (not just that due to command) that occurred during the execution interval of command. All the data items listed in sar(1) are reported.

EXAMPLES

EXAMPLE 1 Examples of timex.

A simple example:

eexample$ timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

eexample$ timex -opskmt sh

 session commands

EOT
EXAMPLE 1 Examples of `timex`. (Continued)

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWaccu</td>
</tr>
</tbody>
</table>

SEE ALSO `sar(1), time(1), exec(2), fork(2), times(2), attributes(5)`

NOTES

Process records associated with command are selected from the accounting file `/var/adm/pacct` by inference, since process genealogy is not available. Background processes having the same user ID, terminal ID, and execution time window will be spuriously included.
tip(1)

NAME
 tip – connect to remote system

SYNOPSIS
 tip [-v] [-speed-entry] {hostname | phone-number | device}

DESCRIPTION
 The tip utility establishes a full-duplex terminal connection to a remote host. Once
 the connection is established, a remote session using tip behaves like an interactive
 session on a local terminal.

 The remote file contains entries describing remote systems and line speeds used by
 tip.

 Each host has a default baud rate for the connection, or you can specify a speed with
 the -speed-entry command line argument.

 When phone-number is specified, tip looks for an entry in the remote file of the form:

 tip -speed-entry

 When tip finds such an entry, it sets the connection speed accordingly. If it finds no
 such entry, tip interprets -speed-entry as if it were a system name, resulting in an
 error message.

 If you omit -speed-entry, tip uses the tip0 entry to set a speed for the connection.

 When device is specified, tip attempts to open that device, but will do so using the
 access privileges of the user, rather than tip's usual access privileges (setuid uucp).
 The user must have read/write access to the device. The tip utility interprets any
 character string beginning with the slash character (/) as a device name.

 When establishing the connection, tip sends a connection message to the remote
 system. The default value for this message can be found in the remote file.

 When tip attempts to connect to a remote system, it opens the associated device with
 an exclusive-open ioctl(2) call. Thus, only one user at a time may access a device.
 This is to prevent multiple processes from sampling the terminal line. In addition, tip
 honors the locking protocol used by uucp(1C).

 When tip starts up, it reads commands from the file .tiprc in your home directory.

 -v Display commands from the .tiprc file as they are executed.

 Typed characters are normally transmitted directly to the remote machine, which does
 the echoing as well.

 At any time that tip prompts for an argument (for example, during setup of a file
 transfer), the line typed may be edited with the standard erase and kill characters. A
 null line in response to a prompt, or an interrupt, aborts the dialogue and returns you
 to the remote machine.

 A tilde (~) appearing as the first character of a line is an escape signal which directs
 tip to perform some special action. tip recognizes the following escape sequences:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-D</td>
<td>Drop the connection and exit (you may still be logged in on the remote machine). Note: If you rlogin and then run tip on the remote host, you must type --. (tilde tilde dot) to end the tip session. If you type -. (tilde dot), it terminates the rlogin.</td>
</tr>
<tr>
<td>-c name</td>
<td>Change directory to name. No argument implies change to your home directory.</td>
</tr>
<tr>
<td>-!</td>
<td>Escape to an interactive shell on the local machine. Exiting the shell returns you to tip.</td>
</tr>
<tr>
<td>-></td>
<td>Copy file from local to remote.</td>
</tr>
<tr>
<td><-</td>
<td>Copy file from remote to local.</td>
</tr>
<tr>
<td>-p from [to]</td>
<td>Send a file to a remote host running the UNIX system. When you use the put command, the remote system runs the command string <code>cat > to</code> while tip sends it the from file. If the to file is not specified, the from file name is used. This command is actually a UNIX-system-specific version of the <code>-></code> command.</td>
</tr>
<tr>
<td>-t from [to]</td>
<td>Take a file from a remote host running the UNIX system. As in the put command the to file defaults to the from file name if it is not specified. The remote host executes the command string <code>cat from ; echo ^A</code> to send the file to tip.</td>
</tr>
<tr>
<td>-</td>
<td>Pipe the output from a remote command to a local process. The command string sent to the local system is processed by the shell.</td>
</tr>
<tr>
<td>-C</td>
<td>Connect a program to the remote machine. The command string sent to the program is processed by the shell. The program inherits file descriptors 0 as remote line input, 1 as remote line output, and 2 as tty standard error.</td>
</tr>
<tr>
<td>-$</td>
<td>Pipe the output from a local process to the remote host. The command string sent to the local system is processed by the shell.</td>
</tr>
<tr>
<td>-#</td>
<td>Send a BREAK to the remote system.</td>
</tr>
<tr>
<td>-s</td>
<td>Set a variable (see the discussion below).</td>
</tr>
<tr>
<td>-^Z</td>
<td>Stop tip. Only available when run under a shell that supports job control, such as the C shell.</td>
</tr>
<tr>
<td>-^Y</td>
<td>Stop only the “local side” of tip. Only available when run under a shell that supports job control, such as the C shell. The “remote side” of tip, that is, the side that displays output from the remote host, is left running.</td>
</tr>
</tbody>
</table>
tip(1)

--? Get a summary of the tilde escapes.

Copying files requires some cooperation on the part of the remote host. When a `->` or `<-` escape is used to send a file, `tip` prompts for a file name (to be transmitted or received) and a command to be sent to the remote system, in case the file is being transferred from the remote system. While `tip` is transferring a file, the number of lines transferred will be continuously displayed on the screen. A file transfer may be aborted with an interrupt.

`tip` may be used to dial up remote systems using a number of auto-call unit's (ACUs). When the remote system description contains the `du` capability, `tip` uses the call-unit `(cu), ACU type (at), and phone numbers (pn) supplied. Normally, `tip` displays verbose messages as it dials.

Depending on the type of auto-dialer being used to establish a connection, the remote host may have garbage characters sent to it upon connection. The user should never assume that the first characters typed to the foreign host are the first ones presented to it. The recommended practice is to immediately type a `kill` character upon establishing a connection (most UNIX systems either support `@` or Control-U as the initial kill character).

`tip` currently supports the Ventel MD-212+ modem and DC Hayes-compatible modems.

When `tip` initializes a Hayes-compatible modem for dialing, it sets up the modem to auto-answer. Normally, after the conversation is complete, `tip` drops DTR, which causes the modem to "hang up."

Most modems can be configured so that when DTR drops, they re-initialize themselves to a preprogrammed state. This can be used to reset the modem and disable auto-answer, if desired.

Additionally, it is possible to start the phone number with a Hayes `S` command so that you can configure the modem before dialing. For example, to disable auto-answer, set up all the phone numbers in `/etc/remote` using something like `pn=S0=0DT5551212`. The `S0=0` disables auto-answer.

Descriptions of remote hosts are normally located in the system-wide file `/etc/remote`. However, a user may maintain personal description files (and phone numbers) by defining and exporting the `REMOTE` shell variable. The `remote` file must be readable by `tip`, but a secondary file describing phone numbers may be maintained readable only by the user. This secondary phone number file is `/etc/phones`, unless the shell variable `PHONES` is defined and exported. The phone number file contains lines of the form:

```
  system-name phone-number
```

Auto-call Units

```
  Auto-call Units
  `tip` may be used to dial up remote systems using a number of auto-call unit's (ACUs). When the remote system description contains the `du` capability, `tip` uses the call-unit `(cu), ACU type (at), and phone numbers (pn) supplied. Normally, `tip` displays verbose messages as it dials.
```

Remote Host Description

```
  Remote Host Description
  Descriptions of remote hosts are normally located in the system-wide file `/etc/remote`. However, a user may maintain personal description files (and phone numbers) by defining and exporting the `REMOTE` shell variable. The `remote` file must be readable by `tip`, but a secondary file describing phone numbers may be maintained readable only by the user. This secondary phone number file is `/etc/phones`, unless the shell variable `PHONES` is defined and exported. The phone number file contains lines of the form:
```

```
  system-name phone-number
```
Each phone number found for a system is tried until either a connection is established, or an end of file is reached. Phone numbers are constructed from '0123456789-=*', where the '=' and '*' are used to indicate a second dial tone should be waited for (ACU dependent).

tip maintains a set of variables which are used in normal operation. Some of these variables are read-only to normal users (root is allowed to change anything of interest). Variables may be displayed and set through the -s escape. The syntax for variables is patterned after **vi**(1) and **mail**(1). Supplying all as an argument to the -s escape displays all variables that the user can read. Alternatively, the user may request display of a particular variable by attaching a ? to the end. For example, '-s escape?' displays the current escape character.

Variables are numeric (num), string (str), character (char), or Boolean (bool) values. Boolean variables are set merely by specifying their name. They may be reset by prepending a ! to the name. Other variable types are set by appending an = and the value. The entire assignment must not have any blanks in it. A single set command may be used to interrogate as well as set a number of variables.

Variables may be initialized at run time by placing set commands (without the -s prefix) in a .tiprc file in one's home directory. The -v option makes **tip** display the sets as they are made. Comments preceded by a # sign can appear in the .tiprc file.

Finally, the variable names must either be completely specified or an abbreviation may be given. The following list details those variables known to **tip**.

- **beautify** (bool) Discard unprintable characters when a session is being scripted; abbreviated be. If the nb capability is present, beautify is initially set to off. Otherwise, beautify is initially set to on.
- **baudrate** (num) The baud rate at which the connection was established; abbreviated ba. If a baud rate was specified on the command line, baudrate is initially set to the specified value. Or, if the br capability is present, baudrate is initially set to the value of that capability. Otherwise, baudrate is set to 300 baud. Once **tip** has been started, baudrate can only changed by the super-user.
- **dialtimeout** (num) When dialing a phone number, the time (in seconds) to wait for a connection to be established; abbreviated dial. dialtimeout is initially set to 60 seconds, and can only changed by the super-user.
- **disconnect** (str) The string to send to the remote host to disconnect from it; abbreviated di. If the di capability is present, disconnect is initially set to the value of that capability. Otherwise, disconnect is set to a null string ("").
- **echocheck** (bool) Synchronize with the remote host during file transfer by waiting for the echo of the last character transmitted; abbreviated
ec. If the ec capability is present, echocheck is initially set to on. Otherwise, echocheck is initially set to off.

eofread (str) The set of characters which signify an end-of-transmission during a -> file transfer command; abbreviated eofr. If the ie capability is present, eofread is initially set to the value of that capability. Otherwise, eofread is set to a null string ("").

eofwrite (str) The string sent to indicate end-of-transmission during a -> file transfer command; abbreviated eofw. If the oe capability is present, eofread is initially set to the value of that capability. Otherwise, eofread is set to a null string ("").

eol (str) The set of characters which indicate an end-of-line. tip will recognize escape characters only after an end-of-line. If the el capability is present, eol is initially set to the value of that capability. Otherwise, eol is set to a null string ("").

escape (char) The command prefix (escape) character; abbreviated es. If the es capability is present, escape is initially set to the value of that capability. Otherwise, escape is set to ‘~’.

etimeout (num) The amount of time, in seconds, that tip should wait for the echo-check response when echocheck is set; abbreviated et. If the et capability is present, etimeout is initially set to the value of that capability. Otherwise, etimeout is set to 10 seconds.

exceptions (str) The set of characters which should not be discarded due to the beautification switch; abbreviated ex. If the ex capability is present, exceptions is initially set to the value of that capability. Otherwise, exceptions is set to ‘\t\n\f\b’.

force (char) The character used to force literal data transmission; abbreviated fo. If the fo capability is present, force is initially set to the value of that capability. Otherwise, force is set to \377 (which disables it).

framesize (num) The amount of data (in bytes) to buffer between file system writes when receiving files; abbreviated fr. If the fs capability is present, framesize is initially set to the value of that capability. Otherwise, framesize is set to 1024.

halfduplex (bool) Do local echoing because the host is half-duplex; abbreviated hdex. If the hd capability is present, halfduplex is initially set to on. Otherwise, halfduplex is initially set to off.

hardwareflow (bool) Do hardware flow control; abbreviated hf. If the hf capability is present, hardwareflow is initially set to on. Otherwise, hardwareflowcontrol is initially set to off.
host
(str) The name of the host to which you are connected; abbreviated ho. **host** is permanently set to the name given on the command line or in the **HOST** environment variable.

localecho
(bool) A synonym for **halfduplex**; abbreviated le.

log
(str) The name of the file to which to log information about outgoing phone calls. **log** is initially set to `/var/adm/aculog`, and can only be inspected or changed by the super-user.

parity
(str) The parity to be generated and checked when talking to the remote host; abbreviated par. The possible values are:

- none: Parity is not checked on input, and the parity bit is set to zero on output.
- zero: Parity is not checked on input, and the parity bit is set to one on output.
- one: Even parity is checked for on input and generated on output.
- odd: Odd parity is checked for on input and generated on output.

If the **pa** capability is present, **parity** is initially set to the value of that capability; otherwise, **parity** is set to none.

phones
The file in which to find hidden phone numbers. If the environment variable **PHONES** is set, **phones** is set to the value of **PHONES**. Otherwise, **phones** is set to `/etc/phones`. The value of **phones** cannot be changed from within **tip**.

prompt
(char) The character which indicates an end-of-line on the remote host; abbreviated pr. This value is used to synchronize during data transfers. The count of lines transferred during a file transfer command is based on receipt of this character. If the **pr** capability is present, **prompt** is initially set to the value of that capability. Otherwise, **prompt** is set to `\n`.

raise
(bool) Upper case mapping mode; abbreviated ra. When this mode is enabled, all lower case letters will be mapped to upper case by **tip** for transmission to the remote machine. If the **ra** capability is present, **raise** is initially set to on. Otherwise, **raise** is initially set to off.

raisechar
(char) The input character used to toggle upper case mapping mode; abbreviated rc. If the **rc** capability is present, **raisechar** is initially set to the value of that capability. Otherwise, **raisechar** is set to `\377` (which disables it).
tip(1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rawftp</td>
<td>(bool) Send all characters during file transfers; do not filter non-printable characters, and do not do translations like \n to \r. Abbreviated raw. If the rw capability is present, rawftp is initially set to on. Otherwise, rawftp is initially set to off.</td>
</tr>
<tr>
<td>record</td>
<td>(str) The name of the file in which a session script is recorded; abbreviated rec. If the re capability is present, record is initially set to the value of that capability. Otherwise, record is set to tip.record.</td>
</tr>
<tr>
<td>remote</td>
<td>The file in which to find descriptions of remote systems. If the environment variable REMOTE is set, remote is set to the value of REMOTE. Otherwise, remote is set to /etc/remote. The value of remote cannot be changed from within tip.</td>
</tr>
<tr>
<td>script</td>
<td>(bool) Session scripting mode; abbreviated sc. When script is on, tip will record everything transmitted by the remote machine in the script record file specified in record. If the beautify switch is on, only printable ASCII characters will be included in the script file (those characters between 040 and 0177). The variable exceptions is used to indicate characters which are an exception to the normal beautification rules. If the sc capability is present, script is initially set to on. Otherwise, script is initially set to off.</td>
</tr>
<tr>
<td>tabexpand</td>
<td>(bool) Expand TAB characters to SPACE characters during file transfers; abbreviated tab. When tabexpand is on, each tab is expanded to eight SPACE characters. If the tb capability is present, tabexpand is initially set to on. Otherwise, tabexpand is initially set to off.</td>
</tr>
<tr>
<td>tandem</td>
<td>(bool) Use XON/XOFF flow control to limit the rate that data is sent by the remote host; abbreviated ta. If the nt capability is present, tandem is initially set to off. Otherwise, tandem is initially set to on.</td>
</tr>
<tr>
<td>verbose</td>
<td>(bool) Verbose mode; abbreviated verb; When verbose mode is enabled, tip prints messages while dialing, shows the current number of lines transferred during a file transfer operations, and more. If the nv capability is present, verbose is initially set to off. Otherwise, verbose is initially set to on.</td>
</tr>
<tr>
<td>SHELL</td>
<td>(str) The name of the shell to use for the ~! command; default value is /bin/sh, or taken from the environment.</td>
</tr>
<tr>
<td>HOME</td>
<td>(str) The home directory to use for the ~c command. Default value is taken from the environment.</td>
</tr>
</tbody>
</table>

Examples

Example 1 Using the tip command

An example of the dialog used to transfer files is given below.
EXAMPLE 1 Using the tip command (Continued)

```
arpa% tip monet
[connected]
...(assume we are talking to a UNIX system)...
ucbmonet login: sam
Password:
monet% cat  sylvester.c
  -> Filename: sylvester.c
  32 lines transferred in 1 minute 3 seconds
monet%
monet% -> Filename: reply.c
List command for remote host: cat reply.c
  65 lines transferred in 2 minutes
monet%
...(or, equivalently)...
monet% -p sylvester.c
...(actually echoes as ~[put] sylvester.c)...
  32 lines transferred in 1 minute 3 seconds
monet%
monet% -t reply.c
...(actually echoes as ~[take] reply.c)...
  65 lines transferred in 2 minutes
monet%
...(to print a file locally)...
monet% -|Local command: pr h sylvester.c | lpr
List command for remote host: cat sylvester.c
monet% -D
[EBT]
...(back on the local system)...
```

ENVIRONMENT VARIABLES

The following environment variables are read by tip.

REMOTEn The location of the remote file.
PHONEnes The location of the file containing private phone numbers.
HOSTn A default host to connect to.
HOMEn One’s log-in directory (for chdirs).
SHELln The shell to fork on a ‘‘!’’ escape.

FILES

```
/etc/phones
/etc/remote
/var/spool/locks/LCK. .*
  lock file to avoid conflicts with UUCP
/var/adm/aculog
  file in which outgoing calls are logged
-/.tiprc
  initialization file
```

User Commands 1589
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO cu(1C), mail(1), uucp(1C), vi(1), ioctl(2), attributes(5)

BUGS There are two additional variables, chardelay and linedelay, that are currently not implemented.
tnfdump – convert binary TNF file to ASCII

SYNOPSIS

```
 tnfdump [-r] [-x] tnf_file...
```

DESCRIPTION

The `tnfdump` utility converts the specified binary TNF trace files to ASCII. The ASCII output can be used for performance analysis. The default mode (without the `-r` option) prints all the event records (that were generated by `TNF_PROBE(3TNF)`) and the event descriptor records only. It also orders the events by time.

OPTIONS

The following option is supported:

- `-r` Does a raw conversion of TNF to ASCII. The output is a literal translation of the binary TNF file and includes all the records in the file. This output is useful only if you have a good understanding of TNF. A sample output is listed in EXAMPLES below.

- `-x` Prints all TNF unsigned type argument values in hexadecimal format instead of decimal format.

RETURN VALUES

`tnfdump` returns 0 on successful exit.

EXAMPLES

EXAMPLE 1 Converting a file into ASCII

To convert the file `/tmp/trace-2130` into ASCII, use the `tnfdump` command and the name of the binary trace file. Be aware that the `tnfdump` output goes to stdout by default.

```
example$ tnfdump /tmp/trace-2130
```

```
probe tnf_name: "inloop" tnf_string: "keys cookie main loop;
file cookie2.c;line 50;sunw%debug in the loop"
probe tnf_name: "end" tnf_string: "keys cookie main end;
file cookie2.c;line 41;sunw%debug exiting program"
```

```
<table>
<thead>
<tr>
<th>Elapsed (ms)</th>
<th>Delta (ms)</th>
<th>PID</th>
<th>LWPID</th>
<th>TID</th>
<th>CPU</th>
<th>Probe Data/ Name Description...</th>
</tr>
</thead>
</table>
| 0.000000     | 0.000000   | 8792 | 1     | 0   | - inloop | loop_count: 0
|              |            |      |       |     |      | total_iterations: 0            |
| 0.339000     | 0.339000   | 8792 | 1     | 0   | - inloop | loop_count: 1
|              |            |      |       |     |      | total_iterations: 1            |
| 0.360500     | 0.011500   | 8792 | 1     | 0   | - inloop | loop_count: 2
|              |            |      |       |     |      | total_iterations: 2            |
| 0.369500     | 0.009000   | 8792 | 1     | 0   | - inloop | loop_count: 3
|              |            |      |       |     |      | total_iterations: 3            |
| 7775.969500  | 7775.600000| 8792 | 1     | 0   | - inloop | loop_count: 4
|              |            |      |       |     |      | total_iterations: 4            |
| 7776.016000  | 0.046500   | 8792 | 1     | 0   | - inloop | loop_count: 5
|              |            |      |       |     |      | total_iterations: 5            |
| 7776.025000  | 0.009000   | 8792 | 1     | 0   | - inloop | loop_count: 6
|              |            |      |       |     |      | total_iterations: 6            |
| 7776.034000  | 0.009000   | 8792 | 1     | 0   | - inloop | loop_count: 7
|              |            |      |       |     |      | total_iterations: 7            |
```
EXAMPLE 1 Converting a file into ASCII (Continued)

7776.043000 0.009000 8792 1 0 - inloop loop_count: 4
total_iterations: 9

7776.052000 0.009000 8792 1 0 - inloop loop_count: 5
total_iterations: 10

7776.061000 0.009000 8792 1 0 - inloop loop_count: 6
total_iterations: 11

9475.979500 1699.918500 8792 1 0 - end
node_struct:
{ type: node_tnf
cur_sum: 9 max_cnt: 12 }

All probes that are encountered during execution have a description of it printed out. The description is one per line prefixed by the keyword 'probe'. The name of the probe is in double quotes after the keyword 'tnf_name'. The description of this probe is in double quotes after the keyword 'tnf_string'.

A heading is printed after all the description of the probes are printed. The first column gives the elapsed time in milli-seconds since the first event. The second column gives the elapsed time in milli-seconds since the previous event. The next four columns are the process id, lwp id, thread id, and cpu number. The next column is the name of the probe that generated this event. This can be matched to the probe description explained above. The last column is the data that the event contains, formatted as arg_name_n (see TNF_PROBE(3TNF)) followed by a colon and the value of that argument. The format of the value depends on its type. tnf_opaque arguments are printed in hexadecimal. All other integers are printed in decimal. Strings are printed in double quotes and user-defined records are enclosed in braces '{ }'. The first field of a user defined record indicates its TNF type (see TNF_DECLARE_RECORD(3TNF)). The rest of the fields are the members of the record.

A '-' in any column indicates that there is no data for that particular column.

EXAMPLE 2 To do a raw conversion of a file into ASCII

To do a raw conversion of the file /tmp/trace-4000 into ASCII, use:
examp% tnfdump -r /tmp/trace-4000

The output will look like the following:

0x10e00 : {
tnf_tag 0x109c0 tnf_block_header
generation 1
bytes_valid 320
A_lock 0
B_lock 0
next_block 0x0
}

0x10e10 : {
tnf_tag 0x10010 probe1
tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 128
}
EXAMPLE 2 To do a raw conversion of a file into ASCII (Continued)

 test_ulong 4294967295
 test_long -1

0x10e24 : {
 tnf_tag 0x10cf4 tnf_sched_rec
 tid 0
 lwpid 1
 pid 13568
 time_base 277077875828500
}

0x10e3c : {
 tnf_tag 0x11010 probe2
 tnf_tag_arg 0x10e24 <tnf_sched_rec>
 time_delta 735500
 test_str 0x10e48 "string1"
}

0x10e48 : {
 tnf_tag 0x1072c tnf_string
 tnf_self_size 16
 chars "string1"
}

0x10e58 : {
 tnf_tag 0x110ec probe3
 tnf_tag_arg 0x10e24 <tnf_sched_rec>
 time_delta 868000
 test_ulonglong 18446744073709551615
 test_longlong -1
 test_float 3.142857
}

...
...
...

0x110ec : {
 tnf_tag 0x10030 tnf_probe_type
 tnf_tag_code 42
 tnf_name 0x1110c "probe3"
 tnf_properties 0x1111c <tnf_properties>
 tnf_slot_types 0x10b84 <tnf_slot_types>
 tnf_type_size 32
 tnf_slot_names 0x111c4 <tnf_slot_names>
 tnf_string 0x11268 "keys targdebug main;\n file targdebug.c;line 61;"
}

0x1110c : {
 tnf_tag 0x10068 tnf_name
 tnf_self_size 16
 chars "probe3"
}

0x1111c : {
 tnf_tag 0x100b4 tnf_properties
 tnf_self_size 20
 0 0x101a0 tnf_tagged
 1 0x101c4 tnf_struct
 2 0x10b84 tnf_tag_arg

User Commands 1593
EXAMPLE 2 To do a raw conversion of a file into ASCII (Continued)

The first number is the file offset of the record. The record is enclosed in braces ‘{ }’.
The first column in a record is the slot name (for records whose fields do not have
names, it is the type name). The second column in the record is the value of that slot if
it is a scalar (only scalars that are of type tnf_opaque are printed in hex), or the offset
of the record if it is a reference to another record.

The third column in a record is optional. It does not exist for scalar slots of records. If
it exists, the third column is a type name with or without angle brackets, or a string in
double quotes. Unadorned names indicate a reference to the named metatag record
(that is, a reference to a record with that name in the tnf_name field). Type names in
angled brackets indicate a reference to a record that is an instance of that type (that is,
a reference to a record with that name in the tnf_tag field). The content of strings are
printed out in double quotes at the reference site.

Records that are arrays have their array elements follow the header slots, and are
numbered 0, 1, 2, and so on, except strings where the string is written as the ‘chars’
(pseudo-name) slot.

Records that are events (generated by TNF_PROBE(3TNF)) will have a slot name of
tnf_tag_arg as their second field which is a reference to the schedule record.
Schedule records describe more information about the event like the thread-id,
process-id, and the time_base. The time_delta of an event can be added to the
time_base of the schedule record that the event references, to give an absolute time.
This time is expressed as nanoseconds since some arbitrary time in the past (see
gethrtime(3C)).

EXAMPLE 3 Printing TNF unsigned arguments in hexadecimal

To print TNF unsigned arguments in hexadecimal for the file /tmp/trace-2192,
use:

example% tnfdump -x /tmp/trace-2192

The output will look like the following:

probe tnf_name: "start" tnf_string: "keys cookie main;
file test17.c;line 20;sunwdebug starting main"
probe tnf_name: "inloop" tnf_string: "keys cookie main
EXAMPLE 3 Printing TNF unsigned arguments in hexadecimal (Continued)

Notice that the loop_count and the total_iterations are TNF unsigned arguments. Their values are printed in hexadecimal when requested by option -x.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtnfd</td>
</tr>
</tbody>
</table>

SEE ALSO
prex(1), gethrtime(3C), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF), tnf_process_disable(3TNF), attributes(5)
The **tnfxtract** utility collects kernel trace output from an in-core buffer in the Solaris kernel, or from the memory image of a crashed system, and generates a binary TNF trace file like those produced directly by user programs being traced.

Either both or neither of the **-d** and **-n** options must be specified. If neither is specified, trace output is extracted from the running kernel. If both are specified, the **-d** argument names the file containing the (crashed) system memory image, and the **-n** argument names the file containing the symbol table for the system memory image.

The TNF trace file **tnf_file** produced is exactly the same size as the in-core buffer; it is essentially a snapshot of that buffer. It is legal to run **tnfxtract** while kernel tracing is active, i.e., while the in-core buffer is being written. **tnfxtract** insures that the output file it generates is low-level consistent, i.e., that only whole probes are written out, and that internal data structures in the buffer are not corrupted because the buffer is being concurrently written.

The TNF trace file generated is suitable as input to **tnfdump(1)**, which will generate an ASCII file.

OPTIONS

The following options are supported:

- **-d dumpfile**
 Use **dumpfile** as the system memory image, instead of the running kernel. The **dumpfile** is normally the path name of a file generated by the **savecore** utility.

- **-n namelist**
 Use **namelist** as the file containing the symbol table information for the given **dumpfile**.

OPERANDS

The following operand is supported:

- **tn_file**
 output file generated by **tnfxtract** based on kernel trace output from an in-core buffer in the Solaris kernel.

EXAMPLES

EXAMPLE 1 Extracting probes from a running kernel

Extract probes from the running kernel into **ktrace.out**:

```bash
example$ tnfxtract ktrace.out
```

EXAMPLE 2 Extracting probes from a kernel crash dump

Extract probes from a kernel crash dump into **ktrace.out**:

```bash
example$ tnfxtract -d /var/crash/\'uname -n\'/vmcore.0 \
-n /var/crash/\'uname -n\'/unix.0 ktrace.out
```

EXIT STATUS

The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtnfc (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWtnfxc (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO prex(1), tnfdump(1), savecore(1M), tnf_kernel_probes(4), attributes(5)
The `touch` utility sets the access and modification times of each file. The file operand is created if it does not already exist.

The time used can be specified by `-t time`, by the corresponding time fields of the file referenced by `-r ref_file`, or by the `date_time` operand. If none of these are specified, `touch` uses the current time (the value returned by the `time(2)` function).

If neither the `-a` nor `-m` options are specified, `touch` updates both the modification and access times.

A user with write access to a file, but who is not the owner of the file or a super-user, can change the modification and access times of that file only to the current time. Attempts to set a specific time with `touch` will result in an error.

The `settime` utility is equivalent to `touch -c [date_time] file`.

The following options are supported in the `touch` and `settime` utilities:

touch

The following options are supported for the `touch` utility:

- `-a` Changes the access time of file. Does not change the modification time unless `-m` is also specified.
- `-c` Does not create a specified file if it does not exist. Does not write any diagnostic messages concerning this condition.
- `-m` Changes the modification time of file. Does not change the access time unless `-a` is also specified.
- `-r ref_file` Uses the corresponding times of the file named by `ref_file` instead of the current time.
- `-t time` Uses the specified `time` instead of the current time. `time` will be a decimal number of the form:

```
[[CC]YY]MMDDhhmm[.SS]
```

where each two digits represent the following:

- `MM` The month of the year [01-12].
- `DD` The day of the month [01-31].
- `hh` The hour of the day [00-23].
- `mm` The minute of the hour [00-59].
- `CC` The first two digits of the year.
YY The second two digits of the year.
SS The second of the minute [00-61].

Both CC and YY are optional. If neither is given, the current year will be assumed. If YY is specified, but CC is not, CC will be derived as follows:

<table>
<thead>
<tr>
<th>If YY is:</th>
<th>CC becomes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>69-99</td>
<td>19</td>
</tr>
<tr>
<td>00-38</td>
<td>20</td>
</tr>
<tr>
<td>39-68</td>
<td>ERROR</td>
</tr>
</tbody>
</table>

The resulting time will be affected by the value of the TZ environment variable. If the resulting time value precedes the Epoch, touch will exit immediately with an error status. The range of valid times is the Epoch to January 18, 2038.

The range for SS is [00-61] rather than [00-59] because of leap seconds. If SS is 60 or 61, and the resulting time, as affected by the TZ environment variable, does not refer to a leap second, the resulting time will be one or two seconds after a time where SS is 59. If SS is not given, it is assumed to be 0.

The following option is supported for the setime utility:

- `ref_file` Uses the corresponding times of the file named by ref_file instead of the current time.

The following operands are supported for the touch and setime utilities:

- `file` A path name of a file whose times are to be modified.
- `date_time` Uses the specified date_time instead of the current time. This operand is a decimal number of the form:

```
MMDDhhmm[YY]
```

where each two digits represent the following:

- `MM` The month of the year [01-12].
- `DD` The day of the month [01-31].
- `hh` The hour of the day [00-23].
- `mm` The minute of the hour [00-59].
- `YY` The second two digits of the year.
YY is optional. If it is omitted, the current year will be assumed. If YY is specified, the year will be derived as follows:

<table>
<thead>
<tr>
<th>YY</th>
<th>Corresponding Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-38</td>
<td>2000-2038</td>
</tr>
<tr>
<td>39-68</td>
<td>ERROR</td>
</tr>
</tbody>
</table>

If no -r option is specified, no -t option is specified, at least two operands are specified, and the first operand is an eight- or ten-digit decimal integer, the first operand will be assumed to be a date_time operand. Otherwise, the first operand will be assumed to be a file operand.

USAGE

See largefile(5) for the description of the behavior of touch when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of touch: LANG, LC_ALL, LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

TZ

Determine the timezone to be used for interpreting the time option-argument or the date_time operand.

EXIT STATUS

The following exit values are returned:

0

The touch utility executed successfully and all requested changes were made.

>0

An error occurred. The touch utility returned the number of files for which the times could not be successfully modified.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
time(2), attributes(5), environ(5), largefile(5), standards(5)
Users familiar with the BSD environment will find that for the touch utility, the -f option is accepted but ignored. The -f option is unnecessary because touch will succeed for all files owned by the user regardless of the permissions on the files.
NAME touch – change file access and modification times

SYNOPSIS /usr/ucb/touch [-acfm] file...

DESCRIPTION touch sets the access and modification times of each file to the current time. file is created if it does not already exist.

OPTIONS -a Change the access time of file. Do not change the modification time unless -m is also specified.
-c Do not create file if it does not exist.
-f Attempt to force the touch in spite of read and write permissions on file.
-m Change the modification time of file. Do not change the access time unless -a is also specified.

USAGE See largefile(5) for the description of the behavior of touch when encountering files greater than or equal to 2 Gbyte (2^{31} bytes).

EXIT STATUS The following exit values are returned:
0 touch executed successfully and all requested changes were made.
>0 An error occurred. touch returns the number of files for which the times could not be successfully modified.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO touch(1), attributes(5), largefile(5)
tplot(1)

NAME
tplot, t300, t300s, t4014, t450, tek, ver – graphics filters for various plotters

SYNOPSIS
/usr/bin/tplot [-T terminal]

DESCRIPTION
tplot reads plotting instructions from the standard input and produces plotting instructions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal is tek.

ENVIRONMENT VARIABLES
Except for ver, the following terminal-types can be used with ‘lpr -g’ (see lpr) to produce plotted output:

300 DASI 300 or GSI terminal (Diablo® mechanism).
300s | 300S DASI 300s terminal (Diablo mechanism).
450 DASI Hyterm 450 terminal (Diablo mechanism).
4014 | tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module. (Use 4013 for Tektronix 4014 or 4015 without the Enhanced Graphics Module).
ver Versatec® D1200A printer-plotter. The output is scan-converted and suitable input to ‘lpr -v’.

FILES
/usr/lib/t300
/usr/lib/t300s
/usr/lib/t4014
/usr/lib/t450
/usr/lib/tek
/usr/lib/vplot

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO
lp(1), vi(1), attributes(5)
NAME | tput – initialize a terminal or query terminfo database

SYNOPSIS | tput [-T type] capname [parm...]
 | tput -S <<

DESCRIPTION The `tput` utility uses the `terminfo` database to make the values of terminal-dependent capabilities and information available to the shell (see `sh(1)`); to clear, initialize or reset the terminal; or to return the long name of the requested terminal type. `tput` outputs a string if the capability attribute (`capname`) is of type string, or an integer if the attribute is of type integer. If the attribute is of type boolean, `tput` simply sets the exit status (0 for TRUE if the terminal has the capability, 1 for FALSE if it does not), and produces no output. Before using a value returned on standard output, the user should test the exit status (``$, see `sh(1)` to be sure it is 0. See the EXIT STATUS section.

OPTIONS The following options are supported:

- `-T type` Indicates the type of terminal. Normally this option is unnecessary, because the default is taken from the environment variable `TERM`. If `-T` is specified, then the shell variables `LINES` and `COLUMNS` and the layer size will not be referenced.

- `-S` Allows more than one capability per invocation of `tput`. The capabilities must be passed to `tput` from the standard input instead of from the command line (see the example in the EXAMPLES section). Only one `capname` is allowed per line. The `-S` option changes the meaning of the 0 and 1 boolean and string exit statuses (see the EXAMPLES section).

OPERANDS The following operands are supported:

- `capname` Indicates the capability attribute from the `terminfo` database. See ` terminfo(4)` for a complete list of capabilities and the `capname` associated with each.

The following strings will be supported as operands by the implementation in the "C" locale:

- `clear` Display the clear-screen sequence.

- `init` If the `terminfo` database is present and an entry for the user's terminal exists (see `-T type, above), the following will occur:

 1. if present, the terminal's initialization strings will be output (`is1, is2, is3, if, iprog`),

 2. any delays (for instance, newline) specified in the entry will be set in the tty driver,
3. tabs expansion will be turned on or off according to the specification in the entry, and
4. if tabs are not expanded, standard tabs will be set (every 8 spaces). If an entry does not contain the information needed for any of the four above activities, that activity will silently be skipped.

reset Instead of putting out initialization strings, the terminal’s reset strings will be output if present (rs1, rs2, rs3, rf). If the reset strings are not present, but initialization strings are, the initialization strings will be output. Otherwise, reset acts identically to init.

longname If the terminfo database is present and an entry for the user’s terminal exists (see -T type above), then the long name of the terminal will be put out. The long name is the last name in the first line of the terminal’s description in the terminfo database (see term(5)).

dparm If the attribute is a string that takes parameters, the argument parm will be instantiated into the string. An all numeric argument will be passed to the attribute as a number.

EXAMPLES

EXAMPLE 1 Initializing the terminal according to TERM

This example initializes the terminal according to the type of terminal in the environment variable TERM. This command should be included in everyone’s .profile after the environment variable TERM has been exported, as illustrated on the profile(4) manual page.

```bash
eexample tput init
```

EXAMPLE 2 Resetting a terminal

This example resets an AT&T 5620 terminal, overriding the type of terminal in the environment variable TERM:

```bash
eexample tput -T5620 reset
```

EXAMPLE 3 Moving the cursor

The following example sends the sequence to move the cursor to row 0, column 0 (the upper left corner of the screen, usually known as the "home" cursor position).

```bash
eexample tput cup 0 0
```
EXAMPLE 3 Moving the cursor (Continued)

This next example sends the sequence to move the cursor to row 23, column 4.
example% `tput cup 23 4`

EXAMPLE 4 Echoing the clear-screen sequence

This example echos the clear-screen sequence for the current terminal.
example% `tput clear`

EXAMPLE 5 Printing the number of columns

This command prints the number of columns for the current terminal.
example% `tput cols`

The following command prints the number of columns for the 450 terminal.
example% `tput -T450 cols`

EXAMPLE 6 Setting shell variables

This example sets the shell variables `bold`, to begin stand-out mode sequence, and `offbold`, to end standout mode sequence, for the current terminal. This might be followed by a prompt:

```
    echo "${bold}Please type in your name: ${offbold}\c"
example% `bold=`'tput smso'`
example% `offbold=`'tput rmso'`
```

EXAMPLE 7 Setting the exit status

This example sets the exit status to indicate if the current terminal is a hardcopy terminal.
example% `tput hc`

EXAMPLE 8 Printing the long name from terminfo

This command prints the long name from the terminfo database for the type of terminal specified in the environment variable `TERM`.
example% `tput longname`
This example shows `tput` processing several capabilities in one invocation. This example clears the screen, moves the cursor to position 10,10 and turns on bold (extra bright) mode. The list is terminated by an exclamation mark (!) on a line by itself.

```
example$ tput -S <<!
> clear
> cup 10 10
> bold
> !
```

ENVIRONMENT VARIABLES

See `envirom(5)` for descriptions of the following environment variables that affect the execution of `tput`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

TERM Determine the terminal type. If this variable is unset or null, and if the `-T` option is not specified, an unspecified default terminal type will be used.

EXIT STATUS

The following exit values are returned:

0

- If `capname` is of type boolean and `-S` is not specified, indicates `TRUE`.
- If `capname` is of type string and `-S` is not specified, indicates `capname` is defined for this terminal type.
- If `capname` is of type boolean or string and `-S` is specified, indicates that all lines were successful.
- `capname` is of type integer.
- The requested string was written successfully.

1

- If `capname` is of type boolean and `-S` is not specified, indicates `FALSE`.
- If `capname` is of type string and `-S` is not specified, indicates that `capname` is not defined for this terminal type.

2

Usage error.

3

No information is available about the specified terminal type.

4

The specified operand is invalid.

-4

An error occurred.

-1

`capname` is a numeric variable that is not specified in the terminfo database. For instance, `tput -T450` lines and `tput -T2621` xmc.

FILES

/usr/include/curses.h curses(3CURSES) header
/usr/include/term.h terminfo header
/usr/lib/tabset/* Tab settings for some terminals, in a format appropriate to be output to the terminal
tput(1)

(escape sequences that set margins and
tabs). For more information, see the "Tabs
and Initialization" section of terminfo(4)

/usr/share/lib/terminfo/?/* compiled terminal description database

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

clear(1), sh(1), stty(1), tabs(1), curses(3Curses), profile(4), terminfo(4),
attributes(5), environ(5), standards(5), term(5)
```
tr(-translate characters

SYNOPSIS
/usr/bin/tr [-cs] string1 string2
/usr/bin/tr -s | -d [-c] string1
/usr/bin/tr -ds [-c] string1 string2
/usr/xpg4/bin/tr [-cs] string1 string2
/usr/xpg4/bin/tr -s | -d [-c] string1
/usr/xpg4/bin/tr -ds [-c] string1 string2

DESCRIPTION
The tr utility copies the standard input to the standard output with substitution or
deletion of selected characters. The options specified and the string1 and string2
operands control translations that occur while copying characters and single-character
collating elements.

OPTIONS
The following options are supported:
- c Complements the set of characters specified by string1.
- d Deletes all occurrences of input characters that are specified by string1.
- s Replaces instances of repeated characters with a single character.

When the -d option is not specified:
- Each input character found in the array specified by string1 is replaced by the
  character in the same relative position in the array specified by string2. When the
  array specified by string2 is shorter that the one specified by string1, the results are
  unspecified.
- If the -c option is specified, the complements of the characters specified by string1
  (the set of all characters in the current character set, as defined by the current
  setting of LC_CTYPE, except for those actually specified in the string1 operand) are
  placed in the array in ascending collation sequence, as defined by the current
  setting of LC_COLLATE.
- Because the order in which characters specified by character class expressions or
  equivalence class expressions is undefined, such expressions should only be used if
  the intent is to map several characters into one. An exception is case conversion, as
  described previously.

When the -d option is specified:
- Input characters found in the array specified by string1 will be deleted.
- When the -c option is specified with -d, all characters except those specified by
  string1 will be deleted. The contents of string2 will be ignored, unless the -s option
  is also specified.
- The same string cannot be used for both the -d and the -s option; when both
  options are specified, both string1 (used for deletion) and string2 (used for
  squeezing) are required.
```
When the -s option is specified, after any deletions or translations have taken place, repeated sequences of the same character will be replaced by one occurrence of the same character, if the character is found in the array specified by the last operand. If the last operand contains a character class, such as the following example:

```
tr -s ':space:'
```

the last operand’s array will contain all of the characters in that character class. However, in a case conversion, as described previously, such as

```
tr -s ':upper:' ':lower:'
```

the last operand’s array will contain only those characters defined as the second characters in each of the toupper or tolower character pairs, as appropriate. (See toupper(3C) and tolower(3C)).

An empty string used for string1 or string2 produces undefined results.

OPERANDS

The following operands are supported:

- **string1**
 - Translation control strings. Each string represents a set of characters to be converted into an array of characters used for the translation.

- **string2**
 - Translation control strings. Each string represents a set of characters to be converted into an array of characters used for the translation.

The operands string1 and string2 (if specified) define two arrays of characters. The constructs in the following list can be used to specify characters or single-character collating elements. If any of the constructs result in multi-character collating elements, tr will exclude, without a diagnostic, those multi-character elements from the resulting array.

- **character**
 - Any character not described by one of the conventions below represents itself.

- **\octal**
 - Octal sequences can be used to represent characters with specific coded values. An octal sequence consists of a backslash followed by the longest sequence of one-, two-, or three-octal-digit characters (01234567). The sequence causes the character whose encoding is represented by the one-, two- or three-digit octal integer to be placed into the array. Multi-byte characters require multiple, concatenated escape sequences of this type, including the leading \ for each byte.

- **\character**
 - The backslash-escape sequences \a, \b, \f, \n, \r, \t, and \v are supported. The results of using any other character, other than an octal digit, following the backslash are unspecified.
Represents the range of collating elements between the range endpoints, inclusive, as defined by the current setting of the LC_COLLATE locale category. The starting endpoint must precede the second endpoint in the current collation order. The characters or collating elements in the range are placed in the array in ascending collation sequence.

[:class:] Represents all characters belonging to the defined character class, as defined by the current setting of the LC_CTYPE locale category. The following character class names will be accepted when specified in string1:

```
alnum blank digit lower punct upper
alpha cntrl graph print space xdigit
```

In addition, character class expressions of the form [:name:] are recognized in those locales where the name keyword has been given a charclass definition in the LC_CTYPE category.

Note: /usr/bin/tr supports character class expressions only in singlebyte locales. Use /usr/xpg4/bin/tr to support these expressions in any locale.

When both the -d and -s options are specified, any of the character class names will be accepted in string2. Otherwise, only character class names lower or upper are valid in string2 and then only if the corresponding character class upper and lower, respectively, is specified in the same relative position in string1. Such a specification is interpreted as a request for case conversion. When [:lower:] appears in string1 and [:upper:] appears in string2, the arrays will contain the characters from the toupper mapping in the LC_CTYPE category of the current locale. When [:upper:] appears in string1 and [:lower:] appears in string2, the arrays will contain the characters from the tolower mapping in the LC_CTYPE category of the current locale. The first character from each mapping pair will be in the array for string1 and the second character from each mapping pair will be in the array for string2 in the same relative position.

Except for case conversion, the characters specified by a character class expression are placed in the array in an unspecified order.

If the name specified for class does not define a valid character class in the current locale, the behavior is undefined.

[:equiv:] Represents all characters or collating elements belonging to the same equivalence class as equiv, as defined by the current setting of the LC_COLLATE locale category. An equivalence class expression
is allowed only in string1, or in string2 when it is being used by the combined -d and -s options. The characters belonging to the equivalence class are placed in the array in an unspecified order.

\[x^n \] Represents \(n \) repeated occurrences of the character \(x \). Because this expression is used to map multiple characters to one, it is only valid when it occurs in string2. If \(n \) is omitted or is 0, it is interpreted as large enough to extend the string2-based sequence to the length of the string1-based sequence. If \(n \) has a leading 0, it is interpreted as an octal value. Otherwise, it is interpreted as a decimal value.

USAGE

See largefile(5) for the description of the behavior of tr when encountering files greater than or equal to 2 Gbyte (\(2^{31} \) bytes).

EXAMPLES

EXAMPLE 1 Creating a list of words

The following example creates a list of all words in file1, one per line in file2, where a word is taken to be a maximal string of letters.

```
tr -cs "[:alpha:]" "[\n*]" <file1 >file2
```

EXAMPLE 2 Translating characters

This example translates all lower-case characters in file1 to upper-case and writes the results to standard output.

```
tr "[:lower:]" "[:upper:]" <file1
```

Notice that the caveat expressed in the corresponding example in XPG3 is no longer in effect. This case conversion is now a special case that employs the tolower and toupper classifications, ensuring that proper mapping is accomplished (when the locale is correctly defined).

EXAMPLE 3 Identifying equivalent characters

This example uses an equivalence class to identify accented variants of the base character \(e \) in file1, which are stripped of diacritical marks and written to file2.

```
tr "[=e=]" e <file1 >file2
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of tr: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

<table>
<thead>
<tr>
<th>Exit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All input was processed successfully.</td>
</tr>
<tr>
<td>>0</td>
<td>An error occurred.</td>
</tr>
</tbody>
</table>
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Not enabled</td>
</tr>
</tbody>
</table>

Unlike some previous versions, /usr/xpg4/bin/tr correctly processes NUL characters in its input stream. NUL characters can be stripped by using tr -d \000.

SEE ALSO ed(1), sed(1), sh(1), tolower(3C), toupper(3C), ascii(5), attributes(5), environ(5), largefile(5), standards(5)
The tr utility copies the standard input to the standard output with substitution or deletion of selected characters. The arguments string1 and string2 are considered sets of characters. Any input character found in string1 is mapped into the character in the corresponding position within string2. When string2 is short, it is padded to the length of string1 by duplicating its last character.

In either string the notation:

\[a-b \]

denotes a range of characters from a to b in increasing ASCII order. The character \`, followed by 1, 2 or 3 octal digits stands for the character whose ASCII code is given by those digits. As with the shell, the escape character \`, followed by any other character, escapes any special meaning for that character.

Any combination of the options -c, -d, or -s may be used:

- **-c** Complement the set of characters in string1 with respect to the universe of characters whose ASCII codes are 01 through 0377 octal.
- **-d** Delete all input characters in string1.
- **-s** Squeeze all strings of repeated output characters that are in string2 to single characters.

EXAMPLES

EXAMPLE 1 Creating a list of all the words in a filename

The following example creates a list of all the words in filename1, one per line, in filename2, where a word is taken to be a maximal string of alphabolics. The second string is quoted to protect ’ \’ from the shell. 012 is the ASCII code for NEWLINE.

```
example% tr -cs A-Za-z \'012\' < filename1 > filename2
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO

ed(1), ascii(5), attributes(5)

NOTES

Will not handle ASCII NUL in string1 or string2. tr always deletes NUL from input.

man pages section 1: User Commands • Last Revised 26 Sep 1992
The `trap` command argument is to be read and executed when the shell receives numeric or symbolic signal(s) \((n)\). (Note: argument is scanned once when the trap is set and once when the trap is taken.) Trap commands are executed in order of signal number or corresponding symbolic names. Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an error. If argument is absent all trap(s) \(n\) are reset to their original values. If argument is the null string this signal is ignored by the shell and by the commands it invokes. If \(n\) is 0 the command argument is executed on exit from the shell. The `trap` command with no arguments prints a list of commands associated with each signal number.

`onintr` controls the action of the shell on interrupts. With no arguments, `onintr` restores the default action of the shell on interrupts. (The shell terminates shell scripts and returns to the terminal command input level). With the – argument, the shell ignores all interrupts. With a label argument, the shell executes a `goto label` when an interrupt is received or a child process terminates because it was interrupted.

`trap` uses arg as a command to be read and executed when the shell receives signal(s) \(sig\). (Note that arg is scanned once when the trap is set and once when the trap is taken.) Each sig can be given as a number or as the name of the signal. `trap` commands are executed in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective. If arg is omitted or is –, then the trap(s) for each sig are reset to their original values. If arg is the null (the empty string, e.g., ````) string then this signal is ignored by the shell and by the commands it invokes. If `sig` is ERR then `arg` will be executed whenever a command has a non-zero exit status. If `sig` is DEBUG then `arg` will be executed after each command. If `sig` is 0 or EXIT for a `trap` set outside any function then the command `arg` is executed on exit from the shell. The `trap` command with no arguments prints a list of commands associated with each signal number.

On this man page, `ksh(1)` commands that are preceded by one or two * (asterisks) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), exit(1), ksh(1), sh(1), attributes(5)
troff(1)

NAME
troff – typeset or format documents

SYNOPSIS
 [-Tdest] [-uN] [-z] [filename...]

DESCRIPTION
troff formats text in the filenames for typesetting or laser printing. Input to troff is
expected to consist of text interspersed with formatting requests and macros. If no
filename argument is present, troff reads standard input. A minus sign (−) as a
filename indicates that standard input should be read at that point in the list of input
files.

The output of troff is usually piped through dpost(1) to create a printable
postscript file (see EXAMPLES).

OPTIONS The following options are supported. They may appear in any order, but all must
appear before the first filename.

- a Send an ASCII approximation of formatted output to standard
 output. (Note: a rough ASCII version can also be printed out on
 ordinary terminals with an old and rarely used command,
 /usr/bin/ta.)

- f Do not print a trailer after the final page of output or cause the
 postprocessor to relinquish control of the device.

- Fdir Search directory dir for font width or terminal tables instead of the
 system default directory.

- i Read standard input after all input files are exhausted.

- mname Prepend the macro file /usr/share/lib/tmac/name to the
 input filenames. Note: most references to macro packages include
 the leading m as part of the name; for example, the man(5) macros
 reside in /usr/share/lib/tmac/an. The macro directory can
 be changed by setting the TROFFMACS environment variable to a
 specific path. Be certain to include the trailing ’/’ (slash) at the
 end of the path.

- nN Number the first generated page N.

- olist Print only pages whose page numbers appear in the
 comma-separated list of numbers and ranges. A range N–M means
 pages N through M; an initial −N means from the beginning to
 page N; and a final −N means from N to the end.

- q Quiet mode in nroff; ignored in troff.

- raN Set register a (one-character names only) to N.

- sN Stop the phototypesetter every N pages. On some devices, troff
 produces a trailer so you can change cassettes; resume by pressing
 the typesetter’s start button.

User Commands 1617
troff(1)

-Tdest Prepare output for typesetter dest. The following values can be supplied for dest:

 post A PostScript printer; this is the default value. The output of the -T option must go through dpost(1) before it is sent to a PostScript printer to obtain the proper output.

 aps Autologic APS-5.

-uN Set the emboldening factor for the font mounted in position 3 to N. If N is missing, then set the emboldening factor to 0.

-z Suppress formatted output. Only diagnostic messages and messages output using the .tm request are output.

OPERANDS The following operand is supported:

 filename The file containing text to be processed by troff.

EXAMPLES

EXAMPLE 1 Using troff

The following example shows how to print an input text file mytext, coded with formatting requests and macros. The input file contains equations and tables and must go through the tbl(1) and eqn(1) preprocessors before it is formatted by troff with ms macros, processed by dpost(1), and printed by lp(1):

```
tbl mytext | eqn | troff -ms | dpost | lp
```

FILES

```
/tmp/trtmp temporary file
/usr/share/lib/tmac/* standard macro files
/usr/lib/font/* font width tables for alternate mounted troff fonts
/usr/share/lib/nterm/* terminal driving tables for nroff
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO checknr(1), col(1), dpost(1), eqn(1), lp(1), man(1), nroff(1), tbl(1), attributes(5), man(5), me(5), ms(5)

NOTES troff is not 8-bit clean because it is by design based on 7-bit ASCII.
Previous documentation incorrectly described the numeric register \textit{yr} as being the "Last two digits of current year". \textit{yr} is in actuality the number of years since 1900. To correctly obtain the last two digits of the current year through the year 2099, the definition given below of string register \textit{yy} may be included in a document and subsequently used to display a two-digit year. Note that any other available one- or two-character register name may be substituted for \textit{yy}.

\begin{verbatim}
." definition of new string register yy--last two digits of year
." use yr (# of years since 1900) if it is < 100
.ie \n(yr<100 .ds yy \n(yr
.el \{
." else, subtract 100 from yr, store in ny
.nz ny \n(yr-100
.ie \n(ny>9 \{
." use ny if it is two digits
.ds yy \n(ny
." remove temporary number register ny
.rr ny \}
.el \{ .ds yy 0
." if ny is one digit, append it to 0
.as yy \n(ny
.rr ny \}
\end{verbatim}
true, false – provide truth values

NAME
true, false

SYNOPSIS
true
false

DESCRIPTION
The true utility does nothing, successfully. The false utility does nothing, unsuccessfully. They are typically used in a shell script sh as:

```sh
while true
do
  command
done
```

which executes command forever.

EXIT STATUS
true has exit status 0.
false always will exit with a non-zero value.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
sh(1), attributes(5), standards(5)
The `truss` utility executes the specified command and produces a trace of the system calls it performs, the signals it receives, and the machine faults it incurs. Each line of the trace output reports either the fault or signal name or the system call name with its arguments and return value(s). System call arguments are displayed symbolically when possible using defines from relevant system headers; for any path name pointer argument, the pointed-to string is displayed. Error returns are reported using the error code names described in `intro(3)`.

Optionally (see the `-u` option), `truss` will also produce an entry/exit trace of user-level function calls executed by the traced process, indented to indicate nesting.

OPTIONS

The following options are recognized. For those options that take a list argument, the name `all` can be used as a shorthand to specify all possible members of the list. If the list begins with a `!`, the meaning of the option is negated (for example, exclude rather than trace). Multiple occurrences of the same option may be specified. For the same name in a list, subsequent options (those to the right) override previous ones (those to the left).

- `-p`
 Interprets the `command` arguments to `truss` as a list of process-ids for existing processes (see `ps(1)`) rather than as a command to be executed. `truss` takes control of each process and begins tracing it provided that the userid and groupid of the process match those of the user or that the user is a privileged user. Processes may also be specified by their names in the `/proc` directory, for example, `/proc/12345`.

- `-f`
 Follows all children created by `fork()` or `vfork()` and includes their signals, faults, and system calls in the trace output. Normally, only the first-level command or process is traced. When `-f` is specified, the process-id is included with each line of trace output to indicate which process executed the system call or received the signal.

- `-c`
 Counts traced system calls, faults, and signals rather than displaying the trace line-by-line. A summary report is produced after the traced command terminates or when `truss` is interrupted. If `-f` is also specified, the counts include all traced system calls, faults, and signals for child processes.

- `-a`
 Shows the argument strings that are passed in each `exec()` system call.

- `-e`
 Shows the environment strings that are passed in each `exec()` system call.
Do not display interruptible sleeping system calls. Certain system calls, such as
open() and read() on terminal devices or pipes, can sleep for indefinite periods
and are interruptible. Normally, truss reports such sleeping system calls if they
remain asleep for more than one second. The system call is reported again a second
time when it completes. The -i option causes such system calls to be reported only
once, when they complete.

Includes the id of the responsible lightweight process (LWP) with each line of trace
output. If -l is also specified, both the process-id and the LWP-id are included.

Includes a time stamp on each line of trace output. The time stamp appears as a
field containing seconds . fraction at the start of the line. This represents a time in
seconds relative to the beginning of the trace. The first line of the trace output will
show the base time from which the individual time stamps are measured, both as
seconds since the epoch (see time(2)) and as a date string (see ctime(3C) and
date(1)). The times that are reported are the times that the event in question
ocurred. For all system calls, the event is the completion of the system call, not the
start of the system call.

Includes a time delta on each line of trace output. The value appears as a field
containing seconds . fraction and represents the elapsed time for the LWP that
icurred the event since the last reported event incurred by that LWP. Specifically,
for system calls, this is not the time spent within the system call.

System calls to trace or exclude. Those system calls specified in the
comma-separated list are traced. If the list begins with a !, the specified system
calls are excluded from the trace output. Default is -ta ll.

System calls that stop the process. The specified system calls are added to the set
specified by -T. If one of the specified system calls is encountered, truss leaves
the process stopped and abandoned. That is, truss releases the process and exits
but leaves the process in the stopped state at completion of the system call in
question. A debugger or other process inspection tool (see proc(1)) can then be
applied to the stopped process. truss can be reapplied to the stopped process with
the same or different options to continue tracing. Default is -Ta ll.

A process left stopped in this manner cannot be restarted by the application of
kill -CONT because it is stopped on an event of interest via /proc, not by the
default action of a stopping signal (see signal(3HEAD)). The prun(1) command
described in proc(1) can be used to set the stopped process running again.

Verbose. Displays the contents of any structures passed by address to the specified
system calls (if traced by -t). Input values as well as values returned by the
For any field used as both input and output, only the output value is shown. Default is -v!all.

-\(x\) [\(!\)] syscall, ...
Displays the arguments to the specified system calls (if traced by \(-t\) in raw form, usually hexadecimal, rather than symbolically. This is for unredeemed hackers who must see the raw bits to be happy. Default is \(-x!all\).

-s [\(!\)] signal, ...
Signals to trace or exclude. Those signals specified in the comma-separated list are traced. The trace output reports the receipt of each specified signal, even if the signal is being ignored (not blocked). (Blocked signals are not received until they are unblocked.) Signals may be specified by name or number (see <sys/signal.h>). If the list begins with a \(!\), the specified signals are excluded from the trace output. Default is \(-sall\).

-s [\(!\)] signal, ...
Signals that stop the process. The specified signals are added to the set specified by \(-s\). If one of the specified signals is received, truss leaves the process stopped and abandoned (see the \(-T\) option). Default is \(-S!all\).

-m [\(!\)] fault, ...
Machine faults to trace or exclude. Those faults specified in the comma-separated list are traced. Faults may be specified by name or number (see <sys/fault.h>). If the list begins with a \(!\), the specified faults are excluded from the trace output. Default is \(-mal\) \(-m!fltpage\).

-M [\(!\)] fault, ...
Machine faults that stop the process. The specified faults are added to the set specified by \(-m\). If one of the specified faults is incurred, truss leaves the process stopped and abandoned (see the \(-T\) option). Default is \(-M!all\).

-r [\(!\)] fd, ...
Shows the full contents of the I/O buffer for each read() on any of the specified file descriptors. The output is formatted 32 bytes per line and shows each byte as an ASCII character (preceded by one blank) or as a 2-character C language escape sequence for control characters such as horizontal tab (\(\backslash t\)) and newline (\(\backslash n\)). If ASCII interpretation is not possible, the byte is shown in 2-character hexadecimal representation. (The first 12 bytes of the I/O buffer for each traced read() are shown even in the absence of \(-r\).) Default is \(-r!all\).

-w [\(!\)] fd, ...
Shows the contents of the I/O buffer for each write() on any of the specified file descriptors (see the \(-r\) option). Default is \(-w!all\).

-u [\(!\)] lib, ...:\([;]!!\) func, ...
User-level function call tracing. lib, ... is a comma-separated list of dynamic library names, excluding the ‘.so.n’ suffix. func, ... is a comma-separated list of function names. In both cases the names can include name-matching metacharacters *,?,[with the same meanings as those of sh(1) but as applied to the library/function name spaces, not to files. An empty library or function list defaults to * trace all libraries or functions in a library. A leading \(!\) on either list specifies an exclusion.
a single : separating the library list from the function list means to trace calls into
the libraries from outside the libraries, but omit calls made to functions in a library
from other functions in the same library. A double :: means to trace all calls,
regardless of origin.

Library patterns do not match either the executable file or the dynamic linker
unless there is an exact match (1* will not match ld.so.1). To trace functions in
either of these objects, the names must be specified exactly, as in: truss -u a.out
-u ld ... a.out is the literal name to be used for this purpose; it does not stand
for the name of the executable file. Tracing a.out function calls implies all calls
(default is ::).

Multiple -u options may be specified and they are honored left-to-right. If the
process is linked with -lthread, the id of the thread that performed the function
call is included in the trace output for the call. truss searches the dynamic symbol
table in each library to find function names and will also search the standard
symbol table if it has not been stripped.

-U [| |lib, ... | |] | |func, ...
User-level function calls that stop the process. The specified functions are added to
the set specified by -u. If one of the specified functions is called, truss leaves the
process stopped and abandoned (see the -T option).

-o outfile
File to be used for the trace output. By default, the output goes to standard error.

See man pages section 2: System Calls for system call names accepted by the -t, -T, -v,
and -x options. System call numbers are also accepted.

If truss is used to initiate and trace a specified command and if the -o option is used
or if standard error is redirected to a non-terminal file, then truss runs with hangup,
interrupt, and quit signals ignored. This facilitates tracing of interactive programs that
catch interrupt and quit signals from the terminal.

If the trace output remains directed to the terminal, or if existing processes are traced
(the -p option), then truss responds to hangup, interrupt, and quit signals by
releasing all traced processes and exiting. This enables the user to terminate excessive
trace output and to release previously-existing processes. Released processes continue
normally, as though they had never been touched.

EXAMPLES

EXAMPLE 1 Tracing a command

This example produces a trace of the find(1) command on the terminal:

example$ truss find . -print >find.out
EXAMPLE 1 Tracing a command (Continued)

EXAMPLE 2 Tracing common system calls
To see only a trace of the open, close, read, and write system calls:
example$ truss -t open,close,read,write find . -print >find.out

EXAMPLE 3 Tracing a shell script
This produces a trace of the spell(1) command on the file truss.out:
example$ truss -f -o truss.out spell document
spell is a shell script, so the -f flag is needed to trace not only the shell but also the processes created by the shell. (The spell script runs a pipeline of eight processes.)

EXAMPLE 4 Abbreviating output
A particularly boring example is:
example$ truss nroff -mm document >nroff.out
because 97% of the output reports lseek(), read(), and write() system calls. To abbreviate it:
example$ truss -t ! lseek,read,write nroff -mm document >nroff.out

EXAMPLE 5 Tracing library calls from outside the C library
This example traces all user-level calls made to any function in the C library from outside the C library:
example$ truss -u libc . . .

EXAMPLE 6 Tracing library calls from within the C library
This example includes calls made to functions in the C library from within the C library itself:
example$ truss -u libc : : . . .

EXAMPLE 7 Tracing library calls other than the C library
This example traces all user-level calls made to any library other than the C library:
example$ truss -u `*` -u !libc . . .

EXAMPLE 8 Tracing printf and scanf function calls
This example traces all user-level calls to functions in the printf and scanf family contained in the C library:
EXAMPLE 8 Tracing printf and scanf function calls (Continued)

example$ truss -u 'libc : *printf,*scanf' ...

EXAMPLE 9 Tracing any user-level function call

This example traces every user-level function call from anywhere to anywhere:

example$ truss -u a.out -u ld : -u : : ...

EXAMPLE 10 Tracing a system call verbosely

This example verbosely traces the system call activity of process #1, init(1M) (if you are a privileged user):

example$ truss -p -v all 1

Interrupting truss returns init to normal operation.

FILES

/proc/* process files

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWtoox (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

date(1), find(1), proc(1), ps(1), sh(1), spell(1), init(1M), intro(3), exec(2), fork(2), lseek(2), open(2), read(2), time(2), vfork(2), write(2), ctime(3C), threads(3THR), proc(4), attributes(5), signal(3HEAD)

man pages section 2: System Calls

NOTES

Some of the system calls described in man pages section 2: System Calls differ from the actual operating system interfaces. Do not be surprised by minor deviations of the trace output from the descriptions in that document.

Every machine fault (except a page fault) results in the posting of a signal to the LWP that incurred the fault. A report of a received signal will immediately follow each report of a machine fault (except a page fault) unless that signal is being blocked.

The operating system enforces certain security restrictions on the tracing of processes. In particular, any command whose object file (a.out) cannot be read by a user cannot be traced by that user; set-uid and set-gid commands can be traced only by a privileged user. Unless it is run by a privileged user, truss loses control of any process that performs an exec() of a set-id or unreadable object file; such processes continue normally, though independently of truss, from the point of the exec().
truss(1)

To avoid collisions with other controlling processes, truss will not trace a process that it detects is being controlled by another process via the /proc interface. This allows truss to be applied to proc(4)-based debuggers as well as to another instance of itself.

The trace output contains tab characters under the assumption that standard tab stops are set (every eight positions).

The trace output for multiple processes or for a multithreaded process (one that contains more than one LWP) is not produced in strict time order. For example, a read() on a pipe may be reported before the corresponding write(). For any one LWP (a traditional process contains only one), the output is strictly time-ordered.

When tracing more than one process, truss runs as one controlling process for each process being traced. For the example of the spell command shown above, spell itself uses 9 process slots, one for the shell and 8 for the 8-member pipeline, while truss adds another 9 processes, for a total of 18.

Not all possible structures passed in all possible system calls are displayed under the -v option.
tset(1B)

NAME tset, reset – establish or restore terminal characteristics

SYNOPSIS tset [-InQrs] [-ec] [-kc] [-m [port-ID [baudrate] : type...]] [type]
 baudrate] : type...]] [type]

DESCRIPTION The tset utility sets up your terminal, typically when you first log in. It does terminal dependent processing such as setting erase and kill characters, setting or resetting delays, sending any sequences needed to properly initialized the terminal, and the like. tset first determines the type of terminal involved, and then does necessary initializations and mode settings. If a port is not wired permanently to a specific terminal (not hardwired) it is given an appropriate generic identifier such as dialup.

reset clears the terminal settings by turning off CBREAK and RAW modes, output delays and parity checking, turns on NEWLINE translation, echo and TAB expansion, and restores undefined special characters to their default state. It then sets the modes as usual, based on the terminal type (which will probably override some of the above). See stty(1) for more information. All arguments to tset may be used with reset. reset also uses rs= and rf= to reset the initialization string and file. This is useful after a program dies and leaves the terminal in a funny state. Often in this situation, characters will not echo as you type them. You may have to type LINEFEED reset LINEFEED since RETURN may not work.

When no arguments are specified, tset reads the terminal type from the TERM environment variable and re-initializes the terminal, and performs initialization of mode, environment and other options at login time to determine the terminal type and set up terminal modes.

When used in a startup script (.profile for sh(1) users or .login for csh(1) users) it is desirable to give information about the type of terminal you will usually use on ports that are not hardwired. Any of the alternate generic names given in the file /etc/termcap are possible identifiers. Refer to the -m option below for more information. If no mapping applies and a final type option, not preceded by a -m, is given on the command line then that type is used.

It is usually desirable to return the terminal type, as finally determined by tset, and information about the terminal’s capabilities, to a shell’s environment. This can be done using the -, -s, or -S options.

For the Bourne shell, put this command in your .profile file:

```
eval 'tset -s options...
```

or using the C shell, put these commands in your .login file:

```
set noglob
eval 'tset -s options...'unset noglob
```

With the C shell, it is also convenient to make an alias in your .cshrc file:

```
alias ts 'eval 'tset -s \!**'
```
This also allows the command:

tset 2621

to be invoked at any time to set the terminal and environment. It is not possible to get
this aliasing effect with a Bourne shell script, because shell scripts cannot set the
environment of their parent. If a process could set its parent’s environment, none of
this nonsense would be necessary in the first place.

Once the terminal type is known, tset sets the terminal driver mode. This normally
involves sending an initialization sequence to the terminal, setting the single character
erase (and optionally the line-kill (full line erase)) characters, and setting special
character delays. TAB and NEWLINE expansion are turned off during transmission of
the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase character is ‘#’, the erase character is changed as if -e had been used.

OPTIONS

- The name of the terminal finally decided upon is output on the
 standard output. This is intended to be captured by the shell and
 placed in the TERM environment variable.

-ec Set the erase character to be the named character c on all terminals.
 Default is the BACKSPACE key on the keyboard, usually ^H (CTRL-H). The character c can either be typed directly, or entered using the circumflex-character notation used here.

-ic Set the interrupt character to be the named character c on all
 terminals. Default is ^C (CTRL-C). The character c can either be
 typed directly, or entered using the circumflex-character notation
 used here.

-I Suppress transmitting terminal-initialization strings.

-kc Set the line kill character to be the named character c on all
 terminals. Default is ^U (CTRL-U). The kill character is left alone if
 -k is not specified. Control characters can be specified by prefixing
 the alphabetical character with a circumflex (as in CTRL-U) instead
 of entering the actual control key itself. This allows you to specify
 control keys that are currently assigned.

-n Specify that the new tty driver modes should be initialized for this
 terminal. Probably useless since stty new is the default.

-Q Suppress printing the ‘Erase set to’ and ‘Kill set to’
 messages.

-r In addition to other actions, reports the terminal type.

-s Output commands to set and export TERM. This can be used with

 set noglob
eval 'tset -s

unset noglob
to bring the terminal information into the environment. Doing so makes programs such as vi(1) start up faster. If the SHELL environment variable ends with csh, C shell commands are output, otherwise Bourne shell commands are output.

-m [port-ID [baudrate] : type]

Specify (map) a terminal type when connected to a generic port (such as dialup or plugboard) identified by port-ID. The baudrate argument can be used to check the baudrate of the port and set the terminal type accordingly. The target rate is prefixed by any combination of the following operators to specify the conditions under which the mapping is made:

> Greater than
@ Equals or “at’’
< Less than
! It is not the case that (negates the above operators)
? Prompt for the terminal type. If no response is given, then type is selected by default.

In the following example, the terminal type is set to adm3a if the port is a dialup with a speed of greater than 300 or to dw2 if the port is a dialup at 300 baud or less. In the third case, the question mark preceding the terminal type indicates that the user is to verify the type desired. A NULL response indicates that the named type is correct. Otherwise, the user’s response is taken to be the type desired.

tset -m ‘dialup>300:adm3a’ -m ‘dialup:dw2’ -m ‘plugboard:adm3a’

These examples all use the ‘−’ option. A typical use of tset in a .profile or .login will also use the −e and −k options, and often the −n or −Q options as well. These options have been omitted here to keep the examples short.

EXAMPLE 1 Selecting a terminal

To select a 2621, you might put the following sequence of commands in your .login file (or .profile for Bourne shell users).

set noglob
eval ‘tset -s 2621’
unset noglob

If you want to make the selection based only on the baud rate, you might use the following:

set noglob
eval ‘tset -s -m ‘>1200:wy’ 2621’
unset noglob
EXAMPLE 1 Selecting a terminal (Continued)

EXAMPLE 2 Selecting terminals according to speed or baud rate

If you have a switch which connects to various ports (making it impractical to identify which port you may be connected to), and use various terminals from time to time, you can select from among those terminals according to the speed or baud rate. In the example below, tset will prompt you for a terminal type if the baud rate is greater than 1200 (say, 9600 for a terminal connected by an RS-232 line), and use a Wyse® 50 by default. If the baud rate is less than or equal to 1200, it will select a 2621. Note the placement of the question mark, and the quotes to protect the > and ? from interpretation by the shell.

```sh
set noglob
eval 'tset -s -m 'switch>1200:?wy’ -m ’switch<=1200:2621’''
unset noglob
```

EXAMPLE 3 Selecting the terminal used most often

The following entry is appropriate if you always dial up, always at the same baud rate, on many different kinds of terminals, and the terminal you use most often is an adm3a.

```sh
set noglob
eval 'tset -s ?adm3a'
unset noglob
```

EXAMPLE 4 Selecting a terminal with specific settings

The following example quietly sets the erase character to BACKSPACE, and kill to CTRL-U. If the port is switched, it selects a Concept™ 100 for speeds less than or equal to 1200, and asks for the terminal type otherwise (the default in this case is a Wyse 50). If the port is a direct dialup, it selects Concept 100 as the terminal type. If logging in over the ARPANET, the terminal type selected is a Datamedia® 2500 terminal or emulator. Note the backslash escaping the NEWLINE at the end of the first line in the example.

```sh
set noglob
eval 'tset -e -k^U -Q -s -m ’switch<=1200:concept100’ -m\n ’switch>?wy’ -m dialup:concept100 -m arpanet:dm2500’
unset noglob
```

FILES

`.login`
`.profile`
`/etc/termcap`
The `tset` command is one of the first commands a user must master when getting started on a UNIX system. Unfortunately, it is one of the most complex, largely because of the extra effort the user must go through to get the environment of the login shell set. Something needs to be done to make all this simpler, either the `login` program should do this stuff, or a default shell alias should be made, or a way to set the environment of the parent should exist.

This program cannot intuit personal choices for erase, interrupt and line kill characters, so it leaves these set to the local system standards.

It could well be argued that the shell should be responsible for ensuring that the terminal remains in a sane state; this would eliminate the need for the `reset` program.
The tsort command produces on the standard output a totally ordered list of items consistent with a partial ordering of items mentioned in the input file.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indicate ordering. Pairs of identical items indicate presence, but not ordering.

The following operand is supported:

file A path name of a text file to order. If no file operand is given, the standard input is used.

EXAMPLES

EXAMPLE 1 An example of the tsort command

The command:
```
example% tsort <<EOF
  a b c d e
  f g e f
EOF
```
produces the output:

```
a
b
c
d
e
f
g
```

See environ(5) for descriptions of the following environment variables that affect the execution of tsort: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- 0 Successful completion.
- >0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbttool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
tsort(1)

SEE ALSO
lorder(1), attributes(5), environ(5), standards(5)

DIAGNOSTICS
Odd data: there are an odd number of fields in the input file.
NAME
tty – return user’s terminal name

SYNOPSIS
tty [-l] [-s]

DESCRIPTION
The tty utility writes to the standard output the name of the terminal that is open as standard input. The name that is used is equivalent to the string that would be returned by the ttyname(3C) function.

OPTIONS
The following options are supported:
-l
Prints the synchronous line number to which the user’s terminal is connected, if it is on an active synchronous line.
-s
Inhibits printing of the terminal path name, allowing one to test just the exit status.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of tty: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0
Standard input is a terminal.
1
Standard input is not a terminal.
>1
An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
isatty(3C), ttyname(3C), attributes(5), environ(5), standards(5)

DIAGNOSTICS
not on an active synchronous line
The standard input is not a synchronous terminal and -l is specified.

not a tty
The standard input is not a terminal and -s is not specified.

NOTES
The -s option is useful only if the exit status is wanted. It does not rely on the ability to form a valid path name. Portable applications should use test -t.
The `type` utility indicates how each `name` operand would be interpreted if used as a command. `type` displays information about each operand identifying the operand as a shell built-in, function, alias, hashed command, or keyword, and where applicable, may display the operand’s path name.

There is also a shell built-in version of `type` that is similar to the `type` utility.

The following operand is supported:

- `name` A name to be interpreted.

See `environ(5)` for descriptions of the following environment variables that affect the execution of `type`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

PATH Determine the location of `name`.

The following exit values are returned:

- `0` Successful completion.
- `>0` An error occurred.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

`type(1)`
NAME

typeset, whence – shell built-in functions to set/get attributes and values for shell variables and functions

SYNOPSIS

typeset [± HLRZfilrtux [n]] [name [= value]]...

whence [-pv] name...

DESCRIPTION

typeset sets attributes and values for shell variables and functions. When typeset is invoked inside a function, a new instance of the variables name is created. The variables value and type are restored when the function completes. The following list of attributes may be specified:

-H This flag provides UNIX to host-name file mapping on non-UNIX machines.

-L Left justify and remove leading blanks from value. If n is non-zero it defines the width of the field; otherwise, it is determined by the width of the value of first assignment. When the variable is assigned to, it is filled on the right with blanks or truncated, if necessary, to fit into the field. Leading zeros are removed if the -Z flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines the width of the field, otherwise it is determined by the width of the value of first assignment. The field is left filled with blanks or truncated from the end if the variable is reassigned. The -L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character is a digit and the -L flag has not been set. If n is non-zero it defines the width of the field; otherwise, it is determined by the width of the value of first assignment.

-f The names refer to function names rather than variable names. No assignments can be made and the only other valid flags are -t, -u and -x. The flag -t turns on execution tracing for this function. The flag -u causes this function to be marked undefined. The FPATH variable will be searched to find the function definition when the function is referenced. The flag -x allows the function definition to remain in effect across shell procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero it defines the output arithmetic base; otherwise, the first assignment determines the output base.

-l All upper-case characters are converted to lower-case. The upper-case flag, -u is turned off.

-r The given names are marked readonly and these names cannot be changed by subsequent assignment.

-t Tags the variables. Tags are user definable and have no special meaning to the shell.
-u All lower-case characters are converted to upper-case characters. The
textual lower-case flag, -1 is turned off.

-x The given names are marked for automatic export to the environment of
subsequently-executed commands.

The -i attribute can not be specified along with -R, -L, -Z, or -f.

Using + rather than - causes these flags to be turned off. If no name arguments are
given but flags are specified, a list of names (and optionally the values) of the variables
which have these flags set is printed. (Using + rather than - keeps the values from
being printed.) If no names and flags are given, the names and attributes of all variables
are printed.

For each name, whence indicates how it would be interpreted if used as a command
name.

The -v flag produces a more verbose report.

The -p flag does a path search for name even if name is an alias, a function, or a
reserved word.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO ksh(1), set(1), sh(1), attributes(5)
ucblinks(1B)

NAME
ucblinks – adds /dev entries to give SunOS 4.x compatible names to SunOS 5.x devices

SYNOPSIS
/usr/ucb/ucblinks [-e rulebase] [-r rootdir]

DESCRIPTION
ucblinks creates symbolic links under the /dev directory for devices whose SunOS 5.x names differ from their SunOS 4.x names. Where possible, these symbolic links point to the device’s SunOS 5.x name rather than to the actual /devices entry.

ucblinks does not remove unneeded compatibility links; these must be removed by hand.

ucblinks should be called each time the system is reconfiguration-booted, after any new SunOS 5.x links that are needed have been created, since the reconfiguration may have resulted in more compatibility names being needed.

In releases prior to SunOS 5.4, ucblinks used a awk rule-base to construct the SunOS 4.x compatible names. ucblinks no longer uses awk for the default operation, although awk rule-bases can still be specified with the -e option. The awk rule-base equivalent to the SunOS 5.4 default operation can be found in /usr/ucb/lib/ucblinks.awk.

OPTIONS
- e rulebase Specify rulebase as the file containing awk(1) pattern-action statements.

- r rootdir Specify rootdir as the directory under which dev and devices will be found, rather than the standard root directory /.

FILES
/usr/ucblib/ucblinks.awk sample rule-base for compatibility links

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO
devlinks(1M), disks(1M), ports(1M), tapes(1M), attributes(5)
ul(1)

NAME ul – do underlining
SYNOPSIS ul [-i] [-t terminal] [filename...]
DESCRIPTION ul reads the named filenames (or the standard input if none are given) and translates occurrences of underscores to the sequence which indicates underlining for the terminal in use, as specified by the environment variable TERM. ul uses the /usr/share/lib/terminfo entry to determine the appropriate sequences for underlining. If the terminal is incapable of underlining, but is capable of a standout mode then that is used instead. If the terminal can overstrike, or handles underlining automatically, ul degenerates to cat(1). If the terminal cannot underline, underlining is ignored.

OPTIONS -t terminal Override the terminal kind specified in the environment. If the terminal cannot underline, underlining is ignored. If the terminal name is not found, no underlining is attempted.
- i Indicate underlining by a separate line containing appropriate dashes ‘−’; this is useful when you want to look at the underlining which is present in an nroff(1) output stream on a CRT-terminal.

RETURN VALUES ul returns exit code 1 if the file specified is not found.
FILES /usr/share/lib/terminfo/*
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO cat(1), man(1), nroff(1), attributes(5)
BUGS nroff usually generates a series of backspaces and underlines intermixed with the text to indicate underlining. ul makes attempt to optimize the backward motion.
NAME
umask – get or set the file mode creation mask

SYNOPSIS
/usr/bin/umask [-S] [mask]

sh umask [ooo]
csh umask [ooo]
ksh umask [-S] [mask]

DESCRIPTION
The umask utility sets the file mode creation mask of the current shell execution environment to the value specified by the mask operand. This mask affects the initial value of the file permission bits of subsequently created files. If umask is called in a subshell or separate utility execution environment, such as one of the following:

{umask 002}
nohup umask ...
find . -exec umask ...

it does not affect the file mode creation mask of the caller’s environment. For this reason, the /usr/bin/umask utility cannot be used to change the umask in an ongoing session. Its usefulness is limited to checking the caller’s umask. To change the umask of an ongoing session you must use one of the shell builtins.

If the mask operand is not specified, the umask utility writes the value of the invoking process’s file mode creation mask to standard output.

sh The user file-creation mode mask is set to ooo. The three octal digits refer to read/write/execute permissions for owner, group, and other, respectively (see chmod(1), chmod(2), and umask(2)). The value of each specified digit is subtracted from the corresponding “digit” specified by the system for the creation of a file (see creat(2)). For example, umask 022 removes write permission for group and other (files normally created with mode 777 become mode 755. Files created with mode 666 become mode 644).

- If ooo is omitted, the current value of the mask is printed.
- umask is recognized and executed by the shell.
- umask can be included in the user’s .profile (see profile(4)) and invoked at login to automatically set the user’s permissions on files or directories created.

csh See the description above for the Bourne shell (sh)umask built-in.

ksh The user file-creation mask is set to mask. mask can either be an octal number or a symbolic value as described in chmod(1). If a symbolic value is given, the new umask value is the complement of the result of applying mask to the complement of the previous umask value. If mask is omitted, the current value of the mask is printed.

OPTIONS The following option is supported:

- S Produces symbolic output.
The default output style is unspecified, but will be recognized on a subsequent invocation of *umask* on the same system as a *mask* operand to restore the previous file mode creation mask.

OPERANDS

The following operand is supported:

`mask`
A string specifying the new file mode creation mask. The string is treated in the same way as the *mode* operand described in the *chmod(1)* manual page.

For a *symbolic_mode* value, the new value of the file mode creation mask is the logical complement of the file permission bits portion of the file mode specified by the *symbolic_mode* string.

In a *symbolic_mode* value, the permissions *op* characters `+` and `−` are interpreted relative to the current file mode creation mask. `+` causes the bits for the indicated permissions to be cleared in the mask. `−` causes the bits of the indicated permissions to be set in the mask.

The interpretation of *mode* values that specify file mode bits other than the file permission bits is unspecified.

The file mode creation mask is set to the resulting numeric value.

The default output of a prior invocation of *umask* on the same system with no operand will also be recognized as a *mask* operand. The use of an operand obtained in this way is not obsolescent, even if it is an octal number.

OUTPUT

When the *mask* operand is not specified, the *umask* utility will write a message to standard output that can later be used as a *umask* *mask* operand.

If `-S` is specified, the message will be in the following format:

```
"u=${owner\ permissions}, g=${group\ permissions}, o=${other\ permissions}"
```

where the three values will be combinations of letters from the set `{r, w, x}`. The presence of a letter will indicate that the corresponding bit is clear in the file mode creation mask.

If a *mask* operand is specified, there will be no output written to standard output.

EXAMPLES

EXAMPLE 1 Using the umask command

Either of the commands:

```
umask a=rw,ug+w
umask 002
```

sets the mode mask so that subsequently created files have their `S_IWOTH` bit cleared.
EXAMPLE 1 Using the umask command (Continued)

After setting the mode mask with either of the above commands, the umask command can be used to write the current value of the mode mask:

example$ umask
0002

The output format is unspecified, but historical implementations use the obsolescent octal integer mode format.

example$ umask -S
u=rwx,g=rwx,o=rx

Either of these outputs can be used as the mask operand to a subsequent invocation of the umask utility.

Assuming the mode mask is set as above, the command:

umask g-w

sets the mode mask so that subsequently created files have their S_IWGRP and S_IWOTH bits cleared.

The command:

umask --w

sets the mode mask so that subsequently created files have all their write bits cleared. Notice that mask operands r, w, x, or anything beginning with a hyphen (−), must be preceded by – to keep it from being interpreted as an option.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of umask: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

0 The file mode creation mask was successfully changed, or no mask operand was supplied.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
umask(1)

SEE ALSO chmod(1), csh(1), ksh(1), sh(1), chmod(2), creat(2), umask(2), profile(4), attributes(5), environ(5), standards(5)
NAME
uname – print name of current system

SYNOPSIS
uname [-aimnprsvX]

uname [-S system_name]

DESCRIPTION
The uname utility prints information about the current system on the standard output. When options are specified, symbols representing one or more system characteristics will be written to the standard output. If no options are specified, uname prints the current operating system’s name. The options print selected information returned by uname(2), sysinfo(2), or both.

OPTIONS
The following options are supported:
- a Prints basic information currently available from the system.
- i Prints the name of the hardware implementation (platform).
- m Prints the machine hardware name (class). Use of this option is discouraged; use uname -p instead. See NOTES section below.
- n Prints the nodename (the nodename is the name by which the system is known to a communications network).
- p Prints the current host’s ISA or processor type.
- r Prints the operating system release level.
- s Prints the name of the operating system. This is the default.
- S system_name The nodename may be changed by specifying a system name argument. The system name argument is restricted to SYS_NMLN characters. SYS_NMLN is an implementation specific value defined in <sys/utsname.h>. Only the super-user is allowed this capability. This change does not persist across reboots of the system. Use sys-unconfig(1M) to change a host’s name permanently.
- v Prints the operating system version.
- X Prints expanded system information, one information element per line, as expected by SCO UNIX. The displayed information includes:
 - system name, node, release, version, machine, and number of CPUs.
 - BusType, Serial, and Users (set to "unknown" in Solaris)
 - OEM# and Origin# (set to 0 and 1, respectively)

EXAMPLES
EXAMPLE 1 Printing the OS name and release level

The following command:

e x a mpl e t u n a m e - s r

User Commands 1645
EXAMPLE 1 Printing the OS name and release level (Continued)

prints the operating system name and release level, separated by one SPACE character.

See environ(5) for descriptions of the following environment variables that affect the execution of uname: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

SYSV3 This variable is used to override the default behavior of uname. This is necessary to make it possible for some INTERACTIVE UNIX Systems and SCO UNIX programs and scripts to work properly. Many scripts use uname to determine the SYSV3 type or the version of the OS to ensure software is compatible with that OS. Setting SYSV3 to an empty string will make uname print the following default values:

node name node name 3.2 2 i386

The individual elements that uname displays can also be modified by setting SYSV3 in the following format:

os,syst name,rel,ver,mach

| os | Operating system (IUS or SCO). |
| sysname | System name. |
| node | Nodename as displayed by the -n option. |
| rel | Release level as displayed by the -r option. |
| ver | Version number as displayed by the -v option. |
| mach | Machine name as displayed by -m option. |

Do not put spaces between the elements. If an element is omitted, the current system value will be used.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
Independent software vendors (ISVs) and others who need to determine detailed characteristics of the platform on which their software is either being installed or executed should use the `uname` command.

To determine the operating system name and release level, use `uname -sr`. To determine only the operating system release level, use `uname -r`. Notice that operating system release levels are not guaranteed to be in `x.y` format (such as 5.3, 5.4, 5.5, and so forth); future releases could be in the `x.y.z` format (such as 5.3.1, 5.3.2, 5.4.1, and so forth).

In SunOS 4.x releases, the `arch(1)` command was often used to obtain information similar to that obtained by using the `uname` command. The `arch(1)` command output "sun4" was often incorrectly interpreted to signify a SunOS SPARC system. If hardware platform information is desired, use `uname -sp`.

The `arch -k` and `uname -m` commands return equivalent values; however, the use of either of these commands by third party programs is discouraged, as is the use of the `arch` command in general. To determine the machine’s Instruction Set Architecture (ISA or processor type), use `uname` with the `-p` option.
unifdef – resolve and remove ifdef'd lines from C program source

unifdef [-clt] [-D name] [-U name] [-iD name] [-iU name] ... [filename]

unifdef removes ifdef'd lines from a file while otherwise leaving the file alone. It is smart enough to deal with the nested ifdefs, comments, single and double quotes of C syntax, but it does not do any including or interpretation of macros. Neither does it strip out comments, though it recognizes and ignores them. You specify which symbols you want defined with -D options, and which you want undefined with -U options. Lines within those ifdefs will be copied to the output, or removed, as appropriate. Any ifdef, ifndef, else, and endif lines associated with filename will also be removed.

ifdefs involving symbols you do not specify are untouched and copied out along with their associated ifdef, else, and endif lines.

If an ifdefX occurs nested inside another ifdefX, then the inside ifdef is treated as if it were an unrecognized symbol. If the same symbol appears in more than one argument, only the first occurrence is significant.

unifdef copies its output to the standard output and will take its input from the standard input if no filename argument is given.

The following options are supported:

- c Complement the normal operation. Lines that would have been removed or blanked are retained, and vice versa.
- l Replace “lines removed” lines with blank lines.
- t Plain text option. unifdef refrains from attempting to recognize comments and single and double quotes.
- D name Lines associated with the defined symbol name.
- U name Lines associated with the undefined symbol name.
- iD name Ignore, but print out, lines associated with the defined symbol name. If you use ifdefs to delimit non-C lines, such as comments or code which is under construction, then you must tell unifdef which symbols are used for that purpose so that it will not try to parse for quotes and comments within them.
- iU name Ignore, but print out, lines associated with the undefined symbol name.

The following exit values are returned:

0 Successful operation.
1 Operation failed.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbttool</td>
</tr>
</tbody>
</table>

SEE ALSO

diff(1), attributes(5)

DIAGNOSTICS

Premature EOF Inappropriate else or endif.
uniq(1)

NAME
uniq – report or filter out repeated lines in a file

SYNOPSIS
uniq [-c | -d | -u] [-f fields] [-s char] [input_file [output_file]]
uniq [-c | -d | -u] [-n] [+ n] [input_file [output_file]]

DESCRIPTION
The uniq utility will read an input file comparing adjacent lines, and write one copy of each input line on the output. The second and succeeding copies of repeated adjacent input lines will not be written.

Repeated lines in the input will not be detected if they are not adjacent.

OPTIONS
The following options are supported:

-c Precedes each output line with a count of the number of times the line occurred in the input.

-d Suppresses the writing of lines that are not repeated in the input.

-f fields Ignores the first fields fields on each input line when doing comparisons, where fields is a positive decimal integer. A field is the maximal string matched by the basic regular expression:

 [:blank:]*[^[:blank:]]*

If fields specifies more fields than appear on an input line, a null string will be used for comparison.

-s chars Ignores the first chars characters when doing comparisons, where chars is a positive decimal integer. If specified in conjunction with the -f option, the first chars characters after the first fields fields will be ignored. If chars specifies more characters than remain on an input line, a null string will be used for comparison.

-u Suppresses the writing of lines that are repeated in the input.

-n Equivalent to -f fields with fields set to n.

+m Equivalent to -s chars with chars set to m.

OPERANDS
The following operands are supported:

input_file A path name of the input file. If input_file is not specified, or if the input_file is −, the standard input will be used.

output_file A path name of the output file. If output_file is not specified, the standard output will be used. The results are unspecified if the file named by output_file is the file named by input_file.

EXAMPLES
EXAMPLE 1 Using the uniq command

The following example lists the contents of the uniq.test file and outputs a copy of the repeated lines.
EXAMPLE 1 Using the uniq command (Continued)

```bash
eexample$ cat uniq.test
This is a test.
This is a test.
TEST.
Computer.
TEST.
TEST.
Software.

eexample$ uniq -d uniq.test
This is a test.
TEST.

eexample$
```

The next example outputs just those lines that are not repeated in the `uniq.test` file.

```bash
eexample$ uniq -u uniq.test
TEST.
Computer.
Software.

eexample$
```

The last example outputs a report with each line preceded by a count of the number of times each line occurred in the file:

```bash
eexample$ uniq -c uniq.test
  2 This is a test.
   1 TEST.
   1 Computer.
  2 TEST.
   1 Software.

eexample$
```

ENVIRONMENT VARIABLES

See `environ(5)` for descriptions of the following environment variables that affect the execution of `uniq`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

EXIT STATUS

The following exit values are returned:

- **0** Successful completion.
- **>0** An error occurred.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>
NAME
units – converts quantities expressed in standard scales to other scales

SYNOPSIS
units

DESCRIPTION
units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have: --inch
You want: --cm
 * 2.540000e+00
/ 3.937008e-01

A quantity is specified as a multiplicative combination of units optionally preceded by
a numeric multiplier. Powers are indicated by suffixed positive integers, division by
the usual sign:

You have: --15 lbs force/in2
You want: --atm
 * 1.020689e+00
/ 9.797299e-01

units only does multiplicative scale changes; thus it can convert Kelvin to Rankine,
but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes
are recognized, together with a generous leavening of exotica and a few constants of
nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro’s number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together,
(for example, lightyear). British units that differ from their U.S. counterparts are
prefixed thus: brgallon. For a complete list of units, type:

cat /usr/share/lib/unittab

FILES
/usr/share/lib/unittab

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
The `unix2dos` utility converts ISO standard characters to the corresponding characters in the DOS extended character set.

This command may be invoked from either DOS or SunOS. However, the filenames must conform to the conventions of the environment in which the command is invoked.

If the original file and the converted file are the same, `unix2dos` will rewrite the original file after converting it.

The following options are supported:

```bash
-ascii
```
Adds carriage returns and converts end of file characters in SunOS format text files to conform to DOS requirements.

```bash
-iso
```
This is the default. Converts ISO standard characters to the corresponding character in the DOS extended character set.

```bash
-7
```
Converts 8 bit SunOS characters to 7 bit DOS characters.

On non-i386 systems, `unix2dos` will attempt to obtain the keyboard type to determine which code page to use. Otherwise, the default is US. The user may override the code page with one of the following options:

```bash
-437
```
Use US code page

```bash
-850
```
Use multilingual code page

```bash
-860
```
Use Portuguese code page

```bash
-863
```
Use French Canadian code page

```bash
-865
```
Use Danish code page

The following operands are required:

```bash
originalfile
```
The original file in ISO format that is being converted to DOS format.

```bash
convertedfile
```
The new file in DOS format that has been converted from the original ISO file format.

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>
File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission. Check with the SunOS command, ls -l (see ls(1)).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permission for that file or the directory that contains it. Check also that the drive or diskette is not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not enough space on the current drive. Check the amount of space on the current drive using the DIR command. Also be certain that the default diskette or drive is write-enabled (not write-protected). Notice that when this error occurs, the original file remains intact.

Translated tmpfile name = filename.
Could not rename tmpfile to filename.
The program could not perform the final step in converting your file. Your converted file is stored under the name indicated on the second line of this message.
NAME uptime – show how long the system has been up

SYNOPSIS uptime

DESCRIPTION The uptime command prints the current time, the length of time the system has been up, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes. It is, essentially, the first line of a w(1) command.

EXAMPLES Below is an example of the output uptime provides:

```
example$ uptime
10:47am up 27 day(s), 50 mins, 1 user, load average: 0.18, 0.26, 0.20
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO w(1), who(1), whodo(1M), attributes(5)

NOTES who -b gives the time the system was last booted.
users(1B)

NAME users – display a compact list of users logged in

SYNOPSIS /usr/ucb/users [filename]

DESCRIPTION The users utility lists the login names of the users currently on the system in a compact, one-line format.

Specifying filename tells users where to find its information; by default it checks /var/adm/utmpx.

Typing users is equivalent to typing who -q.

EXAMPLES EXAMPLE 1 Listing current users

example% users
paul george ringo example%

FILES /var/adm/utmpx

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO who(1), attributes(5)
NAME
uucp, uulog, uuname – UNIX-to-UNIX system copy

SYNOPSIS
 [-xdebug_level] source-file destination-file
uulog [-sys] [-f system] [-x] [-number] system
uuname [-c | -l]

DESCRIPTION
uucp
The uucp utility copies files named by the source-file arguments to the destination-file argument.

uulog
The uulog utility queries a log file of uucp or uuxqt transactions in file
/var/uucp/.Log/uucico/system or /var/uucp/.Log/uuxqt/system.

uuname
The uname utility lists the names of systems known to uucp.

OPTIONS
uucp
The following options are supported by uucp:
- -c
 Does not copy local file to the spool directory for transfer to the
 remote machine (default).
- -C
 Forces the copy of local files to the spool directory for transfer.
- -d
 Makes all necessary directories for the file copy (default).
- -f
 Does not make intermediate directories for the file copy.
- -g grade
 grade can be either a single letter, number, or a string of
 alphanumeric characters defining a service grade. The uuglist
 command can determine whether it is appropriate to use the single
 letter, number, or a string of alphanumeric characters as a service
 grade. The output from the uuglist command will be a list of
 service grades that are available, or a message that says to use a
 single letter or number as a grade of service.
- -j
 Prints the uucp job identification string on standard output. This
 job identification can be used by uustat to obtain the status of a
 uucp job or to terminate a uucp job. The uucp job is valid as long
 as the job remains queued on the local system.
- -m
 Sends mail to the requester when the copy is complete.
- -n user
 Notifies user on the remote system that a file was sent.
- -r
 Does not start the file transfer, just queue the job.
- -s file
 Reports status of the transfer to file. This option is accepted for
 compatibility, but it is ignored because it is insecure.
-x debug_level Produce debugging output on standard output. debug_level is a number between 0 and 9. As debug_level increases to 9, more detailed debugging information is given. This option may not be available on all systems.

uulog

The following options cause uulog to print logging information:

- a sys Prints information about file transfer work involving system sys.
- f system Executes a tail -f command of the file transfer log for system. You must press BREAK to exit this function.

Other options used in conjunction with the above options are:

- x Looks in the uuxqt log file for the given system.
- number Executes a tail command of number lines.

uuname

The following options are supported by uuname:

- c Displays the names of systems known to cu. The two lists are the same, unless your machine is using different Systems files for cu and uucp. See the Sysfiles file.
- l Displays the local system name.

OPERANDS

The source file name may be a path name on your machine, or may have the form:

system-name:pathname

where system-name is taken from a list of system names that uucp knows about. source_file is restricted to no more than one system-name. The destination system-name may also include a list of system names such as

system-name:system-name:...:system-name:pathname

In this case, an attempt is made to send the file, using the specified route, to the destination. Care should be taken to ensure that intermediate nodes in the route are willing to forward information (see NOTES below for restrictions).

For C-Shell users, the exclamation point (!) character must be surrounded by single quotes ('), or preceded by a backslash (\).

The shell metacharacters ?, *, and [...] appearing in pathname will be expanded on the appropriate system.

Pathnames may be one of the following:

1. An absolute pathname.
2. A pathname preceded by -user where user is a login name on the specified system and is replaced by that user's login directory.
3. A pathname preceded by ~/destination where destination is appended to /var/spool/uucppublic. (Note: This destination will be treated as a filename unless more than one file is being transferred by this request or the destination is already a directory. To ensure that the destination is a directory, follow it with a forward slash (/). For example, ~/dan/ as the destination will create the directory /var/spool/uucppublic/dan if it does not exist and put the requested file(s) in that directory).

Anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system, the copy will fail. If the destination-file is a directory, the last part of the source-file name is used.

Invoking uucp with shell wildcard characters as the remote source-file invokes the uux(1C) command to execute the uucp command on the remote machine. The remote uucp command spools the files on the remote machine. After the first session terminates, if the remote machine is configured to transfer the spooled files to the local machine, the remote machine will initiate a call and send the files; otherwise, the user must "call" the remote machine to transfer the files from the spool directory to the local machine. This call can be done manually using Uutry(1M), or as a side effect of another uux(1C) or uucp call.

Notice that the local machine must have permission to execute the uucp command on the remote machine in order for the remote machine to send the spooled files.

uucp removes execute permissions across the transmission and gives 0666 read and write permissions (see chmod(2)).

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of uucp: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, NLSPATH, and TZ.

EXIT STATUS
The following exit values are returned:

- 0: Successful completion.
- >0: An error occurred.

FILES
/etc/uucp/* other data files
/var/spool/uucp spool directories
/usr/lib/uucp/* other program files
/var/spool/uucppublic/* public directory for receiving and sending

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>
For security reasons, the domain of remotely accessible files may be severely restricted. You will probably not be able to access files by path name; ask a responsible person on the remote system to send them to you. For the same reasons you will probably not be able to send files to arbitrary path names. As distributed, the remotely accessible files are those whose names begin /var/spool/uucppublic (equivalent to ~/).

All files received by uucp will be owned by uucp.

The -m option will only work when sending files or receiving a single file. Receiving multiple files specified by special shell characters ?, & and [...] will not activate the -m option.

The forwarding of files through other systems may not be compatible with the previous version of uucp. If forwarding is used, all systems in the route must have compatible versions of uucp.

Protected files and files that are in protected directories that are owned by the requester can be sent by uucp. However, if the requester is root, and the directory is not searchable by "other" or the file is not readable by "other", the request will fail.

Strings that are passed to remote systems may not be evaluated in the same locale as the one in use by the process that invoked uucp on the local system.

Configuration files must be treated as C (or POSIX) locale text files.
uuencode(1C)

NAME
uuencode, uudecode – encode a binary file, or decode its encoded representation

SYNOPSIS
uuencode [source-file] decode_pathname
uudecode [-p] [encoded-file]

DESCRIPTION
These commands encode and decode files as follows:

uuencode
The uuencode utility converts a binary file into an encoded representation that can be sent using mail(1). It encodes the contents of source-file, or the standard input if no source-file argument is given. The decode_pathname argument is required. The decode_pathname is included in the encoded file’s header as the name of the file into which uudecode is to place the binary (decoded) data. uuencode also includes the permission modes of source-file (except setuid, setgid, and sticky-bits), so that decode_pathname is recreated with those same permission modes.

uudecode
The uudecode utility reads an encoded-file, strips off any leading and trailing lines added by mailer programs, and recreates the original binary data with the filename and the mode specified in the header.

The encoded file is an ordinary portable character set text file; it can be edited by any text editor. It is best only to change the mode or decode_pathname in the header to avoid corrupting the decoded binary.

OPTIONS
The following option is supported:

uudecode
-p Decodes encoded-file and sends it to standard output. This allows uudecode to be used in a pipeline.

OPERANDS
The following operands are supported by uuencode and uudecode:

uuencode
decode_pathname The pathname of the file into which the uudecode utility will place the decoded file. If there are characters in decode_pathname that are not in the portable filename character set the results are unspecified.

source-file A pathname of the file to be encoded.

uudecode
encoded-file The pathname of a file containing the output of uuencode.

USAGE
See largefile(5) for the description of the behavior of uuencode and uudecode when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of uuencode and uudecode: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

OUTPUT
stdout
The standard output is a text file (encoded in the character set of the current locale) that begins with the line:

uuencode(1C)
uuencode(1C)

"begin%s$s\n", <mode>, decode_pathname

and ends with the line:

end\n
In both cases, the lines have no preceding or trailing blank characters.

The algorithm that is used for lines in between begin and end takes three octets as input and writes four characters of output by splitting the input at six-bit intervals into four octets, containing data in the lower six bits only. These octets are converted to characters by adding a value of 0x20 to each octet, so that each octet is in the range 0x20–0x5f, and then it is assumed to represent a printable character. It then will be translated into the corresponding character codes for the codeset in use in the current locale. (For example, the octet 0x41, representing A, would be translated to A in the current codeset, such as 0xc1 if it were EBCDIC.)

Where the bits of two octets are combined, the least significant bits of the first octet are shifted left and combined with the most significant bits of the second octet shifted right. Thus, the three octets A, B, C are converted into the four octets:

\[
\begin{align*}
0x20 + \{ (A \gg 2) & \} & 0x3F \\
0x20 + \{ (A \ll 4) \& \{(B \gg 4) \& 0xF\} \} & 0x3F \\
0x20 + \{ (B \ll 2) \& \{(C \gg 6) \& 0x3\} \} & 0x3F \\
0x20 + \{ (C) \} & 0x3F \\
\end{align*}
\]

These octets are then translated into the local character set.

Each encoded line contains a length character, equal to the number of characters to be decoded plus 0x20 translated to the local character set as described above, followed by the encoded characters. The maximum number of octets to be encoded on each line is 45.

EXIT STATUS

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

mail(1), mailx(1), uucp(1C), uux(1C), attributes(5), environ(5), largefile(5), standards(5)
The encoded file’s size is expanded by 35% (3 bytes become 4, plus control information), causing it to take longer to transmit than the equivalent binary.

The user on the remote system who is invoking uudecode (typically uucp) must have write permission on the file specified in the decode_pathname.

If you invoke uuencode and then execute uudecode on a file in the same directory, you will overwrite the original file.
NAME uuglist – print the list of service grades that are available on this UNIX system

SYNOPSIS uuglist [-u]

DESCRIPTION uuglist prints the list of service grades that are available on the system to use with
 the -g option of uucp(1C) and uux(1C).

OPTIONS -u List the names of the service grades that the user is allowed to use with the
 -g option of the uucp and uux commands.

FILES /etc/uucp/Grades contains the list of service grades

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>

SEE ALSO uucp(1C), uux(1C), attributes(5)
The `uustat` utility functions in the following three areas:

1. Displays the general status of, or cancels, previously specified `uucp` commands.
2. Provides remote system performance information, in terms of average transfer rates or average queue times.
3. Provides general remote system-specific and user-specific status of `uucp` connections to other systems.

OPTIONS

The following options are supported:

General Status

These options obtain general status of, or cancel, previously specified `uucp` commands:

- `-a` Lists all jobs in queue.
- `-j` Lists the total number of jobs displayed. The `-j` option can be used in conjunction with the `-a` or the `-s` option.
- `-k` `jobid` Kills the `uucp` request whose job identification is `jobid`. The killed `uucp` request must belong to the user issuing the `uustat` command unless the user is the super-user or `uucp` administrator. If the job is killed by the super-user or `uucp` administrator, electronic mail is sent to the user.
- `-m` Reports the status of accessibility of all machines.
- `-n` Suppresses all standard output, but not standard error. The `-n` option is used in conjunction with the `-k` and `-r` options.
- `-p` Executes the command `ps -flp` for all the process-ids that are in the lock files.
- `-q` Lists the jobs queued for each machine. If a status file exists for the machine, its date, time and status information are reported. In addition, if a number appears in parentheses next to the number of C or X files, it is the age in days of the oldest C./X..file for that system. The Retry field represents the number of hours until the next possible call. The Count is the number of failure attempts. **Note:** For systems with a moderate number of outstanding jobs, this could take 30 seconds or more of real-time to execute. An example of the output produced by the `-q` option is:

```plaintext
eagle  3C  04/07-11:07  NO DEVICES AVAILABLE
mh3bs3  2C  07/07-10:42  SUCCESSFUL
```
This indicates the number of command files that are waiting for each system. Each command file may have zero or more files to be sent (zero means to call the system and see if work is to be done). The date and time refer to the previous interaction with the system followed by the status of the interaction.

- r jobid Rejuvenates jobid. The files associated with jobid are touched so that their modification time is set to the current time. This prevents the cleanup daemon from deleting the job until the jobs' modification time reaches the limit imposed by the daemon.

These options provide remote system performance information, in terms of average transfer rates or average queue times. The -c and -d options can only be used in conjunction with the -t option:

- t system Reports the average transfer rate or average queue time for the past 60 minutes for the remote system. The following parameters can only be used with this option:

- c Average queue time is calculated when the -c parameter is specified and average transfer rate when -c is not specified. For example, the command:

```
example% uustat -teagle -d50 -c
```

produces output in the following format:

average queue time to eagle for last 50 minutes: 5 seconds

The same command without the -c parameter produces output in the following format:

average transfer rate with eagle for last 50 minutes: 2000.88 bytes/sec

- a number number is specified in minutes. Used to override the 60 minute default used for calculations. These calculations are based on information contained in the optional performance log and therefore may not be available. Calculations can only be made from the time that the performance log was last cleaned up.

These options provide general remote system-specific and user-specific status of uucp connections to other systems. Either or both of the following options can be specified with uustat. The -j option can be used in conjunction with the -s option to list the total number of jobs displayed:

- a system Reports the status of all uucp requests for remote system system.

- a user Reports the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

```
eagleN1bd7 4/07-11:07 S eagle dan 522 /home/dan/A
eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924
```
With the above two options, the first field is the jobid of the job. This is followed by the date/time. The next field is an S if the job is sending a file or an R if the job is requesting a file. The next field is the machine where the file is to be transferred. This is followed by the user-id of the user who queued the job. The next field contains the size of the file, or in the case of a remote execution (rmail is the command used for remote mail), the name of the command. When the size appears in this field, the file name is also given. This can either be the name given by the user or an internal name (for example, D.3b2alce4924) that is created for data files associated with remote executions (rmail in this example).

-Sqric Reports the job state:
q for queued jobs
r for running jobs
i for interrupted jobs
c for completed jobs

A job is queued if the transfer has not started. A job is running when the transfer has begun. A job is interrupted if the transfer began but was terminated before the file was completely transferred. A completed job is a job that successfully transferred. The completed state information is maintained in the accounting log, which is optional and therefore may be unavailable. The parameters can be used in any combination, but at least one parameter must be specified. The -S option can also be used with -s and -u options. The output for this option is exactly like the output for -s and -u except that the job states are appended as the last output word.

Output for a completed job has the following format:
eagleC1bd3 completed

When no options are given, uustat writes to standard output the status of all uucp requests issued by the current user.

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of uustat: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, NLSPATH, and TZ.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/var/spool/uucp/* spool directories
/var/uucp/.Admin/account accounting log
/var/uucp/.Admin/perflog performance log
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

uucp(1C), attributes(5), environ(5), standards(5)

DIAGNOSTICS

The -t option produces no message when the data needed for the calculations is not being recorded.

NOTES

After the user has issued the uucp request, if the file to be transferred is moved, deleted or was not copied to the spool directory (-C option) when the uucp request was made, uustat reports a file size of −99999. This job will eventually fail because the file(s) to be transferred can not be found.
NAME
uuto, uupick – public UNIX-to-UNIX system file copy

SYNOPSIS
- **uuto** `[-mp] source-file... destination`
- **uupick** `[-s system]`

DESCRIPTION
uuto

```
uuto sends source-file to destination. uuto uses the uucp(1C) facility to send files, while it allows the local system to control the file access. A source-file name is a path name on your machine. Destination has the form:
```
```
system[!system] ... !user
```

where system is taken from a list of system names that uucp knows about. User is the login name of someone on the specified system.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR is a public directory defined in the uucp source. By default, this directory is /var/spool/uucppublic. Specifically the files are sent to PUBDIR/receive/user/mysystem/files.

The recipient is notified by `mail(1)` of the arrival of files.

uupick

```
uupick accepts or rejects the files transmitted to the user. Specifically, uupick searches PUBDIR for files destined for the user. For each entry (file or directory) found, the following message is printed on standard output:
```
```
from system sysname: [file file-name] [dir dirname] ?
```

uupick then reads a line from standard input to determine the disposition of the file:

```
<new-line> Go to next entry.
d Delete the entry.
m [ dir ] Move the entry to named directory dir. If dir is not specified as a complete path name (in which $HOME is legitimate), a destination relative to the current directory is assumed. If no destination is given, the default is the current directory.
a [ dir ] Same as m above, except it moves all the files sent from system.
p Print the content of the file.
q Stop.
EOT (control-d) Same as q.
```
uuto(1C)

!command
 Escape to the shell to do command.
*
 Print a command summary.

OPTIONS

uuto The following options are supported by uuto:

- m Send mail to the sender when the copy is complete.
- p Copy the source file into the spool directory before transmission.

uupick The following option is supported by uupick:

- a system Search only the PUBDIR for files sent from system.

OPERANDS

The following operands are supported for uuto:

destination A string of the form:

 system-name ! user

 where system-name is taken from a list of system names that uucp
 knows about; see uname. The argument user is the login name of
 someone on the specified system. The destination system-name can
 also be a list of names such as

 system-name ! system-name ! ... ! system-name ! user

 in which case, an attempt is made to send the file via the specified
 route to the destination. Care should be taken to ensure that
 intermediate nodes in the route are willing to forward information.

source-file A pathname of a file on the local system to be copied to destination.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the
execution of uuto and uupick: LC_TYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS

The following exit values are returned:

 0 Successful completion.

 >0 An error occurred.

FILES

PUBDIR /var/spool/uucppublic

public directory

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
</tbody>
</table>
SEE ALSO mail(1), uucp(1C), uustat(1C), uux(1C), uucleanup(1M), attributes(5)

NOTES In order to send files that begin with a dot (for instance, .profile), the files must be qualified with a dot. For example, the following files are correct:

 .profile .prof* .profi?

The following files are incorrect:

 prof ?profile
NAME
uux – UNIX-to-UNIX system command execution

SYNOPSIS
uux [-] [-bcCjnpz] [-a name] [-g grade] [-s filename] [-x debug_level]
command-string

DESCRIPTION
The uux utility will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to a file on a specified
system.

Note: For security reasons, most installations limit the list of commands executable on
behalf of an incoming request from uux, permitting only the receipt of mail (see
mail(1)). (Remote execution permissions are defined in /etc/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-name!. A null system-name is interpreted as the local system.

File names may be one of the following:

- An absolute path name.
- A path name preceded by -xxx, where xxx is a login name on the specified system
 and is replaced by that user’s login directory.

Anything else is prefixed by the current directory.

As an example, the command:
example: uux "!diff sys1!/home/dan/filename1 \
 sys2!/a4/dan/filename2 > !~/dan/filename.diff"

will get the filename1 and filename2 files from the sys1 and sys2 machines,
execute a diff(1) command and put the results in filename.diff in the local
PUBDIR/dan/ directory. PUBDIR is a public directory defined in the uucp source. By
default, this directory is /var/spool/uucppublic.

Any special shell characters (such as < > ; |) should be quoted either by quoting the
entire command-string, or quoting the special characters as individual arguments. The
redirection operators >>, <<, >, and >& cannot be used.

uux will attempt to get all appropriate files to the specified system where they will be
processed. For files that are output files, the file name must be escaped using
parentheses. For example, the command:
example: uux "!a!cut -f1 b!/usr/filename > c!/usr/filename"

gets /usr/filename from system b and sends it to system a, performs a cut
command on that file and sends the result of the cut command to system c.

uux will notify you if the requested command on the remote system was disallowed.
This notification can be turned off by the -n option. The response comes by remote
mail from the remote machine.
The following options are supported:

- The standard input to uux is made the standard input to the command-string.
- a name Uses name as the user job identification replacing the initiator user-id. (Notification will be returned to user-id name.)
- b Returns whatever standard input was provided to the uux command if the exit status is non-zero.
- c Does not copy local file to the spool directory for transfer to the remote machine (default).
- C Forces the copy of local files to the spool directory for transfer.
- g grade grade can be either a single letter, number, or a string of alphanumeric characters defining a service grade. The uuglist(1C) command determines whether it is appropriate to use the single letter, number, or a string of alphanumeric characters as a service grade. The output from the uuglist command will be a list of service grades that are available or a message that says to use a single letter or number as a grade of service.
- j Outputs the jobid string on the standard output which is the job identification. This job identification can be used by uustat(1C) to obtain the status or terminate a job.
- n Does not notify the user if the command fails.
- p Same as -. The standard input to uux is made the standard input to the command-string.
- r Does not start the file transfer, but just queues the job.
- s filename Reports status of the transfer in filename. This option is accepted for compatibility, but it is ignored because it is insecure.
- x debug_level Produces debugging output on the standard output. debug_level is a number between 0 and 9. As debug_level increases to 9, more detailed debugging information is given.
- z Sends success notification to the user.

See environ(5) for descriptions of the following environment variables that affect the execution of uux: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.

/etc/uucp/* other data and programs
uux(1C)

/etc/uucp/Permissions remote execution permissions
/usr/lib/uucp/* other programs
/var/spool/uucp spool directories

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbnuu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
cut(1), mail(1), uucp(1C), uuglist(1C), uustat(1C), attributes(5), environ(5), standards(5)

NOTES
The execution of commands on remote systems takes place in an execution directory
known to the uucp system.

All files required for the execution will be put into this directory unless they already
reside on that machine. Therefore, the simple file name (without path or machine
reference) must be unique within the uux request. The following command will NOT
work:
example% uux "a!diff b!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

But the command:
example% uux "a!diff a!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

will work (if diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requester can be sent in commands using uux. However, if the requester is root, and
the directory is not searchable by "other", the request will fail.

The following restrictions apply to the shell pipeline processed by uux:

- In gathering files from different systems, pathname expansion in not performed by
 uux. Thus, a request such as

 uux "c89 remsys! -/*.c"

 would attempt to copy the file named literally *.c to the local system.

- Only the first command of a shell pipeline may have a system-name!. All other
 commands are executed on the system of the first command.

- The use of the shell metacharacter * will probably not do what you want it to do.

- The shell tokens << and >> are not implemented.

- The redirection operators >>, <<, >, and >& cannot be used.
The reserved word `!` cannot be used at the head of the pipeline to modify the exit status.

- Alias substitution is not performed.
vacation

NAME
vacation – reply to mail automatically

SYNOPSIS
vacation [-I]

vacation [-a alias] [-f database_file] [-j] [-m message_file] [-s sender]
[-t] username

DESCRIPTION
The vacation utility automatically replies to incoming mail.

Installation
The installation consists of an interactive program which sets up vacation’s basic configuration.

To install vacation, type it with no arguments on the command line. The program creates a .vacation.msg file, which contains the message that is automatically sent to all senders when vacation is enabled, and starts an editor for you to modify the message. (See USAGE section.) Which editor is invoked is determined by the VISUAL or EDITOR environment variable, or vi(1) if neither of those environment variables are set.

A .forward file is also created if one does not exist in your home directory. Once created, the .forward file will contain a line of the form:

\username, "|/usr/bin/vacation username"

One copy of an incoming message is sent to the username and another copy is piped into vacation.

If a .forward file is present in your home directory, it will ask whether you want to remove it, which disables vacation and ends the installation.

The program automatically creates .vacation.pag and .vacation.dir, which contain a list of senders when vacation is enabled.

Activation and Deactivation
The presence of the .forward file determines whether or not vacation is disabled or enabled. To disable vacation, remove the .forward file, or move it to a new name.

Initialization
The -I option clears the vacation log files, .vacation.pag and .vacation.dir, erasing the list of senders from a previous vacation session. (See OPTIONS section.)

Additional Configuration
vacation provides configuration options that are not part of the installation, these being -a, -f, -j, -m, -s, and -t. (See OPTIONS section.)

OPTIONS
The following options are supported:

- I
 Initializes the .vacation.pag and .vacation.dir files and enables vacation. If the -I flag is not specified, and a user argument is given, vacation reads the first line from the standard input (for a From: line, no colon). If absent, it produces an error message.

Options -a, -f, -j, -m, -s, and -t are configuration options to be used in conjunction with vacation in the .forward file, not on the command line. For example,
vacation(1)

\username, "|/usr/bin/vacation -tim username" repeats replies to the sender every minute.

-\a alias Indicates that alias is one of the valid aliases for the user running vacation, so that mail addressed to that alias generates a reply.

-\f file Uses file instead of .vacation as the base name for the database file.

-\j Does not check whether the recipient appears in the To: or the Cc: line. Warning: use of this option can result in vacation replies being sent to mailing lists and other inappropriate places; its use is therefore strongly discouraged.

-\m file Uses file instead of .vacation.msg as the message to send for the reply.

-\s sender Replies to sender instead of the value read from the UNIX From line of the incoming message.

-\t N Changes the interval between repeat replies to the same sender. The default is 1 week. A trailing s, m, h, d, or w scales N to seconds, minutes, hours, days, or weeks, respectively.

USAGE

Files .vacation.msg should include a header with at least a Subject: line (it should not include a To: line). For example:

Subject: I am on vacation
I am on vacation until July 22. If you have something urgent, please contact Joe Jones (jones@FB0).
 --John

If the string $SUBJECT appears in the .vacation.msg file, it is replaced with the subject of the original message when the reply is sent; thus, a .vacation.msg file such as

Subject: I am on vacation
I am on vacation until July 22. Your mail regarding "$SUBJECT" will be read when I return.
If you have something urgent, please contact Joe Jones (jones@FB0).
 --John

will include the subject of the message in the reply.

No message is sent if the To: or the Cc: line does not list the user to whom the original message was sent or one of a number of aliases for them, if the initial From line includes the string –REQUEST%, or if a Precedence: bulk or Precedence: junk line is included in the header.
vacation(1)

vacation will also not respond to mail from either postmaster or Mailer-Daemon.

FILES
- ~/.forward
- ~/.vacation.msg

A list of senders is kept in the dbm format files .vacation.pag and .vacation.dir in your home directory. These files are dbm files and cannot be viewed directly with text editors.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

vi(1), sendmail(1M), dbm(3UCB), getusershell(3C), aliases(4), shells(4), attributes(5)
vc(1)

NAME
vc – version control

SYNOPSIS
vc [-a] [-t] [-c char] [-s] [keyword=value... keyword=value]

DESCRIPTION
This command is obsolete and will be removed in the next release.

The vc command copies lines from the standard input to the standard output under
control of its arguments and of “control statements” encountered in the standard
input. In the process of performing the copy operation, user-declared keywords may be
replaced by their string value when they appear in plain text and/or control
statements.

The copying of lines from the standard input to the standard output is conditional,
based on tests (in control statements) of keyword values specified in control
statements or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c keyletter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to the
standard output with the backslash removed. Lines beginning with a backslash
followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed; a numeric value is an unsigned
string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter (see
below) forces replacement of keywords in all lines of text. An uninterpreted control
character may be included in a value by preceding it with \. If a literal \ is desired,
then it too must be preceded by \.

OPTIONS
The following options are supported:

-a Forces replacement of keywords surrounded by control characters with
their assigned value in all text lines and not just in vc statements.

-t All characters from the beginning of a line up to and including the first tab
character are ignored for the purpose of detecting a control statement. If a
control statement is found, all characters up to and including the tab are
discarded.

-c char Specifies a control character to be used in place of the “:” default.

-s Silences warning messages (not error) that are normally printed on the
diagnostic output.

vc recognizes the following version control statements:

:dcl keyword[, ..., keyword] Declare keywords. All keywords must be
declared.
Assign values to keywords. An `asg` statement overrides the assignment for the corresponding keyword on the `vc` command line and all previous `asg` statements for that keyword. Keywords that are declared but are not assigned values have null values.

Skip lines of the standard input. If the condition is true, all lines between the `if` statement and the matching `end` statement are copied to the standard output. If the condition is false, all intervening lines are discarded, including control statements.

Note: Intervening `if` statements and matching `end` statements are recognized solely for the purpose of maintaining the proper `if-end` matching.

The syntax of a condition is:

```plaintext
<cond> ::= [ "not" ] <or>
<or> ::= <and> | <and> "|" <or>
<and> ::= <exp> | <exp> "&" <and>
<exp> ::= "(" <or> ")" | <value> <op> <value>
<op> ::= "=" | "!=" | "<" | ">
=value> ::= <arbitrary ASCII string> | <numeric string>
```

The available operators and their meanings are:

- `=` equal
- `!` not equal
- `&` and
- `|` or
- `>` greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when present, inverts the value of the entire condition

The > and < operate only on unsigned integer values (for example, :012 > 12 is false). All other operators take strings as arguments (for example, :012 != 12 is true).

The precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
|

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one blank or tab.

::text
Replace keywords on lines that are copied to the standard output. The two leading control characters are removed, and keywords surrounded by control characters in text are replaced by their value before the line is copied to the output file. This action is independent of the -a keyletter.

:on
:off
:ctl char
:msg message
:err message

Turn on or off keyword replacement on all lines.

Change the control character to char.

Print message on the diagnostic output.

Print message followed by:

ERROR: err statement on line ...

(915)
vc(1)

on the diagnostic output. vc halts execution, and returns an exit code of 1.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
</tbody>
</table>

SEE ALSO ed(1), attributes(5)
vgrind(1)

NAME
vgrind – grind nice program listings

SYNOPSIS
 [-o pagelist] [-P printer] [-T output-device] filename...

DESCRIPTION
The vgrind utility formats the program sources named by the filename arguments in a
nice style using troff(1). Comments are placed in italics, keywords in bold face, and
as each function is encountered its name is listed on the page margin.

vgrind runs in two basic modes, filter mode or regular mode. In filter mode, vgrind
acts as a filter in a manner similar to tbl(1). The standard input is passed directly to
the standard output except for lines bracketed by the troff-like macros:

 .vs starts processing
 .ve ends processing

These lines are formatted as described above. The output from this filter can be passed
to troff for output. There need be no particular ordering with eqn(1) or tbl(1).

In regular mode, vgrind accepts input filenames, processes them, and passes them to
troff for output. Use a hyphen ('-') to specify standard input; otherwise, vgrind
will exit without attempting to read from the standard input. Filenames must be
specified after all other option arguments.

In regular mode, if the -t or -P option is specified, the output is:

- emitted (in troff format) to stdout if the -t option is specified.
- printed (as PostScript) to the named printer if the -P option is specified.

Otherwise, the output is:

- printed (as PostScript) on the system default printer, if one is defined, and the
 command’s stdout is a tty.
- emitted (as PostScript) to stdout if it is not a tty (that is, if stdout is a pipe or a
 redirect to a file).

In both modes, vgrind passes any lines beginning with a decimal point without
conversion.

OPTIONS
The following options are supported:

-2
 Produces two-column output. Specifying this option changes the
default point size to 8 (as if the -s 8 option were supplied). It also
arranges for output to appear in landscape mode.

-f
 Forces filter mode.

-n
 Does not make keywords boldface.

-w
 Considers TAB characters to be spaced four columns apart instead of the usual eight.
vgrind(1)

-\(x\)
Outputs the index file in a “pretty” format. The index file itself is produced whenever vgrind is run with a file called index that is present in the current directory. The index of function definitions can then be run off by giving vgrind the -\(x\) option and the file index as argument.

-\(d\) defs-file
Specifies an alternate language definitions file (default is /usr/lib/vgrindefs).

-\(h\) header
Specifies a header to appear in the center of every output page. Use quotes to specify headers with embedded spaces.

-\(l\) language
Specifies the language to use. Among the languages currently known are: Bourne shell (\(-lsh\), C (\(-lc\), the default), C++ (\(-lc++\), C shell (\(-lcs\), emacs MLisp (\(-lml\), FORTRAN (\(-lf\), Icon (\(-lI\), ISP (\(-i\), LDL (\(-lLDL\), Model (\(-lm\), Pascal (\(-lp\), and RATFOR (\(-lr\).

-\(p\) printer
Sends output to the named printer.

-\(s\) n
Specifies a point size to use on output (exactly the same as the argument of a troff-ps point size request).

vgrind passes the following options to the formatter specified by the TROFF environment variable. See ENVIRONMENT VARIABLES.

-\(t\)
Similar to the same option in troff; that is, formatted text goes to the standard output.

-\(o\) pagelist
Prints only those pages whose page numbers appear in the comma-separated pagelist of numbers and ranges. A range N–M means pages N through M; an initial -N means from the beginning to page N; and a final N– means from N to the end.

-\(T\) output-device
Formats output for the specified output-device.

OPERANDS
The following operand is supported:

filename
Name of the program source to be processed by vgrind. Use ‘-’ to specify the standard input.

ENVIRONMENT
VARIABLES
In regular mode, vgrind feeds its intermediate output to the text formatter given by the value of the TROFF environment variable, or to /usr/bin/troff if this variable is not defined in the environment. This mechanism allows for local variations in troff’s name.

FILES
index
file where source for index is created

/\usr/\lib/vgrindefs
language descriptions
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
</tbody>
</table>

SEE ALSO

csh(1), ctags(1), eqn(1), tbl(1), troff(1), attributes(5), vgrinddefs(5)

BUGS

vgrind assumes that a certain programming style is followed:

- **C**
 - Function names can be preceded on a line only by SPACE, TAB, or an asterisk (*). The parenthesized arguments must also be on the same line.

- **FORTRAN**
 - Function names need to appear on the same line as the keywords function or subroutine.

- **MLisp**
 - Function names should not appear on the same line as the preceding defun.

- **Model**
 - Function names need to appear on the same line as the keywords is beginproc.

- **Pascal**
 - Function names need to appear on the same line as the keywords function or procedure.

If these conventions are not followed, the indexing and marginal function name comment mechanisms will fail.

More generally, arbitrary formatting styles for programs usually give unsightly results. To prepare a program for vgrind output, use TAB rather than SPACE characters to align source code properly, since vgrind uses variable width fonts.

The mechanism of ctags(1) in recognizing functions should be used here.

The -w option is annoying, but there is no other way to achieve the desired effect.

The macros defined in tmac/vgrind do not coexist gracefully with those of other macro packages, making filter mode difficult to use effectively.

vgrind does not process certain special characters in csh(1) scripts correctly.
The `tmac.vgrind` formatting macros wire in the page height and width used in two-column mode, effectively making two column output useless for paper sizes other than the standard American size of 8.5 inches by 11 inches. For other paper sizes, it is necessary to edit the size values given in `tmac.vgrind`. A better solution would be to create a `troff` output device specification intended specifically for landscape output and record size information there.
vi(1)

NAME
vi, view, vedit – screen-oriented (visual) display editor based on ex

SYNOPSIS
/usr/bin/vi [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
 [-v] [-V] [-x] [-wn] [-c] [+command | -c command] filename...

/usr/bin/view [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
 [-v] [-V] [-x] [-wn] [-c] [+command | -c command] filename...

/usr/bin/vedit [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
 [-v] [-V] [-x] [-wn] [-c] [+command | -c command] filename...

/usr/xpg4/bin/vi [-| -s] [-l] [-L] [-R] [-r [filename]] [-S]
 [-t tag] [-v] [-V] [-x] [-wn] [-c] [+command | -c command]
 filename...

/usr/xpg4/bin/view [-| -s] [-l] [-L] [-R] [-r [filename]] [-S]
 [-t tag] [-v] [-V] [-x] [-wn] [-c] [+command | -c command]
 filename...

/usr/xpg4/bin/vedit [-| -s] [-l] [-L] [-R] [-r [filename]] [-S]
 [-t tag] [-v] [-V] [-x] [-wn] [-c] [+command | -c command]
 filename...

DESCRIPTION
The vi (visual) utility is a display-oriented text editor based on an underlying line
editor ex. It is possible to use the command mode of ex from within vi and to use the
command mode of vi from within ex. The visual commands are described on this
manual page; how to set options (like automatically numbering lines and
automatically starting a new output line when you type carriage return) and all ex
line editor commands are described on the ex(1) manual page.

When using vi, changes you make to the file are reflected in what you see on your
terminal screen. The position of the cursor on the screen indicates the position within
the file.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that the
report flag is set to 1, the showmode and novice flags are set, and magic is turned
off. These defaults make it easier to learn how to use vi.

OPTIONS
The following options are supported:

Invocation Options
The following invocation options are interpreted by vi (previously documented
options are discussed under NOTES):

- l -s
 Suppresses all interactive user feedback. This is useful
 when processing editor scripts.

- C
 Encryption option. Same as the -x option, except that
 vi simulates the C command of ex. The C command is
 like the X command of ex, except that all text read in is
 assumed to have been encrypted.

User Commands 1689
Sets up for editing LISP programs.

Lists the name of all files saved as the result of an editor or system crash.

Edits filename after an editor or system crash. (Recovers the version of filename that was in the buffer when the crash occurred.)

 Readonly mode. The readonly flag is set, preventing accidental overwriting of the file.

This option is used in conjunction with the -t tag option to tell vi that the tags file may not be sorted and that, if the binary search (which relies on a sorted tags file) for tag fails to find it, the much slower linear search should also be done. Since the linear search is slow, users of large tags files should ensure that the tags files are sorted rather than use this flag. Creation of tags files normally produces sorted tags files. See ctags(1) for more information on tags files.

Edits the file containing tag and position the editor at its definition.

Starts up in display editing state, using vi. You can achieve the same effect by typing the vi command itself.

Verbose. When ex commands are read by means of standard input, the input will be echoed to standard error. This may be useful when processing ex commands within shell scripts.

Sets the default window size to n. This is useful when using the editor over a slow speed line.

Encryption option. When used, vi simulates the X command of ex and prompts the user for a key. This key is used to encrypt and decrypt text using the algorithm of the crypt command. The X command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the -x option. If an empty encryption key is entered (that is, if the return key is pressed right after the prompt), the file will not be encrypted. This is a good way to decrypt a file erroneously encrypted with a mistyped encryption key, such as a backspace or undo key.
command
\-c command

Begins editing by executing the specified editor
command (usually a search or positioning command).

If both the \-t tag and the \-c command options are given, the \-t tag option will
be processed first. That is, the file containing tag is selected by \-t and then the
command is executed.

OPERANDS

The following operands are supported:

filename

A file to be edited.

COMMAND SUMMARY

vi Modes

Command Normal and initial mode. Other modes return to command mode
upon completion. ESC (escape) is used to cancel a partial
command.

Input Entered by setting any of the following options:

a A i I o O c C s S R

Arbitrary text may then be entered. Input mode is normally
terminated with the ESC character, or, abnormally, with an
interrupt.

Last line Reading input for : / ? or !. Terminate by typing a carriage
return. An interrupt cancels termination.

Sample commands In the descriptions, CR stands for carriage return and ESC stands for the escape key.

←, →
down-arrow
up-arrow
h j k l
i textESC
cnewESC
eaESC
x
dw
dd
3dd
u
ZZ
:q!CR

arrow keys move the cursor
same as arrow keys
insert text
change word to new
pluralize word (end of word; append s; escape from input state)
delete a character
delete a word
delete a line
delete 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
vi(1)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/textCR</td>
<td>search for text</td>
</tr>
<tr>
<td>^U ^D</td>
<td>scroll up or down</td>
</tr>
<tr>
<td>:cmdCR</td>
<td>any ex or ed command</td>
</tr>
</tbody>
</table>

Counts before vi commands

Numbers may be typed as a prefix to some commands. They are interpreted in one of these ways:

- **line/column number**
 - z G l

- **scroll amount**
 - ^D ^U

- **repeat effect**
 - most of the rest

Interrupting, canceling

- **ESC**
 - end insert or incomplete command

- **DEL**
 - (delete or rubout) interrupts

File manipulation

- **ZZ**
 - if file modified, write and exit; otherwise, exit

- **:w**
 - write back changes

- **:w!**
 - forced write, if permission originally not valid

- **:q**
 - quit

- **:q!**
 - quit, discard changes

- **:e name**
 - edit file name

- **:e!**
 - reedit, discard changes

- **:e + name**
 - edit, starting at end

- **:e +n**
 - edit, starting at line n

- **:e #**
 - edit alternate file

- **:e! #**
 - edit alternate file, discard changes

- **:w name**
 - write file name

- **:w! name**
 - overwrite file name

- **:sh**
 - run shell, then return

- **:!cmd**
 - run cmd, then return

- **:n**
 - edit next file in arglist

- **:n args**
 - specify new arglist

- **^G**
 - show current file and line

- **:ta tag**
 - position cursor to tag

In general, any ex or ed command (such as substitute or global) may be typed, preceded by a colon and followed by a carriage return.
Positioning within file

<table>
<thead>
<tr>
<th>Key</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>forward screen</td>
</tr>
<tr>
<td>^B</td>
<td>backward screen</td>
</tr>
<tr>
<td>^D</td>
<td>scroll down half screen</td>
</tr>
<tr>
<td>^U</td>
<td>scroll up half screen</td>
</tr>
<tr>
<td>nG</td>
<td>go to the beginning of the specified line (end default), where n is a line number</td>
</tr>
<tr>
<td>/pat</td>
<td>next line matching pat</td>
</tr>
<tr>
<td>?pat</td>
<td>previous line matching pat</td>
</tr>
<tr>
<td>n</td>
<td>repeat last / or ? command</td>
</tr>
<tr>
<td>N</td>
<td>reverse last / or ? command</td>
</tr>
<tr>
<td>/pat/+n</td>
<td>nth line after pat</td>
</tr>
<tr>
<td>?pat−n</td>
<td>nth line before pat</td>
</tr>
<tr>
<td>]]</td>
<td>next section/function</td>
</tr>
<tr>
<td>]]</td>
<td>previous section/function</td>
</tr>
<tr>
<td>)</td>
<td>beginning of sentence</td>
</tr>
<tr>
<td>)</td>
<td>end of sentence</td>
</tr>
<tr>
<td>{</td>
<td>beginning of paragraph</td>
</tr>
<tr>
<td>}</td>
<td>end of paragraph</td>
</tr>
<tr>
<td>%</td>
<td>find matching () or { }</td>
</tr>
</tbody>
</table>

Adjusting the screen

<table>
<thead>
<tr>
<th>Key</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>^L</td>
<td>clear and redraw window</td>
</tr>
<tr>
<td>^R</td>
<td>clear and redraw window if ^L is → key</td>
</tr>
<tr>
<td>zCR</td>
<td>redraw screen with current line at top of window</td>
</tr>
<tr>
<td>z−CR</td>
<td>redraw screen with current line at bottom of window</td>
</tr>
<tr>
<td>z.CR</td>
<td>redraw screen with current line at center of window</td>
</tr>
<tr>
<td>/pat/z−CR</td>
<td>move pat line to bottom of window</td>
</tr>
<tr>
<td>zn.CR</td>
<td>use n−line window</td>
</tr>
<tr>
<td>^E</td>
<td>scroll window down one line</td>
</tr>
<tr>
<td>^Y</td>
<td>scroll window up one line</td>
</tr>
<tr>
<td>`</td>
<td>move cursor to previous context</td>
</tr>
<tr>
<td>`</td>
<td>move cursor to first non-white space in line</td>
</tr>
<tr>
<td>mx</td>
<td>mark current position with the ASCII lower-case letter x</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>\x</td>
<td>move cursor to mark x</td>
</tr>
<tr>
<td>\x</td>
<td>move cursor to first non-white space in line marked by x</td>
</tr>
<tr>
<td>H</td>
<td>top line on screen</td>
</tr>
<tr>
<td>L</td>
<td>last line on screen</td>
</tr>
<tr>
<td>M</td>
<td>middle line on screen</td>
</tr>
<tr>
<td>+</td>
<td>next line, at first non-white space character</td>
</tr>
<tr>
<td>-</td>
<td>previous line, at first non-white space character</td>
</tr>
<tr>
<td>CR</td>
<td>return, same as +</td>
</tr>
<tr>
<td>down-arrow or j</td>
<td>next line, same column</td>
</tr>
<tr>
<td>up-arrow or k</td>
<td>previous line, same column</td>
</tr>
<tr>
<td>^</td>
<td>first non-white space character</td>
</tr>
<tr>
<td>0</td>
<td>beginning of line</td>
</tr>
<tr>
<td>$</td>
<td>end of line</td>
</tr>
<tr>
<td>\ or →</td>
<td>forward</td>
</tr>
<tr>
<td>h or ←</td>
<td>backward</td>
</tr>
<tr>
<td>^H</td>
<td>same as ← (backspace)</td>
</tr>
<tr>
<td>space</td>
<td>same as → (space bar)</td>
</tr>
<tr>
<td>fx</td>
<td>find next x</td>
</tr>
<tr>
<td>Fx</td>
<td>find previous x</td>
</tr>
<tr>
<td>tx</td>
<td>move to character following the next x</td>
</tr>
<tr>
<td>Tx</td>
<td>move to character following the previous x</td>
</tr>
<tr>
<td>;</td>
<td>repeat last f, F, t, or T</td>
</tr>
<tr>
<td>,</td>
<td>repeat inverse of last f, F, t, or T</td>
</tr>
<tr>
<td>n</td>
<td>move to column n</td>
</tr>
<tr>
<td>%</td>
<td>find matching () or { }</td>
</tr>
<tr>
<td>w</td>
<td>forward a word</td>
</tr>
<tr>
<td>b</td>
<td>back a word</td>
</tr>
<tr>
<td>e</td>
<td>end of word</td>
</tr>
<tr>
<td>)</td>
<td>to next sentence</td>
</tr>
<tr>
<td></td>
<td>to next paragraph</td>
</tr>
<tr>
<td>Key</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>{</td>
<td>back a sentence</td>
</tr>
<tr>
<td></td>
<td>back a paragraph</td>
</tr>
<tr>
<td>W</td>
<td>forward a blank-delimited word</td>
</tr>
<tr>
<td>B</td>
<td>back a blank-delimited word</td>
</tr>
<tr>
<td>E</td>
<td>end of a blank-delimited word</td>
</tr>
<tr>
<td>^H</td>
<td>erase last character (backspace)</td>
</tr>
<tr>
<td>^W</td>
<td>erase last word</td>
</tr>
<tr>
<td>\</td>
<td>quotes your erase and kill characters</td>
</tr>
<tr>
<td>ESC</td>
<td>ends insertion, back to command mode</td>
</tr>
<tr>
<td>^D</td>
<td>backtab one character; reset left margin of autoindent</td>
</tr>
<tr>
<td>^^D</td>
<td>caret (^) followed by control-d (^D); do not reset left margin of autoindent</td>
</tr>
<tr>
<td>0^D</td>
<td>backtab to beginning of line; reset left margin of autoindent</td>
</tr>
<tr>
<td>^V</td>
<td>quote non-printable character</td>
</tr>
<tr>
<td>a</td>
<td>append after cursor</td>
</tr>
<tr>
<td>A</td>
<td>append at end of line</td>
</tr>
<tr>
<td>i</td>
<td>insert before cursor</td>
</tr>
<tr>
<td>I</td>
<td>insert before first non-blank</td>
</tr>
<tr>
<td>o</td>
<td>open line below</td>
</tr>
<tr>
<td>O</td>
<td>open line above</td>
</tr>
<tr>
<td>rx</td>
<td>replace single character with x</td>
</tr>
<tr>
<td>R1xESC</td>
<td>replace characters</td>
</tr>
</tbody>
</table>

Operators

Operators are followed by a cursor motion and affect all text that would have been moved over. For example, since w moves over a word, dw deletes the word that would be moved over. Double the operator, for example dd, to affect whole lines.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>delete</td>
</tr>
<tr>
<td>c</td>
<td>change</td>
</tr>
<tr>
<td>y</td>
<td>yank lines to buffer</td>
</tr>
<tr>
<td><</td>
<td>left shift</td>
</tr>
</tbody>
</table>
Miscellaneous Operations

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>></code></td>
<td>right shift</td>
</tr>
<tr>
<td><code>!</code></td>
<td>filter through command</td>
</tr>
<tr>
<td><code>C</code></td>
<td>change rest of line (c$)</td>
</tr>
<tr>
<td><code>D</code></td>
<td>delete rest of line (d$)</td>
</tr>
<tr>
<td><code>s</code></td>
<td>substitute characters (s1)</td>
</tr>
<tr>
<td><code>S</code></td>
<td>substitute lines (sC)</td>
</tr>
<tr>
<td><code>J</code></td>
<td>join lines</td>
</tr>
<tr>
<td><code>x</code></td>
<td>delete characters (d1)</td>
</tr>
<tr>
<td><code>X</code></td>
<td>delete characters before cursor (dH)</td>
</tr>
<tr>
<td><code>Y</code></td>
<td>yank lines (yy)</td>
</tr>
</tbody>
</table>

Yank and Put
Put inserts the text most recently deleted or yanked; however, if a buffer is named (using the ASCII lower-case letters a - z), the text in that buffer is put instead.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3yy</td>
<td>yank 3 lines</td>
</tr>
<tr>
<td>3yl</td>
<td>yank 3 characters</td>
</tr>
<tr>
<td><code>p</code></td>
<td>put back text after cursor</td>
</tr>
<tr>
<td><code>P</code></td>
<td>put back text before cursor</td>
</tr>
<tr>
<td>"xp"</td>
<td>put from buffer x</td>
</tr>
<tr>
<td>"xy"</td>
<td>yank to buffer x</td>
</tr>
<tr>
<td>"xd"</td>
<td>delete into buffer x</td>
</tr>
</tbody>
</table>

Undo, Redo, Retrieve

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>u</code></td>
<td>undo last change</td>
</tr>
<tr>
<td><code>U</code></td>
<td>restore current line</td>
</tr>
<tr>
<td>.</td>
<td>repeat last change</td>
</tr>
<tr>
<td>"dp"</td>
<td>retrieve d’t last delete</td>
</tr>
</tbody>
</table>

USAGE
See `largefile(5)` for the description of the behavior of `vi` and `view` when encountering files greater than or equal to 2 Gbyte (2³¹ bytes).

ENVIRONMENT VARIABLES
See `environ(5)` for descriptions of the following environment variables that affect the execution of `vi`: `LANG`, `LC_ALL`, `LC_COLLATE`, `LC_CTYPE`, `LC_TIME`, `LC_MESSAGES`, `NLSPATH`, `PATH`, `SHELL`, and `TERM`.

- **COLUMNS**: Override the system-selected horizontal screen size.
- **EXINIT**: Determine a list of ex commands that are executed on editor start-up, before reading the first file. The list can contain multiple commands by separating them using a vertical-line (|) character.
LINES

Override the system-selected vertical screen size, used as the number of lines in a screenful and the vertical screen size in visual mode.

FILES

/var/tmp
default directory where temporary work files are placed; it can be changed using the directory option (see the ex(1) command)

/usr/share/lib/terminfo/*/ compiled terminal description database

/usr/lib/.COREterm/*/ subset of compiled terminal description database

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

ATTRIBUTES

arez

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>Not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcu4</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

intro(1), ctags(1), ed(1), edit(1), ex(1), attributes(5), environ(5), largefile(5), standards(5)

Solaris Advanced User’s Guide

vi and ex were developed by The University of California, Berkeley California, Computer Science Division, Department of Electrical Engineering and Computer Science.

NOTES

Two options, although they continue to be supported, have been replaced in the documentation by options that follow the Command Syntax Standard (see intro(1)). An -r option that is not followed with an option-argument has been replaced by -L and +command has been replaced by -c command.

The message file too large to recover with -r option, which is seen when a file is loaded, indicates that the file can be edited and saved successfully, but if the editing session is lost, recovery of the file with the -r option will not be possible.
The editing environment defaults to certain configuration options. When an editing session is initiated, vi attempts to read the EXINIT environment variable. If it exists, the editor uses the values defined in EXINIT; otherwise the values set in $HOME/.exrc are used. If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc option in EXINIT or $HOME/.exrc. Options set in EXINIT can be turned off in a local .exrc only if exrc is set in EXINIT or $HOME/.exrc.

Tampering with entries in /usr/share/lib/terminfo/?/* or /usr/share/lib/terminfo/* (for example, changing or removing an entry) can affect programs such as vi that expect the entry to be present and correct. In particular, removing the "dumb" terminal may cause unexpected problems.

Software tabs using ^T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete character operations in the terminal.

The standard Solaris version of vi will be replaced by the POSIX.2-conforming version (see standards(5)) in the future. Scripts which use the ex family of addressing and features should use the /usr/xpg4/bin version of these utilities.
NAME | vipw – edit the password file
SYNOPSIS | /usr/ucb/vipw
DESCRIPTION | vipw edits the password file while setting the appropriate locks, and does any necessary processing after the password file is unlocked. If the password file is already being edited, then you will be told to try again later. The vi(1) editor will be used unless the environment variable VISUAL or EDITOR indicates an alternate editor.

vipw performs a number of consistency checks on the password entry for root, and will not allow a password file with a “mangled” root entry to be installed. It also checks the /etc/shells file to verify the login shell for root.

FILES | /etc/ptmp
| /etc/shells

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO | passwd(1), vi(1), passwd(4), attributes(5)
volcancel(1)

NAME
volcancel – cancel user’s request for removable media that is not currently in drive

SYNOPSIS
/usr/lib/vold/volcancel [-n] [volume]

DESCRIPTION
volcancel cancels a user’s request to access a particular floppy or CD-ROM file system. This command is useful when the removable media containing the file system is not currently in the drive.

Use the path /vol/rdsk/name_of_volume to specify the volume. If called without a volume name to cancel, volcancel checks for Volume Management running.

OPTIONS
- n Display the nickname to the device name translation table.

EXAMPLES
EXAMPLE 1 A sample of the volcancel command.

To cancel a request to access an unnamed CD-ROM, use

example$ /usr/lib/vold/volcancel vol/rdsk/unnamed_cdrom

To check if volume management is running, use:

example$ /usr/lib/vold/volcancel || echo volmgmt not running

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

SEE ALSO
rmmount(1M), volcheck(1), vold(1M), volmissing(1), rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)
volcheck(1)

NAME
volcheck – checks for media in a drive and by default checks all floppy media

SYNOPSIS
volcheck [-v] [-i secs] [-t secs] pathname

DESCRIPTION
The volcheck utility tells Volume Management to look at each dev/pathname in sequence and determine if new media has been inserted in the drive.

The default action is to volcheck all checkable media managed by volume management.

OPTIONS
The following options are supported:
-i secs Set the frequency of device checking to secs seconds. The default is 2 seconds. The minimum frequency is 1 second.
-t secs Check the named device(s) for the next secs seconds. The maximum number of seconds allowed is 28800, which is 8 hours. The frequency of checking is specified by -i. There is no default total time.
-v Verbose.

OPERANDS
The following operands are supported:
pathname The path name of a media device.

EXAMPLES
EXAMPLE 1 A sample of the volcheck command.
The following example

```
example% volcheck -v /dev/diskette
/dev/diskette has media
```

asks Volume Management to examine the floppy drive for new media.
The following example

```
example% volcheck -i 2 -t 600 /dev/diskette 1 &
```

asks Volume Management if there is a floppy in the floppy drive every 2 seconds for 600 seconds (10 minutes).

FILES
/dev/volctl Volume Management control port

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

SEE ALSO eject(1), volcancel(1), volmissing(1), rmmount(1M), vold(1M), rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)
Due to a hardware limitation in many floppy drives, the act of checking for media causes mechanical action in the floppy drive. Continuous polling of the floppy drive will cause the drive to wear out. It is recommended that polling the drive only be performed during periods of high use.
NAME
volmissing – notify user that volume requested is not in the CD-ROM or floppy drive

SYNOPSIS
/usr/lib/vold/volmissing [-c] [-p] [-s] [-m alias]

DESCRIPTION
volmissing informs a user when a requested volume is not available. Depending on
the option selected, users are notified through their console window, syslogd(1M), or
a mail message.

volmissing -p is the default action taken by vold(1M), the Volume Management
daemon, when it needs to notify a user that the requested volume is not available. If
you want to change this default event, modify the /etc/vold.conf file. See
vold.conf(4).

You can change the notification method for your system by editing the vold.conf
configuration file and providing a new option for volmissing in the notify entry
under the Events category.

OPTIONS
- c Send a message to the user’s console requesting the volume be
inserted. To end the notification without inserting the requested
volume, use volcancel(1).
- p All volmissing events will be handled through a GUI, provided
a window system is running on the console. If this option is
specified, and no window system is running, all messages go to
the system console.
- s Send one message to the syslogd(1M).
- m alias Send a mail message to the specified mail alias about the missing
volume.

FILES
/etc/vold.conf
Volume Management daemon configuration file. Directs the Volume Management
daemon to control certain devices, and causes action to be taken when specific
criteria is met.

/usr/lib/vold/volmissing_popup
Pop-up used when the -p option is supplied and a window system is running.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

SEE ALSO
volcancel(1), volcheck(1), rmmount(1M), syslogd(1M), vold(1M),
rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)
volrmmount(1)

NAME
volrmmount – call rmmount to mount or unmount media

SYNOPSIS
volrmmount [-i | -e] [name | nickname]
volrmmount [-d]

DESCRIPTION
The volrmmount utility calls rmmount(1M) to, in effect, simulate an insertion (-i) or an ejection (-e). Simulating an insertion often means that rmmount will mount the media. Conversely, simulating an ejection often means that rmmount will unmount the media. However, these actions can vary depending on the rmmount configuration and media type (see rmmount.conf(4)).

For example, if you use the default /etc/rmmount.conf and insert a music CD, it will not be mounted. However, you can configure rmmount so that it calls workman whenever a music CD is inserted.

This command allows you to override Volume Management's usual handling of media (see EXAMPLES below).

OPTIONS
The following options are supported:
- i Simulates an insertion of the specified media by calling rmmount.
- e Simulates an ejection of the specified media by calling rmmount.
- d Displays the name of the default device for volrmmount to handle. This device is used if no name or nickname is supplied.

OPERANDS
The following operands are supported:
name

The name that Volume Management recognizes as the device’s name. See volfs(7FS).

nickname

A shortened version of the device’s name. Following is the list of recognized nicknames:

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>fd0</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>fd1</td>
<td>/dev/rdiskette1</td>
</tr>
<tr>
<td>diskette</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>diskette0</td>
<td>/dev/rdiskette0</td>
</tr>
<tr>
<td>diskette1</td>
<td>/dev/rdiskette1</td>
</tr>
<tr>
<td>rdiskette</td>
<td>/dev/rdiskette</td>
</tr>
<tr>
<td>rdiskette0</td>
<td>/dev/rdiskette0</td>
</tr>
</tbody>
</table>
EXAMPLE 1 Using the volrmmount command

When Volume Management finds a floppy that contains a filesystem, it calls rmmount to mount it. If you wish to run tar(1) or cpio(1) on that floppy, it must first be unmounted. To unmount the floppy use:

```
eexample$ volrmmount -e floppy0
```

After volrmmount unmounts the floppy, if you wish to re-mount it (rather than ejecting it and reinserting it) use:

```
eexample$ volrmmount -i floppy0
```

Notice that if you are using a named floppy, you can use its name in place of floppy0.

FILES
/dev/volctl
Volume Management control port

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWvolu</td>
</tr>
</tbody>
</table>

SEE ALSO

cpio(1), eject(1), tar(1), rmmount(1M), vold(1M), rmmount.conf(4), attributes(5), volfs(7FS)

NOTES
Volume Management (vold) must be running to use this command.
vsig(1F)

NAME vsig – synchronize a co-process with the controlling FMLI application
SYNOPSIS vsig

DESCRIPTION The vsig executable sends a SIGUSR2 signal to the controlling FMLI process. This
signal/alarm causes FMLI to execute the FMLI built-in command checkworld which
causes all posted objects with a reread descriptor evaluating to TRUE to be reread.
vsig takes no arguments.

EXAMPLES EXAMPLE 1 A sample output of vsig command.
The following is a segment of a shell program:
 echo "Sending this string to an FMLI process"
 vsig

The vsig executable will flush the output buffer before it sends the SIGUSR2 signal to
make sure the string is actually in the pipe created by the cocreate function.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>

SEE ALSO coproc(1F), kill(1), kill(2), signal(3C), attributes(5)

NOTES Because vsig synchronize with FMLI, it should be used rather than kill to send a
SIGUSR2 signal to FMLI.
NAME
w – display information about currently logged-in users

SYNOPSIS
w [-hlsuw] [user]

DESCRIPTION
The w command displays a summary of the current activity on the system, including what each user is doing. The heading line shows the current time, the length of time the system has been up, the number of users logged into the system, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes.

The fields displayed are: the user’s login name, the name of the tty the user is on, the time of day the user logged on (in hours:minutes), the idle time—that is, the number of minutes since the user last typed anything (in hours:minutes), the CPU time used by all processes and their children on that terminal (in minutes:seconds), the CPU time used by the currently active processes (in minutes:seconds), and the name and arguments of the current process.

OPTIONS
The following options are supported:

- h Suppresses the heading.
- l Produces a long form of output, which is the default.
- s Produces a short form of output. In the short form, the tty is abbreviated, the login time and CPU times are left off, as are the arguments to commands.
- u Produces the heading line which shows the current time, the length of time the system has been up, the number of users logged into the system, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes.
- w Produces a long form of output, which is also the same as the default.

OPERANDS
user
Name of a particular user for whom login information is displayed. If specified, output is restricted to that user.

EXAMPLES
EXAMPLE 1 Sample Output From the w Command

```
example% w
10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
User  tty login@   idle    JCPU  PCPU  what
ralph console 7:10am 1 10:05 4:31 w
```

```
example% w
10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
User  tty login@   idle    JCPU  PCPU  what
ralph console 7:10am 1 10:05 4:31 w
```

ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of w: LC_CTYPE, LC_MESSAGES, and LC_TIME.

FILES
/var/adm/utmpx user and accounting information
w(1)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

ps(1), who(1), whoami(1M), utmpx(4), attributes(5), environ(5)

NOTES

The notion of the “current process” is unclear. The current algorithm is ‘the highest numbered process on the terminal that is not ignoring interrupts, or, if there is none, the highest numbered process on the terminal’. This fails, for example, in critical sections of programs like the shell and editor, or when faulty programs running in the background fork and fail to ignore interrupts. In cases where no process can be found, w prints –.

The CPU time is only an estimate, in particular, if someone leaves a background process running after logging out, the person currently on that terminal is “charged” with the time.

Background processes are not shown, even though they account for much of the load on the system.

Sometimes processes, typically those in the background, are printed with null or garbled arguments. In these cases, the name of the command is printed in parentheses.

w does not know about the conventions for detecting background jobs. It will sometimes find a background job instead of the right one.
NAME
wait – await process completion

SYNOPSIS

```
/bin/sh  wait [pid...]
/bin/jsh /bin/ksh
/usr/xpg4/bin/sh  wait [ % jobid...]
/bin/csh  wait
```

DESCRIPTION
The shell itself executes `wait`, without creating a new process. If you get the error message `cannot fork, too many processes`, try using the `wait` command to clean up your background processes. If this doesn’t help, the system process table is probably full or you have too many active foreground processes. There is a limit to the number of process IDs associated with your login, and to the number the system can keep track of.

Not all the processes of a pipeline with three or more stages are children of the shell, and thus cannot be waited for.

```
/bin/sh, /bin/jsh  Wait for your background process whose process ID is `pid` and report its termination status. If `pid` is omitted, all your shell’s currently active background processes are waited for and the return code will be 0. The `wait` utility accepts a job identifier, when Job Control is enabled (jsh), and the argument, `jobid`, is preceded by a percent sign (%).
```

If `pid` is not an active process ID, the `wait` utility will return immediately and the return code will be 0.

```
csh  Wait for your background processes.
```

```
ksh  When an asynchronous list is started by the shell, the process ID of the last command in each element of the asynchronous list becomes known in the current shell execution environment.
```

If the `wait` utility is invoked with no operands, it will wait until all process IDs known to the invoking shell have terminated and exit with an exit status of 0.

If one or more `pid` or `jobid` operands are specified that represent known process IDs (or jobids), the `wait` utility will wait until all of them have terminated. If one or more `pid` or `jobid` operands are specified that represent unknown process IDs (or jobids), `wait` will treat them as if they were known process IDs (or jobids) that exited with exit status 127. The exit status returned by the `wait` utility will be the exit status of the process requested by the last `pid` or `jobid` operand.

The known process IDs are applicable only for invocations of `wait` in the current shell execution environment.

OPERANDS
The following operands are supported:

User Commands 1709
One of the following:

\textit{pid} The unsigned decimal integer process ID of a command, for which the
utility is to wait for the termination.

\textit{jobid} A job control job ID that identifies a background process group to be
waited for. The job control job ID notation is applicable only for invocations
of \texttt{wait} in the current shell execution environment, and only on systems
supporting the job control option.

\textbf{Usage} On most implementations, \texttt{wait} is a shell built-in. If it is called in a subshell or
separate utility execution environment, such as one of the following,

\begin{verbatim}
 (wait)
 nohup wait ...
 find . -exec wait ... \\
\end{verbatim}

it will return immediately because there will be no known process IDs to wait for in
those environments.

\textbf{Examples} \textbf{Example 1 Using A Script To Identify The Termination Signal}

Although the exact value used when a process is terminated by a signal is unspecified,
if it is known that a signal terminated a process, a script can still reliably figure out
which signal is using \texttt{kill}, as shown by the following (/bin/ksh and
/usr/xpg4/bin/sh):

\begin{verbatim}
sleep 1000&
pid=$!
kill -kill $pid
wait $pid
echo $pid was terminated by a \texttt{SIG$(kill -l $(($?−128))}$ signal.
\end{verbatim}

\textbf{Example 2 Returning The Exit Status Of A Process}

If the following sequence of commands is run in less than 31 seconds (/bin/ksh and
/usr/xpg4/bin/sh):

\begin{verbatim}
sleep 257 | sleep 31 &
jobs -l %
\end{verbatim}

then either of the following commands will return the exit status of the second \texttt{sleep}
in the pipeline:

\begin{verbatim}
wait <pid of sleep 31>
wait %
\end{verbatim}

\textbf{Environment Variables} See \texttt{environ(5)} for descriptions of the following environment variables that affect the
execution of \texttt{wait}: \texttt{LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH}.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), jobs(1), ksh(1), sh(1), attributes(5), environ(5), standards(5)
NAME wc – display a count of lines, words and characters in a file

SYNOPSIS wc [-c | -m | -C] [-lw] [file...]

DESCRIPTION The wc utility reads one or more input files and, by default, writes the number of newline characters, words and bytes contained in each input file to the standard output.

The utility also writes a total count for all named files, if more than one input file is specified.

wc considers a word to be a non-zero-length string of characters delimited by white space (for example, SPACE, TAB). See iswspace(3C) or isspace(3C).

OPTIONS The following options are supported:

- c Counts bytes.
- C Same as -m.
- l Counts lines.
- m Counts characters.
- w Counts words delimited by white space characters or new line characters. Delimiting characters are Extended Unix Code (EUC) characters from any code set defined by iswspace().

If no option is specified, the default is -lwc (counts lines, words, and bytes.)

OPERANDS The following operand is supported:

file A path name of an input file. If no file operands are specified, the standard input will be used.

USAGE See largefile(5) for the description of the behavior of wc when encountering files greater than or equal to 2 Gbyte (2^31 bytes).

ENVIRONMENT VARIABLES See environ(5) for descriptions of the following environment variables that affect the execution of wc: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
cksum(1), isspace(3C), iswalpha(3C), iswspace(3C), setlocale(3C), attributes(5), environ(5), largefile(5), standards(5)
what(1)

NAME | what – extract SCCS version information from a file
SYNOPSIS | what [-s] filename...
DESCRIPTION | The what utility searches each filename for occurrences of the pattern @(#) that the SCCS get command (see sccs-get(1)) substitutes for the %% ID keyword, and prints what follows up to a ,, >, NEWLINE, \, or NULL character.
OPTIONS | The following option is supported:
- s | Stops after the first occurrence of the pattern.
EXAMPLES | EXAMPLE 1 Extracting SCCS version information
If a C program in file program.c contains
char scssid[] = "@(#)identification information ";
and program.c is compiled to yield program.o and a.out, the command:
example% what program.c program.o a.out
produces:
program.c: identification information
program.o: identification information
a.out: identification information
EXIT STATUS | The following exit values are returned:
0 | Any matches were found.
1 | No matches found.
ENVIRONMENT VARIABLES | See environ(5) for descriptions of the following environment variables that affect the execution of what: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsprot</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Use the SCCS help command for explanations (see sccs-help(1)).

There is a remote possibility that a spurious occurrence of the ‘@(#)’ pattern could be found by what.
what is

NAME

what is – display a one-line summary about a keyword

SYNOPSIS

what is command...

DESCRIPTION

what is looks up a given command and displays the header line from the manual section. You can then run the man(1) command to get more information. If the line starts ‘name (section) …’ you can do ‘man -s section name’ to get the documentation for it. Try ‘what is ed’ and then you should do ‘man -s 1 ed’ to get the manual page for ed(1).

what is is actually just the -f option to the man(1) command.

what is uses the /usr/share/man/windex database. This database is created by catman(1M). If this database does not exist, what is will fail.

FILES

/usr/share/man/windex Table of contents and keyword database

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWdoc</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
</tbody>
</table>

SEE ALSO

apropos(1), man(1), catman(1M), attributes(5)
whereis(1B)

NAME
whereis – locate the binary, source, and manual page files for a command

SYNOPSIS
/usr/ucb/whereis [-bmsu] [-BMS directory... -f] filename...

DESCRIPTION
The whereis utility locates source/binary and manuals sections for specified files. The supplied names are first stripped of leading pathname components and any (single) trailing extension of the form .ext, for example, .c. Prefixes of .resulting from use of source code control are also dealt with. whereis then attempts to locate the desired program in a list of standard places:

/etc
/sbin
/usr/bin
/usr/ccs/bin
/usr/ccs/lib
/usr/lang
/usr/lib
/usr/sbin
/usr/ucb
/usr/ucblib
/usr/ucbinclude
/usr/games
/usr/local
/usr/local/bin
/usr/new
/usr/old
/usr/hosts
/usr/include
/usr/etc

OPTIONS
The following options are supported:

-\b
Searches only for binaries.

-\B
Changes or otherwise limits the places where whereis searches for binaries.

-\f
Terminates the last directory list and signals the start of file names, and must be used when any of the -B, -M, or -S options are used.

-\m
Searches only for manual sections.

-\M
Changes or otherwise limits the places where whereis searches for manual sections.

-\s
Searches only for sources.

-\S
Changes or otherwise limit the places where whereis searches for sources.

-\u
Searches for unusual entries. A file is said to be unusual if it does not have one entry of each requested type. Thus `whereis -m -u *' asks for those files in the current directory which have no documentation.
EXAMPLES

EXAMPLE 1 Finding files

Find all files in `/usr/bin` which are not documented in `/usr/share/man/man1` with source in `/usr/src/cmd`:

```bash
eexample$ cd /usr/ucb
eexample$ whereis -u -M /usr/share/man/man1 -S /usr/src/cmd -f *
```

FILES

`/usr/src/*`

`/usr/{doc,man}/*`

`/etc, /usr/{lib,bin,ucb,old,new,local}`

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO

`chdir(2), attributes(5)`

BUGS

Since `whereis` uses `chdir(2)` to run faster, pathnames given with the `-M`, `-S`, or `-B` must be full; that is, they must begin with a `/`.
which(1)

NAME which – locate a command; display its pathname or alias

SYNOPSIS which [filename...]

DESCRIPTION which takes a list of names and looks for the files which would be executed had these names been given as commands. Each argument is expanded if it is aliased, and searched for along the user's path. Both aliases and path are taken from the user's .cshrc file.

FILES ~/.cshrc source of aliases and path values

/usr/bin/which

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO csh(1), attributes(5)

DIAGNOSTICS A diagnostic is given for names which are aliased to more than a single word, or if an executable file with the argument name was not found in the path.

NOTES which is not a shell built-in command; it is the UNIX command, /usr/bin/which

BUGS Only aliases and paths from ~/.cshrc are used; importing from the current environment is not attempted. Must be executed by csh(1), since only csh knows about aliases.

To compensate for ~/.cshrc files in which aliases depend upon the prompt variable being set, which sets this variable to NULL. If the ~/.cshrc produces output or prompts for input when prompt is set, which may produce some strange results.
who(1)

NAME
who – who is on the system

SYNOPSIS
/usr/bin/who [-abdHlmpqrstTu] [file]
/usr/bin/who -q [-n x] [file]
/usr/bin/who am i
/usr/bin/who am I
/usr/xpg4/bin/who [-abdHlmpqrtu] [file]
/usr/xpg4/bin/who -q [-n x] [file]
/usr/xpg4/bin/who -s [-bdHlmpqrtu] [file]
/usr/xpg4/bin/who am i
/usr/xpg4/bin/who am I

DESCRIPTION
The who utility can list the user’s name, terminal line, login time, elapsed time since activity occurred on the line, and the process-ID of the command interpreter (shell) for each current UNIX system user. It examines the /var/adm/utmpx file to obtain its information. If file is given, that file (which must be in utmpx(4) format) is examined. Usually, file will be /var/adm/wtmpx, which contains a history of all the logins since the file was last created.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

where:

name User’s login name
state Capability of writing to the terminal
line Name of the line found in /dev
time Time since user’s login
idle Time elapsed since the user’s last activity
pid User’s process id
comment Comment line in inittab(4)
exit Exit status for dead processes

OPTIONS
The following options are supported:

-a Processes /var/adm/utmpx or the named file with -b, -d, -l, -p, -r, -t, -T, and -u options turned on.
-b Indicates the time and date of the last reboot.
-d Displays all processes that have expired and not been respawned by init. The exit field appears for dead processes and contains the termination
and exit values (as returned by wait(3UCB)), of the dead process. This can be useful in determining why a process terminated.

-\(H\) Outputs column headings above the regular output.

-\(l\) Lists only those lines on which the system is waiting for someone to login. The name field is LOGIN in such cases. Other fields are the same as for user entries except that the state field does not exist.

-\(m\) Outputs only information about the current terminal.

-\(n\) Takes a numeric argument, \(x\), which specifies the number of users to display per line. \(x\) must be at least 1. The -\(n\) option can only be used with -\(q\).

-\(p\) Lists any other process that is currently active and has been previously spawned by init. The name field is the name of the program executed by init as found in /sbin/inittab. The state, line, and idle fields have no meaning. The comment field shows the id field of the line from /sbin/inittab that spawned this process. See inittab(4).

-\(q\) (Quick who) Displays only the names and the number of users currently logged on. When this option is used, all other options are ignored.

-\(r\) Indicates the current run-level of the init process.

-\(s\) (Default) Lists only the name, line, and time fields.

-\(T\) Same as the -s option, except that the state idle, pid, and comment, fields are also written. state is one of the following characters:

+ The terminal allows write access to other users.

- The terminal denies write access to other users.

? The terminal write-access state cannot be determined.

/usr/bin/who -\(T\) Same as the -s option, except that the state field is also written. state is one of the characters listed under the /usr/bin/who version of this option. If the -u option is used with -T, the idle time is added to the end of the previous format.

-\(t\) Indicates the last change to the system clock (using the date utility) by root. See su(1M) and date(1).

-\(u\) Lists only those users who are currently logged in. The name is the user’s login name. The line is the name of the line as found in the directory /dev. The time is the time that the user logged in. The idle column contains the number of hours and minutes since activity last occurred on that particular line. A dot (.) indicates that the terminal has seen activity in the last minute and is therefore “current.” If more than twenty-four hours have elapsed or the line has not been used since boot time, the entry is marked old. This field is useful when trying to determine whether a person is working at the terminal or not. The pid is the process-ID of the user’s shell.
The comment is the comment field associated with this line as found in /sbin/inittab (see inittab(4)). This can contain information about where the terminal is located, the telephone number of the dataset, type of terminal if hard-wired, and so forth.

OPERANDS

The following operands are supported:

- `am i`
 - In the "C" locale, limits the output to describing the invoking user, equivalent to the `-m` option. The `am` and `i` or `I` must be separate arguments.

- `file`
 - Specifies a path name of a file to substitute for the database of logged-on users that who uses by default.

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of who: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

EXIT STATUS

The following exit values are returned:

- `0`
 - Successful completion.

- `>0`
 - An error occurred.

FILES

- `/sbin/inittab`
 - Script for init
- `/var/adm/utmpx`
 - Current user and accounting information
- `/var/adm/wtmpx`
 - Historic user and accounting information

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th><code>/usr/bin/who</code></th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>/usr/xpg4/bin/who</code></th>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWxcsu</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

date(1), login(1), mesg(1), init(1M), su(1M), wait(3UCB), inittab(4), utmpx(4), attributes(5), environ(5), standards(5)

NOTES

Superuser: After a shutdown to the single-user state, who returns a prompt. Since /var/adm/utmpx is updated at login time and there is no login in single-user state, who cannot report accurately on this state. The command, who am i, however, returns the correct information.
whoami(1B)

NAME whoami – display the effective current username

SYNOPSIS /usr/ucb/whoami

DESCRIPTION whoami displays the login name corresponding to the current effective user ID. If you have used su to temporarily adopt another user, whoami will report the login name associated with that user ID. whoami gets its information from the geteuid and getpwuid library routines (see getuid and getpwnam(3C), respectively).

FILES /etc/passwd username data base

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWscpu</td>
</tr>
</tbody>
</table>

SEE ALSO su(1M), who(1), getuid(2), getpwnam(3C), attributes(5)
whocalls(1)

NAME whocalls – report on the calls to a specific procedure

SYNOPSIS /usr/ccs/bin/whocalls [-l wholib] [-s] funcname executable [arguments...]

DESCRIPTION whocalls is a simple example of a utility based on the Link-Auditing functionality of
ld.so.1(1) that permits the tracking of a given function call. See the Linker and
Libraries Guide for a detailed description of the Link-Auditing mechanism. The
executable is run as normal with any associated arguments. Each time the procedure
funcname is called, both the arguments to that procedure and a stack trace are
displayed on standard output.

OPTIONS The following options are supported:

- l wholib Specifies an alternate who.so Link-Auditing library to use.
- s When available, examines and uses the .symtab symbol table for
 local symbols. This is a little more expensive than using the
 .dynsym symbol table, but can produce more detailed stack trace
 information.

EXAMPLES EXAMPLE 1 Tracking function calls

This example tracks the calls to printf() made by a simple helloworld program:

example% whocalls printf helloworld
printf(0x106e4, 0xef625310, 0xef621ba8)
helloworld:main+0x10
helloworld:_start+0x5c
Hello World

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWtoo</td>
</tr>
</tbody>
</table>

SEE ALSO ld.so.1(1), sotruss(1), attributes(5)

Linker and Libraries Guide
whois – Internet user name directory service

whois [-h host] identifier

whois searches for an Internet directory entry for an identifier which is either a name (such as “Smith”) or a handle (such as “SRI-NIC”). To force a name-only search, precede the name with a period; to force a handle-only search, precede the handle with an exclamation point.

To search for a group or organization entry, precede the argument with * (an asterisk). The entire membership list of the group will be displayed with the record.

You may of course use an exclamation point and asterisk, or a period and asterisk together.

EXAMPLE 1 Using The whois Command

The command:

example% whois Smith
looks for the name or handle SMITH.

The command:

example% whois !SRI-NIC
looks for the handle SRI-NIC only.

The command:

example% whois .Smith, John
looks for the name JOHN SMITH only.

Adding . . . to the name or handle argument will match anything from that point; that is, ZU . . . will match ZUL, ZUM, and so on.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrcmdc</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
write(1)

NAME write – write to another user

SYNOPSIS write user [terminal]

DESCRIPTION The write utility reads lines from the user’s standard input and writes them to the terminal of another user. When first invoked, it writes the message:

Message from sender-login-id (sending-terminal) [date]...

to user. When it has successfully completed the connection, the sender’s terminal will be alerted twice to indicate that what the sender is typing is being written to the recipient’s terminal.

If the recipient wants to reply, this can be accomplished by typing

write sender-login-id [sending-terminal]

upon receipt of the initial message. Whenever a line of input as delimited by a NL, EOF, or EOL special character is accumulated while in canonical input mode, the accumulated data will be written on the other user’s terminal. Characters are processed as follows:

- Typing the alert character will write the alert character to the recipient’s terminal.
- Typing the erase and kill characters will affect the sender’s terminal in the manner described by the termios(3C) interface.
- Typing the interrupt or end-of-file characters will cause write to write an appropriate message (EOT\n in the "C" locale) to the recipient’s terminal and exit.
- Typing characters from LC_CTYPE classifications print or space will cause those characters to be sent to the recipient’s terminal.
- When and only when the stty iexten local mode is enabled, additional special control characters and multi-byte or single-byte characters are processed as printable characters if their wide character equivalents are printable.
- Typing other non-printable characters will cause them to be written to the recipient’s terminal as follows: control characters will appear as a ‘\’ followed by the appropriate ASCII character, and characters with the high-order bit set will appear in “meta” notation. For example, ‘\003’ is displayed as ‘^c’ and ‘\372’ as ‘M–z’.

To write to a user who is logged in more than once, the terminal argument can be used to indicate which terminal to write to. Otherwise, the recipient’s terminal is the first writable instance of the user found in /usr/adm/utmpx, and the following informational message will be written to the sender’s standard output, indicating which terminal was chosen:

user is logged on more than one place.
You are connected to terminal.
Other locations are: terminal
Permission to be a recipient of a write message can be denied or granted by use of the `mesg` utility. However, a user's privilege may further constrain the domain of accessibility of other users' terminals. The `write` utility will fail when the user lacks the appropriate privileges to perform the requested action.

If the character `!` is found at the beginning of a line, `write` calls the shell to execute the rest of the line as a command.

`write` runs `setgid()` (see `setuid(2)` to the group ID `tty`, in order to have write permissions on other user's terminals.

The following protocol is suggested for using `write`: when you first `write` to another user, wait for them to `write` back before starting to send. Each person should end a message with a distinctive signal (that is, `(o)` for “over”) so that the other person knows when to reply. The signal `(oo)` (for “over and out”) is suggested when conversation is to be terminated.

OPERANDS The following operands are supported:

- **user** User (login) name of the person to whom the message will be written. This operand must be of the form returned by the `who(1)` utility.
- **terminal** Terminal identification in the same format provided by the `who` utility.

ENVIRONMENT VARIABLES See `environ(5)` for descriptions of the following environment variables that affect the execution of `write`: `LANG`, `LC_ALL`, `LC_CTYPE`, `LC_MESSAGES`, and `NLSPATH`.

EXIT STATUS The following exit values are returned:

- **0** Successful completion.
- **>0** The addressed user is not logged on or the addressed user denies permission.

FILES

- `/var/adm/utmpx` user and accounting information for `write`
- `/usr/bin/sh` Bourne shell executable file

ATTRIBUTES See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`mail(1)`; `mesg(1)`, `pr(1)`, `sh(1)`, `talk(1)`, `who(1)`, `setuid(2)`, `termios(3C)`, `attributes(5)`, `environ(5)`, `standards(5)`
write(1)

DIAGNOSTICS

user is not logged on
 The person you are trying to write to is not logged on.

Permission denied
 The person you are trying to write to denies that permission (with mesg).

Warning: cannot respond, set mesg -y
 Your terminal is set to mesg n and the recipient cannot respond to you.

Can no longer write to user
 The recipient has denied permission (mesg n) after you had started writing.
The xargs utility constructs a command line consisting of the utility and argument operands specified followed by as many arguments read in sequence from standard input as will fit in length and number constraints specified by the options. The xargs utility then invokes the constructed command line and waits for its completion. This sequence is repeated until an end-of-file condition is detected on standard input or an invocation of a constructed command line returns an exit status of 255.

Arguments in the standard input must be separated by unquoted blank characters, or unescaped blank characters or newline characters. A string of zero or more non-double-quote (") and non-newline characters can be quoted by enclosing them in double-quotes. A string of zero or more non-apostrophe (‘) and non-newline characters can be quoted by enclosing them in apostrophes. Any unquoted character can be escaped by preceding it with a backslash (\). The utility will be executed one or more times until the end-of-file is reached. The results are unspecified if the utility named by utility attempts to read from its standard input.

The generated command line length will be the sum of the size in bytes of the utility name and each argument treated as strings, including a null byte terminator for each of these strings. The xargs utility will limit the command line length such that when the command line is invoked, the combined argument and environment lists will not exceed {ARG_MAX}−2048 bytes. Within this constraint, if neither the -n nor the -s option is specified, the default command line length will be at least {LINE_MAX}.

The following options are supported:

- **-e [eofstr]** Uses eofstr as the logical end-of-file string. Underscore (_) is assumed for the logical EOF string if neither -e nor -E is used. When the eofstr option-argument is omitted, the logical EOF string capability is disabled and underscores are taken literally. The xargs utility reads standard input until either end-of-file or the logical EOF string is encountered.

- **-E eofstr** Specifies a logical end-of-file string to replace the default underscore. The xargs utility reads standard input until either end-of-file or the logical EOF string is encountered.

- **-I replstr** Insert mode. utility is executed for each line from standard input, taking the entire line as a single argument, inserting it in argument s for each occurrence of replstr. A maximum of five arguments in arguments can each contain one or more instances of replstr. Any blank characters at the beginning of each line are ignored. Constructed arguments cannot grow larger than 255 bytes. Option -x is forced on. The -I and -i options are mutually exclusive; the last one specified takes effect.
xargs(1)

- [replstr] This option is equivalent to -I replstr. The string {} is assumed for replstr if the option-argument is omitted.

- number The utility is executed for each non-empty number lines of arguments from standard input. The last invocation of utility will be with fewer lines of arguments if fewer than number remain. A line is considered to end with the first newline character unless the last character of the line is a blank character; a trailing blank character signals continuation to the next non-empty line, inclusive. The -L, -l, and -n options are mutually exclusive; the last one specified takes effect.

- (The letter ell.) This option is equivalent to -L number. If number is omitted, 1 is assumed. Option -x is forced on.

- number Invokes utility using as many standard input arguments as possible, up to number (a positive decimal integer) arguments maximum. Fewer arguments will be used if:
 - The command line length accumulated exceeds the size specified by the -s option (or \{LINE_MAX\} if there is no -s option), or
 - The last iteration has fewer than number, but not zero, operands remaining.

- Prompt mode. The user is asked whether to execute utility at each invocation. Trace mode (-t) is turned on to write the command instance to be executed, followed by a prompt to standard error. An affirmative response (specific to the user’s locale) read from /dev/tty will execute the command; otherwise, that particular invocation of utility is skipped.

- Invokes utility using as many standard input arguments as possible yielding a command line length less than size (a positive decimal integer) bytes. Fewer arguments will be used if:
 - The total number of arguments exceeds that specified by the -n option, or
 - The total number of lines exceeds that specified by the -L option, or
 - End of file is encountered on standard input before size bytes are accumulated.

Values of size up to at least \{LINE_MAX\} bytes are supported, provided that the constraints specified in DESCRIPTION are met. It is not considered an error if a value larger than that supported by the implementation or exceeding the constraints specified in DESCRIPTION is given. xargs will use the largest value it supports within the constraints.
Enables trace mode. Each generated command line will be written to standard error just prior to invocation.

-x
Terminates if a command line containing number arguments (see the -n option above) or number lines (see the -L option above) will not fit in the implied or specified size (see the -s option above).

OPERANDS

The following operands are supported:

utility
The name of the utility to be invoked, found by search path using the PATH environment variable. (see environ(5).) If utility is omitted, the default is the echo(1) utility. If the utility operand names any of the special built-in utilities in shell_builtins(1), the results are undefined.

argument
An initial option or operand for the invocation of utility.

EXAMPLES

EXAMPLE 1 Using the xargs command

The following will move all files from directory $1 to directory $2, and echo each move command just before doing it:
xargs(1)

EXAMPLE 1 Using the xargs command (Continued)

example% ls $1 | xargs -I {} -t mv $1/{} $2/{}

The following command will combine the output of the parenthesised commands onto one line, which is then written to the end of file log:

example% (logname; date; printf "%s\n" "$0 $*") | xargs >>log

The following command will invoke diff with successive pairs of arguments originally typed as command line arguments (assuming there are no embedded blank characters in the elements of the original argument list):

example% printf "%s\n" "$*" | xargs -n 2 -x diff

The user is asked which files in the current directory are to be archived. The files are archived into arch; a, one at a time, or b, many at a time:

example% ls | xargs -p -L 1 ar -r arch
example% ls | xargs -p -L 1 | xargs ar -r arch

The following will execute with successive pairs of arguments originally typed as command line arguments:

example% echo $* | xargs -n 2 diff

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of xargs: LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of utility.

EXIT STATUS

The following exit values are returned:

0 All invocations of utility returned exit status 0.

1-125 A command line meeting the specified requirements could not be assembled, one or more of the invocations of utility returned a non-zero exit status, or some other error occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

If a command line meeting the specified requirements cannot be assembled, the utility cannot be invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits with exit status 255, the xargs utility will write a diagnostic message and exit without processing any remaining input.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
<tr>
<td>CSI</td>
<td>enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO
echo(1), shell_builtins(1), attributes(5), environ(5), standards(5)
NAME
xgettext – extract gettext call strings from C programs

SYNOPSIS
xgettext [-ns] [-a [-x exclude-file]] [-c comment-tag] [-d default-domain]
[-j] [-m prefix] [-M suffix] [-p pathname] - | filename...

xgettext -h

DESCRIPTION
The xgettext utility is used to automate the creation of portable message files (.po).
A .po file contains copies of “C” strings that are found in ANSI C source code in
filename or the standard input if ‘−’ is specified on the command line. The .po file can
be used as input to the msgfmt(1) utility, which produces a binary form of the
message file that can be used by application during run-time.

xgettext writes msgid strings from gettext(3C) calls in filename to the default
output file messages.po. The default output file name can be changed by -d option.
msgid strings in dgettext() calls are written to the output file domainname.po
where domainname is the first parameter to the dgettext() call.

By default, xgettext creates a .po file in the current working directory, and each
entry is in the same order that the strings are extracted from filenames. When the -p
option is specified, the .po file is created in the pathname directory. An existing .po
file is overwritten.

Duplicate msgids are written to the .po file as comment lines. When the -s option is
specified, the .po is sorted by the msgid string, and all duplicated msgids are removed.
All msgstr directives in the .po file are empty unless the -m option is used.

OPTIONS
The following options are supported:

- n
 Add comment lines to the output file indicating file
 name and line number in the source file where each
 extracted string is encountered. These lines appear
 before each msgid in the following format:

 # # File: filename, line: line-number

- s
 Generate output sorted by msgids with all duplicate
 msgids removed.

- a
 Extract all strings, not just those found in
 gettext(3C), and dgettext() calls. Only one .po
 file is created.

- c comment-tag
 The comment block beginning with comment-tag as the
 first token of the comment block is added to the output
 .po file as # delimited comments. For multiple
 domains, xgettext directs comments and messages to
 the prevailing text domain.

- d default-domain
 Rename default output file from messages.po to
default-domain .po.
Join messages with existing message files. If a .po file does not exist, it is created. If a .po file does exist, new messages are appended. Any duplicate msgids are commented out in the resulting .po file. Domain directives in the existing .po file are ignored. Results not guaranteed if the existing message file has been edited.

Fill in the msgstr with prefix. This is useful for debugging purposes. To make msgstr identical to msgid, use an empty string (""") for prefix.

Fill in the msgstr with suffix. This is useful for debugging purposes.

Specify the directory where the output files will be placed. This option overrides the current working directory.

Specify a .po file that contains a list of msgids that are not to be extracted from the input files. The format of exclude-file is identical to the .po file. However, only the msgid directive line in exclude-file is used. All other lines are simply ignored. The -x option can only be used with the -a option.

Print a help message on the standard output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWloc</td>
</tr>
</tbody>
</table>

SEE ALSO msgfmt(1), gettext(3C), attributes(5)

NOTES xgettext is not able to extract cast strings, for example ANSI C casts of literal strings to (const char *). This is unnecessary anyway, since the prototypes in <libintl.h> already specify this type.

In messages and translation notes, lines greater than 2048 characters are truncated to 2048 characters and a warning message is printed to stderr.
NAME
xstr – extract strings from C programs to implement shared strings

SYNOPSIS

```
xstr -c filename [-v] [-l array]
```  

```
xstr [-l array]
```

```
xstr filename [-v] [-l array]
```  

DESCRIPTION
xstr maintains a file called strings into which strings in component parts of a large program are hashed. These strings are replaced with references to this common area. This serves to implement shared constant strings, which are most useful if they are also read-only.

The command:

```
example% xstr -c filename
```

extracts the strings from the C source in name, replacing string references by expressions of the form `&xstr[number]` for some number. An appropriate declaration of `xstr` is prepended to the file. The resulting C text is placed in the file `x.c`, to then be compiled. The strings from this file are placed in the `strings` data base if they are not there already. Repeated strings and strings which are suffixes of existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file declaring the common `xstr` space called `xs.c` can be created by a command of the form:

```
example% xstr
```

This `xs.c` file should then be compiled and loaded with the rest of the program. If possible, the array can be made read-only (shared) saving space and swap overhead.

`xstr` can also be used on a single file. A command:

```
example% xstr filename
```

creates files `x.c` and `xs.c` as before, without using or affecting any `strings` file in the same directory.

It may be useful to run `xstr` after the C preprocessor if any macro definitions yield strings or if there is conditional code which contains strings which may not, in fact, be needed. `xstr` reads from the standard input when the argument `−` is given. An appropriate command sequence for running `xstr` after the C preprocessor is:

```
example% cc -E name.c | xstr -c -
exxample% cc -c x.c
example% mv x.o name.o
```

`xstr` does not touch the file `strings` unless new items are added; thus `make(1S)` can avoid remaking `xs.o` unless truly necessary.
OPTIONS

-\(c\) \(filename\) Take C source text from \(filename\).
-\(v\) Verbose: display a progress report indicating where new or duplicate strings were found.
-\(l\) \(array\) Specify the named \(array\) in program references to abstracted strings. The default array name is \(xstr\).

FILES

\(strings\) data base of strings
\(x.c\) massaged C source
\(xs.c\) C source for definition of array "\(xstr\)(\(rq\)
\(/tmp/xs\) temp file when \(xstr\) \(filename\) doesn’t touch \(strings\)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsu</td>
</tr>
</tbody>
</table>

SEE ALSO

make(1S), attributes(5)

BUGS

If a string is a suffix of another string in the data base, but the shorter string is seen first by \(xstr\) both strings will be placed in the data base, when just placing the longer one there would do.

NOTES

Be aware that \(xstr\) indiscriminately replaces all strings with expressions of the form \&\(xstr\)[\(number\)] regardless of the way the original C code might have used the string. For example, you will encounter a problem with code that uses sizeof() to determine the length of a literal string because \(xstr\) will replace the literal string with a pointer that most likely will have a different size than the string’s. To circumvent this problem:

- use strlen() instead of sizeof(); note that sizeof() returns the size of the array (including the null byte at the end), whereas strlen() doesn’t count the null byte. The equivalent of sizeof("xxx") really is (strlen("xxx"))+1.
- use #define for operands of sizeof() and use the define’d version. \(xstr\) ignores #define statements. Make sure you run \(xstr\) on \(filename\) before you run it on the preprocessor.

You will also encounter a problem when declaring an initialized character array of the form

\[\text{char } x[] = "xxx";\]

\(xstr\) will replace \(xxx\) with an expression of the form \&\(xstr\)[\(number\)] which will not compile. To circumvent this problem, use static char \(x[] = "xxx"\) instead of static char \(x[] = "xxx"\).
The `yacc` command converts a context-free grammar into a set of tables for a simple automaton that executes an LALR(1) parsing algorithm. The grammar may be ambiguous. Specified precedence rules are used to break ambiguities.

The output file, `y.tab.c`, must be compiled by the C compiler to produce a function `yyparse()`. This program must be loaded with the lexical analyzer program, `yylex()`, as well as `main()` and `yyerror()`, an error handling routine. These routines must be supplied by the user. The `lex(1)` command is useful for creating lexical analyzers usable by `yacc`.

The following options are supported:

- `-b file_prefix` Uses `file_prefix` instead of `y` as the prefix for all output files. The code file `y.tab.c`, the header file `y.tab.h` (created when `-d` is specified), and the description file `y.output` (created when `-v` is specified), will be changed to `file_prefix.tab.c`, `file_prefix.tab.h`, and `file_prefix.output`, respectively.

- `-d` Generates the file `y.tab.h` with the `#define` statements that associate the `yacc` user-assigned “token codes” with the user-declared “token names”. This association allows source files other than `y.tab.c` to access the token codes.

- `-l` Specifies that the code produced in `y.tab.c` will not contain any `#line` constructs. This option should only be used after the grammar and the associated actions are fully debugged.

- `-p sym_prefix` Uses `sym_prefix` instead of `yy` as the prefix for all external names produced by `yacc`. The names affected include the functions `yyparse()`, `yylex()` and `yyerror()`, and the variables `yylval`, `yychar` and `yydebug`. (In the remainder of this section, the six symbols cited are referenced using their default names only as a notational convenience.) Local names may also be affected by the `-p` option. However, the `-p` option does not affect `#define` symbols generated by `yacc`.

- `-P parser` Allows you to specify the parser of your choice instead of `/usr/ccs/bin/yaccpar`. For example, you can specify:

  ```
  example$ yacc -P ~/myparser parser.y
  ```

- `-Q[y|n]` The `-Qy` option puts the version stamping information in `y.tab.c`. This allows you to know what version of `yacc` built the file. The `-Qn` option (the default) writes no version information.

- `-t` Compiles runtime debugging code by default. Runtime debugging code is always generated in `y.tab.c` under conditional
compilation control. By default, this code is not included when `y.tab.c` is compiled. Whether or not the `-t` option is used, the runtime debugging code is under the control of `YYDEBUG`, a preprocessor symbol. If `YYDEBUG` has a non-zero value, then the debugging code is included. If its value is 0, then the code will not be included. The size and execution time of a program produced without the runtime debugging code will be smaller and slightly faster.

 `-v` Prepares the file `y.output`, which contains a description of the parsing tables and a report on conflicts generated by ambiguities in the grammar.

 `-V` Prints on the standard error output the version information for `yacc`.

OPERANDS

The following operand is required:

`file` A path name of a file containing instructions for which a parser is to be created.

EXAMPLES

EXAMPLE 1 Accessing the `yacc` library

Access to the `yacc` library is obtained with library search operands to `cc`. To use the `yacc` library main:

```bash
example% cc y.tab.c -ly
```

Both the `lex` library and the `yacc` library contain main. To access the `yacc` main:

```bash
example% cc y.tab.c lex.yy.c -ly -ll
```

This ensures that the `yacc` library is searched first, so that its `main` is used.

The historical `yacc` libraries have contained two simple functions that are normally coded by the application programmer. These library functions are similar to the following code:

```c
#include <locale.h>

int main(void)
{
    extern int yyparse();

    setlocale(LC_ALL, "");

    /* If the following parser is one created by lex, the application must be careful to ensure that LC_CTYPE and LC_COLLATE are set to the POSIX locale. */
    (void) yyparse();

    return (0);
}
```

```c
#include <stdio.h>
```
EXAMPLE 1 Accessing the yacc library (Continued)

```c
int yyerror(const char *msg)
{
    (void) fprintf(stderr, "%s\n", msg);
    return (0);
}
```

ENVIRONMENT VARIABLES

See environ(5) for descriptions of the following environment variables that affect the execution of yacc: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

yacc can handle characters from EUC primary and supplementary codesets as one-token symbols. EUC codes may only be single character quoted terminal symbols. yacc expects yylex() to return a wide character (wchar_t) value for these one-token symbols.

EXIT STATUS

The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES

y.output state transitions of the generated parser
y.tab.c source code of the generated parser
y.tab.h header file for the generated parser
yacc.acts temporary file
yacc.debug temporary file
yacc.tmp temporary file
yaccpar parser prototype for C programs

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWbtool</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

cc(1B), lex(1), attributes(5), environ(5), standards(5)

DIAGNOSTICS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard error output. A more detailed report is found in the y.output file. Similarly, if some rules are not reachable from the start symbol, this instance is also reported.

NOTES

Because file names are fixed, at most one yacc process can be active in a given directory at a given time.
Users are encouraged to avoid using ‘$’ as part of any identifier name.
NAME | yes – generate repetitive affirmative output
SYNOPSIS | yes [expletive...]
DESCRIPTION | The yes utility repeatedly outputs y, or if expletive is given, it is output repeatedly, followed by a newline. Multiple arguments are output separated by spaces and followed by a newline. To terminate, type an interrupt character.
yes can be used to respond programatically to programs that require an interactive response.
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWesu</td>
</tr>
</tbody>
</table>
SEE ALSO | attributes(5)
ypcat(1)

NAME
ypcat – print values in a NIS database

SYNOPSIS
ypcat [-kx] [-d ypdomain] mname

DESCRIPTION
The ypcat command prints out values in the NIS name service map specified by
mname, which may be either a map name or a map nickname. Since ypcat uses the
NIS network services, no NIS server is specified.

Refer to ypfiles(4) for an overview of the NIS name service.

OPTIONS
-k Display the keys for those maps in which the values are null or the
key is not part of the value. None of the maps derived from files
that have an ASCII version in /etc fall into this class.
-d ypdomain Specify a domain other than the default domain.
-x Display map nicknames.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypmatch(1), ypfiles(4), attributes(5)
ypmatch(1)

NAME
ypmatch – print the value of one or more keys from a NIS map

SYNOPSIS
ypmatch [-k] [-t] [-d domain] key [key...] mname
ypmatch -x

DESCRIPTION
ypmatch prints the values associated with one or more keys from the NIS’s name
services map specified by mname, which may be either a map name or a map
nickname.

Multiple keys can be specified; all keys will be searched for in the same map. The keys
must be the same case and length. No pattern matching is available. If a key is not
matched, a diagnostic message is produced.

OPTIONS
The following options are supported:

- k
Before printing the value of a key, print the key itself, followed by
a colon (:).

- t
Inhibit map nickname translation.

- d domain
Specify a domain other than the default domain.

- x
Display the map nickname table. This lists the nicknames the
command knows of, and indicates the map name associated with
each nickname.

OPERANDS
The following operand is supported:

mname
The NIS’s name services map

EXIT STATUS
The following exit values are returned:

0
Successful operation.

1
An error occurred.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypcat(1), ypfiles(4), attributes(5)

NOTES
ypmatch will fail with an RPC error message on yp operation if enough file
descriptors are not available. The number of file descriptors should be increased if this
occurs.
NAME
yppasswd – change your network password in the NIS database

SYNOPSIS
yppasswd [username]

DESCRIPTION
The yppasswd utility changes the network password associated with the user
username in the Network Information Service (NIS) database. If the user has done a
keylogin(1), and a publickey/secretkey pair exists for the user in the NIS
publickey.byname map, yppasswd also re-encrypts the secretkey with the new
password. The NIS password may be different from the local one on your own
machine.

yppasswd prompts for the old NIS password, and then for the new one. You must
type in the old password correctly for the change to take effect. The new password
must be typed twice, to forestall mistakes.

New passwords must be at least four characters long, if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough. Only the owner of the name or the super-user may change a
password; superuser on the root master will not be prompted for the old password,
and does not need to follow password construction requirements.

The NIS password daemon, rpc.yppasswdd must be running on your NIS server in
order for the new password to take effect.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
keylogin(1), login(1), nis+(1), nispasswd(1), passwd(1), getpwnam(3C),
getspnam(3C), secure_rpc(3NSL), nsswitch.conf(4), attributes(5)

WARNINGS
Even after the user has successfully changed his or her password using this command,
the subsequent login(1) using the new password will be successful only if the user’s
password and shadow information is obtained from NIS. See getpwnam(3C),
getspnam(3C), and nsswitch.conf(4).

NOTES
The use of yppasswd is discouraged, as it is now only a wrapper around the
passwd(1) command, which should be used instead. Using passwd(1) with the -r
nis option (see nis+(1)) will achieve the same results, and will be consistent across
all the different name services available.

BUGS
The update protocol passes all the information to the server in one RPC call, without
ever looking at it. Thus, if you type your old password incorrectly, you will not be
notified until after you have entered your new password.
ypwhich(1)

NAME
ypwhich – return name of NIS server or map master

SYNOPSIS
ypwhich [-d domain] [[-t] -m [mname] | [-Vn] hostname]

ypwhich -x

DESCRIPTION
ypwhich returns the name of the NIS server that supplies the NIS name services to a
NIS client, or which is the master for a map. If invoked without arguments, it gives the
NIS server for the local machine. If hostname is specified, that machine is queried to
find out which NIS master it is using.

Refer to ypfiles(4) for an overview of the NIS name services.

OPTIONS
- d domain Use domain instead of the default domain.
- t This option inhibits map nickname translation.
- m mname Find the master NIS server for a map. No hostname can be
specified with -m. mname can be a mapname, or a nickname for a
map. When mname is omitted, produce a list of available maps.
- x Display the map nickname translation table.
- Vn Version of ypbind, V3 is default.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWnisu</td>
</tr>
</tbody>
</table>

SEE ALSO
ypfiles(4), attributes(5)
Index

A
a new version of the network information name service — nis+, 1016
a new version of the network information name service — NIS+, 1016
a new version of the network information name service — nis, 1016
accounting, search and print files — acctcom, 30
acctcom — search and print process accounting files, 30
adb — debugger, 33
addbib — create or extend bibliography, 34
adds /dev entries to give SunOS 4.x compatible names to SunOS 5.x devices — ucblinks, 1639
alias — shell built-in functions to create your own pseudonym or shorthand for a command or series of commands, 36
aliases, collected by sendmail — praliases, 1205
allocate — allocate devices, 39
answerbook2 — online documentation system, 42
appcert — examine application-level products for unstable use of Solaris interfaces, 43
apply changes to files — patch, 1120
aptrace — trace application function calls to Solaris shared libraries, 50
apropos — locate commands by keyword, 55
ar — maintain portable archive or library, 57
arch — display architecture of current host, 61
archive, maintain a portable one across all machines — ar, 57
archives, create tape archives, and add or extract files — tar, 1536
as — assembler, 62
asa — convert FORTRAN carriage-control output to printable form, 66
assembler, — as, 62
at — execute commands at a later time, 68, 251
atq — display the jobs queued to run at specified times, 75
atrm — remove jobs spooled by at or batch, 76
audio files, convert — audioconvert, 77
audio files
play — audioplay, 81
record — audiorecord, 83
audioconvert — convert audio file formats, 77
audioplay — play audio files, 81
audiorecord — record an audio file, 83
authentication agent — ssh-agent, 1484
authentication key generation — ssh-keygen, 1488
auths — print authorizations granted to a user, 86
awk — pattern scanning and processing language, 88

B
banner — make posters, 93
basename — display portions of pathnames, 96
basename — strips affixes from path names, 94
batch — execute commands at a later time, 68, 251
bc — arbitrary precision arithmetic language, 97
bdiff — display line-by-line differences between pairs of large text files, 101
bfs — big file scanner, 102
bfs Commands, 102
bg — shell built-in functions to control process execution, 562
bibliography
create an inverted index to a bibliographic database — indexbib, 551
create or extend — addbib, 34
expand and insert references from a bibliographic database — refer, 1284
find references in a bibliographic database — lookbib, 765
format and print a bibliographic database — roffbib, 1309
sort a bibliographic database — sortbib, 1459
biff — mail notifier, 106
big file scanner — bfs, 102
binary file transmission
decode binary file — uudecode, 1663
encode binary file — uuencode, 1663
binary files
find printable strings — strings, 1496
locate — whereis, 1717
block count, for a file — sum, 1515
blocks, count a in file — sum, 1516
Bourne shell, — sh, 1418
Bourne shell commands, login command, 1428
Bourne shell variables, 1421
— CPATH, 1421
— HOME, 1421
— IFS, 1422
— MAIL, 1421
— MAILCHECK, 1421
— MAILPATH, 1421
— PATH, 1421
— PS1, 1422
— PS2, 1422
— SHACCT, 1422
— SHELL, 1422
break — shell built-in functions to escape from or advance within a controlling while, for, foreach, or until loop, 107
build programs — make, 848
C
C compiler, 117
C language, C preprocessor — cpp, 200
C language program, resolve and remove ifdef ed lines from C program source — unifdef, 1648
C program verifier — lint, 721
C programming language
create C error messages — mkstr, 942
extract strings from C code — xstr, 1736
formats program in nice style using troff — vgrind, 1685
C shell
aliases — csh, 230
built-in commands — csh, 237
command and filename substitution — csh, 232
command execution — csh, 235
command line parsing — csh, 227
command substitution — csh, 232
control flow — csh, 235
environment variables and shell variables — csh, 245
event designators — csh, 228
expressions and operators — csh, 233
filename completion — csh, 226
filename substitution — csh, 233
history substitution — csh, 227
I/O redirection — csh, 230
initialization and termination — csh, 225
interactive operation — csh, 225
job control — csh, 236
lexical structure — csh, 227
modifiers — csh, 229
noninteractive operation — csh, 225
quick substitution — csh, 229
signal handling — csh, 236
status reporting — csh, 236
variable substitution — csh, 231
word designators — csh, 228
C shell commands
— %, 244
— ;, 237
— @, 244
— alias, 237
— bg, 237
— break, 237
— breaksw, 237
C shell commands (Continued)

— case, 237
— cd, 237
— chdir, 237
— continue, 237
— default, 237
— dirs, 237
— echo, 237
— else, 239
— end, 238
— endif, 239
— eval, 237
— exec, 238
— exit, 238
— fg, 238
— foreach, 238
— glob, 238
— goto, 238
— hashstat, 238
— history, 238
— if, 239
— jobs, 239
— kill, 239
— limit, 239
— login, 240
— logout, 240
— nice, 240
— nohup, 240
— notify, 241
— onintr, 241
— popd, 241
— pushd, 241
— rehash, 241
— repeat, 241
— set, 241
— setenv, 241
— shift, 242
— source, 242
— stop, 242
— suspend, 243
— switch, 243
— time, 243
— umask, 243
— unalias, 243
— unhash, 243
— unlimit, 244
— unset, 244
— unsetenv, 244

C shell commands (Continued)

— wait, 244
— while, 244
— cal — display a calendar, 109
calculator, desk, — dc, 273
calendar — reminder service, 110
calendar, display — cal, 109
call-graph, display profile data — gprof, 518
call rmrmount to mount or unmount media — volrmmount, 1704
cancel — cancel print requests, 112
cancel user’s request for removable media that
is not currently in drive — volcancel, 1700
cat — concatenate and display files, 114
cc — C compiler, 117
cd — shell built-in functions to change the
current working directory, 119
CD read and write — cdrw, 122
CDPATH variable — sh, 1421
cdrw — CD read and write, 122
change a user’s Kerberos password —
— kpasswd, 590
change file access and modification times —
— touch, 1636
change file access and modification times
— settime, 1598
— touch, 1598
character translation — tr, 1609 1614
chdir — shell built-in functions to change the
current working directory, 119
check spelling — spell, 1463
check for media in a drive — volcheck, 1701
check path names — pathchk, 1125
checkeq — check eqn constructs, 347
checknr — check nroff/troff files, 128
chgrp — change the group ownership of a
— file, 129
chmod — change the permissions mode of a
— file, 133
chown — change owner of file, 139 141
cksum — write file checksums and sizes, 163
clear — clear terminal screen, 171
cmp — compare two files, 172
cocheck — (FMLI utility) communicate with a
— process, 184
cocreate — (FMLI utility) communicate with a
— process, 184

1749
code formatter, formats program in nice style using troff — vgrind, 1685
code set, conversion utility — iconv, 548
codestroy (FMLI utility) communicate with a process, 184
col — filters reverse line-feeds from two-column nroff text, 174
comm — select or reject lines common to two files, 176
command — execute a simple command, 178
command options
 parse — getopt, 502
 parse — getoptcvt, 504
commands
 display the last commands executed, in reverse order — lastcomm, 652
 locate a command; display its pathname or alias — which, 1719
 locate by keyword — apropos, 55
communications
 connect to remote system — cu, 259
 connect to remote system — tip, 1582
 decode binary files — uudecode, 1663
 encode binary files — uuencode, 1663
 system to system command execution — uux, 1674
 talk to another user — talk, 1533
 UNIX-to-UNIX copy — uucp, 1659
 user interface to a remote system using the TELNET protocol — telnet, 1551
 UUCP list of names — uname, 1659
 UUCP log — uilog, 1659
 write to another user — write, 1726
Compaq Smart-2 EISA/PCI and Smart-2SL PCI Array Controller ioctl utility — smart2cfg, 1446
compare two files — diff, 284
compilers
 C compiler — cc, 117
 C program verifier — lint, 721
 regular expression compile — regcmp, 1286
 RPC protocol compiler — rpcgen, 1313
compress — compress files, 181
concatenate, files and display them — cat, 114
configure LLC2 interface parameters — llc2_config, 727
configure runtime linking environment — crle, 210
connect to remote system — cu, 259
construct argument lists and invoke utility — xargs, 1729
continue — shell built-in functions to escape from or advance within a controlling while, for, foreach, or until loop, 107
control, audio mixer control — mixerctl, 936
control line printer — lpc, 774
control tracing and manipulate probe points in a process or the kernel — prex, 1211
convert binary log file to Common Log File format — ncab2clf, 997
convert binary TNF file to ASCII — tnfdump, 1591
convert FORTRAN carriage-control output to printable form — asa, 66
convert Red Hat Package (RPM) to cpio archive — rpm2cpio, 1318
convert units — units, 1653
coproc (FMLI utility) communicate with a process, 184
copy
 archives — cpio, 192
 files — cp, 188
core image, of running processes — gcore, 463
coreceive (FMLI utility) communicate with a process, 184
cosend (FMLI utility) communicate with a process, 184
count blocks in file — sum, 1516
count lines, words, characters in file — wc, 1712
cp — copy files, 188
cpio — copy archives, 192
cpp — C preprocessor, 200
cputrack — monitor process and LWP behavior using CPU performance counters, 206
create, bibliography — addbib, 34
create new task or change task or project of running process — newtask, 1011
crle configure runtime linking environment, 210
crontab — user crontab file, 220
crypt — encrypt, 224
csh — shell command interpreter with a C-like syntax, 225
diff — compare two files, 284
diff
 3-way — diff3, 288
 big — bdiff, 101
diff command, side-by-side — sdiff, 1386
diff3 — display line-by-line differences between three text files, 288
diffmk — mark differences between versions of a troff input file, 290
digestp — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
dircmp — compares contents of directories, 291
directories
 compare contents — dircmp, 291
 list contents — ls, 791
 list contents of — ls, 797
 make — mkdir, 938
 make link to — ln, 740
 print working directory name — pwd, 1266
 remove — rmdir, 1298
dirname — delivers all but last level of path name, 94
dirs — shell built-in functions to change the current working directory, 119
dis — object code disassembler, 292
disable — disable LP printers, 343
disassembler, object code — dis, 292
disk usage, summary — du, 303
display editor — vi, 1689
display
 a list of all valid user names — dispuid, 295
 architecture of current host — arch, 61
 call-graph profile data — gprof, 518
 contents of directory — ls, 791
 current news — news, 1010
 — date, 269
 disk usage — du, 306
 dynamic dependencies of executable files or shared objects — ldd, 690
effective user name — whoami, 1723
 file names — ls, 797
 first few lines of files — head, 535
 group membership of user — groups, 530, 531
 how long the system has been up — uptime, 1657
 identifier of current host — hostid, 546
display (Continued)
last commands executed, in reverse order — lastcomm, 652
list of all valid group names — disp gid, 294
login and logout information about users and terminals — last, 650
name of current host — hostname, 547
name of the user running the process — logname, 762
printer queue — lpq, 778
process status — ps, 1260
processor type of current host — mach, 805
selected lines from file — sed, 1396
size or sizes of a page of memory — pagesize, 1108
status of disk space on file system — df, 280
status of local hosts — runtime, 1330
status of network hosts — rup, 1328
users on system — users, 1658
working directory name — pwd, 1266
display discretionary file information — getfacl, 496
display information about currently logged-in users — w, 1707
display information about the address space of a process — pmap, 1172
display names and references bound in FNS context — fnlist, 435
display package parameter values — pkgparam, 1161
display profile data — prof, 1244
display reference bound to FNS name — fnlookup, 437
display the internal versioning information of dynamic objects — pvs, 1263
display the native instruction sets executable on this platform — isalist, 561
display value of parameters received through DHCP — dhcpinfo, 282
document production (Continued)
expand and insert references from a bibliographic database — refer, 1284
filters reverse line-feeds from two-column nroff text — col, 174
find references in a bibliographic database — lookbib, 765
format and print a bibliographic database — roffbib, 1309
format documents for display or line-printer — nroff, 1093
format tables for nroff or troff — tbl, 1547
mark differences between versions of a troff input file — diffmk, 290
remove nroff, troff, tbl and eqn constructs — deroff, 279
simple text formatters — fmt, 424
sort a bibliographic database — sortbib, 1459
troff postprocessor for PostScript printers — dpost, 300
typeset mathematics — eqn, 347
typeset or format documents — troff, 1617
lari — link analysis of runtime interfaces, 643
DOS
close text file from DOS format to ISO format — dos2unix, 296
close text file from ISO format to DOS format — unix2dos, 1655
dos2unix — convert text file from DOS format to ISO format, 296
download — host resident PostScript font downloader, 298
download — prepends host resident PostScript fonts to files, 298
dpost — troff postprocessor for PostScript printers, 300
draw graph — graph, 523
du — summarize disk usage, 303
du — display disk usage per directory or file, 306
dump — dump selected parts of an object file, 308
dump selected parts of an object file — dump, 308
dump selected parts of an object file — elfdump, 341
dumpcs — show codeset table for the current locale, 311
dumpkeys — dump keyboard translation tables, 743
link analysis of runtime interfaces — lari, 643

echo — (FMLI utility) put string on virtual output, 317
echo — echo arguments, 312
echo — echo arguments to standard output, 316
ed — text editor, 318
edit — text editor, 330
editing text, sed — stream editor, 1396
egrep — search a file for a pattern using full regular expressions, 334
eject — eject media device from drive, 337
elfdump — dump selected parts of an object file, 341
enable — enable LP printers, 343
encode binary file — uuencode, 1663
encode files, — crypt, 224
encryption key, user, change — chkey, 131
env — set environment for command invocation, 345
environment
display variables — printenv, 1224
set terminal characteristics — tset, 1628
environment variables, global, FMLI, 1407
eqn — mathematical typesetting, 347
eqn, remove nroff, troff, tbl and eqn constructs — deroff, 279
equations, typeset mathematics — eqn, 347
error — analyze error messages, 352
eval — shell built-in functions to execute other commands, 366
evaluate condition(s) — test, 1561
ex — text editor, 356
examine application-level products for unstable use of Solaris interfaces — appcert, 43
exec — shell built-in functions to execute other commands, 366
execute a command in a profile — pfsh, 1146
execute a command in a profile — pfexec, 1146
execute commands at a later time — at, 68, 251
execute commands at a later time — batch
execute a simple command — command, 178
execute command in extended attribute name space — runat, 1325
exit — shell built-in functions to enable the execution of the shell to advance beyond its sequence of steps, 368
expand — expand TAB characters to SPACE characters, 370
export — shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents, 1402
exportfs — translates exportfs options to share/unshare commands, 372
expr — evaluate arguments as an expression, 373
expr — evaluate expressions, 376
expression evaluation — expr, 376
exstr — extract strings from source files, 379
extract kernel probes output into a trace file — tnfxtract, 1596
extract strings from C code — xstr, 1736

F
face — executable for the Framed Access Command Environment Interface, 383
factor — obtain the prime factors of a number, 384
false — provide truth values, 1620
fastboot — reboot system without checking disks, 385
fasthalt — halt system without checking disks, 385
fc — shell built-in functions to re-use previous command-lines from the current shell, 537
defformat — format floppy diskette or PCMCIA memory card, 386
fg — shell built-in functions to control process execution, 562
fgrep — search file for fixed-character string, 391
file — determine file type, 393
file
change ownership — chown, 141
determine type of — file, 395
display names — ls, 797
files perusal filter for CRTs — pg, 1147
make link to — ln, 740
print — lpr, 780
strip affixes — basename, 96
sum — sum and count blocks in file, 1516
update last modified date of — touch, 1602
file — get file type, 395
file system
display status of disk space — df, 280
make hard or symbolic links to files — ln, 737
where am I — pwd, 1266
file transfer program, — ftp, 450
filep — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
files
change owner of file — chown, 139
change the permissions mode of a file — chmod, 133
compare two files — cmp, 172
compress — compress, 181
compress files — pack, 1105
compress files — pcat, 1105
concatenate and display — cat, 114
copy — cp, 188
copy archives — cpio, 192
crypt — encrypt/decrypt, 224
cut out selected fields of each line of a file — cut, 266
display uncompressed files but leaves compressed files intact — xcat, 181
display a count of lines, words and characters in a file — wc, 1712
display first few lines — head, 535
display last part — tail, 1530
display line-by-line differences between pairs of large text files — bdiff, 101
display line-by-line differences between three text files — diff3, 288
expand compressed files — unpack, 1105
extract SCCS version information from a file — what, 1714
— find, 404
files (Continued)
mark differences between versions of a troff input file — diffmk, 290
merge same lines of several files or subsequent lines of one file — paste, 1117
move — mv, 971
print checksum and block count for a file — sum, 1515
print differences between two files side-by-side — sdiff, 1386
remove — rm, 1298
search a file for a pattern — grep, 525
search file for fixed-character string — fgrep, 391
search for a pattern using full regular expressions — egrep, 334
sort or merge — sort, 1452
split a file into pieces — split, 1467
strip affixes from path names — basename, 94
transfer to and from a remote machine — tftp, 1573
uncompress — uncompress, 181
filesync — synchronize files and directories, 397
Multiple Nomadic Machines, 399
Rules File, 398
filofaxp — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
find — find files, 404
find or signal processes by name and other attributes
— pgrep, 1152
— pkill, 1152
fmlcut — (FMLI utility) cut out columns from a table or fields from each line of a file, 414
fmlexpr — (FMLI utility) evaluate arguments as an expression, 416
fmlgrep — (FMLI utility) search af file for a pattern, 419
FMLI
ccheck — communicate with a process, 184
ccreate — communicate with a process, 184
cdestroy — communicate with a process, 184
cproc — communicate with a process, 184
FMLI (Continued)

coreceive — communicate with a process, 184
cosend — communicate with a process, 184
echo — put string on virtual output, 317
fmlcut — cut out columns from a table or fields from each line of a file, 414
fmlexpr — evaluate arguments as an expression, 416
fmlgrep — search a file for a pattern, 419
fml — invoke fmli, 421
getfrm — returns the current frameID number, 500
getitems — returns a list of currently marked menu items, 501
indicator — displays application specific alarms or working indicator, or both, on FMLI banner line, 550
message — puts arguments on FMLI message line, 934
pathconv — converts an alias to its pathname, 1128
readfile, longline — reads file, gets longest line, 1282
regex — match patterns against a string, 1288
reinit — changes the descriptors in the initialization file, 1290
reset — (FLMI utility) changes the entry in a field of a form to its default value, 1294
run — runs a program, 1323
set, unset — set and unset local or global environment variables, 1407
setcolor — redefine or create a color, 1409
shell — run a command using shell, 1435
test — evaluates the expression, 1571
vsiq — synchronize a co-process with the controlling FMLI application, 1706
fmt — simple text formatters, 424
fnattr — update and examine attributes associated with FNS named object, 430
fnlist — display names and references object in FNS context, 435
fnlookup — display reference bound to FNS name, 437
fnrename — rename the binding of an FNS name, 438

FNS
display names and references — fnlist, 435
display reference bound to FNS name — fnlookup, 437
search for FNS objects — fnsearch, 439
update attributes — fnattr, 430
fnsearch — search for FNS objects with specified attributes, 439
Displaying Selected Attributes, 441
Extended Operations, 443
Filter Arguments, 441
Grammar of Filter Expressions, 443
Logical Operators, 440
Relational Operators, 440
Simple Filter Expressions, 440
Wildcarded Strings, 442
fnunbind — unbind the reference from an FNS name, 446
fold — fold long lines, 447
fonts, prepends host resident PostScript fonts to files — download, 298
force a defunct process to be reaped by its parent — preap, 1209
format floppy diskette or PCMCIA memory card — fdformat, 386
formatters, text, — fmt, 424
Forms and Menu Language Interpreter, See FMLI
FORTRAN, create a tags file for use with ex and vi — ctags, 256
Framed Access Command Environment, See face
frameID number (FMLI utility) — getfrm, 500
franklinp — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
from — sender of mail messages, 449
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — digestp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — filep, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — filofaxp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — franklinp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — mailp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — newsp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — timemanp, 820
frontends to the mp Text to PDL (Printer Description Language) pretty print filter — timesysp, 820
ftp — file transfer program, 450
ftpcount — show current number of users in each FTP Server class, 461
ftpwho — show current process information for each FTP Server user, 462
function calls, trace application function calls to Solaris shared libraries — apptrace, 50

G
gcore — get core images of running processes, 463
gencat — generate a formatted message catalog, 464
generate iconv code conversion tables — geniconvtbl, 467
generate LLC2 configuration files — llc2_autoconfig, 726
generate message source file from source files — genmsg, 485
generate programs for lexical tasks — lex, 703
generate repetitive affirmative output — yes, 1742
geniconvtbl — generate iconv code conversion tables, 467
genmsg — generate message source file from source files, 485
 Auto Message Numbering, 485
 Comment Extraction, 485
 Invocation, 485
 Testing, 485
get configuration values — getconf, 491
get locale-specific information — locale, 744
get or set the resource controls of running processes, tasks, and projects — prctl, 1206
get or set the resource limits of running processes, — plimit, 1168
getconf — get configuration values, 491
getfcm — display discretionary file information, 496
getfrm — (FMLI utility) returns the current frameID number, 500
getitems — (FMLI utility) returns a list of currently marked menu items, 501
getopt — parse command options, 502
getoptcvt — parse command options, 504
getopts — shell built-in function to parse command-line options, 507
gettext — retrieve text string from message database, 513
gettxt — retrieve text string from message database, 515
glob — shell built-in function to expand a word list, 517
goto — shell built-in functions to enable the execution of the shell to advance beyond its sequence of steps, 368
gprof — call-graph profile, 518
graph — draw graph, 523
graphics filters for plotters — plot, 1170
graphics filters for plotters — tplot, 1603
graphics, interpolate smooth curve — spline, 1466
grep
 search a file for a pattern — grep, 525
 search a file for a pattern using full regular expressions — egrep, 334
 search file for fixed-character string — fgrep, 391
group IDs
 change real and effective — newgrp, 1008
 change the group ownership of a file — chgrp, 129
 display a list of all valid group names — dispgid, 294
 prompts for group ID — cgid, 145
 provides error message for group ID — errgid, 145
 provides help message for group ID — helpgid, 145
group IDs (Continued)
validates group ID — valgid, 145
groups — display group membership, 531
groups — print group membership of user, 530
grpck — check group database entries, 532

H
halt system without checking disks —
fasthalt, 385
hash — shell built-in functions to evaluate the
internal hash table of the contents of
directories, 533
hashstat — shell built-in functions to evaluate
the internal hash table of the contents of
directories, 533
head — display first few lines of files, 535
history — shell built-in functions to re-use
previous command-lines from the current
shell, 537
HOME variable — sh, 1421
host machines, local
show status — ruptime, 1330
who is logged in — rwho, 1334
host machines, remote
display status of network hosts (RPC
version) — rup, 1328
who is logged in — rusers, 1333
host resident PostScript font downloader —
download, 298
hostid — display host ID, 546
hostname — display host name, 547

I
i386 — get processor type truth value, 806
iAPX286 — get processor type truth value, 806
IFS variable — sh, 1422
indicator — (FMLI utility) displays application
specific alarms or working indicator, or both,
on FMLI banner line, 550
indxbib — create an inverted index to a
bibliographic database, 551
install — install files, 552
instruction set, determining which variant is
optimal to use — optisa, 1104
integer
prompts for an integer — ckint, 147
provides error message for integer —
errint, 147
provides help message for integer —
helrint, 147
validates an integer — valint, 147
integer, range
prompts for an integer within a specified
range — ckrange, 157
provides error message for integer within a
specified range — errrange, 157
provides help message for integer within a
specified range — helprange, 157
validate an integer within a specified range
— valrange, 157
interactive message processing system —
mail, 818
interactive message processing system —
Mail, 818
Internet
transfer files to and from a remote machine
— tftp, 1573
transfer of files to and from remote network
sites — ftp, 450
user name directory service — whois, 1725
interprocess communication
remove a message queue, semaphore set, or
shared memory ID — ipcrm, 554
report status — ipcs, 555
invoke a command with an altered scheduling
priority — nice, 1014
ipcrm — remove a message queue, semaphore
set, or shared memory ID, 554
ipcs — report inter-process communication
facilities status, 555
isainfo — describe instruction set
architectures, 559
isalist — display the native instruction sets
executable on this platform, 561

J
jobs — shell built-in functions to control process
execution, 562
join — relational database operator, 569
jsh — the job control shell command interpreter, 1418

K

kbd — manipulate the state of keyboard or display the type of keyboard or change the default keyboard abort sequence effect, 572
Kerberos keytab maintenance utility — ktutil, 641
Kerberos login utility, — kinit, 583
Kerberos tickets destroy — kdestroy, 575
list currently held — klist, 588
keyboard load and dump keyboard translation tables — loadkeys, dumpkeys, 743
manipulate the state of keyboard or display the type of keyboard or change the default keyboard abort sequence effect — kbd, 572
keylogin — decrypt and store secret key with keyserv, 576
keylogout — delete stored secret key with keyserv, 578
keywords, prompts for and validates a keyword — ckkeywd, 152
kill — terminate a process by default, 579
Korn shell commands, login command, 629
KornShell aliasing — ksh, 593
arithmetic evaluation — ksh, 609
blank interpretation — ksh, 608
command execution — ksh, 617
command re-entry — ksh, 617
command substitution — ksh, 596
commands — ksh, 591
comments — ksh, 593
conditional expressions — ksh, 610
definitions — ksh, 591
emacs editing mode — ksh, 618
environment — ksh, 613
file name generation — ksh, 608
functions — ksh, 614
I/O — ksh, 611
in-line editing options — ksh, 617
invocation — ksh, 637

L

languages
C compiler — cc, 117
C preprocessor — cpp, 200
C program verifier — lint, 721
create C error messages — mkstr, 942
extract strings from C code — xstr, 1736
ldap — LDAP as a naming repository, 667
LDAP as a naming repository — ldap, 667
ldap delete entry tool — ldapdelete, 671
ldap entry addition and modification tools — ldapadd, 678
— ldapmodify, 678
ldap modify entry RDN tool —ldapmodrdn, 682
ldap search tool — ldapssearch, 685
ldapadd — ldap entry addition and modification tools, 678
ldapdelete — ldap delete entry tool, 671
ldapmodify — ldap entry addition and modification tools, 678
ldapmodrdn — ldap modify entry RDN tool, 682
Input Format, 683
ldapsearch — ldap search tool, 685
Output Format, 685
ldd — list dynamic dependencies of executable files or shared objects, 690
let — shell built-in function to evaluate one or more arithmetic expressions, 702
lex — generate programs for lexical tasks, 703
Actions in lex, 710
lex, create a tags file for use with ex and vi — ctags, 256
 lex — generate programs for lexical tasks
 Definitions in lex, 705
 Output Files, 704
 Regular Expressions in lex, 707
 Rules in lex, 707
 Stderr, 704
 Stdout, 703
 User Subroutines in lex, 707
library archive, find ordering relation for an object or library archive — lorder, 766
limit — set or get limitations on the system resources available to the current shell and its descendants, 715
csh, 715
ksh, 715
sh, 715
sh/ksh, 717
/usr/bin/unlimi, 715
line — read one line from standard input and write to standard output, 720
line numbering filter — nl, 1080
line printer control — lpc, 774
link, make hard or symbolic links to files — ln, 737
link editor — ld, 666
link-editor — ld, 654
lint — C program verifier, 721
list
 contents of directory — ls, 791
 file names — ls, 797
list, sorted, find lines — look, 764
list_devices — list devices, 723
list of service grades, print — uuglist, 1666
listusers — list user login information, 725
llc2_autoconfig — generate LLC2 configuration files, 726
llc2_config — configure LLC2 interface parameters, 727
LLC2 Station, SAP, and Connection Statistics — llc2_stats, 729
llc2_stats — LLC2 Station, SAP, and Connection Statistics, 729
ln — make hard or symbolic links to files, 737
loadkeys — load keyboard translation tables, 743
locale — get locale-specific information, 744
localedef — define locale environment, 747
log, system, add entries — logger, 751
logger — add entries to the system log, 751
logger — make system log entry, 753
login — sign on to the system, 755
login command, 629, 1428
login
 change login password and password attributes — passwd, 1111
 display effective user name — whoami, 1723
 display login and logout information about users and terminals — last, 650
 get the name of the user running the process — logname, 762
 list user login information — listusers, 725
 remote — rlogin, 1295
 spawn login to a remote terminal — ct, 254
 who is logged in, and what are they doing — w, 1707
login environment
 display variables — printenv, 1224
 set terminal characteristics — tset, 1628
login password, change in NIS — yppasswd, 1745
logname — get the name of the user running the process, 762
logout — shell built-in function to exit from a login session, 763
logout, display login and logout information about users and terminals — last, 650
look — find words in the system dictionary or lines in a sorted list, 764
lookbib — find references in a bibliographic database, 765
lorder — find ordering relation for an object or library archive, 766
lp — send requests to a print service, 767
LP print services
 cancel requests — cancel, 112
 control line printer — lpc, 774
 display printer queue — lpq, 778
 generate printer test pattern — lptest, 790
 print files — lp, 767
 print files (BSD) — lpr, 780
 remove print jobs — lprm, 784
lpc — line printer control, 774
lpq — display printer queue, 778
lpr — print files, 780
lprm — remove print jobs, 784
lpstat — print information about the status of the print service, 786
lptest — generate printer test pattern, 790
ls — list contents of directory, 791
ls — list files, 797

M
m4 — macro processor, 800
machid — get processor type truth value, 806
machine IDs, get processor type truth value — machid, 806
macro processor — m4, 800
madv library — madv.so.1, 808
madv.so.1 — madv library, 808
magnetic tape
 backspace files — mt, 968
 backspace records — mt, 968
 copy — tcopf, 1549
 erase — mt, 968
 forward space files — mt, 968
 forward space records — mt, 968
 get unit status — mt, 968
 manipulate — mt, 968
 place unit off-line — mt, 968
 retention — mt, 968
 rewind — mt, 968
 skip backward files — mt, 968
 skip backward records — mt, 968
 skip forward files — mt, 968
magnetic tape (Continued)
 skip forward records — mt, 968
 write EOF mark on — mt, 968
mail — interactive message processing system, 818
Mail — interactive message processing system, 818
mail — read mail or send mail to users, 812
MAIL variable — sh, 1421
mail, automatic replies — vacation, 1678
mail aliases, alias — system mail, 1205
mail services
 mail notifier — biff, 106
 sender of mail messages — from, 449
mail utilities, statistics — mailstats, 824
mailbox, storage for incoming mail — mailx, 826
MAILCHECK variable — sh, 1421
mailcompat — provide SunOS compatibility for Solaris mailbox format, 819
mailp — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
mailstats — mail delivery statistics, 824
mailx — interactive message processing system, 826, 847
mailx commands
 — !, 830
 — #, 830
 — =, 830
 — ?, 830
 — 1, 834
 — z, 837
 — alias, 830
 — alternates, 830
 — cd, 830
 — chdir, 830
 — Copy, 830
 — copy, 830
 — delete, 831
 — discard, 831
 — dp, 831
 — dt, 831
 — echo, 831
 — edit, 831
 — else, 832
 — endif, 832
 — exit, 831

1760 man pages section 1: User Commands • September 2004
mailx commands (Continued)
- field, 831
- file, 831
- folder, 831
- Followup, 832
- followup, 832
- from, 832
- group, 830
- headers, 832
- help, 832
- hold, 832, 834
- if, 832
- ignore, 831
- inc, 833
- list, 833
- load, 833
- mail, 833
- mbox, 833
- More, 833
- New, 833
- new, 833
- next, 834
- Page, 833
- pipe, 834
- preserve, 832, 834
- Print, 834 836
- print, 834 836
- Put, 834
- put, 834
- quit, 834
- Reply, 835
- reply, 835
- replyall, 835
- repliesender, 835
- Respond, 835
- respond, 835
- retain, 835
- Save, 835
- save, 835
- set, 835
- shell, 836
- size, 836
- source, 836
- top, 836
- touch, 836
- Type, 834, 836
- type, 834, 836
- unalias, 836

mailx commands (Continued)
- undelete, 836
- undiscard, 836
- ungroup, 836
- unignore, 836
- Unread, 833, 837
- unread, 833, 837
- unretain, 836
- unset, 837
- version, 837
- visual, 837
- write, 837
- xit, 837

maintain groups of programs —
sysV-make, 1519

make — maintain, update, and regenerate
related programs and files
Appending to a Macro, 857
Bourne Shell Constructs, 877
Clearing Special Targets, 856
Command Dependencies, 856
Command Execution, 876
Command Substitutions, 877
Conditional Macro Definitions, 859
Dynamic Macros, 859
Global, 852
Hidden Dependencies, 856
Implicit Rules, 863
implicit rules, list of make/make.rules, 876
Library Maintenance, 876
Macros, 853, 856
Makefile Target Entries, 851
Pattern Matching Rules, 863
Pattern Replacement Macro References, 857
Predefined Macros, 860
Reading Makefiles and the
Environment, 851
Rules, 854
Signals, 878
Special Characters, 852
Special-Function Targets, 854
Special-Purpose Macros, 857
Suffix Replacement Macro References, 857
Suffix Rules, 863
make, System V version of make —
sysV-make, 1519
make — maintain, update, and regenerate
related programs and files
modify the Access Control List (ACL) for a file
or files — setfacl, 1410
modular debugger — mdb, 892
monitor process and LWP behavior using CPU
performance counters — cputrack, 206
more — browse through a text file, 944
mp — text to PDL (Page Description Language)
pretty print filter, 951
mpss.so.1 — shared object for setting preferred
page size, 959
msgfmt — create message object file, 962
mt — manipulate magnetic tape, 968
mv — move files, 971

N

nawk — pattern scanning and processing
language, 974
Actions, 974
Arithmetic Functions, 974
Expression Patterns, 974
Expressions in awk, 974
Functions, 974
Input/Output and General Functions, 974
Output Statements, 974
Pattern Ranges, 974
Patterns, 974
Regular Expressions, 974
Special Patterns, 974
String Functions, 974
User-defined Functions, 974
/usr/bin/nawk, 974
/usr/xcu4/bin/awk, 974
/usr/xpg4/bin/awk, 974
Variables and Special Variables, 974
NCA — the Network Cache and Accelerator
(NCA), 995
nca — the Network Cache and Accelerator
(NCA), 995
ncab2clf — convert binary log file to Common
Log File format, 997
ncakmod — start or stop the NCA kernel
module, 999
neqn — mathematical typesetting, 347
netscape — start Netscape Communicator for
Solaris, 1000
newform — change the format of a text file, 1005
newgrp — changes a user’s group ID, 1008
newgrp — shell built-in function to allow new group permissions to the user, 1008
news — print news items, 1010
newsp — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
newtask — create new task or change task or project of running process, 1011

NFS, secure
 decrypt and store secret key with keyserv — keylogin, 576
delete stored secret key with keyserv— keylogout, 578
nice — invoke a command with an altered scheduling priority, 1014
nice, change process nice value — renice, 1291
nice — invoke a command with an altered scheduling priority, csh Builtin, 1014
nis — a new version of the network information name service, 1016
NIS
 change login password in —
 yppasswd, 1745
 print the value of one or more keys from a NIS map — ypmatch, 1744
 print values in a NIS database — ypcat, 1743
 return name of NIS server or map master —
 ywhich, 1746
nis+ — a new version of the network information name service, 1016
NIS+ — a new version of the network information name service, 1016
NIS+ — a new version of the network information name service, 1016
NIS+ Authentication — nis+, 1023
NIS+ Authorization — nis+, 1023
change access rights on a NIS+ object —
 nischmd, 1036
change password information —
 nispasswd, 1064
change the group owner of a NIS+ object —
 nischgrp, 1034
change the owner of a NIS+ object —
 nischown, 1039
change the time to live of a NIS+ object —
 nischttl, 1041
NIS+ (Continued)
 Concatenation Path — nis+, 1019
 create NIS+ directories — nismkdir, 1058
 Directories and Domains — nis+, 1022
 Directory Authorization — nis+, 1024
 display NIS+ defaults — nisdefaults, 1043
display NIS+ error messages —
 niserror, 1046
display tables — niscat, 1031
Grammar — nis+, 1018
Group Names — nis+, 1022
group administration — nisgrpadm, 1047
Indexed Names — nis+, 1017
list the contents of a NIS+ directory —
 nisls, 1053
Name Expansion — nis+, 1018
Namespaces — nis+, 1020
NIS+ Administrative Commands —
 nis+, 1027
NIS+ Directory Object — nis+, 1016
NIS+ Files and Directories — nis+, 1029
NIS+ Group Object — nis+, 1016
NIS+ Link Object — nis+, 1017
NIS+ Programming API — nis+, 1028
NIS+ Table Object — nis+, 1016
NIS+ User Commands — nis+, 1026
Principal Names — nis+, 1020
remove directories — nisrmdir, 1070
remove objects — nisrm, 1068
return the state of the NIS+ namespace using a conditional expression —
 nistest, 1078
Simple Names — nis+, 1017
symbolically link NIS+ objects — nisln, 1051
Table Authorization — nis+, 1025
table administration tool — nistikladm, 1072
utilities for searching NIS+ tables —
 nismatch, nisgrep, 1055
niscat — display NIS+ tables, 1031
nischgrp — change the group owner of a NIS+ object, 1034
nischmd — change access rights on a NIS+ object, 1036
nischown — change the owner of a NIS+ object, 1039
nischtml — change the time to live of a NIS+ object, 1041
nisdefaults — display NIS+ defaults, 1043
niserror — display NIS+ error messages, 1046
nisgrep — utility for searching NIS+ tables, 1055
nisgrpadm — NIS+ group administration command, 1047
nisln — symbolically link NIS+ objects, 1051
nisls — list the contents of a NIS+ directory, 1053
nismatch — utility for searching NIS+ tables, 1055
nismkdir — create a NIS+ directory, 1058
nisrm — remove NIS+ objects, 1068
nisrmdir — remove a NIS+ directory, 1070
nistbladm — administer NIS+ tables, 1072
nistest — return the state of the NIS+ namespace using a conditional expression, 1078
nl — number lines, 1080
nm — print name list of an object file, 1084
nohup — run a command immune to hangups, 1089
notify — shell built-in functions to control process execution, 562
notify user that volume requested is not in the CD-ROM or floppy drive — volmissing, 1703
nroff — format documents for display or line-printer, 1093
nroff utilities
check nroff and troff files — checknr, 128
eliminate .so’s from nroff input — soelim, 1448
filters reverse line-feeds from two-column nroff text — col, 174
format tables — tbl, 1547
remove nroff, troff, tbl and eqn constructs — deroff, 279

O
object archive, find ordering relation for an object or library archive — lorder, 766
object files
find printable strings — strings, 1496
manipulate the comment section — mcs, 890
print section sizes in bytes — size, 1442
strip symbol table, debugging and line number information — strip, 1498
octal dump, — od, 1096
od — octal dump, 1096
on — execute a command on a remote system, but with the local environment, 1102
onintr — shell built-in functions to respond to (hardware) signals, 1615
online documentation system, — answerbook2, 42
online reference pages — man, 883
optisa — determine which variant instruction set is optimal to use, 1104

P
pack — compress files, 1105
page — page through a text file, 944
pagesize — display size or sizes of a page of memory, 1108
pargs — print process arguments, environment variables, or auxiliary vector, 1109
Pascal, create a tags file for use with ex and vi — ctags, 256
passwd — change login password and password attributes, 1111
password, change in NIS — yppasswd, 1745
password file, edit — vipw, 1699
passwords, change login password and password attributes — passwd, 1111
paste — merge same lines of several files or subsequent lines of one file, 1117
patch — apply changes to files, 1120
File Name Determination, 1123
Patch Application, 1123
Patch File Format, 1122
PATH variable — sh, 1421
pathchk — check path names, 1125
pathconv — search FMLI criteria for filename, 1128

pathname
prompts for a pathname — ckpath, 154
provides error message for pathname — errpath, 154
provides help message for pathname — helppath, 154
validates pathname — valpath, 154
pattern scanning and processing language — awk, 974
pax — portable archive interchange, 1130
Modes of Operations, 1130
Standard Error, 1136
Standard Output, 1136
pcat — compress files, 1105
pcrd — proc tools, 1241
pdp11 — get processor type truth value, 806
performance monitoring
display call-graph profile data — gprof, 518
resource usage for a command —
rusage, 1331
time a command; report process data and
system activity — timex, 1580
perl — Practical Extraction and Report
Language, 1139
pfcsh — execute a command in a profile, 1146
pfexec — execute a command in a profile, 1146
pfksh — proc tools, 1146
pfsh — proc tools, 1241
pg — files perusal filter for CRTs, 1147
pgrep — find processes by name and other
attributes, 1152
pkginfo — display software package
information, 1156
pkgmk — produce an installable package, 1158
pkgparam — display package parameter
values, 1161
pkgproto — generate prototype file entries for
input to pkgmk command, 1163
pkgtrans — translate package format, 1165
pkil — signal processes by name and other
attributes, 1152
pldd — proc tools, 1241
plimit — get or set the resource limits of
running processes, 1168
plot — graphics filters for plotters, 1170
plotters, graphics filters — plot, 1170
gofigraphs filters — tplot, graphics filters, 1603
pmap — display information about the address
space of a process, 1172
popd — shell built-in functions to change the
current working directory, 119
portable archive interchange — pax, 1130
postplot — PostScript translator for plot(4B)
graphics files, 1189
postdaisy — PostScript translator for Diablo 630
daisy-wheel files, 1179
postmd — PostScript translator for DMD
bitmap files, 1181
postio — serial interface for PostScript
printers, 1183
postmd — matrix display program for
PostScript printers, 1186
postprint — PostScript translator for text
files, 1191
postprocessors, troff for PostScript printers —
dpost, 300
postreverse — reverse the page order in a
PostScript file, 1193
PostScript
matrix display program — postmd, 1186
prepends host resident PostScript fonts to
files — download, 298
reverse the page order in a PostScript file —
postreverse, 1193
serial interface — postio, 1183
translator for Diablo 630 daisy-wheel files —
postdaisy, 1179
translator for DMD bitmap files —
postmd, 1181
translator for plot(4B) graphics files —
postplot, 1189
translator for Tektronix 4014 files —
posttek, 1195
translator for text files — postprint, 1191
troff postprocessor for PostScript printers —
dpost, 300
PostScript translator for Diablo 630 daisy-wheel
files — postdaisy, 1179
PostScript translator for DMD bitmap files —
postmd, 1181
PostScript translator for Tektronix 4014 files —
posttek, 1195
PostScript translator for text files —
postprint, 1191
posttek — PostScript translator for Tektronix
4014 files, 1195
pr — print files, 1200
Practical Extraction and Report Language —
perl, 1139
praliases — display system mail aliases, 1205
prctl — get or set the resource controls of
running processes, tasks, and projects, 1206
preap — force a defunct process to be reaped by its parent, 1209
prex — control tracing and manipulate probe points in a process or the kernel, 1211
prime factors, obtain for a number — factor, 384
print — shell built-in function to output characters to the screen or window, 1223
print formatted output — printf, 1225
print files — pr, 1200
print process arguments, environment variables, or auxiliary vector — pargs, 1109
print authorizations granted to a user — auths, 86
print execution profiles for a user — profiles, 1248
print files — lpr, 780
print files, prepends host resident PostScript fonts to files — download, 298
print project membership of user — projects, 1250
print roles granted to a user — roles, 1311
print services, print information about the status — lpstat, 786
printenv — display environment variables, 1224
printers
 cancel requests — cancel, 112
 control — lpc, 774
 display queue — lpq, 778
 print information about the status — lpstat, 786
 remove jobs from queue — lprm, 784
 send requests — lp, 767
 test — lptest, 790
printers, LP
 — disable, 343
 — enable, 343
printf — print formatted output, 1225
proc tools (Continued)
 — pstop, 1241
 — ptime, 1241
 — ptree, 1241
 — pwait, 1241
 — pwdx, 1241
process, running, change priority — renice, 1291
process accounting
 search and print files — acctcom, 30
time a command; report process data and system activity — timex, 1580
process scheduler, display or set scheduling parameters of specified process(es) — priocntl, 1230
process status, report — ps, 1251
processes
 display status — ps, 1260
 get core images of running processes — gcore, 463
 terminate a process by default — kill, 579
processors, display type — mach, 805
prof — display profile data, 1244
profile, display call-graph — gprof, 518
profiles — print execution profiles for a user, 1248
programming languages
 analyze and disperse compiler error messages — error, 352
 C compiler — cc, 117
 C preprocessor — cpp, 200
 C program verifier — lint, 721
 extract strings from C code — xstr, 1736
 formats program in nice style using troff — vgrind, 1685
programming tools
 arbitrary precision arithmetic language — bc, 97
assembler — as, 62
create a tags file for use with ex and vi — ctags, 256
create C error messages — mkstr, 942
debugger — adb, 33
display call-graph profile data — gprof, 518
dump selected parts of an object file — dump, 308
find printable strings in an object or binary file — strings, 1496
programming tools (Continued)
— install, 552
link editor — ld, 666
link-editor for object files — ld, 654
macro processor — m4, 800
make — build programs, 848
object code disassembler — dis, 292
print name list of an object file — nm, 1084
print section sizes in bytes of object files —
size, 1442
regular expression compile — regcmp, 1286
resolve and remove ifdef’d lines from C
program source — unifdef, 1648
resource usage for a command —
rusage, 1331
RPC protocol compiler — rpcgen, 1313
Source Code Control System — sccs, 1342
strip symbol table, debugging and line
number information from an object file —
strip, 1498
touch — update last modified date of
file, 1602
projects — print project membership of
user, 1250
prun — proc tools, 1241
ps — display process status, 1260
PS1 variable — sh, 1422
PS2 variable — sh, 1422
psig — proc tools, 1241
pstack — proc tools, 1241
pstop — proc tools, 1241
ptime — proc tools, 1241
ptree — proc tools, 1241
pushd — shell built-in functions to change the
current working directory, 119
pvs — display the internal versioning
information of dynamic objects, 1263
pwait — proc tools, 1241
pwd — print working directory name, 1266
pwdx — proc tools, 1241

Q
queue, printer, display — lpq, 778
queues
display the jobs queued to run at specified
times — atq, 75
queues (Continued)
remove jobs spooled by at or batch —
atrm, 76

R
true — convert archives to random
libraries, 1267
rcp — remote file copy, 1272
rdist — remote file distribution, 1274
read — shell built-in function to receive from
standard input (keyboard), 1279
readfile, longline — (FMLI utility) reads file,
gets longest line, 1282
readonly — shell built-in function to protect the
value of the given variable from
reassignment, 1283
reboot system without checking disks —
fastboot, 385
red — text editor, 318
refer — expand and insert references from a
bibliographic database, 1284
regcmp — regular expression compile, 1286
regenerate groups of programs —
sysV-make, 1519
regenerate programs — make, 848
regex — (FMLI utility) match patterns against a
string, 1288
registration, 1449
rehash — shell built-in functions to evaluate the
internal hash table of the contents of
directories, 533
reinit — (FMLI utility) changes the descriptors
in the initialization file, 1290
relational database, — join, 569
reminder services
— calendar, 110
mail notifier — biff, 106
remote shell — rsh, 1319
remote system
connect — tip, 1582
connect to — cu, 259
execute a command on a remote system, but
with the local environment — on, 1102
file copy — rcp, 1272
file distribution — rdist, 1274
remote login — rlogin, 1295
remote system (Continued)
 shell — rsh, 1319
 show status — rup, 1328, 1329
 spawn login — ct, 254
 system to system command execution —
 uux, 1674
 transfer files to and from — tftp, 1573
 who is logged in on remote machines —
 rusers, 1333
removable rewritable media format utility —
 rmformat, 1302
rename the binding of an FNS name —
 fnrename, 438
renice — alter priority of running
 processes, 1291
report on the calls to a specific procedure —
 whocalls, 1724
report or filter out repeated lines in a file —
 uniq, 1650
reset — (FMLI utility) changes the entry in a
 field of a form to its default value, 1294
reset — reset terminal bits, 1628
reset terminal bits — reset, 1628
return — shell built-in functions to enable the
 execution of the shell to advance beyond its
 sequence of steps, 368
reverse page order, PostScript file —
 postreverse, 1193
reverse the page order in a PostScript file —
 postreverse, 1193
rsh — KornShell, restricted command and
 programming language, 591
rlogin — remote login, 1295
rm — remove files, 1298
rmail — only permits sending of mail, 813
rmrf — remove directories, 1298
rmformat — removable rewritable media
 format utility, 1302
roffbib — format and print bibliographic
 database, 1309
roles — print roles granted to a user, 1311
RPC
 display host status of remote machines —
 rup, 1329
 display status of network hosts — rup, 1328
 protocol compiler — rpcgen, 1313
RPC, secure
 decrypt and store secret key with keyserv —
 keylogin, 576
 delete stored secret key with keyserv —
 keylogout, 578
RPC Language, RPC protocol compiler —
 rpcgen, 1313
rpcgen — RPC protocol compiler, 1313
rpm2cpio — convert Red Hat Package (RPM) to
 cpio archive, 1318
rsh — remote shell, 1319
run — (FMLI utility) runs a program, 1323
run a command immune to hangups —
 nohup, 1089
runat — execute command in extended
 attribute name space, 1325
runtime linker for dynamic objects —
 ld.so.1, 695
rup — display status of network hosts (RPC
 version), 1328
rup — display status of network hosts, 1329
ruptime — display status of local hosts, 1330
rusage — resource usage for a command, 1330
rusers — who is logged in on remote
 machines, 1333
rwho — who is logged in on local
 machines, 1334

S
sag — system activity graph, 1335
sar — system activity reporter, 1337
SCCS, extract SCCS version information from a
 file — what, 1714
sccs-admin — create and administer SCCS
 history files, 1352
sccs-cdc — change the delta commentary of an
 SCCS delta, 1356
sccs-comb — combine deltas, 1358
sccs — Source Code Control System, 1342
SCCS commands
 admin — create and administer SCCS history
 files, 1352
cdc — change the delta commentary of an
 SCCS delta, 1356
comb — combine deltas, 1358
SCCS commands (Continued)
 delta — change the delta commentary of an SCCS delta, 1360
 get — retrieve a version of an SCCS file, 1363
 help — help regarding SCCS error or warning messages, 1369
 prt — display delta table information from an SCCS file, 1374
 rmdel — remove a delta from an SCCS file, 1377
 sact — show editing activity status of an SCCS file, 1378
 sccs-prs — display selected portions of an SCCS history, 1370
 sccs-prt — display delta table information from an SCCS file, 1374
 sccs-rmdel — remove delta from SCCS file, 1377
 sccs-sact — show editing activity status of an SCCS file, 1378
 sccs-sccsdiff — compare versions of SCCS file, 1379
 sccs-unget — unget SCCS file, 1380
 sccs-val — validate SCCS file, 1381
 scp — secure copy (remote file copy program), 1383
 screen-oriented editor — vi, 1689
 script — make script of terminal session, 1385
 sdiff — print differences between two files side-by-side, 1386
 search for FNS objects with specified attributes — fnsearch, 439
 secure copy (remote file copy program) — scp, 1383
 secure file transfer program — sftp, 1415
 Secure Shell proxy for HTTP — ssh-http-proxy-connect, 1486
 Secure Shell proxy for SOCKS5 — ssh-socks5-proxy-connect, 1491
 sed — stream editor, 1388, 1396
 Functions, 1397
 sed Addresses, 1389
 sed Editing Commands, 1389
 sed Regular Expressions, 1389
 sed Scripts, 1396
 select or reject lines common to two files — comm, 176
 serial interface for PostScript printers — postio, 1183
 set — shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents, 1402
 set, unset — (FLMI utility) set and unset local or global environment variables, 1407
 set environment for command invocation — env, 345
 set or get limitations on the system resources available to the current shell and its descendents
 — limit, 715
 — ulimit, 715
 — unlimit, 715
set process group ID — setpgrp, 1414

setcolor — (FMLI utility) redefine or create a color, 1409

setenv — shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents, 1402

setfacl — modify the Access Control List (ACL) for a file or files, 1410

acl_entries Syntax, 1410

setpgrp — set process group ID, 1414

settime — change file access and modification times, 1598

sftp — secure file transfer program, 1415

sh — the standard shell command interpreter, 1418

SHACCT variable — sh, 1422

shared object for setting preferred page size — mpss.so.1, 959

shell — (FMLI utility) run a command using shell, 1435

SHELL variable — sh, 1422

shell

Korn shell — ksh, 591

restricted Korn shell — rksh, 591

shell command interpreter built-in-functions

— alias, 36
— bg, 562
— break, 107
— cd, 119
— chdir, 119
— continue, 107
— dirs, 119
— eval, 366
— exit, 368
— fc, 537
— fg, 562
— getopts, 507
— glob, 517
— hash, 533
— hashstat, 533
— history, 537
— jobs, 562
— kill, 579
— let, 702
— logout, 763
— newgrp, 1008
— notify, 562

shell command interpreter built-in-functions (Continued)

— onintr, 1615
— popd, 119
— print, 1223
— pushd, 119
— read, 1279
— readonly, 1283
— rehash, 533
— return, 368
— set, 1402
— setenv, 1402
— shift, 1440
— source, 366
— stop, 562
— suspend, 1517
— times, 1579
— trap, 1615
— typeset, 1637
— umask, 1641
— unalias, 36
— unhash, 533
— unset, 1402
— unsetenv, 1402
— wait, 1709
— whence, 1637

shell programming

echo arguments — echo, 312

read one line from standard input and write to standard output — line, 720

shell scripts

display size or sizes of a page of memory — pagesize, 1108

provide truth values — true, false, 1620

shell variables, in Bourne shell, 1421

shells

C shell — csh, 225
remote — rsh, 1319

the job control shell command interpreter — jsh, 1418

the standard shell command interpreter — sh, 1418

shift — shell built-in function to traverse either a shell’s argument list or a list of field-separated words, 1440

show codeset table for the current locale — dumpcs, 311

1770 man pages section 1: User Commands • September 2004
show current number of users in each FTP Server class — ftpcount, 461
show current process information for each FTP Server user — ftpwho, 462
shutdown — shut down multiuser operation, 1441
sign on to the system — login, 755
Simple Mail Transfer Protocol, connection to remote maillserver — mconnect, 889
size — print section sizes in bytes of object files, 1442
sleep — suspend execution for an interval, 1444
smart2cfg — Compaq Smart-2 EISA/PCI and Smart-2SL PCI Array Controller ioctl utility, 1446
SMTP, See Simple Mail Transfer Protocol
soelim — eliminate .so’s from nroff input, 1448
software package display information — pkginfo, 1156
display parameter values — pkgparam, 1161
generate prototype file entries for input to pkgmk command — pkgproto, 1163
produce an installable package — pkgmk, 1158
translate package format — pkgtrans, 1165
Solaris user registration — solregis, 1449
solregis — Solaris user registration, 1449
sort, topological, items mentioned in input — tsort, 1633
sort — sort and/or merge files, 1452
sortbib — sort bibliographic database, 1459
sotruss — trace shared library procedure calls, 1461
source — shell built-in functions to execute other commands, 366
Source Code Control System, See SCCS
source files, locate — whereis, 1717
sparc — get processor type truth value, 806
spell — check spelling, 1463
spline — interpolate smooth curve, 1466
split files based on context — csplit, 251
split — split a file into pieces, 1467
srchtxt — display contents of, or search for a text string in, message data bases, 1469
ssh-agent — authentication agent, 1484
ssh-http-proxy-connect — Secure Shell proxy for HTTP, 1486
ssh-keygen — authentication key generation, 1488
ssh-socks5-proxy-connect — Secure Shell proxy for SOCKS5, 1491
standard output, replicate — tee, 1550
start Netscape Communicator for Solaris — netscape, 1000
start or stop the NCA kernel module — ncakmod, 999
statistics, collected by sendmail — mailstats, 824
stop — shell built-in functions to control process execution, 562
strchg — change stream configuration, 1493
strconf — query stream configuration, 1493
stream editor — sed, 1388, 1396
STREAMS, change or query stream configuration — strchg, strconf, 1493
string prompt for defined string answer — ckstr, 160
provide an error message for defined string answer — errstr, 160
provide an help message for defined string answer — helpstr, 160
validate a defined string answer — valstr, 160
strings — find printable strings in object or binary file, 1496
strip — strip symbol table, debugging and line number information from an object file, 1498
stty — set the options for a terminal, 1500
stty command, 1508
sum — print checksum and block count for a file, 1515
sum — sum and count blocks in file, 1516
sun — get processor type truth value, 806
SunOS/BSD Source Compatibility Package, — stty, 1508
SunOS/BSD Source Compatibility Package commands — arch, 61
— basename, 96
— biff, 106
— cc, 117
— chown, 141
— df, 280
— du, 306
SunOS/BSD Source Compatibility Package
commands (Continued)
— echo, 316
— expr, 376
— fastboot, 385
— file, 395
— from, 449
— groups, 531
— grpck, 532
— hostid, 546
— hostname, 547
— install, 552
— ld, 666
— lint, 721
— ln, 740
— logger, 753
— lpc, 774
— lpq, 780
— lpq, 784
— lptest, 790
— ls, 797
— mach, 805
— mkstr, 942
— pagesize, 1108
— plot, 1170
— printenv, 1224
— ps, 1260
— rasage, 1331
— shutdown, 1441
— sum, 1516
— test, 1569
— tr, 1614
— tset, 1629
— users, 1658
— vwpw, 1899
— whereis, 1717
— whoami, 1723

provide SunOS compatibility for Solaris
mailbox format — mailcompat, 819
suspend — shell built-in function to halt the
current shell, 1517
suspend execution of command, — sleep, 1444
symorder — update symbol table
ordering, 1518
synchronize files and directories —
filesync, 397
system to system copy — uucp, 1659

system activity
graphical representation — sag, 1335
reporter — sar, 1337
time a command; report process data and
system activity — timex, 1580
system administration, — install, 552
system call and signals, trace — truss, 1621
system log, add entries — logger, 751
system name, print — uname, 1645
system to system command execution —
ux, 1674
system uptime, display — uptime, 1657
sysV-make — maintain, update, and regenerate
groups of programs, 1519

T
TAB characters, expand to SPACE characters,
and vice versa — expand, unexpand, 370
tables, format for nroff or troff — tbl, 1547
tabs — set tabs on a terminal, 1526
tail — display last part of file, 1530
talk — talk to another user, 1533
tape
backspace files — mt, 968
backspace records — mt, 968
erase — mt, 968
forward space files — mt, 968
forward space records — mt, 968
get unit status — mt, 968
place unit off-line — mt, 968
retension — mt, 968
rewind — mt, 968
skip backward files — mt, 968
skip backward records — mt, 968
skip forward files — mt, 968
skip forward records — mt, 968
write EOF mark on — mt, 968
tape, magnetic
copy, blocking preserved — tcopy, 1549
manipulate — mt, 968
scan — tcopy, 1549
tape archives, create — tar, 1536
tar — create tape archives, and add or extract
files, 1536
tbl — format tables for nroff or troff, 1547
tbl, remove nroff, troff, tbl and eqn constructs — deroff, 279
tcopy — copy a magnetic tape, 1549
tee — replicate the standard output, 1550
telnet — user interface to a remote system using the TELNET protocol, 1551
TELNET protocol, user interface to a remote system using the TELNET protocol — telnet, 1551
terminal
set options — stty, 1500
set tabs — tabs, 1526
terminal screen, — clear, 171
terminal session, make script — script, 1385
terminals
get name — tty, 1635
initialize a terminal or query terminfo database — tput, 1604
reset bits — reset, 1628
set characteristics — stty, 1500
terminate a process by default — kill, 579
terminfo database, initialize a terminal or query terminfo database — tput, 1604
test — (FMLI utility) evaluates the expression expression, 1571
test — evaluate condition(s), 1561
test — condition evaluation, 1569
text editing
screen-oriented (visual) display editor based on ex — vi, 1689
sed — stream editor, 1396
stream editor — sed, 1388
text editor
— ed, 318
— edit, 330
— ex, 356
text files
browse or page through a text file — more, page, 944
change format — newform, 1005
text formatter, format documents for display or line-printer — nroff, 1093
text processing utilities
check spelling — spell, 1463
concatenate and display files — cat, 114
display last part of file — tail, 1530
text processing utilities (Continued)
pattern scanning and processing language — awk, 88
search a file for a pattern — grep, 525
search a file for a pattern using full regular expressions — egrep, 334
search file for fixed-character string — fgrep, 391
sort and/or merge files — sort, 1452
split a file into pieces — split, 1467
translate characters — tr, 1609 1614
underline text — ul, 1640
text retrieval tools
create message files for use by gettxt — mkmsgs, 940
retrieve text string from message database — gettxt, 515
text to PDL (Page Description Language) pretty print filter — mp, 951
tftp — trivial file transfer program, 1573
the Network Cache and Accelerator (NCA) — NCA, 995
the Network Cache and Accelerator (NCA) — nca, 995
tilde escape commands for mail, — mailx, 837
time — time a simple command, 1576
time
prompts for time — ctime, 165
provides error message for time — errtime, 165
provides help message for time — helptime, 165
validates time — valtime, 165
time a simple command — time, 1576
timed event services
display the jobs queued to run at specified times — atq, 75
reminder service — calendar, 110
remove jobs spooled by at or batch — atrm, 76
user crontab file — crontab, 220
timemap — frontends to the mp Text to PDL (Printer Description Language) pretty print filter, 820
times — shell built-in function to report time usages of the current shell, 1579
timesysp — frontends to the mp Text to PDL
(Printer Description Language) pretty print filter, 820
timex — time a command; report process data and system activity, 1580
tip — connect to remote system, 1582
tnfdump — convert binary TNF file to
ASCII, 1591
tnfxtract — extract kernel probes output into a
trace file, 1596
touch — change file access and modification
times, 1598, 1636
settime, 1599
touch, 1598
touch — update last modified date of file, 1602
tplot — graphics filters for plotters, 1603
tput — initialize a terminal or query terminfo
database, 1604
tr — translate characters, 1609, 1614
trace function calls, trace application function
calls to Solaris shared libraries —
aptrace, 50
trace shared library procedure calls —
sotru, 1617
translate characters — tr, 1609, 1614
translates exportfs options to share/unshare
commands — exportfs, 372
trap — shell built-in functions to respond to
(hardware) signals, 1615
Trivial File Transfer Protocol, See TFTP
troff — typeset or format documents, 1617
troff utilities
check nroff and troff files — checknr, 128
eliminate .so’s from nroff input —
soelim, 1448
filters reverse line-feeds from two-column
nroff text — col, 174
format tables — tbl, 1547
formats program code — vgrind, 1685
postprocessor for PostScript printers —
dpost, 300
remove nroff, troff, tbl and eqn constructs —
deroff, 279
ttrue — provide truth values, 1620
truss — trace system calls and signals, 1621
tset — set terminal characteristics, 1628
tsort — topological sort of items mentioned in
input, 1633
ttl — time to live value, nischttl, 1041
tty, set characteristics — stty, 1508
tty, set characteristics — tset, 1628
tty, set options — stty, 1500
tty — get the name of the terminal, 1635
typeset — shell built-in functions to set/get
attributes and values for shell variables and
functions, 1637
typeset documents — troff, 1617
U
u370 — get processor type truth value, 806
u3b — get processor type truth value, 806
u3b15 — get processor type truth value, 806
u3b2 — get processor type truth value, 806
u3b5 — get processor type truth value, 806
uclinks — adds /dev entries to give SunOS 4.x
compatible names to SunOS 5.x
devices, 1639
ul — underline text, 1640
ulim — set or get limitations on the system
resources available to the current shell and
its descendents, 715
umask — shell built-in function to restrict
read/write/execute permissions, 1641
unalias — shell built-in functions to create your
own pseudonym or shorthand for a
command or series of commands, 36
uname — print name of current system, 1645
unbind the reference from an FNS name —
frunbind, 446
uncompress — uncompress files, 181
underline text — ul, 1640
unexpand — unexpand SPACE characters to
TAB characters, 370
unhash — shell built-in functions to evaluate
the internal hash table of the contents of
directories, 533
unifdef — resolve and remove ifdef’d lines
from C program source, 1648
uniq — report or filter out repeated lines in a
file, 1650
units — converts quantities expressed in
standard scales to other scales, 1653
UNIX, convert text file from DOS format to ISO
format — dos2unix, 296
UNIX-to-UNIX commands
 uucp — uucp, 1659
 uulog — uucp, 1659
 uuname — uucp, 1659
unix2dos — convert text file from ISO format to DOS format, 1655
unlimit — set or get limitations on the system resources available to the current shell and its descendents, 715
unpack — expand compressed files, 1105
unset — shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents, 1402
unsetenv — shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents, 1402
update and examine attributes associated with FNS named object — fnattr, 430
update groups of programs — sysV-make, 1519
update last modified date of file — touch, 1602
update programs — make, 848
uptime — show how long the system has been up, 1657
user ID, change user IDs of files — chown, 141
user IDs
 display a list of all valid user names — dispuid, 295
 prompts for user ID — ckuid, 167
 provides error message for user ID — erruid, 167
 provides help message for user ID — helpuid, 167
 validates user ID — valuid, 167
users
 display effective name — whoami, 1723
 display group membership — groups, 530
 display information about local and remote users — finger, 411
 get the name of the user running the process — logname, 762
 list user login information — listusers, 725
 talk to another user — talk, 1533
 who is logged in, and what are they doing — w, 1707
 who is logged in on local machines — rwho, 1334
users (Continued)
 who is logged in on remote machines — rusers, 1333
 who is on the system — who, 1720
 write to another user — write, 1726
users, network, Internet user name directory service — whois, 1725
users — display users on system, 1658
uucp — UNIX-to-UNIX copy, 1659
 log — uucp, 1659
 uucp status inquiry — uustat, 1667
 uudecode — decode binary file, 1663
 uuencode — encode binary file, 1663
 uuglist — print list of service grades available, 1666
 uulog — UUCP log, 1659
 uuname — UUCP list of names, 1659
 uustat — uucp status inquiry, 1659
uux — system to system command execution, 1674

V
 vacation — automatic mail replies, 1678
 vax — get processor type truth value, 806
 version control, — vc, 1681
 vgrind — formats program in nice style using troff, 1685
 vi — screen-oriented (visual) display editor based on ex, 1689
 vipw — edit password file, 1699
 volunteer — cancel user’s request for removable media that is not currently in drive, 1700
 volcheck — check for media in a drive, 1701
 volmissing — notify user that volume requested is not in the CD-ROM or floppy drive, 1703
 volrmmount — call rmmount to mount or unmount media, 1704

Volume Management
 cancel user’s request for removable media that is not currently in drive —
 volunteer, 1700
 check for media in a drive — volcheck, 1701
 missing volume notification — volmissing, 1703
vsig — synchronize a co-process with the controlling FMLI application, 1706

W
w — display information about currently logged-in users, 1707
w — who is logged in, and what are they doing, 1707
wait — shell built-in function to wait for other jobs or processes, 1709
wc — display a count of lines, words and characters in a file, 1712
what — extract SCCS version information from a file, 1714
whatis — describe command, 1716
whence — shell built-in functions to set/get attributes and values for shell variables and functions, 1637
whereis — locate the binary, source and manual page files for a command, 1717
which — locate a command; display its pathname or alias, 1719
who is logged in — w, 1707
who — who is on the system, 1720
whoami — display effective user name, 1723
whocalls — report on the calls to a specific procedure, 1724
whois — Internet user name directory service, 1725
write — write to another user, 1726
write file checksums and sizes — cksum, 163

Y
yacc — yet another compiler-compiler, 1738
yacc, create a tags file for use with ex and vi — ctags, 256

Z
zcat — displays uncompressed files but leaves compressed files intact, 181