
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Getting Started Writing XGL Device
Handlers

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Solaris, and XGL are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

The PowerPC name is a trademark of International Business Machines Corporation.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. ix

1. Introduction to the Skeleton Pipeline . 1

About the Skeleton Pipeline . 1

Overview of XGL Architecture. 2

Design Considerations . 4

Files Provided With the Skeleton Pipeline 4

2. Building the Reference Pipelines. 7

Reference Pipelines Provided with the XGL DDK. 7

Software Prerequisites . 8

Space Requirements. 9

Steps for Building the Reference Pipelines 9

3. Implementing the Skeleton Pixel-Level Graphics Handler . 13

About Pixel-Level Rendering . 13

Steps for Implementing Pixel-Level Rendering 14

▼ Choosing a Name for the Graphics Handler 15

iv Getting Started Writing XGL Device Handlers—May 1996

▼ Copying and Renaming the Skeleton Files. 15

▼ Editing Files to Rename the Pipeline Binary 16

▼ Editing the Skeleton Pipeline Interface Files 17

▼ Implementing PixRect Support . 20

▼ Building the Device Pipeline . 22

▼ Testing the Device Pipeline . 22

4. Implementing Accelerated Primitives. 25

About Rendering and Attribute Handling 25

Rendering in the Skeleton Pipeline . 27

Steps for Implementing the Skeleton Renderers 28

▼ Implementing the 2D Polygon Renderer 29

▼ Implementing the 3D Multipolyline Renderer 35

A. Example Hardware Initialization Code. 43

Hardware Initialization Code for the GX Frame Buffer 43

v

Figures

Figure 1-1 High Level View of the XGL Architecture. 1

Figure 1-2 XGL Graphics Porting Architecture . 3

vi Getting Started Writing XGL Device Handlers—May 1996

vii

Tables

Table 1-1 Skeleton Source Code Files . 4

Table 2-1 XGL Reference Pipelines . 7

Table 2-2 Pipeline Space Requirements. 9

Table 3-1 Skeleton Pipeline Interface Files Needing Modification 17

viii Getting Started Writing XGL Device Handlers—May 1996

ix

Preface

The Getting Started Writing XGL Device Handlers manual explains how to use
the XGL™ skeleton pipeline files to create an XGL graphics handler for a
graphics hardware device.

Who Should Use This Manual
This manual is intended for implementors of XGL graphics handlers. It is
assumed that you are is familiar with the C and C++ languages.

How This Manual Is Organized
This manual is organized as follows:

Chapter 1, “Introduction to the Skeleton Pipeline,” describes the skeleton
pipeline and provides a brief overview of the XGL architecture.

Chapter 2, “Building the Reference Pipelines,” documents how to build the
sample XGL graphics handlers provided with the XGL Driver Developer Kit.

Chapter 3, “Implementing the Skeleton Pixel-Level Graphics Handler,”
explains how to modify the skeleton source files to create a pixel-level XGL
graphics handler for your device.

Chapter 4, “Implementing Accelerated Primitives,” provides basic information
on how to modify the skeleton source files to implement accelerated primitives
for your device.

x Getting Started Writing XGL Device Handlers—May 1996

Related Manuals
For information on the XGL architecture and the design of the loadable
pipelines, see the following manual:

• XGL Architecture Guide

For information on the XGL test suite, see:

• XGL Test Suite User’s Guide

For information on the XGL library, see:

• XGL Reference Manual

• XGL Programmer’s Guide

• XGL Accelerator Guide for Reference Frame Buffers

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this
manual.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

1

Introduction to the Skeleton Pipeline 1

About the Skeleton Pipeline
The Solaris Device Developer’s Kit (DDK) includes a template for an XGL™
graphics handler. This template, called the skeleton pipeline, is provided
partially implemented and will help you get started with your implementation
of an XGL graphics handler.

An XGL graphics handler consists of a set of loadable renderers that send
geometry data to the hardware, and a set of interface objects that provide
communication between the XGL device-independent code and the device
pipeline code. The pipeline interface objects form a framework that connects
the device-independent code with the device pipeline rendering code.
Figure 1-1 illustrates the basic components of the graphics handler.

Figure 1-1 High Level View of the XGL Architecture

The skeleton pipeline includes partially implemented files for the device
pipeline interface objects; these files can expedite the implementation of your
device pipeline. The skeleton pipeline also provides a simple implementation
of line and polygon accelerated renderers that you can implement for your
device.

Graphics
Application

Graphics Handler

Interface
objects

XGL
DI code

or API
Loadable
renderers

2 Getting Started Writing XGL Device Handlers—May 1996

1

Overview of XGL Architecture
The XGL library contains two primary components: an application
programming interface (API) for application developers and a graphics porting
interface (GPI) for hardware vendors. The XGL GPI is a device-level interface
that defines the mapping of XGL device handlers to underlying hardware.
Hardware vendors that write XGL device handlers can build graphics devices
that support any binary XGL application.

The XGL GPI consists of three layers of device pipeline interfaces. Each layer
defines a set of rendering tasks that must be accomplished before proceeding
to the next layer in the pipeline. More complex operations, such as
transformations, lighting, and clipping, are performed in the uppermost layer;
less complex operations, such as scan conversion, are performed in the lower
layers.

The top layer of the GPI, Loadable Interface 1 (LI-1), specifies the interface that
lies directly below the XGL API. Functions in this layer take the points defining
the primitive and transform, light (in the 3D case), and clip the geometry in
preparation for the rendering operations in the next layer. The second layer
(LI-2) is responsible for scan converting more complex primitives like polygons
and polylines. The third layer (LI-3) is responsible for rendering pixels,
individually or in spans on the device. The GPI includes a complete software
implementation of the LI-1 and LI-2 layers of the pipeline for most primitives;
however, the lowest layer, which is responsible for writing pixels to the device,
is device dependent and is not included in the software implementation.

Device pipelines written at the LI-1 layer typically implement the full graphics
pipeline for each primitive, including all LI-1 operations, scan conversion, and
pixel rendering. Device pipelines written at the LI-2 layer call the software
pipeline for LI-1 operations and then take over processing at LI-2, performing
scan conversion and rendering pixels on the device. LI-3 device pipelines are
responsible only for rendering pixels; a port at this layer uses the software
pipeline for LI-1 and LI-2 operations. Hardware vendors can implement
different GPI functions at different layers to tailor a port for a particular device.

Figure 1-2 illustrates the layers of the device pipeline and software pipeline
and some components of the XGL device-independent code.

Introduction to the Skeleton Pipeline 3

1

Figure 1-2 XGL Graphics Porting Architecture

For more information on the XGL architecture and for comprehensive
information on implementing an XGL graphics handler, see the following
manuals:

• XGL Architecture Guide

• XGL Device Pipeline Porting Guide

• XGL Test Suite User’s Guide.

For information on the XGL library, see the following:

• XGL Reference Manual

• XGL Programmer’s Guide

XGL Core Library

LI-1 Software Pipeline

LI-2 Software Pipeline

Display Device

LI-1 Layer

LI-2 Layer

LI-3 Layer

XGL Core API to Pipeline Layer

Utilities

DI
Objects

LI-3 Device Pipeline

LI
-2

D
ev

ic
e

P
ip

el
in

e

LI
-1

 D
ev

ic
e

P
ip

el
in

e

Application

4 Getting Started Writing XGL Device Handlers—May 1996

1

Design Considerations
Before you begin developing your graphics handler, you need to determine
how you will handle several important design issues:

❐ What interface layer (LI-1, LI-2, or LI-3) will you port to? A graphics
handler can include routines at all three layers, but usually the
characteristics of the device will determine what interface layer is the
primary porting layer.

❐ Which attributes and primitives can your hardware accelerate?

❐ Which attributes and primitives are needed by the kind of applications
you are targeting? What features would those applications like to have
accelerated?

❐ How will your graphics handler support multiple XGL contexts?

❐ How will your graphics handler support backing store?

❐ Do you need to port Direct Graphics Access (DGA) for your device?

For information on these issues, refer to the XGL Device Pipeline Porting Guide.

Files Provided With the Skeleton Pipeline
Table 1-1 lists the files for the skeleton pipeline and provides a brief description
of these files. For instructions on editing these files to build a pixel-level
graphics handler, see Chapter 3. For instructions on editing the sample
renderers, see Chapter 4.

Table 1-1 Skeleton Source Code Files

File Description

DpLibSkeleton.h
DpLibSkeleton.cc

Header and source files for the XglDpLib object. This object is
created at driver installation time. It creates one or more
XglDpMgr objects.

DpMgrSkeleton.h
DpMgrSkeleton.cc

Header and source files for the XglDpMgr object. This object
manages hardware initialization and creates the XglDpDev
object. Typically, there is one XglDpMgr object per hw device.

Introduction to the Skeleton Pipeline 5

1

DpDevSkeleton.h
DpDevSkeleton.cc

Header and source files for the XglDpDev object. This object
corresponds to the XGL window raster and creates the
XglDpCtx objects.

DpCtx2dSkeleton.h
DpCtx2dSkeleton.cc
DpCtx3dSkeleton.h
DpCtx3dSkeleton.cc

Header and source files for the 2D and 3D XglDpCtx objects.
These objects are created by the XglDpDev object once for
every XGL context-raster association. The XglDpCtx objects
contain the interfaces for the 2D and 3D primitives.

PixRectSkeleton.h
PixRectSkeleton.cc

Header and source files for a device-specific PixRect object.
Memory mapped devices do not need this object. If the device
is not memory mapped, or only one buffer can be accessed at a
time, this object is needed for pixel rendering.

Skeleton2dLi3.cc
Skeleton3dLi3.cc

Source files that contain the rendering routines for LI-3
primitives.

Skeleton2dLi1Raster.cc
Skeleton3dLi1Raster.cc

Source files that contain the LI-1 raster functions..

Skeleton2dLi2Pgon.cc Source file for an LI-2 accelerated polygon renderer.

Skeleton3dLi1Mpl.cc Source file for an LI-1 accelerated multipolyline renderer.

Table 1-1 Skeleton Source Code Files (Continued)

File Description

6 Getting Started Writing XGL Device Handlers—May 1996

1

7

Building the Reference Pipelines 2

This chapter describes how to build the reference XGL device pipelines
provided with the XGL DDK product. Although building the reference
pipelines is not required, you may want to build one or more pipelines to
check that the DDK product and the compilers have been properly installed.

Reference Pipelines Provided with the XGL DDK
Source code for the reference pipelines listed in Table 2-1 is provided with the
XGL DDK as examples of XGL device pipelines. The reference pipelines are
located in /opt/SUNWddk/ddk_2.5.1/xgl/src/dd .

Table 2-1 XGL Reference Pipelines

Name Description Features

cfb SPARC simple color frame
buffer pipeline (CG3/CG8)

8-bit or 24-bit unaccelerated DGA
rendering. Uses RefDpCtx for rendering.

cg6 SPARC TGX frame buffer
pipeline

Example of an LI-1 8-bit color DGA
pipeline. Accelerates 2D solid and
patterned lines, simple polygons without
holes, and multisimple polygons.
Accelerates 3D solid and patterned lines,
solid simple and multisimple polygons,
and flat-shaded, non-Z buffered triangle
strips.

cgm CGM pipeline Outputs CGM formatted files.

8 Getting Started Writing XGL Device Handlers—May 1996

2

Software Prerequisites
Before you build the XGL reference pipelines, you must have the Solaris
environment installed. In addition, the XGL runtime and XGL SDK packages
must be installed. If these packages have been installed to the default locations,
you can determine whether the necessary files are available as follows:

• For the XGL runtime libxgl.so , check the directory
/opt/SUNWits/Graphics-sw/xgl/lib .

• For the XGL SDK include files xgl*h , check the directory
/opt/SUNWsdk/sdk_2.5.1/xgl .

Note – The cg6 pipeline depends on header files that are included in the
Solaris Sample Device Drivers package (SUNWDrvs). This package must be
installed on your system before the cg6 pipeline can be built.

Note – In Solaris 2.5.1, the XGL include files do not reside in the same directory
as the runtime binary. However, a symbolic link from
/opt/SUNWits/Graphics-sw/xgl/include/xgl to
/opt/SUNWsdk/sdk_2.5.1/xgl/include/xgl is created when the SDK
packages are installed. As a result, the XGLHOME environment variable works
as in previous releases.

mem Memory pipeline Renders primitives to host memory.

p9000 x86 pipeline Example of an LI-2 8-bit pipeline.
Accelerates 2D and 3D lines and 3D
multisimple polygons, regular polygons,
triangle strips, and quad meshes. Also
accelerates LI-3 spans.

p9100 x86 and PowerPC™ pipeline Example of an LI-2 8-bit pipeline.
Accelerates 2D and 3D lines and 3D
multisimple polygons, regular polygons,
triangle strips, and quad meshes. Also
accelerates LI-3 spans.

Table 2-1 XGL Reference Pipelines (Continued)

Name Description Features

Building the Reference Pipelines 9

2

Space Requirements
The reference pipelines can require up to 4 Mbytes of disk space, depending on
the number of pipelines you build. Table 2-2 shows the approximate amount of
space needed for each pipeline.

Steps for Building the Reference Pipelines
Follow the steps below to build the reference pipelines.

1. As super-user, run the change_owner script to change owner on the
include , src , and lib directories so that the directories are owned and
writable by the user who will perform the build.

2. Exit root login and become user.

3. Set the $XGLHOME environment variable to point to the directory where
the XGL runtime and include files are located.
The default installed location is /opt/SUNWits/Graphics-sw/xgl .

Table 2-2 Pipeline Space Requirements

Pipeline Size

mem 305K

cfb 272K

cg6 2.3 Mbtyes

cgm 580K

p9000 500K

p9100 500K

<DDK_DIR>/bin/change_owner [owner] [group]

% setenv XGLHOME <XGL runtime directory>

10 Getting Started Writing XGL Device Handlers—May 1996

2

4. Change directory to the directory where the XGL DDK package is
installed.
The default location is /opt/SUNWddk/ddk_2.5.1/xgl .

5. Run the setup_links script.
The setup_links script adds links in the DDK lib directory that point to
the XGL runtime library, the software pipeline, and the stroke font files.

6. Set the required environment variables to point to the appropriate
locations, as follows:
• Set the $XGLHOME environment variable to point to the <DDK_DIR>

directory.
• Set the $LD_LIBRARY_PATH environment variable to point to the location

of the XGL library and the OpenWindows libraries.

7. In the file mk_cc_defs.include , edit the lines CC5 and CCC5 for the
appropriate hardware architecture so that the macros point to the location
of the ANSI C compiler and C++ compiler on your system.
For example, on SPARC hardware running in the Solaris 2.x environment,
you edit the lines as follows:

8. Change directory to the src directory.

9. Execute the make opt command to build the reference pipelines.
The Makefile builds the pipelines for the architecture you are running on
and places the pipeline binaries in the <DDK_DIR>/lib/pipelines
directory.

% cd <DDK_DIR>

% bin/setup_links

% setenv XGLHOME <DDK_DIR>
% setenv LD_LIBRARY_PATH $XGLHOME/lib:$OPENWINHOME/lib

CC5-sparc = /opt/SUNWspro/SC2.0.1/acc
CCC5-sparc = /opt/SUNWspro/SC2.0.1/CC

Building the Reference Pipelines 11

2

To build a single pipeline, execute the make opt command from the
<DDK_DIR>/src/dd/<pipeline> directory. Note that the skeleton
pipeline is intended as a template for your device pipeline; do not build the
skeleton pipeline at this time. Note also that at compile time, the cfb
pipeline requires several memory pipeline object files; therefore, you need to
build the memory pipeline before building the cfb pipeline.

If no “Fatal Error” messages are displayed, the pipeline builds are complete.

12 Getting Started Writing XGL Device Handlers—May 1996

2

13

Implementing the Skeleton Pixel-
Level Graphics Handler 3

This chapter describes how to modify the skeleton source files provided with
the XGL DDK product to create a pixel-level XGL graphics handler for your
hardware device.

About Pixel-Level Rendering
The XGL graphics porting interface (GPI) consists of three layers of device
pipeline interfaces, called LI-1, LI-2, and LI-3. The pixel layer of the XGL GPI is
the lowest layer of the device pipeline. This layer, LI-3, is responsible for
rendering pixels, vectors, and spans, but it leaves geometry processing and
scan conversion to the XGL software pipeline. All device pipelines must
implement routines for the LI-3 layer, since this layer is not implemented in the
software pipeline.

To facilitate LI-3 implementation, the XGL GPI provides a utility object called
RefDpCtx. The RefDpCtx object contains non-optimized implementations of all
the LI-3 routines and several LI-1 routines. RefDpCtx writes to the hardware
via one or more pixel objects called PixRects. A PixRect object is an abstraction
of a buffer managed by the device, for example, the image buffer, Z-buffer, or
accumulation buffer. PixRects represent the frame buffer pixel values to
RefDpCtx. The PixRect object has methods to read and write pixels to the
device, and RefDpCtx uses these methods to set pixel values on the device.

Your pipeline needs PixRects for the image buffer for a 2D pipeline, and for the
image buffer, Z-buffer, and accumulation buffer for a 3D pipeline. The type of
PixRect that you use to represent a particular buffer reflects your hardware. In

14 Getting Started Writing XGL Device Handlers—May 1996

3

order to implement your graphics handler, you need to know the
characteristics of your hardware. In particular, before you can write an LI-3
implementation with RefDpCtx, you must determine whether your hardware
is memory-mapped and whether the Z-buffer and accumulation buffer are
supported in hardware or handled in software.

When a pixel-level graphics handler uses RefDpCtx for rendering, all geometry
and scan conversion functions are performed in the XGL software pipeline.
The software pipeline returns LI-3 vector and span data, which the RefDpCtx
object converts to pixel values. The device pipeline only accesses the hardware
to read and write single pixel values.

Implementing LI-3 using RefDpCtx is a simple, quick way to port XGL to your
hardware. Although rendering is slow, RefDpCtx provides complete coverage
of functionality, as it supports texture mapping, blending, and transparency.
Your XGL graphics handler will probably accelerate some primitives at the LI-1
and LI-2 layers, but implementing the LI-3 layer through the RefDpCtx object
is an easy way to begin porting XGL to your hardware.

Steps for Implementing Pixel-Level Rendering
To implement LI-3 rendering with the skeleton files, follow these general steps:

• Choose a name for your graphics handler.

• Copy the skeleton files and rename them to the name of your pipeline.

• Edit the Makefile to rename the pipeline binary.

• Edit several skeleton device pipeline interface files to correspond to the
capabilities of your device.

• Set hardware addresses to implement PixRect support.

• Build the pipeline.

• Test the pipeline.

The remainder of this chapter shows you how to complete these tasks.

Implementing the Skeleton Pixel-Level Graphics Handler 15

3

▼ Choosing a Name for the Graphics Handler

First, choose a name for your graphics handler. A XGL graphics handler must
be named according to the following convention:

xgl<COMPANY NAME><device name>.so.<major version>

 where:

• <COMPANY NAME> is a 4-letter capitalized abbreviation for the company
that implements the device pipeline.

• <device name> is the abbreviated name of the device, which should be an
abbreviated form of the name of the corresponding kernel device driver
located in the /dev directory.

• <major version> is the major release number of the DDK associated with the
particular release of XGL that is compatible with this device pipeline.

For example, a Sun Microsystems Cg6 device pipeline for version 4 of the XGL
GPI is named xglSUNWcg6.so.4 , where SUNW is the company symbol, cg6 is
the device name, and 4 is the major version number. For your pipeline, you
only need to choose a company name and device name. The xgl and version
number portions of the graphics handler name are added automatically by the
Makefile.

The XGL versioning scheme is implemented as part of the device-independent
library and as part of the DDK. The DDK header file xgli/DdkVersion.h
defines the version number, which contains major and minor parts. When the
pipeline is compiled, the major and minor version numbers are stamped in the
pipeline file. The skeleton pipeline file DpLibSkeleton.cc includes the
DdkVersion.h header file, as should your pipeline. For more information on
versioning rules, see the XGL Device Pipeline Porting Guide.

▼ Copying and Renaming the Skeleton Files

The skeleton files provide the derived classes you need for your pipeline. To
use the skeleton files, follow these steps:

1. Execute the convert_skeleton script located in <DDK_DIR>/xgl/bin .
The convert_skeleton script creates a new directory hierarchy for your
pipeline files and names the directory with your device name. The script
then copies the skeleton files from the <DDK_DIR>/src/dd/skeleton
directory to the new directory and renames the files with your device name.

16 Getting Started Writing XGL Device Handlers—May 1996

3

The convert_skeleton script also updates all function names and
variables to use the device name. As an example, for a pipeline named
My_pipeline, the command would be:

2. Change directory to your pipeline directory.

3. To check that your pipeline builds, execute the make opt command.
The make opt command creates the objs directory for the skeleton pipeline
object files and compiles and links the pipeline.

If the new pipeline builds without errors, you are ready to begin modifying the
skeleton files for your pipeline.

Note – In the remainder of this guide, skeleton pipeline refers to your pipeline.

▼ Editing Files to Rename the Pipeline Binary

You need to change the SYMBOL variable in several skeleton files to your
company name.

1. Edit the skeleton pipeline Makefile to change SYMBOL to your company
symbol in upper case letters.
Edit the following line:

2. Change directory to the include directory.

3. Edit the xgl_errors_Skeleton.po file to change SYMBOL to your
company symbol in upper case letters.
Edit the following lines:

<DDK_DIR>/bin/convert_skeleton [My_pipeline]

LIB_NAME = xglSYMBOLskeleton

domain “xglSYMBOLskeleton”
msgid “SYMBOLskeleton-1”
msgid “SYMBOLskeleton-2”

Implementing the Skeleton Pixel-Level Graphics Handler 17

3

4. Execute the make extract command to convert the error file text to the
error file binary.

▼ Editing the Skeleton Pipeline Interface Files

In this step, you will modify the skeleton header and source files for the device
pipeline interface objects to match the capabilities of your hardware. The
device pipeline interface objects connect the device-independent code with the
device pipeline renderers. To enable you to implement a pixel-level graphics
handler quickly, the XGL DDK product has provided a set of partially
implemented files for these objects. All you need to do to render pixels on your
device is add device-specific information to the generic skeleton pipeline
interface files and, if necessary, write several functions.

Table 3-1 shows which skeleton device pipeline files require modification and
which are provided ready to use. For more information on the device pipeline
interface objects, see the XGL Device Pipeline Porting Guide. Comments in the
skeleton source files provide information on how the skeleton pipeline
implements these objects.

To edit the device pipeline interface files, follow these steps:

Table 3-1 Skeleton Pipeline Interface Files Needing Modification

Object Source Files Need Changes?

XglDpLib DpLibSkeleton.h
DpLibSkeleton.cc

No

XglDpMgr DpMgrSkeleton.h
DpMgrSkeleton.cc

Yes

XglDpDev DpDevSkeleton.h
DpDevSkeleton.cc

Yes

XglDpCtx2d
XglDpCtx3d

DpCtx*Skeleton.h
DpCtx*Skeleton.cc

Not at this time. See Chapter 4.

18 Getting Started Writing XGL Device Handlers—May 1996

3

▼ Step 1: Edit the DpMgrSkeleton header and source files.

You need to update the XglDpMgr header and source files to add code for
hardware initialization and update the inquire() method.

1. In the DpMgrSkeleton.h file, add any variables needed by hardware
initialization routines.
For example, you might need a structure to represent your hardware. This
structure could contain the base register address, screen dimensions, and
other information relevant to the physical device.

2. In the DpMgrSkeleton.cc constructor, set the Boolean values for
memoryMappedImageBuffer and memoryMappedZBuffer to TRUE if the
image buffer or Z buffer are memory mapped.

3. In the DpMgrSkeleton.cc constructor, set the Boolean values hwZBuffer
and hwAccumBuffer to TRUE if your hardware has a hardware Z buffer or
hardware accumulation buffer.
The value of these variables are tested in the DpDevSkeleton object; they
determine what type of PixRects are instantiated for your pipeline.

If your hardware has a hardware Z buffer, but you want to get your port
working quickly, leave the hwZBuffer variable set to FALSE to use the
software pipeline Z buffer.

4. In the DpMgrSkeleton.cc constructor, insert hardware initialization
code.
The XglDpMgr class constructor is called once for each instance of your
hardware device, so this is a convenient place to map in registers or frame
buffer memory. For an example of hardware initialization for a GX device,
which has a memory mapped image buffer and uses a software Z buffer, see
the reference pipeline code for the GX frame buffer or see Appendix A,
“Example Hardware Initialization Code” on page 43.

5. In the DpMgrSkeleton.cc destructor, insert code to free any allocated
resources.

Tip ➼

Implementing the Skeleton Pixel-Level Graphics Handler 19

3

6. Update the values in the DpMgrSkeleton.cc method inquire() to
match the attributes of a window on your device.
The inquire() routine returns information on the acceleration features
underlying a window and corresponds to the XGL API function
xgl_inquire() . Applications use the information returned by
xgl_inquire() to determine what is accelerated on the device they are
running on.

It is important to note that although inquire() appears to hold
information about the frame buffer as a whole, the application that inquires
about the device is actually requesting information on the window it is
running in. For example, if your device accelerates more than one color type
or provides double buffering on only one window at a time, your
inquire() routine will need to determine what acceleration features were
provided in a particular window in order to return accurate information to
the application.

To implement the inquire() method, do the following:
• Set the value of the name variable to the name or symbol for your

company. For example, the company symbol for Sun is SUNW, and the
name for the GX device is cg6. Thus, on a GX device, the xgl_inquire()
function returns inq_info->name = SUNW:cg6 .

• Update other values in the inquire() routine to match your hardware.

You may want to implement acceleration on your device before updating
the values in inquire() . Be sure to update this routine; one way that
applications know how to use your hardware is by checking the values
returned in xgl_inquire() .

▼ Step 2: Edit the XglDpDev source file.

You need to override device specific functions provided in the DpDev source
file.

1. Override the optional methods in DpDevSkeleton.cc to correspond to
the functionality of your device.
DpDevSkeleton.cc provides virtual functions for the set of optional
methods inherited from the DpDev class hierarchy. Override these methods
if the default behaviors or returned values do not match those of your
device. For example, if your hardware handles double buffering, you have

Tip ➼

20 Getting Started Writing XGL Device Handlers—May 1996

3

to override the DpDev virtual functions setBuffersRequested() ,
setBufDisplay() , and setBufDraw() to do what is appropriate for your
hardware.

Note that the DpDevSkeleton function updateDev() handles updating the
hardware when the user switches rasters. updateDev() updates the device-
specific attributes by getting the current values of the raster attributes from
device-independent XGL and calling the functions that you have
overridden.

2. Insert code to free any allocated resources in the DpDevSkeleton
destructor.

▼ Implementing PixRect Support

The RefDpCtx utility object assumes that the pipeline is able to set individual
pixel values to the hardware. The PixRect objects provide RefDpCtx with the
base address of the hardware or software memory.

Setting up PixRect support in the skeleton pipeline has been designed so that
you only have to:

• Set Boolean variables that indicate whether your hardware image buffer or
Z buffer are memory mapped, and set additional Boolean variables that
indicate whether your device has a hardware Z buffer or accumulation
buffer. You should have already set these Boolean values in the
DpMgrSkeleton.cc file.

• Set the hardware address for the image buffer, and, if applicable, for a
hardware Z buffer or hardware accumulation buffer. Where you set these
addresses depends on whether your hardware is memory mapped or not.

PixRect Support for a Memory-Mappable Device

PixRect support for memory-mapped devices is provided in the XglPixRect
subclass XglPixRectMemAssigned. This class provides a method that creates a
PixRect object on existing hardware memory.

Implementing the Skeleton Pixel-Level Graphics Handler 21

3

In the DpMgrSkeleton.h file, a PixRect of type XglPixRectMemAssigned is
already allocated to represent the entire frame buffer. This PixRect is used as a
resouce for the window PixRect. It contains low-level information about the
frame buffer address and size.

♦ To associate the frame buffer PixRect with your device, edit the
DpMgrSkeleton.cc constructor to set the fb_address variable to the base
address of your frame buffer.
The DpMgrSkeleton class constructor uses Xlib calls to get the height and
width of your frame buffer and the depth of the window. In
DpMgrSkeleton.cc , the XglPixRectMemAssigned method reassign()
initializes this PixRect with the correct information for your hardware.

PixRect Support for a Non-Memory-Mappable Device

If your device is not memory mappable, or if only one buffer is accessible at a
time, you must subclass from PixRect.h and override methods to do what is
needed to access the hardware. The skeleton pipeline provides a subclassed
PixRect class in the files PixRectSkeleton.h and PixRectSkeleton.cc .
You can use these files to implement your device-specific PixRect class.

To implement your device’s version of the PixRect class, edit
PixRectSkeleton.cc as follows:

1. Override the setValue() method with code to write the value of a single
pixel to the screen.

2. Override the getValue() method with code to return the value of a
single pixel.

3. If both the image buffer and the Z buffer are non-memory-mapped, edit
the validateBuffer() method to set the hardware registers to the
appropriate buffer.
When both the image buffer and Z buffer are not memory-mapped,
validateBuffer() determines whether the image buffer or Z buffer is the
current buffer and sets the hardware registers to the appropriate buffer. The
setValue() and getValue() methods then render to or read from the
correct buffer.

4. If your frame buffer is more than 32 bits deep, override the methods
getValueByPointer() and setValueByPointer() .

22 Getting Started Writing XGL Device Handlers—May 1996

3

▼ Building the Device Pipeline

Now you can build your LI-3 pipeline using the Makefile provided with the
skeleton pipeline. Your pipeline will render to your hardware at the LI-3 level
using RefDpCtx and the PixRect setValue() and getValue() calls.

1. To build an optimized pipeline, execute the make opt command.
The pipeline binary is located in the lib/pipelines directory.

Note that an optimized pipeline cannot be debugged easily. To build a
debuggable pipeline, execute the make debug command.

2. If you modified the xgl_errors_Skeleton.po file to add device-specific
error messages, execute the make extract command.
This command creates the .mo error file binary for internationalization of
error messages.

▼ Testing the Device Pipeline

To test your pipeline, you can run the install_check program in the SDK
demo directory or run any application program. The install_check program
displays some information about the hardware. To run install_check , key
in $XGLHOME/demo/install_check .

You can also run the Denizen Test Suite provided with the XGL DDK product.
The Denizen Test Suite is a set of verification programs that enables you to test
the accuracy of your implementation. Denizen is a set of shell scripts and C
programs that uses the XGL library to render objects and evaluate results. It
creates a log of events, errors, and failures that can be compared to logs
provided by XGL.

The Denizen Test Suite is installed from the DDK CD. Its default installation
location is /opt/SUNWddk/ddk_2.5.1/xgl/src/test_suite/denizen .
This directory contains reference images used for comparison testing,
documentation on the test programs, and the run_denizen.sh shell script
that executes the Denizen test suite. The README file contains information on
run_denizen.sh .

To run Denizen, follow these steps:

1. Set the required environment variables as noted in the INSTRUCTIONS
file in the denizen directory.
Be sure to set the FB_NAME environment variable to your pipeline name.

Implementing the Skeleton Pixel-Level Graphics Handler 23

3

2. Execute the run_denizen.sh script.
The run_denizen.sh script runs the entire set of Denizen tests. To run one
or more test areas, you can execute run_denizen.sh <test area>.

For more detailed information on running Denizen and comparing test results,
see the XGL Test Suite User’s Guide.

24 Getting Started Writing XGL Device Handlers—May 1996

3

25

Implementing Accelerated
Primitives 4

You should now be able to render pixels to your hardware using the RefDpCtx
utility object. If pixel rendering is working, you are ready to implement
accelerated renderers on your device. This chapter discusses the
implementation of accelerated primitives. It also presents information on
design issues to consider when implementing your pipeline

About Rendering and Attribute Handling
Rendering and context state are handled by structures defined in the XglDpCtx
classes and objects XglDpCtx2d and XglDpCtx3d. The XglDpCtx base class
includes a dynamic array of function pointers to renderers and to functions
that handle state setting. This array, called the opsVec array, is inherited by the
device pipeline XglDpCtx2d and XglDpCtx3d objects. A portion of the default
opsVec array in the base XglDpCtx3d class looks like this:

When the device pipeline is instantiated, its XglDpCtx object contains a set of
opsVec array pointers specific to the device. In its version of the array, the
device pipeline overrides some or all of the LI-1 and LI-2 entries to install

.....
opsVec[XGLI_LI1_MULTIMARKER] = XGLI_OPS(XglDpCtx3d::li1MultiMarker);
opsVec[XGLI_LI1_MULTIPOLYLINE] = XGLI_OPS(XglDpCtx3d::li1MultiPolyline);
.....
opsVec[XGLI_LI_OBJ_SET] = XGLI_OPS(XglDpCtx3d::objectSet);
opsVec[XGLI_LI_MSG_RCV] = XGLI_OPS(XglDpCtx3d::messageReceive);

26 Getting Started Writing XGL Device Handlers—May 1996

4

function pointers to its own accelerated renderers. Renderers that are not
overriden remain set to the default software pipeline renderers. The device
pipeline must fill in pointers to LI-3 functions, since these routines are device
dependent and not provided by XGL.

At rendering time, the application primitive call is routed to the device
pipeline by the XGL device-independent code. The device-independent code
maps the C primitive call to a C++ internal call, and forwards the call and the
application data to the device pipeline by calling the device pipeline opsVec
entry for the primitive. If the device pipeline has installed a function pointer to
one of its own renderers in the opsVec array, its renderer is called.

An example of a device opsVec array is provided in DpCtx3dSkeleton.cc .
In this file, the skeleton pipeline installs function pointers for the LI-1 and LI-3
required functions. The skeleton pipeline also includes function pointers for
the required attribute handlers. For all other LI-1 and LI-2 renderers, the
skeleton pipeline inherits the default array entries that point to software
pipeline routines. A portion of the skeleton opsVec array is listed below.

The device pipeline implementation of the attribute handling routines
objectSet() and messageReceive() focuses on attributes that the pipeline
is concerned with. The objectSet() routine handles attribute changes
resulting from an application call to xgl_object_set() . The
messageReceive() function handles attribute changes resulting from
changes to XGL objects. Information on attribute changes is noted by the
device-independent code and passed directly to the device pipeline through
the opsVec array. See the skeleton pipeline DpCtx2dSkeleton.cc and
DpCtx3dSkeleton.cc files for examples of these routines.

// LI-1 Raster operations
opsVec[XGLI_LI1_NEW_FRAME] = XGLI_OPS(XglDpCtx3dSkeleton::li1NewFrame);
opsVec[XGLI_LI1_FLUSH] = XGLI_OPS(XglDpCtx3dSkeleton::li1Flush);
opsVec[XGLI_LI1_COPY_BUFFER]
=XGLI_OPS(XglDpCtx3dSkeleton::li1CopyBuffer);
.....
// LI3 Primitives - Required
opsVec[XGLI_LI3_MULTIDOT] = XGLI_OPS(XglDpCtx3dSkeleton::li3MultiDot);
opsVec[XGLI_LI3_VECTOR] = XGLI_OPS(XglDpCtx3dSkeleton::li3Vector);
opsVec[XGLI_LI3_MULTISPAN] = XGLI_OPS(XglDpCtx3dSkeleton::li3MultiSpan);
.....
// Attribute handlers - Required
opsVec[XGLI_LI_OBJ_SET] = XGLI_OPS(XglDpCtx3dSkeleton::objectSet);
opsVec[XGLI_LI_MSG_RCV] = XGLI_OPS(XglDpCtx3dSkeleton::receiveMessage);

Implementing Accelerated Primitives 27

4

The opsVec array is designed to minimize overhead in the device-independent
code during a primitive call. The device pipeline is notified immediately of a
primitive call or attribute changes.

Rendering in the Skeleton Pipeline

The skeleton graphics handler provides example accelerated pipelines for 3D
LI-1 multipolylines and for 2D LI-2 polygons. The renderers reside in the files
Skeleton2dLi2Pgon.cc and Skeleton3dLi1Mpl.cc . Each skeleton
pipeline renderer is designed as a set that includes these routines:

• A generic routine that evaluates incoming data and determines whether
acceleration is possible

• A fast renderer that does a quick test of the application arguments and then
sends application point data to the hardware

Each generic routine does the following:

• Checks the application data and handles other changes that the pipeline
needs to be aware of, such as context changes.

• Determines the current attribute settings for the attributes that the pipeline
is concerned with.

• Sets the opsVec[] entry to the default software pipeline routine or to the
fast renderer, depending on the attribute settings. In some cases, the routine
calls the software pipeline directly.

The device pipeline can set opsVec entries at object creation or at any time
during program execution. Installing opsVec array entries during program
execution is usually a result of attribute changes and can be done from the
objectSet() routine. As an example, the skeleton pipeline sets opsVec array
entries by doing the following:

1. At device pipeline initialization, the skeleton pipeline initializes the opsVec
array with static renderers for the LI-1 and LI-3 routines.

2. When a primitive call occurs, the skeleton pipeline generic renderer
determines whether acceleration is possible. It checks the following:

28 Getting Started Writing XGL Device Handlers—May 1996

4

• If the application data (the point type) cannot be accelerated, the software
pipeline is called directly to do the operations at that loadable interface
level, but the opsVec entry remains set to the generic pipeline. If the point
type can be accelerated, the generic renderer continues by checking the
current attribute settings.

• If the current attribute settings can be accelerated, the generic renderer
sets the fast renderer in the opsVec array and then calls it. If the current
attribute settings cannot be accelerated, the generic renderer sets the
default software pipeline renderer in the opsVec array and then calls it.

3. When attributes change, if the skeleton pipeline is concerned with the
changed attributes, the objectSet() routine sends the new values to the
hardware and resets the generic renderer in the opsVec so that it will be
called to re-evaluate whether acceleration is possible the next time a
primitive is called.

In your implementation, you will set the opsVec array entries to your
accelerated renderers. For some primitives, you may want to have a pair of
renderers as shown in the skeleton pipeline. For other renderers, you may need
a family of renderers to handle optimized cases of attributes or point types.

Steps for Implementing the Skeleton Renderers
To use the skeleton pipelines, you must add code to send data to your
hardware. Depending on your hardware and implementation, you may also
need to modify these routines in other ways so that they correspond to your
hardware. In addition, you need to modify the DpCtxSkeleton files to set up
attribute handling and rendering for your device.

The sections that follow describe the implementation of the skeleton renderers
in detail. If you plan to implement accelerated rendering at the LI-1 layer, read
the section on LI-1 multipolyline on page 35; if your hardware is suited for LI-2
acceleration, read the section on LI-2 polygon on page 29. How you modify the
skeleton code will vary depending on your implementation.

Implementing Accelerated Primitives 29

4

▼ Implementing the 2D Polygon Renderer

The Skeleton2dLi2Pgon.cc file provides an example of a simple 2D
polygon renderer implemented at the LI-2 layer. The file contains two routines:

• A generic renderer, li2GeneralPolygon , that determines whether
acceleration is possible. li2GeneralPolygon is the entry point for the
device pipeline polygon renderer at LI-2. A device pipeline for a device that
implements polygon acceleration at the LI-2 level will provide this routine.

• A fast renderer, li2FastGeneralPolygon , that sends data to the
hardware given certain point types and attribute values.

The following steps take you through the sections of these routines in detail
and examine the kinds of modifications you might need to make to implement
them for your hardware.

▼ Step 1: Modify the generic renderer.

The generic polygon renderer, li2GeneralPolygon , checks for point type,
context, primitive, and attribute changes. If no changes have occurred, the
routine sets the fast renderer in the opsVec array and calls the opsVec[]
entry to send data to the hardware.

Note – At the LI-2 level, data is given to device pipelines under the control of
the XglPrimData object. At LI-2, the software pipeline has performed LI-1
processing and stored the API data internally in XglLevel format. The LI-2
device pipeline must extract point and facet data from the XglLevel object. The
skeleton pipeline provides an example of the use of the XglLevel methods. For
more information on how the software pipeline stores data and on the methods
the device pipeline can use to extract this data, see the XGL Device Pipeline
Porting Guide.

The code for the initial section of li2GeneralPolygon is listed below. To
implement li2GeneralPolygon for your hardware, you may need to modify
one or more statements in the initial section of the routine. These changes are
listed following the code, and the numbers to the left of the code sample
correspond to the list items. Note that some of the actual code comments in
li2GeneralPolygon have been omitted in this listing.

30 Getting Started Writing XGL Device Handlers—May 1996

4

void XglDpCtx2dSkeleton::li2GeneralPolygon(XglPrimData* pd)
{
 XglLevel* level = pd->getCurrentLevelData();
 Xgli_point_list* pt_list = level->getPointLists();
 Xgli_facet_list* facet_lists = level->getFacetList();

 // Check point list changes.
 if (!pt_list) {

return;
 } else if (pt_list->pt_type != XGL_PT_FLAG_F2D ||

(facet_lists && facet_lists->facet_type != XGL_FACET_NONE)) {
 swp->li2GeneralPolygon(pd);
 return;
 }

 // Check for context change.
 if (dpMgr->lastDpCtx != this) {

updateContext();
 }

 // Determine whether the primitive has changed.
 if (lastPrim != XGLI_LI2_POLYGON) {

if (ctx->getSurfFrontCOlorSelector() ==
 XGL_SURF_COLOR_CONTEXT) {

// Set Context surface front color into hardware
}

lastPrim = XGLI_LI2_POLYGON;
 }

 // Lock window.
 WIN_LOCK(drawable) ;

 if (drawable->windowIsObscured()) {
 WIN_UNLOCK(drawable) ;
 return; // Window is obscured; don’t render
 }

Xgl_boolean accelerate =
(surfFrontFillStyle == XGL_SURF_FILL_SOLID) &&

// Pattern is dependent on style. This example only
// accelerates style XGL_SURF_FILL_SOLID.
// FpatPosition is dependent on pattern.
// ctx->getSurfFrontFpat():
// ctx->getSurfFrontFpatPosition():

➀

➁

➂

④

Implementing Accelerated Primitives 31

4

(ctx->getRop() == XGL_ROP_SRC) &&
(ctx->getPlaneMask() == (Xgl_usgn32)-1) &&
(ctx->getSurfEdgeFlag() == FALSE) &&
(ctx->getSurfInteriorRule() == XGL_EVEN_ODD) &&
(ctx->getSurfFrontColorSelector() == XGL_SURF_COLOR_CONTEXT) ;

// Antialiasing support on 2D Contexts is device dependent
// (ctx->getSurfAaBlendEq() == XGL_BLEND_NONE) &&
// (ctx->getSurfAaFilterShape() == XGL_FILTER_GAUSSIAN) &&
// (ctx->getSurfAaFilterWidth() == 1) &&

1. Statement 1 in li2GeneralPolygon specifies which API data types are
accelerated. The skeleton pipeline accelerates rendering if the point type is
XGL_PT_FLAG_F2D. If a facet list is present, the facet type must be
XGL_FACET_NONE. In any other case, the routine calls the software pipeline
to perform LI-2 operations. The software pipeline may call back the device
pipeline at the LI-3 level.

For your implementation, consider what point types and facet types the
hardware can accelerate. Then modify statement 1 as needed so that your
pipeline corresponds with the capabilities of your hardware. For
information on the complete set of XGL data types, see the XGL Reference
Manual.

2. Statement 2 determines whether a context switch has occurred. If the XGL
Context that the application is using has changed, the updateContext()
routine in XglDpCtx2dSkeleton is called to update the view group interface
object and the Context attributes.

If your hardware has only one hardware context, use this statement to keep
track of context switches. If your hardware has multiple hardware contexts,
you may want to associate each hardware context with an XGL Context. In
this case, you do not need to check for context changes. Note, however, that
some applications may define many XGL Context objects, so you may want
to monitor context changes even if your hardware has multiple contexts.

3. Statement 3 determines whether the primitive has changed. Because context
state may be different for each primitive, you may want to check context
state for some attributes. For example, you may want to get the Context
color for the current primitive and set it on the hardware before rendering.

32 Getting Started Writing XGL Device Handlers—May 1996

4

4. Statement 4 checks the current attribute settings to evaluate whether to use
the skeleton pipeline accelerated renderer or fall back to the software
pipeline. The skeleton pipeline accelerates rendering if the surface front fill
style is solid, and the ROP, plane mask, surface edge flag, surface interior
rule, and surface front color selector are set to the default values.

Modify this section if you implement other values for these attributes. For
example, if your hardware handles fill styles, your pipeline should check the
fill attributes. If your hardware handles the ROP mode XOR, your renderer
should check the ROP attributes.

The last section of li2GeneralPolygon sets the opsVec entry to
li2FastGeneralPolygon if acceleration is possible, or calls the software
pipeline if acceleration is not possible. The opsVecDiDefault routine
reinstalls the software pipeline as the default opsVec entry. The opsVec entry
remains set to the software pipeline or the fast renderer until an attribute
changes. At that time, the objectSet routine sends the attribute changes to
the hardware and reinstalls the generic li2GeneralPolygon in the opsVec
array. After an attribute change, the next time rendering occurs, the generic
renderer evaluates changes and determines which renderer to call. You do not
need to modify this code for your device pipeline.

if (!accelerate) {
// Unlock window.
WIN_UNLOCK(drawable);

// Set opsVec[] to default renderer.
opsVec[lastPrim] = opsVecDiDefault[lastPrim];

// Call renderer though opsVec[]
(this->*((void(XglDpCtx2d::*)(XglPrimData*))

 (opsVec[lastPrim])
)

)(pd);

return;
}

// Acceleration is possible. Set opsVec[] to fast renderer.
opsVec[lastPrim] =

XGLI_OPS(XglDpCtx2dSkeleton::li2FastGeneralPolygon);

// Call renderer though opsVec[]
(this->*((void(XglDpCtx2dSkeleton::*)(XglPrimData*))

Implementing Accelerated Primitives 33

4

 (opsVec[lastPrim])
)
)(pd);

// Unlock window.
WIN_UNLOCK(drawable);

Note – In your implementation, you can call the software pipeline directly as
swp->li2GeneralPolygon(pd) rather than through the opsVec array.

▼ Step 2: Modify the fast renderer.

The li2FastGeneralPolygon routine first tests to verify that nothing has
changed. The test checks that the point list is valid, that the context and the
facet type have not changed, and that the last primitive was sent from the
li2GeneralPolygon group of renderers. If something has changed, the
routine sets the generic renderer and calls it directly. Otherwise, it sends data
to the hardware.

In your implementation, add code in the fast renderer to send data to the
hardware. Note that the skeleton renderer does not handle surface edges. An
example of how to access LI-2 edge flag data in a renderer that supports edges
is provided in the Skeleton2dLi2Pgon.cc comments.

void XglDpCtx2dSkeleton::li2FastGeneralPolygon(XglPrimData* pd)
{
 XglLevel* level = pd->getCurrentLevelData();
 Xgli_point_list* pt_list = level->getPointLists();
 Xgli_facet_list* facet_lists = level->getFacetList();

 Xgl_facet_type ftype = (facet_lists) ? facet_lists->facet_type
 : XGL_FACET_NONE;

 XglDrawable* localDrawable = this->drawable;
 WIN_LOCK(localDrawable);

if (!pt_list | (int)dpMgr->lastDpCtx - (int)this |
ftype - lastFacetTypeInfo.facet_type |
XGLI_LI2_POLYGON - lastPrim) {

WIN_UNLOCK(localDrawable);

34 Getting Started Writing XGL Device Handlers—May 1996

4

// Set default generic renderer, then execute.
opsVec[XGLI_LI2_POLYGON] =

XGLI_OPS(XglDpCtx2dSkeleton::li2GeneralPolygon);

 li2GeneralPolygon(pd);
 return;
 }

 Xgl_pt_i2d *pts;
 Xgl_sgn32 num_pts; // Number of points
 Xgl_usgn32 num_pl = level->getNumPointLists();
 Xgl_sgn32 pt_size = pt_list->geom_ptr.step_size;

 for (Xgl_usgn32 i = 0; i < num_pl; i++) {
num_pts = pt_list[i].current_num_points;
// Skip point lists with less than three points.
if (num_pts < 3) {

continue;
}

pts = (Xgl_pt_i2d*)pt_list[i].geom_ptr.base_ptr;
flags = (Xgl_usgn32*)pt_list[i].flag_ptr.base_ptr;

// my_hw = BEGINNING_OF_POLYGON
for (Xgl_usgn32 j = 0; j < num_pts; j++) {

// Pass data to hardware.
// my_hw_x = pts->x;
// my_hw_y = pts->y;

XGLI_INCR(flags, Xgl_usgn32*, flag_size);
XGLI_INCR(pts, Xgl_pt_i2d*, pt_size);

} // end for(j)
 } // end for(i)

 // Unlock window
 WIN_UNLOCK(localDrawable);
}

Implementing Accelerated Primitives 35

4

▼ Step 3: Update DpCtx2dSkeleton.

Before your implementation of 2D polygon rendering is complete, you must
modify the DpCtx2dSkeleton.cc file as follows:

1. Modify the routine to add your renderer. You can uncomment the following
line in objectSet() :

2. Add code to the objectSet() routine to update your hardware context for
all the XGL Context attributes that your pipeline is concerned with.

The routine retrieves the current attribute values and sends them to the
hardware. It also sets a flag, li2_generalpolygon_change_renderer ,
that indicates whether the generic renderer should be reinstalled.

When you have made these changes, your implementation of the skeleton 2D
polygon renderers is complete. Use the Denizen test suite to test your
implementation.

▼ Implementing the 3D Multipolyline Renderer

The Skeleton3dLi1Mpl.cc file provides an example of a simple 3D line
renderer implemented at the LI-1 layer. The file contains three routines:

• A generic renderer, li1MultiPolyline , which determines whether
acceleration is possible. li1MultiPolyline is the entry point for the
device pipeline line renderer at LI-1. A device pipeline for a device that
implements line acceleration at the LI-1 level will provide this routine.

• A fast renderer, li1MplineFast , that sends data to the hardware given
certain point types and attribute values.

• A 3D model clipping routine, li1MplineMC , that model clips the data and
calls the fast renderer to send the data to the hardware.

The following steps take you through the sections of these routines in detail
and examine the kinds of modifications you might need to make to implement
them for your hardware.

// opsVec[XGLI_LI2_POLYGON = XGLI_OPS(XglDpCtx2dSkeleton::li2GeneralPolygon);

36 Getting Started Writing XGL Device Handlers—May 1996

4

▼ Step 1: Modify the generic renderer.

The generic renderer, li1MultiPolyline , checks for point type, context,
primitive, and attribute changes. If no changes have occurred, the routine sets
the fast renderer in the opsVec array and calls the opsVec[] entry to send
data to the hardware.

The code for the initial section of li1MultiPolyline is listed below. To
implement this routine for your hardware, you may need to modify one or
more statements in the initial section of the routine. These changes are listed
following the code, and the numbers to the left of the code sample correspond
to the list items. Note that some of the code comments in li1MultiPolyline
have been omitted in this listing.

void XglDpCtx3dSkeleton::li1MultiPolyline(Xgl_bbox* api_bbox,
Xgl_usgn32 api_num_plists,
Xgl_pt_list* api_pt_list)

{
 // Determine whether API data can be accelerated.
 if (!api_pt_list) {

return;
 } else if (api_pt_list->pt_type != XGL_PT_F3D) {
 swp->li1MultiPolyline(api_bbox, api_num_plists, api_pt_list);
 return;
 }

 // Create a local copy of the point type.
 Xgl_pt_type pt_type = api_pt_list->pt_type;

 // Determine whether the point type changed. If so,
 // update point type information.
 // The XgliUtPtTypeInfo utility saves information about
 // the point type that the fast renderer can use.
 if (lastPtTypeInfo.pt_type != pt_type) {
 XgliUtPtTypeInfo(pt_type, &lastPtTypeInfo);

lastPtTypeInfo.pt_type = pt_type;
 }

 // Check for context change.
 if (dpMgr->lastDpCtx != this) {

updateContext();
 }

 // Determine whether the primitive has changed.
if (lastPrim != XGLI_LI1_MULTIPOLYLINE) {

➀

➁

➂

Implementing Accelerated Primitives 37

4

if ((ctx->getCurrentStroke()->getColorSelector() ==
XGL_LINE_COLOR_CONTEXT)) {
// Set Context line color into hardware.

}
// Update other attributes that may have changed.
lastPrim = XGLI_LI1_MULTIPOLYLINE;

 }

 // Lock window.
 WIN_LOCK(drawable) ;

 if (drawable->windowIsObscured()) {
 WIN_UNLOCK(drawable) ;
 return; // Window is obscured.
 }

 // Determine whether the transform changed.
 if (transformsChanged ||

viewGrpItf->changedComposite(li1StrokeViewConcern)) {
updateTransforms();

 }

 // Determine whether the window clip list changed.
 // If so, update the hardware clip list using the DpCtxSkeleton
 // sharedUpdateLi1Cliplist() routine.
 // Hardware clip list updating must happen while in WIN_LOCK().
 if (drawable->clipChanged()) {

// Update window clip list related changes.
sharedUpdateLi1Cliplist();

 }

Xgl_boolean accelerate =
 (lineStyle == XGL_LINE_SOLID) &&

 (ctx->getRop() == XGL_ROP_SRC) &&
 (ctx->getPlaneMask() == (Xgl_usgn32)-1) &&

 (ctx->getDepthCueMode() == XGL_DEPTH_CUE_OFF) &&

 (cur_stroke->getAaBlendEq() == XGL_BLEND_NONE)&&
 (cur_stroke->getAaFilterShape() == XGL_FILTER_GAUSSIAN) &&
 (cur_stroke->getAaFilterWidth() == 1) &&

 // getPattern(): Pattern is dependent on style. This
 // example only accelerates style XGL_LINE_SOLID.
 // getAltColor(): AltColor is dependent on pattern.

 (cur_stroke->getCap() == XGL_CAP_BUTT) &&

④

38 Getting Started Writing XGL Device Handlers—May 1996

4

 (cur_stroke->getJoin() == XGL_JOIN_DEVICE) &&
 (cur_stroke->getColorInterp() == FALSE) &&

 (cur_stroke->getColorSelector() == XGL_LINE_COLOR_CONTEXT) &&
 (cur_stroke->getWidthScaleFactor() <= 1.0);

1. Statement 1 in li1MultiPolyline specifies which API data types are
accelerated. The skeleton pipeline line renderer accelerates rendering if the
point type is XGL_PT_F3D. For any other point type, the routine calls the
software pipeline to perform LI-1 operations.

For your implementation, consider what point types your hardware can
accelerate. Then modify statement 1 as needed so that your pipeline
corresponds with the capabilities of your hardware. For information on the
complete set of XGL data types, see the XGL Reference Manual.

2. Statement 2 determines whether a context switch has occurred. If the XGL
Context that the application is using has changed, the updateContext()
routine in XglDpCtx3dSkeleton is called to update the view group interface
object and the Context attributes.

If your hardware has only one hardware context, use this statement to keep
track of context switches. If your hardware has multiple hardware contexts,
you may want to associate a hardware context with an XGL Context. In this
case, you do not need to check for context changes. Note, however, that
some applications may define many XGL Context objects, so you may want
to monitor context changes even if your hardware has multiple hardware
contexts.

3. Statement 3 determines whether the primitive has changed. Because context
state may be different for each primitive, you may want to check context
state for some attributes. For example, you may want to get the Context
color for the current primitive.

4. The next section of li1MultiPolyline checks the current attribute
settings as part of determining whether to use the skeleton pipeline
accelerated renderer or fall back to the software pipeline. The skeleton
pipeline accelerates rendering when the attributes are set to the default
values.

Modify this section if you implement other values for these attributes. For
example, if your hardware handles line patterns, your pipeline will be
concerned with the line pattern attributes.

Implementing Accelerated Primitives 39

4

The skeleton pipeline accelerates lines if the hardware has a hardware Z buffer.
If Z buffering is enabled and the hardware does not have a hardware Z buffer,
there is no acceleration.

if (ctx->getHlhsrMode() == XGL_HLHSR_Z_BUFFER &&
!dpMgr->hwZBuffer) {

 accelerate = FALSE;
 }

The last section of li1MultiPolyline sets the opsVec entry to the fast
renderer, if acceleration is possible, or calls the software pipeline if acceleration
is not possible. The routine also determines whether model clipping is enabled.
If so, it sets the opsVec entry to the li1MplineMC routine, which uses the
XgliUtModelClipMpline utility to model clip the application data and calls
li1MplineRenderer to perform the rendering. If your hardware doesn’t
handle model clipping, you can use the XgliUtModelClipMpline utility to
do model clipping in software. The utility returns model clipped data.

The opsVec entry remains set to the software pipeline or the fast renderer
until an attribute changes. At that time, the objectSet routine sends the
attribute changes to the hardware and reinstalls the generic renderer in the
opsVec array. After an attribute change, the next time rendering occurs, the
generic renderer again tests for changes, and determines which renderer to call.

if (!accelerate) {
WIN_UNLOCK(drawable);

// Set opsVec[] to default renderer.
opsVec[lastPrim] = opsVecDiDefault[lastPrim];

// Call renderer though opsVec[]
(this->*((void(XglDpCtx3d::*)

(SKELETON_PROTOTYPE_ARGS_MPLINE))
(opsVec[lastPrim])
)

)(api_bbox, api_num_plists, api_pt_list);

return;
}

// Acceleration is possible. Set opsVec[] to fast renderer.
li1MplineRenderer = XglDpCtx3dSkeleton::li1MplineFast;

40 Getting Started Writing XGL Device Handlers—May 1996

4

// Model clipping?
if (ctx->getModelClipPlaneNum())

opsVec[lastPrim] - XGLI_OPS(XglDpCtx3dSkeleton::li1MplineMC);
else

opsVec[lastPrim] = XGLI_OPS(li1MplineRenderer);

// Call renderer though opsVec[]
(this->*((void(XglDpCtx3dSkeleton::*)
 (SKELETON_PROTOTYPE_ARGS_MPLINE))
 (opsVec[lastPrim])
)
)(api_bbox, api_num_plists, api_pt_list);

 WIN_UNLOCK(drawable) ;
}

Note – In your implementation, you can call the software pipeline directly as
swp->li1MultiPolyline() rather than through the opsVec array.

▼ Step 2: Modify the fast renderer.

The li1FastMultiPolyline routine tests to verify that nothing has changed.
The test determines whether the point list is valid, the context and the facet
type have not changed, and the last primitive was from the
li1MultiPolyline group of renderers. If something has changed, the
routine sets the generic renderer and calls it directly. Otherwise, it sends data
to the hardware.

In your implementation, add code in the fast renderer to send the application
data to the hardware.

void XglDpCtx3dSkeleton::li1MplineFast (Xgl_bbox* api_bbox,
 Xgl_usgn32 api_num_plists,
 Xgl_pt_list* api_pt_list)

{
 XglDrawable* localDrawable = this->drawable;
 WIN_LOCK(localDrawable);

 if (!api_pt_list |
(int)dpMgr->lastDpCtx - (int)this |
api_pt_list->pt_type - lastPtTypeInfo.pt_type |

Implementing Accelerated Primitives 41

4

transformsChanged |
localDrawable->modifChanged() |
XGLI_LI1_MULTIPOLYLINE - lastPrim) {

// If acceleration not possible, unlock window
WIN_UNLOCK(localDrawable);

 // Set default generic renderer (slower), then execute.
 opsVec[XGLI_LI1_MULTIPOLYLINE] =

 XGLI_OPS(XglDpCtx3dSkeleton::li1MultiPolyline);

 li1MultiPolyline(api_bbox, api_num_plists, api_pt_list);
 return;
 }

 float *pts;
 Xgl_sgn32 num_pts;
 Xgl_sgn32 pt_size = lastPtTypeInfo.pt_size;

 for (Xgl_usgn32 i = 0; i < api_num_plists; i++) {
num_pts = api_pt_list[i].num_pts;
if (num_pts < 2) {

continue;
}

pts = (float*)api_pt_list[i].pts.f3d;

// my_hw = BEGINNING_OF_MULTIPOLYLINE
for (Xgl_usgn32 j = 0; j < num_pts; j++) {

// Pass data to hardware here.
// my_hw_x = pts[0]; // x
// my_hw_y = pts[1]; // y
// my_hw_z = pts[2]; // z

XGLI_INCR(pts, float*, pt_size);

} // end for(j)
 } // end for(i)

 WIN_UNLOCK(localDrawable);
}

42 Getting Started Writing XGL Device Handlers—May 1996

4

▼ Step 3: Update DpCtx3dSkeleton.

Before your implementation of 3D line rendering is complete, you must modify
the DpCtx3dSkeleton.cc file as follows:

1. Modify the routine to add your renderer. You can simply uncomment the
following line in the skeleton pipeline objectSet() :

2. Add code to the objectSet() routine to update your hardware context for
all the XGL Context attributes that your pipeline is concerned with.

The routine retrieves the current attribute values and sends them to the
hardware. It also sets a flag, li1_multipolyline_change_renderer ,
that indicates whether the generic renderer should be reinstalled.

3. Add code to the updateTransforms() routine to send transform
information to the hardware when transforms change.

4. Add code to sharedUpdateLi1Cliplist() in DpCtxSkeleton.cc to
handle hardware clipping.

When you have made these changes, your implementation of the skeleton 3D
polygon renderers is complete. Use the Denizen test suite to test your
implementation.

// opsVec[XGLI_LI1_MULTIPOLYLINE =
 XGLI_OPS(XglDpCtx3dSkeleton::li1MultiPolyline);

43

Example Hardware Initialization
Code A

This appendix shows hardware initialization code for a GX frame buffer. The
file consists of include files and the constructor for the XglDpMgr object for
the GX frame buffer.

Note – If you are running on a GX frame buffer, and you built the GX reference
pipeline xglSUNWcg6.so.4 , and you want to build your pipeline using the
GX intialization code listed below, you need to rename the cg6 binary
xglSUNWcg6.so.4 and link your pipeline to the cg6 name using the
command ln -s xglYourpipe.so.4 xglSUNWcg6.so.4 .

Hardware Initialization Code for the GX Frame Buffer

// **
// *
// * Filename:DpMgrGXexample.cc
// *
// * Purpose:This is a C++ source file that contains a routine
// * used to initialize a physical hardware device managed by
// * the Dp manager and a routine that creates a Dp device object.
// *
// **

#include “xgli/Drawable.h”
#include “xgli/SysState.h”// for XGLI_ERROR()
#include “DpMgrGXexample.h”

44 Getting Started Writing XGL Device Handlers—May 1996

A

#include “DpDevGXexample.h”

// vvvvvvvvvvvvvvvvvv GX example vvvvvvvvvvvvvvvvvv
//
// Required package: SUNWDrvs
//
// for ioctl()
#include “/opt/SUNWddk/driver_dev/cgsix/sparc/cg6io.h”

#include <sysent.h>
#include <sys/mman.h>
#include <sys/cg6reg.h>
const int MegaByte = 0x100000;

// ^^^^^^^^^^^^^^^^^^ GX example ^^^^^^^^^^^^^^^^^^

class XglDpDev;
class XglRasterWin;

// *--
// *
// * XglDpMgrGXexample::XglDpMgrGXexample
// *
// * The constructor for the Dp manager object is called when
// * a new DpMgr object is created by the DpLib. This is done
// * once per physical device that is accessed.
// * Use this routine to initialize your hardware and to store
// * device-specific information.
// *
// *---

XglDpMgrGXexample::XglDpMgrGXexample(XglDrawable* drawable)
{
 creationOk = TRUE; // flag indicating successful hardware

// initialization. Default value is TRUE

 //
 // File descriptor or device name for opening your device.
 //

 int fd = drawable->getDevFd();
 const char* name = drawable->getDeviceName();

Example Hardware Initialization Code 45

A

 //===
 //===
 // EDIT HERE:

// vvvvvvvvvvvvvvvvvv GX example vvvvvvvvvvvvvvvvvv
// Requires independent address space
 memoryMappedImageBuffer = TRUE;
// ^^^^^^^^^^^^^^^^^^ GX example ^^^^^^^^^^^^^^^^^^

// Requires independent address space
 memoryMappedZBuffer = FALSE;

 // The value of the variables hwZBuffer and hwAccumBuffer
 // are tested in DpDevGXexample. They determine which type
 // of PixRect gets instantiated for your hardware. FALSE
 // indicates that your hardware does not support Z buffering.

 hwZBuffer = FALSE;

 // Note: It is strongly recommended that if you have
 // hardware accumulation, you implement li1Accumulate
 // and li1ClearAccumulation. Otherwise, set
 // hwAccumBuffer to FALSE. When this variable is
 // FALSE, accumulation is done in software.See DpDevGXexample
 // for allocation of the software accumulation buffer.

 hwAccumBuffer = FALSE;

 // Insert hardware initialization here.

// vvvvvvvvvvvvvvvvvv GX example vvvvvvvvvvvvvvvvvv
 struct cg6_informgx_info;
 Xgl_sgn32 gx_pageoffset; // Offset of gx_physaddr from page bdry
 Xgl_sgn32 gx_physaddr; // Adjusted gx_physaddr
 Xgl_usgn32gx_alloc_bytes;
 Xgl_usgn8*gx_base_addr;

 if(ioctl(fd, CG6IOGXINFO, &gx_info) == -1) {
XGLI_DI_ERROR((XglSysState*)NULL, “di-6”, XGL_OBJ,

NULL, NULL);
creationOk = FALSE;
return;

 }

 gx_alloc_bytes = gx_info.vmsize * MegaByte;
 if(gx_info.hdb_capable)
 gx_alloc_bytes *= 2;

46 Getting Started Writing XGL Device Handlers—May 1996

A

 gx_pageoffset = CG6_VADDR_COLOR & (sysconf(_SC_PAGESIZE) - 1);
 gx_alloc_bytes += gx_pageoffset;
 gx_physaddr = CG6_VADDR_COLOR - gx_pageoffset;

 gx_base_addr = (Xgl_usgn8*) mmap((caddr_t)NULL,
(size_t)gx_alloc_bytes,
PROT_READ | PROT_WRITE, MAP_SHARED,
fd, gx_physaddr);

 if(gx_base_addr == (Xgl_usgn8*)-1) {
XGLI_DI_ERROR((XglSysState*)NULL, “di-6”, XGL_OBJ,

NULL, NULL);
creationOk = FALSE;
return;

 }
// ^^^^^^^^^^^^^^^^^^ GX example ^^^^^^^^^^^^^^^^^^
 //
 // End hardware initialization here
 //===
 //===

 // Set this environment variable to test the error mechanism.
 // This example will abort this device pipeline if any
 // hardware initialization problems occur, output a device
 // specific error message, set creationOk to FALSE, and then
 // return immediately. In this case, the xpex pipeline
 // will be used.
 // Note: When this variable is set, your pipeline
 // will always abort.
 //
 char *hw_error = getenv(“XGL_GXEXAMPLE_ERROR_TEST”);
 if (hw_error) {

XGLI_ERROR((XglSysState*)NULL,
XGL_ERROR_NONRECOVERABLE,
XGL_ERROR_RESOURCE,
“SYMBOLgxexample-1”,
XGL_SYS_STATE,
NULL, NULL);

// Example of predefined error message (out of memory).
// Notice _DI_
XGLI_DI_ERROR((XglSysState*)NULL, “di-1”,
 XGL_SYS_STATE, NULL, NULL);
creationOk = FALSE;
return;

Example Hardware Initialization Code 47

A

 }

 //
 // FOR MEMORY-MAPPED FRAME BUFFERS:
 // This section begins the initialization of the RefDpCtx
 // tilitisy for memory-mapped frame buffers. If your frame
 // buffer is not memory-mapped, you can ignore or delete
 // this section.
 //
 Xgl_usgn32linebytes; // # bytes from one scan line to next
 Xgl_usgn32fb_width; // Frame buffer width
 Xgl_usgn32fb_height; // Frame buffer height

 //===
 //===
 // EDIT HERE:
 // If image buffer is memory mapped, set fb_address to
 // the base address of the image buffer; otherwise,
 // leave as NULL.
 // If z buffer is memory mapped, set z_buffer_address to
 // the base address of the z buffer; otherwise, leave as NULL.
 //
/ / vvvvvvvvvvvvvvvvvv GX example vvvvvvvvvvvvvvvvvv
 Xgl_usgn8*fb_address = gx_base_addr;
// ^^^^^^^^^^^^^^^^^^ GX example ^^^^^^^^^^^^^^^^^^
 Xgl_usgn8*z_buffer_address = NULL;
 //==
 //==

 // X11 attributes
 Xgl_X_window user_win;
 XWindowAttributes wattrs;
 Window window;
 Display* dpy;
 intscreen;

 // Get the width and height of the frame buffer
 // and the depth of the window from the X server.
 //
 drawable->getDescriptor((void*)&user_win);
 dpy = (Display*)user_win.X_display;
 window = (Window)user_win.X_window;
 screen = (int)user_win.X_screen;

48 Getting Started Writing XGL Device Handlers—May 1996

A

 // Identify properties of root window--our “frame buffer”.
 // Note that this example uses Xlib calls to retrieve information
 // about the hardware. You could also use an ioctl() for this.
 //
 XGetWindowAttributes(dpy, window, &wattrs);

 fb_width = wattrs.screen->width; // root window width
 fb_height = wattrs.screen->height; // root window height
 linebytes = fb_width;

 //
 // If image and/or Z buffer is memory mapped, this initializes the
 // XglPixRectMemAssigned class. The PixRect object is
 // instantiated by the DpDevGXexample class.
 //
 if (memoryMappedImageBuffer)
 fbPixRect.reassign(fb_address, fb_width, fb_height,

 wattrs.depth, linebytes);

 if (memoryMappedZBuffer)
 zPixRect.reassign(z_buffer_address, fb_width, fb_height,

 wattrs.depth, linebytes);

 // End of section on initializing RefDpCtx for memory-
 // mapped frame buffers.
 // RefDpCtx initialization is continued in the DpDev object.

} // End of XglDpMgrGXexample::XglDpMgrGXexample

Example Hardware Initialization Code 49

A

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A.Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, et XGL sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis
et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

Le nom de PowerPC est une marque de International Business Machines Corporation.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

