
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Loadable Interfaces Version 4.1

XGL Device Pipeline Porting Guide

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Solaris, and XGL are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. xxi

1. Introduction to XGL Loadable Interfaces 1

Introduction to the XGL Product . 1

Solaris Dynamic Linking. 2

XGL Loadable Interfaces . 2

Loadable Interface 1 (LI-1) . 3

Loadable Interface 2 (LI-2) . 3

Loadable Interface 3 (LI-3) . 3

2. Getting Started . 7

XGL Architecture From the Pipeline Point of View. 8

About Device Pipelines . 8

Services the XGL Core Provides the Device Pipeline 9

Issues to Consider Before You Begin Porting 10

Device Support for Multiple XGL Contexts 10

Device Support for Backing Store . 11

iv XGL Device Pipeline Porting Guide—May 1996

OpenWindows and XGL . 11

Porting Task . 12

Choosing a Loadable Interface Level 12

A Quick Look at Implementing an XGL Graphics Handler 15

Device Pipeline Makefiles . 21

Directory Structure for the XGL DDK . 22

Accessing External Files at Runtime . 23

3. Pipeline Interface Classes . 25

Overview of the Pipeline Interface Classes 26

Naming Your Device Pipeline . 27

About Versioning . 28

Setting Up the Required Pipeline Interface Classes. 30

Defining a Function to Create the Device Pipeline Object . 31

Defining the Device Pipeline Library Class 32

Defining the Device Pipeline Manager Class 36

Defining the Device Pipeline Device Class. 39

Defining the Device Pipeline-Context Class. 43

What Else You Should Know . 52

How a Device Pipeline Is Loaded . 52

Supporting DGA Transparent Overlay Windows 53

Device Pipeline Objects for Multiple Processes 54

Adding Member Data to a Pipeline Class. 56

Backing-Store Support in the Pipeline Classes. 57

Description of Device-Dependent Virtual Functions 60

Contents v

Virtual Functions in DpDev.h. 60

Virtual Functions in DpDevRaster.h 61

Virtual Functions in DpDevWinRas.h 62

Virtual Functions in DpDevMemRas.h 65

Quick Reference Chart of Virtual Functions. 66

4. Handling Changes to Object State. 71

State Changes and the Device Pipeline . 72

Getting Attribute Values from the Context Object. 72

When the Device Associated with a Context Is Changed . 74

Getting Attribute Values from Objects Other Than the Context 75

Handling Derived Data Changes. 81

Getting Stroke Attribute Values from the Stroke Group Object 82

Example of Device Pipeline Use of Stroke Groups 83

Rendering Multipolylines. 85

Flag Mask and Expected Flag Value 87

DC Offset . 88

Design Issues . 90

Deciding to Reject a Primitive . 90

Handling Context Switches . 90

Partial Rendering of a Primitive . 91

5. Getting Information from XGL Objects 93

What You Should Know About XGL Attribute Values 94

Pipeline Connection to Device-Independent Objects 94

Pipeline Access to Object Attributes 95

vi XGL Device Pipeline Porting Guide—May 1996

Naming Conventions for Internal Attributes 95

Context Attributes and LI Layers . 96

Getting Attribute Values from the Context. 97

Getting Attribute Values from Other Objects 98

Getting Information from a Transform Object 99

Getting Attribute Values From the Stroke Group Object 100

Non-API Interfaces Provided in API Objects 101

Context Interfaces . 101

Context 2D Interfaces . 102

Context 3D Interfaces . 103

Data Map Texture Interfaces. 104

Device Interfaces . 105

Light Interfaces . 106

Line Pattern Interfaces . 106

Marker Interfaces . 107

MipMap Texture Interfaces. 107

Raster Interfaces. 108

Texture Map Interfaces . 108

Window Raster Interfaces . 109

Memory Raster Interfaces . 109

Stroke Font Interfaces . 110

Transform Interfaces and Flags . 111

Getting Information From the Device Object 119

Color Map Interfaces . 119

Contents vii

6. View Model Derived Data. 123

Overview of View Model Derived Data 124

Design Goals of Derived Data . 125

Derived Data Items . 128

 Coordinate Systems and Transforms 128

 Other Derived Items. 130

Overview of Derived Data’s Implementation 131

Accessing Derived Data . 132

Registration of Concerns . 133

Bit Definitions for the View Flag . 135

Determining Whether Derived Items Have Changed 137

Messages . 137

The Composite . 138

Detecting Changes With the Composite 138

Setting the Composite . 139

Clearing the Composite . 139

Detecting Changes to Individual Derived Items 140

Getting Derived Items . 142

 Getting Derived Transforms . 143

 Getting Boundaries. 144

 Getting 3D Viewing Flags . 145

 Getting Lights . 146

 Getting Eye Positions or Vectors . 147

 Getting Model Clip Planes. 148

viii XGL Device Pipeline Porting Guide—May 1996

 Getting Depth Cue Reference Planes 149

Example of Detecting Changes and Getting Derived Items . . . 149

Current Coordinate System . 154

7. Window System Interactions . 157

Overview of the XglDrawable . 158

Services Provided by the XglDrawable Class. 159

Typical Scenario of XglDrawable Creation and Use 159

Drawable Interfaces for the Device Pipeline 161

Obtaining Information During Pipeline Initialization 162

Locking the Window . 162

Accessing Dynamic Information . 165

Managing Window System Resources 168

Managing Software Cursors . 170

Description of Drawable Interfaces . 170

XglDrawable Functions for the Device Pipeline 170

XglDrawable Functions Used by the XGL Core Only 177

Window System Dependencies . 178

8. LI-3 Loadable Interfaces . 181

About the LI-3 Layer . 182

LI-2 Software Pipeline and LI-3 Device Pipeline 185

Window Locking Around Hardware Access 186

Data Input to the LI-3 Layer . 186

Picking at LI-3 . 186

Texture Mapping at LI-3 . 187

Contents ix

LI-3 Interfaces . 188

li3Begin() and li3End() - 2D/3D. 188

li3CopyFromDpBuffer() - 2D/3D . 189

li3CopyToDpBuffer() - 2D. 190

li3CopyToDpBuffer() - 3D. 191

li3MultiDot() - 2D . 193

li3MultiDot() - 3D . 194

li3Vector() - 2D . 196

li3Vector() - 3D . 198

li3MultiSpan() - 2D . 201

li3MultiSpan() - 3D . 203

RefDpCtx. 207

Using RefDpCtx for Rendering . 207

RefDpCtx LI-3 Rendering Example . 210

Handling Attribute Changes for RefDpCtx 211

RefDpCtx Interfaces . 212

PixRect Objects . 214

Using PixRects . 214

PixRect Interfaces. 216

9. LI-2 Loadable Interfaces . 219

About the LI-2 Layer . 220

Deciding Which LI-2 Interfaces to Implement 221

Window Locking Around Hardware Access 224

Picking at LI-2 . 225

x XGL Device Pipeline Porting Guide—May 1996

Calling the Software Pipeline for Texture Mapping at LI-2 225

LI-2 Attributes . 225

What You Should Know About the Software Pipeline 227

LI-1 Operations in the Software Pipeline 227

Lighting and Surface Color in the Software Pipeline 227

Texture Mapping in the Software Pipeline 228

Point Type Input to LI-2 Device Pipelines 228

Data Input to the LI-2 Layer . 230

How Data Is Stored by the Software Pipeline 230

Data Storage in the XglLevel Object 232

Pipeline Interfaces to XglPrimData and XglLevel Data . . . 234

Example of Extracting Data from XglLevel 234

Conic and Rectangle Data. 236

Pipeline Interfaces to XglConicData and XglRectData 237

Example of Extracting Data from XglRectData 238

Example of Extracting Data from XglConicData 239

LI-2 Interfaces . 241

li2GeneralPolygon() - 2D/3D . 241

li2MultiDot() - 2D/3D . 242

li2MultiEllipse() - 2D . 243

li2MultiEllipticalArc() - 2D . 244

li2MultiPolyline() - 2D . 246

li2MultiPolyline() - 3D . 248

li2MultiRect() - 2D . 250

Contents xi

li2MultiSimplePolygon() - 2D . 251

li2MultiSimplePolygon() - 3D . 252

li2TriangleList() - 3D . 253

li2TriangleStrip() - 3D . 254

10. LI-1 Loadable Interfaces . 255

About the LI-1 Layer . 256

Deciding Which LI-1 Interfaces to Implement 258

Window Locking Around Hardware Access 263

Handling Invalid Data . 263

Picking. 264

Hidden Surface Data and Maximum Z Value 265

Hints for Rendering Transparent 3D Surfaces at LI-1 265

Calling the Software Pipeline for Texture Mapping at LI-1 267

Antialiasing and Dithering . 268

Data Input to the LI-1 Layer . 269

API Primitive Calls Mapped to LI-1 Functions 273

LI-1 Interfaces . 275

li1AnnotationText() - 2D/3D . 275

li1DisplayGcache() - 2D/3D . 276

li1MultiArc() - 2D. 285

li1MultiArc() - 3D. 286

li1MultiCircle() - 2D. 287

li1MultiCircle() - 3D. 288

li1MultiEllipticalArc() - 3D . 289

xii XGL Device Pipeline Porting Guide—May 1996

li1MultiMarker() - 2D . 290

li1MultiMarker() - 3D . 291

li1MultiPolyline() - 2D . 292

li1MultiPolyline() - 3D . 293

li1MultiRectangle() - 2D . 295

li1MultiRectangle() - 3D . 296

li1MultiSimplePolygon() - 2D . 297

li1MultiSimplePolygon() - 3D . 298

li1NurbsCurve() - 2D/3D . 299

li1NurbsSurf() - 3D . 301

li1Polygon() - 2D . 303

li1Polygon() - 3D . 304

li1QuadrilateralMesh() - 3D . 305

li1StrokeText() - 2D/3D. 306

li1TriangleList() - 3D . 307

li1TriangleStrip() - 3D . 309

li1Accumulate() - 3D . 310

li1ClearAccumulation() - 3D . 312

li1CopyBuffer() - 2D/3D. 313

li1Flush() - 2D/3D . 316

li1GetPixel() - 2D/3D . 317

li1Image() - 2D/3D . 318

li1NewFrame() - 2D/3D . 320

li1PickBufferFlush() - 2D/3D . 321

Contents xiii

li1SetMultiPixel() – 2D/3D . 322

li1SetPixel() - 2D/3D . 323

li1SetPixelRow() - 2D/3D . 324

11. Error Handling . 325

Error Reporting for XGL Device Pipelines 326

Error-Handling Mechanism . 326

Error Message Files . 327

Error Reporting Macros . 328

Example of Error Reporting Using the Error Macros 330

Creating a Pipeline Error Message File 331

12. Utilities . 333

3D Utilities . 334

Bounding Box Utilities . 385

Copy Buffer Utilities . 387

Polygon Classification Utilities . 392

Polygon Decomposition Utilities . 394

A. Performance Tuning . 397

Finding the Performance Critical Paths 398

At-a-Glance Comparison of Performance Tools. 400

Recommendations for Performance Tools 401

Selecting Good Benchmarks . 401

Tuning Performance Critical Paths . 403

Locating the Central Body of Code . 403

Changing the Underlying Algorithm 403

xiv XGL Device Pipeline Porting Guide—May 1996

Tuning at the Assembly Language Level 404

Tips and Techniques for Faster Code. 404

B. Changes to the Graphics Porting Interface at GPI 4.1 427

Additions to the GPI . 427

Changes to the GPI . 428

C. Changes to the XGL Graphics Porting Interface at GPI 4.0 . . 429

Changes in Rendering Architecture. 430

Changes in State Handling . 432

Application Data Passed Directly to Pipelines. 433

D. Software Pipeline li1DisplayGcache. 435

E. Accelerating NURBS Primitives. 451

Index . 453

xv

Figures

Figure 1-1 XGL Loadable Interface Layers . 4

Figure 2-1 Basic View of XGL Architecture . 8

Figure 2-2 High-Level View of XGL Primitive Call Processing 9

Figure 2-3 Roadmap for Implementing an XGL Graphics Handler 20

Figure 2-4 XGL DDK Directory Structure. 22

Figure 3-1 Device Pipeline Interface Classes . 27

Figure 3-2 Overview of Pipeline Instantiation . 30

Figure 3-3 Pipeline Objects for a Single Application. 54

Figure 3-4 Pipeline Objects for a Single Application on Multiple Frame
Buffers . 55

Figure 3-5 Pipeline Objects for Multiple Applications 55

Figure 3-6 Pipeline Objects for Multiple Applications on Multiple Frame
Buffers . 56

Figure 4-1 Attribute Processing Using the Stroke Group. 84

Figure 5-1 DI and Dp Object Relationships . 94

Figure 5-2 Layered Attributes and the Device Pipeline 96

Figure 8-1 LI-3 Pipeline Architecture . 182

xvi XGL Device Pipeline Porting Guide—May 1996

Figure 8-2 XglPixRect Class Hierarchy . 214

Figure 9-1 LI-2 Pipeline Architecture . 220

Figure 9-2 Software Pipeline Multiplexing at LI-2 223

Figure 9-3 Level Objects Created by Software Pipeline Processing 231

Figure 9-4 Flow of Point Data Through XglPrimData and XglLevel 231

Figure 9-5 Base/Offset Data Storage in XglLevel . 232

Figure 9-6 Base/Offset Data When the Point Data Has Changed 233

Figure 10-1 LI-1 Pipeline Architecture . 256

Figure 10-2 Software Pipeline Multiplexing at LI-1 260

xvii

Tables

Table 2-1 XGL DDK Makefile Targets . 21

Table 3-1 XglDpLib Virtual Function . 33

Table 3-2 XglDpMgr Virtual Functions . 37

Table 3-3 Default Values for the Fields of xgl_inquire() 38

Table 3-4 XglDpDev Virtual Functions . 41

Table 3-5 XglDpDev Device-Dependent Virtual Functions 42

Table 3-6 Summary of Pipeline Virtual Functions. 66

Table 4-1 Object Messages. 76

Table 4-2 Stroke Table Flag Mask and Expected Flag Mask Values 87

Table 4-3 Stroke Group DC Offset Values . 89

Table 5-1 Getting Information from Xgl Objects . 98

Table 5-2 XGLI_TRANS_SINGULAR . 111

Table 6-1 Derived Data 2D Coordinate Systems . 129

Table 6-2 Derived Data 3D Coordinate Systems . 129

Table 6-3 Other Items in Derived Data . 130

Table 6-4 View Model Derived Data Classes . 131

xviii XGL Device Pipeline Porting Guide—May 1996

Table 6-5 Bits for the View Flag . 137

Table 6-6 Functions to Return the Change Status of Derived Items 141

Table 6-7 Functions for Getting Derived Transforms 144

Table 6-8 Functions for Getting Boundaries . 144

Table 7-1 Drawable Subclasses . 158

Table 7-2 Drawable Interfaces Used During Pipeline Initialization 162

Table 7-3 Window Lock Macros and Function Calls. 165

Table 7-4 Drawable Interfaces Used During Rendering 167

Table 7-5 Drawable Interfaces Used for Allocating Resources 168

Table 8-1 LI-3 Primitive Functions . 183

Table 8-2 LI-3 Batching Functions . 184

Table 8-3 LI-3 Control Functions . 184

Table 8-4 Functions in XgliUtUvSpanInfo3d . 206

Table 8-5 PixRect Ojbects for RefDpCtx Rendering. 208

Table 8-6 RefDpCtx Methods for Assigning PixRects. 209

Table 8-7 RefDpCtx Methods for Handling Attribute Changes 211

Table 8-8 RefDpCtx Methods for LI-1 and LI-3 Rendering 212

Table 8-9 RefDpCtx Methods . 212

Table 8-10 XglPixRect Interfaces. 216

Table 8-11 XglPixRectMem Interfaces . 217

Table 8-12 XglPixRectMemAllocated Interfaces . 218

Table 8-13 XglPixRectMemAssigned Interfaces. 218

Table 9-1 LI-2 Loadable Pipeline Interfaces . 221

Table 9-2 LI-2 Software Pipeline Calls to Device Pipeline Functions . . . 224

Table 9-3 Surface Attributes at LI-2 . 226

Tables xix

Table 9-4 XglPrimData Interfaces. 234

Table 9-5 XglLevel Interfaces . 234

Table 9-6 XglConicData Interfaces . 237

Table 9-7 XglConicList2d Interfaces. 237

Table 9-8 XglRectList2d and XglRectList3d . 238

Table 10-1 LI-1 Loadable Pipeline Interfaces . 257

Table 10-2 Software Pipeline Calls to Device Pipeline Functions 261

Table 10-3 Handling Invalid Data . 263

Table 10-4 Mapping of 2D Primitives to 2D LI-1 Functions. 273

Table 10-5 Mapping of 3D API Primitives to 3D LI-1 Functions 273

Table 10-6 Mapping of API Utility Functions to LI-1 Functions 274

Table 10-7 Gcache Interfaces . 279

Table 10-8 XglGcache DD Gcache Methods . 281

Table 11-1 State Information Saved in an Error Object 326

Table 12-1 Lighting Utilities for Point Lists . 343

Table A-1 Comparing Applications Used to Gather Profile Information 400

Table A-2 Compiler Options . 425

Table B-1 Additions to Drawable.h . 427

Table C-1 Changed Utilities for XGL 3.1 . 434

xx XGL Device Pipeline Porting Guide—May 1996

xxi

Preface

The XGL Device Pipeline Porting Guide documents the interfaces and concepts
required to write graphics device handlers (otherwise known as loadable device
pipelines) for XGL™. These dynamically loadable modules enable applications
running on XGL to exploit fully the capabilities of graphics accelerators present
at runtime.

Who Should Use This Book
This document is intended for implementors of XGL device pipelines. It is
assumed that the reader is familiar with the C and C++ language and with the
ideas of classes and class inheritance in C++.

How This Book Is Organized
This manual is organized as follows:

Chapter 1, “Introduction to XGL Loadable Interfaces” presents an
introduction to the XGL product and an overview of the three levels of the
XGL graphics porting interface.

Chapter 2, “Getting Started” provides an overview of the porting process.

Chapter 3, “Pipeline Interface Classes” presents information on the objects
that connect XGL device-independent code with the device pipeline code.

xxii XGL Device Pipeline Porting Guide—May 1996

Chapter 4, “Handling Changes to Object State” describes how a device
pipeline gets information about changes to XGL state.

Chapter 5, “Getting Information from XGL Objects” describes how a device
pipeline gets information on XGL state.

Chapter 6, “View Model Derived Data” describes how a device pipeline gets
information about changes to view model data.

Chapter 7, “Window System Interactions” provides information on the
relationship between XGL, DGA, the window system, and the device pipelines,
and discusses the mechanism by which XGL communicates with the window
system.

Chapter 8, “LI-3 Loadable Interfaces” provides information on the LI-3
interfaces.

Chapter 9, “LI-2 Loadable Interfaces” provides information on the LI-2
interfaces.

Chapter 10, “LI-1 Loadable Interfaces” provides information on the LI-1
interfaces.

Chapter 11, “Error Handling” provides directions on adding error processing
to a device pipeline.

Chapter 12, “Utilities” provides information on the XGL utilities.

Appendix A, “Performance Tuning” provides information on how to tune
your code for optimum performance.

Appendix B, “Changes to the Graphics Porting Interface at GPI 4.1,”
provides information on changes in the graphics porting interface at this
release.

Appendix C, “Changes to the XGL Graphics Porting Interface at GPI 4.0”
provides information on changes in the graphics porting interface between the
XGL GPI 4.0 and GPI 3.0.2.

Appendix D, “Software Pipeline li1DisplayGcache” lists the code from the
software pipeline 3D li1DisplayGcache() function.

Appendix E, “Accelerating NURBS Primitives” provides references for XGL
NURBS algorithms.

Preface xxiii

Related Books
This documentation and the XGL graphics porting interface is part of the
Solaris Driver Developer’s Kit (DDK). The Solaris DDK describes the interfaces
between the Solaris environment and the hardware platform. The DDK
includes documentation on the Solaris VISUAL environment, Solaris graphics
and imaging foundation libraries, the Solaris X11 server, kernel device drivers
for graphics and imaging devices, and the physical connections between
graphics devices and Solaris platforms. The DDK also includes header files and
sample code to help you develop a graphics accelerator and integrate it into
the Solaris environment. For overview information on the Solaris graphics
environment, see the Solaris VISUAL Overview for Driver Developers.

For information on the XGL architecture and the object-oriented design of the
loadable pipelines, see:

• XGL Architecture Guide

For information on the XGL test suite, see:

• XGL Test Suite User’s Guide

For information on the XGL product, see:

• XGL Programmer’s Guide

• XGL Reference Manual

What Typographic Changes and Symbols Mean
Table P-1 describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xxiv XGL Device Pipeline Porting Guide—May 1996

XGL Sample Device Handler Usage Rights and Restrictions
The sample device handler code provided with the current XGL DDK package
and the source code excerpts presented in this documentation are intended to
help you create an XGL loadable pipeline for your product. You can copy,
duplicate, or modify any section of the source code, and redistribute object
code, as long as its usage is to create a loadable pipeline for XGL. This excludes
authorization to redistribute source code created by using the source code
information provided by SunSoft. Any other use is therefore prohibited and
requires explicit agreements with SunSoft.

1

Introduction to XGL Loadable
Interfaces 1

Introduction to the XGL Product
The XGL™ product is a foundation graphics library that provides geometry
graphics support for Solaris®-based applications. The XGL library has two sets
of interfaces: an application programming interface (API) and a graphics
porting interface (GPI).

The XGL API provides application developers with immediate-mode
rendering, a rich set of graphics primitives, view and modeling transforms,
and separate, complete 2D and 3D rendering pipelines. Standard features
include 2D and 3D primitive support; depth cueing, lighting, and shading;
non-uniform B-spline curve and surface support; and direct and indirect color
model support. Advanced features include transparency, antialiasing, texture
mapping, stereo, and accumulation buffer for motion blur and other special
effects. Application developers and developers of other graphics APIs can port
their applications to XGL to take advantage of Solaris dynamic linking to
provide portable shrink-wrapped applications that run on any graphics device
supported in the Solaris environment. The XGL API is provided as part of the
Solaris Developer’s Kit; for more information on the XGL API, see the XGL
Reference Manual and the XGL Programmer’s Guide.

The XGL GPI is a device-level interface that defines the mapping of XGL
device handlers to underlying hardware. Hardware vendors that write XGL
device handlers can build graphics devices that support any binary XGL
application. The XGL architecture provides open, well-defined interfaces that
facilitate the task of implementing device handlers.

2 XGL Device Pipeline Porting Guide—May 1996

1

Solaris Dynamic Linking

The Solaris 2.x operating system includes support for dynamic linking of
shared libraries. A shared library is a library that can be dynamically linked
during the running of the application. Under dynamic linking, the contents of
the shared library are mapped into the application’s virtual address space at
runtime. References by the application to the functions in the shared library are
resolved as the program executes.

The Solaris environment provides mechanisms to dynamically load both kernel
device drivers and user process shared libraries. These facilities allow a
hardware vendor to incorporate a new graphics accelerator into the Solaris
environment by providing a dynamically loadable kernel device driver and an
XGL device handler.

XGL Loadable Interfaces
The XGL GPI consists of three layers of device pipeline interfaces. Each layer
defines a set of rendering tasks that must be accomplished before proceeding
to the next layer in the pipeline. More complex operations, such as
transformations, lighting, and clipping, are performed in the uppermost layer;
less complex operations, such as scan conversion, are performed in the lower
layers. You can implement GPI functions at varying layers to tailor a port for
your device.

The XGL GPI includes a complete software implementation of the top two
layers of the pipeline for most primitives. The lowest layer, which is
responsible for writing pixels to the device, is device dependent and has not
been included in the software implementation.

You can choose a layer for your device handler based on the functionality of
your device and let the XGL software implementation handle the rendering of
functionality not accelerated by the device. The selection of the interface layer
to port to can be made for each graphics primitive. For each primitive, a device
handler has the opportunity to either interpose its own code for the primitive
or let the XGL-supplied software implementation perform the rendering tasks.
Thus, for each primitive, a device handler can be called at the layer for which
it is best adapted.

Introduction to XGL Loadable Interfaces 3

1

The functions comprising the software implementation and the device-
dependent functions that replace them are grouped into separate dynamically
loadable libraries. The set of device-dependent functions is called the device
pipeline. The software implementation is called the software pipeline. At
runtime, when an application program calls a primitive, the XGL device-
independent code decides whether to render using the software pipeline or the
device pipeline. This decision depends on the capabilities of the hardware and
on the current XGL primitive and the current graphics state as defined by
XGL’s attributes.

Loadable Interface 1 (LI-1)

The topmost layer is called Loadable Interface 1, or LI-1. This layer is directly
below the XGL API. An LI-1 device handler is responsible for all aspects of
drawing an XGL primitive, including transformation, clipping (view and
model), lighting, and depth cueing. Devices that port to this layer for some or
all of the XGL primitives are responsible for all operations required for
rendering, including scan conversion and rendering of pixels. Although this is
the most difficult layer to port to, a port to LI-1 enables full acceleration on a
graphics device.

Loadable Interface 2 (LI-2)

The second layer, LI-2, is responsible primarily for scan converting more
complex primitives like polygons and polylines. Porting to this layer assumes
some responsibility for rendering (especially if the hardware supports scan-
conversion of primitives) but leaves the processing of the geometry
(transformation, clipping, and so on) to the XGL software version of the layer
above.

Loadable Interface 3 (LI-3)

The lowest layer in the device pipeline, LI-3, is responsible for rendering pixels
and vectors individually, or in spans. If you port to this layer, you need only
implement vectors, span, and dot renderers. All other operations needed to
process an API primitive and reduce it to this level are provided by XGL’s
default software implementation.

4 XGL Device Pipeline Porting Guide—May 1996

1

Because writing pixels to the frame buffer is device dependent, the software
pipeline does not implement the LI-3 layer. At a minimum, device handlers for
new devices must implement LI-3 functions. To assist you with an LI-3 port,
XGL provides utilities that perform pixel operations. You can call these utilities
in place of writing a device-specific LI-3 layer.

Figure 1-1 illustrates the layers of the device pipeline and software pipeline as
well as some of the components of the XGL device-independent code.

Figure 1-1 XGL Loadable Interface Layers

As mentioned above, the decision as to which layer to port to can be made on
a per-primitive basis. For example, if a particular hardware device can render
polylines but not polygons, a device handler for that device might implement
the polyline primitive at LI-1 and let the XGL software pipeline render the
polygons. At any time, a device handler can override the default software

XGL Core Library

LI-1 Software Pipeline

LI-2 Software Pipeline

Display Device

XGL Core API to Pipeline Layer

Utilities

DI
Objects

LI-3 Device Pipeline

LI
-2

D
ev

ic
e

P
ip

el
in

e

LI
-1

 D
ev

ic
e

P
ip

el
in

e

Application

Introduction to XGL Loadable Interfaces 5

1

interface provided by XGL. This choice is dynamic and is flexible enough to
permit a variety of hardware devices to fully use their capabilities to draw
XGL primitives.

Note – Currently, the XGL graphics porting interface is unstable. This interface
could change in the future in ways that would require changes in device
pipelines.

6 XGL Device Pipeline Porting Guide—May 1996

1

7

Getting Started 2

This chapter presents information that you will need as you write your device
handler. The following topics are covered:

• A quick look at the XGL architecture as it relates to the device handler

• A brief discussion of issues to consider before you begin porting, such as
multiple context support and backing store implementation

• Overview information on the porting task, including a summary of how to
write an LI-1 device pipeline

• Information on the XGL DDK directory structure

8 XGL Device Pipeline Porting Guide—May 1996

2

XGL Architecture From the Pipeline Point of View
The XGL architecture defines two basic components: the device-independent
core component and the device-dependent loadable device pipelines. The XGL
core functions as the interface between the application program and the device
pipelines. The pipelines turn geometric primitives and their state attributes
into pixel data that is displayed on a graphics hardware device or written into
memory. Figure 2-1 illustrates these basic components:

Figure 2-1 Basic View of XGL Architecture

About Device Pipelines

A device pipeline is composed of two sets of objects:

• A set of device objects that work together to form the abstract XGL Device
object

• A set of loadable interfaces that send the application data to the hardware

The set of device objects serve as a framework connecting the device-
independent code with the device pipeline rendering code. The loadable
interfaces correspond to API primitives at the top level (LI-1), and provide
span and pixel renderers at the lower levels (LI-2 and LI-3).

Conceptually, the pipeline is the sequence of transformations and operations
for a graphics primitive. The actual implementation of a pipeline for a specific
device will order geometric operations to enhance performance. However, a
device may only be capable of enhancing performance under certain
conditions. For other conditions, the device pipeline can call the XGL software
pipeline, which can handle any valid combination of conditions.

For a brief description of the loadable interface layers, see Chapter 1,
“Introduction to XGL Loadable Interfaces.” The remainder of this book
provides details on implementing pipelines at these layers.

XGL Device

Device

DI Pipelines
Graphics

Application

Getting Started 9

2

Services the XGL Core Provides the Device Pipeline

The XGL device-independent code provides the device pipeline with some
useful services. For example, the device-independent code can perform generic
error checking, backing store, and deferral mode handling. The device-
independent code also keeps track of XGL context state and provides interfaces
that allow the device pipeline to retrieve information on attribute settings. In
addition, the device-independent code provides the device pipeline with a
quick test to determine whether any view model or coordinate system
attributes have changed. The device-independent code also includes utilities
that the device pipeline can use for computing normal and color values.

A simple view of the XGL device-independent code and a graphics handler
that has implemented a complete LI-1 loadable interface for the API primitive
xgl_multipolyline() looks like Figure 2-2. For more information on the
XGL architecture and for illustrations of the architecture of the device pipeline,
see the XGL Architecture Guide.

Figure 2-2 High-Level View of XGL Primitive Call Processing

XGL DI

XGL API

Device

Device

xgl_multipolyline()

 Error Checking (On)

 Deferral=ASAP

li1MultiPolyline()Pipeline loadable interface
pipeline

 Backing Store (On)

10 XGL Device Pipeline Porting Guide—May 1996

2

Issues to Consider Before You Begin Porting
Before beginning your XGL graphics handler, you need to consider several
important issues:

• How your graphics handler will support multiple XGL contexts

• How your handler will support backing store

• Whether you need to port Direct Graphics Access (DGA) for your device

These issues are briefly discussed below.

Device Support for Multiple XGL Contexts

The term context refers to a set of state information that controls an executing
entity. The use of this term can become confusing at times because it can refer
to any one of the following:

Hardware context State information that defines rendering characteristics
on graphics accelerators, such as line color or raster
operation register values.

Process context State information that controls a UNIX process, such as
the program counter, the signal mask, or file
descriptors. This state also includes memory mapping
information for devices.

XGL context State information that defines the rendering of XGL
primitives, such as line color or transforms.

A hardware device can be used by many different graphics rendering
processes at once. At a minimum, the device will be used by the display server
and one XGL client, and there may be other libraries or additional XGL clients
using the device as well. Each task maintains a current state or context, such as
line color. Since the device is being shared by multiple users, the state must be
current for each user before drawing can take place. Thus, your hardware
resources must be able to support multiple contexts.

Because graphics hardware support for context switching is device dependent,
state changes resulting from intraprocess switching of XGL contexts must be
managed within the device pipeline. Thus, early in the device pipeline design
phase, you should consider how your device pipeline will support multiple
XGL contexts within a single process.

Getting Started 11

2

Also, multiple processes can access your hardware simultaneously. It is
important to define how your device will allocate and share its resources
among different processes and different windows within a process. Efficient
sharing of hardware resources will enable your pipeline to make better use of
the XGL architecture.

Device Support for Backing Store

Backing store is a mechanism that saves the obscured portions of a window so
that the window can be refreshed quickly when it becomes visible again. A
backing store is off-screen memory that reflects the contents of the display
buffer. This memory is used by the server to automatically restore previously
obscured areas of the display during an expose event. Backing store can be
handled by your graphics device or by XGL.

If you can use your graphics device to implement backing store, the device
must be able to render graphics into off-screen memory. In addition, in your
implementation of the OpenWindows server, you need to enable the backing
store feature. A request for backing store support from the server will then
allocate backing store memory from your hardware.

If your device does not support backing store, you can request that the server
and XGL handle backing store instead. To use XGL for backing store support,
you must implement a small set of device-dependent functions in the pipeline.
If your device has a software Z-buffer or accumulation buffer, then the buffer’s
contents must be shared with the backing store to keep the buffer and its
backing store counterparts synchronized, since the server only repairs damage
to the display buffer.

For more information on using XGL to support backing store, see page 57. For
information on the architecture of backing store, see the XGL Architecture
Guide.

OpenWindows and XGL

The OpenWindows™ environment includes Sun’s DGA technology, which
arbitrates access to the display screen between XGL and the window system.
DGA defines a protocol between the client application (XGL in this case) and
the X11 window server that enables both the application and the server to
share the underlying graphics hardware.

12 XGL Device Pipeline Porting Guide—May 1996

2

When an application is running on the same machine as the OpenWindows
server and the hardware has DGA support, XGL uses DGA to synchronize on-
screen drawing with the server. For local rendering, DGA allows XGL to send
commands directly to the accelerator or frame buffer, substantially improving
performance. When the XGL client program is running remotely, XGL uses
Xlib or PEXlib for all rendering.

Depending on your hardware, you may need to port the device-dependent
portions of DGA to your hardware. Your device-specific version of DGA
enables XGL to render directly to your device. For information on the DGA
interfaces, see the X Server Device Developer’s Guide.

Porting Task
During the initial design phase for a device pipeline, you may want to choose
LI-1, LI-2, or LI-3 as the primary interface level for the port. This section
presents some guidelines for choosing an interface level to port to and, as an
example, provides a brief overview of the steps in porting at the LI-1 level.

Choosing a Loadable Interface Level

An important decision when you begin your graphics handler is to determine
which loadable interface level to begin implementing first. Depending on your
goals and your hardware, you may want to begin with LI-1 functions, LI-2
functions, or LI-3 functions. You can also focus on either 2D rendering or 3D
rendering because these are different paths. In some cases, the hardware
determines the loadable interface level that you port to, as follows:

• Consider an LI-1 port if your hardware provides a high level of graphics
rendering capability, such as transforms, clipping, lighting, or accelerated
scan conversion. Points are input to an LI-1 pipeline in model coordinates,
and it is the device pipeline’s responsibility to perform all rendering
operations, including transforming the point data to device coordinates.

• Plan on an LI-2 port if your hardware is capable of rendering device
coordinate primitives but is not capable of performing higher level
operations such as depth cueing, transformations, lighting, or clipping. The
LI-2 layer is provided for devices that can draw primitives if the device
coordinates and color of the object are given and no further processing is
required.

Getting Started 13

2

• Port to LI-3 if your device is a simple frame buffer that provides pixel-based
operations but does not provide graphics acceleration. The input to LI-3 is
pixel data, and the frame buffer renders in device coordinates. You might
also choose to port to LI-3 if you want to do a minimal amount of work to
write a device handler for the device. An LI-3 pipeline relies on the software
pipeline geometric and rendering functions to feed the pixel-level interface
at the LI-3 level.

If you are writing a pipeline for a high-level graphics device, you may begin by
implementing the basic put-pixel and get-pixel interfaces at the LI-3 level or by
implementing one or more accelerated pipelines at the LI-1 level. There is no
particular layer that you must begin with, but there are performance trade-offs
to consider.

Starting With an LI-3 Level Port

A good way to begin, even for an LI-1 port, is to start work on the LI-3 level
using the LI-3 utility object RefDpCtx (Reference Device Pipeline Context). To
implement the LI-3 layer with this object, you simply write functions to store
the value of a pixel (set-pixel) and to retrieve the value of a pixel (get-pixel).
Then you can call the LI-3 primitives using the interfaces provided with the
RefDpCtx utility. XGL will only use your LI-3 device pipeline port at the end of
a rendering operation. The XGL software pipeline will handle all other
operations required for rendering.

Using RefDpCtx to implement LI-3 is the simplest, quickest route for porting
XGL to your hardware. With the LI-3 level implemented in this way, you can
begin working on window system interactions with DGA and on verifying
your port using the Denizen test suite. (See the XGL Test Suite User’s Guide for
information on the Denizen test suite.)

Porting to the LI-3 level provides breadth of functionality rather than
performance. This is the approach to take if your primary goal is to port XGL
quickly to see your device running an XGL application. An LI-3 port is
advantageous during the early stages of implementing a device pipeline
because it produces full XGL functionality with a minimal amount of effort by
the porting team. Then to improve performance, you can concentrate on the
primitives that you decide are most important and rewrite their
implementation at the LI-1 or LI-2 interface level.

14 XGL Device Pipeline Porting Guide—May 1996

2

Starting With an LI-1 Level Port

An alternate approach is to focus on accelerated rendering and begin with LI-1
primitives. If you have a graphics device with a high degree of functionality,
you may choose to implement a complete primitive at the LI-1 level, in effect
bypassing the lower levels. For example, if your hardware is designed to
render triangles at high speed, it may be more advantageous to implement
triangle renderers and the LI-1 triangle primitives than to implement a pixel
interface at LI-3. Your device implements the triangle strip primitive at the LI-1
level by executing all of the operations of the rendering pipeline on the device.
When the device is unable to handle a particular situation, for example
dithering with a color cube, it can fall back to the software pipeline for the
function specific to that situation.

Writing a set of LI-1 level interfaces is not a simple task and can require
significant time and resources. Optimizing the code for maximum performance
will require even more development time. One way to organize work at the
LI-1 level is to focus on a single area of acceleration, polylines for example, and
implement the LI-1 level primitive for that area. With this approach, you can
identify design problems early. Once the LI-1 primitive is performing well, you
can implement more LI-1 primitives using the design that you have developed
for the first primitive.

Starting With an LI-2 Level Port

If you are writing loadable interfaces for a device that renders in device
coordinates only, you will implement LI-2 and LI-3 level interfaces and will not
implement interfaces at the LI-1 level. In this case, you can choose whether to
begin with the LI-2 layer or the LI-3 layer. As mentioned above, implementing
LI-3 through RefDpCtx provides complete functionality in a relatively short
time.

Getting Started 15

2

A Quick Look at Implementing an XGL Graphics Handler

Implementing an XGL graphics handler is a large project consisting of the
following general steps:

• Decide which XGL primitives and attributes your hardware can accelerate.

• Write the xgli_create_PipeLib() routine, which creates a device
pipeline library object for your device.

• Derive the set of classes that provide the device pipeline framework.

• Choose a simple primitive to implement.

• Implement software pipeline calls, if necessary.

• Determine how to handle attribute processing.

• Implement primitives not provided by the software pipeline.

• Implement error handling.

• Test your implementation with the Denizen Test Suite.

These steps are briefly described in this section. While this section may make
the task of writing a graphics handler seem simpler than it actually is, it is
meant to help you divide the porting task into manageable subtasks or
concepts. Each step includes references to later chapters that include the
information needed to complete the task.

▼ Decide which XGL primitives and attributes your hardware can
accelerate.

To determine which of the primitives and attributes your hardware can
accelerate, consider the capabilities of your hardware and examine the scope of
XGL functionality in the XGL Reference Manual and in Chapter 8, Chapter 9,
and Chapter 10 of this book. Most likely you cannot implement all the XGL
functionality on your device, so you may want to focus on implementing only
those features that your hardware can accelerate.

For those primitive-attribute combinations that your pipeline cannot handle,
you can call the software pipeline for processing. To decide which primitives to
implement in your pipeline, consider the kind of applications you are targeting
with your device and the features that should be accelerated for those
applications. Early identification of what to implement in your device pipeline
will facilitate the process of porting XGL to your device.

16 XGL Device Pipeline Porting Guide—May 1996

2

▼ Write the xgli_create_PipeLib() routine.

Each graphics handler must include a routine that creates an instance of the
XGL device pipeline library object corresponding to the pipeline. This routine.
xgli_create_PipeLib() , is called through dlsym() after the device
pipeline is dynamically loaded. See Chapter 3, “Pipeline Interface Classes,” for
information on this routine and for information on naming your handler so
that XGL device initialization functions can load the it at runtime.

▼ Derive the set of classes that provide the device pipeline
framework.

XGL provides a set of classes that, when derived by the pipeline, provide a
framework linking the pipeline to the XGL device-independent code. Briefly,
the XGL-provided classes are:

• XglDpLib – Maps to the shared library for your device.

• XglDpMgr – Maintains information about the physical device. You may
want to put your device initialization routines in this class.

• XglDpDev – Constitutes the device-dependent part of the XGL Device
object.

• XglDpCtx2d and XglDpCtx3d – Constitute the device-dependent part of the
XGL Context object. These classes contain the loadable interfaces that the
device implements.

These classes have a number of methods that you are required to implement as
well as optional methods, such as the LI-1 and LI-2 loadable interfaces. For
detailed information on creating the device pipeline derived classes and
objects, see Chapter 3, “Pipeline Interface Classes.” For a summary of the
required and optional methods in the device pipeline classes, see page 66. For
information and illustrations on the architecture of the device pipeline, see the
XGL Architecture Guide.

You also need to consider your approach to implementing DGA. When you
have implemented DGA and the device pipeline classes, you will be able to
create an X window and open an XGL Device object on it.

Getting Started 17

2

▼ Choose a simple primitive to implement.

Once a window is available to render to, you can implement a primitive, such
as xgl_multipolyline() . The goal for this step is to render a simple piece
of geometry, such as a line, on your hardware. To do this, you need to process
the geometric data, converting it to a format appropriate for your hardware.
You may also need to work out a way to initialize your hardware for each
primitive.

Note that some window information, in particular the window clip list, is
critical data. This means that it cannot be modified by another process while
XGL is using it. The device pipeline must lock critical window data structures
before rendering and unlock them when rendering is complete. This prevents
the server from making changes to these data structures while an XGL
rendering operation is taking place. For more information on XGL’s interface to
the window system, see Chapter 7, “Window System Interactions.”

Once you have succeeded in rendering geometry on your device, you have
completed the important milestone of getting XGL to communicate with your
hardware.

▼ Implement software pipeline calls, if necessary.

At each LI-1 and LI-2 rendering call, the device pipeline must determine
whether it can proceed. If it can render the geometry, in most cases it will take
control and render to the hardware at that point. If the device pipeline cannot
perform the LI-1 or LI-2 processing, the device pipeline can call the software
pipeline to process the primitive. For information and example code on how to
call the software pipeline, see “Calling the Software Pipeline” on page 50. For
more specific information on the using the software pipeline at the LI-1 or LI-2
levels, see Chapter 9 and Chapter 10.

▼ Determine how to handle attribute processing.

Each XGL primitive has a set of attributes that affects it. The pipeline gets the
attribute settings from the Context object. A pipeline can improve performance
for attribute handling by using the pipeline objectSet() and
messageReceive() functions. For information on these functions and on
other issues to consider as you implement attribute handling, see Chapter 4,
“Handling Changes to Object State.”

18 XGL Device Pipeline Porting Guide—May 1996

2

When handling attribute changes, be aware that techniques that work for a
simple primitive, such as multipolyline, may not work for more complex
primitives, such as surface primitives. If you determine that your device
cannot handle the current attribute setting for a primitive, you can fall back to
the software pipeline for rendering.

At this time, you will also want to consider how to handle view model changes
and coordinate system changes. XGL provides the view model derived data
facility to assist you in implementing view model operations. Using derived
data, you can set up objects that track the derived items important to your
pipeline. For information on the processing of view model and coordinate
system changes, see Chapter 6, “View Model Derived Data.”

You may have to map the XGL attributes to attributes specific to your
hardware so that the appropriate rendering occurs. Once you have determined
what attributes you need to handle and how to handle them, you should think
about how to structure the pipeline for performance. How you do this depends
on how your hardware saves Context state values.

Your pipeline must also manage state changes that may result when the
application changes the Context it is using to render. Chapter 4, “Handling
Changes to Object State” provides a brief discussion on context switching and
hardware state updating and also provides information on handling the
updating of state when the pipeline switches between interface layers. There
are several pitfalls that you may encounter when switching loadable interface
layers. Solving these design problems early in the porting process will simplify
your overall task.

When you reach this point, you have worked through most of the porting
process for a geometry operator. You should be familiar with problems that
you need to resolve. At this point, you can look into implementing other types
of functions, including functions that the XGL software pipeline does not
provide, such as the xgl_context_new_frame() operator.

▼ Implement primitives not provided by the software pipeline.

There is a small subset of device-dependent operators that XGL does not
implement in the software pipeline. The xgl_context_new_frame()
operator is one of these operators. The new frame operator clears the screen
and may be required each time rendering occurs. You may want to implement
xgl_context_new_frame() early in your development schedule.

Getting Started 19

2

Another primitive that the device pipeline must provide is
xgl_context_copy_buffer() . Implementing a pixel operator after a
geometry primitive will help you understand the range of possible functions
that you must handle.

▼ Implement error handling.

XGL provides an error-reporting mechanism that is used when an error is
detected during the execution of an XGL application. If you want an error to be
reported to the application, you must explicitly add code to the device pipeline
to handle error conditions. For information on adding error processing to a
device pipeline, see Chapter 11, “Error Handling.”

▼ Test Your Implementation.

To verify that your graphics handler produces images that conform to XGL’s
reference images, run the Denizen Test Suite, which is supplied with the XGL
DDK. The Denizen Test Suite is a group of shell scripts and C programs
designed to use the XGL library to render objects and evaluate results. Denizen
contains approximately 600 test programs that test every XGL function and the
major internal components of the XGL library.

The first time you run the Denizen Test Suite, you will generate a set of
reference images for your hardware. Compare your pipeline’s reference images
with the cg3, cg8, and GX reference images provided with the XGL DDK to
ensure that the images generated by your device are generally similar to the
cg3, cg8, or GX reference images. Note, however, that reference images may
vary across hardware platforms. The images generated for each platform
should be similar, but they may not be identical pixel-by-pixel, since different
hardware may touch different pixels. It is up to you to determine whether the
differences between the XGL-provided reference images and your pipeline
references images are acceptable.

Your device handler should produce Denizen pass rates similar to those
measured for Sun’s reference frame buffers (8- and 24-bit nonaccelerated frame
buffers). The Denizen Test Suite is not intended to be a debugging tool but a
verification tool to help you ensure the accuracy of your implementation. For
information on using the Denizen Test Suite, see the XGL Test Suite User’s
Guide.

20 XGL Device Pipeline Porting Guide—May 1996

2

Figure 2-3 summarizes the basic steps in the process of implementing an XGL
graphics handler.

Figure 2-3 Roadmap for Implementing an XGL Graphics Handler

Write pipeline
creation routine

Derive pipeline
interface classes

Implement
primitives

Decide what
to accelerate

Process data

Implement error

Test handler
with Denizen

Implement attr.
handling

handling

or fall back to

Consider hardware
capabilities and
customer needs.

Read Chapter 3.

Read Chapter 3.

* All graphics handlers must
* implement the LI-3 layer.
For LI-3, read Chapter 8.
For LI-2, read Chapter 9.
For LI-1, read Chapter 10.

Read Chapter 4, Chapter 5,
and Chapter 6.

Read Chapter 11.

Read the XGL Test Suite
Users Guide.

Roadmap for Implementing an XGL Graphics Handler

software pipeline

Getting Started 21

2

Device Pipeline Makefiles
The XGL DDK provides the makefiles for the reference pipelines in the
pipeline source directories. To create a makefile for your pipeline, copy the
Skeleton pipeline makefile in
DDK_DIR/SUNWddk/ddk_2.5.1/xgl/src/dd/skeleton and change the
source file names to the names of your pipeline’s source files.

The XGL DDK provides a set of predefined targets that you can use to build
your pipeline. For example, the make debug command builds an debuggable
pipeline. Table 2-1 lists the XGL DDK make targets.

Note – A pipeline cannot be debugged until it is dynamically loaded by an
application.

Table 2-1 XGL DDK Makefile Targets

Target Description

opt Builds an optimized pipeline.

debug Builds a source-level debuggable pipeline. You can debug
the program with the SPARCworks or ProWorks
Debugger or dbx .

opt-sb Builds an optimized pipeline with source browser
information. You can analyze the program with the
SPARCworks or ProWorks SourceBrowser tool.

debug-sb Builds a debuggable pipeline with additional source
browser information.

tcov Builds a pipeline with tcov information. You can run any
test or application program to gather test coverage data.

22 XGL Device Pipeline Porting Guide—May 1996

2

Directory Structure for the XGL DDK
Figure 2-4 illustrates the XGL DDK directory structure. The XGL DDK package
includes sample source code for the XGL reference loadable device pipelines.

Figure 2-4 XGL DDK Directory Structure

/$BASEDIR/SUNWddk/ddk_2.5.1/xgl

lib /

cfb/

XGL

Makefile

Makefile

Sample source

/

mk_cc_defs.include

mo.script

cg6 /

*.mk

mem/

header files

color pipeline

*.cc

include /

*.h

Makefile

Makefile

Sample source

buffer pipeline

*.cc

include /

*.h

*.IL

Sample source

raster pipeline

include /

xgli /

src /

locale /

en_US/

LC_MESSAGES/

pipelines/
Files included by
pipeline Makefile

Used if pipelines are
built with sample Makefile

Script used to build
error message files

test_suite/

denizen/

internal

 for simple for GX frame

for memory

cgm/

Makefile

Makefile

Sample source

pipeline

*.cc

include /

*.h

 for CGM

di/ dd/

bin/

man/

man3/

skeleton/

Makefile

Makefile

Sample source

pipeline

*.cc

include /

*.h

 for skeleton

p9000/

Makefile

Makefile

Sample source

pipeline

*.cc

include /

*.h

 for p9000

Man pages for
DDK utilities

Utilities for the
skeleton pipeline

Denizen internal files
and test cases

doc/

psfiles/

Skeleton doc

p9100/

Makefile

Makefile

Sample source

pipeline

*.cc

include /

*.h

 for p9100

p9x00/

Makefile

Makefile

Common files

p9100 pipelines

*.cc

include /

 for p9000 and

*.h

Getting Started 23

2

Note – If you run the Solaris PEX product, PEX expects the XGL library and
the XGL pipelines to be in the default runtime location of
/opt/SUNWits/Graphics-sw/xgl . Therefore, when you are developing
your pipelines, create a symbolic link from the runtime area to your pipeline in
the DDK area.

Accessing External Files at Runtime
The XGL system may require external files during the execution of an XGL
application. For example, the device pipelines are dynamically-loaded shared
object files that must exist in a directory tree in a location known to XGL so
that XGL can load them. The XGL library also requires external files for the
error messages and stroke fonts. These external files exist within the directory
tree that is created when the XGL files are installed. The top of this directory
tree is pointed to by the XGLHOME environment variable. The value of XGLHOME
is used internally by XGL when it searches for any of the external files.

To retrieve the value of XGLHOME from the XGL device-independent code, use
the static function XglGlobalState::getXglHome() as shown below.

const char* xgli_home;
xgli_home = XglGlobalState::getXglHome();

Note – If an application is running remotely and the server has loaded the PEX
extension, XGLHOME is not used to load device pipelines; however, XGLHOME is
used to load font files and error message files.

24 XGL Device Pipeline Porting Guide—May 1996

2

25

Pipeline Interface Classes 3

This chapter presents information on the classes and objects that connect XGL
device-independent code with the device pipeline code. The following topics
are covered:

• Deriving the required device pipeline classes

• Pipeline naming conventions and versioning

• Providing renderers optimized for performance-critical primitives

• Description of required and optional device-dependent functions

• Using XGL for backing store support

As you read this chapter, you will find it helpful to have access to the header
files for the device pipeline classes. These files are:

• PipeLib.h and DpLib.h
• DpMgr.h
• DpDev.h, DpDevRaster.h , DpDevWinRas.h , and DpDevMemRas.h
• DpCtx2d.h and DpCtx3d.h

Note – In XGL the term device refers to both the physical hardware device and
the XGL API Device object. The API Device object is an abstraction of the
graphics display device. Internally, the Device object consists of two objects: a
device-independent object and a device-dependent object. For more
information on the internal components of the API Device object, see the XGL
Architecture Guide.

.h

26 XGL Device Pipeline Porting Guide—May 1996

3

Overview of the Pipeline Interface Classes
The XGL architecture has a device-independent component and a device-
dependent component. Because the device-independent component of XGL
must interact smoothly with the device pipeline, XGL provides a set of classes
that allow XGL to pass information to and from the device pipeline. Setting up
the basic pipeline framework is one of the primary tasks in writing a device
pipeline.

A pipeline implementation must derive five classes from four different class
hierarchies that form the basic framework of a device pipeline. The pipeline-
derived classes are the following:

• Device pipeline library (DpLib) class

• Device pipeline manager (DpMgr) class

• Device pipeline device (DpDev) class

• Device pipeline context (DpCtx2d and DpCtx3d) class

Objects instantiated from these pipeline interface classes provide the
functionality that the XGL device-independent code requires. Figure 3-1 on
page 27 shows the XGL-supplied class header files, header files derived by the
pipeline implementation, and the pipeline objects that are instantiated.

Each of the device pipeline derived classes contains functions that you must
implement. In some cases, the functions simply create the next level of the
hierarchy; in other cases, there are API-level functions or attributes that the
pipeline must support. Several classes also include optional functions for
operations that depend on the hardware.

In addition to providing the required classes and functionality, you must
include in your library a function called xgli_create_PipeLib() , which
creates the XglDpLib object that represents the pipeline library. You must also
name your pipeline appropriately so that XGL can find and load the pipeline
object.

Pipeline Interface Classes 27

3

Figure 3-1 Device Pipeline Interface Classes

Naming Your Device Pipeline
An XGL device pipeline must be named according to the following convention:

xgl<COMPANY NAME><device name>.so.<major version>

where:

• <COMPANY NAME> is a 4-letter capitalized abbreviation for the company
that implements the device pipeline. For example, Sun uses its stock symbol
SUNW for company name.

• <device name> is the abbreviated name of the device, which should be an
abbreviated form of the name of the corresponding kernel device driver
located in the /dev directory.

• <major version> is the major release number of the DDK associated with the
particular release of XGL that is compatible with this device pipeline. For
example, a Sun Microsystems Cg6 device pipeline with a major version
number of 4 is named xglSUNWcg6.so.4 . The DDK major version number
can be found in the header file xgli/DdkVersion.h .

The name of the pipeline is defined in the Makefile located in the device
pipeline build area. The Makefile macro LIB_NAME must be set to the
pipeline name.

XglDpLib.h XglDpLibFb.h

XGL Provided Header Files Pipeline Derived Classes

XglDpMgr.h XglDpMgrFb.h

XglDpDev.h XglDpDevFb.h

XglDpCtx2d.h XglDpCtx2dFb.h

XglDpCtx3d.h XglDpCtx3dFb.h

Pipeline Objects

XglDpLibFb

XglDpMgrFb

XglDpDevFb

XglDpCtx2dFb

XglDpCtx3dFb

28 XGL Device Pipeline Porting Guide—May 1996

3

When XGL attempts to load a pipeline, it issues a system call that returns the
pipeline name for the active device. For more information on how XGL loads a
device pipeline, see “How a Device Pipeline Is Loaded” on page 52.

About Versioning

The XGL device-independent library (libxgl.so) dynamically loads device
pipeline modules at runtime; therefore, a versioning scheme is required to
ensure that the device-independent library and the pipeline that it loads are
compatible. The versioning scheme is implemented both as part of the XGL
device-independent library and as part of the Driver Developer Kit (DDK).

The DDK contains header files that define the interfaces between the device-
independent XGL library and the dynamically loaded pipeline modules. The
device-independent library and the DDK have a version number that is called
the DDK version number. This version number, which contains both major and
minor parts, is defined by two macro definitions in the file
xgli/DdkVersion.h . The macro definitions for the current release are:

#define XGLI_DDK_MAJOR_VERSION 4

#define XGLI_DDK_MINOR_VERSION 1

Every XGL device pipeline must include the DdkVersion.h header file in
order to use the versioning information.

Versioning Rules

Each release of XGL is accompanied by a corresponding release of the DDK
containing files used to build the device-independent XGL library and the
reference device pipelines. Independent Hardware Vendors (IHV’s) use the
DDK to build a device handler that is compatible with the device-independent
XGL library in that release.

The DDK version number is unrelated to the XGL API library version number.
For example, the 3 in libxgl.so.3 is the version number of the XGL API
release. It is not related to the internal DDK majorVersion number. IHV’s
supplying XGL device pipelines must conform to the following versioning
rules:

Pipeline Interface Classes 29

3

1. The DDK majorVersion (defined in xgli/DdkVersion.h) used to build
the device pipeline is included in the file name of the device pipeline, such
as, xglSUNWcg6.so.4 , where the 4 is the same as majorVersion . The
convention used to name a device pipeline is:

 xgl<COMPANY NAME><device name>.so.<majorVersion>

2. The device-independent XGL library is stamped internally with both the
DDK major and minor version numbers of the DDK used to build it. The
device-independent XGL library will never load a pipeline with a DDK
majorVersion greater than its own. For example, libxgl.so with DDK
internal version number 3 will not load a pipeline named
xglSUNWcg6.so.4 .

3. The device-independent XGL library loads a device pipeline with a DDK
majorVersion less than its own DDK majorVersion only if the XGL
device-independent library has explicitly decided to emulate that lesser
majorVersion interface. Every time a new version of XGL and the XGL
DDK are released, this DDK document will specify which, if any, DDK
major versions are emulated by the device-independent XGL library.

This release of the DDK (major version 4, minor version 1) is compatible
with the device-independent XGL 4.0 library.

4. The device-independent XGL library always attempts to dynamically load a
device pipeline that has the same DDK majorVersion as itself. If the
device pipeline depends on functionality that was added in a particular
minorVersion of the DDK, your pipeline must check for the existence of
that functionality by checking the device-independent library’s DDK
version number. A device pipeline can check the device-independent
library’s DDK version number by calling the global library function
xglGetDdkVersion() , as declared in xgli/DdkVersion.h , from within
its xgli_create_PipeLib() function.

A device pipeline can provide its own workaround if the functionality does
not exist, or it can fail with an appropriate error message indicating the
device-independent library version that is required.

30 XGL Device Pipeline Porting Guide—May 1996

3

Setting Up the Required Pipeline Interface Classes
To set up the framework for your pipeline, you must create the required
functions and classes. You can do this either by deriving the required classes
from the XGL DDK header files or by copying and modifying a set of derived
classes from one of the sample pipelines provided with the XGL DDK product.
The steps that follow provide an overview of this task:

1. Define the xgli_create_PipeLib() routine.

2. Define an XglDpLib class for your pipeline and implement the required
functions.

3. Define an XglDpMgr class for your pipeline and implement the required
functions.

4. Define an XglDpDev class for your pipeline and implement the required
functions and the appropriate optional functions.

5. Define two XglDpCtx classes for your pipeline, one for 3D and another for
2D. Each of these classes contains an array of function pointers to pipeline
renderers.

These steps are discussed in the following sections. Figure 3-2 provides a quick
overview of the pipeline instantiation process. For more information on how
the XGL device-independent code instantiates the pipeline objects and loads
the pipeline during device creation, and for illustrations showing how these
classes are associated at runtime, see the XGL Architecture Guide.

Figure 3-2 Overview of Pipeline Instantiation

Note – This chapter contains a number of source code examples. You can copy
or modify these examples as long as the resulting code is used to create a
loadable pipeline for XGL.

xgli_create_PipeLib()
XglDpLib

getDpMgr()

XglDpDev
createDpCtx()

XglDpMgr

createDpDev()

XglDpCtx
Pointers to Dp

renderers

Device
Pipeline
routines

pipeline.so

Pipeline Interface Classes 31

3

Defining a Function to Create the Device Pipeline Object

As a first step in writing a device pipeline, you must write a function that
creates an instance of the XGL device pipeline object (XglDpLib) corresponding
to your device pipeline. This function is named xgli_create_PipeLib() .
The function is called by the XGL device-independent code through dlsym()
(an interface routine in the Solaris dynamic linking mechanism) after the
device pipeline is loaded. This function is declared as follows:

extern “C” XglPipeLib* xgli_create_PipeLib()

The extern “C” declaration is needed to disable the C++ name mangling on
the function name. Below is a basic implementation of this function, where
XglDpLibSampDp represents the name of the XglPipeLib derived class that the
device pipeline creates.

You can also implement this function to use the
XGLI_PIPELINE_CHECK_VERSION() macro in the DdkVersion.h file. This
macro verifies that the pipeline was built on the same major version of the GPI
as the current library. It also determines whether the minor version of the
pipeline is the same as or less than the minor version of the current XGL
library. If the version numbers correspond, the macro creates the device
pipeline object for the device pipeline. If a pipeline was built on a version of
the GPI that is newer than the current library, an error is returned and the
XglDpLib object is not instantiated.

XglPipeLib* xgli_create_PipeLib()
{
 return new XglDpLibSampDp;
}

#include “xgli/DdkVersion.h”

XglPipeLib* xgli_create_PipeLib()
{
 XGLI_PIPELINE_CHECK_VERSION(XglDpLibSampDp);
}

32 XGL Device Pipeline Porting Guide—May 1996

3

Defining the Device Pipeline Library Class

Next, you must derive a class from the device pipeline library class hierarchy
to create your device pipeline library (XglDpLib) class. An object from this
class represents a loaded device pipeline and maps to the .so shared object for
that pipeline. For each pipeline that is loaded into the XGL environment, there
is an XglDpLib object created by the pipeline function
xgli_create_PipeLib() . An XglDpLib object does the following:

• Provides for the creation, management, and destruction of device pipeline
manager objects.

• Allows more than one device pipeline manager object to share hardware or
software resources.

• Provides a location for data relevant to the pipeline library as a whole.

The base class of the device pipeline library hierarchy is XglPipeLib. The
device pipeline library class (XglDpLib) and the software pipeline library class
(XglSwpLib) derive from this class. You derive your device pipeline
implementation from XglDpLib. See the files PipeLib.h and DpLib.h for the
definition of these classes. A minimal definition of a pipeline library class is
shown here.

#include “xgl/xgl.h”
#include “xgli/DpLib.h”
#include “DpMgrSampDp.h”

class XglDrawable;

extern “C” XglPipeLib* xgli_create_PipeLib();

class XglDpLibSampDp : public XglDpLib {
 friend XglPipeLib* xgli_create_PipeLib();
private:
 XglDpLibSampDp() { dpMgr = NULL; }
 ~XglDpLibSampDp();

 // Device-pipelines Dependent Functions -
 // Redefine in Device Pipelines
 virtual XglDpMgr* getDpMgr(Xgl_obj_type,

XglDrawable* drawable=NULL);

 XglDpMgrSampDp* dpMgr;// there is only one dpMgr
};

Pipeline Interface Classes 33

3

Multiple Frame Buffers and XglDpLib

If there are two frame buffers on a system but both are of the same type, such
as GX, there is one XglDpLib object. If the two frame buffers are different
types, such as one GX and one IHV-provided frame buffer, there are two
XglDpLib objects, one for each device pipeline. The Global State object in the
XGL device-independent code keeps a list of XglDpLib objects so that it can
destroy them when XGL is closed. For information on the Global State object,
see the XGL Architecture Guide.

Note – If the device pipeline needs to establish exclusive control of any device-
dependent behavior for client applications, this control is handled by the
device pipeline objects because the XGL device-independent code does not
handle device-specific control of applications. If the control is needed for all
clients of the same type of frame buffer (regardless of the number of frame
buffers), then the XglDpLib object should maintain the control. If the control is
required for each frame buffer (if there is more than one), then the XglDpMgr
object should handle the control.

XglDpLib Virtual Function

The XglDpLib class contains one virtual function that you must override for
your pipeline implementation. This function is described in Table 3-1.

Table 3-1 XglDpLib Virtual Function

Function Description

getDpMgr(Xgl_obj_type,
 XglDrawable* drawable)

Called by the XGL core device creation routine when it
creates a new XglDpMgr object. The drawable parameter
enables the device pipeline to distinguish between
different physical frame buffers of the same type; however,
this pointer is transient and should not be cached. The
Xgl_obj_type parameter is currently ignored; in future
releases, it may be used to allow a pipeline to create more
than one type of Device object.

34 XGL Device Pipeline Porting Guide—May 1996

3

A sample implementation of getDpMgr() is shown below.

This implementation finds an existing XglDpMgr object or creates a new one
using the device-independent utility class, XglListOfDpMgr (defined in
ListOfDpMgr.h). This class manages a list of XglDpMgr objects created in
implementations that handle multiple frame buffers. This class provides two
functions: one to retrieve an existing DpMgr matching a file descriptor, and
another to create a new DpMgr for the device.

XglDpMgr* XglListOfDpMgr::getDpMgr(int fildes)

void XglListOfDpMgr::addDpMgr(int fildes, XglDpMgr* mgr)

When the pipeline is closed, the pipeline XglDpLib destructor automatically
deletes the list of XglDpMgr objects.

The XglDpMgr object typically includes hardware initialization code as part of
its constructor. The XglDpLib object can check on the status of the hardware
resources during XglDpMgr instantiation using the getCreationOK()
method defined in include/xgli/DbgObject.h . The creationOK variable
in XglDpMgr is initially set to TRUE. If a hardware resource failure occurs,
creationOK should be set to FALSE, and the XglDpMgr should return.
Instantiation of your pipeline will then fail.

XglDpMgr*
XglDpLibSampDp::getDpMgr(Xgl_obj_type, XglDrawable* drawable)
{
 XglDpMgr*dpMgr;

 dpMgr = dpMgrList.getDpMgr(drawable->getDevFd());
 if (dpMgr == NULL) {

dpMgr = new XglDpMgrGx(drawable);

if (dpMgr->getCreationOk()) {
dpMgrList.addDpMgr(drawable->getDevFd(), dpMgr);

} else {
delete dpMgr;
dpMgr = NULL;

}
}

 return dpMgr;
}

Pipeline Interface Classes 35

3

Multiple Frame Buffers and XglDpMgr

Systems with multiple frame buffers may have frame buffers of either the same
type or different types. Depending on the functions performed by an
XglDpMgr object, one XglDpMgr can be created for each frame buffer, or one
XglDpMgr can be created for all frame buffers of the same type. If the frame
buffers are of the same type, the XglDpMgr objects are created by the unique
XglDpLib object for that pipeline. If the frame buffers are different types, each
XglDpMgr object is created by the XglDpLib object corresponding to the device
pipeline for that frame buffer. For example, for one GX and one Cg3 (color
frame buffer), there are two XglDpMgr objects: one XglDpMgrGx object and
one XglDpMgrCfb object.

For implementations that handle multiple frame buffers, the XglDpLib object
may need to keep a list of previously created XglDpMgr objects. In this case,
the getDpMgr() function should check the list for an existing XglDpMgr
object associated with the Device type and Drawable object and retrieve the
XglDpMgr object if it exists.

Since the number of device pipeline manager objects your pipeline needs
depends on the capabilities of your hardware, the creation, managment, and
destruction of XglDpMgr objects is left to your individual device pipeline
implementation. Typically, the device pipeline provides one XglDpMgr object
for each frame buffer, but the pipeline can manage XglDpMgr objects in other
ways as well. The destruction of the XglDpMgr objects should be handled in
the XglDpLib destructor function, which the XGL device-independent code
invokes during xgl_close() .

For device pipelines that only need one XglDpMgr, such as a memory raster
pipeline, the getDpMgr() function returns the same XglDpMgr object every
time it is needed.

36 XGL Device Pipeline Porting Guide—May 1996

3

Defining the Device Pipeline Manager Class

The next step in setting up the pipeline framework is to define the device
pipeline manager (XglDpMgr) class. An object from this class does the
following:

• Provides for the creation of the device pipeline device objects. This class
allows multiple device pipeline device objects to share the physical
resources of a device.

• Maintains information about the physical hardware device.

See the file DpMgr.h for the definition of this class. Note that although you can
initialize your hardware in any of the framework classes, a good place to
initialize the hardware is in your XglDpMgr constructor, since this is where the
frame buffer is first notified that XGL is going to use it. A minimal definition of
a device pipeline manager class is shown here as XglDpMgrSampDp.

To limit the number of XglDpMgr objects, you can deny the creation of new
XglDpMgr objects by returning NULL from XglDpLibYourFb::getDpMgr() .
You can also limit the creation of a new XglDpDev object by returning NULL
from XglDpMgrSampDp::createDpDev() . Recoverable errors from the XGL
device-independent code result in those situations.

class XglDevice;
class XglDpDev;
class XglDrawable;

class XglDpMgrSampDp : public XglDpMgr {
public:
 virtual ~XglDpMgrSampDp();
private:
 //
 // Device-pipelines Functions - Redefine in Device Pipelines
 //
 virtual XglDpDev* createDpDev(XglDevice*,

Xgl_obj_desc* bkstore_desc = NULL);
 virtual void inquire(XglDrawable*, Xgl_inquire*);
};

Pipeline Interface Classes 37

3

XglDpMgr Virtual Functions

The XglDpMgr class contains two virtual functions that you must override for
your pipeline. These virtual functions are described in Table 3-2.

A sample implementation of the createDpDev() function creating a window
raster device is shown below.

What You Should Know About inquire()
Your pipeline must set the value of the name variable in the inquire()
method to the name or symbol for your company and the name of your device.
For example, the company symbol for Sun is SUNW and the name for the GX
device is cg6. Thus, on a GX device the xgl_inquire() function would

Table 3-2 XglDpMgr Virtual Functions

Function Description

XglDpDev*
createDpDev(XglDevice*,
 Xgl_obj_desc*)

Invokes the creation of the device-dependent part of the
XGL Device object. The XglDevice argument is cast to a
pointer to the type of Device being created, such as
XglRasterWin or XglRasterMem. The Xgl_obj_desc
argument is a pointer to a structure containing additional
information about the XGL Device object. The XGL device-
independent code uses the information in this structure,
and the device pipeline normally does not need it.
However, when backing store is enabled, this argument
provides information about the parent device that the
backing-store device can use or ignore.

void inquire(XglDrawable*,
 Xgl_inquire*)

Returns information on the acceleration features
underlying a window. This function corresponds to the
API xgl_inquire() function. The inquire() function
uses the XglDrawable* parameter passed to it to fill the
contents of the Xgl_inquire structure whose address is
passed. The XglDrawable pointer is transient and is
destroyed after being used.

XglDpDev* XglDpMgrSampDp::createDpDev (XglDevice* device,
Xgl_obj_desc*)

{
 return new XglDpDevSampDp(this,(XglRasterWin*)device);
}

38 XGL Device Pipeline Porting Guide—May 1996

3

return SUNW:cg6. Set other values appropriately. If a field is not filled in, the
default value is used. Therefore, make sure that the inquire() function is
accurate before your pipeline is released, since this function helps applications
know how to use your hardware. The default values are listed in Table 3-3.

Table 3-3 Default Values for the Fields of xgl_inquire()

Field Default Value

name nil

dga_flag FALSE

color_type Both indexed and RGB color types are set to 0 (false).

depth 0

width 0

height 0

maximum_buffer 0

db_buffer_is_copy FALSE

pt_type All point types are set to 0. Point types are pt_dim_2d ,
pt_dim_3d , pt_type_int , pt_type_float and
pt_type_double .

hlhsr_mode XGL_HLHSR_NONE

picking XGL_INQ_NOT_SUPPORTED

double_buffer XGL_INQ_NOT_SUPPORTED

indexed_color XGL_INQ_NOT_SUPPORTED

true_color XGL_INQ_NOT_SUPPORTED

depth_cueing XGL_INQ_NOT_SUPPORTED

lighting XGL_INQ_NOT_SUPPORTED

shading XGL_INQ_NOT_SUPPORTED

hlhsr XGL_INQ_NOT_SUPPORTED

antialiasing XGL_INQ_NOT_SUPPORTED

stereo 0

extns 0

Pipeline Interface Classes 39

3

It is important to note that the application is requesting information about the
window rather than the frame buffer when it executes xgl_inquire() . For
example, if the device can accelerate more than one color type, such as 8-bit
indexed color and 24-bit RGB color, the application may request the best visual
from the X server and then use xgl_inquire() to determine whether it was
given a 24-bit window or an 8-bit window. The pipeline inquire() function
can test the window depth and then return the appropriate information to the
application.

For an implementation of the inquire() function, see the sample GX pipeline
provided as part of the XGL DDK product. For more information on the
inquire() function, see the xgl_inquire() reference page in the XGL
Reference Manual.

Note – inquire() might be called before the XglDpDev object is created, but
it will only be called after xgl_open() .

Defining the Device Pipeline Device Class

Next, you must derive a class from the device pipeline device hierarchy. An
object from this hierarchy contains the device-dependent elements of an XGL
Device object and is linked to the device-independent part of the Device object.
An object instantiated from the XglDpDev class does the following:

• Creates the device pipeline-context objects

• Provides a device pipeline with the opportunity to exchange device
information with the XGL device-independent code via get() and set()
functions

• Provides a storage location for data relevant to the window

In the case of a single XGL application with multiple windows, each XglDpDev
object maps to a single window on the screen. If the application has multiple
windows using the same underlying frame buffer, the XglDpMgr object for
that frame buffer creates all the XglDpDev objects that the application needs. If
the application runs on a system with more than one physical frame buffer,
and the application creates multiple windows on each frame buffer, each
XglDpDev object is created by the XglDpMgr object that corresponds to the
frame buffer.

40 XGL Device Pipeline Porting Guide—May 1996

3

Although the XglDpMgr object creates multiple XglDpDev objects, it is not
designed to keep track of those objects. Instead, for each XGL API-level Device
object that is created, a pointer to the XglDpDev object is returned to the
device-independent XglRasterWin object, and a pointer to the XglRasterWin
object is stored in the XglSysState object list of existing Device objects. For
more information on how pipeline objects are instantiated, see the XGL
Architecture Guide.

The base class of the device-dependent device hierarchy is XglDpDev. The
XglDpDevRaster derives from this class, and the XglDpDevWinRas,
XglDpDevMemRas, and XglDpDevStream derive from XglDpDevRaster.
Depending on the type of the device you are porting, your device pipeline will
derive a device class from either XglDpDevWinRas (for window rasters),
XglDpDevMemRas (for memory rasters), or XglDpDevStream (for stream
devices). See the header files DpDev.h , DpDevRaster.h , DpDevWinRas.h ,
DpDevMemRas.h., and DpDevStream.h for the device-dependent hierarchy.
Sample code for a minimal definition of a device-pipeline device class for a
window raster is shown below.

class XglDpDevSampDp : public XglDpDevWinRas {
 friend XglDpMgrSampDp;
private:
 XglDpDevSampDp(XglDevice* device) : XglDpDevWinRas(device) {}
 //
 // Device-pipelines Dependent Functions -
 // Redefine in Device Pipelines
 //
 virtual XglDpCtx3d* createDpCtx(XglContext3d*);
 virtual XglDpCtx2d* createDpCtx(XglContext2d*);

 virtual int copyBuffer(
 XglContext3d*, //3D Context associated with dst mem_ras
 Xgl_bounds_i2d*, //Rectangle
 Xgl_pt_i2d*); //Position

 virtual int copyBuffer(
 XglContext2d*, //2D Context associated with dst mem_ras
 Xgl_bounds_i2d*, //Rectangle
 Xgl_pt_i2d*); //Position
};

Pipeline Interface Classes 41

3

Note – When XglDpDevWinRas is created, a device pipeline should call
XglRasterWin:setDgaCmapPutFunc() to register the callback function that
updates the hardware color map. For information on setDgaCmapPutFunc() ,
see “Window Raster Interfaces” on page 109.

XglDpDev Virtual Functions

A minimal implementation of the XglDpDev class contains several functions
that the pipeline must override. These functions are described in Table 3-4.

The XglDpDev class and its hierarchy include a number of virtual functions
that the pipeline can override to perform operations specific to the device. The
functions relevant to a window raster device are listed in Table 3-5 on page 42.

XGL has defined default behavior for these functions. If the default behavior of
your hardware matches the defaults that XGL has defined for these functions,
it is not necessary to override these functions.

Table 3-4 XglDpDev Virtual Functions

Function Description

virtual XglDpCtx{2/3}d*
createDpCtx(XglContext{2/3}d*)

Creates the XglDpCtx objects. Two of these functions must
be created, one for 2D and one for 3D.

virtual int
copyBuffer(XglContext{2/3}d*,
 Xgl_bounds_i2d*,
 Xgl_pt_i2d*)

Copies from one buffer to another. The destination device
is the memory raster associated with the Context
parameter, and the source device is the pipeline XglDpDev
object. Two of these functions must be created, one for 2D
and one for 3D.

42 XGL Device Pipeline Porting Guide—May 1996

3

Device Object Initialization

It is important to be aware that XGL’s API-level Device object consists of two
internal objects: the device-dependent device object created by the device
pipeline XglDpMgr object, and a device-independent object, such as
XglRasterWin, created by the System State object. These two internal Device
objects are linked by a pointer from the device-dependent object to the device-
independent object. The API Device object was designed with separate device-
independent and device-dependent components to isolate the device-
dependent operations. This design allows you to define specific operations for
your device.

Table 3-5 XglDpDev Device-Dependent Virtual Functions

Class Function Declaration Default Action or Value

XglDpDev Xgl_vdc_orientation getDcOrientation()
float getMaxZ()
float getGammaValue()

XGL_Y_DOWN_Z_AWAY
XGLI_DEFAULT_MAX_DEPTH
2.22

XglDpDevRaster void setRectList(const Xgl_irect[])
void setRectNum(Xgl_usgn32)
void setSourceBuffer(Xgl_buffer_sel)
void setSwZBuffer(XglPixRectMem*)
void setSwAccumBuffer(XglPixRectMem*)
void syncRtnDevice(XglRasterWin*)

No operation
No operation
No operation
No operation
No operation
No operation

XglDpDevWinRas Xgl_accum_depth getAccumBufferDepth()
Xgl_usgn32 getDepth()
Xgl_color_type getRealColorType()
XglPixRectMem* getSwZBuffer()
XglPixRectMem* getSwAccumBuffer()
Xgl_boolean needRtnDevice()
void resize()
void setBackingStore(Xgl_boolean)
void setBufDisplay(Xgl_usgn32)
void setBufDraw(Xgl_usgn32)
void setBufMinDelay(Xgl_usgn32)
Xgl_usgn32 setBuffersRequested(Xgl_usgn32)
void setCmap(XglCmap*)
void setPixelMapping(const Xgl_usgn32)
void setStereoMode(Xgl_stereo_mode)

XGL_ACCUM_DEPTH_2X
Query Drawable for win depth
Query Drawable for fb color type
NULL
NULL
TRUE
No operation
No operation
No operation
No operation
No operation
Returns one buffer
No operation
No operation
No operation

Pipeline Interface Classes 43

3

When the XGL device-independent code asks the device pipeline to create an
XglDpDev object, it passes a handle to the device-independent Device object:

XglDpDev* XglDpMgrYourFb::createDpDev(XglDevice* device)

At creation time, the XglDpDev object gets from the XglDevice object all the
information it needs about the device-independent attributes. The device-
independent values are valid at this time. Most of the set...() functions are
called later when the application changes device-dependent parameters
through the API.

After getting the pointer to the XglDpDev object, the XglRasterWin object calls
the device-dependent object’s get...() functions to complete its own
initialization. You should not expect these device-dependent attributes, which
provide information such as the DC orientation or the device color type, to be
meaningful during the XglDpDev object creation. Later in the process of
pipeline initialization, XglRasterWin calls set...() functions that allow the
XglDpDev object to complete its initialization with the correct device-
dependent data.

Defining the Device Pipeline-Context Class

The final step in creating your pipeline derived classes is to derive a class from
the device pipeline-context hierarchy. If your pipeline supports applications
that render in 2D and 3D, then two classes are needed, one descending from
XglDpCtx2d and the other from XglDpCtx3d.

The two XglDpCtx classes contain the interfaces for the 2D and 3D LI-1, LI-2,
and LI-3 primitive layers. The LI-1 and LI-2 interfaces are methods that you
can override in your device pipeline if the hardware supports the primitives.
By default, the device pipeline-context object calls the software pipeline to
perform LI-1 and LI-2 operations. The LI-3 functions must be implemented by
the device pipeline since these functions are device dependent. There is one
device pipeline-context object per Device-Context pair.

An XglDpCtx class for a 3D pipeline in which only multipolylines are
implemented might look like the following sample code.

44 XGL Device Pipeline Porting Guide—May 1996

3

The LI functions are described in Chapter 8, Chapter 9, and Chapter 10. For
information on switching between the device pipeline and the software
pipeline, see “Calling the Software Pipeline” on page 50.

Rendering Through the XglDpCtx Object

When a primitive is called, the XGL device-independent code maps the API
call to an internal C++ call in a wrapper function. The wrapper passes the
primitive call directly to the device pipeline through the opsVec[] array. The
opsVec[] is a dynamic array of function pointers to LI functions. It is defined
by the XGL device-independent code and maintained by the device pipeline.
The array is defined as shown below. XGLI_OPS is defined in DpCtx.h as
(void(XglDpCtx::*)()).

class XglDpCtx3dSampDp : public XglDpCtx3d {
 friend XglDpDevSampDp;
private:
 XglDpCtx3dSampDp(XglContext3d* context) :
 XglDpCtx3d(context) {

opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dSampDp::li1MultiPolyline);

opsVec[XGLI_LI_OBJ_SET] =
 XGLI_OPS(XglDpCtx3dSampDp::objectSet);

opsVec[XGLI_LI_MXG_RCV] =
 XGLI_OPS(XglDpCtx3dSampDp::messageReceive);

}
 //
 // Device-pipeline Dependent Functions
 //
 void li1MultiPolyline(Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*);

 // Function to handle ctx related changes
 void objectSet (const Xgl_attribute*);

//Function to draw the line through the hardware
void drawLine (Xgl_usgn32, Xgl_pt_list*);

};

Pipeline Interface Classes 45

3

When the application calls a primitive, the wrapper forwards the API function
call to the device pipeline, as shown in the following sample wrapper function.

XglDpCtx3d::XglDpCtx3d(XglDevice* dev,
 XglContext3d* context) : XglPipeCtx3d(context)
{
 //
 // Initialize DI opsVec[]
 //
 opsVec[XGLI_LI1_NEW_FRAME] =

XGLI_OPS(XglDpCtx3d::li1NewFrame);
 opsVec[XGLI_LI1_GET_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1GetPixel);
 opsVec[XGLI_LI1_SET_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1SetPixel);
 opsVec[XGLI_LI1_SET_MULTI_PIXEL] =

XGLI_OPS(XglDpCtx3d::li1SetMultiPixel);
 opsVec[XGLI_LI1_SET_PIXEL_ROW] =

XGLI_OPS(XglDpCtx3d::li1SetPixelRow);
 opsVec[XGLI_LI1_COPY_BUFFER] =

XGLI_OPS(XglDpCtx3d::li1CopyBuffer);
 opsVec[XGLI_LI1_ACCUMULATE] =

XGLI_OPS(XglDpCtx3d::li1Accumulate);
 opsVec[XGLI_LI1_CLEAR_ACCUMULATION] =

XGLI_OPS(XglDpCtx3d::li1ClearAccumulation);
 :
 :
 :
}

void xgl_multipolyline(Xgl_ctx ctx,
 Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 XglDpCtx* dp = ((XglCtxObject*)ctx)->getDp(); //get dp pointer

 (dp->*(//call dp function pointed to by mpline array entry
 (void(XglDpCtx::*)(Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*))
 (dp->currOpsVec[XGLI_LI1_MULTIPOLYLINE])
)
)(bounding_box,num_pt_lists,pl); // function called with API
 // args
}

46 XGL Device Pipeline Porting Guide—May 1996

3

Note – At LI-1, API geometry data is passed to the device pipeline unchanged.

Required Initialization of the opsVec[] Function Array

The XGL device-independent code initializes the opsVec[] array to a set of
default function pointers that point to the software pipeline LI-1 primitives. It
is the device pipeline’s responsibility to override the entries in the opsVec[]
array with functions that the device pipeline has implemented. This can occur
at initialization of the pipeline XglDpCtx object (when the Device is set on the
Context) or during program execution. In deciding how to set up your
pipeline’s opsVec[] array, you have three cases to consider:

• Primitives that the pipeline does not implement. The XGL software pipeline
is used for LI-1 and LI-2 operations for these primitives.

• Primitives that the pipeline implements but that are not critical to
performance.

• Primitives that the pipeline implements but that are critical to performance.

Designing the opsVec[] array to handle these cases is discussed below.

Using the Default Software Pipeline Renderer
The opsVec[] array entries are loaded with calls to the LI-1 and LI-2 software
pipeline by default. If your device pipeline has not implemented a particular
LI-1 or LI-2 primitive, you do not need to change the opsVec[] array. Your
XglDpCtx object will inherit the default software pipeline calls. The
XglDpCtx3d default call to the software pipeline looks like this:

void XglDpCtx3d::li1MultiPolyline(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 if (error_checking) {
 do_error_checking()
 }
 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl);
}

Pipeline Interface Classes 47

3

Implementing a Generic Renderer
If your pipeline implements a primitive, but the primitive’s performance is not
critical, the pipeline can load a pointer to its primitive function when the
Device is set on the Context and not reset it later. This function will be called
whenever the application calls a primitive.

To provide a renderer, declare the function as a member of your pipeline
XglDpCtx. In the XglDpCtx’s constructor, put a pointer to the function in the
appropriate entry of the opsVec[] array. A list of opsVec[] array indices can
be found in DpCtx.h .

An example of initializing the opsVec[] array for a device pipeline LI-1
multipolyline function is shown below.

Implementing a Performance-Critical Renderer
If your device pipeline implements a primitive whose performance is critical,
you may want to create a set of renderers for this primitive. The set might
include:

• A single generic renderer that does error checking and handles point type
changes, attribute changes, and transform changes.

• One or more fast renderers that do not need to handle point type changes or
other changes, and that are tuned to specific combinations of attributes.

A generic renderer might look something like this:

//
// Install multipolyline
//
opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dSampleDp::li1MultiPolyline);

//
// Get and return clip-changed status.
//
// Result OR’ed and saved in “clipChanged” since
// drawable->clipChanged() does not retain clip status.
//
#define GX_CLIP_CHANGED(drawable) (clipChanged |= \
 (drawable)->clipChanged())
XglDpCtx3dGx::GenericMpline(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,

48 XGL Device Pipeline Porting Guide—May 1996

3

 Xgl_pt_list* pl)
{
 if (error_checking) {
 do_error_checking()
 }
 if (ctx != last_ctx) {
 // handle context change
 }
 if (pt_type != last_pt_type) {
 // handle point type change
 }
 if (prim != last_prim) {
 // handle primitive type change
 }
 if (GX_CLIP_CHANGED(drawable)) {
 // handle window type change
 }
 if (xforms_changed) {
 // handle transform changes
 }
 // Figure out which fast line renderer to use and set
 // opsVec[XGLI_LI1_MULTIPOLYLINE] to this line renderer.

 // window locking
 // model clipping

// Draw the multipolyline with the fast renderer you just set.
 (this->*((void(XglDpCtx3dGx::*)
 (Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*, Xgl_boolean)
)(opsVec[XGLI_LI1_MULTIPOLYLINE])
)
)(bounding_box, num_pt_lists, pl, FALSE);

 // If nothing changes, this fast renderer will be
 // called directly the next time.

 // window unlocking
}

Pipeline Interface Classes 49

3

Note – The optional parameter Xgl_boolean in the rendering call controls
which code renders to backing store. If this parameter is set to FALSE, the
software pipeline will render to backing store; otherwise, the device-
independent code will render to backing store. If the device pipeline is
handling backing store, once the primitive is rendered to backing store, then
set the parameter drawBackingStore = FALSE . For an example of the use of
drawBackingStore , the the XGL Architecture Guide.

A fast renderer might look something like this:

A device pipeline rendering function can override opsVec[] entries at any
time. You can design a renderer to support a particular set of attributes and
install that renderer during program execution. This frees some renderers from
having to test the attributes in each primitive call, and thus provides improved
acceleration.

If a device decides to set an opsVec[] entry back to its default value, the
opsVecDiDefault[] array can be used:

XglDpCtx3dGx::FastMPline()
{
 //state changes that require re-evaluation before renderering
 if (ctx!=last_ctx || pt_type!=last_pt_type ||
 prim!=last_prim || DP_CLIP_CHANGED(drawable)) {
 GenericMpline();
 } return;
 // send the points to the hardware to render
}

// Set opsVec[] back to default
opsVec[XGLI_LI1_MULTIPOLYLINE] =
 opsVecDiDefault[XGLI_LI1_MULTIPOLYLINE];

50 XGL Device Pipeline Porting Guide—May 1996

3

Calling the Software Pipeline

If a device pipeline cannot accelerate the API arguments or the Context state
(for example, API attributes, point type, or facet flags), the pipeline can call the
software pipeline directly, as shown in this example.

When a device pipeline can only render part of a primitive, it can fall back to
the software pipeline for partial rendering of the primitive. For example, to
handle a complex polygon in an xgl_multi_simple_polygon() call, the
device pipeline can do the following.

void XglDpCtx3dSampDp::li1MultiPolyline(
 Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)

{
 const XglStrokeGroup3d* cur_stroke = ctx->getCurrentStroke();

 // Check if dp can render with the current attrs
 // e.g. If dp can handle only line style solid then
 // dp must call software pipeline
 if (cur_stroke->getStyle() != XGL_LINE_SOLID) {
 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl);
 } return;

 // Draw the polyline
drawLine(num_pt_lists, pl);

}

// Second version of a fast renderer.
// Get and return clip changed status.
//
// Result OR’ed and saved in “clipChanged” since
// drawable->clipChanged() does not retain clip status.
//
#define GX_CLIP_CHANGED(drawable) (clipChanged |= \
 (drawable)->clipChanged())

XglDpCtx3dGx::li1FastMsp(Xgl_facet_flags api_facet_flags,
 Xgl_facet_list *api_facet_list,
 Xgl_bbox *api_bbox,
 Xgl_usgn32 api_num_pt_lists,
 Xgl_pt_list *api_pt_list)

Pipeline Interface Classes 51

3

{
 // API arguments that can’t be handled by the dp.
 if (api_pt_list->pt_type & XGL__HOM) { // Homogeneous point
 // type
 swp->li1MultiSimplePolygon(api_facet_flags,
 api_facet_list,
 api_bbox, api_num_pt_lists,
 api_pt_list);
 return;
 }

 // State changes that require re-evaluation before
 // rendering.
 if (ctx != dp_saved_last_ctx_ptr ||
 api_pt_list->pt_type != dp_saved_last_pt_type ||
 api_facet_flags != dp_saved_last_facet_flags ||
 api_facet_list->facet_type != dp_saved_last_facet_type ||
 dp_saved_prim != dp_saved_last_prim ||
 GX_CLIP_CHANGED(drawable)) {

 li1MultiSimplePolygon(api_facet_flags, api_facet_list,
 api_bbox,api_num_pt_lists, api_pt_list);
 return;
 }
 Xgl_pt_list *pl = api_pt_list;
 for(Xgl_usgn32 i = 0; i < api_num_pt_lists; pl++) { // for
 each polygon
 if (api_facet_flags & XGL_FACET_FLAG_SHAPE_CONVEX)
 //
 // if convex

 // send the points to the hardware
 //
 else
 //
 // Parts of the primitive that can’t be handled
 //

 swp->li1Polygon(api_facet_list->facet_type,
 api_facet_list->facets,

 api_bbox,
 1,

 pl);
 }
}

52 XGL Device Pipeline Porting Guide—May 1996

3

What Else You Should Know
This section provides additional information about the pipeline interface
classes that you might need to know as you set up your device pipeline.

How a Device Pipeline Is Loaded

A device pipeline is loaded when the application calls xgl_inquire() or
calls xgl_object_create() to create a Device object for the first time. With
the device object creation call, the application passes in the device type and the
descriptor containing the X window identifying information. The XGL device-
independent code then proceeds to create the objects needed for the pipeline.
The pipeline loading part of this process is as follows:

1. When the application requests a Device object with
xgl_object_create() , the System State object initiates the creation of the
device-independent part of the Device object. In the case of a window raster,
XglRasterWin is created.

2. XglRasterWin calls XglDrawable ::grabDrawable() to obtain an
XglDrawable object of the appropriate type for the XGL device.

3. During the creation process of XglRasterWin, the Device object asks the
XglGlobalState object to create its device-dependent part.

4. In the process of creating the device-dependent part of the Device object, the
XglGlobalState object does the following:

a. It gets the name of the pipeline shared object file by calling the Window
Raster’s XglDrawable::getPipeName() routine. This routine issues a
system call to the kernel device driver, using the VIS_GETIDENTIFIER
ioctl() , to get a string specifying the name of the device when the
device is a frame buffer. This string can then be used to create the
pipeline name, which is of the form:

 xgl< COMPANY NAME><device name>.so.< major version>

For information on the VIS_GETIDENTIFIER ioctl() , see
visual_io(7) in the Solaris Reference Manual.

b. The XglGlobalState::getDpLib() routine then traverses the Global
State’s XglDpLibList object list to determine if an object for the pipeline
library already exists. If so, it returns.

Pipeline Interface Classes 53

3

If XglGlobalState does not find a match in its XglDpLibList,
XglGlobalState::loadPipeLib() loads the pipeline using
dlopen() , which is an interface routine in the Solaris dynamic linking
mechanism. dlopen() gives XGL runtime access to the device pipeline
shared object file and binds it to XGL’s process address space.

c. XglGlobalState::loadPipeLib() then creates the XglDpLib object
for the pipeline by calling the device pipeline’s
xgli_create_PipeLib() routine, which is defined in the pipeline and
accessed through dlsym() . This routine first checks the DDK major and
minor version numbers to ensure that the pipeline is compatible with the
XGL library that is attempting to load it. If this check succeeds,
xgli_create_PipeLib() creates an instance of the pipeline-derived
XglDpLib class and returns a pointer to the object. This pointer is
appended to the XglGlobalState’s XglDpLibList object for future
reference. The XglDpLib object represents a single pipeline.

At this point, the process of pipeline object creation continues with the
instantiation of the pipeline XglDpMgr object and the pipeline XglDpDev
object. For detailed information on the complete set of steps that occur during
pipeline creation, see the XGL Architecture Guide.

Supporting DGA Transparent Overlay Windows

The XGL library supports the use of transparent overlay windows. Transparent
overlay windows allow applications to render simple temporary items such as
menus on complex rendering in the underlying window. The transparent
overlay functionality in XGL requires that the server provide overlay support,
as the Solaris overlay extension in the Solaris server does.

If the user asks for transparent overlay functionality and the application
determines that the server provides overlay support, the application may
request an XGL window raster for transparent overlay rendering. XGL can
provide this support through the Xpex pipeline, or if the hardware device
includes hardware overlay planes and the device pipeline implements overlay
support, the device pipeline can provide this support.

When the application requests an XGL window raster, XGL will determine
whether DGA support for overlays is available, and if not, XGL will open the
Xpex pipeline. Even if DGA support of overlays is available, there may be
some cases in which DGA will refuse to grant the request for the overlay
Drawable, and in these cases XGL will use the Xpex pipeline for transparent

54 XGL Device Pipeline Porting Guide—May 1996

3

overlay rendering. For example, the server will always deny access to an
overlay Drawable on a window with backing store. If the Solaris server allows
XGL to grab an overlay Drawable, XGL will attempt to open the device
pipeline for the window. At some point during device pipeline initialization,
the pipeline should determine whether the Drawable for the window is an
overlay Drawable. To do this, use the XglDrawable interface getDrawType() ,
as in the following example:

isOvl = (drawable->getDrawType() == DGA_DRAW_OVERLAY);

If the hardware does not have hardware overlay planes, the pipeline can abort
pipeline initialization, and XGL will not support transparent overlays through
this pipeline. Even if the hardware has hardware overlay planes, the device
pipeline may choose not to support transparent overlay windows through
DGA and let XGL fall back to the Xpex pipeline for transparent overlay
windows. To abort pipeline initialization, use the getCreationOK() function
defined in DbgObject.h .

Note – If the device pipeline opens as an overlay window, the pipeline is then
responsible for all rendering, as the use of the software pipeline for overlay
rendering is undefined.

Device Pipeline Objects for Multiple Processes

When a pipeline is instantiated on a single frame buffer from a single
application, the device pipeline objects in Figure 3-3 are created.

Figure 3-3 Pipeline Objects for a Single Application

When a single application opens windows on a two-headed system in which
the frame buffers are the same type, there is one XglDpLib object, an
XglDpMgr for each frame buffer, and an XglDpDev object for each window.
The single application program is one UNIX process. A diagram of a single
application opening one window on each of two identical frame buffers would
look like Figure 3-4.

XglDpLibFb XglDpMgrFb XglDpDevFb➪
Application
 Process 1

Pipeline Interface Classes 55

3

Figure 3-4 Pipeline Objects for a Single Application on Multiple Frame Buffers

When there is more than one application program using XGL, there is a UNIX
process for each application. If there are two application programs, there are
two UNIX processes. In this case, there is an XglDpLib object for each process,
an XglDpMgr object corresponding to each XglDpLib, and an XglDpDev object
for each window. Figure 3-5 shows the pipeline objects that are created for two
application programs running on one frame buffer. The second application
opens two windows.

Figure 3-5 Pipeline Objects for Multiple Applications

The XGL/DGA system does not describe how an accelerator accommodates
two or more application processes. DGA is basically a concurrency control
mechanism; it serializes concurrent accesses, but it does not mandate how the
accelerator handles state information for different processes. You must
coordinate the interaction between the XglDpLib objects for each process.

If the application programs run on a two-headed system with frame buffers of
different types, your frame buffer and a GX frame buffer for example, the
pipeline objects might look like Figure 3-6.

XglDpLibFb XglDpMgrFb XglDpDevFb➪

XglDpMgrFb XglDpDevFb

Application
 Process 1

XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpLibFb XglDpMgrFb XglDpDevFb

Application

XglDpDevFb

➪

➪

Application
 Process 2

 Process 1

56 XGL Device Pipeline Porting Guide—May 1996

3

Figure 3-6 Pipeline Objects for Multiple Applications on Multiple Frame Buffers

Adding Member Data to a Pipeline Class

When creating pipeline classes, you can add member data whenever needed.
The following example illustrates a way to add and initialize a pointer to the
device manager as member data in the XglDpDev and XglDpCtx classes.

1. First, add a device pipeline manager pointer as member data and a device
pipeline manager parameter to the constructors of XglDpDevSampDp and
XglDpCtx[2/3]dSampDp .

class XglDpDevSampDp : public XglDpDevWinRas {
 friend XglDpLibSampDp;
private:
 // call base class constructor with device, assign device
 // manager pointer (dev_mgr) to member data dpMgr
 XglDpDevSampDp(XglDevice* device, XglDpMgrSampDp* dev_mgr)
 : XglDpDevWinRas(device), dpMgr(dev_mgr) { }

 XglDpMgrSampDp* dpMgr; // device manager pointer
 // other declarations
};

class XglDpCtx3dSampDp : public XglDpCtx3d {
 friend XglDpDevSampDp;
private:
 // call base class constructor with context, assign device
 // manager pointer (dev_mgr) to member data dpMgr
 XglDpCtx3dSampDp(XglContext3d* context, XglDpMgrSampDp*
dev_mgr

XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpDevGx

➪

➪ XglDpLibFb XglDpMgrFb XglDpDevFb

XglDpLibGx XglDpMgrGx➪

Application

Application
 Process 2

Process 1

Pipeline Interface Classes 57

3

2. Modify the object-creation functions to pass the device manager pointer to
the constructors.

Backing-Store Support in the Pipeline Classes

The XGL device-independent code is responsible for handling XGL backing-
store device creation and use. The device pipeline needs only to implement a
small set of device-dependent functions in certain cases. This section
summarizes the functions that the device pipeline needs to implement. For
more information on how the XGL device-independent code handles backing
store, see the XGL Architecture Guide.

Backing Store Clipping Status Values

If the device pipeline can determine whether a primitive is clipped, it can
notify the device-independent layer with the setPrimClipStatus () function
to indicate the current status. The following argument values are defined in
DpCtx.h :

 : XglDpCtx3d(context), dpMgr(dev_mgr)
 {
 opsVec[XGLI_LI1_MULTIPOLYLINE] =
 XGLI_OPS(XglDpCtx3dSampDp::li1MultiPolyline);

// other declaractions
 }
 XglDpMgrSampDp* dpMgr; // device manager pointer
 // other declarations
};

XglDpDev* XglDpMgrSampDp::createDpDev(XglDevice* device)
{
 // “this” is the device manager (XglDpMgrSampDp) itself
 return new XglDpDevSampDp(device,this);
}

XglDpCtx3d* XglDpDevSampDp::createDpCtx(XglContext3d* context)
{
 // here dpMgr is a member data of XglDpDevSampDp
 return new XglDpCtx3dSampDp(context,dpMgr);
}

58 XGL Device Pipeline Porting Guide—May 1996

3

XGLI_DP_STATUS_FAIL The primitive was not rendered.

XGLI_DP_STATUS_SUCCESS The primitive was successfully
rendered and may or may not have
been clipped.

XGLI_DP_STATUS_FULLY_RENDERED The primitive was successfully
rendered without being clipped.

You can use the value XGLI_DP_STATUS_FULLY_RENDERED for all the
primitives at the LI-1 level. This value means that the primitive was
successfully rendered, and that the primitive was fully rendered into the
window without any clipping. This argument value is optional and applies
only to synchronous accelerators (those without queues). If the graphics device
cannot determine whether the primitive is clipped, it is not necessary to call
setPrimClipStatus ().

The XGLI_DP_STATUS_FULLY_RENDERED value is an optimization to improve
the performance of applications using backing store when the window is
partially covered. If a device pipeline can set this status, performance is
increased if there is a backing-store device and if the window is partially
covered. This optimization does not apply to accelerators that cannot
determine the clip status.

Note – The device pipeline should never set the value
XGLI_DP_STATUS_UNCLIPPED (defined in DpCtx.h). This value is for
internal use only.

Backing Store in Window Raster Pipelines

The following functions in XglDpDevWinRas.h should be overridden by all
devices that provide Z-buffers or accumulation buffers in software. For
information on these functions, see “Virtual Functions in DpDevWinRas.h” on
page 62.

• virtual XglPixRectMem* getSwZBuffer()

• virtual XglPixRectMem* getSwAccumBuffer()

Device pipelines that can handle backing store in hardware or the X11 server
(for example, the PEXlib pipeline) override the following function. A pipeline
that returns FALSE can ignore the remainder of the functions in this section.

Pipeline Interface Classes 59

3

• virtual Xgl_boolean needRtnDevice()

Backing-Store Support for Backing Store Devices

Devices that provide backing-store support, such as memory raster devices or
a hardware device with a cache for backing-store memory, override these
functions declared in XglDpDevRaster.h . For information, see “Virtual
Functions in DpDevRaster.h” on page 61.

• virtual void setSwZBuffer(XglPixRectMem*)

• virtual void setSwAccumBuffer(XglPixRectMem*)

• virtual void syncRtnDevice(XglRasterWin*)

Backing-Store Support in the Dp Manager

The device pipeline manager object provides an object descriptor for the
backing store device:

XglDpDev* XglDpMgrFb::createDpDev(XglDevice*,
 Xgl_obj_desc* bkstore_desc=NULL);

When the XGL device-independent code creates a backing store device, it
passes in the descriptor as follows:

bkstore_desc.win_ras.type = XGL_WIN_RAS_BACKING_STORE;
bkstore_desc.win_ras.desc = (pointer to the parent device);

A device pipeline can ignore this parameter if appropriate.

Note – The XGL API cannot support backing store and double buffering at the
same time. Even if your device can support both, there are issues regarding the
synchronization of double buffering and backing store with the X11 server that
are not resolved in the current release of the server. Therefore, an application
backing store request is denied by the XGL device-independent code when
double buffering is enabled. Thus, even if your pipeline supports both double
buffering and backing store, the pipeline will not be called for backing store
when double buffering is enabled. See the XGL_WIN_RAS_BACKING_STORE
reference page for more information.

60 XGL Device Pipeline Porting Guide—May 1996

3

Description of Device-Dependent Virtual Functions
This section provides a brief description of the optional device-dependent
functions provided in the XglDpDev class hierarchy. Many of these functions
have a corresponding API attribute; in these cases, the attribute name is
included in the description, and you can find more information about the
attribute in the XGL Reference Manual.

Virtual Functions in DpDev.h

virtual Xgl_vdc_orientation getDcOrientation()
Returns a value for the orientation of DC for the hardware device. The
default value is XGL_Y_DOWN_Z_AWAY. Override this function if your device
has a different orientation. This function is called by the XGL device-
independent code as part of the Device object initialization.

virtual float getMaxZ()
Returns a value for the hardware device’s maximum Z coordinate value.
The default value is XGLI_DEFAULT_MAX_DEPTH, which is a constant
defined as 224-1. Override this function if your device has a different
maximum Z value. This function is called by the XGL device-independent
code as part of the Device object initialization.

Note – If you use the software pipeline or RefDpCtx for rendering, then the
device maximum Z value should not exceed 24 bits. Otherwise, the maximum
Z value can be set to any value.

virtual float getGammaValue()
The default implementation of this function returns a value of 2.22. The
function also checks the environment variable XGL_AA_GAMMA_VALUE and
returns the value that the environment variable is set to, if it is set. For
information on this environment variable, see Appendix B, “Software
Rendering Characteristics” in the XGL Programmer’s Guide.

The value returned by this function is used as the gamma value to build
gamma and inverse gamma look-up tables. These tables are built by
buildGammaTables() , which is called by the constructors for objects like
XglRasterWin and XglRasterMem. The gamma and inverse gamma tables
are only used for manipulating the colors of antialiased stroke and dot
primitives. If a device implements antialiasing in hardware, then these

Pipeline Interface Classes 61

3

tables, and hence the getGammaValue() function have no effect. However,
if the device expects stroke or dot antialiasing to be done by the software
pipeline, there are two possible cases. First, if the device does its own
gamma correction, the function needs to return the value 1.0. Otherwise, the
device can choose to not implement this function or to implement it to
return a gamma value that is more suitable.

Note – This function might not be present in future releases of XGL; check the
current header files for the most up-to-date list of optional functions.

Virtual Functions in DpDevRaster.h

virtual void setRectList(const Xgl_irect[])
Sets the list of clip rectangles in the application-specified clip list. The input
argument is an Xgl_irect array of rectangles that defines the clip region.
This function maps to the API attribute XGL_RAS_RECT_LIST and is used
by the XGL device-independent code to inform the pipeline when the clip
list changes. The default is no operation. For information on this
environment variable, see the XGL_RAS_RECT_LIST reference page.

virtual void setRectNum(Xgl_usgn32)
Sets the number of clip rectangles in the application-specified clip list. The
input argument is an unsigned 32-bit integer. This function maps to the API
attribute XGL_RAS_RECT_NUM and is used by the XGL device-independent
code to inform the pipeline when the clip list changes. The default is no
operation. For more information, see the XGL_RAS_RECT_NUM reference
page.

virtual void setSourceBuffer(Xgl_buffer_sel)
Specifies the buffer used as the source buffer during raster operations. The
input argument is a macro value from the Xgl_buffer_sel typedef . This
function maps to the API attribute XGL_RAS_SOURCE_BUFFER and is used
by the XGL device-independent code to inform the pipeline when the source
buffer for raster operations changes. The default is no operation. For more
information, see the XGL_RAS_SOURCE_BUFFER reference page.

virtual void setSwZBuffer(XglPixRectMem*)
Specifies that if the device uses a software Z-buffer, it should share it with
the base device in the backing store device by getting the memory address
and linebytes from the Z-buffer and reassigning them as its own. This

62 XGL Device Pipeline Porting Guide—May 1996

3

function is called by the XGL device-independent code when the device is a
backing store device, so the device pipelines do not need to check for it. The
default is no operation.

virtual void setSwAccumBuffer(XglPixRectMem*)
Specifies that if the device uses a software accumulation buffer, it should
share the same software accumulation buffer with the base device in the
backing store device by getting the memory address and linebytes from the
accumulation buffer and reassigning them as its own. The XGL device-
independent code calls this function when the device is a backing store
device, so the device pipelines do not need to check for it. The default is no
operation.

virtual void syncRtnDevice(XglRasterWin*)
Synchronizes any device-dependent attributes, if needed, for backing store
devices. The default is no operation.

Virtual Functions in DpDevWinRas.h

virtual Xgl_usgn32 getDepth()
Returns the number of bits required to store the color of one pixel in the
image buffer of this hardware device. The default behavior is to query the
Drawable object for the depth of the frame buffer image buffer.

virtual Xgl_accum_depth getAccumBufferDepth()
Returns the accumulation buffer depth supported by the device. Called by
the XGL device-independent code during the creation of the XglDpDev
object. This function is currently only used by the software pipeline when
doing accumulation. The default return value is XGL_ACCUM_DEPTH_2X,
which indicates that the depth of the accumulation buffer is at least twice
the depth of the raster.

virtual Xgl_color_type getRealColorType()
Returns the real color type of the device. The default behavior is to query
the Drawable object for the real color type of the frame buffer.

virtual void resize()
Called by the XGL device-independent code when the pipeline’s window is
resized. The default is no operation.

Pipeline Interface Classes 63

3

virtual void setBackingStore(Xgl_boolean)
Requests backing-store support from the device. No device pipeline
operation is needed if the device relies on the XGL device-independent code
to handle backing store manipulation. The input argument is a Boolean that
indicates the on/off setting for backing store. The default is no operation.
This function maps to the API attribute XGL_WIN_RAS_BACKING_STORE;
see the XGL_WIN_RAS_BACKING_STORE reference page for more
information.

virtual Xgl_usgn32 setBuffersRequested(Xgl_usgn32)
Defines the number of buffers requested by the application. This function
maps to the API attribute XGL_WIN_RAS_BUFFERS_REQUESTED and is used
by the XGL device-independent code to request single or double buffering
for the device. The default return value is one buffer.

virtual void setBufDraw(Xgl_usgn32)
Specifies the current draw buffer. This function maps to the API attribute
XGL_WIN_RAS_BUF_DRAW and is used by the XGL device-independent code
to set the current draw buffer. The default is no operation. For more
information, see the XGL_WIN_RAS_BUF_DRAW reference page.

virtual void setBufDisplay(Xgl_usgn32)
Specifies the current display buffer. This function maps to the API attribute
XGL_WIN_RAS_BUF_DISPLAY and is used by the XGL device-independent
code to set the current display buffer for the device. The default is no
operation. For more information, see the XGL_WIN_RAS_BUF_DISPLAY.

virtual void setBufMinDelay(Xgl_usgn32)
Defines the minimum time delay between buffer switches for this device.
This function maps to the API attribute XGL_WIN_RAS_BUF_MIN_DELAY.
The default is no operation. For more information, see the
XGL_WIN_RAS_BUF_MIN_DELAY reference page.

virtual void setCmap(XglCmap*)
Sets the color map. This function maps to the API attribute
XGL_DEV_COLOR_MAP and is used by the XGL device-independent code to
inform the pipeline when the XGL Color Map object changes. The input
argument is a pointer to a Color Map object. The default is no operation.

64 XGL Device Pipeline Porting Guide—May 1996

3

When the contents of the Color Map change,
XglDpDevWinRas::setCmap() is called. The device pipeline
messageReceive() is called for object type XGL_WIN_RAS with message
flag XGLI_MSG_DEV_COLOR. This message tells the device pipeline to
handle the appropriate plane mask and color map changes.

virtual void setPixelMapping(conxt Xgl_usgn32[])
Sets the pixel mapping from the application’s color indexes to the device
color indexes. This function maps to the API attribute
XGL_WIN_RAS_PIXEL_MAPPING and is used by the XGL device-
independent code to inform the device when the pixel mapping changes.
The input argument is an array of color values. The default is no operation.
For more information, see the XGL_WIN_RAS_PIXEL_MAPPING reference
page.

virtual void setStereoMode(Xgl_stereo_mode)
Requests stereo mode support from the device. The input argument is an
Xgl_stereo_mode enumerated value for the stereo setting. This function
maps to the API attribute XGL_WIN_RAS_STEREO_MODE and is used by the
XGL device-independent code to set the stereo mode on the device. The
default is no operation. For more information, see the
XGL_WIN_RAS_STEREO_MODE reference page.

virtual XglPixRectMem* getSwZBuffer()
Returns a pointer to the XglPixRectMem object that represents the software
Z-buffer. This function should be overridden by all devices that have a
software implementation of the Z-buffer. The default return is NULL, which
means that if the device has a hardware Z-buffer, it does not need to
override this function.

virtual XglPixRectMem* getSwAccumBuffer()
Returns a pointer to the XglPixRectMem object that represents the software
accumulation buffer. This function should be overridden by all devices that
have a software implementation of the accumulation buffer. The default
return is NULL, which means that if the device has a hardware accumulation
buffer, it does not need to override this function.

virtual Xgl_boolean needRtnDevice()
Returns TRUE if the base device needs a shadow device for backing store.
Device pipelines that provide for backing-store support in hardware
override this function, as do Xlib or PEXlib pipelines that use backing-store
support in the server.

Pipeline Interface Classes 65

3

Virtual Functions in DpDevMemRas.h

Note – For all practical purposes, there is only one Memory Raster pipeline,
which is provided by XGL. The device pipeline does not need to override the
functions in DpDevMemRas.h as they are overridden in XGL’s Memory Raster
pipeline.

virtual XglPixRectMem* getImageBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the image
buffer for the memory raster. The default return is NULL.

virtual XglPixRectMem* getZBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the Z-buffer
for the memory raster. The default return is NULL.

virtual XglPixRectMem* getAccumBufferPixRect()
Returns a pointer to the XglPixRectMem object that represents the
accumulation buffer for the memory raster. The default return is NULL.

virtual Xgl_accum_depth getAccumBufferDepth()
Returns a value for the depth of the accumulation buffer. The default return
value is XGL_ACCUM_DEPTH_2X.

virtual void setCmap(XglCmap*)
Sets the color map. This function maps to the API attribute
XGL_DEV_COLOR_MAP and is used by the XGL device-independent code to
inform the pipeline when the XGL Color Map object changes. The input
argument is a pointer to the Color Map object.

virtual void setImageBufferAddr(Xgl_usgn32*)
Specifies the array of pixels used in an XGL Memory Raster. The default is
no operation. This function maps to the API attribute
XGL_MEM_RAS_IMAGE_BUFFER_ADDR. For more information, see the
XGL_MEM_RAS_IMAGE_BUFFER_ADDR reference page.

virtual void setZBufferAddr(Xgl_usgn32*)
Sets the starting address of the block of memory for the Z-buffer of a
memory raster. The default is no operation. This function maps to the API
attribute XGL_MEM_RAS_Z_BUFFER_ADDR. For more information, see the
XGL_MEM_RAS_Z_BUFFER_ADDR reference page.

66 XGL Device Pipeline Porting Guide—May 1996

3

virtual void setLineBytes(Xgl_usgn32)
Sets the linebytes value when the memory raster is set up to access
memory for retained windows. linebytes is the number of bytes that
separates one line in a raster, that is, the number of bytes from (x,y) to
(x,y+1). The default is no operation.

Quick Reference Chart of Virtual Functions

In the device pipeline classes there are some virtual functions that your device
pipeline must override and other functions that are optional. Whenever
possible, XGL has provided defaults for functions; however, you will probably
want to override XGL’s version of these functions if your device can accelerate
the functionality. Required functions are completely device dependent.

Table 3-6 provides a quick reference summary of all the pipeline functions;
those marked “Required” must be overridden by the device pipeline, or an
error will be returned.

Table 3-6 Summary of Pipeline Virtual Functions

Class Function Name Status

Device pipeline .so file xgli_create_PipeLib() Required

XglDpLib getDpMgr() Required

XglDpMgr createDpDev()
inquire()

Required
Required

XglDpDev createDpCtx() for 2D
createDpCtx() for 3D
copyBuffer() for 2D
copyBuffer() for 3D

getDcOrientation()
getMaxZ()
getGammaValue()

Required
Required
Required
Required

Optional
Optional
Optional

XglDpDevRaster setRectList()
setRectNum()
setSourceBuffer()
setSwZBuffer()
setSwAccumBuffer()
syncRtnDevice()

All
optional

Pipeline Interface Classes 67

3

XglDpDevWinRas getDepth()
getAccumBufferDepth()
getRealColorType()
resize()
setBackingStore()
setBufDisplay()
setBufDraw()
setBufMinDelay()
setCmap()
setPixelMapping()
setStereoMode()
setBuffersRequested()
getSwZBuffer()
getSwAccumBuffer()
needRtnDevice()

All
optional

XglDpDevMemRas getImageBufferPixRect()
getZBufferPixRect()
getAccumBufferPixRect()
getAccumBufferDepth()
setCmap()
setImageBufferAddr()
setZBufferAddr()
setLineBytes()

All
optional

XglDpCtx2d
LI-1 Primitives li1AnnotationText()

li1DisplayGcache()
li1MultiArc()
li1MultiCircle()
li1MultiMarker()
li1MultiPolyline()
li1MultiRectangle()
li1MultiSimplePolygon()
li1NurbsCurve()
li1Polygon()
li1StrokeText()

All
optional

Table 3-6 Summary of Pipeline Virtual Functions (Continued)

Class Function Name Status

68 XGL Device Pipeline Porting Guide—May 1996

3

Pixel and Raster
Operators

li1NewFrame
li1CopyBuffer()
li1GetPixel()
li1Image()
li1SetMultiPixel()
li1SetPixel()
li1SetPixelRow()
li1Flush()
li1PickBufferFlush()

Required
Required
Required
Optional
Optional
Required
Optional
Optional
Optional

LI-2 Functions li2GeneralPolygon
li2MultiDot()
li2MultiEllipse()
li2MultiEllipticalArc()
li2MultiPolyline()
li2MultiRect()
li2MultiSimplePolygon()

All
optional

LI-3 Functions li3Begin()
li3End()
li3MultiDot()
li3Vector()
li3MultiSpan()
li3CopyFromDpBuffer()
li3CopyToDpBuffer()

All
required

State Changes objectSet() Required

Message Passing messageReceive() Required

XglDpCtx3d
LI-1 Primitives All 2D primitives and the following:

li1MultiEllipticalArc()
li1NurbsSurf()
li1QuadrilateralMesh()
li1TriangleList()
li1TriangleStrip()

All
optional

Pixel and Raster
Operators

All 2D pixel and raster functions and the
following:
li1Accumulate()
li1ClearAccumulation()

Optional
Optional

Table 3-6 Summary of Pipeline Virtual Functions (Continued)

Class Function Name Status

Pipeline Interface Classes 69

3

LI-2 Functions li2GeneralPolygon()
li2MultiDot()
li2MultiPolyline()
li2MultiSimplePolygon()
li2TriangleList()
li2TriangleStrip()

All
optional

LI-3 Functions li3Begin()
li3End()
li3MultiDot()
li3Vector()
li3MultiSpan()
li3CopyFromDpBuffer()
li3CopyToDpBuffer()

All
required

State Changes objectSet() Required

Message Passing messageReceive() Required

Table 3-6 Summary of Pipeline Virtual Functions (Continued)

Class Function Name Status

70 XGL Device Pipeline Porting Guide—May 1996

3

71

Handling Changes to Object State 4

This chapter describes how a device pipeline gets information about changes to
XGL state. The chapter includes information on the following topics:

• Changes to Context state and changes to objects associated with the Context

• Changes to Device state

• Design issues to think about when implementing state handling in a device
pipeline

As you read this chapter, you will find it helpful to have access to the header
files for the stroke groups and the header file defining the messages. These are:

• StrokeGroup.h and StrokeGroup3d.h

• Msg.h

.h

72 XGL Device Pipeline Porting Guide—May 1996

4

State Changes and the Device Pipeline
The device pipelines are notified directly of Context attribute changes by the
objectSet() and messageReceive() functions through the opsVec[]
function array. Information about XGL object state is contained in the
following device-independent objects:

• Context and Context 3D objects store information about Context state.

• Stroke group objects store information about certain multipolyline attributes
and store the attribute value for these attributes as well.

• The Context’s view cache object stores information about items derived
from the Context’s view model attributes.

• The set of Device objects store information about Device state.

The process of determining what attributes have changed and getting updated
attribute values is described in the following sections.

Getting Attribute Values from the Context Object
The device pipelines are notified of Context attribute changes as soon as the
application sets new attributes on the Context. When the application calls the
API object set function to set a Context attribute value, the following events
occur:

1. The device-independent wrapper updates the Context object with the
attribute changes, and the entire list of attribute types is processed.

2. The current device pipeline is determined from the Context object.

3. The wrapper calls the pipeline version of objectSet() through the
XglDpCtx opsVec[XGLI_LI_OBJ_SET] entry and forwards the list of
attribute types. Note that the attribute values are not passed to the pipeline
in this list; the pipeline gets only the NULL-terminated list of attribute types.

To provide an objectSet() function for your pipeline, declare the function as
a member of your pipeline XglDpCtx, and in the XglDpCtx’s constructor, put a
pointer to the function in the XGLI_LI_OBJ_SET entry of the opsVec[] array.
The function pointer looks like this:

opsVec[XGLI_LI_OBJ_SET] = XGLI_OPS(XglDpCtx3dFb::objectSet);

Handling Changes to Object State 73

4

The pipeline objectSet() function provides a switch statement for the
attributes the pipeline is interested in. The switch statement can ignore
attribute types that the pipeline isn’t interested in and can combine attribute
types that can be handled in the same way. The pipeline gets attribute values
using Context interfaces. It can either update the hardware context
immediately from within objectSet() or note that changes have occurred
and update the hardware at a later time.

The following sample code shows a pipeline objectSet() :

See Context.h for the Context interfaces the pipeline can use to get Context
attribute values. Note that if the device pipeline does not implement
objectSet() , it will have to check the Context attributes at rendering time.

//
// Example for the generic DP set function
//
XglDpCtx3dGx::objectSet(const Xgl_attribute *attr_type)
{
 for(; *attr_type; attr_type++) {
 switch (*attr_type) {

 case XGL_CTX_LINE_COLOR: // set line color in DP
 {
 Xgl_color *line_color =

ctx->getCurrentStroke()->getColor();
 // send line color to hardware
 ...
 }
 break;

case ATTR_A: // combine attributes
case ATTR_B:
case ATTR_C:

do_something();
 ...

 case default:
 // ignore attribute
 break;
 }
 }
}

74 XGL Device Pipeline Porting Guide—May 1996

4

This might be an appropriate design for an LI-3 pipeline that is concerned with
a small subset of attributes. However, implementing objectSet() is
advisable for most pipelines for performance reasons.

When the Device Associated with a Context Is Changed

When the device-independent code calls the device pipeline’s objectSet() to
connect a Context to a Device, the device pipeline will receive only
XGL_CTX_DEVICE in the attribute list. In this case, it is the device pipeline’s
responsibility to update all concerned Context attributes. To do this, the device
pipeline can use the Context utility function getAttrTypeListAll() , which
returns a pointer to a static list of all XGL Context attributes. The Context
attribute list contains both 2D and 3D attributes.

An example of how a device pipeline can handle the objectSet() case for
XGL_CTX_DEVICE is shown in the code fragment below.

Since getAttrTypeListAll() returns a list of all 2D and 3D Context
attributes, it is recommended that the device pipeline create its own separate
2D and 3D Context attribute lists for optimum performance. The device
pipeline could create static lists in its XglDpCtx[2,3]d pipeline classes.

XglDpCtx3dGx::objectSet(const Xgl_attribute *attr_type)
{
 for(; *attr_type; attr_type++) {
 switch (*attr_type) {

 case XGL_CTX_DEVICE: // new context attached
 objectSet(ctx->getAttrTypeListAll());
 break;

 case...
 ...
 }
 }
}

Handling Changes to Object State 75

4

If XGL_CTX_DEVICE is embedded in an xgl_object_set() call, as shown in
the API call below, all Context attributes are updated with the API data
included in the call before the device pipeline objectSet() is called. Thus,
all device-independent Context attributes are up-to-date when a device
pipeline receives XGL_CTX_DEVICE.

Getting Attribute Values from Objects Other Than the Context
The device pipeline is notified immediately of changes to objects other than the
Context by the message passing mechanism. In XGL, when objects are
instantiated, other objects can register interest in the new objects and become
users of the objects. During program execution, when the used object’s
attributes change, the object sends a message to its users informing them of the
change. For example, the Context becomes a user of the Line Pattern, Stroke
Font, and Marker objects. When the Line Pattern changes, it sends a message
about the change to the Context. When the Context receives an object message,
it updates its data and forwards the message to the device pipeline by calling
the XglDpCtx messageReceive() function through the opsVec[]
XGLI_LI_MSG_RCV entry.

The pipeline messageReceive() function gets a pointer to an XGL object
type and a message of type XglMsg . To provide a messageReceive()
function, declare the function as a member of your pipeline XglDpCtx, and in
the XglDpCtx’s constructor, put a pointer to the function in the
XGLI_LI_MSG_RCV entry of the opsVec[] array, as follows:

opsVec[XGLI_LI_MSG_RCV] = XGLI_OPS(XglDpCtx3dFb::messageReceive);

When you have done this, the messageReceive() function will always be
called when there is a message for the XglDpCtx. The messageReceive()
function will check the object type and message, and respond appropriately.

The pipeline can use the messageReceive() function to adjust to object
changes. For example, if the hardware caches colors, the XglDpCtx can update
the cached colors when messageReceive() receives a message that the color
map changed. If the device caches a line pattern or light in its hardware, a

xgl_object_set(ctx, XGL_CTX_LINE_COLOR, my_line_color,
 XGL_CTX_DEVICE, my_ras,
 XGL_CTX_NEW_FRAME_ACTION, my_new_frame_action,
 XGL_CTX_PLANE_MASK, -1,
 0);

76 XGL Device Pipeline Porting Guide—May 1996

4

message about these objects indicates that the hardware context may need
updating. The function can ignore messages that the pipeline is not concerned
with.

The objects and messages are listed in Table 4-1. The default message,
XGLI_MSG_STANDARD, simply indicates that an object has changed; it does not
provide information about what changed or about what attribute caused the
change. For the standard message type, the device pipeline can check
individual attributes relevant to the object or reload the entire object into the
hardware. See page 81 for more information on the view group messages.

Table 4-1 Object Messages

Object-Message Description

XGL_2D_CTX / XGL_3D_CTX

 XGLI_MSG_VIEW_COORD_SYS View group coordinate system changed, or push or pop of the
current coordinate system. You should check derived data.

 XGLI_MSG_VIEW_CTX_ATTR View group Context attribute changes. This message corresponds to
an API attribute that modifies derived data. You should check
derived data.

XGL_LIGHT

 XGLI_MSG_STANDARD The Light object has changed. You may need to check derived data.
Update cached information regarding this Context attribute.

XGL_3D_CTX_LIGHT

XGL_LPAT

XGLI_MSG_STANDARD The line pattern or edge pattern has changed. Update cached
information regarding these Context attributes.

XGL_CTX_LINE_PATTERN
XGL_CTX_EDGE_PATTERN

XGL_MARKER

 XGLI_MSG_STANDARD The user-defined marker has changed. Update cached information
regarding this Context attribute.

XGL_CTX_MARKER

Handling Changes to Object State 77

4

XGL_MEM_RAS
 XGLI_MSG_STANDARD Front or back surface fill pattern memory raster has changed.

Update cached information regarding these Context attributes.
XGL_CTX_RASTER_FPAT
XGL_CTX_SURF_FRONT_FPAT
XGL_3D_CTX_SURF_BACK_FPAT

XGL_SFONT_n

 XGLI_MSG_STANDARD Stroke Font object has changed. Update cached information
regarding this Context attribute.

XGL_CTX_SFONT_n

XGL_TMAP

 XGLI_MSG_STANDARD

XGLI_MSG_TEXTURE_DESC

Front or back Texture Map object has changed. Update cached
information regarding these Context attributes.
 XGL_3D_CTX_SURF_FRONT_TMAP
 XGL_3D_CTX_SURF_BACK_TMAP

Texture Map descriptor has changed, and possibly the MipMap
Texture object has changed. You may need to recache the MIP map.

XGL_TRANS

 XGLI_MSG_STANDARD Global model transform, local model transform, or view transform
has changed. Check derived data. Update cached information
regarding these Context attributes.
 XGL_CTX_GLOBAL_TRANS
 XGL_CTX_LOCAL_MODEL_TRANS
 XGL_CTX_VIEW_TRANS
In the 3D Context, the normal transform has changed. Check this
attribute.
 XGL_3D_CTX_NORMAL_TRANS

XGL_WIN_RAS

 XGLI_MSG_DEV_MULTIBUFFER Multibuffering has been set on the device. Update cached
information regarding this Raster attribute.

XGL_WIN_RAS_MULTIBUFFER

Table 4-1 Object Messages

Object-Message Description

78 XGL Device Pipeline Porting Guide—May 1996

4

The following sample code shows a pipeline messageReceive() function.
This routine notes object changes, creates an attribute type list with attributes it
is interested in, and sends the attribute type list to the pipeline objectSet()
function. The pipeline objectSet() updates the hardware. This routine also
sets a transformChanged flag so that it can point the opsVec renderer to the
generic renderer. The generic renderer will check the transformChanged flag,

XGL_WIN_RAS / XGL_MEM_RAS
 XGLI_MSG_DEV_COLOR Color map has or depth pixel mapping has changed. Update

cached information regarding these Context attributes.
 XGL_CTX_PLANE_MASK
 XGL_CTX_MARKER_COLOR
 XGL_CTX_LINE_COLOR
 XGL_CTX_LINE_ALT_COLOR
 XGL_CTX_EDGE_COLOR
 XGL_CTX_EDGE_ALT_COLOR
 XGL_CTX_STEXT_COLOR
 XGL_CTX_SURF_FRONT_COLOR
 XGL_3D_CTX_SURF_BACK_COLOR
 XGL_CTX_BACKGROUND_COLOR
 XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR
 XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR
 XGL_3D_CTX_DEPTH_CUE_COLOR
 XGL_CTX_RASTER_STIPPLE_COLOR
 XGL_3D_CTX_LIGHT (XGL_LIGHT_COLOR)
Note that a message is sent both when the device is assigned a new
color map and when a change is made to an existing color map.

 XGLI_MSG_DEV_DIM Window width or height has changed, window raster has been
resized, or rect list has changed. You should check derived data.

 XGLI_MSG_DEV_OTHER Changes in image buffer address, Z buffer address, source buffer,
buffer display, buffer draw, buffer minimum delay, double buffer
draw, number of buffers allocated, stereo mode. See the man pages
for the Device attributes.

 XGLI_MSG_RAS_CLIP Rect list has changed. Update cached information regarding this
Raster attribute.

XGL_RAS_RECT_LIST

Table 4-1 Object Messages

Object-Message Description

Handling Changes to Object State 79

4

and, if necessary, it will check the view group using
viewGrpItf->changedComposite(viewConcern) to see what changed in
derived data. An alternate design for messageReceive() would be to update
the hardware from within the function

void XglDpCtx2dGx::messageReceive(XglObject* obj,
const XglMsg& msg)

{
 switch (obj->getObjType()) {

 case XGL_2D_CTX:
 case XGL_3D_CTX:
 if (msg.flag & (XGLI_MSG_VIEW_COORD_SYS |

 XGLI_MSG_VIEW_CTX_ATTR)) {
transformChanged = TRUE;
// Set generic renderers.

 }
 break;

 case XGL_WIN_RAS:
 if (obj == device) {
 if (msg.flag & XGLI_MSG_DEV_COLOR) {
 //
 // Update cached colors and plane mask changes.
 //

attrTypeList[0] = XGL_CTX_MARKER_COLOR;
attrTypeList[1] = XGL_CTX_LINE_COLOR;
attrTypeList[2] = XGL_CTX_LINE_ALT_COLOR;
attrTypeList[3] = XGL_CTX_SURF_FRONT_COLOR;
attrTypeList[4] = XGL_CTX_BACKGROUND_COLOR;
attrTypeList[5] = XGL_CTX_PLANE_MASK;
attrTypeList[6] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

 }

 if (msg.flag & XGLI_MSG_DEV_DIM) {
transformChanged = TRUE;
// Set generic renderers.

 }

 if (msg.flag & XGLI_MSG_DEV_OTHER) {
// Re-evaluate the number of buffers to render to
// based on bufferAllocated and XGL_CTX_RENDER_BUFFER

80 XGL Device Pipeline Porting Guide—May 1996

4

For additional information on object relationships, see the XGL Architecture
Guide.

attrTypeList[0] = XGL_CTX_RENDER_BUFFER;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);
// Set generic renderers.

 }
 }
 break;

 case XGL_LPAT:
 if (obj == ctx->getLinePattern() ||

obj == ctx->getEdgePattern()) {
attrTypeList[0] = XGL_CTX_LINE_PATTERN;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

 }
 break;

 case XGL_MARKER:
 if (obj == (XglObject*)ctx->getMarker()) {

attrTypeList[0] = XGL_CTX_MARKER;
attrTypeList[1] = XGL_UNUSED;
objectSet((const Xgl_attribute*) attrTypeList);

}
 break;

 case XGL_TRANS:
 if (obj == (XglObject*)ctx->getGlobalModelTrans() ||
 obj == (XglObject*)ctx->getLocalModelTrans() ||
 obj == (XglObject*)ctx->getViewTrans()) {

transformChanged = TRUE;
// Set generic renderers.

}
 break;
}

Handling Changes to Object State 81

4

More on Device State Changes

In addition to passing device state changes to the pipeline via the message
passing mechanism, the device-independent code notifies the device pipeline
of device changes by calling the set...() functions defined in the XglDpDev
class hierarchy. The XglDpDev functions enable the device to make device-
specific changes. For example, in addition to the color map change message
that is sent to the XglDpCtx, there are two virtual XglDpDev functions that are
called when the color map or pixel mapping changes.

virtual void setCmap(XglCmap*);

virtual void setPixelMapping(const Xgl_usgn32[]);

See page 60 for information on the XglDpDev optional functions.

Handling Derived Data Changes

While objectSet() and messageReceive() enable the pipeline to keep
track of the state of API attributes, the derived data facility is used to maintain
data that are derived from the API attributes. The device pipeline is notified
when derived data (view interface) changes by the message mechanism. When
a derived data change occurs, the view object sends a message to the device
pipeline by calling the XGLI_LI_MSG_RCV entry of the opsVec[] array, with
the Context as the object type, and a message bitfield indicating what in
derived data has changed.

Derived data changes that generate messages are set coordinate system, pop
coordinate system, and any API Context attribute that could affect derived
data. Device pipeline implementers may want to ignore the message flags and
use checkchangedComposite() to see if any updating needs to be done
whenever they receive a Context object message. The message flags for derived
data changes are shown in Table 4-1 on page 76.

The device pipeline will set the view interface message in its
messageReceive() function when the object type is XGL_2D_CTX or
XGL_3D_CTX. Some example code to do this is shown below.

82 XGL Device Pipeline Porting Guide—May 1996

4

Information about derived data changes is computed in a lazy manner at a
pipeline’s request. See Chapter 6, “View Model Derived Data” for information
on derived data.

Getting Stroke Attribute Values from the Stroke Group Object
The stroke group is the source from which the pipeline obtains the values for
the line attributes, such as line color, during a multiPolyline() call. The
idea behind the stroke group is to make the drawing of different strokes types
as transparent as possible to a device pipeline that doesn’t support all stroke
primitives.

The primitives that may be rendered as multipolylines are lines, markers, text,
edges, and hollow polygons. These primitives are considered to be stroke types.
Since the same set of attributes (but different attribute values) applies to each
of the stroke types when rendered as lines, the Context object maintains a
stroke group object for each of the stroke types. For 2D, the stroke groups are
line, marker, text, edge, and front surface. For 3D, the stroke groups are the 2D
groups and the back surface group.

// DP’s receive message function. XGLI_LI_MSG_RCV slot
// in ops vector points to this:

void XglDpCtx2dGX::messageReceive(XglObject *obj,
const XglMsg& msg)

{
 switch (obj->getObjType()) {
 XGL_2D_CTX:
 if (msg.flag & (XGLI_MSG_VIEW_CTX_ATTR |
 XGLI_MSG_VIEW_COORD_SYS)) {
 // update DP’s dervied data,
 // check viewGrpItf->changedComposite(<view concerns>)
 }
 break;

 ... //other message processing
 }
}

Handling Changes to Object State 83

4

The stroke group object contains the actual attribute values for the stroke
attributes. The stroke attributes are:

• Antialiasing blend equation
• Antialiasing filter width
• Antialiasing filter shape
• Alternate color
• Cap
• Color
• Color selector
• Join
• Miter limit
• Pattern
• Style
• Width scale factor
• Flag mask
• Expected flag mask

Most of the stroke attributes map to API attributes. However, flag mask and
expected flag mask in StrokeGroup.h are specific to the stroke group object
and depend on the stroke type; they are not API attributes and have no
corresponding attribute type. For 3D rendering, the stroke group object is
extended to include values for color interpolation and DC offset. Like flag
mask and expected flag mask, DC offset in StrokeGroup3d.h does not map
directly to an API attribute. See page 87 for information on flag mask and DC
offset.

Example of Device Pipeline Use of Stroke Groups

Let’s consider a device pipeline that cannot render text in hardware. In this
situation, the text primitive will go through the software pipeline where it is
tessellated into polylines. Before the polylines are handed to the device
pipeline’s LI-1 polyline renderer, the Context is told to activate the text stroke
group. This activation sets the current stroke to the text stroke group and
informs the device pipeline which stroke attributes have changed1. When the
device pipeline reads the changed attributes out of the current stroke group, it

1. Only attributes that have actually changed betwee the old and new stroke groups will be sent to the device
pipeline. For example, if the old stroke group was polylines and the line width was 1.0, changing the stroke
group to text (whose line width is always 1.0) will not cause the line width attribute to be sent to the device
pipeline.

84 XGL Device Pipeline Porting Guide—May 1996

4

gets the text attributes. For example, if the current line color is blue but the text
color is green, the device pipeline will get the color green from the current
stroke group. Figure 4-1 on page 84 illustrates this concept.

Figure 4-1 Attribute Processing Using the Stroke Group

As long as text continues to be rendered, the text stroke group will remain the
current stroke group. The current stroke group will change when either
polylines are rendered, or another non-text stroke primitive falls back to the
software pipeline for rendering.

Changes to stroke attributes are transmitted directly to the device pipeline.
The only difference is that the device pipeline will see twice as many stroke
attributes when anything other than the polyline stroke group is active. Thus, a
device pipeline that fully accelerates text at LI-1 would see that
XGL_CTX_STEXT_COLOR has changed, and a device pipeline that does not
accelerate text at LI-1 would see that both XGL_CTX_STEXT_COLOR and
XGL_CTX_LINE_COLOR have changed. It is necessary to pass the
XGL_CTX_STEXT_COLOR attribute so that device pipelines which support text
at LI-1 in some circumstances have a consistent view of the Context state.

See StrokeGroup.h and StrokeGroup3d.h for the interfaces a pipeline uses
to obtain attribute values from the stroke group.

Text

li1MultiPolyline()

when tessellated as lines

stroke color = green
Markers

stroke color = red
Lines

stroke color = blue

Case 1: if text is rendered multipolylines are rendered in green

Case 2: if lines are rendered multipolylines are rendered in blue

Handling Changes to Object State 85

4

Rendering Multipolylines

Rendering polylines involves getting a pointer to the current stroke group and
obtaining the attribute values that have changed from the stroke group. To
indicate which stroke group will be used for rendering, the Context object
provides a current stroke pointer that points to one of the stroke group objects.
When the device pipeline receives a request to render a multipolyline, it gets
the pointer to the current stroke group using the Context interface
getCurrentStroke() :

cur_stroke = ctx->getCurrentStroke()

Procedure for Getting Attribute Values for xgl_multipolyline()

For most primitives, new attribute values are obtained from the Context object.
However, the difference between the attribute processing for an
xgl_multipolyline() call and for other primitive rendering calls is that the
values for the stroke attributes are obtained from the stroke group pointed to
by the Context’s current stroke pointer.

The steps for obtaining attribute values when rendering multipolylines are
listed below.

1. The pipeline gets the current stroke pointer using the Context interface
cur_stroke = ctx->getCurrentStroke() .

2. The pipeline obtains the attribute values from the stroke group for changes
in the line attributes. To get the line color, for example, the pipeline requests
the line color with cur_stroke->getColor() . Values for attributes not in
the stroke group are obtained from the Context, as in
ctx->getDepthCueMode() .

3. The pipeline loads the new values into hardware.

86 XGL Device Pipeline Porting Guide—May 1996

4

Note – The stroke group is designed to hide the actual type of stroke it is
rendering from the pipeline. Normally, a device pipeline should get line group
attributes from the XglStrokeGroup object for all multipolyline rendering
unless the device pipeline can accelerate all primitives completely at LI-1 and
will never call the software pipeline for tessellation. If a device pipeline does
accelerate a stroke primitive (for example, it implements li1StrokeText()),
the device pipeline can obtain the text attributes from the Context rather than
from the stroke group. If you are absolutely sure that your pipeline does not
fall back on the software pipeline for any of the stroke primitives (edges, text,
markers, and hollow polygons) and that there is no chance of the stroke group
being anything other than lineStrokeGroup, then your pipeline can get line
group attributes directly from the Context. For primitives other than
multiPolyline() that depend on the line attributes, the values for the line
changes can be retrieved from the Context.

Procedure for Getting Attribute Values That Have Changed

The assignCurStrokeAs<prim>() functions are used by the software
pipeline to change the current stroke group, and to call the device pipeline
objectSet() function to inform the pipeline that certain stroke group
attributes have changed.

Currently, when assignCurStrokeAs<prim>() is called, the device pipeline
objectSet() function is also called notifying the pipeline of all changed line
attributes. This means the device pipeline should load the current stroke
attribute list for lines.

These objectSet() calls occurs in two different circumstances.

• assignCurStrokeAs<prim>() is called by pipelines, changing the current
stroke group (currentStrokeGroup).

• Attributes corresponding to the current stroke group setting are changed by
an objectSet() call. For example, if a text attribute, such as text color,
changes while the current stroke group is pointing to the text group,
objectSet() will be called after calling the software pipeline. This will call
objectSet() through the XGLI_LI_OBJ_SET entry of the opsVec[]
array sending the changed text attribute(s) as line attributes. In this

Handling Changes to Object State 87

4

scenario, the device pipeline would receive an objectSet() call with a list
of attribute types sent from the API, indicating which stroke attributes must
be updated from the strokeGroup object.

If the device pipeline never needs stroke groups, it can process all the
attributes directly from the Context and ignore the stroke group object. An
intermediate approach is possible, since stroke groups only happen if the
device pipeline calls the software pipeline for a particular case (stroke text, for
example). In these cases, only the stroke groups still used by the device
pipeline will generate an objectSet() .

Flag Mask and Expected Flag Value

In XGL an application can provide flag information at each point of a
primitive. This flag information determines whether specific line segments
within the polyline are drawn. The stroke group flag mask and expected flag
mask attributes are useful when the point type of the multipolyline being
rendered has flag information.

If the point type has flag information, the pipeline ANDs the flag information
in the vertex data with the flagMask from the stroke group and compares it to
the expectedFlagValue from the stroke group. If they are equal, the line
should be drawn; otherwise, the line should not be drawn.

Table 4-2 shows the flag information for the different stroke types.

Table 4-2 Stroke Table Flag Mask and Expected Flag Mask Values

Stroke Group Flag Mask Expected Flag Mask

Line stroke group XGL_DRAW_EDGE XGL_DRAW_EDGE

Edge stroke group XGL_DRAW_EDGE |
XGL_EDGE_IS_INTERNAL

XGL_DRAW_EDGE

Marker stroke group No bits set No bits set

Front surface stroke group XGL_EDGE_IS_INTERNAL No bits set

Back surface stroke group XGL_EDGE_IS_INTERNAL No bits set

Text stroke group No bits set No bits set

88 XGL Device Pipeline Porting Guide—May 1996

4

For example, the flag information for lines is XGL_DRAW_EDGE, whereas the
flag information for edges could be XGL_DRAW_EDGE and/or
XGL_EDGE_IS_INTERNAL. In the case of lines, the pipeline needs to determine
whether XGL_DRAW_EDGE is set in the flag information before rendering the
line. In the case of edges, the pipeline draws the edge when the
XGL_DRAW_EDGE bit is set but not when XGL_EDGE_INTERNAL is set. Thus,
when different stroke types are rendered as lines, the stroke group object
provides getFlagMask() and getExpectedFlagValue() to make the
dissimilarity in flags transparent to the device pipeline.

Example pseudocode to use these flags might be:

Note – At LI-1, since the point type can have flag data only when rendering
lines (text and markers when rendered as lines cannot have point type with
flag data), it is correct to assume that flagMask and expectedFlagValue are
always the same (XGL_DRAW_EDGE) for li1MultiPolyline() .

DC Offset

Some stroke types need to have the Z value adjusted either to ensure visual
correctness or to respond to the setting of the API attribute
XGL_3D_CTX_SURF_DC_OFFSET. The DC offset attribute is provided in
StrokeGroup3d.h so that this is handled by the device pipeline. It
determines if the Z of a line should be closer, unchanged, or farther than the
original Z value of the line. The DC offset attribute can take on these
enumerated values:

• XGLI_DC_OFFSET_NONE – The DC offset attribute is set to this value for the
line, marker, and text stroke groups. The pipeline does not need to adjust
the Z value.

Xgl_pt_flag_f3d pt;
if (pt_type has flag) {

if ((pt.flag & cur_stroke->getFlagMask()) ==
cur_stroke->getExpectedFlagValue()) {

// Draw the line
}

Handling Changes to Object State 89

4

• XGLI_DC_OFFSET_FRONT – The DC offset is set to this value when
rendering edges as lines. It ensures that the edges appear on top of the
polygon. The pipeline should subtract an offset from the Z component of
each vertex of the multipolyline so that the line appears to be in front.

• XGLI_DC_OFFSET_BACK – Used when hollow polygons are drawn as lines.
This maps to the XGL API attribute XGL_3D_CTX_SURF_DC_OFFSET.

The DC offset values for the stroke groups are listed in Table 4-3.

Thus, a pipeline adjusts the Z value according to value returned by the
getDcOffset() function in the stroke group object. Note that the DC offset
attribute is relevant only when Z-buffering is enabled.

Note – The software pipeline does not set the current stroke group to the edge
stroke group, front-surface stroke group, or back-surface stroke group at the
LI-1 layer. But, if a device falls back to software for text and markers, the
current stroke can be either text/markers or line. But since the DC offset is not
used by text/markers or line stroke groups, you can ignore the DC offset at
li1MultiPolyline() .

Table 4-3 Stroke Group DC Offset Values

Stroke Group DC Offset Value

Line stroke group XGLI_DC_OFFSET_NONE

Edge stroke group XGLI_DC_OFFSET_FRONT

Marker stroke group XGLI_DC_OFFSET_NONE

Front surface stroke group XGLI_DC_OFFSET_BACK if
XGL_3D_CTX_SURF_DC_OFFSET is TRUE
XGLI_DC_OFFSET_NONE if
XGL_3D_CTX_SURF_DC_OFFSET is FALSE

Back surface stroke group XGLI_DC_OFFSET_NONE

Text stroke group XGLI_DC_OFFSET_NONE

90 XGL Device Pipeline Porting Guide—May 1996

4

Design Issues
As you implement the processing of state changes, there are several design
issues that you may want to consider. These issues are discussed briefly in the
sections that follow.

Deciding to Reject a Primitive

The decision of whether the pipeline can render a primitive depends in part on
the values of the attributes for the primitive. This means that the pipeline must
process state information before it can conclude whether it can render the
primitive.

A pipeline has two choices when evaluating attributes. It can abort processing
if it finds an attribute it cannot accelerate (for example, if line width is greater
than some value) or if the API information cannot be accelerated (for example,
if the point type is homogeneous). The code fragment below shows an example
of a pipeline calling the software pipeline to process wide lines.

Handling Context Switches

An application may be using any number of XGL Contexts. For example, it
may use a different Context for each view of the geometry that it wants to
display, or it may use different Contexts for areas of the window. It is the
responsibility of the pipeline to update hardware state when the application
switches the XGL Context that it is using to render.

void DpCtx3dExampleDp::li1MultiPolyline(Xgl_bbox* api_bbox,
 Xgl_usgn32 api_num_plists,
 Xgl_pt_list* api_pt_list)
{
 const XglStrokeGroup3d* cur_stroke = ctx->getCurrentStroke();
 if (cur_stroke->getWidthScaleFactor() >= 2.0) {

swp->li1MultiPolyline(api_bbox, api_num_plists,
 api_pt_list);

return;
 }
 // Continue with li1MultiPolyline...
}

Handling Changes to Object State 91

4

One way to implement this might be to check which Context is being used to
render when the primitive is entered. If the current Context is the same as the
last Context, the function can continue other processing. If the Context is
different from the last Context used, then the function should assume that the
hardware state is invalid and take appropriate action. For example:

How you handle updating your hardware after Context switches is an
implementation decision left to you. Note that you may have to invalidate
your hardware state when the Context changes only if you map all XGL
Contexts to a single hardware context.

Partial Rendering of a Primitive

For the case in which a device pipeline calls the software pipeline to render
some of the primitive’s geometry and continues processing the rest of the
primitive on its own, it is the device pipeline’s responsibility to restore the
hardware to the correct state before rendering the rest of the primitive. In other
words, during the time that the software pipeline is processing its part of the
geometry, the state of the hardware may change, and the device pipeline
cannot rely on objectSet() to notify the pipeline of this change.

For example, during a multiSimplePolygon() call, if a device pipeline
cannot render a complex polygon, it calls the software pipeline. At LI-2 or LI-3,
the device pipeline must disable some attributes, such as model clipping or

if (dp_last_xgl_ctx != ctx) {
//
// Update derived data.
//
viewGrpItf->setComposite();

//
// Update all context attributes.
//
// All relevant attributes must be updated. The device

 // pipelines objectSet() routine may be used.
//
objectSet(ctx->getAttrTypeListAll()); // DI utility list.

dp_last_xgl_ctx = ctx;
}

92 XGL Device Pipeline Porting Guide—May 1996

4

MC to DC transformations, which are already done by the software pipeline at
LI-1. When the control returns to the device pipeline to render the remaining
simple polygons, the device pipeline may need to set up the hardware to
render the polygons at LI-1 because the state of the hardware has changed. The
device pipeline now needs the hardware to do model clipping and other
operations, and has to set up the hardware accordingly.

93

Getting Information from XGL
Objects 5

This chapter describes how a device pipeline gets information from XGL
objects and uses object interfaces. The chapter includes information on the
following topics:

• Getting information from the Context and from objects associated with the
Context

• Getting information from the Device and Color Map

As you read this chapter, you will find it helpful to have access to the
following header files:

• Context.h , Context2d.h , and Context3d.h
• Cmap.h
• Device.h,Raster.h , RasterWin.h , and RasterMem.h
• DmapTexture.h
• Light.h
• LinePattern.h
• Marker.h
• MipMapTexture.h
• Sfont.h
• Tmap.h
• Transform.h

.h

94 XGL Device Pipeline Porting Guide—May 1996

5

What You Should Know About XGL Attribute Values
The values of XGL attributes are stored in the Context object and in API objects
associated with the Context object, such as the Light object and the Transform
object. At rendering time, the device pipeline often needs to get information on
various attributes from within its XglDpCtx and XglDpDev objects.

Pipeline Connection to Device-Independent Objects

The pipeline is linked to a specific Context and a specific Device through its
XglDpCtx object. From its XglDpCtx object, the pipeline can get to the Context
attributes it needs and to the attributes of objects associated with the Context.
Similarly, the pipeline is linked to the Device object through its XglDpDev
object, and it can get information on the device-independent Device object and
the Color Map object through the XglDpDev.

Figure 5-1 shows the device-independent objects and their relationship to
pipeline objects. In this illustration, the filled arrows denote a permanent
relationship; for example, the XglDpCtx object is always linked to a unique
Context object and unique Device object. The unfilled arrows show possibly
transitory API relationships.

Figure 5-1 DI and Dp Object Relationships

XglDpCtx XglDpDev

DI DeviceDI Context

Marker

Transform

ColorMap

Light

LinePattern
StrokeFont

DmapTexture

MipMapTexture

Device Pipeline

XGL Core TextureMap

Getting Information from XGL Objects 95

5

Pipeline Access to Object Attributes

Pipelines access API attribute data via public methods in the public interface of
the API object classes. The object data itself is not exposed in the public
interface or accessible to the pipeline. Part of the public interface implements
the XGL API. Thus, in the API object classes, there are two categories of
functions: functions that correspond closely to API attributes and other
functions that are for internal uses, including the device pipeline (flagged with
XGL_INTERNAL). A third category is reserved for the XGL core and is
inaccessible to the device pipelines (flagged with XGL_CORE).

In the public interface, you will notice a number of set...() functions; for
the most part, these implement the API set functions and are not meant to be
used by the pipeline. An exception to this is the pipeline use of
device->setBufDisplay() and device->setBufDraw() from within its
XglDpCtx li1NewFrame() primitive. To see the interface for an object, look at
the class hierarchy for the object.

Naming Conventions for Internal Attributes

The mapping of an API attribute name to its corresponding C++ method is
handled in a standard way. For example, in Light.h , you will see the function
getColor() . This function gets the light color and corresponds to the API
attribute XGL_LIGHT_COLOR. The naming conventions for internal attributes,
such as a hypothetical API attribute XGL_CLASS_ATTRIBUTE_HAS_WORDS, are
as follows:

• The internal method to get the attribute is getAttributeHasWords().

• The method is declared in the XglClass class in the Class.h header file.

Here are some examples:

• For the Context attribute XGL_CTX_MARKER_COLOR, the function
getMarkerColor() is declared in the XglContext class in Context.h .

• For the Context attribute XGL_3D_CTX_SURF_FRONT_ILLUMINATION, the
function getSurfFrontIllumination() is declared in the XglContext3d
class in Context3d.h .

• For the Device attribute XGL_DEV_COLOR_MAP, the function getCmap() is
declared in the XglDevice class in Device.h .

96 XGL Device Pipeline Porting Guide—May 1996

5

Note – In some cases, although an attribute may be present in the parent class,
it might actually be defined in a descendant class. Note also that the
corresponding set/get functions might be in a descendant class when the
action depends on the descendant class.

Context Attributes and LI Layers

The Context attributes that the pipeline needs to check at rendering time vary
depending on the pipeline layer. A pipeline written at the LI-1 layer needs to
implement the complete set of XGL attributes, or at least account for them. At
the LI-2 layer, the device pipeline uses the software pipeline to handle some of
the processing; therefore, the device pipeline has a smaller subset of attributes
that it is accountable for. At the LI-3 layer, the number of attributes that a
device pipeline must handle is even smaller. For example, an LI-1 port must
handle back surface attributes and transforms, but at the LI-2 level these
attributes have been processed by the software pipeline, and the device
pipeline no longer needs to concern itself with them. This concept is illustrated
in Figure 5-2.

Figure 5-2 Layered Attributes and the Device Pipeline

LI-1 Device
Pipeline Port LI-2 Device

Pipeline Port LI-3 Device
Pipeline Port

LI-3 attributes

LI-2 attributes

LI-1 attributes

Getting Information from XGL Objects 97

5

Note that you will probably want to make use of the objectSet() function to
optimize Context state retrieval. The objectSet() function notifies the device
pipeline about changes to Context attributes. If a change occurred, the pipeline
must get the new value of the attribute and reload the state into the hardware.
In addition, the pipeline uses the stroke tables to get the values of attributes for
primitives multiplexed on the multipolyline primitive. See Chapter 4,
“Handling Changes to Object State” for information on the objectSet()
function and stroke groups.

Getting Attribute Values from the Context
From the XglDpCtx object, you can get Context attribute values and values for
objects associated with the Context. The XglDpCtx object is provided with a
pointer to the Context object. This pointer is named ctx and is an XglDpCtx
protected member data. Note that ctx already points to a Context of the right
dimension. In other words, in XglDpCtx2d, ctx is already of type
XglContext2d* , and in XglDpCtx3d, ctx is already of type XglContext3d* ,
so you don’t have to cast the pointer to the correct type. Using the Context
pointer, you can get an attribute using ctx- >get Attribute().

Example code for a pipeline getting depth cue attributes from a 3D Context
might be:

Xgl_depth_cue_mode dc_mode = ctx->getDepthCueMode();

if (dc_mode != XGL_DEPTH_CUE_OFF) {
float scale_front; // Scale factors to use
float scale_back;

if (dc_mode == XGL_DEPTH_CUE_SCALED) {
float scale_factors[2]; // XGL DC scale factors
ctx->getDepthCueScaleFactors(scale_factors);
scale_front = scale_factors[0];
scale_back = scale_factors[1];

}
else { // continue

98 XGL Device Pipeline Porting Guide—May 1996

5

Getting Attribute Values from Other Objects
To render line patterns, markers, and other application-definable data, the
device pipeline needs to get information from the objects that the application
has associated with the Context. In most cases, handles for these objects are
retrieved from the Context object using ctx->get Object(). In the following
cases, however, the pipeline does not retrieve the object handle for an object
from the Context, even though these objects are associated with the Context at
the API-level:

• The object handle for the Transform object is retrieved from the view group
interface object. See “Getting Information from a Transform Object” on
page 99.

• The pipeline is provided with pointers to the Device object in several places.
See “Getting Information From the Device Object” on page 119.

• From within li1/2MultiPolyline() , the line pattern handle is retrieved
from the stroke group. For more information, see “Getting Attribute Values
From the Stroke Group Object” on page 100.

Table 5-1 shows the objects that the application can associate with the Context
and the get...() functions used to retrieve data from them.

Using the object handle, the pipeline can retrieve attribute data through the
public interfaces of the DI object classes.

Table 5-1 Getting Information from Xgl Objects

Object Function

Data Map Texture object (3D only) getDmapTexture()

Device object See page 119.

Light object (3D only) getLight()

Line Pattern object getLinePattern()

Marker object getMarker()

Stipple pattern Memory Raster object getRasterFpat()

Stroke Font object getSfont()

Texture Map object (3D only) getTmap()

Transform object See page 99.

Getting Information from XGL Objects 99

5

The following example shows a pipeline accessing a Marker via the Context,
using a Marker interface, and getting a Marker attribute from the Context.

Getting Information from a Transform Object
To access member functions of the Transform object, the pipeline gets a handle
to the Transform object through the view group interface object. The pipeline is
provided with a view group interface object and a pointer to the object named
viewGrpItf in the XglPipeCtx{2,3}d parent class. The pointer to the view
group interface object is of type XglViewGrp2dItf* or XglViewGrp3dItf* ,
depending on the Context.

To access the Transform, use the pointer to the view group interface object and
then access the Transform’s interfaces using the handle to the Transform. The
following example shows a pipeline using the Transform interface
getMatrixFloat() from a Transform associated with a 2D Context.

See “Transform Interfaces and Flags” on page 111 in this chapter for
information on Transform interfaces, and see Chapter 6, “View Model Derived
Data” for information on the view group interface object. Note that if the
pipeline is not using the derived data facility, it can get Transforms from the
Context; see page 124 for more information.

const XglMarker* marker;
const XglPrimData* mdata;
float scale;

marker = ctx->getMarker();
mdata = marker->getActualDescription();
scale = ctx->getMarkerScaleFactor()

XglTransform* xform;
const Xgli_matrix_f3x3* matrix;

// Load the MC-to-DC transform matrix
xform = (XglTransform*) viewGrpItf->getMcToDc();
matrix = (const Xgli_matrix_f3x3*) xform->getMatrixFloat();

100 XGL Device Pipeline Porting Guide—May 1996

5

Getting Attribute Values From the Stroke Group Object
For primitives that are multiplexed on the multipolyline primitive, the XGL
core provides a generic group, the stroke group, that holds the necessary
attribute information. The stroke group is the source from which the pipeline
obtains the values for the line attributes, such as line color, during an
li1/2MultiPolyline() call. The stroke group attributes that map to API
attributes are:

• Antialiasing blend equation
• Antialiasing filter width
• Antialiasing filter shape
• Alternate color
• Cap
• Color
• Color selector
• Join
• Miter limit
• Pattern
• Style
• Width scale factor

The Context object provides a current stroke pointer to indicate which stroke
group will be used for rendering. The current stroke pointer points to one of
the stroke group objects. When the device pipeline receives a request to render
a multipolyline, it gets the pointer to the current stroke group using the
Context interface getCurrentStroke() :

cur_stroke = ctx->getCurrentStroke()

The pipeline can then get the attribute values for the attributes from the
current stroke group. For example, to get the current value for color, the
pipeline calls the stroke group’s getColor() interface:

cur_stroke->getColor()

From within curves (for example, li1MultiArc()), the pipeline can use
ctx->getLinePattern() or
ctx->getCurrentStroke()->getPattern() . See Chapter 4, “Handling
Changes to Object State” for more information on getting attribute information
through the stroke group.

Getting Information from XGL Objects 101

5

Non-API Interfaces Provided in API Objects
The API attributes are documented in the XGL Reference Manual; therefore, the
interfaces the pipeline can use to retrieve API attribute values are not
documented here. However, the device-independent classes provide internal
methods to support the pipeline, and these methods are briefly described in
this chapter.

Context Interfaces

See Context.h for the get...() interfaces you can use to retrieve state
values from the Context. The XglContext class provides the following internal
interfaces.

const Xgli_surf_face_attr*
const getSurfFrontFaceAttr() const

const Xgli_surf_attr_2d* const getSurfAttr() const

Functions that enable the pipeline to get general surface attributes within a
single structure. These functions can facilitate device pipeline manipulation
of surface attributes. See Context.h for the structure definitions.

Xgl_render_mode getRealRenderBuffer() const

This function takes into account the number of buffers allocated (in the case
of the Window Raster) and if the Z-buffer is enabled, determines which
buffers the pipeline should render into.

Xgl_usgn32 getRealPlaneMask() const

The real plane mask is the XGL_CTX_PLANE_MASK diminished by the bits,
which should not be touched in relation to the X color map.

Xgl_usgn32 getNewFramePlaneMask()

Since the real plane mask prevents regular rendering from changing the bits
that XGL does not own in the X pixels, new frame must prepare those bits
(in other words, write them once per frame).

void
addPickToBuffer(Xgl_usgn32 pick_id1, Xgl_usgn32 pick_id2)

Adds a pick event to the device-independent pick buffer.

.h

102 XGL Device Pipeline Porting Guide—May 1996

5

Xgl_boolean checkLastPick() const

Compares the last recorded pick IDs with the current pick IDs. Returns
TRUE if identical.

Xgl_attribute* getAttrTypeListAll() const

Returns a list of all 2D and 3D Context attributes.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Context 2D Interfaces

See Context2d.h for the get...() interfaces you can use to retrieve state
values from the Context2d class.The XglContext2D class includes the following
internal interfaces:

const XglStrokeGroup* getCurrentStroke() const

Returns a pointer to the current stroke group.

XglDpCtx2d* getDp() {return dp;}

Used by XGL core only.

XglSwpCtx2d* getSwp() const

Used by XGL core only.

void assignCurStrokeAsLine()
void assignCurStrokeAsText()
void assignCurStrokeAsEdge()
void assignCurStrokeAsMarker()
void assignCurStrokeAsSurfFront()

Sets the Context current stroke pointer to the requested stroke group. For
example, assignCurStrokeAsLine() causes the Context current stroke
pointer to point to the line stroke group.

XglViewGrp2dItf* getViewGrp() const

Used by XGL core only. The pipeline should not use this function but
should use instead the pointer to its own view group interface object in its
XglDpCtx object.

.h

Getting Information from XGL Objects 103

5

Context 3D Interfaces

See Context3d.h for the get...() interfaces you can use to retrieve state
values from the 3D Context.The XglContext3d class includes the following
internal interfaces:

const Xgli_surf_face_attr_3d* const
getSurfFrontFaceAttr3d() const

const Xgli_surf_face_attr* const
getSurfBackFaceAttr() const

const Xgli_surf_face_attr_3d* const
getSurfBackFaceAttr3d() const

const Xgli_surf_attr_3d* const getSurfFrontAttr3d() const
const Xgli_surf_attr_3d* const getSurfBackAttr3d() const

Functions that allow the pipeline to get a number of 3D surface attributes
within a single structure. These functions can facilitate device pipeline
manipulation of 3D surface attributes. At LI-2, face determination has
already taken place. A pipeline can set up the surface attribute pointer
based on the facing in the renderer and do all the attribute processing
without referring to the actual facing. See Context3d.h for the structure
definitions.

const XglStrokeGroup3d* getCurrentStroke() const

Returns a pointer to the current stroke group.

void assignCurStrokeAsLine()
void assignCurStrokeAsText()
void assignCurStrokeAsEdge()
void assignCurStrokeAsMarker()
void assignCurStrokeAsSurfFront()
void assignCurStrokeAsSurfBack()

Points the Context current stroke pointer to the requested stroke group. For
example, assignCurStrokeAsLine() causes the Context current stroke
pointer to point to the line stroke group.

Xgl_boolean getFrontTexturing() const

Returns an Xgl_boolean value, which is TRUE if the color type is RGB, if front
fill style is other than hollow or empty, and there is at least one active front
Data Map Texture object in the Context.

.h

104 XGL Device Pipeline Porting Guide—May 1996

5

Xgl_boolean getBackTexturing() const

Returns an Xgl_boolean value, which is TRUE if the color type is RGB, if back
fill style is other than hollow or empty, and there is at least one active back
Data Map Texture object in the Context.

Xgl_boolean getTlistEdgeFlag() const

If NURBS edge flags are on and the device pipeline calls the software
pipeline to render a NURBS surface, the software pipeline calls the device
pipeline li1QuadrilateralMesh() or li1TriangleStrip() . The
software pipeline uses ctx->setTlistEdgeFlag() to inform the pipeline
primitives whether they should show the edges of tesselated triangle lists.
The functions li1QuadrilateralMesh() or li1TriangleStrip() can
access tlistEdgeFlag by calling ctx->getTlistEdgeFlag() . The
default value is FALSE.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Data Map Texture Interfaces

See DmapTexture.h for the get...() interfaces you can use to retrieve state
values from the Data Map Texture object.The XglDmapTexture class includes
the following internal functions:

Xgl_texture_desc* const* getDescriptors() const

Returns a pointer to the texture descriptors (that are read-only) in a Data
Map Texture object. This is similar to the function
getDescriptors(Xgl_texture_desc[]) , except that in this case the
device pipeline has to allocate space for the texture descriptors and a copy
of the texture descriptors is returned as opposed to a pointer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

.h

Getting Information from XGL Objects 105

5

Device Interfaces

See Device.h for the get...() interfaces you can use to retrieve state values
from the Device object. The XglDevice class includes the following internal
functions.

Xgl_vdc_orientation getDcOrientation() const

Used by XGL core only.

XglDpDev* getDpDev() const

Returns a pointer to the XglDpDev object.

XglDrawable* getDrawable() const

Returns the drawable associated with the Device.

float getGammaValue() const

Returns the gamma value of the device needed by the software pipeline to
implement gamma correction for antialiased stroke primitives.

float* getGammaPowerTable() const

Returns a pointer to the gammaPowerTable. The ith entry of the table is the
value i/255.0 raised to the power of the gamma value. The size of the table
is 256 entries.

float* getGammaInversePowerTable() const

Returns a pointer to the gammaInversePower Table. The ith entry of the
table is the value i/255.0 raised to the power of the reciprocal of the gamma
value. The size of the table is 256 entries.

.h

106 XGL Device Pipeline Porting Guide—May 1996

5

Light Interfaces

See Light.h for the get...() interfaces you can use to retrieve state values
from the Light object. The XglLight class includes the following internal
functions:

const Xgl_pt_f3d& getNegDirection() const

For lights of type directional (XGL_LIGHT_DIRECTIONAL) and spot
(XGL_LIGHT_SPOT), this function returns the vector opposite to the
direction of propagation for directional lights, or opposite to the light ray on
the central axis for spot lights, in other words, the negative of
XGL_LIGHT_DIRECTIONAL, or pointing toward the light source.

float getCosAngle2() const

For lights of type XGL_LIGHT_SPOT, this function returns the cosine of half
the spot angle, in other words, the angle between the central axis of the spot
light and any ray at the boundary of the cone of illumination.

Line Pattern Interfaces

See LinePattern.h for the get...() interfaces you can use to retrieve state
values from the Line Pattern object. The XglLinePattern class includes the
following internal functions.

Note – In most cases, you will get to Line Pattern data via the stroke group. For
example, use ctx->getCurrentStroke()->getPattern() .

void getActualData (float*) const

Copies the actual line pattern data. The actual data differs from the API data
in that it is always float , and it includes the odd-length processing.

const float* getActualData() const

Returns a pointer to the actual line pattern data, including the odd-length
processing.

Xgl_usgn32 getActualDataSize() const

Returns the size of the actual line pattern data.

.h

.h

Getting Information from XGL Objects 107

5

float getActualOffset() const

Returns the offset in the actual line pattern data.

float getLength() const

Returns the total length of the line pattern in actual data.

Xgl_usgn32 getStartSeg() const

Returns the segment in actual data where the offset is.

float getStartSegRemain() const

Returns the remaining length in the segment in actual data at the offset
location.

Marker Interfaces

See Marker.h for the get...() interfaces you can use to retrieve state values
from the Marker object. The XglMarker class includes the following internal
function:

const XglPrimData* getActualDescription() const

Returns a pointer to the XglPrimData description of the marker.

MipMap Texture Interfaces

See MipMapTexture.h for the get...() interfaces you can use to retrieve
state values from the MipMap Texture object. The XglMipMapTexture class
includes the following internal function:

Xgl_usgn8 getElement(Xgl_usgn32 level,Xgl_usgn32
channel_num,Xgl_usgn32 x,Xgl_usgn32 y)

Returns the contents of the channel channel_num at position (x,y) from the
level level in the MipMap.

.h

.h

108 XGL Device Pipeline Porting Guide—May 1996

5

Raster Interfaces

See Raster.h for the get...() interfaces you can use to retrieve state values
from the Raster object. The XglRaster class includes the following internal
interfaces:

void setDoPixelMapping (Xgl_boolean b)

Used by the Memory Raster device pipeline only. Differentiates between a
“real” Memory Raster device (b is FALSE) and a backing store Memory
Raster (b is TRUE).

Xgl_boolean getDoPixelMapping() const

Used by RefDpCtx, a Memory Raster, and the software pipeline to
determine if DoPixelMapping has been set.

Texture Map Interfaces

See Tmap.h for the get...() interfaces you can use to retrieve state values
from the Texture Map object.The XglTmap class includes the following internal
functions:

Xgl_texture_general_desc* const* getDescriptors() const

Returns a pointer to the texture descriptors (that are read-only) in a Texture
Map object. This is similar to the function
getDescriptors(Xgl_texture_general_desc[]) , except that in this
case the device pipeline has to allocate space for the texture descriptors and
a copy of the texture descriptors is returned as opposed to a pointer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

.h

.h

Getting Information from XGL Objects 109

5

Window Raster Interfaces

See RasterWin.h for the get...() interfaces you can use to retrieve state
values from the Window Raster object. The XglRasterWin class includes the
following internal functions:

void setDgaCmapPutFunc(void(*PutFunc)(Dga_cmap dga_cmap,
int inden, int count, u_char* red,
u_char* green, u_char* blue)

Provided by the XGL core so that a device pipeline can register a callback
function to update the hardware color map. For more information on
PutFunc , see the documentation for dga_cm_write() in the X Server
Device Developer’s Guide.

XglPixRectMem* getSwZBuffer() const

Returns a pointer to the XglPixRectMem object that represents the software
Z-buffer.

XglPixRectMem* getSwAccumBuffer() const

Returns a pointer to the XglPixRectMem object that represents the software
accumulation buffer.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Memory Raster Interfaces

See RasterMem.h for the get...() interfaces you can use to retrieve state
values from the Memory Raster object. The XglRasterMem class provides the
following internal functions:

XglPixRectMem* getImageBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the image
buffer for the memory raster.

XglPixRectMem* getZBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the Z-buffer
for the memory raster.

.h

.h

110 XGL Device Pipeline Porting Guide—May 1996

5

XglPixRectMem* getAccumBufferPixRect() const

Returns a pointer to the XglPixRectMem object that represents the
accumulation buffer for the memory raster.

Xgl_usgn32 getImgBufLineBytes() const

Gets the value for linebytes for the image buffer when the memory raster
is set up to access memory for retained windows. linebytes is the number
of bytes that separates one line in a raster, in other words, the number of
bytes from (x,y) to (x,y+1).

void syncRtnDevice(XglRasterWin*)

Used by the XGL core only.

virtual void receive(XglObject* obj, const XglMsg& msg)

Used by XGL core only.

Stroke Font Interfaces

See Sfont.h for the get...() interfaces you can use to retrieve state values
from the Stroke Font object. The XglSfont class includes the following internal
functions:

Xgl_boolean getIsFontLoaded() const

Returns a Boolean value that indicates whether the font file is actually
loaded.

Xgl_sfont_data* getSfontData()

Loads the font file and returns a pointer to the data.

Sfont_inst* getSfontInst()

Returns a pointer to the actual strokes that define an entire font.

.h

Getting Information from XGL Objects 111

5

Transform Interfaces and Flags

Transform Flag

The Transform object maintains a member datum called flag that contains
internal information for the XglTransform class. The pipeline can get the flag
information by calling the getFlag() function. The flag consists of the values
in the enumerated type Xgli_trans_flag. Most of the flag bits are used to keep
track of the state of the Transform, but two of the bits,
XGLI_TRANS_SINGULAR and XGLI_TRANS_INVERSE_VALID, may be of use
to the device pipeline.

If the XGLI_TRANS_SINGULAR bit is set, this indicates that the matrix is
singular and that the application, the XGL core, or the device pipeline has
attempted to invert it. However, if the bit is not set, this does not necessarily
mean that the matrix is nonsingular but may simply mean there has not been
an attempt to take the inverse of the matrix. The
XGLI_TRANS_INVERSE_VALID bit works similarly. Table 5-2 shows the
relationship between these two bits and what the bit settings mean.

Transform Member Records

The Transform member datum memberRecord defines the matrix groups to
which a matrix is a member. If the application has specified the membership of
a matrix to a matrix group with xgl_transform_write_specific() or the
application constructs its Transforms with XGL’s transform utilities, such as
xgl_transform_scale() , the device pipeline can use the

Table 5-2 XGLI_TRANS_SINGULAR

SINGULAR INVERSE VALID Meaning

0 0 The inverse of the matrix has not been
taken, so information on its singularity is
not available.

1 0 Singular matrix.

0 1 Nonsingular matrix.

1 1 Not possible.

112 XGL Device Pipeline Porting Guide—May 1996

5

getMemberRecord() function to determine which groups the matrix belongs
to and take advantage of that information to speed up the processing of
transformations.

The member datum memberRecord holds combinations of the macros
XGL_TRANS_GROUP_xx defined in xgl.h . The groups are:

/* Transform groups */
typedef Xgl_usgn32 Xgl_trans_group;
#define XGL_TRANS_GROUP_IDENTITY 0x001
#define XGL_TRANS_GROUP_TRANSLATION 0x002
#define XGL_TRANS_GROUP_SCALE 0x004
#define XGL_TRANS_GROUP_ROTATION 0x008
#define XGL_TRANS_GROUP_WINDOW 0x010
#define XGL_TRANS_GROUP_SHEAR_SCALE 0x020
#define XGL_TRANS_GROUP_LENGTH_PRESERV 0x040
#define XGL_TRANS_GROUP_ANGLE_PRESERV 0x080
#define XGL_TRANS_GROUP_AFFINE 0x100
#define XGL_TRANS_GROUP_LIM_PERSPECTIVE 0x200

Each group has special properties. XGL takes advantage of these for more
efficient operations, including inversion and multiplication of two matrices,
multiplication of a matrix by points, and multiplication of a matrix by normal
vectors. The device pipeline can use the groups to classify a matrix in order to
apply optimized operations during rendering.

Applications can specify the member record using the Transform operator
xgl_transform_write_specific() to write a matrix into a Transform.
This operator takes a parameter of type Xgl_trans_member, which is defined in
xgl.h and which specifies the groups the matrix belongs to. In addition, XGL
maintains the member record when applications use XGL’s utilities for
constructing Transforms. If applications use their own utilities for constructing
matrices, and they do not specify the member record when they write a matrix
into a Transform, the member record is not maintained because analyzing the
matrix is time-consuming. For information on the member groups, see the XGL
Reference Manual page on xgl_transform_write_specific ().

Getting Information from XGL Objects 113

5

The device pipeline can test the member flags by calling the
getMemberRecord() function of the Transform object, as in the following
pseudocode example. Note that in this example, the application has not
supplied the w value.

It is the device pipeline’s responsibility to check the membership record from
the Transform object. Derived data calculates the correct matrix, but a device
pipeline may or may not be able to use that matrix in certain circumstances.
The device pipeline can take advantage of knowing that certain flag bits are
set.

Example: Checking a Member Record for Identity
One example of using a member record is to determine whether a transform is
identity, as shown in this code sample:

const XglTransform* mc_to_cc = viewGrpItf->getMcToCc();

if (mc_to_cc->getMemberRecord() & XGL_TRANS_GROUP_IDENTITY) {
// transform is identity

}
else {

// transform is not identity
}

Xgl_trans_group group = transform->getMemberRecord();
const Xgl_matrix_f3d*mat = (const Xgl_matrix_f3d*)

transform->getMatrixFloat();

if (group & XGL_TRANS_GROUP_IDENTITY) {
// identity
 x1 = x ; y1 = y ; z1 = z ; w1 = 1 ;

}
else if (group & XGL_TRANS_GROUP_TRANSLATION) {
// translation
 x1 = x + (*mat)[3][0] ;
 y1 = y + (*mat)[3][2] ;
 z1 = z + (*mat)[3][2]; w1 = 1 ;
}

114 XGL Device Pipeline Porting Guide—May 1996

5

Example: Checking a Member Record to Do Lighting
A device may implement lighting in Model Coordinates (MC) for improved
performance over World Coordinates (WC) and Lighting Coordinates (LC)
because the normal vectors do not need to be transformed to do lighting in MC
(see Chapter 6, “View Model Derived Data” for a description of coordinate
systems). Lighting can be performed correctly in MC only if the Model
Transform preserves angles. The reason is that lighting is specified in WC in
the conceptual view model so lighting must be performed in a coordinate
system related to WC by an angle-preserving matrix; otherwise, the dot
products in lighting calculations do not equal those in WC. You must check the
member record of the Model Transform as discussed below before you attempt
to perform lighting calculations in Model Coordinates.

The membership record of the Model Transform can give additional
information relevant to lighting calculations. The Model Transform may have
the following properties:

1. Length-preserving

2. Angle-preserving

3. Affine with anisotropic scaling

4. Perspective

5. Singular

The order of these properties for lighting is from easiest to hardest, which is
the sequence that you should apply to testing the Model Transform. The
testing needs to be performed at least once whenever the Model Transform
changes. The view group interface can assist detection of these changes; see
Chapter 6, “View Model Derived Data” for information on the view group
interface.

When the Model Transform preserves lengths (and angles), you can perform
lighting in MC. However, if the device always performs lighting in WC or LC,
then the device would transform normal vectors as column vectors by the 3×3
upper-left submatrix of the WC-to-MC or LC-to-MC Transform respectively.
Lighting calculations generally require unit length vectors, so XGL requires
applications to supply unit length normal vectors in MC. If the Model
Transform preserves lengths, then the normal vectors in WC and LC have unit
length, so you do not have to readjust their lengths after transformation. To

Getting Information from XGL Objects 115

5

determine whether the Model Transform preserves lengths, you can check the
membership record to see if the XGL_TRANS_GROUP_LENGTH_PRESERV bit is
set.

When the Model Transform preserves angles, you can perform lighting in MC.
However, if the device always performs lighting in WC or LC, you can
transform normal vectors the same way as for the length-preserving case. Unit
normal vectors in MC transformed in this manner by an angle-preserving
matrix always have the same length after transformation. This length is the
isotropic scale factor, which can be obtained with getIsotropicScale() . If
you need a unit vector after transformation by an angle-preserving matrix, just
divide the transformed vector by the isotropic scale factor. If you have several
vectors that you want to transform by an angle-preserving matrix and you
need unit length vectors after the transformation, then you can divide all the
elements of the matrix by the isotropic scale factor, and the unit length vectors
transformed by this matrix will yield unit length vectors. This saves you from
dividing all the vectors by the isotropic scale factor. To determine whether the
Model Transform preserves angles, you can check the membership record to
see if the XGL_TRANS_GROUP_ANGLE_PRESERV bit is set.

When the Model Transform is affine and does not preserve angles, you must
perform lighting in WC or LC. In this case, the Model Transform scales
geometry anisotropically, and the amount of scaling depends on the direction.
After transforming a unit vector by an affine matrix with anisotropic scaling,
you need to calculate the length of the transformed vector and divide the
vector by its length. Calculation of the length usually requires a square root,
but a lookup table may be faster and accurate enough. To determine whether
the Model Transform is affine and does not preserve angles, you can check the
membership record to see if the XGL_TRANS_GROUP_AFFINE bit is set after
checking that the XGL_TRANS_GROUP_ANGLE_PRESERV bit is not set.

When a Model Transform has perspective, lighting calculations are correct only
in WC or LC. The calculation of transformed normal vectors is difficult, and
most applications do not use Model Transforms with perspective. You can
assume that this situation never occurs. If it does occur, treat it as if the Model
Transform is affine with anisotropic scaling. XGL has the limitation that the
Model Transform cannot have perspective.

When a Model Transform is singular, lighting calculations cannot be performed
except for ambient lighting. In MC, the light positions and eye position or
vector cannot be calculated. In WC or LC, the normal vectors cannot be

116 XGL Device Pipeline Porting Guide—May 1996

5

calculated uniquely. Therefore, you should only do ambient lighting. To
determine whether the Model Transform is singular, get its flag as described on
page 111.

Transform Internal Interfaces

See Transform.h for the get...() interfaces you can use to retrieve state
values from the Transform object. The XglTransform class includes the
following internal functions.

Note – The pipeline can access transforms and view group attributes via the
Context object if the pipeline never falls back on the software pipeline. If the
device pipeline never uses the software pipeline, it can access the Local Model
Transform using XglTransform* mt = ctx->getModelTrans() .
Even in this case, however, it is a good idea for pipelines to use derived data so
that they work consistently with other pipelines. So the preferred way to access
the Local Model Transform is to use derived data, as in
mt = (XglTransform*) viewGrpItf->getMcToWc() . Then, to get to the
interfaces for the Transform, use mt->get xx.

Xgli_trans_flags getFlag()

Returns the transform flag described on page 111.

Xgl_trans_group getMemberRecord()

Returns a word containing the matrix groups. See page 111 for information
on the internal flag memberRecord and see the
xgl_transform_write_specific() man page for information on the
member groups.

const float* getMatrixFloat()

Returns a floating-point representation of a single-precision matrix. Note
that when an application uses xgl_transform_write_specific() to
write a matrix, it passes a pointer to a matrix type defined in xgl.h .
However, the internal matrix types defined in Transform.h are the actual
representations of the matrix data that the application will get. Although the
API documentation states that 2D matrices are 3×2 and in xgl.h the matrix

.h

Getting Information from XGL Objects 117

5

type Xgl_matrix_f2d is defined as a float 3×2 matrix, internally the 2D
matrices are 3×3 matrices of type Xgli_matrix_i3x3, Xgli_matrix_f3x3, or
Xgli_matrix_d3x3.

Note that XGL does calculations in double-precision format and only
converts to single-precision format when the application or pipeline
requests it by calling getMatrixFloat() .

const float* getMatrix()

Equivalent to getMatrixFloat() ; however, getMatrixFloat() is the
recommended version.

const double* getMatrixDouble()

Returns a double-precision matrix.

const Xgl_sgn32* getMatrixInt()

Returns a 32-bit integer version of the matrix.

double getIsotropicScale()

Returns a value that indicates how much scaling the matrix does when it
scales isotropically. This is valid only when the
XGL_TRANS_GROUP_ANGLE_PRESERV bit is set in the member record.

double getNorm()

Returns the mathematical norm of a matrix.

double getNormInverse()

Returns the reciprocal of the norm of a matrix.

copyConvert()

Used internally by getMatrixInt() .

void transPt(const Xgli_pt*, Xgli_pt*)

Transforms a single point of type Xgli_pt (defined in Transform.h) and
stores it in a different block of memory. This is different than the API
xgl_transform_point() function, which transforms a point and
overwrites the original block of memory.

118 XGL Device Pipeline Porting Guide—May 1996

5

void transPtList(const Xgli_pt_list*, Xgli_pt_list*)

Transforms a point list of type Xgli_pt_list (defined in Transform.h) and
stores it in a different block of memory. This is different than the API
xgl_transform_point_list() function.

void transNormal(const Xgl_pt_f3d* src, xgl_pt_f3d* dest)

Transforms a normal of type Xgl_pt_f3d and returns a normal of the same
type.

void
transUnitNormal(const Xgl_pt_f3d* src, Xgl_pt_f3d* dest)

Transforms a unit normal of type Xgl_pt_f3d and returns a unit normal of
the same type.

void
transUnitNormalDouble(const Xgl_pt_d3d* src,

Xgl_pt_d3d* dest)

Transforms a unit normal of type Xgl_pt_d3d and returns a unit normal of
the same type.

Getting Information from XGL Objects 119

5

Getting Information From the Device Object
The device pipeline may need to get information from the device-independent
Device object, from the Drawable associated with the Device, or from a Color
Map object that the application has associated with the Device. Pointers to the
Device object are available as follows:

• The XglDpDev object has a member data device that holds a pointer to the
device-independent Device object. Note that device already points to a
Device of the right type. In other words, in an XglDpDevWinRas object,
device is already XglRasterWin* , in an XglDpDevMemRas object,
device is already XglRasterMem* , and in an XglDpDevStream object,
device is already XglStream* .

• The XglDpCtx object has a member data device that holds a pointer to the
device-independent Device object.

A pointer to the Drawable object is available in the XglDpCtx object. Your
pipeline XglDpCtx can use the drawable pointer rather than using
getDevice()->getDrawable() . Note that the device and drawable
pointers are fixed at XglDpDev creation and do not change for the life of the
XglDpDev object.

To get a handle to the Color Map object, use the inline function getCmap() , as
in device->getCmap() . The getCmap() function is defined in Device.h .

If you frequently use some object pointers (or even data itself), you can cache
the object pointers, provided that you use the objectSet() function correctly
to stay synchronized with Context state changes. A good example of this is
caching a pointer to the color map object. If you think frequent use of
device->getCmap() is too time consuming, save the return value in a
member data of your own XglDpCtx.

Color Map Interfaces

Because the Color Map object is set on the Device, its interfaces are available
through the Device object. With a handle to the Color Map object, the pipeline
can access the Color Map’s interfaces as follows:

device->getCmap()->getColorMapper()

120 XGL Device Pipeline Porting Guide—May 1996

5

Note that the application can change the color map by setting a new Color
Map object on the Device or by changing an existing color map. The pipeline is
notified of color map changes by the message passing mechanism and by a
direct dpDev->setCmap(cmap) call from the Context to the pipeline
XglDpDev object. Although the color map can change during program
execution, applications are not allowed to change the device’s color type after
the device has been created.

See Cmap.h for the get...() interfaces you can use to retrieve state values
from the Color Map object. The XglCmap class includes the following internal
functions.

Xgl_usgn32 getPlaneMaskMask() const

Returns an Xgl_usgn32 value in which the bits set indicate the knowledge
XGL has of the bits where rendering is allowed, with regard to the XGL and
X colormaps.

Xgl_color* getColorTable() const

This function returns a pointer to the first color of the color table.

XglCmapDrawable* getCmapDrawable() const

Used by XGL core only.

Xgl_usgn32 lookUpDitherValue(Xgl_usgn32, Xgl_usgn32)

Returns the dither matrix value at the given position.

Xgl_sgn32 lookUpInternalDitherValue(Xgl_usgn32, Xgl_usgn32)

Returns the value of the internal dither matrix at the given position. The
internal dither matrix is the transpose of the regular dither matrix in
“fract24” (s7.24) format, and it is divided by 255 (so the renderer need not
divide). The internal dither matrix is valid only when the dither matrix is
8×8. It is the transpose of the regular matrix to allow scanline access.

Xgl_sgn32*
lookUpInternalDitherAddress(Xgl_usgn32, Xgl_usgn32)

Returns the address of the value of the internal dither matrix at the given
position.

.h

Getting Information from XGL Objects 121

5

Xgl_boolean getMapperHasBeenSet() const

Indicates whether color mapper has been set. Used by the XGL core only.

Xgl_boolean getInverseMapperHasBeenSet() const

Indicates whether the inverse color mapper has been set. Used by the XGL
core only.

122 XGL Device Pipeline Porting Guide—May 1996

5

123

View Model Derived Data 6

This chapter describes how a device pipeline gets data for implementing the
view model. The chapter includes information on the following topics:

• Overview of view model derived data

• A summary of how derived data is implemented

• Information on how pipelines access derived data information

As you read this chapter, you will find it helpful to have access to the header
files for the derived data mechanism. These are:

• ViewCache.h , ViewCache2d.h , and ViewCache3d.h
• ViewConcern2d.h and ViewConcern3d.h
• ViewGrp2d.h and ViewGrp3d.h
• ViewGrp2dItf.h and ViewGrp3dItf.h
• ViewGrp2dConfig and.h and ViewGrp3dConfig.h

.h

124 XGL Device Pipeline Porting Guide—May 1996

6

Overview of View Model Derived Data
XGL defines a conceptual view model consisting of a number of coordinate
systems in which an application can specify certain operations. These
coordinate systems are Model Coordinates (MC), World Coordinates (WC),
Virtual Device Coordinates (VDC), and Device Coordinates (DC). Examples of
the usage of coordinate systems in the 3D view model include specification of
geometry in MC, lights and model clip planes in WC, view clip planes and
depth cue reference planes in VDC, and the pick aperture in DC. The
coordinate systems are related by a sequence of transformations. The Local
Model and Global Model Transforms are concatenated to form the Model
Transform, which maps geometry from MC to WC. The View Transform maps
geometry from WC to VDC. The VDC map, VDC orientation, VDC window,
DC orientation, DC viewport, and jitter offset collectively define a mapping
between VDC and DC. This view model is conceptual because an application
can think of an operation as occurring in the coordinate system where it is
specified, but a pipeline actually may implement the operation in another
coordinate system for improved performance as long as the results are
equivalent.

XGL provides a facility to assist pipelines with implementation of the view
model’s operations. The facility is named view model derived data or simply
derived data. Derived data maintains a cache of items derived from a Context’s
view model attributes. The derived items include Transforms for mapping
geometry between coordinate systems as well as items in various coordinate
systems such as the view clip bounds, lights, eye positions or eye vectors,
model clip planes, and depth cue reference planes. For example, derived data
calculates the VDC-to-DC Transform from the Context attributes for the VDC
map, VDC orientation, VDC window, DC viewport, and jitter offset, and the
Device attribute for DC orientation. In turn, the MC-to-DC Transform is the
concatenation of the Model, View, and VDC-to-DC Transforms. This illustrates
that a derived item can depend on only API attributes, on only derived items,
or on a combination of both.

Note – Pipelines have the option of not using the derived data facility if and
only if the pipeline never falls back on the software pipeline. If the pipeline
does fall back on the software pipeline, for example for the processing of
annotation text, markers, 2D circles and arcs, or NURBS curves and surfaces, it
must use derived data. See “Entry of Geometry from Multiple Coordinate
Systems” on page 126 for information.

View Model Derived Data 125

6

Derived data implements a large collection of items. The items were selected
by analyzing the requirements of a theoretical pipeline and by looking at the
needs of several graphics devices. The theoretical pipeline employs two
coordinate systems that are not exposed at the API level: Lighting Coordinates
(LC)1 and Clipping Coordinates (CC). It also performs operations in several
coordinate systems; for example, model clipping operations occur in four
coordinate systems so the clip planes are needed in each of these.

Derived data is efficient and easy for device pipelines to use. In particular,
derived data is designed for hardware devices that retain the state of the view
model such as matrices and clip planes. These device pipelines need to know
when a derived item has changed so that the pipeline can reload the item into
the device. The calculations are transparent to pipelines, and the design avoids
redundancies and extraneous evaluation of derived data items.

The XGL software pipeline also uses derived data. The only difference between
many device pipelines and the software pipeline is that the latter does not
retain state so it does not need to be informed of changes to derived items. The
software pipeline simply gets a derived item as needed, but this does not
necessarily cause re-evaluation since the item may be valid already.

Design Goals of Derived Data

The design goals of derived data are:

1. Support geometry entering LI-1 from other coordinate systems (in addition
to Model Coordinates) with a simple interface for pipelines.

2. Provide a fast test to inform a pipeline of changes to derived items of
concern to that pipeline and minimize data transfer to devices that retain
state.

3. Defer calculation of a derived item until a pipeline requests that item, and
avoid redundant calculations.

1. For information on Lighting Coordinates, see Salim S. Abi-Ezzi and Michael J. Wozny, “Factoring a
Homogeneous Transformation for a More Efficient Graphics Pipeline,” Computer Graphics Forum, North-
Holland, Vol. 9, 1990, pp. 245-255.

126 XGL Device Pipeline Porting Guide—May 1996

6

Entry of Geometry from Multiple Coordinate Systems

The need to support entry of geometry to LI-1 primitives from coordinate
systems other than Model Coordinates greatly complicates the design of
derived data. As an example, consider the NURBS surface code in the software
pipeline. The software pipeline’s 3D LI-1 NURBS surface primitive takes
control points and knots in MC and produces polylines, triangles, and
quadrilateral meshes in LC, CC, and DC. This geometry enters the LI-1
primitives of a number of devices. Rather than force device pipeline developers
to produce an LI-1 primitive for each coordinate system from which geometry
can enter, derived data “fools” pipelines into “thinking” that they are always
getting geometry in MC, even when geometry enters from another coordinate
system.

Consider a simple example of 2D annotation text in the software pipeline. The
application passes a character string and a reference point to XGL at the API
level. If the device pipeline cannot handle annotation text at LI-1, the software
pipeline transforms the reference point from MC to VDC, checks that the point
is within the view clip bounds, and constructs a polyline description of the text
based on information stored in font files. Derived data provides functions so
that a primitive can push the current coordinate system onto a stack and set it
to another: VDC in the case of annotation text. Then the primitive can call LI-1
multipolyline. When the multipolyline function requests a transform, for
example the MC-to-CC Transform, derived data returns the appropriate
transform for the current coordinate system: in this case, the VDC-to-CC
Transform. The LI-1 multipolyline primitive doesn’t need to be aware that the
current coordinate system is VDC instead of MC. When control returns from
the LI-1 polyline primitive to the software pipeline’s LI-1 annotation text
primitive, the latter can pop the coordinate system to restore the original one
(which should be MC).

For certain primitives, the software pipeline uses derived data to transform the
geometry through part of the pipeline before changing the coordinate system
and passing the partially processed geometry on to another LI-1 primitive. An
important corollary is that if a device pipeline ever falls back on the software
pipeline, the device pipeline must use derived data. If a device pipeline never
falls back on the software pipeline, then the device pipeline has the option of
using or not using derived data.

View Model Derived Data 127

6

Changes to Derived Items

Derived data has a fast test to allow pipelines to determine when at least one
derived item has changed since the last time that the pipeline accessed any
item. This test especially benefits pipelines whose devices retain view model
state. A pipeline can express concern about changes to a specified set of items.
This allows pipelines to filter out irrelevant changes, which is important
because derived data consists of a large number of items and pipelines
typically need only a few items.

A derived item can change as a result of an application changing a view model
attribute. A derived item may depend directly or indirectly on that attribute.
An attribute change invalidates some previously calculated items.

A change to a derived item can also be the result of a change in the current
coordinate system. In the annotation text example in the previous section,
derived data returns the VDC-to-CC Transform when the current coordinate
system is VDC and the pipeline requests the MC-to-CC Transform. If the
previous coordinate system was MC when the pipeline requested the MC-to-
CC Transform, the actual MC-to-CC matrix would have been loaded into the
device. The change in coordinate system from MC to VDC means that the
pipeline needs to load a difference matrix to achieve the MC-to-CC mapping.
Hence, a change in the current coordinate system results in changes to derived
items even though no items have been invalidated, as in the case of API
attribute changes. A pipeline does not need to be aware of the reason for a
change in an item. Derived data simply informs the pipeline when an item
must be reloaded into a device that retains state.

In addition to the fast test for the whole set of specified items, derived data has
a test for each individual item. If the fast test is positive, then at least one of the
specified items has changed. The pipeline then needs to check each of the
specified items for changes. The pipeline should get a changed item from
derived data and reload that state into the device.

The fast test never misses a change to a derived item resulting from a change to
an API view model attribute or a change in the current coordinate system.
However, the test may be falsely positive because changes to items resulting
from changes in the coordinate system cannot be determined quickly with
complete accuracy. Hence, the test is overly cautious. Fortunately, the tests for
the individual items are quick and completely accurate so derived data
eliminates extraneous transfers of state to devices. Since pipelines typically
need only a few items, the overhead is not large.

128 XGL Device Pipeline Porting Guide—May 1996

6

Deferred Calculation

Derived data defers calculations until a pipeline requests a particular item.
Each item is a node in an acyclic directed graph of dependencies with API
view model attributes at the bottom. When a pipeline requests a particular
item, derived data descends the graph until it finds valid items (API view
model attributes are always valid) and ascends the graph as it performs
calculations until it reaches the requested item. Consequently, if that item is
already valid, then no calculation is required. A pipeline’s request for a
particular item is the trigger for any necessary calculations.

Deferred evaluation has the advantage of eliminating unnecessary calculations.
Derived data calculates an item only when a pipeline explicitly requests that
item (or one that depends on it) and that item needs to be reloaded into a
device because of a change to a relevant API attribute or a change in the
current coordinate system. A pipeline is not penalized with expensive
calculations if it does not use derived data.

Derived Data Items
Derived data maintains transformations between coordinate systems and
maintains a variety of other items that change when Context or Device
attributes change.

 Coordinate Systems and Transforms

The majority of items in derived data are Transforms for mapping geometry
between pairs of coordinate systems. Each Transform has a name of the form
“AcToBc” for transforming points from the “A” coordinate system to the “B”
coordinate system. For 3D, the “AcToBc” Transform can be used to transform
normal and direction vectors from BC to AC by applying these vectors as 3×1
column vectors to the 3×3 upper-left submatrix of AcToBc’s 4×4 matrix.

View Model Derived Data 129

6

Table 6-1 lists the coordinate systems that derived data supports in 2D.

Table 6-2 lists the coordinate systems that derived data supports in 3D.

Note – GMC is the coordinate system after the Local Model Transform and
before the Global Model Transform.

In 3D the view-clipping volume in Clipping Coordinates has the boundaries
[-1,1] × [-1,1] × [-1,1] with the clip planes at the boundaries. The x-, y-, and z-
axes are parallel to those in VDC and DC. The orientation always has the x-axis
pointing right, the y-axis pointing up, and the z-axis pointing toward. This is
independent of the orientations of VDC (specified by the application) and DC
(specified by the device). 2D is similar except that there is no z-axis.

Table 6-1 Derived Data 2D Coordinate Systems

Mnemonic Name

MC Model Coordinates

GMC Global Model Coordinates

WC World Coordinates

VDC Virtual Device Coordinates

CC Clipping Coordinates

DC Device Coordinates

Table 6-2 Derived Data 3D Coordinate Systems

Mnemonic Name

MC Model Coordinates

GMC Global Model Coordinates

WC World Coordinates

LC Lighting Coordinates

IC Intermediate Coordinates

VDC Virtual Device Coordinates

CC Clipping Coordinates

DC Device Coordinates

130 XGL Device Pipeline Porting Guide—May 1996

6

In 3D the View Transform often can be factored into the following form:

V = EQG

where E is Euclidean (meaning that it preserves the distances between points
and the angle between direction vectors), and Q and G are sparse. See the
paper by Abi-Ezzi and Wozny for a full description of the decomposition and
properties of the coordinate systems. The coordinate system between E and Q
is called Lighting Coordinates, and the one between Q and G is called
Intermediate Coordinates. The software pipeline NURBS primitives use these
coordinate systems, and device pipelines may benefit from them as well.

 Other Derived Items

Derived data maintains a number of items other than Transforms. The view
clip bounds in MC, VDC, CC, and DC, and the viewport in DC are available to
both 2D and 3D pipelines. 3D pipelines can also access the lights in MC and
LC, the eye vector or position in MC, LC, VDC, and CC, a flag indicating when
the view projection is parallel as opposed to perspective, the model-clip planes
in MC, LC, CC, and DC, the depth cue planes in CC and DC, and a flag
indicating when the View Transform can be factored. Table 6-3 lists the items
other than Transforms that derived data maintains.

Table 6-3 Other Items in Derived Data

Mnemonic Name

VclipBoundsMC View-clip bounds in MC

VclipBoundsVdc View-clip bounds in VDC

VclipBoundsCc View-clip bounds in CC

VclipBoundsDc View-clip bounds in DC

ViewportDc Viewport in DC

LightsMc Lights in MC

LightsLc Lights in LC

EyeMc Eye vector or point in MC

EyeLc Eye vector or point in LC

EyeVdc Eye vector or point in VDC

EyeCc Eye vector or point in CC

View Model Derived Data 131

6

Overview of Derived Data’s Implementation
The view model derived data facility consists of a set of four classes for each of
2D and 3D. Table 6-4 lists the class names.

A view cache object consists of derived items and functions for deferred
evaluation of the items. Each Context has a pointer to its own view cache
object, which maintains the derived items specific to that Context.

A view group configuration object holds the static configuration information
for each coordinate system from which geometry can enter LI-1. Each view
cache has an array of view group configuration objects, one for each coordinate
system that the view cache supports. A 2D view cache supports MC, VDC, CC,
and DC. A 3D view cache supports these four as well as LC. The configuration
information is static: it is invariant once initialized and is common to all view
caches of a particular dimension.

ParallelProj Parallel projection flag

MclipPlanesMc Model-clip planes in MC

MclipPlanesLc Model-clip planes in LC

MclipPlanesCc Model-clip planes in CC

MclipPlanesDc Model-clip planes in DC

DcuePlanesCc Depth cue planes in CC

DcuePlanesDc Depth cue planes in DC

ViewCanonical View canonical flag

Table 6-4 View Model Derived Data Classes

Generic Name 2D C++ Class Name 3D C++ Class Name

View cache XglViewCache2d XglViewCache3d

View group configuration XglViewGrp2dConfig XglViewGrp3dConfig

View group interface XglViewGrp2dItf XglViewGrp3dItf

View concern XglViewConcern2d XglViewConcern3d

Table 6-3 Other Items in Derived Data (Continued)

Mnemonic Name

132 XGL Device Pipeline Porting Guide—May 1996

6

A view group interface object is a pipeline’s interface to the view model
derived data. This object informs a pipeline when derived items have changed
as a result of either the application changing a view model attribute or a
pipeline changing the coordinate system from which geometry enters the next
LI-1 primitive. The view group interface also maintains functions for returning
the items appropriate to the current coordinate system.

A view concern object is a description of all the derived items whose changes a
pipeline is concerned with. This object is a parameter of the view group
interface’s fast test for changes to derived items.

Each pipeline has a pointer to a view group interface object. The view group
interface has functions for creating and destroying view concern objects. A
pipeline may create as many view concern objects as it needs. For example, it
can have one for stroke primitives and one for surface primitives. The view
cache and view group configuration objects are inaccessible to pipelines so
their interfaces are not described in this document; see XGL Architecture Guide
or the appropriate header files for more information.

Accessing Derived Data
The pipeline has access to member functions of the view group interface object.
Each pipeline is provided with a pointer to its view group interface object by
the pipeline context classes. The 2D pipeline context class, XglPipeCtx2d, has a
member datum of type XglViewGrp2dItf* called viewGrpItf . Likewise,
XglPipeCtx3d has a member datum of type XglViewGrp3dItf* called
viewGrpItf . The constructors of XglPipeCtx2d and XglPipeCtx3d create a
new view group interface object for each Context. In general, the software
pipeline and device pipeline access member functions of the view group
interface with viewGrpItf-> as a prefix, as in the following example.

xform = viewGrpItf->getMcToDc();

View Model Derived Data 133

6

Note – The pipeline can access transforms and view model attributes via the
Context object if the pipeline never falls back on the software pipeline. If, in
fact, the pipeline never uses the software pipeline, it can access the Local
Model Transform using XglTransform* mt = ctx->getModelTrans() .
Even in this case, however, it is a good idea for pipelines to use derived data so
that they work consistently with other pipelines. So the preferred way to access
the Local Model Transform is to use derived data, as in
mt = viewGrpItf->getMcToWc .

Registration of Concerns
A device pipeline for a device that retains view model state can create view
concern objects to keep track of the derived items that the pipeline is
concerned about. Typically, a pipeline’s concerns vary from primitive to
primitive. Surfaces are more complex than stroked primitives such as polylines
and markers, so a pipeline might have more concerns for surfaces. A pipeline
can create its view concern objects in its constructors.

The following example shows the constructor and destructor of the 3D device
pipeline for a sample pipeline (SampDp). The constructor creates view concern
objects for the stroke and surface primitives. Registration of the concerns
consists of two steps:

1. Define the view flag by combining bits corresponding to the derived items
that the device pipeline loads into the device for a particular primitive or
group of primitives.

2. Create a view concern object from the view flag.

Note that the pipeline needs only a few items from among the large selection
available in derived data. This is typical for many devices. Those devices that
accelerate more functionality usually need to keep track of more derived items.

#include “xgli/Context3d.h”
#include “xgli/DpCtx3d.h”
#include “xgli/ViewGrp3dItf.h”
#include “DpCtx3dSampDp.h”
#include “DpDevSampDp.h”

XglDpCtx3dSampDp::XglDpCtx3dSampDp(XglContext3d* ctx,
XglDpDevSampDp* dp_dev) :

134 XGL Device Pipeline Porting Guide—May 1996

6

XglDpCtx3d(ctx),
XglDpCtxSampDp((XglContext*)context), dp_dev)

{
// Define view flag for polylines and markers.
// Xgli_view_flag_3d XglDpCtx3dSampDp::strokeViewFlag;
//
strokeViewFlag.a =XGLI_VIEW_A_MC_TO_CC |

XGLI_VIEW_A_CC_TO_DC;
strokeViewFlag.b = NULL;
strokeViewFlag.c = XGLI_VIEW_C_PARALLEL_PROJ;

// Create a view concern object for polylines and markers.
// XglViewConcern3d* XglDpCtx3dSampDp::strokeConcern;
// XglViewGrp3dItf* XglPipeCtx3d::viewGrpItf;
//
strokeConcern = viewGrpItf-

>createViewConcern(strokeViewFlag);

// Define view flag for surfaces.
// Xgli_view_flag_3d XglDpCtx3dSampDp::surfViewFlag;
//
surfViewFlag.a = strokeConcernBits.a | XGLI_VIEW_A_MC_TO_WC;
surfViewFlag.b =strokeConcernBits.b |

 XGLI_VIEW_B_MC_TO_LC |
 XGLI_VIEW_B_LC_TO_MC |
 XGLI_VIEW_B_LC_TO_CC;

surfViewFlag.c = strokeConcernBits.c |
 XGLI_VIEW_C_LIGHTS_MC |
 XGLI_VIEW_C_EYE_MC |
 XGLI_VIEW_C_LIGHTS_LC |

 XGLI_VIEW_C_EYE_LC;

 // Create a view concern object for surfaces.
// XglViewConcern3d* XglDpCtx3dSampDp::surfConcern;
//
surfConcern = viewGrpItf->createViewConcern(surfViewFlag);

// Set this context as the last one used for rendering to the
// device.
// XglContext3d* XglDpCtx3dSampDp::lastXglCtx;
//
lastXglCtx = ctx;

// Assume that we last performed lighting in MC.

View Model Derived Data 135

6

Bit Definitions for the View Flag

The bit definitions for the view flag have the prefixes XGLI_VIEW_A_,
XGLI_VIEW_B_, and XGLI_VIEW_C_. The bits with the prefix XGLI_VIEW_A_
correspond to items common to both 2D and 3D. The bits with the prefixes
XGLI_VIEW_B_ and XGLI_VIEW_C_ are available only for 3D.

In 2D, the view flag has the type Xgl_usgn32, and any combination of the bits
with the prefix XGLI_VIEW_A_ can be stored in the view flag. In 3D, the view
flag has the type Xgli_view_flag_3d:

The 3D view flag consists of three parts: a, b, and c. Any combination of bits
with the prefix XGLI_VIEW_A_ can be stored in part “a” of the view flag;
likewise for XGLI_VIEW_B_ in part “b” and for XGLI_VIEW_C_ in part “c”.

In addition to being created, a view concern can be set with a new view flag,
and it can be destroyed when a pipeline no longer needs it. The 2D view group
interface functions for view concerns are:

 // Xgli_sam_light_coord_sys
XglDpCtx3dSampDp::lastLightCoordSys;

//
lastLightCoordSys = SAMPDP_LIGHT_MC;

}

XglDpCtx3dSampDp::~XglDpCtx3dSampDp()
{

// Destroy view concern objects.
//
viewGrpItf->destroyViewConcern(strokeConcern);
viewGrpItf->destroyViewConcern(surfConcern);

}

typedef struct {
 Xgl_usgn32 a; // Part “a” for XGLI_VIEW_A_...
 Xgl_usgn32 b; // Part “b” for XGLI_VIEW_B_...
 Xgl_usgn32 c; // Part “c” for XGLI_VIEW_C_...
} Xgli_view_flag_3d;

136 XGL Device Pipeline Porting Guide—May 1996

6

The 3D view group interface functions for view concerns are:

Note – Setting a view concern frequently is inadvisable because the process for
“compiling” a view flag into a view concern is time-consuming.

XglViewConcern2d* createViewConcern (const Xgl_usgn32);
void setViewConcern (XglViewConcern2d*,
 const Xgl_usgn32);
void destroyViewConcern (XglViewConcern2d*);

XglViewConcern3d* createViewConcern (const
Xgli_view_flag_3d&);
void setViewConcern (XglViewConcern3d*,
 const Xgli_view_flag_3d&);
void destroyViewConcern (XglViewConcern3d*);

View Model Derived Data 137

6

Table 6-5 lists the bits that a pipeline can define in the view flag.

Determining Whether Derived Items Have Changed
A device pipeline can detect changes to derived items with a sequence of tests
at three levels: messages, the composite, and the individual item. In general, a
device pipeline needs to know quickly when no changes have occurred so that
it can proceed directly to sending geometry to the device. Accordingly, each
successive level of detection involves more effort to gain more accuracy.

Messages

Derived items can change when the application changes a view model
attribute or a pipeline changes the current coordinate system. Each type of
event causes a message to be sent to the device pipeline at the time of the
event; notification is not deferred. The message types are

Table 6-5 Bits for the View Flag

View Flag Masks for 2D/3D Part a View Flag Masks for 3D Part b View Flag Masks for 3D Part c

XGLI_VIEW_A_MC_TO_DC
XGLI_VIEW_A_MC_TO_CC
XGLI_VIEW_A_CC_TO_DC
XGLI_VIEW_A_MC_TO_WC
XGLI_VIEW_A_VDC_TO_CC
XGLI_VIEW_A_CC_TO_VDC
XGLI_VIEW_A_WC_TO_CC
XGLI_VIEW_A_VDC_TO_DC
XGLI_VIEW_A_DC_TO_VDC
XGLI_VIEW_A_WC_TO_DC
XGLI_VIEW_A_DC_TO_CC
XGLI_VIEW_A_MC_TO_VDC
XGLI_VIEW_A_DC_TO_MC
XGLI_VIEW_A_MC_TO_GMC
XGLI_VIEW_A_GMC_TO_WC
XGLI_VIEW_A_WC_TO_VDC
XGLI_VIEW_A_VCLIP_BOUNDS_VDC
 XGLI_VIEW_A_VCLIP_BOUNDS_CC
XGLI_VIEW_A_VCLIP_BOUNDS_DC
XGLI_VIEW_A_VCLIP_BOUNDS_MC
XGLI_VIEW_A_VIEWPORT_DC

XGLI_VIEW_B_LC_TO_VDC
XGLI_VIEW_B_VDC_TO_LC
XGLI_VIEW_B_CC_TO_LC
XGLI_VIEW_B_LC_TO_DC
XGLI_VIEW_B_MC_TO_LC
XGLI_VIEW_B_LC_TO_MC
XGLI_VIEW_B_LC_TO_CC
XGLI_VIEW_B_WC_TO_MC
XGLI_VIEW_B_WC_TO_LC
XGLI_VIEW_B_LC_TO_IC
XGLI_VIEW_B_IC_TO_VDC
XGLI_VIEW_B_VDC_TO_WC
XGLI_VIEW_B_CC_TO_WC
XGLI_VIEW_B_DC_TO_LC
XGLI_VIEW_B_DC_TO_WC
XGLI_VIEW_B_LC_TO_WC
XGLI_VIEW_B_CC_TO_MC

XGLI_VIEW_C_LIGHTS_MC
XGLI_VIEW_C_LIGHTS_LC
XGLI_VIEW_C_EYE_MC
XGLI_VIEW_C_EYE_LC
XGLI_VIEW_C_EYE_VDC
XGLI_VIEW_C_EYE_CC
XGLI_VIEW_C_PARALLEL_PROJ
XGLI_VIEW_C_MCLIP_PLANES_MC
XGLI_VIEW_C_MCLIP_PLANES_LC
XGLI_VIEW_C_MCLIP_PLANES_CC
XGLI_VIEW_C_MCLIP_PLANES_DC
XGLI_VIEW_C_DCUE_PLANES_CC
XGLI_VIEW_C_DCUE_PLANES_DC
XGLI_VIEW_C_VIEW_CANONICAL

138 XGL Device Pipeline Porting Guide—May 1996

6

XGLI_MSG_VIEW_CTX_ATTR and XGLI_MSG_VIEW_COORD_SYS for context
attribute changes and current coordinate system changes, respectively. See
“Handling Derived Data Changes” on page 81 for additional information on
messages. Messages of the two types above give advance warning that the next
primitive may need to get derived items. A pipeline may choose to deal with
the messages simply by setting its own flag at the time of the notification, then
deferring action until the next primitive when it would need to interrogate the
composite at the next level.

The Composite

If a message reports that a change has occurred, a device pipeline can test for
changes to the derived items about which it is concerned by checking the
composite. The composite records the state changes of all derived items. The
changes could be caused either by the application changing view model
attributes or by a pipeline changing the current coordinate system. The
composite can be thought of as all the separate derived items joined into a
single unit.

Detecting Changes With the Composite

The function that checks the composite has the following definition:

Xgl_boolean changedComposite(const XglViewConcern{2,3}d*);

This function is the fast test described in “Changes to Derived Items” on
page 127. The view group interface tests the composite to detect changes to
derived items of concern to the device pipeline.

The view concern acts as a filter on the composite so that
changedComposite() returns TRUE only when an item of interest to the
pipeline has changed. If the test is TRUE, the pipeline needs to check each of
the individual items for changes. The tests for individual items comprise the
third level, and they are described in the section “Detecting Changes to
Individual Derived Items” on page 140.

Recall that changedComposite() sometimes errs on the cautious side so that
changedComposite() can be fast. It never misses a change in state caused by
invalidation of relevant view model attributes or changes in the current
coordinate system, but it may incorrectly return TRUE after a change to the
current coordinate system. The tests at the third level for detecting changes to

View Model Derived Data 139

6

individual items are fast and accurate, so extraneous reloading of view model
state to a device would not occur even if changedComposite() incorrectly
returns TRUE.

A device pipeline should call changedComposite() whenever one of its
primitives regains control from the application. Typically, this is at the
beginning of an LI-1 primitive. If a primitive changes the coordinate system
and calls a secondary LI-1 primitive, then the original primitive should restore
the original coordinate system when the secondary returns, and the original
should call changedComposite() .

Setting the Composite

The view group interface can notify a device pipeline when its concerns have
changed, but it cannot detect context switches. A context switch occurs when
an application renders to a device with an XGL Context after having
previously rendered to the same device with a different XGL Context. If a
device has only one hardware context, a context switch requires the retained
state to be updated with the corresponding information of the new XGL
Context. If a device has multiple hardware contexts, a device pipeline may be
implemented so that an XGL Context has a one-to-one mapping with a
hardware context such that a context switch does not result in reloading of
retained state. Since each device handles of context switches in its own way,
the view group interface does not react automatically to context switches.
Instead, the view group interface provides a function to set the composite:

void setComposite();

When a context switch occurs, a device pipeline can call setComposite() to
force the next call to changedComposite() and each of the tests for changes
to individual items to be TRUE. Consequently, a device pipeline would reload
its derived items into the device.

Clearing the Composite

In certain situations a device pipeline may want to ignore changes to its
concerns. The view group interface provides a function to clear the composite.
For 2D and 3D, this function is:

void clearComposite(const XglViewConcern{2,3}d*);

140 XGL Device Pipeline Porting Guide—May 1996

6

This function forces the next call to changedComposite() to return FALSE if
there have been no further changes to the API view model attributes or to the
current coordinate system. A pipeline may gain performance with this function
because it allows primitives to ignore changes deemed to be irrelevant. But it
should be used with great caution because it clears the record of
inconsistencies between the state stored in the device and the actual state,
which may cause a pipeline to miss a change when it becomes relevant. It
should be called after changedComposite() .

Detecting Changes to Individual Derived Items

If changedComposite() returns TRUE, a device pipeline needs to check for
changes to individual items. The view group interface provides a function for
each item to return the change status of that item. These functions should be
called only after calling changedComposite() . After doing so, a pipeline
may call any change function for individual items, even those that are not
registered as concerns. Calling these functions does not reset the flags stored in
the composite. These functions return the correct change status of individual
items even when changedComposite() errs on the cautious side.

See the sections “Coordinate Systems and Transforms” and “Other Derived
Items” for naming conventions.

View Model Derived Data 141

6

Table 6-6 lists the functions to check individual items for 2D and 3D.

Table 6-6 Functions to Return the Change Status of Derived Items

2D and 3D 3D only

Xgl_boolean changedMcToDc()
Xgl_boolean changedMcToCc()
Xgl_boolean changedCcToDc()
Xgl_boolean changedMcToWc()
Xgl_boolean changedVdcToCc()
Xgl_boolean changedCcToVdc()
Xgl_boolean changedWcToCc()
Xgl_boolean changedVdcToDc()
Xgl_boolean changedDcToVdc()
Xgl_boolean changedWcToDc()
Xgl_boolean changedDcToCc()
Xgl_boolean changedMcToVdc()
Xgl_boolean changedDcToMc()
Xgl_boolean changedMcToGmc()
Xgl_boolean changedGmcToWc()
Xgl_boolean changedWcToVdc()
Xgl_boolean changedVclipBoundsVdc()
Xgl_boolean changedVclipBoundsCc()
Xgl_boolean changedVclipBoundsDc()
Xgl_boolean changedVclipBoundsMc()
Xgl_boolean changedViewportDc()

Xgl_boolean changedLctoVdc()
Xgl_boolean changedVdcToLc()
Xgl_boolean changedCcToLc()
Xgl_boolean changedLcToDc()
Xgl_boolean changedMcToLc()
Xgl_boolean changedLcToMc()
Xgl_boolean changedLcToCc()
Xgl_boolean changedWcToMc()
Xgl_boolean changedWcToLc()
Xgl_boolean changedLcToIc()
Xgl_boolean changedIcToVdc()
Xgl_boolean changedVdcToWc()
Xgl_boolean changedCcToWc()
Xgl_boolean changedDcToLc()
Xgl_boolean changedDcToWc()
Xgl_boolean changedLcToWc()
Xgl_boolean changedCcToMc()
Xgl_boolean changedLightsMc()
Xgl_boolean changedLightsLc()
Xgl_boolean changedEyeMc()
Xgl_boolean changedEyeLc()
Xgl_boolean changedEyeVdc()
Xgl_boolean changedEyeCc()
Xgl_boolean changedParallelProj()
Xgl_boolean changedMclipPlanesMc()
Xgl_boolean changedMclipPlanesLc()
Xgl_boolean changedMclipPlanesCc()
Xgl_boolean changedMclipPlanesDc()
Xgl_boolean changedDcuePlanesCc()
Xgl_boolean changedDcuePlanesDc()
Xgl_boolean changedViewCanonical()

142 XGL Device Pipeline Porting Guide—May 1996

6

Getting Derived Items
If an individual derived item has changed as reported by the corresponding
function, a device pipeline should get the item and reload the state into the
hardware. The view group interface provides a function for each item to get
that item. Calling one of these functions triggers any deferred calculations that
may be necessary to bring the item up to date. Therefore, a pipeline should not
retain a pointer to a derived item after a primitive has finished execution
because accessing the derived item with the pointer without calling the
function for getting the item means that the item will not be evaluated if
necessary.

The view group interface returns the requested item that is appropriate to the
current coordinate system. For example, if the current coordinate system is LC
and the pipeline requests the McToCc Transform, then getMcToCc() returns
the LcToCc Transform because the geometry is in LC. A device pipeline does
not need to be aware of the current coordinate system. An LI-1 primitive can
be written as if geometry always enters from MC as long as it uses derived
data. If a pipeline is using derived data, it must get all its Transforms from the
view group interface instead of the Context. For example, a pipeline should
use viewGrpItf->getMcToGmc() instead of
ctx->getLocalModelTrans() . The only exception is when a pipeline wants
to get the actual Transform visible at the API level with the knowledge that it
may not be applicable to the current coordinate system maintained by derived
data. A change in the current coordinate system is another reason that a
pipeline should not retain a pointer to a derived item after a primitive has
finished execution: the item returned by the view group interface may differ
between primitive calls when the current coordinate system changes.

When a pipeline calls a function for getting an item, that function clears the bit
in the composite that corresponds to the item. If a pipeline gets all the items
that have changed, then changedComposite() returns FALSE until the
pipeline’s concerns change again. A pipeline can clear bits in the composite
without getting changed items by calling clearComposite() .

Pipelines that do not retain state (such as the software pipeline) can get
derived items without checking the composite or any of the individual items.
While this is true of any pipeline, even those that retain state, checking the
composite and individual items eliminates unnecessary loading of data into
the device.

View Model Derived Data 143

6

Note that if a pipeline uses derived data, it can ignore most Context view
model attributes. For example, it can ignore the value of the Context attribute
XGL_CTX_VDC_MAP because derived data takes into account the value of the
VDC map when it calculates the VDC-to-DC Transform. Consequently, all
Transforms derived from the VDC-to-DC Transform have the VDC mapping
taken into account.

 Getting Derived Transforms

The view group interface allows pipelines to access numerous Transforms for
mapping points forward (toward DC) and backward (toward MC); for brevity,
we call these point-forward and point-backward Transforms, respectively. The
point-backward Transforms can be used to map normal and direction vectors
forward. Thus, the point-backward Transforms are normal-forward
Transforms, and the point-forward Transforms are normal-backward
Transforms.

The view cache computes the normal-forward Transforms by inverting point-
forward Transforms. If an application specifies a singular1 Local Model, Global
Model, or View Transform, the view cache cannot compute unique normal-
forward Transforms and certain derived items such as eye positions or vectors,
model clip planes, and lights. Derived data currently does not claim to support
singular Transforms so it is the application’s responsibility to avoid singular
Transforms. However, if a pipeline needs to determine if a normal-forward
Transform obtained from the view group interface is valid, it should get the
McToWc, LcToVdc, and VdcToDc Transforms after getting the normal-forward
Transform and confirm that all three are nonsingular.

The view cache in 3D automatically adjusts for the effect of
XGL_3D_CTX_JITTER_OFFSET so pipelines using derived data do not need to
take this into account.

See Chapter 5, “Getting Information from XGL Objects” for information on
getting data from Transform objects.

1. A singular matrix has no unique inverse.

144 XGL Device Pipeline Porting Guide—May 1996

6

Table 6-7 lists the functions for getting derived transforms for 2D and 3D.

 Getting Boundaries

The view group interface offers the functions listed in Table 6-8 for getting the
DC viewport and the view clip bounds in MC, VDC, CC, and DC.

Table 6-7 Functions for Getting Derived Transforms

2D and 3D 3D only

XglTransform* getMcToDc()
XglTransform* getMcToCc()
XglTransform* getCcToDc()
XglTransform* getMcToWc()
XglTransform* getVdcToCc()
XglTransform* getCcToVdc()
XglTransform* getWcToCc()
XglTransform* getVdcToDc()
XglTransform* getDcToVdc()
XglTransform* getWcToDc();
XglTransform* getDcToCc()
XglTransform* getMcToVdc()
XglTransform* getDcToMc()
XglTransform* getMcToGmc()
XglTransform* getGmcToWc()
XglTransform* getWcToVdc()

XglTransform* getLctoVdc()
XglTransform* getVdcToLc()
XglTransform* getCcToLc()
XglTransform* getLcToDc()
XglTransform* getMcToLc()
XglTransform* getLcToMc()
XglTransform* getLcToCc()
XglTransform* getWcToMc()
XglTransform* getWcToLc()
XglTransform* getLcToIc()
XglTransform* getIcToVdc()
XglTransform* getVdcToWc()
XglTransform* getCcToWc()
XglTransform* getDcToLc()
XglTransform* getDcToWc()
XglTransform* getLcToWc()
XglTransform* getCcToMc()

Table 6-8 Functions for Getting Boundaries

Dimension Function

2D const Xgl_bounds_d2d& getViewportDc()
const Xgl_bounds_d2d& getVclipBoundsMc()
const Xgl_bounds_d2d& getVclipBoundsVdc()
const Xgl_bounds_d2d& getVclipBoundsCc()
const Xgl_bounds_d2d& getVclipBoundsDc()

3D const Xgl_bounds_d3d& getViewportDc()
const Xgl_bounds_d3d& getVclipBoundsMc()
const Xgl_bounds_d3d& getVclipBoundsVdc()
const Xgl_bounds_d3d& getVclipBoundsCc()
const Xgl_bounds_d3d& getVclipBoundsDc()

View Model Derived Data 145

6

See the man page for XGL_CTX_DC_VIEWPORT for a description of the DC
viewport. A pipeline should not use the DC viewport for view clipping;
instead, it should use the view clip bounds in DC.

The view clip bounds in VDC may differ from the value of
XGL_CTX_VIEW_CLIP_BOUNDS as specified by the application. The view cache
ensures that the view clip bounds are entirely within the value of
XGL_CTX_VDC_WINDOW in VDC and the viewport in DC. The view clip bounds
in CC is always [-1,1] × [-1,1] in 2D and [-1,1] × [-1,1] × [-1,1] in 3D. A pipeline
should ensure that geometry never extends outside the view clip bounds.

The value of the view clip bounds in MC is the smallest rectangular
parallelepiped whose edges are parallel to the coordinate axes of MC such that
the parallelepiped contains the actual view clip bounds transformed into MC.
This is a useful form for fast bounding-box checking in MC, but it is not
particularly useful for view clipping.

If the current coordinate system is LC, getVclipBoundsMc() returns an
incorrect value because the view cache currently has no function for evaluating
the view clip bounds in LC.

 Getting 3D Viewing Flags

The 3D view group interface has two functions for getting more information
about the WcToVdc Transform. These functions are:

Xgl_boolean getParallelProj()
Xgl_boolean getViewCanonical()

A pipeline can determine if the WcToVdc Transform is configured for parallel
projection by calling getParallelProj() , which returns TRUE for parallel
projection and FALSE for perspective projection.

A pipeline can call getViewCanonical() to determine if the view cache
successfully factored the View Transform to extract Lighting Coordinates. The
function returns TRUE when the decomposition is successful and FALSE for
unsuccessful. For the unsuccessful case, LC is the same as WC and IC is the
same as VDC.

146 XGL Device Pipeline Porting Guide—May 1996

6

 Getting Lights

The 3D view group interface has two functions for getting lights in MC and
LC. These functions are:

const XglLight* const *getLightsMc();
const XglLight* const *getLightsLc();

A pipeline should get the number of lights from the Context (see
XGL_3D_CTX_LIGHT_NUM(3)) to access the array of XglLight pointers.

A pipeline can always perform lighting calculations in WC and LC to obtain
correct results. Performing lighting calculations in MC may be faster because
normal vectors do not need to be transformed, but lighting calculations in MC
are correct only when the McToWc Transform preserves angles. The reason is
that dot products in MC are different than those in WC when the McToWc
Transform does not preserves angles. See the Transform section in Chapter 5,
“Getting Information from XGL Objects” for information on how to determine
whether a Transform preserves angles.

The view cache calculates the lights in MC by inverting the McToWc
Transform. If the application has specified a singular matrix for the Local or
Global Model Transforms, then the view cache is unable to calculate the lights
in MC. A pipeline can determine if the lights in MC are valid by getting the
McToWc Transform after getting the lights, then checking if it is nonsingular.

If the current coordinate system is VDC, CC, or DC, then getLightsMc() and
getLightsLc() return incorrect results because the view cache currently has
no functions for calculating the lights in VDC, CC, and DC. In general, lighting
calculations would not be correct in these coordinate systems because the
Transform from WC to VDC, CC, or DC often involves anisotropic scaling and
perspective, which do not preserve angles.

See the Light section in Chapter 5, “Getting Information from XGL Objects” for
information on getting data from Light objects.

View Model Derived Data 147

6

 Getting Eye Positions or Vectors

The 3D view group interface has four functions for getting eye positions or
vectors in MC, LC, VDC, and CC. These functions are:

const Xgl_pt_d3d& getEyeMc()
const Xgl_pt_d3d& getEyeLc()
const Xgl_pt_d3d& getEyeVdc()
const Xgl_pt_d3d& getEyeCc()

Eye points or vectors may be used for facet orientation and lighting. Eye
vectors point from eye to object along the line of sight, and the eye is located
infinitely far away. Eye vectors returned by these functions have unit length.

The eyes in VDC and CC are always vectors. A pipeline can determine whether
the eyes in MC and LC are positions or vectors by calling
getParallelProj() ; a parallel projection means that the eyes are vectors,
while perspective means the eye are positions.

The view cache calculates eyes by inverting various Transforms. If the
application has specified a singular matrix, then the view cache is unable to
calculate some eyes. A pipeline can determine if the eyes in VDC and CC are
valid by getting the VdcToDc Transform after getting the eyes, then checking if
it is nonsingular (see the Transform section in Chapter 5, “Getting Information
from XGL Objects”). For the eye in LC, a pipeline needs to check the LcToVdc
and VdcToDc Transforms for nonsingularity. For the eye in MC, a pipeline
needs to check the McToWc, LcToVdc, and VdcToDc Transforms for
nonsingularity.

If the current coordinate system is DC, then these four functions return
incorrect values because the view cache currently has no function for
calculating the eye in DC. However, the value of the eye vector in DC is always
(0, 0, 1).

148 XGL Device Pipeline Porting Guide—May 1996

6

 Getting Model Clip Planes

The 3D view group interface has four functions for getting the model clip
planes in MC, LC, CC, and DC.

const Xgli_plane* getMclipPlanesMc()
const Xgli_plane* getMclipPlanesLc()
const Xgli_plane* getMclipPlanesCc()
const Xgli_plane* getMclipPlanesDc()

A pipeline should get the number of model clip planes from the Context (see
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)) to access the array of Xgli_plane.
The structure definition is:

struct Xgli_plane {
Xgl_pt_d3d pt;
Xgl_pt_d3d normal;
double p_dot_n;

};

The value of pt is a point on the plane. The normal vectors point in the
direction of accepted geometry (see XGL_3D_CTX_MODEL_CLIP_PLANES(3)).
Normal vectors have unit length as long as the application specifies model clip
planes in WC with unit normal vectors. The value of p_dot_n is the dot product
of pt and normal.

The view cache calculates model clip planes by inverting various Transforms.
If the application has specified a singular matrix, then the view cache will be
unable to calculate some or all model clip planes. A pipeline can determine if
the model clip planes in MC are valid by getting the McToWc Transform after
getting the model clip planes, then checking if it is nonsingular. For the model
clip planes in CC and DC, a pipeline needs to check the LcToVdc and VdcToDc
Transforms for nonsingularity.

If the current coordinate system is VDC, then getMclipPlanesMc() and
getMclipPlanesLc() return incorrect values because the view cache
currently has no function for calculating the model clip planes in VDC.

View Model Derived Data 149

6

 Getting Depth Cue Reference Planes

The 3D view group interface has two functions for getting the depth cue
reference planes in CC and DC.

void getDcuePlanesCc(double [])

void getDcuePlanesDc(double [])

Pipelines should pass an array of 2 doubles to these functions. The value at
index 0 is the front depth cue reference plane’s Z-value; the value at index 1 is
the back depth cue reference plane’s Z-value. See
XGL_3D_CTX_DEPTH_CUE_REF_PLANES.

Example of Detecting Changes and Getting Derived Items
In this example of a device pipeline for li1TriangleStrip() , the pipeline
determines whether any Context attributes or derived items have changed by
checking the flag that the pipeline sets upon receiving a message of the types
XGLI_MSG_VIEW_CTX_ATTR or XGLI_MSG_VIEW_COORD_SYS. If the flag is
set, the pipeline determines whether any derived items have changed by
calling viewGrpItf->changedComposite(surfConcern) . The parameter
is an XglViewConcern3d*, which was created in the example constructor on
page 133. If changedComposite() indicates that derived data items have
changed, the pipeline checks whether individual items have changed, and if so,
it gets them from the view group interface object and loads them into the
device.

You can copy or modify this source code sample as long as the resulting code
is used to create a loadable pipeline for XGL.

#include “xgli/Context3d.h”
#include “xgli/DpCtx3d.h”
#include “xgli/Transform.h”
#include “xgli/ViewGrp3dItf.h”
#include “DpCtx3dSampDp.h”

XglDpCtx3dSampDp::li1TriangleStrip(XglPrimData* pd)
{
 // Check for context switch
 //
 if (lastXglCtx != ctx) {
 // Force reloading of attributes and derived items
 //

150 XGL Device Pipeline Porting Guide—May 1996

6

 udTable.setAllGroupsAsChanged();
 viewGrpItf->setComposite();
 lastXglCtx = ctx;
 }

// Check if any view-change messages have been received
//
if (viewMsgReceived) {

// Clear flag
viewMsgReceived = FALSE;

 // Check composite for changes to surface concerns
 if (viewGrpItf->changedComposite(surfConcern)) {

if (viewGrpItf->changedMcToCc()) {
XglTransform* trans;
const Xgli_matrix_f4x4* matrix;

trans = viewGrpItf->getMcToCc();
matrix = (const Xgli_matrix_f4x4*)

 trans->getMatrixFloat();

// Write the matrix into the device
SAMPDP_WRITE_MC_TO_CC(matrix);
}

if (viewGrpItf->changedCcToDc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getCcToDc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_CC_TO_DC(matrix);
 }

if (viewGrpItf->changedParallelProj()) {
 // Write the flag into the device
 SAMPDP_WRITE_PARALLEL_PROJ

(viewGrpItf->getParallelProj());
 }

if (viewGrpItf->changedEyeMc()) {

View Model Derived Data 151

6

 // Write the eye into the device
 SAMPDP_WRITE_EYE_MC(viewGrpItf->getEyeMc());
 }

 if (lastLightCoordSys == SAMPDP_LIGHT_MC) {
 // We performed lighting in MC last time
 if (viewGrpItf->changedMcToWc()) {

 if (viewGrpItf->getMcToWc()->getMemberRecord() &
XGL_TRANS_GROUP_ANGLE_PRESERV) {

// McToWc changed, but it still preserves
// angles so we can continue to
// perform lighting in MC.

const XglLight* const * lights;
lights = viewGrpItf->getLightsMc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

 }
 else {

// McToWc changed and it doesn’t preserve
// angles so we have to switch to performing
// lighting in LC.

const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

// Switch lighting coordinate system
 SAMPDP_WRITE_LIGHT_COORD_SYS(SAMPDP_LIGHT_LC);
lastLightCoordSys = SAMPDP_LIGHT_LC;
}

 }
 else {

// McToWc didn’t change, but the lights
// may have changed.
//
if (viewGrpItf-changedLightsMc() {
const XglLight* const * lights;

152 XGL Device Pipeline Porting Guide—May 1996

6

lights = viewGrpItf->getLightsMc();

// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);
}

 }
 }
 else {
 // We performed lighting in LC last time
 if (viewGrpItf->changedMcToWc()) {

if (viewGrpItf->getMcToWc()->getMemberRecord() &
XGL_TRANS_GROUP_ANGLE_PRESERV) {

// McToWc changed and it preserves angles so
// we can switch to performing lighting in MC.
const XglLight* const * lights;
lights = viewGrpItf->getLightsMc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

// Switch lighting coordinate system
 SAMPDP_WRITE_LIGHT_COORD_SYS(SAMPDP_LIGHT_MC);
lastLightCoordSys = SAMPDP_LIGHT_MC;

 }
else {
// McToWc changed, but it still doesn’t
// preserve angles so we have to
// continue lighting in LC.
const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);

 }
 }
 else {

// McToWc didn’t change, but the lights may have
// changed.
if (viewGrpItf-changedLightsLc() {

View Model Derived Data 153

6

const XglLight* const * lights;
lights = viewGrpItf->getLightsLc();
// Write the lights into the device
Xgl_usgn32 num;
num = ctx->getLightNum();
SAMPDP_WRITE_LIGHTS(num, lights);
}

 }
 }

 if (lastLightCoordSys == SAMPDP_LIGHT_LC) {

 // We have to perform lighting in LC so we need to
 // write some additional items into the device.

 if (viewGrpItf->changedMcToLc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getMcToLc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_MC_TO_LC(matrix);
 }

 if (viewGrpItf->changedLcToMc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getLcToMc();
 matrix = (const Xgli_matrix_f4x4*)

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_LC_TO_MC(matrix);
 }

if (viewGrpItf->changedLcToCc()) {
 XglTransform* trans;
 const Xgli_matrix_f4x4* matrix;

 trans = viewGrpItf->getLcToCc();
 matrix = (const Xgli_matrix_f4x4*)

154 XGL Device Pipeline Porting Guide—May 1996

6

Current Coordinate System
A pipeline can get and set the current coordinate system. The current
coordinate system is a member datum of the view cache, which maintains a
stack exclusively for tracking the current coordinate systems of LI-1 primitives
pending completion of execution. Pushing the current coordinate system onto
the stack does not change the value of the member datum. Popping the top
element from the stack changes the current coordinate system to that element;
the value returned is the popped value.

The view group interface provides functions for manipulating the current
coordinate system. For 2D, these functions are:

where Xgli_li1_2d_coord_sys is defined as:

trans->getMatrixFloat();

 // Write the matrix into the device
 SAMPDP_WRITE_LC_TO_CC(matrix);
 }

 if (viewGrpItf->changedEyeLc()) {
 // Write the eye into the device
 SAMPDP_WRITE_EYE_LC(viewGrpItf->getEyeMc());
 }
 }
 }
 }

 // Ready to send geometry to device
 //
 return sendLi1TriangleStrip(pd);
}

Xgli_li1_2d_coord_sysgetCurCoordSys() const
void setCurCoordSys(Xgli_li1_2d_coord_sys)
void pushCurCoordSys()
Xgli_li1_2d_coord_syspopCurCoordSys()

enum Xgli_li1_2d_coord_sys {
XGLI_LI1_2D_COORD_SYS_MC = 0,
XGLI_LI1_2D_COORD_SYS_VDC,

View Model Derived Data 155

6

For 3D, these functions are:

where Xgli_li1_3d_coord_sys is defined as:

This example from the software pipeline’s 2D annotation text primitive shows
how a device pipeline can handle changes in the coordinate system. The
software pipeline produces annotation text in VDC, so it pushes the current
coordinate system (which is MC), sets the current coordinate system to VDC,
calls the li1MultiPolyline() function (will render the strokes for the
annotation text), and then pops the coordinate system to restore the previous
one.

XGLI_LI1_2D_COORD_SYS_CC,
XGLI_LI1_2D_COORD_SYS_DC

};

Xgli_li1_3d_coord_sysgetCurCoordSys() const
void setCurCoordSys(Xgli_li1_3d_coord_sys)
void pushCurCoordSys()
Xgli_li1_3d_coord_syspopCurCoordSys()

enum Xgli_li1_3d_coord_sys {
XGLI_LI1_3D_COORD_SYS_MC = 0,
XGLI_LI1_3D_COORD_SYS_LC,
XGLI_LI1_3D_COORD_SYS_VDC,
XGLI_LI1_3D_COORD_SYS_CC,
XGLI_LI1_3D_COORD_SYS_DC

};

viewGrpItf->pushCurCoordSys();
viewGrpItf->setCurCoordSys(XGLI_LI1_2D_COORD_SYS_VDC);
itfMgr->li1MultiPolyline(&pd, FALSE, do_retained);
viewGrpItf->popCurCoordSys();

enum Xgli_li1_2d_coord_sys {

156 XGL Device Pipeline Porting Guide—May 1996

6

157

Window System Interactions 7

This chapter discusses the relationship between XGL and the window system.
It includes information on the following topics:

• Discussion of the mechanism by which XGL communicates with the
window system

• Scenario of how the XglDrawable object is created by XGL core and
typically used by the device pipeline

• Overview of the functionality provided by the XglDrawable interfaces

• Detailed description of the XglDrawable interfaces

As you read this chapter, you will find it helpful to have access to the
Drawable.h file..h

158 XGL Device Pipeline Porting Guide—May 1996

7

Overview of the XglDrawable
The XglDrawable object represents the sharing of a device with another entity,
most often the window system, but possibly also a Memory Raster device or a
Stream device. In the case of the window system, it also makes transparent to
the pipeline whether it is running in an X client (using the DGA mechanism,
PEXlib, or Xlib) or in a PEX server.

Because there are so many different ways to access target devices, the
XglDrawable object was designed to encapsulate the various access
mechanisms. Ideally, device pipelines do not need to be aware of the
underlying mechanism. For example, a device pipeline can be used to render
to an X window as a DGA client, within the server, or in a backing store.

XglDrawable objects are created by the XGL core in response to an
xgl_object_create() call with a Device type, such as XGL_WIN_RAS. XGL
creates the appropriate XglDrawable object, establishes a connection to the
window system, creates the Device object, and links the XglDrawable object to
the Device object. There is a one-to-one correspondence between the Device
object and the XglDrawable object for that Device.

There are several subclasses to the XglDrawable object, each of which manages
a different kind of target device. Table 7-1 lists these subclasses.

Table 7-1 Drawable Subclasses

Subclass Target Device

XglDrawableDgaCView X11 window. This class encapsulates the DGA
library.

XglDrawableMem Memory Raster

XglDrawableDgaRtn Backing store device

XglDrawableXpex PEXlib and Xlib device

XglDrawableDgaBase Multibuffer in system memory

XglDrawableDgaCached Multibuffer cached in hardware memory

XglDrawableStream Stream device

Window System Interactions 159

7

Services Provided by the XglDrawable Class

The XglDrawable class was designed to provide information and services to
both the XGL core and the device pipeline. In particular, it provides the device
pipeline with a way to get current clip lists and to lock out clip-list changes
while rendering is in progress. Services provided by XglDrawable for the XGL
core include:

• Establishing the connection with the window system and creating the
XglDrawable object

• Terminating the connection with the window system and destroying the
XglDrawable object

Services provided by the XglDrawable for the device pipelines include:

• Locking clip lists, thereby preventing the window system from changing
them during rendering

• Unlocking clip lists

• Providing access to the clip list

• Indicating whether clip lists have changed

• Providing information about window geometry

A more extensive discussion of the services provided for the pipelines by the
XglDrawable begins on page 161.

Typical Scenario of XglDrawable Creation and Use

The creation of the XglDrawable object is handled automatically by the XGL
core. The typical sequence of operations when a window raster is created is
this:

1. A client (application) program maps a window and creates an XGL API
Device object.

2. During Device creation, the XGL core calls
XglDrawable::grabDrawable() with the descriptor provided by the
application. The grabDrawable() function uses the window descriptor
information included in the request to determine the kind of Drawable

160 XGL Device Pipeline Porting Guide—May 1996

7

required. This depends on the raster type (memory or window), the window
type specified by the application, and whether the window system accepts
the connection. grabDrawable() returns an XglDrawable object.

3. The XGL core calls drawable->getPipeName() to get the name of the
appropriate rendering pipeline. If not already loaded, that pipeline is then
loaded. The XGL core calls the pipeline XglDpLib->getDpMgr() to
retrieve or create (if it doesn’t exist) a DpMgr object to manage the physical
device, and then calls XglDpMgr->createDpDev() to create a DpDev
object to manage the window. getDpMgr() and createDpDev() may call
various XglDrawable functions to get information needed to handle the
device.

4. The pipeline should call XglDrawable::setCursorRopFunc() to register
a function that removes a software cursor from the window. Even pipelines
for frame buffers with hardware cursors should call this function, as the
window system may be displaying a cursor that is too big for the device’s
hardware cursor registers.

When the device pipeline is called on to render, it typically performs the
following operations:

1. The pipeline calls drawable->winLock() to lock the clip lists.

2. The pipeline calls drawable->windowIsObscured() to determine
whether the window is obscured. If drawable->windowIsObscured()
returns TRUE, there is no need to render, so the pipeline calls
drawable->winUnLock() and returns.

3. The pipeline calls drawable->clipChanged() to determine whether the
clip list changed since the last rendering operation. If
drawable->clipChanged() returns TRUE, there is a new clip list. The
pipeline proceeds as follows:

a. It calls drawable->getWindowWidth() ,
drawable->getWindowHeight() , drawable->getWindowX() , and
drawable->getWindowY() to determine the new window geometry.

b. It then calls drawable->getMergeClipListCount() to determine
how many rectangles are in the clip list. Note that MergeClipList is a
combination of the window system clip list and the XGL user clip list.

c. It calls drawable->getMergeClipList() to get the clip list. It loads
this clip list into device hardware if applicable.

Window System Interactions 161

7

4. The pipeline renders to the frame buffer.

5. The pipeline calls drawable->winUnLock() to unlock the clip lists.

Note that after winLock() is called, OpenWindows and other applications
must wait until winUnLock() is called before rendering to that window. For
this reason, keeping a window locked for more than about 0.1 second is
discouraged. The winLock() and winUnLock() functions have been made as
lightweight as possible. Holding on to a lock for more than a fraction of a
second may result in poor window-system interaction; after three seconds, the
window system forcefully breaks the lock, which may result in incorrect
rendering on the screen.

Drawable Interfaces for the Device Pipeline
The XglDrawable object provides a number of interfaces that allow the device
pipeline to:

• Obtain information about the frame buffer or the window

• Lock and unlock the window during rendering

• Access dynamic information, such as window dimensions

• Manage window system resources

These general categories of functions are discussed in the sections that follow.
For detailed descriptions of the XglDrawable pipeline interfaces, see page 170.

Note – The device pipelines should interact with the XglDrawable object
through the interfaces in Drawable.h , which contains the public interface for
the XglDrawable hierarchy. Do not use the interfaces in the XglDrawable
subclasses.

162 XGL Device Pipeline Porting Guide—May 1996

7

Obtaining Information During Pipeline Initialization

Several XglDrawable functions allow the pipeline to get information that it
may need about the frame buffer. Table 7-2 lists these functions.

For example, as part of the getDpMgr() function, you will probably first want
to determine whether an XglDpMgr object for this frame buffer has already
been created. “Defining the Device Pipeline Library Class” on page 32 shows
an example of a pipeline getting this information using an XglDrawable
interface.

Locking the Window

The primary service provided by the Drawable is to provide a mechanism to
lock the window clip list during rendering. The window system updates the
clip list and other window attributes in response to changes in the window,
and the XglDrawable object synchronizes access to the window information via
a lock and release mechanism. Once the coordination between the client (XGL)
and the server has been established, the client can draw directly to the window
using the lock and release routines. Since the server can continue to update the
window in response to changes in the window’s characteristics, the client must
lock the window clip list before drawing and unlock it when drawing is
complete.

The lock function does the following:

• Locks the clip list so that the server cannot change it during a rendering
operation

• Examines the clip list to see if it has changed since the last lock, and, if it has
changed, the function updates the global copy of the clip list

• Merges the system clip list and the user clip list

Table 7-2 Drawable Interfaces Used During Pipeline Initialization

Function Description

getDevFd() Returns the device file descriptor.

getDeviceName() Returns a pointer to the frame buffer device
name.

getWindowDepth() Returns the depth of the window.

Window System Interactions 163

7

The unlock function releases the lock on the clip list. At that point, the server
can change the window at any time, and the clip lists are invalid until the next
lock.

There are three kinds of clip lists that the XglDrawable object manages:

• Window system clip list – Set by the window system.

• User clip list – Set by the XGL application.

• Merged clip list – Obtained when the lock function merges the window
system clip list and the user clip list.

Most device pipelines should use the merged clip list at all times. However,
devices on which the window system sets up hardware window clipping in
advance should use the user clip list.

About Locking the Window

The interface to DGA provides macros that serve to prevent the window clip
list from changing during rendering. Locking the window also prevents other
processes from rendering to the same window at the same time. All rendering
pipelines should use the macros WIN_LOCK() and WIN_UNLOCK() (or the
equivalent function calls winLock() and winUnLock()) around any
operation that could alter the screen, or at any time the pipeline needs a valid
clip list. (The clip list may not be considered valid outside a lock.) The pipeline
uses these calls to explicitly lock and unlock the window unless the device
supports concurrent access by multiple UNIX processes.

In the case of immediate-rendering hardware, a pipeline would use
WIN_LOCK() and WIN_UNLOCK() around the actual rendering code, as shown
here:

 WIN_LOCK(drawable) ;// cliplist is now valid
 if(drawable->clipChanged())

// cliplist has changed since last lock
 {

// retrieve new cliplist from drawable
 }
 // render
 WIN_UNLOCK(drawable) ;// done, cliplist no longer valid

164 XGL Device Pipeline Porting Guide—May 1996

7

Operations that do not depend on the clip list or change the contents of the
screen do not need to be performed inside a lock. This can include things like
changing rendering attributes and transformation matrices (except that the
final viewport-to-screen coordinates transform depends on the size of the
destination window, and thus must be done within a lock).

In the case of an asynchronous device (for example, a display-list device), the
pipeline does not need to maintain the lock until rendering is complete. In this
case, the pipeline needs only to hold the lock until the host has completed its
access to the device. It is the responsibility of the window system and the
hardware device to set up whatever synchronization protocol allows coherent
rendering between them. This synchronization protocol, which is independent
of XGL, most often relies on the window system requesting the accelerator to
flush all its pending operations. On a display-list device, the rendering code
would look something like this:

WIN_LOCK(drawable) ;// cliplist is now valid and stable
if(drawable->clipChanged())

// clip list has changed since last lock
{

 // retrieve new cliplist from drawable
 // and download to device.

}

// download display list to device.
// initiate rendering.
WIN_UNLOCK(drawable) ;// done

// Window system maintains stable clip list until
// rendering is complete.

Window System Interactions 165

7

Guidelines for Using the Window Lock Macros or Function Calls

As mentioned above, the XglDrawable object provides the pipeline with a pair
of window lock macros and a pair of function calls. These are listed in
Table 7-3.

If performance is an issue, use the WIN_LOCK(drawable) inline macro to lock
the window and the WIN_UNLOCK(drawable) macro to unlock the window.
The macros are designed so that no function calls are made unless the window
has changed.

If performance is not critical, the drawable->winLock() and
drawable->winUnLock() inline functions can be used instead. These result
in function calls for XglDrawable objects that need locking, so they are not
quite as lightweight as the macros but result in less generated code.

Accessing Dynamic Information

All rendering occurs between lock and unlock calls. Between these calls, the
device pipeline may need information about the window, such as its current
dimensions. Once the window is locked, the pipeline can get window
information from the XglDrawable object. In general, any hardware access that
depends on the state of the window should be bracketed by lock and unlock
calls.

The following code example shows a pipeline checking the state of the window
and the status of the clip list. The clip list changes when the window moves,
changes size, or is partially covered.

Table 7-3 Window Lock Macros and Function Calls

Lock Unlock

Inline macros WIN_LOCK(drawable) WIN_UNLOCK(drawable)

Function calls drawable->winLock() drawable->winUnLock()

166 XGL Device Pipeline Porting Guide—May 1996

7

The next code example shows the use of the modifChanged() routine to
check for any change in the shared memory data structure and the use of the
devInfoChanged() routine to check for any change in the device-specific
information in the shared memory data structure. The devInfoChanged()
routine can be used by multiplane group hardware ports when a change in the
window visibility needs to be handled (as opposed to the clip list, which is not
updated when an overlay window visually obscures a window in the image
planes).

*drawable = device->getDrawable() ;

WIN_LOCK(drawable) ;
if(drawable->windowIsObscured()) {

//window is covered or closed
WIN_UNLOCK(drawable) ;
return 1 ; // window is obscured; don’t render

}

if(drawable->clipChanged())
{

// load new clip list into hardware
// recompute view transformation matrices

}
// render
WIN_UNLOCK(drawable);

WIN_LOCK(drawable);
if (drawable->modifChanged()) {

if (drawable->clipChanged()) {
// Handle clip change

}

if (drawable->devInfoChanged()) {
dev_info = drawable->winDbInfop();
// Check for anything that might have changed

}
}

// render
WIN_UNLOCK(drawable)

Window System Interactions 167

7

Table 7-4 lists functions that are only meaningful inside lock and unlock calls
because, in general, the information that they return is valid only when the
window information is locked.

Table 7-4 Drawable Interfaces Used During Rendering

Function Description

clipChanged() Returns TRUE if the clip list has changed since the
last time this function was called.

modifChanged() Returns TRUE if the shared memory data structure
has changed since the last time this function was
called.

devInfoChanged() Returns TRUE if the device-specific information in
the shared memory data structure has changed
since the last time this function was called.

getClipMask() Returns the clip mask.

getClipStat() Returns one of DGA_VIS_UNOBSCURED,
DGA_VIS_PARTIALLY_OBSCURED, or
DGA_VIS_FULLY_OBSCURED.
DGA_VIS_UNOBSCURED means the window is
completely exposed.
DGA_VIS_PARTIALLY_OBSCURED means the
window is partially clipped.
DGA_VIS_FULLY_OBSCURED means the window
is completely hidden.

getMergeClipList() Returns the clip list.

getMergeClipListCount() Returns the number of Xgl_irect structures in the
clip list.

getWindowDepth() Returns the depth of the window.

getWindowWidth()
getWindowHeight()

Return the height or width of the window.

getWindowX()
getWindowY()

Return coordinates of the window.

getWsClipList() Returns the window clip list.

getWsClipListCount() Returns the number of Xgl_irect structures in the
window clip list.

168 XGL Device Pipeline Porting Guide—May 1996

7

Xpex and Memory Raster Pipelines

Note that for some drawable types, such as XglDrawableDgaRtn and
XglDrawableMem, the concept of window locking has no meaning. However,
in most cases the pipeline should call these functions as described anyway.
Clip list inquiry functions will simply return the user’s clip list.

Managing Window System Resources

Some frame buffers have special characteristics, such as hardware double
buffering, Z-buffers, or stereo imaging. These attributes are a limited resource
and are assigned by the window system. Table 7-5 lists functions that the
pipeline can use to manage resources.

windowIsClipped() Returns TRUE if the window is partially clipped.

windowIsFullyExposed() Returns TRUE if the window is completely
exposed.

windowIsObscured() Returns TRUE if the window is completely
obscured.

Table 7-5 Drawable Interfaces Used for Allocating Resources

Function Description

grabWids() Returns a block of window IDs from the server.
Use with getWid() to return the IDs just
allocated.

grabZbuf() Communicates to the server a client request for a
Z-buffer.

grabFCS() Requests to allocate fast clear plane set.

grabStereo() Requests stereo planes.

dbGrab() Requests double buffering on the drawable.

dbUnGrab() Terminates double buffering on the drawable.

getWid() Returns the window IDs for the window, if
applicable.

Table 7-4 Drawable Interfaces Used During Rendering (Continued)

Function Description

Window System Interactions 169

7

As an example, if your hardware supports multiple buffers, you may want to
request a Z-buffer and specify hardware double buffering during device
initialization. A minimal implementation of these calls might be:

When the device pipeline uses double buffering, it is the pipeline’s
responsibility to inform the server/DGA of the buffer switch. To do this, use
the relevant XglDrawable functions. See page 170 for a more complete
description of the XglDrawable interfaces.

setWriteBuffer() Sets the buffer to be written.

setReadBuffer() Sets the buffer to be read.

setDisplayBuffer() Sets the buffer to be displayed.

dbDisplayComplete() Called after setDisplayBuffer() ; returns 1 if
the new buffer is now visible.

dbDisplayWait() Waits for the double-buffering interval (one
frame) to expire.

dbGetWid() Returns the window ID for the double-buffering
window.

getDrawType() Determines whether the server supports DGA
overlays for the drawable.

XglDrawable* drawable = device->getDrawable();
if (!drawable->grabZbuf(1)) {

//request the Z buffer
return error;

}
if (drawable->dbGrab(2, (void(*)())vrtfunc, cpage)

{ //request double buffering
 //set up hardware
} else { //server didn’t comply with request
return 1;

}

Table 7-5 Drawable Interfaces Used for Allocating Resources

Function Description

170 XGL Device Pipeline Porting Guide—May 1996

7

Managing Software Cursors

For frame buffers with software cursors, the XglDrawable object must be able
to erase the cursor before drawing. The setCursorRopFunc() passes the
Drawable a pointer to a device pipeline function that erases the cursor
whenever necessary. Although XGL does not include a user-defined cursor, the
pipeline should define the setCursorRopFunc() so that DGA can call it to
copy the image under the software cursor (as passed in by a parameter to the
cursor rop function) when the cursor is on top of the display window.

Description of Drawable Interfaces
The following is an alphabetized list of the XglDrawable operators. This list
provides the syntax and description for each function. It also provides you
with hints about how you can best optimize XglDrawable accesses within a
pipeline. The hints are in the form of the following codes:

[E] The function is time consuming to call; in other words, the
subroutine call has many tasks to perform.

[M] The function is moderately time-consuming; the subroutine call does
very little.

[L] The function is inline code and is therefore lightweight.

[L2] The function is basically a lightweight function that is only time
consuming if there has been a clip-list change.

Note – The XglDrawable interface and any DGA interfaces mentioned in this
chapter are uncommitted interfaces that are subject to change.

XglDrawable Functions for the Device Pipeline

void winLock()

Locks the raster’s clip list and other information in the shared memory data
structure. All rendering must be between winLock() and winUnLock()
calls.

Window System Interactions 171

7

This is an inline function for efficiency. In the noncontested case, it is very
fast. winLock() and winUnLock() calls should be run fairly frequently so
that the cursor and other updates on the screen are fast. Under no
circumstances should XGL hold onto a lock for more than three seconds
because this can cause a time-out. [L2]

void winUnLock()

Unlocks the shared-memory data structure. [L2]

WIN_LOCK(d)

Locks the window. This macro is more efficient than using winLock() , but
it expands to more code. [L2]

WIN_UNLOCK(d)

Unlocks the window. [L2]

Xgl_boolean clipChanged()

Returns TRUE if the clip list has changed since the last time this function
was called. Only valid inside a lock. [L]

int dbDisplayComplete(int waitflag)

Returns 1 if the new displayed buffer is now visible. If the new buffer is not
yet displayed, and waitflag is zero, returns 0. If waitflag is set,
dbDisplayComplete() waits for the display to be visible if necessary and
always returns 1. [E]

void dbDisplayWait()

Waits for the double-buffering interval (one frame) to expire. [E]

u_int dbGetWid()

Returns the window ID for the double-buffering window. Meaningful only
for frame buffers that use window IDs for double buffering. See also
“Window System Dependencies” on page 178. [M]

172 XGL Device Pipeline Porting Guide—May 1996

7

Xgl_boolean devInfoChanged()

The routine returns a cached devinfoFlag flag and clears the flag. The
devinfoFlag is set to TRUE if the device-specific information area in the
shared memory data structure has changed since the last time this routine
was called. Only valid inside a lock.

This routine may be used by Multi Plane group hardware ports where a
change in the window visibility (as opposed to the clip list which is not
updated when an overlay window visually obscures a window in the image
planes) need to be processed.

Xgli_ClipStat getClipStat()

Returns DRW_EXPOSED, DRW_CLIPPED, or DRW_OBSCURED. Only valid
inside a lock. [L]

int getDevFd()

Returns the device file descriptor for the frame buffer on which the grabbed
window is displayed. [M]

XglDevice* getDevice()

Returns the back pointer to the corresponding Device object, which may be
XglRasterWin, XglRasterMem, and so on.

const char * getDeviceName()

Returns a pointer to the device name of the frame buffer on which the
grabbed window is displayed, for example /dev/cgsix0 . Note that the
device has already been opened. [M]

int getDrawType()

Returns the Drawable type, which is defined in dga_externaldefs.h as
either DGA_DRAW_WINDOW, DGA_DRAW_PIXMAP, or DGA_DRAW_OVERLAY. [M]

const Xgl_irect_list& getMergeClipList()

Returns the clip list. Only valid inside a lock. [L2]

Xgl_sgn32 getMergeClipListCount()

Returns the number of Xgl_irect structures in the clip list. Only valid inside
a lock. [L2]

Window System Interactions 173

7

XglPixRectMem* getMergeClipMask()

Returns a bitmap representing the visible portion of the window.

Xgl_color_type getRealColorType()

Returns the actual color type of the underlying hardware, which can be one
of XGL_COLOR_INDEX or XGL_COLOR_RGB.

void getWid(int &nwid, int &start_wid, int &cur_wid)

Returns the window IDs for the window, if applicable. nwid is the number
of window IDs, start_wid is the first window ID, and cur_wid is the
current window ID. [M]

Xgl_sgn32 getWindowDepth()

Gets window depth. [E]

Xgl_sgn32 getWindowWidth()
Xgl_sgn32 getWindowHeight()

Return overall window geometry, including parts that may be clipped. Only
valid inside a lock. [L]

Xgl_sgn32 getWindowX()
Xgl_sgn32 getWindowY()

Return overall window geometry, including parts that may be clipped. Only
valid inside a lock. [L]

Xgl_sgn32 getWsClipListCount()

Returns the number of Xgl_irect structures in the window clip list. Only
valid inside a lock. [L]

const Xgl_irect_list& getWsClipList()

Returns the window clip list. Only valid inside a lock. [L]

Xgl_sgn32 getUserClipListCount()

Returns the number of Xgl_irect structures in the user clip list. [L]

const Xgl_irect_list& getUserClipList()

Returns the user clip list. [L]

174 XGL Device Pipeline Porting Guide—May 1996

7

Xgl_boolean dbGrab(int nbuffers,
 void(*vrtfunc)(Dga_window), u_int* vrtcounterp)

Requests double buffering on this Drawable with nbuffers . Both vrtfunc
and vrtcounterp are supplied by the device pipeline. For more
information on the implementation of this function, see dga_db_grab() in
the X Server Device Developer’s Guide. Returns TRUE for success and FALSE
for failure. [E]

Xgl_boolean grabFCS(int nfcs)

Grabs nfcs fast clear sets. Releases fast clear sets by setting nfcs to zero.
Returns FALSE for failure and TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by the hardware. Fast
clear set information is stored in an device-dependent manner. See
“Window System Dependencies”. [E]

Xgl_boolean grabWids(int nwids)

Grabs nwids window IDs. Returns FALSE on failure. [E]

Xgl_boolean grabZbuf(int nzbuftype)

Grabs or releases the Z-buffer where 1 means grab and 0 means release.
Returns FALSE for failure, TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by hardware. Z-buffer
information is stored in a device-dependent manner. See “Window System
Dependencies” on page 178. [E]

Xgl_boolean grabStereo(int st_mode)

Grabs or releases the stereo planes; 1 means grab, 0 means release. Returns
FALSE for failure, TRUE for success. Currently only succeeds for
OpenWindows windows and only when supported by hardware. Stereo
plane information is stored in an undocumented device-dependent manner.
See “Window System Dependencies” on page 178. [E]

Xgl_boolean modifChanged()

The routine returns a cached modIf flag and clears the flag. The modIf is set
to TRUE if the shared memory data structure has changed since the time
this routine was called. Only valid inside a lock.

Window System Interactions 175

7

void setCursorRopFunc(void * my_rop_func,caddr_t client)

Sets the function that is used to remove the cursor from the screen.
my_rop_func is a function provided by the pipeline. This function is called
by DGA to copy the image under the software cursor as passed in through
the caddr_t memptr parameter to the cursor rop function when the cursor
is on top of the display window. The function should look like this :

void
my_rop_func(XglDevice *dev, int x, int y, int width, int height,

int depth, int linebytes, caddr_t memptr,
caddr_t client)

This function is called from within WIN_LOCK() whenever the cursor needs
to be taken down. Its purpose is to copy a block of pixels onto the frame
buffer, thus undrawing the cursor. The dev pointer is the XGL Device of the
window for which the cursor is being undrawn; to retrieve the Device, get
the XglDpDev object with device->getDpDev() . The arguments x , y, w,
h, depth describe the region of the screen to be replaced. linebytes and
memptr describe the source for the pixels. client is the arbitrary client
data provided to setCursorRopFunc() . memptr points to the (0,0) pixel
address of the image.

The format is a row-column order with each row starting linebytes after
the previous row. Note that no XGL attribute (that is the ROP and the plane
mask) is relevant within this function. All pipelines should provide this
function if it is at all possible for a software cursor to intersect this
drawable. [M]

void setDisplayBuffer(int buffer, int (*displayfunc)(),
caddr_t data)

Sets the buffer to be displayed. displayfunc is a function that you provide
in the form:

int displayfunc(caddr_t data, Dga_window clientp, int buffer)

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your displayfunc function is device dependent and
is responsible for setting the hardware to display to the specified buffer. [M]

176 XGL Device Pipeline Porting Guide—May 1996

7

void setReadBuffer(int buffer, int (*readfunc)(),
caddr_t data)

Sets the buffer to be read. readfunc is a function that you provide in the
form:

int readfunc(caddr_t data, Dga_window clientp, int buffer)

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your readfunc function is device dependent and is
responsible for setting the hardware to read from the specified buffer. [M]

void setWriteBuffer(int buffer, int (*writefunc)(),
caddr_t data)

Sets the buffer to be written. writefunc is a function that you provide in
the form:

int writefunc(caddr_t data, Dga_window clientp, int buffer)

where data is the data provided, clientp is the client info pointer
described in the OpenWindows DDK documentation, and buffer is the
buffer to be written. Your writefunc function is device dependent and is
responsible for setting the hardware to write to the specified buffer. [M]

Xgl_boolean windowIsClipped()

Returns TRUE if window is partially exposed. Only valid inside a lock. [L]

Xgl_boolean windowIsFullyExposed()

Returns TRUE if window is completely exposed. Only valid inside a lock. [L]

Xgl_boolean windowIsObscured()

Returns TRUE if window is completely obscured. Only valid inside a lock.
Data does not need to be sent to the hardware if windowIsObscured() is
TRUE. If backing store is enabled and handled by the device pipeline, the
pipeline should check the X window system’s backing store attribute to
determine whether it is WhenMapped or Always to decide whether to
render to the backing store if windowIsObscured() is TRUE. [L]

Window System Interactions 177

7

Xgl_boolean dbUnGrab()

Terminates double buffering on this drawable. Returns TRUE on success,
FALSE on failure. [E]

XglDrawable Functions Used by the XGL Core Only

Xgli_DrawClass getClass()

Returns one of DRW_WIN_RAS, DRW_MEM_RAS, or DRW_CGM. These identify
the kind of raster that this Drawable was created for. [L]

void getDescriptor(void *)

Returns the original descriptor passed to xgl_object_create() . [M]

DrawableLockType getLockType()

This function describes what action will be taken by winLock() , which can
be one of DR_LK_NONE, DR_LK_FUNC, or DR_LK_MACRO.

cont char* getPipeName()

Used by the XGL core to determine the proper rendering pipeline for this
window.

Xgl_window_type getType()

Returns the Xgl_window_type from xgl.h for DRW_WIN_RAS. [L]

Xgl_boolean grabRetainedWindow()

Grabs a window for backing store. Returns an XglDrawable object on
success and connects the new object to the existing XglDrawable object.
Returns NULL on failure. Note that the retained window is actually a file in
/tmp .

static XglDrawable *grabDrawable(Xgl_obj_desc *,
Xgl_device *)

Grabs the window. Returns an XglDrawable object on success, NULL on
failure. Initializes most of the fields in the XglDrawableClient object. [E]

Xgl_boolean matchDesc(Xgl_obj_desc *)

Returns TRUE if the given descriptor matches this XglDrawable object. [E]

178 XGL Device Pipeline Porting Guide—May 1996

7

Xgl_boolean possible(Xgl_X_window *)

Determines whether DGA is possible on this window. If DGA is possible,
the function returns TRUE; otherwise, returns FALSE. In the latter case,
PEXlib or Xlib must be used for rendering. [E]

void resize()

Used to inform the XglDrawable object that the window has been resized.
Note that this function is used only by the XglDrawableXpex subclass, since
it has no other way of determining whether the window has been resized.

void setRectList(Xgl_irect rect_list[])
void setRectNum(Xgl_usgn32)

Set the user clip list. [E]

Xgl_boolean unGrabRetainedWindow()

Terminates access to the backing-store window. The XglDrawable object and
its resources are freed.

void ungrabDrawable()

Used by the XGL core to terminate access to a window. The XglDrawable
and all of its resources are freed.

Window System Dependencies

Unfortunately, some DGA information, such as fast clear sets, is not formally
defined in OpenWindows DGA. Currently, the information is simply stored in
the OpenWindows DGA shared page in a device-dependent manner.

Pipelines that need access to the double-buffering information or the
bounding-box information in shared memory should use the following
functions:

caddr_t winBboxinfop()

Returns a pointer to the bounding-box information structure within shared
memory. This structure is:

Window System Interactions 179

7

struct {

int xleft, xtop;
int width, height;

}

Returns NULL if not running under OpenWindows. [L]

Dga_dbinfo *winDbInfop()

Returns a pointer to the double-buffering information area within shared
memory, as defined in <dga/dga.h >. Returns NULL if not running under
OpenWindows. [L]

void* getDevinfo()

This routine returns a pointer to the device-specific information area in the
shared memory data structure. This information is not used by XGL, but the
device pipeline should know how to interpret it. Only valid inside a lock.

180 XGL Device Pipeline Porting Guide—May 1996

7

181

LI-3 Loadable Interfaces 8

This chapter describes the XGL LI-3 loadable interfaces. Each interface
description includes information about a function’s syntax, data structures,
and attributes. This chapter also discusses the following:

• Implementing LI-3 routines using the RefDpCtx utility object

• Data input to LI-3 primitives

• PixRect objects

As you read this chapter, you will find it helpful to have access to the
following header files:

• XglDpCtx2d.h and XglDpCtx3d.h . These files contain loadable interfaces
for the device pipeline.

• XglSwpCtx2d.h and XglSwpCtx3d.h . These files contain loadable
interfaces for the software pipeline.

• RefDpCtx.h , RefDpCtx2d.h , and RefDpCtx3d.h

• Li3Structs.h , Li3Structs2d.h , and Li3Structs3d.h

Note – The interfaces mentioned in this chapter are uncommitted and subject
to change.

.h

182 XGL Device Pipeline Porting Guide—May 1996

8

About the LI-3 Layer
The LI-3 layer is the lowest level of the XGL interface hierarchy. The LI-3 layer
contains dot, vector, and span primitive functions, control functions, and
begin/end batching functions. It also includes functions that copy pixel data to
and from buffers managed by the device pipeline. An LI-3 device pipeline uses
the XGL software pipeline to perform all operations needed to reduce a
primitive to the pixel level, and the device pipeline then renders the pixels.
Figure 8-1 shows an overview of the pipeline architecture for the LI-3 layer.

Figure 8-1 LI-3 Pipeline Architecture

A graphics handler must provide a set of LI-3 functions, as there is no software
pipeline implementation of LI-3 functions. There are two ways to implement
LI-3 functions. You can:

• Rewrite the functions for your device to achieve accelerated performance.

• Implement the functions using the RefDpCtx (Reference Device Pipeline
Context) set of utilities. RefDpCtx is built on a simple get-pixel and put-
pixel interface. It is not meant to provide fast performance, but it enables the
device pipeline to get XGL running relatively quickly. RefDpCtx also
protects a graphics handler from changes in the XGL API, since RefDpCtx

LI-2 Software
Pipeline

XGL API

LI-3 Device
Pipeline

Hardware Device

LI-1 Device
Pipeline

LI-1 Software
Pipeline

LI-2 Device
Pipeline

XGL API to Pipeline Layer

LI-3 Loadable Interfaces 183

8

provides full functionality. RefDpCtx is called from within an LI-3 primitive
call. See page 207 for more information on using RefDpCtx to implement the
LI-3 layer.

LI-3 Primitives

The LI-3 primitive functions are listed in Table 8-1.

The code example below shows the implementation of li3MultiSpan()
using the RefDpCtx utility.

Although the 2D versions of the LI-3 primitive functions are straightforward,
the 3D LI-3 functions are more complicated because they must support
antialiasing, shading, and texture mapping. However, you can use RefDpCtx to
implement the difficult primitives. Note that if you decide to accelerate one
aspect of an LI-3 primitive, such as transparency, you must implement the
entire primitive rather than using RefDpCtx.

Table 8-1 LI-3 Primitive Functions

Function 2D 3D Description Swp Dp

li3MultiDot() ✓ ✓ Draws a list of dots. – Required

li3MultiSpan() ✓ ✓ Draws a list of horizontal spans. – Required

li3Vector() ✓ ✓ Draws a single vector. – Required

void XglDpCtx3dCfb::li3MultiSpan(
const Xgli_span_list_3d* span_list,
const Xgl_color* color,
int* picked)

{
WIN_LOCK(drawable);
refDpCtx.li3MultiSpan(span_list, color, picked);
WIN_UNLOCK(drawable);

}

184 XGL Device Pipeline Porting Guide—May 1996

8

LI-3 Batching and Control Functions

The LI-3 layer also includes begin/end batching functions and a set of control
functions. The begin/end batching functions are used to indicate that a series
of the same LI-3 primitives will be sent and that the state will not change
between successive calls. This allows the device pipeline opportunities for
optimization when implementing LI-3. The batching functions are listed in
Table 8-2.

The control functions are called by the software pipeline to set state
information in structures used by RefDpCtx. These functions can optionally be
called by LI-3 device pipelines. If you fully implement LI-2 and all of the LI-3
functions, your pipeline does not need to implement the control functions;
otherwise, the LI-3 control functions must be implemented, as they are called
by the LI-2 software pipeline. As with other LI-3 functions, you can implement
the control functions using RefDpCtx, as in the following example.

The LI-3 control functions are listed in Table 8-3.

Table 8-2 LI-3 Batching Functions

Function 2D 3D Description Swp Dp

li3Begin() ✓ ✓ Specify the beginning of a sequence of LI-3
primitives.

– Required

li3End() ✓ ✓ Specify the end of a sequence of LI-3
primitives.

– Required

void
XglDpCtx3dCfb::li3SetSpanControl(const Xgli_span_control_3d& sc)
{

refDpCtx.li3SetSpanControl(sc);
}

Table 8-3 LI-3 Control Functions

Function 2D 3D Description Swp Dp

li3GetDotControl() – ✓ Get attributes for li3MultiDot() . – Required

li3GetVectorControl() ✓ ✓ Get attributes for li3Vector() . – Required

li3GetSpanControl() ✓ ✓ Get attributes for li3MultiSpan() . – Required

LI-3 Loadable Interfaces 185

8

LI-2 Software Pipeline and LI-3 Device Pipeline

The main caller of LI-3 functions is the software pipeline LI-2 layer (the device
pipeline could call its own LI-3 functions, but that is not very likely). The
calling sequence from the software pipeline LI-2 layer to the device pipeline
LI-3 layer is:

set Context attributes (if needed)

li3Set<Prim>Control (if needed)

li3Begin(<Prim>)

li3<Prim> (called as many times as needed)

li3End(<Prim>)

where <Prim> is one of the LI-3 primitive functions. All device pipeline LI-3
primitives called by the software pipeline are surrounded by li3Begin() and
li3End() calls. Within the li3Begin() /li3End() pair, only the primitive
type specified in the li3Begin() function can be called, and no other Context
or primitive functions can be called. Within a begin/end, neither the Context
nor the LI-3 state will change, and the device pipeline can continue to render.

li3Begin() returns a Boolean value: TRUE means that the LI-3 primitive will
be visible when rendered; FALSE means that the LI-3 primitive function will
not draw anything because the window is obscured, so the device pipeline
may not want to call the primitive function.

The LI-3 implementation must take into account the color type of the Device
and the color type specified by the XGL API. To do this, the LI-3
implementation may want to get the following information from the Device.

XglRaster::getDoPixelMapping()

XglDevice::getColorType()

li3SetDotControl() – ✓ Set attributes for li3MultiDot() . – Required

li3SetVectorControl() ✓ ✓ Set attributes for li3Vector() . – Required

li3SetSpanControl() ✓ ✓ Set attributes for li3MultiSpan() . – Required

Table 8-3 LI-3 Control Functions (Continued)

Function 2D 3D Description Swp Dp

186 XGL Device Pipeline Porting Guide—May 1996

8

XglDevice::getRealColorType()

XglDevice::getCmap()

XglDevice::getDrawable()

The LI-3 implemenation also must be aware of the rendering buffer as
specificed by:

XglContext::getRenderBuffer()

Window Locking Around Hardware Access

All LI-3 pipelines must lock and unlock the window around any operation that
could alter the screen display. This prevents the window clip lists from
changing during rendering. For information on window lock and unlock
macros, see Chapter 7.

Data Input to the LI-3 Layer

All LI-3 2D functions receive geometry data in 2D integer device coordinates.
The geometry will be within the bounds of the window, but it is up to the LI-3
implementation to clip the primitives to the window clip list if the window
changes.

All 3D LI-3 geometric coordinates are specified in floating 3D device
coordinates and, as such, may have fractional components for the coordinate
values. For information on LI-3 data structures, refer to the description of
individual primitives or to the header files Li3Structs.h , Li3Structs2d.h ,
and Li3Structs3d.h .

Picking at LI-3

The 3D LI-3 primitive functions return a Boolean parameter picked. This
parameter returns TRUE if the primitive was picked via Z-buffer-based picking
(if Z-buffering is on and picking is on). LI-1 and LI-2 prune the geometric data
to be inside the pick aperture; LI-3 functions must test if the geometry is visible
based upon the Z comparison method.

The picked return value is an optimization for LI-2. If the return value is TRUE,
then LI-2 can stop sending primitives. The software pipeline LI-2 function that
calls LI-3 will update the pick buffer. It is allowable, however, for LI-3 to
always return FALSE, but in this case, the LI-3 function must update the pick

LI-3 Loadable Interfaces 187

8

buffer by using the XglContext function ctx->addPickToBuffer
(Xgl_usgn32 pick_id1, Xgl_usgn32 pick_id2). The device pipeline
code need only fill in the picked parameter if picking is enabled. If picking is
disabled, it can be ignored. Note that LI-3 functions are only called to do
picking if Z-buffering is enabled.

Texture Mapping at LI-3

At LI-2, the software pipeline continues the processing of texturing by doing
the following:

1. The software pipeline computes (u,v) values for the span using hyperbolic
interpolation and passes the values to the LI-3 device pipeline using the
class XgliUvSpanInfo3d.

2. The lighting coefficients, if present, are also computed at the spans and
passed to LI-3 using XgliUvSpanInfo3d.

3. The software pipeline computes the MipMap level in which the start of the
span is located and the delta and passes this information to LI-3 using
XgliUvSpanInfo3d.

For information on XgliUvSpanInfo3d, “Texture Mapping and li3MultiSpan()”
on page 205.

At LI-3, the device pipeline must implement texture mapping or call RefDpCtx
for texturing. To implement texture mapping, the RefDpCtx object determines
the (u,v) value and the lighting coefficient at a pixel. It then uses the (u,v) value
to look up the texture map to obtain the texture value (texel). Depending on
the control parameters present in the Texture Map object, RefDpCtx combines
the texel with the pixel color to obtain the final textured pixel (lighting and
depth cueing are done as applicable). Your device pipeline should follow a
similar process. Note that there may be more than one texture active, and the
final textured pixel is the result after applying all active textures. For more
information on implementing texture mapping at LI-3, see page 205.

188 XGL Device Pipeline Porting Guide—May 1996

8

LI-3 Interfaces

li3Begin() and li3End() - 2D/3D

The li3Begin() function specifies the beginning of a sequence of LI-3
primitives of type prim_type; li3End() indicates the end of the sequence. In
between the Begin/End pair, only the specified LI-3 primitive function are
called, there are no calls to other LI-3 functions or to the Context. It is
permissible for the implementation of li3Begin() to call WIN_LOCK and to
hold the lock until li3End() is called. However, the implementation must be
sure that the lock does not time out; that is, the implementation may have to
release and then reaquire the lock before li3End() is called.

li3Begin() returns TRUE if the primitive will be visible when rendered and
FALSE if it will not be. For example, the primitive would not be visible if the
window were completely covered.

Syntax
[2D]
Xgl_boolean XglDpCtx2d::li3Begin(

Xgli_layer_prim_2d prim_type);

void XglDpCtx2d::li3End(
Xgli_layer_prim_2d prim_type);

[3D]
Xgl_boolean XglDpCtx3d::li3Begin(

Xgli_layer_prim_3d prim_type);

void XglDpCtx::li3End(
Xgli_layer_prim_3d prim_type);

Input Parameters

prim_type The type of primitive that is called between the LI-3
Begin/End calls.

Attributes

There are no specific attributes used by these functions.

LI-3 Loadable Interfaces 189

8

li3CopyFromDpBuffer() - 2D/3D

The li3CopyFromDpBuffer() function copies pixel data from the device
pipeline’s frame buffer into memory. The memory is represented by a
PixRectMem object. The PixRect object is the same depth as the frame buffer.
For information on PixRects, see page 214, or see the header files PixRect.h
and PixRectMem.h .

Syntax
[2D and 3D]
void XglDpCtx2d::li3CopyFromDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
XglPixRectMem* buf);

Input Parameters

src_rect A rectangle in the device pipeline’s coordinates relative to
the origin of the window.

dest_pos The position to copy to relative to the origin of buf.

sel Selects an image buffer in the pipeline, when the pipeline is
multi-buffering, to copy from.

buf The PixRect buffer into which the data is copied.

Attributes

There are no specific attributes used by this function.

Note – Currently, the 2D version of li3CopyFromDpBuffer() is not called by
the software pipeline.

190 XGL Device Pipeline Porting Guide—May 1996

8

li3CopyToDpBuffer() - 2D

The li3CopyToDpBuffer() function copies pixel data to the device
pipeline’s framebuffer out of memory. The memory is represented by a
PixRectMem object. The PixRect is the same depth as the frame buffer. For
information on PixRects, see page 214, or see the header files PixRect.h and
PixRectMem.h .

Syntax
void XglDpCtx2d::li3CopyToDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
const XglPixRectMem* buf,
Xgli_copy_to_dp_info* copy_info);

Input Parameters

src_rect A rectangle in buf’s coordinates.

dest_pos The position to copy to relative to origin of the window.

sel An image buffer in the device pipeline, when the device
pipeline is multi-buffering, to copy into.

buf The PixRect buffer from which the data is copied.

copy_info Contains information about the incoming data such as the
color map and color type of the data.

Attributes

The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

LI-3 Loadable Interfaces 191

8

li3CopyToDpBuffer() - 3D

The li3CopyToDpBuffer() function copies pixel data to the device
pipeline’s frame buffer out of memory. The memory is represent by a
PixRectMem object. The PixRect is the same depth as the frame buffer. For
information on PixRects, see page 214, or see the header files PixRect.h and
PixRectMem.h .

Syntax
void XglDpCtx3d::li3CopyToDpBuffer(

const Xgl_bounds_i2d* src_rect,
const Xgl_pt_i2d* dest_pos,
Xgl_buffer_sel sel,
const XglPixRectMem* buf,
Xgli_copy_to_dp_info* copy_info);

Input Parameters

src_rect A rectangle in buf’s coordinates.

dest_pos The position to copy to relative to origin of the window.

sel An image buffer in the device pipeline, when the device
pipeline is multi-buffering, to copy into.

buf The PixRect buffer from which the data is copied.

copy_info Contains information about the incoming data such as the
color map and color type of the data. For information on
LI-3 data structures, see Li2Structs.h .

Attributes

The Context attributes used by this function are:

XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRop()
XglContext::getSurfFrontColor()

192 XGL Device Pipeline Porting Guide—May 1996

8

What You Need to Know to Implement 3D li3CopyToDpBuffer

If the copy_info pointer is NULL, the implementation of
li3CopyToDpBuffer() operates as if a structure was given with
copy_info->do_zbuffer set to FALSE and copy_info->do_fill_style
set to FALSE.

The Xgli_copy_to_dp_info structure is used to provide information for
li3CopyToDpBuffer() . The structure contains color map information for the
source PixRect or raster, and the pipeline needs to process this information.
The structure also contains a flag to control whether the copy uses the Z-buffer.
This flag will be FALSE for 2D Contexts but may be TRUE for 3D Contexts. In
addition, the structure includes a flag, do_fill_style , for implementing fill
style. If do_fill_style is TRUE, the calling function expects the pipeline to
handle XGL_CTX_RASTER_FILL_STYLE attribute values. See the
XGL_CTX_RASTER_FILL_STYLE man page for information. See
Li3Structs.h for comments in the definition of Xgli_copy_to_dp_info .

Currently, for 3D, li3CopyToDpBuffer() is called by the accumulation
operations, li1Accumulate() and li1ClearAccumulation() , and by
li1Image() .

LI-3 Loadable Interfaces 193

8

li3MultiDot() - 2D

The li3MultiDot() function draws a list of dots (pixels) at the x,y locations
given in the input point strucutre. If color is not NULL, then all of the dots are
drawn in that color. If it is NULL, each dot is drawn in the color given by the
per vertex color in pd.

Syntax
void XglDpCtx2d::li3MultiDot(

const XglPrimData* pd,
const Xgl_color* color);

Input Parameters

pd An XglPrimData object containing a list of point locations
for the marker positions.

color The color value for the marker, if applicable.

Attributes

The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

194 XGL Device Pipeline Porting Guide—May 1996

8

li3MultiDot() - 3D

The li3MultiDot() function draws a list of dots at the x,y locations given in
pd. If color is not NULL, then all of the dots are draw in that color. If color is
NULL, each dot is drawn in the color given by the per vertex color in pd.

The 3D dot control structure specifies whether the dots are antialiased. If they
are, then a dot will touch more than one pixel.

Syntax
void XglDpCtx3d::li3MultiDot(

const XglPrimData* pd,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters

pd An XglPrimData object containing a list of point locations
for the marker positions.

color The color value for the marker, if applicable.

Output Parameter

picked TRUE if the primitive has been picked by Z-buffer-based
picking.

Related Data Structures
const Xgli_dot_control_3d& li3GetDotControl() const;

void li3SetDotControl(const Xgli_dot_control_3d&);

typedef struct {
 Xgl_boolean do_aa;

 // This is ignored if do_aa is FALSE.
 Xgli_aa_info aa_info;

 Xgl_usgn32 unused[4];
} Xgli_dot_control_3d;

LI-3 Loadable Interfaces 195

8

Attributes

The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRenderBuffer()
XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()

196 XGL Device Pipeline Porting Guide—May 1996

8

li3Vector() - 2D

The li3Vector() function draws a vector between two points. The function
returns the number of pixels that are drawn for the vector if it is not window
clipped. This information is used by the software pipeline LI-2 to manage the
pattern information for a polyline. If the flag vector->draw_last_pixel is
TRUE, the whole vector is drawn, if it is FALSE, then the last pixel in the vector
is not drawn.

The vector control structures specify whether the vector is solid, patterned or
alt patterned, and give the pattern information. The vector control structures
also specify the alternate color for patterned lines.

Syntax
Xgl_usgn32 XglDpCtx2d::li3Vector(

const Xgli_vector_2d* vector,
const Xgl_color* color);

Input Parameters

vector Pointer to a structure defining the vector. Refer to the
structure Xgli_vector_2d below.

color Color of the vector and, for an an alt-patterned vector, the
color of the foreground pixels.

Related Data Structures
const Xgli_vector_control_2d& li3GetVectorControl() const;

void li3SetVectorControl(
const Xgli_vector_control_2d&);

typedef struct {
 Xgl_line_style line_style;// style for vector
 const XglLinePattern* pattern;// pattern to use

// for PATTERNED
// or ALT_PATTERNED

 const Xgl_color* alt_color;// ALT_PATTERNED color
} Xgli_line_style_info;

LI-3 Loadable Interfaces 197

8

typedef struct {
 Xgli_line_style_info line_style_info;
 Xgl_usgn32 unused[4];
} Xgli_vector_control_2d;

typedef struct {
 Xgl_pt_i2d* p1; // end point 1
 Xgl_pt_i2d* p2; // end point 2
 Xgl_boolean draw_last_pixel; // controls whether last
 // pixel is drawn.
 // the following is used for PATTERNED or ALT_PATTERNED vectors;
 Xgl_usgn32 pat_offset; // pattern offset
} Xgli_vector_2d;

Attributes

The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()

198 XGL Device Pipeline Porting Guide—May 1996

8

li3Vector() - 3D

The li3Vector() function draws a vector between two points. The function
returns the number of pixels drawn for the vector if it is not window clipped.
This information is used by the software pipeline LI-2 to manage the pattern
information for a polyline. If the flag vector->draw_last_pixel is TRUE,
the whole vector is drawn; if it is FALSE, then the last pixel in the vector is not
drawn.

The vector control structures specify whether the vector is solid, patterned or
alt patterned, and give the pattern information. The control structures also
specify the blend type.

If the line style is alt patterned and vector->pt1_alt_color and
vector->pt2_alt_color are not NULL, then these colors are interpolated,
and the interpolated color is used as the alternate pattern color. It is possible to
interpolate the primary colors for the vector and use a constant alt color. In this
case, vector->pt1_alt_color and vector->pt2_alt_color are NULL,
and the line_style_info.alt_color is used.

Syntax
Xgl_usgn32 XglDpCtx3d::li3Vector(

const Xgli_vector_3d* vector,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters

vector Pointer to a structure defining the vector. Refer to the
structure Xgli_vector_3d below.

color Color of the vector and for the foreground pixels in an
alternate patterned vector. If color is NULL, then
vector->p1_color and vector->p2_color values are
interpolated.

Output Parameter

picked TRUE if the primitive has been picked by Z-buffer-based
picking.

LI-3 Loadable Interfaces 199

8

Related Data Structures
const Xgli_vector_control_3d& li3GetVectorControl() const;

void li3SetVectorControl(const Xgli_vector_control_3d&);

typedef struct {
 Xgli_line_style_info line_style_info;
 Xgli_blend_type blend_type;
 union {
 Xgli_transp_info transp_info; // if a vector is

// used to draw hollow;
// it could be transparent.

 Xgli_aa_info aa_info;
 } blend_info;
 Xgl_usgn32 unused[4];
} Xgli_vector_control_3d;

typedef struct {
 Xgl_pt_f3d* p1; // end point 1
 Xgl_pt_f3d* p2; // end point2
 Xgl_color* p1_color;
 Xgl_color* p2_color;
 Xgl_color* p1_alt_color; // alt color for
 // alt patterning
 Xgl_color* p2_alt_color;
 Xgl_boolean draw_last_pixel; // controls if last pixel
 // is drawn.
 // the following is used for patterned vectors
 Xgl_usgn32 pat_offset; // pattern offset
 Xgl_usgn32 unused[8];
} Xgli_vector_3d;

Attributes

The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRenderBuffer()

200 XGL Device Pipeline Porting Guide—May 1996

8

XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()

Notes

Vectors may be antialiased. The rule for determining if a vector is antialiased
is:

The control structure allows for using vectors to implement transparent,
hollow polygon edges, but this is not currently supported.

// For now blending is only done when apiColorType is RGB
control.do_blend = ((vecCtrl.blend_info.aa_info.blend_eq !=
 XGL_BLEND_NONE)

&& (vecCtrl.blend_info.aa_info.filter_width > 1)
&& (vecCtrl.blend_type == XGLI_BLEND_TYPE_AA)
&& (apiColorType == XGL_COLOR_RGB));

LI-3 Loadable Interfaces 201

8

li3MultiSpan() - 2D

The li3MultiSpan() function draws a list of spans. A span is a horizontal
run of pixels given by a starting X and Y location and the number of pixels to
draw in the X direction. The X direction may be either to the left or to the right
of the starting location.

The span control structures specify the fill style for the spans and give the
raster pattern to use for patterned spans.

Syntax
void XglDpCtx2d::li3MultiSpan(

const Xgli_span_list_2d* span_list,
const Xgl_color* color);

Input Parameters

span_list Pointer to a structure defining the list of spans to be
rendered. Refer to the structure Xgli_span_list_2d below.

color Controls the color of the spans in the list. If the color
parameter is not NULL, all the spans are drawn in the same
color. If color is NULL, the color field in the span
structure specifies the color for each span.

Related Data Structures
const Xgli_span_control_2d& li3GetSpanControl() const;

void li3SetSpanControl(const Xgli_span_control_2d&);

typedef struct {
 Xgl_surf_fill_style fill_style;
 const XglRasterMem* fill_raster;
 Xgl_pt_i2d offset; // DC coord offset for
 // realizing front pattern
 // position attribute
} Xgli_fill_style_info;

202 XGL Device Pipeline Porting Guide—May 1996

8

typedef struct {
 Xgli_fill_style_info fill_style_info;
 Xgl_usgn32 unused[4];
} Xgli_span_control_2d;

typedef struct {
 Xgl_usgn32 num_x;
 Xgl_usgn32 y_start;
 Xgl_usgn32 x_start;
 Xgl_sgn32 x_delta; // either +1 or -1
 Xgl_color* color;
} Xgli_span_2d;

typedef struct {
 Xgl_usgn32 num_spans;
 Xgli_span_2d *spans;
} Xgli_span_list_2d;

Attributes

The Context attributes used by this function are:

XglContext::getRealPlaneMask()
XglContext::getRop()
XglContext::getBackgroundColor() (for opaque stipple filled
patterns)

LI-3 Loadable Interfaces 203

8

li3MultiSpan() - 3D

The li3MultiSpan() function draws a list of spans. A span is a horizontal
run of pixels given by a starting X and Y location and the number of pixels to
draw in the X direction. The X direction may be either to the left or to the right
of the starting location.

The span control structures specify the fill style for the spans and give the
raster pattern to use for patterned spans. The control structures also specify
transparency value and transparency mode (either screen door or blended
transparency), type of blending, and whether texture mapping or lighting is
enabled.

Syntax
void XglDpCtx3d::li3MultiSpan(

const Xgli_span_list_3d* span_list,
const Xgl_color* color,
Xgl_boolean* picked);

Input Parameters

span_list Pointer to a structure defining the list of spans to be
rendered. Refer to the structure Xgli_span_list_3d below.

color Controls the color of the spans in the list. If color is not
NULL, all the spans are drawn in the same color. If color is
NULL, the color field in the span structure specifies the
color for each span. If the color is given per span, then the
color is interpolated using the color_start and
color_delta fields in the Xgli_span_3d structure.

Output Parameter

picked TRUE if the primitive has been picked by Z-buffer-based
picking.

204 XGL Device Pipeline Porting Guide—May 1996

8

Related Data Structures
const Xgli_span_control_3d&li3GetSpanControl() const;

void li3SetSpanControl(const Xgli_span_control_3d&);

typedef struct {
 Xgli_fill_style_info fill_style_info;
 Xgli_blend_type blend_type; // only NONE,
 // SCREEN_DOOR,
 // or TRANSP
 Xgli_transp_info transp_info;
 Xgl_boolean do_texturing;
 Xgl_boolean do_lighting;
 Xgl_usgn32 unused[4];
} Xgli_span_control_3d;

typedef struct {
 Xgl_usgn32 num_x;
 Xgl_usgn32 y_start; // Y start value
 Xgl_usgn32 x_start; // X start value
 Xgl_sgn32 x_delta; // either +1 or -1
 Xgli_fixed_z z_start; // Z start
 Xgli_fixed_z z_delta; // Z increment
 double w_start;
 double w_delta;

 /* These colors use Xgli_fixed_xy representation for indexed
 colors. The colors are interpolated in fixed point and LI3
 then truncates to an integer.
 */
 Xgl_color color_start;
 Xgl_color color_delta;

 XgliUvSpanInfo3d uv_info;
 Xgl_usgn32 unused[8];
} Xgli_span_3d;

typedef struct {
 Xgl_usgn32 num_spans;
 Xgli_span_3d *spans;

 Xgl_usgn32 unused[4];
} Xgli_span_list_3d;

LI-3 Loadable Interfaces 205

8

Note – When the color type is indexed and interpolation is being done, the
colors in Xgli_span_3d are treated as fixed point numbers (Xgli_fixed_xy in
FixedPoint.h). As an example, in Xgli_span_3d,color_start.index
should be cast to a Xgli_fixed_xy structure.

Attributes

The Context attributes used by this function are:

XglContext::getPickEnable()
XglContext::addPickToBuffer
XglContext::getPickId1()
XglContext::getPickId2()
XglContext::getBackgroundColor()
XglContext::getRealPlaneMask()
XglContext::getRenderBuffer()
XglContext::getRop()
XglContext3d::getBlendFreezeZBuffer()
XglContext3d::getHlhsrData()
XglContext3d::getHlhsrMode()
XglContext3d::getZBufferCompMethod()
XglContext3d::getZBufferWriteMask()
XglContext3d::getDepthCueMode() (for texture mapping)

Texture Mapping and li3MultiSpan()

Spans can be filled with a texture-mapped pattern. If the do_texturing field
in Xgli_span_control_3d is TRUE, spans are rendered with a texture-mapped
pattern. The information needed to texture a span is passed from LI-2 in the
uv_info field of the Xgli_span_3d structure.

XGL uses hyperbolic interpolation to arrive at an intermediate (u,v) in a span.
The class XgliUvSpanInfo3d encapsulates the Texture Map object (u,v)
numerator, denominator, (u,v) deltas, the start MipMap level, and the delta for
the span. In addition, it has the lighting coefficients that are used if lighting is
applicable.

206 XGL Device Pipeline Porting Guide—May 1996

8

XgliUtUvSpanInfo3d provides functions to retrieve this information and
increment the information as the span is traversed. The interfaces provided by
this class are listed in Table 8-4.

Note that texture mapping is implemented in RefDpCtx. If you choose not to
use RefDpCtx but want to implement texture mapping, you can call the utility
XgliUtCalcTexturedColor. For information on this utility, see Chapter 12,
“Utilities”.

Table 8-4 Functions in XgliUtUvSpanInfo3d

Function Description

void setNumInfo(Xgl_usgn32 n) Sets the number of texture coordinates (u,v) and related
information that needs to be stored in the class. This
corresponds to the number of data maps that are active.
This function allocates the neccesary space for the storage.

Xgl_usgn32 getNumInfo() const Returns the number of sets of texture coordinate ({u,v})
values.

Xgli_light_and_uv_info*
getLightAndUvInfo()

Returns a structure that contains the {u,v} related fields
such as numerator and delta (for hyperbolic interpolation),
the start MipMap level and delta for the span, and the
lighting coefficients and delta for the span. The function is
called when various fields need to be filled in.

void getPixelDataInfo
(Xgli_pixel_data_info*) const

Takes the current value of texture coordinates ({u,v}) and
light coefficients at a pixel location, does a perspective
divide, and returns the values. The value returned is the
texture coordinate ({u,v}) that is used to look up in the
texture map, and the lighting coefficients used to light the
pixel. Note that there can be multiple data maps and
several textures within a data map that are active. The
structure has an array of {u,v} values corresponding to the
number of data map objects that are active.

void incrementLightAndUvInfo() Increments the pixel information as it proceeds along the
span. Typically, the caller uses getPixelDataInfo() to
get the {u,v} and lighting values for each pixel and then
increments the pixel information to reflect the correct
values for the next pixel in the span.

LI-3 Loadable Interfaces 207

8

RefDpCtx
RefDpCtx (Reference Device Pipeline Context) is a utility object that provides a
non-optimized implementation of LI-3 functions and several LI-1 pixel
functions for the device pipeline. Each device pipeline must implement the
LI-3 functions for its device. However, the pipeline can choose to use the
RefDpCtx LI-3 implementation of the LI-3 functions. The RefDpCtx object
performs all operations for rendering at the LI-3 level, including texture
mapping, blending, and transparency.

The way a device is described to the RefDpCtx object is through a number of
PixRect objects. PixRect objects are abstractions of the buffers managed by the
device, for example the image buffer, Z-buffer, and accumulation buffer.
RefDpCtx uses the methods of the PixRect object to read and write pixels to the
device.

Using RefDpCtx for Rendering

To use RefDpCtx for rendering, the pipeline must create PixRect objects to
represent its buffers. For 2D rendering, the pipeline needs a PixRect object to
represent the image buffer (or the current image buffer if multibuffering is in
effect). For 3D rendering, the pipeline needs PixRect objects to represent the
image buffer, the Z-buffer, and the accumulation buffer. Setting up the PixRect
objects for RefDpCtx involves allocating members in several of the device
pipeline interface files and implementing methods to support RefDpCtx
rendering. This is described in the next section.

Setting Up PixRect Objects for Rendering Through RefDpCtx

The initial work in setting up PixRect objects to use RefDpCtx depends on
whether your device has memory-mappable buffers or non-memory mappable
buffers. The PixRect class hierarchy provides subclasses to handle memory-
mapped buffers. For devices with non-memory-mapped buffers or for devices
in which only one buffer can be accessed at a time (the image buffer and Z
buffer share the same address space), you have to create your own subclass of
PixRect to communicate with your device. For 3D pipelines, you also need to
determine whether the Z buffer and accumulation buffer are handled in
hardware or software. If they are handled in hardware, how the PixRects are
allocated again depends on the type of hardware device.

208 XGL Device Pipeline Porting Guide—May 1996

8

Once you have determined the type of device you have, the procedure for
setting up PixRects to use RefDpCtx for rendering is the same for both types of
devices.

Follow these steps to implement rendering using the RefDpCtx utility class.

1. Begin setting up the PixRect objects by doing one of the following:
• For a memory-mapped frame buffer – In the XglDpMgr class, declare an

XglPixRectMem member, such as fbPixRect , for the frame buffer. In
your XglDpMgr source file, specify the base address of the framebuffer,
get the frame buffer height and width, and get the depth of the window.
Initialize the frame buffer PixRect with these values.

• For a non-memory mapped frame buffer – Subclass from PixRect.h to
create a PixRect class specific to your frame buffer. Override PixRect.h
functions with functions that do whatever is needed to access the
hardware. See page 214 for information on the methods of the classes in
the PixRect hierarchy.

2. At the raster level, in the XglDpDev object, continue to set up the PixRects
for use by RefDpCtx as follows:

a. In DpDev.h , declare PixRects for the window image buffer for 2D, and
for the image buffer, Z buffer, and accumulation buffer for 3D. The types
of PixRects that you can use are listed in Table 8-5. See “PixRect Objects”
on page 214 for more information about the PixRect classes.

Table 8-5 PixRect Ojbects for RefDpCtx Rendering

PixRect Type Buffer

XglPixRect<YourFb> PixRect for hardware non-memory mapped frame
buffer or for devices in which only one buffer can
be accessed at a time. Subclass this PixRect from
PixRect.h .

XglPixRectMemAssigned PixRect for hardware memory mapped frame
buffer, including Z buffer in hardware. Provided
in the PixRect class hierarchy.

XglPixRectAllocated PixRect for Z buffer or accumulation buffer in
software. Provided in the PixRect class hierarchy.

LI-3 Loadable Interfaces 209

8

b. In the DpDev header and source files, provide methods that RefDpCtx
can use to access the PixRects, including methods for allocating software
PixRects, if necessary.

c. Initialize the PixRects to point to hardware addresses or memory.
Memory mapped frame buffers can use fbPixRect as a resource to set
up the image buffer PixRect.

3. In the XglDpCtx object, make the PixRect objects available to RefDpCtx
using the RefDpCtx methods listed in Table 8-6.

The example code below shows how a 3D pipeline XglDpCtx class constructor
uses RefDpCtx functions to call XglDpDev methods that return pointers to the
PixRects the device is using.

Table 8-6 RefDpCtx Methods for Assigning PixRects

Method Description

2D setImagePixRect() Assigns a PixRect for the image buffer.

setClipMaskPixRect() Assigns a Pixrect for the clip mask.

3D setImagePixRect() Assigns a PixRect for the image buffer.

setClipMaskPixRect() Assigns a PixRect for the clip mask.

setZbufferPixRect() Assigns a PixRect for the Z-buffer.

setAccumBufferPixRect() Assigns a PixRect for the accumulation
buffer.

XglDpCtx3dCfb::XglDpCtx3dCfb(XglDpDevCfb* dD,
 XglContext3d* ctx) :
 XglDpCtx3d(ctx),
 refDpCtx((XglRaster*)dD->getDevice(), ctx)
{
 dpDev = dD;
 drawable = dpDev->getDevice()->getDrawable();

 // the following XglDpDev functions are device-dependent
// functions that return pointers to PixRects
refDpCtx.setImagePixRect(dpDev->getWinPixRect());

 refDpCtx.setZbufferPixRect(dpDev->getZbufferPixRect());
 refDpCtx.setAccumBufferPixRect

(dpDev->getAccumBufferPixRect());
}

210 XGL Device Pipeline Porting Guide—May 1996

8

RefDpCtx LI-3 Rendering Example

Once PixRects are assigned to the RefDpCtx, the pipeline can use them to
render LI-3 functions. The example code below shows a 3D pipeline
implementing li3MultiSpan() using RefDpCtx. The RefDpCtx object calls
the PixRect functions getValue() and setValue() to modify the pixel
values of the input data.

Note – Because RefDpCtx accesses the hardware via PixRect objects, the
pipeline must bracket calls to RefDpCtx with WIN_LOCK() and
WIN_UNLOCK() calls to lock and unlock the clip list. It is up to the pipeline to
manage window locking around a RefDpCtx call.

Note – RefDpCtx only renders into the current image buffer. The user of
RefDpCtx must ensure that its current image buffer is synchronized with the
buffer identified by XglContext::getRealRenderBuffers() . When the
device is in double buffer mode, the device pipeline must use the
setImagePixRect() function to switch the buffer used by RefDpCtx. In
addition, it is possible for getRealRenderBuffers() to indicate that
geometry is rendered into both the draw and display buffers. In this case, the
device using RefDpCtx must render each primitive twice: once with the image
PixRect pointing to the draw buffer and once with it pointing to the display
buffer.

void XglDpCtx3dCfb::li3MultiSpan(
const Xgli_span_list_3d* span_list,
const Xgl_color* color,
int* picked)

{
WIN_LOCK(drawable);

// Handle window obscured or moved

refDpCtx.li3MultiSpan(span_list, color, picked);

WIN_UNLOCK(drawable);
}

LI-3 Loadable Interfaces 211

8

Handling Attribute Changes for RefDpCtx

The RefDpCtx object has data associated with it, including information on the
color map, plane mask, ROP, or the Z-buffer compare method. The pipeline
must update the RefDpCtx object when attribute changes occur. To do this, the
pipeline determines whether relevant attributes have changed and calls the
RefDpCtx methods generalGroupChanged() and cmapChanged() to
inform RefDpCtx of changes. Table 8-7 briefly describes these RefDpCtx
methods.

One place to update the RefDpCtx object is in the XglDpCtx objectSet()
routine. The following code fragment shows the GX objectSet() routine
using RefDpCtx methods to update the RefDpCtx object.

Table 8-7 RefDpCtx Methods for Handling Attribute Changes

Function Description

generalGroupChanged() Informs RefDpCtx that changes have occurred in
plane mask, ROP, or Z-buffer compare method. Check
for the attributes XGL_CTX_PLANE_MASK,
XGL_3D_CTX_Z_BUFFER_COMP_METHOD, or
XGL_CTX_ROP.

cmapChanged() Informs RefDpCtx that the device color map changed.

void XglDpCtx2dCfb::objectSet(const Xgl_attribute *att_type)
{
 for (;*att_type; att_type++) {
 switch(*att_type) {
 case XGL_CTX_DEVICE:

refDpCtx.cmapChanged();
 // no break

 case XGL_CTX_PLANE_MASK:
 case XGL_CTX_ROP:

update(ctx);
refDpCtx.generalGroupChanged();
return;

 break;
 }
 }
}

212 XGL Device Pipeline Porting Guide—May 1996

8

RefDpCtx Interfaces

The RefDpCtx classes provide some LI-1 functions and the complete set of LI-3
functions. These RefDpCtx methods are listed in Table 8-8.

The functions listed in Table 8-9 are unique to RefDpCtx and its subclasses. See
the header files RefDpCtx.h , RefDpCtx2d.h , and RefDpCtx3d.h for a
complete list of RefDpCtx methods.

Table 8-8 RefDpCtx Methods for LI-1 and LI-3 Rendering

LI-3 Methods in RefDpCtx LI-1 Methods in RefDpCtx

li3SetVectorControl() li1NewFrame()

li3GetVectorControl() li1SetPixel()

li3SetSpanControl() li1SetPixelRow()

li3GetSpanControl() li1GetPixel()

li3Begin() li1SetMultiPixel()

li3End() li1CopyBuffer()

li3Multidot() li1CopyBufferMemToFB()

li3Vector()

li3MultiSpan()

li3CopyFromDpBuffer()

li3CopyToDpBuffer()

li3GetDotControl() (3D only)

Table 8-9 RefDpCtx Methods

Function Description

void
setImagePixRect(XglPixRect*)

Sets the PixRect that represents the image buffer to draw
into. If single buffering is being used, this PixRect will be
set once; if multi-buffering is used, this PixRect will be
changed.

void setZbufferPixRect
(XglPixRect* z)

Sets the PixRect that represents the Z-buffer.

void setAccumBufferPixRect
(XglPixRect* a)

Used by copy buffer during the accumulation operation.

LI-3 Loadable Interfaces 213

8

void setClipMaskPixRect
(XglPixRectMem* i,
Xgl_boolean no_need_to_clip)

Call when the clip list changes. The PixRect for the clip
area is a 1-bit deep PixRect that represents the mask for the
clip area. This PixRect comes from the XglDrawable
function getMergeClipMask() .

void syncClipMask() Gets the current clip mask from the Drawable. In the
current implementation, synclipMask() is called
internally to ensure that the current clip mask is always up
to date.

void
setDoMaskAndRop(Xgl_boolean)

Controls whether RefDpCtx does the plane mask and ROP.
If it returns TRUE, the current plane mask and rop are used
in calculating the pixel value. If it returns FALSE, then the
plane mask and rop are not applied.

void cmapChanged() When XGL_CTX_DEVICE is passed through objectSet() ,
the device pipeline should call this function to inform
RefDpCtx that the Device’s Color Map object has changed.

clearZBuffer(const
Xgl_bounds_d3d* dcViewport)

Call to request RefDpCtx to clear the Z buffer.

void generalGroupChanged() When XGL_CTX_PLANE_MASK (2D and 3D), XGL_CTX_ROP
(2D and 3D), and XGL_3D_CTX_Z_BUFFER_COMP_METHOD
(3D only) are passed through objectSet() , the device
pipeline should call this function to inform RefDpCtx that
changes have occurred in plane mask, ROP, or Z-buffer
compare method.

Table 8-9 RefDpCtx Methods (Continued)

Function Description

214 XGL Device Pipeline Porting Guide—May 1996

8

PixRect Objects
PixRects are objects that provide a uniform way of accessing and managing a
2D array of pixels. PixRects are used by the XGL core for Memory Rasters,
Context fill patterns, and accumulation buffers. Device pipelines use PixRects
in two ways:

• If the device pipeline uses RefDpCtx for LI-3 rendering, the pipeline will use
PixRects to represent the image buffer for 2D and to represent the image
buffer, Z-buffer, and accumulation buffer for 3D. See “RefDpCtx” on
page 207 for information on using RefDpCtx to implement LI-3 functions.

• PixRects are used as the raster image for copy buffer operations. See the
description of li1CopyBuffer() on page 313 and “Defining the Device
Pipeline Device Class” on page 39 for information on copy buffer functions.

Pixel values in PixRects are unsigned and can be 1, 4, 8, 16, 32, or 48 bits in
depth. A pixel value can be specified by an (x,y) location, and you can get or
set a value at that location.

Using PixRects

XglPixRect is the base class of the hierarchy that provides methods for using
PixRects. If your device’s buffers are memory mappable, the XglPixRect class
has several subclasses that memory-mapped frame buffers can use to declare
PixRect objects. If your device is not memory mappable or if your memory-
mapped device does not correspond to Sun’s memory format (see the XGL
Reference Manual page for the format of Sun Memory Rasters), you need to
derive a class from XglPixRect for your frame buffer. The XglPixRect class
hierarchy is illustrated in Figure 8-2.

Figure 8-2 XglPixRect Class Hierarchy

XglPixRectMem

XglPixRectMemAssigned XglPixRectMemAllocated

XglPixRect

XglPixRectYourFB

LI-3 Loadable Interfaces 215

8

Memory-Based PixRects

The XglPixRectMem class is a specialized version of XglPixRect in which the
underlying pixels can be addressed as memory. In this class, memory-mapped
frame buffers and memory allocated via malloc are treated the same way. If
your device is a memory-mapped frame buffer and it corresponds to the Sun
memory layout, you can declare a PixRect object using one of the subclasses of
XglPixRectMem.

The XglPixRectMemAssigned class sets up PixRect data structures to point to
an existing piece of memory. An object of type XglPixRectMemAssigned is
based on a memory-mapped frame buffer, memory allocated via malloc , or on
an existing XglPixRectMemAllocated object. To create a PixRectMemAssigned
object, declare the PixRect, allocate the memory, and assign the memory to the
PixRect.

An object of type XglPixRectMemAllocated dynamically allocates memory to
create a PixRect of a given width, height, and depth. To create an object of this
type, declare the object and then call its reallocate() function to allocate the
memory.

PixRects for Non-Memory-Based Frame Buffers

If neither the image part of the buffers nor the Z-buffer is directly memory
mappable or if only one of the buffers can be accessed at a time, the device
pipeline must derive its own PixRect implementation from PixRect.h . An
example of this when the pixel values you want to read are not memory based
but are in a register or a set of registers.

In your device PixRect class, you can do whatever you need to do to access the
frame buffer. The RefDpCtx implementation requires separate PixRect objects
for the image buffer and the Z-buffer, so you might need two objects, one for
the image buffer and one for the Z-buffer, that are connected to manage the
registers between them.

216 XGL Device Pipeline Porting Guide—May 1996

8

PixRect Interfaces

Table 8-10 lists interfaces that are provided by XglPixRect and its subclasses.
These functions describe the basic interface to a PixRect. Note that the color
values are stored in xBGR format. In this format, the physical amount of
memory for a 24-bit RGB pixel is actually 32 bits, in which the high-order byte
is unused, the next byte is blue, followed by one byte each of green and red
intensity values.

Table 8-10 XglPixRect Interfaces

Function Description

getValue()
setValue()

Return the value of a pixel or set the value of a
pixel at the given coordinates. The PixRect must
have a depth less than 32 bits, where the depth
refers to the physical size rather than the layout of
the pixel (in other words, a 32-bit PixRect may
hold only 24 bits of information for RGB).
Undefined if the coordinate values are out of
bounds or the pixel is obscured. These functions
must be supplied by the subclasses.

getWidth()
getHeight()
getDepth()

Return the size of the PixRect.

isMemory() Returns TRUE if the PixRect can be accessed as
pure memory, as when the PixRect is in memory
or is a memory-mapped frame buffer, and the
pixel layout corresponds to the Sun standard pixel
format. See the man pages for XGL Memory
Rasters for information on the Sun standard pixel
format.

getWrapOriginX()
getWrapOriginY()
setWrapOriginX()
setWrapOriginY()

Set and get the wrap values that are used for
stipple filling where the pattern repeats itself. The
origin specifies a position in the PixRect, and the
get wrap value takes an (x,y) value and does a
modulus operation on the value with the width
and height, and returns the value at that modulus
position. This is used for filling where the fill
pattern is represented as a PixRect.

getWrappedValue() Subtracts wrapOrigin from the point, wraps at the
edge of the PixRect, and returns the value.

LI-3 Loadable Interfaces 217

8

Table 8-11 lists the interfaces provided by the XglPixRectMem class.

fillRectangle() Sets a rectanglar region with a given value.

getValueByPointer()
setValueByPointer()

Handle very large PixRects. Specifically, these
functions handle 48-bit deep PixRects, which are
used by the accumulation operation.

Table 8-11 XglPixRectMem Interfaces

Function Description

getLineBytes() Returns the number of bytes per scan line,
including any possible padding at the end of the
PixRect.

getMemoryAddress() Given an (x,y) location, this function returns a
pointer to the address of the pixel at that location.

getMemoryAddress1()
getMemoryAddress4()
getMemoryAddress8()
getMemoryAddress16()
getMemoryAddress32()
getMemoryAddress48()

Inline versions of getMemoryAddress() .

getValue1()
getValue4()
getValue8()
getValue16()
getValue32()
setValue1()
setValue4()
setValue8()
setValue16()
setValue32()

Inline versions of getValue() and setValue() .

Table 8-10 XglPixRect Interfaces

Function Description

218 XGL Device Pipeline Porting Guide—May 1996

8

Table 8-12 lists the interfaces provided by the XglPixRectMemAllocated class.

Table 8-13 lists the interfaces provided by XglPixRectMemAssigned.

Table 8-12 XglPixRectMemAllocated Interfaces

Function Description

reallocate() Returns the address of the newly allocated
memory raster. NULL if allocation fails.

deallocate() Frees memory used for the PixRect.

Table 8-13 XglPixRectMemAssigned Interfaces

Function Description

reassign() Creates a PixRect on existing memory.

219

LI-2 Loadable Interfaces 9

This chapter describes the XGL LI-2 loadable interfaces. Each interface
description includes information about a function’s syntax and attributes. This
chapter also presents information on the following:

• Data input to LI-2 primitives

• Calling the software pipeline to perform LI-2 operations

• Deciding which LI-2 interfaces to implement

As you read this chapter, you will find it helpful to have access to the
following header files:

• XglDpCtx2d.h and XglDpCtx3d.h . These files contain the loadable
interfaces for the device pipeline.

• XglSwpCtx2d.h and XglSwpCtx3d.h . These files contain the loadable
interfaces for the software pipeline.

• PrimData.h

• RectData2d.h and RectData3d.h

• ConicData2d.h and ConicData3d.h

Note – The interfaces mentioned in this chapter are uncommitted and subject
to change.

.h

220 XGL Device Pipeline Porting Guide—May 1996

9

About the LI-2 Layer
The LI-2 layer lies below the transformation and clipping of the LI-1 layer. The
LI-2 layer was designed to provide support for hardware that is not able to
perform transformations and clipping but can accelerate device coordinate
primitives. An LI-2 graphics handler uses the XGL software pipeline for
transformations, clipping, and lighting. The software pipeline returns a
transformed, clipped, and lit primitive in device coordinates to the LI-2 device
pipeline.

The device pipeline LI-2 routines implement scan conversion and pixel
rendering, thus providing partial acceleration for primitives. This layer
provides a porting layer that is simpler to port to than LI-1 but renders faster
than the LI-3 dot/span layer.

Figure 9-1 shows an overview of the pipeline architecture for the LI-2 layer.

Figure 9-1 LI-2 Pipeline Architecture

LI-2 Software
Pipeline

XGL API

LI-2 Device
Pipeline

LI-3 Device
Pipeline

Hardware Device

LI-1 Software
Pipeline

XGL API to Pipeline Layer

LI-1 Device
Pipeline

LI-2 Loadable Interfaces 221

9

Table 9-1 lists the set of LI-2 interfaces for the device pipeline. All of the LI-2
interfaces are also implemented by the software pipeline

Deciding Which LI-2 Interfaces to Implement

The XGL architecture provides flexibility in choosing which LI-2 primitives to
implement. You can implement all the LI-2 functions, or you can implement
some functions at the LI-2 level and some at the LI-3 level. For example, an
LI-2 pipeline might implement lines at LI-2 but implement fill primitives like
triangles at the LI-3 pixel level.

At rendering time, the flow of control goes to the device pipeline at the LI-2
level if the device pipeline has implemented the LI-2 function. The pipeline
determines from the setting of API attributes whether it can or cannot render
the primitive at that level. If it can render the primitive, it will generally
perform all the operations necessary for rendering from the LI-2 level to the
hardware. If it cannot render the primitive, it can call the software pipeline to
complete LI-2 operations.

Table 9-1 LI-2 Loadable Pipeline Interfaces

Function 2D 3D Description Swp Dp

li2GeneralPolygon() ✓ ✓ Scan converts polygons to span lines. ✓ Optional

li2MultiDot() ✓ ✓ Sends pixels specified by points to the
hardware.

✓ Optional

li2MultiEllipse() ✓ – Scan converts ellipses to span lines. ✓ Optional

li2MultiEllipticalArc() ✓ – Scan converts elliptical arcs to span lines. ✓ Optional

li2MultiPolyline() ✓ ✓ For thin lines, sends vectors to the
hardware. Scan converts wide lines to span
lines.

✓ Optional

li2MultiRect() ✓ – Scan converts rectangles to span lines. ✓ Optional

li2MultiSimplePolygon() ✓ ✓ Scan converts polygons to span lines. ✓ Optional

li2TriangleList() – ✓ Breaks a triangle into individual triangles
and scan converts the triangles.

✓ Optional

li2TriangleStrip() – ✓ Breaks a triangle list into individual
triangles and scan converts the triangles.

✓ Optional

222 XGL Device Pipeline Porting Guide—May 1996

9

Your decision about which primitives to implement depends primarily on the
capabilities of your hardware and the needs of your customers. In addition, if
you call the software pipeline to provide some functionality, your decision
about which primitives to implement may be influenced by the functions that
the software pipeline calls when it returns from LI-1 processing.

LI-1 Software Pipeline and LI-2 Device Pipeline

When the software pipeline completes processing at LI-1, it forwards the
processed data through the opsVec array in the XglDpCtx object. For example,
when the software pipeline li1MultiPolyline function finishes processing
the geometry in a multipolyline call, it calls the LI-2 multipolyline function that
is set in the opsVec array. If the device pipeline has implemented polyline
functionality at the LI-2 layer, the opsVec array will point to the device
pipeline renderer, and the device pipeline will assume control at this point;
otherwise, the opsVec setting will forward the rendering call back to the
software pipeline.

Figure 9-2 on page 223 illustrates a device pipeline that implements polylines
at the LI-2 level. Since the device pipeline hasn’t changed the default software
pipeline entry at the LI-1 layer, the opsVec entry points to the software
pipeline for LI-1 line processing. The device pipeline has set the LI-2
multipolyline opsVec entry to point to its LI-2 line renderer. When the
software pipeline returns, the device pipeline’s LI-2 multipolyline function is
called, and the device pipeline renders the lines. For information on setting
entries in the opsVec array, see page 44.

LI-2 Loadable Interfaces 223

9

Figure 9-2 Software Pipeline Multiplexing at LI-2

A graphics handler can choose not to implement all the LI-2 functions and use
the software pipeline for some LI-2 functionality. However, some LI-2 software
pipeline routines call other LI-2 functions to continue processing. For example,
the software pipeline li2MultiEllipse() function calls the opsVec entry
for li2GeneralPolygon() function to scan convert ellipses with rotation
angles. If your graphics handler implements the li2GeneralPolygon()
routine, rendering of rotated ellipses on your device can be partially
accelerated, even though your graphics handler uses the software pipeline for
some LI-2 processing.

To determine which functions the software pipeline calls, see Table 9-2 on
page 224 or the description for each primitive. Table 9-2 shows which LI-2 and
LI-3 functions are called by the LI-2 software pipeline functions. If you decide
to implement one of the functions listed in the left column, you may also want
to implement the marked functions listed to the right. In this table, “D”

xgl_multipolyline()XGL API

Pipelines

Device

XglDpCtx

LI1 line

LI1 text

opsVec

. . .

XGL Software Pipeline

LI-1 text
LI-1 polygon
LI-1 multiPolyline

LI-2 multiPolyline

. . . .

LI-2 polygon
LI-2 text

Device Pipeline
Renderers

XGL Core

LI2 line

Wrapper

224 XGL Device Pipeline Porting Guide—May 1996

9

indicates a function that the software pipeline calls directly; “I” indicates a
function that is called indirectly by a function downstream from the LI-1
function.

Window Locking Around Hardware Access

All LI-2 pipelines must lock and unlock the window around any operation that
could alter the screen display. This prevents the window clip lists from
changing during rendering. For information on window lock and unlock
macros, see Chapter 7.

Table 9-2 LI-2 Software Pipeline Calls to Device Pipeline Functions

Software Pipeline D
ev

ic
e

P
ip

el
in

e

li
2M

u
lt

ip
ol

yl
in

e

li
2G

en
er

al
P

ol
yg

on

li
2T

ri
an

gl
eL

is
t

li
2M

u
lt

iS
im

p
le

p
ol

yg
on

li
3M

u
lt

is
p

an

li
3M

u
lt

D
ot

li
3V

ec
to

r

li2GeneralPolygon D D I

li2MultiEllipse D D

li2MultiEllipticalArc D D D D

li2MultiDot D

li2MultiPolyline - 2D D D

li2MultiPolyline - 3D D I D

li2MultiRect D D I

li2MultiSimplePolygon - 2D D D I

li2MultiSimplePolygon - 3D I D I I

li2TriangleList D D I

li2TriangleStrip D D I

LI-2 Loadable Interfaces 225

9

Picking at LI-2

If Z-buffering and picking are enabled, and the device pipeline calls the
software pipeline for rendering at LI-1, the software pipeline determines
whether the primitive is within the pick aperture. The software pipeline
returns the portion of the original primitive that lay within the pick aperture to
the device pipeline for LI-2 rendering. At LI-2, the device pipeline tests
whether any of the pixels within the pick aperture are visible based on the
Z-comparison method, and if so, it records a pick event.

Calling the Software Pipeline for Texture Mapping at LI-2

If your device pipeline has not implemented texture mapping at the LI-2 level,
you can call the software pipeline to continue the processing for texturing. At
LI-2, face distinguishing has already taken place, so you can optimize your call
to the software pipeline by determining whether texture mapping is enabled
for front or back surfaces (based on the front flag in the PrimData level 0 field).

The LI-1 software pipeline stores the w component for 3D surface primitives.
The w values are passed to LI-2 as part of the point list for 3D surface
primitives.

LI-2 Attributes

The LI-1 software pipeline sets the Context attributes that must be taken into
account by the LI-2 device pipeline routine. For example, when rendering a
hollow polygon using the polyline renderer, the software pipeline sets the line
color attribute in the Context to reflect the polygon color. For information on
specific attributes for each LI-2 function, see the section in this chapter on that
function. For a list of attributes that must be accounted for by all LI-2 surface
primitives, see Table 9-3 on page 226.

Note that Context.h and Context3d.h provide interfaces for the pipeline to
get more than one 3D surface attribute in a single structure. These functions
can facilitate device pipeline manipulation of 3D surface attributes. For more
information, see “Context Interfaces” on page 101 and “Context 3D Interfaces”
on page 103. At LI-2, face determination has already taken place. Using these

 if (ctx->get{Front,Back}Texturing())
 // fall back to the software pipeline

226 XGL Device Pipeline Porting Guide—May 1996

9

interfaces, a pipeline can set up the surface attribute pointer based on the
facing in the renderer and do all the attribute processing without referring to
the actual facing.

Table 9-3 Surface Attributes at LI-2

Dimension LI-2 Surface Attributes

2D and 3D getSurfAaBlendEq()
getSurfAaFilterWidth()
getSurfAaFilterShape()
getSurfFrontColor()
getSurfFrontColorSelector()
getSurfFrontFpat()
getSurfFrontFpatPosition()
getSurfFrontFillStyle()

getEdgeAltColor()
getEdgeCap()
getEdgeColor()
getEdgeJoin()
getEdgeMiterLimit()
getEdgePattern()
getEdgeStyle()
getEdgeWidthScaleFactor()

getSurfEdgeFlag()
getSurfInteriorRule()

getPlaneMask()
getRop()
getThreshold()

3D only getSurfBackColor()
getSurfBackColorSelector()
getSurfBackFillStyle()
getSurfBackFpat()
getSurfBackFpatPosition()

getHlhsrMode()

getSurfDcOffset()

getDepthCueMode()
getDepthCueInterp()

LI-2 Loadable Interfaces 227

9

What You Should Know About the Software Pipeline
This section contains information on the software pipeline that you may need
if your device pipeline uses the software pipeline for LI-1 processing.

LI-1 Operations in the Software Pipeline

The following operations are performed within the software pipeline LI-1
layer:

1. Model clip.

2. Transform vertices from model coordinates to world coordinates.

3. Process face culling and face distinguishing.

4. Light vertices (if necessary).

5. Transform vertices from world coordinates to device coordinates.

6. View clip. If necessary, perform rational w-clip (object is clipped to two
planes w = +- epsilon) and divide by w.

7. Pick the primitive.

8. Divide by w.

9. Depth cue.

Lighting and Surface Color in the Software Pipeline

Surface color selection is handled as follows in software pipeline LI-1
functions:

• If lighting is on, color selection and lighting are handled in the LI-1 software
pipeline. If lighting is off, color selection is done at LI-2, and the LI-2 device
pipeline is responsible for determining color values.

• At LI-1, if depth cueing is on and depth cue interpolation is on, the software
pipeline does depth cueing at each vertex and stores the depth cued color at
the vertices of the output point list. If depth cue interpolation is off, and if
incoming point list has vertex color (as a part of the point type or due to
vertex lighting), then the software pipeline does depth cueing at each vertex
and stores the output color at the vertices of the output point list. However,

228 XGL Device Pipeline Porting Guide—May 1996

9

if the incoming point list has facet color or if the color is obtained from the
Context object, then depth cueing is done only once per facet, and the
depth-cued color is stored in the first vertex of each point list.

If depth cueing is off, color selection is performed at LI-2 and is the
responsibility of the device pipeline.

Note – Software pipeline LI-1 3D functions perform lighting and depth cueing
before calling LI-2 functions. However, if depth cueing is enabled, device
pipeline LI-2 functions must handle DC offset and interpolate colors.

• If texture mapping is on, no color selection is done at LI-1, and it is the LI-2
device pipeline’s responsibility to handle color selection.

Texture Mapping in the Software Pipeline

If texture mapping is enabled (the application must have defined at least one
Texture Map object), the software pipeline processing of surface primitives
changes. The surface primitive is not lit, since the diffuse color for lighting is
not known until LI-3 when texturing takes place. Therefore, lighting
coefficients are computed at LI-1 and stored in the XglPrimData object. In
addition, depth cueing is deferred until LI-3.

Point Type Input to LI-2 Device Pipelines

In most cases, the LI-1 software pipeline passes application point data to the
LI-2 device pipelines unchanged. However, the LI-1 software pipeline can
change the point type to add or remove information. You should be aware that
your LI-2 device pipeline may not get point data in the exact form sent in by
the application at LI-1, and your device pipeline should handle these cases.

Point type changes occur in the LI-1 software pipeline as follows:

• The point type input to LI-2 3D surface primitives has flag data added if the
primitive is clipped. Thus, a point type of Xgl_pt_f3d becomes
Xgl_pt_flag_f3d .

LI-2 Loadable Interfaces 229

9

Note – 2D and 3D polygons (the API primitive xgl_polygon()) always have
flag data added; thus, the point type input into li2GeneralPolygon will
never be Xgl_pt_f{2,3}d but will be Xgl_pt_flag_f{2,3}d .

• If per-vertex lighting is enabled, color data is added to the point type passed
to LI-2 if it wasn’t already present. If the lighting is per-facet, facet color
data is added to the facet type.

• Homogeneous data is added to the point types of surface primitives if the
primitive is clipped. Thus, a point type of Xgl_pt_f3d becomes
Xgl_pt_f3h .

Note – Homogeneous data is always added to the point type of 3D polygons in
case texture mapping requires the w value for per-pixel perspective correction.

• If an application provides vertex normals with a 3D point type, and then
lighting is enabled, the normals are removed from the point type by the LI-1
software pipeline.

230 XGL Device Pipeline Porting Guide—May 1996

9

Data Input to the LI-2 Layer
At the LI-2 layer, application data has been partially processed by the software
pipeline. The software pipeline passes LI-2 renderers an internal data structure
containing a list of points or a list of point lists in device coordinates. These
points have already been view clipped, and, in the case where the canvas is
completely exposed (window rasters only), the points have been window
clipped as well.

The software pipeline stores data under the control of a C++ class called
XglPrimData. This class contains pointers to the original application data
(essentially the arguments to the primitive) and a framework that is used by
the software pipeline. However, the XGL point types do not contain all the
information that a device pipeline might need to efficiently display the data. To
solve this problem, the XGL DDK interface includes a number of internal data
types that the pipeline can reference to get application data. These internal
data types contain both the application geometry and some useful information
about the geometry.

Although XglPrimData is the input to many of the rendering functions at LI-2,
it is not used for rendering conics (circles, arcs, ellipses, or elliptical arcs) or
rectangles. Conic data is stored in either the XglConicData2d object or the
XglConicData3d object. Similarly, rectangle data is stored in the XglRectData2d
object or the XglRectData3d object. These objects are similar to XglPrimData.

How Data Is Stored by the Software Pipeline

Within the XglPrimData object, point information relevant to the device
pipeline is stored in an object called XglLevel. Level objects are used
extensively by the software pipeline and are the device pipeline LI-2 layer
interface to the processed geometry.

XglLevel contains point list information that is created when the data moves
down through the software pipeline. A level is a memory area for storing
primitive data. Each time the data is modified, as it would be after
transformations, clipping, lighting, depth cueing, shading, or texture mapping,
a new level is started. This design allows the software pipeline to move data
around as it processes data and provides the software pipeline with access to
previous stages of the pipeline. It also allows a device pipeline to refer back to
an earlier version of the data.

LI-2 Loadable Interfaces 231

9

Figure 9-3 illustrates the XglLevel objects that would be created for a
hypothetical software pipeline that transformed, clipped, and lit the geometry
data. Level 0 contains the original API data and is created when the LI-1
software pipeline is first called.

Figure 9-3 Level Objects Created by Software Pipeline Processing

The XglPrimData class maintains an array of XglLevel objects. This is
effectively a stack, with each object representing the data in various stages of
processing. The lowest XglLevel object, level 0, contains the API data, while the
top object contains the processed geometry. In an LI-2 renderer the data to be
used is read out from this top object. Figure 9-4 illustrates the flow of data from
the application to an LI-2 device pipeline.

Figure 9-4 Flow of Point Data Through XglPrimData and XglLevel

Transformation Clipping LightingSoftware pipeline

Level 3Level 1 Level 2Level 0

called

Application

data

Application
XglPrimData

Device
Device Pipeline

LI-2 Renderer

getCurrentLevelData()

Software Pipeline

level 3

level 2

level 1

level 0

232 XGL Device Pipeline Porting Guide—May 1996

9

Data Storage in the XglLevel Object

The XglLevel class stores data in a noncontiguous format. This is done by
specifying a base-pointer and step-size pair for each field in the point that is
being processed. The base pointer points to the field for the first point in the
list. The step size indicates how many bytes to increment the pointer to get to
the field in the second point (and so on).

Initially, the base pointers all point to the beginning of the API data, and the
step sizes are all the same, in other words, equal to the point size. Graphically,
this would look something like Figure 9-5, assuming a point type that
contained geometry, colors, and normals.

Figure 9-5 Base/Offset Data Storage in XglLevel

Thus, to get to the color field of the second point, the color base pointer would
be incremented by the point size.

During normal operation of a software LI-1 routine, one or more of these
pointers is replaced by a pointer to a different area of memory, local to XGL.
The step sizes are adjusted accordingly. For instance, starting from the sets of
pointers and step sizes pictured above, the geometry values may be
transformed, and the results stored to a different area of memory. This would
change the picture to something like Figure 9-6 on page 233.

step sizes = point size

xyz color normal

Geometry base pointer

Normal base pointer

Color base pointer

xyz color normal

LI-2 Loadable Interfaces 233

9

Figure 9-6 Base/Offset Data When the Point Data Has Changed

In Figure 9-6, the geometry base pointer no longer points to the API data but to
an array of points local to the pipeline. Since the transformation did not affect
the colors or the normals, their pointers still point to the API data. The new
geometry step size is equal to the size of [x,y,z] since the array contains no
other information. This technique allows the software pipeline to process data
efficiently, since only that data that is actually modified is copied. Unmodified
data is left in its original form in the user’s space.

In order to hold both the separate pointers and step sizes, an internal point list
structure, Xgli_point_list, is used. This structure contains the data outlined
above, in addition to some flags that control rendering, such as a close flag for
polylines that joins the first and last vertices, and an indication of whether a 3D
surface is front facing or back facing. See XglPrimData.h for the structures
that make up XglLevel.

step sizes = point size

Geometry base pointer

xyz color normal

Normal base pointer

Color base pointer

xyz color normal

xyz’ xyz’ xyz’

234 XGL Device Pipeline Porting Guide—May 1996

9

Pipeline Interfaces to XglPrimData and XglLevel Data

Table 9-4 lists XglPrimData interfaces that the device pipeline can use to get
point data and to get information about point data at LI-2.

Table 9-5 lists useful interfaces from the XglLevel subclass of XglPrimData.

Example of Extracting Data from XglLevel

Since the software pipeline makes use of the XglLevel structures in its LI-1
processing, any device pipeline LI-2 function must extract data in XglLevel
format from these structures. Level format means that all the point and facet
lists have been broken down into base-pointer/step-size format, as shown in
Figure 9-5 on page 232 and Figure 9-6 on page 233.

The methods for extracting data in level format use the XglPrimData method
getCurrentLevelData() . This method provides offset and step-size
information that is available from the structure directly and does not have to
be computed.

Table 9-4 XglPrimData Interfaces

Function Description

getLevelData() Returns the data for a specified level.

getCurrentLevel()
getCurrentLevelData()

Return the data for the current level.

getProcessFlags() Returns a value indicating which software
pipeline processing steps (such as clipping or
lighting) need to be done.

Table 9-5 XglLevel Interfaces

Function Description

getPointLists() Returns the API data point lists.

getFacetList() Returns the API data facet lists.

getNumPointLists() Returns the number of point lists.

getRenderFlags() Returns API rendering flags.

getFaceAttrs() Returns the front facing and back facing
attributes.

LI-2 Loadable Interfaces 235

9

The following code fragment is an example of how a device pipeline might
implement an LI-2 polyline renderer.

XglDpCtx2dExample::li2MultiPolyline(XglPrimData *pd)
{

//
// First get the XglLevel structure.This method gets the
// current level, that is the one that contains the most
// up-to-date data.
//
level = pd->getCurrentLevelData();

//
// Get the number of point lists, and the point lists
// themselves.
//
num_pl = level->getNumPointLists();
pl = level->getPointLists();

//
// See if we have to close the polylines. If this routine is
// being called to draw a hollow polygon, for instance, then
// the first and last points need to be connected.
//
close_flag = pd->getProcessFlags() & XGLI_CLOSE_FLAG;

//
// Loop on the point lists.
//
for (i = 0; i < num_pl; i++) {

pt = (Xgl_pt_i2d*) pl->geom_ptr.base_ptr;

//
// Loop on the points in each point list.
//
for (j = 0; j < pl->current_num_points; j++) {

send_to_hardware(pt->x);
send_to_hardware(pt->y);
XGLI_INCR(pt, Xgl_pt_i2d*, pl->geom_ptr.step_size);

 }

//
// Optionally close the polyline - send down the 1st pt
// again.
//

236 XGL Device Pipeline Porting Guide—May 1996

9

Note – The lighting_coeffA_ptr, lighting_coeffB_ptr, and use_lighting_coeffs fields
in the Xgli_point_list and Xgli_facet_list structures used by XglLevel store the
lighting coefficients on a per-vertex and per-facet basis when lighting is on and
texturing is on. See Chapter 8 and Chapter 10 for information on texture
mapping.

Conic and Rectangle Data

The XglConicData{2,3}d and XglRectData{2,3}d data structures are used to hold
conic and rectangle data at the LI-2 layer. These data structures are based on
XglPrimData in that they organize the data into levels and use a base-
pointer/step-size technique. However, the objects used for the level data are
specific to the classes.

The level data in XglConicData is contained in an array of objects of type
XglConicList{2,3}d. Each XglConicList object is a level for a stage of the
software pipeline for the conic. The object contains pointers to a list of conic
data for each of the items describing a circle, arc, or other conic geometry, as
well as information on the number of conics. The API data is referenced at
level 0.

Similarly, the level data in XglRectData is contained in an array of objects of
type XglRectList{2,3}d. XglRectList has pointers to a list of rectangles specified
in Xgl_rect_list as a base and offset. The base points to the first rectangle in the
list and the offset specifies the step size to access the next rectangle. The
XglRectList object also contains a value for the number of rectangles.

if (close_flag) {
pt = (Xgl_pt_i2d*) pl->geom_ptr.base_ptr;
send_to_hardware(pt->x);
send_to_hardware(pt->y);

}
}

}

LI-2 Loadable Interfaces 237

9

Pipeline Interfaces to XglConicData and XglRectData

The following functions are provided by the XglConicData2d, XglConicData3d,
XglRectData2d, and XglRectData3d classes. These interfaces enable the device
pipeline to retrieve conic and rectangle level data for the current level or for a
different level. Table 9-6 lists interfaces provided by XglConicData.

Table 9-7 lists interfaces provided by XglConicList2d.

Table 9-6 XglConicData Interfaces

Function Description

getCurrentLevel() Gets the current level number. The API data is
level 0.

getLevelData() Gets data for a specified level.

getCurrentLevelData() Gets data for the current level.

Table 9-7 XglConicList2d Interfaces

Function Description

getNumConics()
setNumConics()

Get or set the number of conics in this level.

getConicType() Gets the conic type, which is one of
XGLI_CONIC_CIRCLE or XGLI_CONIC_ARC.

getConicDataType() Gets the conic data type.

getBbox() Gets the bounding box enclosing all conics of this
level.

getCenterPtr() Gets the pointer to the list of conic centers.

getFlagPtr() Gets the pointer to the list of flags.

getRadiusPtr() Gets the pointer to the list of radii.

getMajorAxisPtr() Gets the pointer to the list of major axes of ellipses
or elliptical arcs.

getMinorAxisPtr() Gets the pointer to the list of minor axes of
ellipses or elliptical arcs.

getRotAnglePtr() Gets the pointer to the list of rotation angles of
ellipses or elliptical arcs.

getStartAnglePtr() Gets the pointer to the list of start angles of arcs.

238 XGL Device Pipeline Porting Guide—May 1996

9

Table 9-8 lists interfaces provided by the XglRectData classes.

Example of Extracting Data from XglRectData

The following example shows how to extract data from an XglRectData2d
object.

getStopAnglePtr() Get the pointer to the list of stop angles of arcs.

getStartPointPtr() Get the pointer to the list of start points of arcs.

getStopPointPtr() Get the pointer to the list of stop points of arcs.

Table 9-8 XglRectList2d and XglRectList3d

Function Description

getNumRects()
setNumRects()

Get or set the number of rectangles in this level.

void XglDpCtx2dExample::li2MultiRect(XglRectData2d* rd)
{

XglRectList2d* rlist;
Xgl_usgn32 num_rects; // number of rectangles
Xgl_rect_i2d* rectangle;

// Extract the list of rectangles from the data structure.
//
rlist = rd->getCurrentLevelData();
num_rects = rlist->getNumRects();
rectangle = (Xgl_rect_i2d *)(rlist

 ->cornerPoints.base_ptr);

// Loop through the list of rectangles.
//
for (long i = 0; i < num_rects; i++, rectangle++) {

send_to_hardware(rectangle->corner_min.x);
send_to_hardware(rectangle->corner_min.y);
send_to_hardware(rectangle->corner_max.x);
send_to_hardware(rectangle->corner_max.y);

}
}

Table 9-7 XglConicList2d Interfaces (Continued)

Function Description

LI-2 Loadable Interfaces 239

9

Example of Extracting Data from XglConicData

This example shows how to access data from an XglConicData2d object.

void XglDpCtx2dExample::li2MultiEllipse(XglConicData2d* cd)
{

XglConicList2d* conic_list;
Xgl_usgn32 num_ells; // number of ellipses
Xgl_pt_flag_f2d* center;
Xgl_usgn32* major_axis;
Xgl_usgn32*minor_axis;
float* rot_angle;
Xgl_usgn32 center_step, major_axis_step,

minor_axis_step, rot_angle_step;
Xgli_pointer*ptr;

// Get conic data.
conic_list = cd->getCurrentLevelData();
num_ells = conic_list->getNumConics();

// Get rotation angle and step increment size.
ptr = conic_list->getRotAnglePtr();
rot_angle = (float *)ptr->base_ptr;
rot_angle_step = ptr->step_size;

//
// This device pipeline cannot handle rotated ellipses.
// Punt to software pipeline if rotation angle is not 0 or
// pi/2.
//
if (! (XGLI_EQUAL_ZERO(*rot_angle,

 XGLI_ANGULAR_TOLERANCE)
 || XGLI_EQUAL_ZERO((*rot_angle) - M_PI_2,

 XGLI_ANGULAR_TOLERANCE))) {

swp->li2MultiEllipse(cd);
return;

}

// Get center and step increment size.
ptr = conic_list->getCenterPtr();
center = (Xgl_pt_flag_f2d *)ptr->base_ptr;
center_step = ptr->step_size;

// Get major axis and step increment size.

240 XGL Device Pipeline Porting Guide—May 1996

9

ptr = conic_list->getMajorAxisPtr();
major_axis = (Xgl_usgn32 *)ptr->base_ptr;
major_axis_step = ptr->step_size;

// Get minor axis and step increment size.
ptr = conic_list->getMinorAxisPtr();
minor_axis = (Xgl_usgn32 *)ptr->base_ptr;
minor_axis_step = ptr->step_size;

//
// Loop through the list of ellipses.
//
for (long i = 0; i < num_ells; i++) {

if (XGLI_EQUAL_ZERO(*rot_angle,
 XGLI_ANGULAR_TOLERANCE)) {

send_to_hardware_x(center->x - (*major_axis));
send_to_hardware_y(center->y - (*minor_axis));
send_to_hardware_w(2 * (*major_axis));
send_to_hardware_h(2 * (*minor_axis));

else {
send_to_hardware_x(center->x - (*minor_axis));
send_to_hardware_y(center->y - (*major_axis));
send_to_hardware_w(2 * (*minor_axis));
send_to_hardware_h(2 * (*major_axis));

}
XGLI_INCR(center, Xgl_pt_flag_f2d*, center_step);
XGLI_INCR(major_axis, Xgl_usgn32*, major_axis_step);
XGLI_INCR(minor_axis, Xgl_usgn32*, major_axis_step);
XGLI_INCR(rot_angle, float*, rot_angle_step);

}
}

LI-2 Loadable Interfaces 241

9

LI-2 Interfaces

li2GeneralPolygon() - 2D/3D

The li2GeneralPolygon() function scan converts a polygon to span lines.
A general polygon routine supports geometry that cannot be easily tesselated
(such as multi-bounded polygons) and provides an opportunity for hardware
to handle such cases. The li2GeneralPolygon() function is expected to
handle edges, interior styles, and fill rules (even-odd only). For a list of the LI-1
software pipeline routines that call this device pipeline routine, see Table 10-2
on page 261.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li2GeneralPolygon(

XglPrimData* pd);

Input Parameters

pd Pointer to an XglPrimData object containing a list of point
lists specifying a single (possibly multi-bounded) polygon.

Attributes

See Table 9-3 on page 226 for a list of attributes that this function must handle.

Software Pipeline Return Calls

The software pipeline li2GeneralPolygon() function scan converts the
polygon to a list of span lines and calls the device pipeline li3MultiSpan()
function to draw the list of spans. For 3D polygons, the function handles
texture mapping, adds the surface DC offsets to the Z value, and calls the
device pipeline li3MultiSpan() function.

To render hollow surfaces or edges, the software pipeline converts the point
list into multipolyline point lists, sets the current stroke to hollow or edge, and
calls the device pipeline li2MultiPolyline() function.

242 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiDot() - 2D/3D

The li2MultiDot() routine enables the device pipeline to accelerate dot
markers. For a list of the LI-1 software pipeline routines that call this device
pipeline routine, see Table 10-2 on page 261.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li2MultiDot(

XglPrimData* pd);

Input Parameters

pd Pointer to an XglPrimData object containing a list of
marker positions in device coordinates.

Attributes

A device pipeline must handle the following attributes.

XglContext::getMarkerColorSelector()
XglContext::getMarkerColor()

Software Pipeline Return Calls

The software pipeline li2MultiDot() function determines the marker color
based on the marker color selector, the input point type, or in the 3D case, the
depth cueing mode. It then calls the device pipeline li3MultiDot() function
to draw the markers.

LI-2 Loadable Interfaces 243

9

li2MultiEllipse() - 2D

The li2MultiEllipse() function scan converts ellipses to span lines.
Although there is no ellipse primitive in the XGL 2D API, the XGL GPI
includes the li2MultiEllipse() function to support hardware that can
accelerate a regular circle or a circle with uneven scale in DC. This function is
expected to handle edges and interior fill styles. For a list of the LI-1 software
pipeline routines that call this device pipeline routine, see Table 10-2 on
page 261.

Syntax
void XglDpCtx2d::li2MultiEllipse(

XglConicData2d *ellipses);

Input Parameters

ellipses Pointer to an XglConicData2d object containing a list of
ellipses, with each ellipse specified with a center point, and
a major and minor axis in DC.

Attributes

See Table 9-3 on page 226 for a list of attributes that this function must handle.

Software Pipeline Return Calls

For ellipses without rotation angles, the software pipeline
li2MultiEllipse() routine converts each ellipse to a list of span lines and
calls li3MultiSpan() to draw the spans.

For ellipses with rotation angles, the software pipeline tessellates each ellipse
to a list of points, and calls li2GeneralPolygon() to draw the geometry.

244 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiEllipticalArc() - 2D

The li2MultiEllipticalArc() function scan converts elliptical arcs to
span lines. Although there is no ellipse in the XGL 2D API, the XGL GPI
provides the li2MultiEllipticalArc() function to support hardware that
can accelerate a circular arc with uneven scale in DC. You may want to
implement li2MultiEllipticalArc() if your hardware can accelerate arcs
or elliptical arcs. The function is expected to handle edges, interior fill styles,
and arc fill styles. For a list of the LI-1 software pipeline routines that call this
device pipeline routine, see Table 10-2 on page 261.

Syntax
void XglDpCtx2d::li2MultiEllipticalArc(

XglConicData2d *arcs);

Input Parameters

arcs Pointer to an XglConicData2d object containing a list of
partial ellipses, with each ellipse specified with a center
point, major and minor axes, and a start and stop angle in
DC.

Attributes

A device pipeline must handle the following attribute in addition to the
surface attributes listed in Table 9-3 on page 226.

XglContext::getArcFillStyle()

Software Pipeline Return Calls

For elliptical arcs without rotation angles, the software pipeline scan converts
the interior and arc borders to a list of span lines and calls i3MultiSpan() to
draw the spans. If the arcs have a fill style (XGL_CTX_ARC_FILL_STYLE) of
XGL_ARC_SECTOR or XGL_ARC_CHORD and have thin lines for the line
segments, the software pipeline calls the device pipeline LI-3 function
li3Vector() to draw the lines. The line segments of arcs with a fill style of
XGL_ARC_SECTOR or XGL_ARC_CHORD and with thick lines for the line
segments are drawn with li3MultiSpan() . For ellipses with rotation angles,

LI-2 Loadable Interfaces 245

9

if the arc fill style is open, the arc is tessellated to a list of points, and
li2MultiPolyline() is called; if the arc is closed, li2GeneralPolygon()
is called.

246 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiPolyline() - 2D

The li2MultiPolyline() routine is used to render lines and other stroke
primitives, such as hollow surfaces and edges. Since this routine is called by
the stroke primitives, the polyline attributes (color, style, width, etc.) are read
from the current stroke group in the Context object. It is the responsibility of
the calling routine (most likely the software pipeline) to set the stroke group
appropriately for the original primitive; it is the responsibility of the device
pipeline LI-2 multipolyline function to get the polyline attributes from the
current stroke group. See page 82 for information on the stroke group.

This function is expected to handle wide lines and wide patterned lines as well
as thin lines and thin patterned lines. For a list of the LI-1 software pipeline
routines that call this device pipeline routine, see Table 10-2 on page 261.

Syntax
void XglDpCtx::li2MultiPolyline(

XglPrimData* pd);

Input Parameters

pd Pointer to an XglPrimData object containing point lists
describing multiple, disjoint polylines. The XglPrimData
object inludes a flag that specifies whether each polyline is
closed.

Attributes

A device pipeline must handle the following attributes.

XglContext::getRop()
XglContext::getCurrentStroke()
XglStrokeGroup::getAaBlendEq()
XglStrokeGroup::getAaFilterWidth()
XglStrokeGroup::getAaFilterShape()
XglStrokeGroup::getAltColor()
XglStrokeGroup::getCap()
XglStrokeGroup::getColor()
XglStrokeGroup::getColorSelector()
XglStrokeGroup::getJoin()

LI-2 Loadable Interfaces 247

9

XglStrokeGroup::getMiterLimit()
XglStrokeGroup::getPattern()
XglStrokeGroup::getStyle()
XglStrokeGroup::getWidthScaleFactor()
XglStrokeGroup::getExpectedFlagValue()
XglStrokeGroup::getFlagMask()

What You Should Know to Implement li2MultiPolyline()

When the multipolyline point type has flag information, the device pipeline
must check the stroke group flag mask and expected flag value to determine
whether individual segments of the line should be drawn. For more
information, see “Flag Mask and Expected Flag Value” on page 87.

In addition, there is a flag in li3Vector() that determines whether the last
pixel of a line segment is drawn. To prevent drawing the shared pixel twice for
consecutive lines, set the draw_last_pixel flag for li3Vector() to FALSE. Then,
set it to TRUE for the last segment in the polyline. For information on
li3Vector() , see page 196 and page 198.

Software Pipeline Return Calls

For thin lines and thin patterned lines, the software pipeline 2D
li2MultiPolyline() function calls li3SetVectorControl to set the
attributes for the LI-3 line renderers and calls li3Vector() function to draw
the lines.

To render wide lines as well as caps and joins, the software pipeline creates a
list of span lines. The span lines are sorted and clipped, if necessary, for certain
ROP modes so that correct rendering will occur with span line overlap. The list
of spans is drawn by the li3MultiSpan() function.

248 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiPolyline() - 3D

The li2MultiPolyline() routine is used to render lines and other stroke
primitives, such as hollow surfaces and edges. Since this routine is called by
the stroke primitives, the polyline attributes (color, style, width, etc.) are read
from the current stroke group in the Context object. It is the responsibility of
the calling routine (most often the software pipeline) to set the stroke group
appropriately for the original primitive; it is the responsibility of the device
pipeline LI-2 function to get the stroke attributes from the current stroke
group. See page 82 for information on the stroke group.

This function is expected to handle wide lines and wide patterned lines as well
as thin lines and thin patterned lines. Because the software pipeline calls
li2TriangleList() to render wide lines, device pipelines that call the
software pipeline to render wide lines may also want to implement
li2TriangleList() for triangle stars if the device can accelerate triangles.
For a list of the LI-1 software pipeline routines that call this device pipeline
routine, see Table 10-2 on page 261.

Syntax
void XglDpCtx3d::li2MultiPolyline(

XglPrimData *pd);

Input Parameters

pd Pointer to an XglPrimData object containing point lists
describing multiple, disjoint polylines. The XglPrimData
object inludes a flag that specifies whether each polyline is
closed

Attributes

A device pipeline must handle the following attributes.

XglContext::getRop()
XglContext3d::getHlhsrMode()
XglContext::getCurrentStroke()
XglStrokeGroup::getAaBlendEq()
XglStrokeGroup::getAaFilterWidth()
XglStrokeGroup::getAaFilterShape()

LI-2 Loadable Interfaces 249

9

XglStrokeGroup::getAltColor()
XglStrokeGroup::getCap()
XglStrokeGroup::getColor()
XglStrokeGroup::getColorSelector()
XglStrokeGroup::getJoin()
XglStrokeGroup::getMiterLimit()
XglStrokeGroup::getPattern()
XglStrokeGroup::getStyle()
XglStrokeGroup::getWidthScaleFactor()
XglStrokeGroup::getExpectedFlagValue()
XglStrokeGroup::getFlagMask()
XglStrokeGroup3d::getDcOffset()
XglStrokeGroup3d::getColorInterp()

Software Pipeline Return Calls

If the value of the line width scale factor attribute for the line is less than 2.0,
the software pipeline 3D li2MultiPolyline() function creates individual
line segments, puts each line segment into an Xgli_vector_3d structure, and
calls li3Vector() for rendering.

If the line width scale factor is equal to or greater than 2.0, wide lines and
relevant caps and joins are converted to triangle stars. The function creates
rectangular line segments, converts each segment into triangle stars, and calls
li2TriangleList() for rendering. Patterned wide lines are broken at each
pattern boundary, so only solid triangle stars are sent to
li2TriangleList() .

250 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiRect() - 2D

The li2MultiRect() function scan converts rectangles to span lines. It
enables hardware to accelerate rectangles and provides an opportunity to
reduce the amount of copied data, since for multirectangles only two corner
points need to be copied rather than four corner points for polygon routines.

The function is expected to handle edges and interior fill styles.

Note – The li2MultiRect() function is not currently called by any LI-1
software pipeline function. The software pipeline li1MultiRectangle()
functions call LI-2 polygon routines.

Syntax
void XglDpCtx2d::li2MultiRect(

XglRectData2d* rects);

Input Parameters

rects Pointer to an XglRectData2d object containing a list of
rectangles specified by their corners.

Attributes

See Table 9-3 on page 226 for a list of attributes that this function must handle.

Software Pipeline Return Calls

If the interior style of the surface is solid, stippled, opaque-stippled, or
patterned, the software pipeline li2MultiRect() function scan converts the
polygon to a list of span lines and calls li3MultiSpan() to draw the spans. If
the interior style of the surface is hollow or if the edge flag is on, the software
pipeline calls li2MultiPolyline() with the stroke group set to hollow or
edge accordingly.

LI-2 Loadable Interfaces 251

9

li2MultiSimplePolygon() - 2D

The li2MultiSimplePolygon() function scan converts polygons to span
lines. This function is provided for hardware that can accelerate single-
bounded polygons. The function is expected to handle edges and different fill
styles.

Note – This function is not currently called by any LI-1 software pipeline
function.

Syntax
void XglDpCtx2d::li2MultiSimplePolygon(

XglPrimData* pd);

Input Parameters

pd Pointer to an XglPrimData object containing a list of point
lists in device coordinates, with each point list describing a
single, bounded polygon.

Attributes

See Table 9-3 on page 226 for a list of attributes that this function must handle.

Software Pipeline Return Calls

To render filled surfaces, the software pipeline li2MultiSimplePolygon()
scan converts the polygon to a list of span lines and calls li3MultiSpan() to
draw the spans. To render hollow surfaces or edges, the software pipeline sets
the stroke group to hollow or edge and calls li2MultiPolyline() .

252 XGL Device Pipeline Porting Guide—May 1996

9

li2MultiSimplePolygon() - 3D

The li2MultiSimplePolygon() function scan converts single-facing
polygons to span lines and provides support for single-bounded polygons.
This function is expected to handle edges and different fill styles. For a list of
the LI-1 software pipeline routines that call this device pipeline routine, see
Table 10-2 on page 261.

Syntax
void XglDpCtx3d::li2MultiSimplePolygon(

XglPrimData *pd);

Input Parameters

pd Pointer to an XglPrimData object containing a list of single-
facing polygons.

Attributes

See Table 9-3 on page 226 for a list of attributes that this function must handle.

Software Pipeline Return Calls

The software pipeline li2MultiSimplePolygon() function calls
li2GeneralPolygon() in a loop for each simple polygon. In future releases,
the software pipeline may provide optimized code to process the polygons.

LI-2 Loadable Interfaces 253

9

li2TriangleList() - 3D

The li2TriangleList() function renders lists of single-facing triangles in
device coordinates in the form of triangle strips, triangle stars, or unconnected
triangles. The triangles in a triangle list are of the same type; in other words,
they are either triangle stars, strips, or independent triangles. For a list of the
LI-1 software pipeline routines that call this device pipeline routine, see
Table 10-2 on page 261.

Syntax
void XglDpCtx3d::li2TriangleList(

XglPrimData *pd);

Input Parameters

pd Pointer to an XglPrimData object containing point lists of
single-facing triangle strips, triangle stars, or unconnected
triangles based on the value of the triangle list render flags.

Attributes

A device pipeline must handle the following attributes in addition to the
surface attributes listed in Table 9-3 on page 226.

XglLevel::getRenderFlags()
XglContext3d::getDepthCueInterp()
XglContext3d::getDepthCueMode()
XglContext3d::getHlhsrMode()

Software Pipeline Return Calls

To render triangle strips, the software pipeline checks the level data rendering
flags and calls li2TriangleStrip() . To render filled surfaces, the software
pipeline scan converts triangle stars and independent triangles into lists of
spans. It handles color selection and texture mapping, adds the corresponding
surface DC offsets to the Z value, and calls li3MultiSpan() . (See page 205
for information on texture mapping.) To render hollow triangles or edges, the
function converts the triangle point list into point lists for multipolylines,
assigns the current stroke, and calls the li2MultiPolyline() function.

254 XGL Device Pipeline Porting Guide—May 1996

9

li2TriangleStrip() - 3D

The li2TriangleStrip() function handles single-facing triangle strips. For
a list of the LI-1 software pipeline routines that call this device pipeline
routine, see Table 10-2 on page 261.

Syntax
void XglDpCtx3d::li2TriangleStrip(

XglPrimData *pd);

Input Parameters

pd An XglPrimData object containing point lists of single-
facing triangle strips in device coordinates.

Attributes

A device pipeline must handle the following attributes in addition to the
surface attributes listed in Table 9-3 on page 226.

XglLevel::getRenderFlags()
XglContext3d::getDepthCueInterp()
XglContext3d::getDepthCueMode()
XglContext3d::getHlhsrMode()

Software Pipeline Return Calls

The software pipeline li2TriangleStrip() function first processes the
input point lists into separate triangles. Then, for filled surfaces, the software
pipeline scan converts the triangle strips into lists of spans. It handles color
selection and texture mapping, adds the corresponding DC offsets to the Z
value, and calls li3MultiSpan() . (See page 205 for information on texture
mapping.)

To render hollow surfaces or edges, the software pipeline converts the triangle
point list into lists of points, handles color selection, assigns the current stroke,
and calls the device pipeline li2MultiPolyline() .

255

LI-1 Loadable Interfaces 10

This chapter describes the XGL LI-1 loadable interfaces. Each interface
description includes information about a function’s syntax, arguments, and
attributes. The chapter also presents the following information:

• Deciding which LI-1 interfaces to implement

• Calling the software pipeline for LI-1 functionality

• Data input to LI-1 primitives

As you read this chapter, you will find it helpful to have access to the
following header files:

• XglDpCtx2d.h and XglDpCtx3d.h . These files contain the loadable
interfaces for the device pipeline.

• XglSwpCtx2d.h and XglSwpCtx3d.h . These files contain the loadable
interfaces for the software pipeline.

Note – The interfaces mentioned in this chapter are uncommitted and subject
to change.

.h

256 XGL Device Pipeline Porting Guide—May 1996

10

About the LI-1 Layer
The LI-1 layer specifies the loadable interfaces that lie just below the XGL API.
Functions within the LI-1 layer implement the geometry pipeline for each
primitive. For graphics primitive operations, the functions take as an argument
the points defining the primitive, and transform, light (for the 3D case), clip,
and depth cue (for the 3D case) in preparation for rendering operations. LI-1
routines handle all aspects of geometry processing and all rendering.

LI-1 primitives are appropriate for full acceleration on the device. An XGL
loadable pipeline developer for a high-end graphics platform that supports a
broad range of functionality would probably choose the LI-1 interface as the
basis for an XGL port. Figure 10-1 shows an overview of the pipeline
architecture.

Figure 10-1 LI-1 Pipeline Architecture

LI-1 Software

LI-2 Software
Pipeline

XGL API

LI-1 Device
Pipeline

LI-2 Device
Pipeline

LI-3 Device
Pipeline

Hardware Device

Pipeline

XGL API to Pipeline Layer

LI-1 Loadable Interfaces 257

10

Table 10-1 lists the set of LI-1 interfaces and shows whether the interfaces are
implemented by the software pipeline. Functions that require direct pixel
access or immediate interaction with the device pipeline are not implemented
in software. Functions that are implemented in software are optional for the
device pipeline.

Table 10-1 LI-1 Loadable Pipeline Interfaces

Function 2D 3D Description Swp Dp

li1AnnotationText() ✓ ✓ Renders text in a plane parallel to the
display surface.

✓ Optional

li1DisplayGcache() ✓ ✓ Displays the contents of the Gcache object. ✓ Optional

li1MultiArc() ✓ ✓ Renders a set of arcs. ✓ Optional

li1MultiCircle() ✓ ✓ Renders a set of circles. ✓ Optional

li1MultiEllipticalArc() – ✓ Renders a set of 3D elliptical arcs. ✓ Optional

li1MultiMarker() ✓ ✓ Renders a set of markers. ✓ Optional

li1MultiPolyline() ✓ ✓ Renders a set of polylines. ✓ Optional

li1MultiRectangle() ✓ ✓ Renders a set of rectangles. ✓ Optional

li1MultiSimplePolygon() ✓ ✓ Renders a set of single-bounded polygons. ✓ Optional

li1NurbsCurve() ✓ ✓ Renders a NURBS curve. ✓ Optional

li1NurbsSurf() – ✓ Renders a NURBS surface. ✓ Optional

li1Polygon() ✓ ✓ Renders a single planar polygon. ✓ Optional

li1QuadrilateralMesh() – ✓ Renders a set of connected quadrilateral
polygons.

✓ Optional

li1StrokeText() ✓ ✓ Renders stroke text. ✓ Optional

li1TriangleList() – ✓ Renders a set of triangles arranged as a
triangle strip, a triangle star, or
unconnected triangles.

✓ Optional

li1TriangleStrip() – ✓ Renders a set of connected triangular
polygons.

✓ Optional

li1Accumulate() – ✓ Accumulates images from the draw buffer
of the raster to a specified accumulation
buffer.

✓ Optional

li1ClearAccumulation() – ✓ Clears the accumulation buffer. ✓ Optional

258 XGL Device Pipeline Porting Guide—May 1996

10

Deciding Which LI-1 Interfaces to Implement

The XGL architecture provides you with considerable flexibility in
implementing a device pipeline. You can implement pipelines at the LI-1 level
for every XGL primitive, or you can choose to implement some primitives at
the LI-1 level and some at the LI-2 level. A typical scenario for a device
pipeline is that it will support some combination of attributes and primitives at
the LI-1 level, some at the LI-2 level, and some at the LI-3 level.

At rendering time, the flow of control goes to the device pipeline at the LI-1
level if the device pipeline has implemented an LI-1 function. The pipeline
determines from the setting of API attributes whether it can or cannot render
the primitive at that level. If it can render the primitive, it will generally
perform all the operations necessary for rendering from the LI-1 level to the
hardware. If it cannot render the primitive, it can call the software pipeline to
complete LI-1 operations.

The software pipeline includes a set of support routines that fill in
functionality that a pipeline cannot handle. It is likely that even pipeline ports
that fully accelerate most XGL functionality will fall back to the software

li1CopyBuffer() ✓ ✓ Copies a block of pixels from one buffer to
another.

– Required

li1Flush() ✓ ✓ Causes pending processing to complete. – Optional

li1GetPixel() ✓ ✓ Gets the color value of a pixel. – Required

li1Image() ✓ ✓ Displays a block of pixels. ✓ Optional

li1NewFrame() ✓ ✓ Clears the DC viewport to the background
color.

– Required

li1PickBufferFlush() ✓ ✓ Synchronizes the device’s pick buffer and
the XGL core pick buffer.

– Optional

li1SetMultiPixel() ✓ ✓ Sets the color values for a list of pixels. ✓ Optional

li1SetPixel() ✓ ✓ Sets the color value of a specified pixel. – Required

li1SetPixelRow() ✓ ✓ Sets the color value for a row of pixels. ✓ Optional

Table 10-1 LI-1 Loadable Pipeline Interfaces (Continued)

Function 2D 3D Description Swp Dp

LI-1 Loadable Interfaces 259

10

pipeline for some features, such as particular primitives or some combinations
of XGL attributes. For information on calling the software pipeline, see
“Calling the Software Pipeline” on page 50.

In general, when a device pipeline implements an LI-1 primitive, there is a
match between the primitive-attribute combinations and what the accelerator
can do. Your decision about which primitives to implement for a particular
level depends primarily on the capabilities of your hardware and the needs of
your customers. In addition, if you call the software pipeline to provide some
LI-1 functionality, your decision about which primitives to implement may be
influenced by software pipeline return calls.

Software Pipeline Return Calls

When the software pipeline completes processing at LI-1, it forwards the data
it has processed by calling functions through the opsVec array in the
XglDpCtx object. For example, if the device pipeline calls the software pipeline
multipolyline function at LI-1, when the software pipeline function finishes
processing the geometry, it calls the LI-2 multipolyline function that is set in
the opsVec array. If the device pipeline has implemented polyline
functionality at the LI-2 layer, it will assume control at this point; otherwise,
the opsVec setting will forward the rendering call back to the software
pipeline.

Some software pipeline functions call other LI-1 functions to perform
operations. For example, the software pipeline stroke text li1StrokeText()
function calls the LI-1 multipolyline function to decompose the string of text
into multipolylines. When the software pipeline calls the multipolyline
function, the opsVec array pointer for that primitive determines whether the
device pipeline or the software pipeline will continue processing the geometry
as lines.

Figure 10-2 illustrates a device pipeline that implements polylines but not
stroke text. The device pipeline calls the software pipeline to render stroke text;
the software pipeline calls back the device pipeline multipolyline function
through the opsVec array, and the device pipeline renders the text as
polylines.

260 XGL Device Pipeline Porting Guide—May 1996

10

Figure 10-2 Software Pipeline Multiplexing at LI-1

As you prioritize the list of primitives that you want to accelerate, you may
start with a few basic primitives, such as lines, markers, triangles, and
polygons. Then, for those primitives for which you would like to call the
software pipeline, determine what functions the software pipeline calls when it
returns from processing. For example, if your customer uses arcs but your
hardware does not accelerate arcs, you may decide to use the software pipeline
for arc processing at LI-1. Depending on the input data, the software pipeline
3D li1MultiArc() routine will call one of these routines:
li1MultiPolyline() , li1MultiSimplePolygon(),
li2MultiPolyline() , or li2GeneralPolygon() . If your graphics handler
implements these routines, arc rendering on your device can be partially
accelerated, even though your graphics handler uses the software pipeline for
some arc processing.

xgl_stroke_text()XGL API

Pipelines

Device

XglDpCtx

LI1 text

LI1 line

opsVec

. . .

XGL Software Pipeline

LI-1 multiPolyline
LI-1 polygon
LI-1 text

LI-2 multiPolyline

. . . .

LI1 polygon

LI-2 polygon
LI-2 text

Device Pipeline
Renderers

XGL Core Wrapper

LI-1 Loadable Interfaces 261

10

To determine which functions the software pipeline calls, see Table 10-2 or refer
to the description of each primitive in the interface description sections in this
chapter. Table 10-2 shows the mapping of the software pipeline LI-1 functions
to the device pipeline LI-1 or LI-2 functions. If you call one of the software
pipeline functions listed on the left, you may want to implement some or all of
the marked functions listed to the right in your graphics handler. You can think
of the functions to the right as being downstream of the software pipeline
function that calls them.

In this table, “D” indicates a function that the software pipeline calls directly;
“I” indicates a function that is called indirectly by a function downstream from
the LI-1 function. Note that a hardware port of a given primitive at the LI-1
layer is free to ignore the layers below it and call whatever functions it wishes.
Note also that surface or fill primitives call LI-1 or LI-2 polylines for fill
primitives with edges turned on.

Table 10-2 Software Pipeline Calls to Device Pipeline Functions

Software Pipeline D
ev

ic
e

P
ip

el
in

e

li
1M

u
lt

iP
ol

yl
in

e

li
1P

ol
yg

on

li
1M

u
lt

iS
im

p
le

P
ol

yg
on

li
1M

u
lt

iM
ar

k
er

li
1T

ri
an

gl
eL

is
t

li
1T

ri
an

gl
eS

tr
ip

li
1Q

u
ad

ri
la

te
ra

lM
es

h

li
2M

u
lt

iP
ol

yl
in

e

li
2M

u
lt

iD
ot

li
2M

u
lt

iS
im

p
le

P
ol

yg
on

li
2G

en
er

al
P

ol
yg

on

li
2M

u
lt

iE
ll

ip
ti

ca
lA

rc

li
2M

u
lt

iE
ll

ip
se

li
2T

ri
an

gl
eL

is
t

li
2T

ri
an

gl
eS

tr
ip

li
3M

u
lt

iS
p

an

li
3M

u
lt

iD
ot

li
3V

ec
to

r
li1AnnotationText - 2D/3D D I I

li1MultiArc - 2D D D I I D I I

li1MultiArc - 3D D I D D D I I

li1MultiCircle - 2D D I D I

li1MultiCircle - 3D I D D I

li1MultiEllipticalArc - 3D D I D D D I I

li1MultiMarker - 2D/3D D I D I I I

li1MultiPolyline - 2D/3D D I I

li1MultiRectangle - 2D I D I I

li1MultiRectangle - 3D I D D I

li1MultiSimplePolygon - 2D D I I

li1MultiSimplePolygon - 3D D D I I

262 XGL Device Pipeline Porting Guide—May 1996

10

The primitive li1DisplayGcache() is an especially multiplexed primitive.
Depending on the geometry in the Gcache, 2D li1DisplayGcache() calls the
following LI-1 primitives:

• li1Marker()
• li1MultiPolyline()
• li1MultiSimplePolygon()
• li1Polygon()
• li1NurbsCurve()

For 3D, li1DisplayGcache() may call any of the above and

• li1NurbsSurf()
• li1TriangleStrip()

Note – You can use the RefDpCtx utility object to render LI-3 primitives and
the following LI-1 raster primitives: li1NewFrame(), li1SetPixel() ,
li1SetPixelRow() , li1GetPixel() , li1SetMultiPixel() ,
li1CopyBuffer() . For information on RefDpCtx, see page 207.

li1NurbsCurve - 2D/3D D D I I I I

li1NurbsSurf - 3D D D D D I I I I I

li1Polygon - 2D/3D D I I

li1QuadrilateralMesh - 3D D I I

li1StrokeText - 2D/3D D I I I

li1TriangleList - 3D D D D I

li1TriangleStrip - 3D D D I

Table 10-2 Software Pipeline Calls to Device Pipeline Functions (Continued)

Software Pipeline D
ev

ic
e

P
ip

el
in

e

li
1M

u
lt

iP
ol

yl
in

e

li
1P

ol
yg

on

li
1M

u
lt

iS
im

p
le

P
ol

yg
on

li
1M

u
lt

iM
ar

k
er

li
1T

ri
an

gl
eL

is
t

li
1T

ri
an

gl
eS

tr
ip

li
1Q

u
ad

ri
la

te
ra

lM
es

h

li
2M

u
lt

iP
ol

yl
in

e

li
2M

u
lt

iD
ot

li
2M

u
lt

iS
im

p
le

P
ol

yg
on

li
2G

en
er

al
P

ol
yg

on

li
2M

u
lt

iE
ll

ip
ti

ca
lA

rc

li
2M

u
lt

iE
ll

ip
se

li
2T

ri
an

gl
eL

is
t

li
2T

ri
an

gl
eS

tr
ip

li
3M

u
lt

iS
p

an

li
3M

u
lt

iD
ot

li
3V

ec
to

r

LI-1 Loadable Interfaces 263

10

Window Locking Around Hardware Access

All LI-1 pipelines must lock and unlock the window around any operation that
could alter the screen display. This prevents the window clip lists from
changing during rendering. For information on window lock and unlock
macros, see Chapter 7.

Handling Invalid Data

The device pipeline is responsible for checking for invalid or degenerate data
from the application. For example, the device pipeline li1MultiPolyline()
function should check the number of vertices for each polyline. When the
number of vertices for a polyline is 0 or 1, the pipeline must handle this case
appropriately. Typically, a a pipeline will simply return from the primitive. No
geometry need be rendered, but the device pipeline must handle the case
gracefully without issuing an error message.

The XGL Reference Manual documents the data that the application must pass
in for each primitive and also notes restrictions that the application must
follow. For example, the center point of each arc in an arc list must have the
flag set properly. Refer to the man page for each primitive for this information.

The device pipeline should check for the cases listed in Table 10-3:

Table 10-3 Handling Invalid Data

Primitive Invalid Data

xgl_multipolyline() pl[i].num_pts less than 2

xgl_multi_simple_polygon() pl[i].num_pts less than 3

xgl_polygon() pl[i].num_pts less than 3

xgl_quadrilateral_mesh() row_dim less than 2 or col_dim less than 2

xgl_triangle_list() pl->num_pts less than 3

xgl_triangle_strip() pl->num_pts less than 3

264 XGL Device Pipeline Porting Guide—May 1996

10

Picking

It is the responsibility of the LI-1 primitive functions to handle picking, if
picking is enabled. If a particular device pipeline can do picking with its
hardware, then the pipeline can either cache pick hits as they occur, or it can
immediately write them into the XGL core pick buffer. In the former case, if the
XGL pick buffer requires synchronization (because a software function is about
to be used to pick a particular primitive, or the API has called
xgl_pick_get_identifiers), then the LI-1 routine
li1PickBufferFlush() function is called to transfer the cached hardware
pick information (if any). For example, if the device pipeline picks an object,
and then the software pipeline is called to pick another object with the same
pick ID, the li1PickBufferFlush() function is called, and only one pick is
placed in the pick buffer. The XGL core merges device pipeline LI-1 pick events
and LI-3 pick events.

If Z-buffering and picking are enabled, and the device pipeline calls the
software pipeline for rendering at LI-1, the software pipeline determines
whether the primitive is within the pick aperture. The software pipeline
returns the portion of the original primitive that lay within the pick aperture to
the device pipeline for LI-2 rendering. At LI-2, the device pipeline tests
whether any of the pixels within the pick aperture are visible based on the
Z-comparison method, and if so, it records a pick event.

If the device pipeline calls the software pipeline for LI-2 rendering, the
software pipeline examines the current attributes and scan converts wide lines.
It passes the span lines that lie within the pick aperture back to the device
pipeline LI-3 routines. LI-1 and LI-2 have already pruned the geometric data to
be inside the pick aperture; LI-3 functions test whether the geometry is visible
based upon the Z-comparison method. The 3D LI-3 primitive functions return
a Boolean parameter picked. This parameter returns TRUE if the primitive was
picked via Z-buffer-based picking (if Z-buffering is on and picking is on). Note
that LI-3 functions are only called to do picking if Z-buffering is enabled.

LI-1 Loadable Interfaces 265

10

Hidden Surface Data and Maximum Z Value

The operator xgl_context_new_frame() clears the Z buffer if the attribute
XGL_CTX_NEW_FRAME_ACTION specifies
XGL_CTX_NEW_FRAME_HLHSR_ACTION and the attribute
XGL_3D_CTX_HLHSR_MODE is set to XGL_HLHSR_Z_BUFFER. To clear the Z
buffer, the device pipeline needs to determine the Z buffer depth. To determine
this, use ctx->getHlhsrData() to get the z_value field of the
Xgl_hlhsr_data structure.

At initialization, the Xgl_hlhsr_data field z_value is set to infinity. If a
pipeline tries to use this value to clear the Z buffer, a floating point exception
occurs. Therefore, all device pipelines should check the z_value returned
from getHlhsrData() , and if the z_value is larger than the device
maximum Z value, the device maximum Z can be used. To determine the
device maximum Z value, use dpDev->getMaxZ() or
device->getMaximumCoordinates() . Note that z_value is definable from
the API, so device pipelines should use the value defined by the user if it is less
than their device’s maximum Z value. For more information, see the man page
on XGL_3D_CTX_HLHSR_DATA.

Hints for Rendering Transparent 3D Surfaces at LI-1

The device pipeline can optimize the rendering of transparent surfaces at LI-1
or let the software pipeline handle the rendering of transparent surfaces. To
handle transparency, the pipeline must first determine whether the surface is
transparent, and then it can decide whether to optimize the rendering of the
surface. Transparency is available for 3D surfaces only. Follow these steps:

1. After face distinguishing has been done, determine whether the surface is
transparent or opaque. You can use the XgliUtIsTransparent utilities to
determine this; for information on these utilities, see Chapter 12, “Utilities”.

2. Determine what action to take based on the XGL attribute
XGL_3D_CTX_BLEND_DRAW_MODE. Optimized surface rendering uses the
device’s accelerated pipeline to draw the interior of opaque surfaces and/or
edges. Add the following code to your LI-1 implementation of each 3D
surface primitive. Add the code after front and back distinguishing and
after determining whether the surface is opaque or transparent

266 XGL Device Pipeline Porting Guide—May 1996

10

To let the software pipeline handle all rendering of the surfaces, add the
following code to your implementation of each 3D surface primitive. Add the
code after front and back face distinguishing and after determining whether
the surface is opaque or transparent.

if (surface is not transparent /* returned by the util */){
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED){
 // draw opaque surface but not the edges
 if (XGL_CTX_SURF_EDGE_FLAG is TRUE){
 // Do this by setting edges to off and
 // restoring the edge flag later.
 // set things up so that only INTERIOR is drawn,
 // edges are NOT drawn
 // continue drawing the interior
 } else if (blend draw mode == XGL_BLEND_DRAW_BLENDED) {
 // draw nothing or draw edges only if edges are on
 // if (XGL_CTX_SURF_EDGE_FLAG is TRUE) {
 // Do this by setting the interior to
 // empty and later restoring the fill style
 // set up so that only EDGES are drawn,
 } else {
 return 1; // nothing needs to be drawn
 }
 }
 } else // surface is transparent {
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED)
 return 1; // nothing needs to be drawn
 call the software pipeline
 }

if (surface is not transparent) {
 if (blend draw mode != XGL_BLEND_DRAW_ALL) {
 call the software pipeline
 }
 } else // surface is transparent {
 if (blend draw mode == XGL_BLEND_DRAW_NOT_BLENDED)
 return 1; // nothing needs to be drawn
 call the software pipeline
 }

LI-1 Loadable Interfaces 267

10

If a device does face distinguishing and face culling in hardware, it can
optimize code that calls the software pipeline for transparency. Use an
algorithm similar to that shown “Calling the Software Pipeline for Texture
Mapping at LI-1.”

Calling the Software Pipeline for Texture Mapping at LI-1

The application can enable texture mapping for front or back surfaces. Two
conditions must be met for texture mapping to be enabled: The application
must provide texture mapping objects using the RGB window raster, and the
input point type must be a data point type if the texture coordinate source is
DATA. If a device has not implemented texture mapping, it can call the software
pipeline to do texturing.

At the LI-1 level, the device pipeline can optimize its call to the software
pipeline for texture mapping by determining whether the application has
requested texture mapping for only front surfaces or only back surfaces. In
either of those cases, the device pipeline can determine whether the surface is
textured and call the software pipeline only if texture mapping is required. The
following code sample provides an example.

if (!ctx->getSurfFaceDistinguish()){
 if (ctx->getFrontTexturing())
 // call the software pipeline
}
else {
 if (ctx->getSurfFaceCull() == XGL_CULL_BACK) {
 if (ctx->getFrontTexturing())
 // call the software pipeline
 }
 else if (ctx->getSurfFaceCull() == XGL_CULL_FRONT) {
 if (ctx->getBackTexturing())
 // call the software pipeline
 }
 else { // No culling
 if ((ctx->getFrontTexturing() ||
 ctx->getBackTexturing()))
 // call the software pipeline
 }
}

268 XGL Device Pipeline Porting Guide—May 1996

10

In this code sample, the device pipeline first determines whether face
distinguishing is enabled. If it is not, it checks whether texture mapping objects
are present for texturing front faces. If so, the device pipeline calls the software
pipeline. If face distinguishing is enabled, the code determines whether back
faces are culled and front texture mapping is on. If so, the front surfaces can be
sent to the software pipeline for texture mapping. Similarly, if front faces are
culled and texture mapping is on for back surfaces, then the back surfaces can
be sent to the software pipeline. Finally, if face culling is not enabled and either
front or back texture mapping is enabled, the device pipeline can send all the
surfaces to the software pipeline for texture mapping.

Antialiasing and Dithering

If your device does not perform antialiasing or dithering in hardware, your
pipeline can use the software pipeline. For software pipeline dithering, check
for the following attribute values and then call the software pipeline.

For software pipeline antialiasing, check for the value of these attributes for 3D
markers:

For 3D strokes, check for these attributes:

if ((device->getColorType() == XGL_COLOR_RGB) &&
(device->getRealColorType() != XGL_COLOR_INDEX)

// if hw doesn’t perform dithering, fall back to the software pipe
swp->Li1{primitive}();

if (ctx->getMarkerAaBlendEq() != XGL_BLEND_NONE ||
ctx->getMarkerAaFilterWidth() > 1)

// fall back to swp if hw doesn’t handle antialiasing of dots
swp->li1MultiMarker(pl);

if (curr_stroke->getAaBlendEq()) != XGL_BLEND_NONE ||
curr_stroke->curr_stroke->getAaFilterWidth() > 1)

// fall back to swp if hw doesn’t handle antialiasing of strokes
swp->li1MultiPolyline(bbox, num_lists, pl);

LI-1 Loadable Interfaces 269

10

Data Input to the LI-1 Layer

A thin layer of device-independent XGL code passes the application’s
primitive data unchanged to the LI-1 device pipeline. This section provides
several examples of ways to handle application data.

Accessing Application Data

The example below shows how a device pipeline might get 2D multipolyline
data from the application and draw the multipolyline.

void XglDpCtx2dSample::li1MultiPolyline(
Xgl_bbox* bounding box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *pl);

{
// NOTE: This example assumes a point type of Xgl_pt_f2d
//
Xgl_pt_f2d *pt;
int num_pts;

// Loop through the point lists
for (; num_pt_lists>0 ; num_pt_lists--, pl++) {

// Check for at least 2 vertices per point list
if ((num_pts = pl->num_pts) < 2)

continue;

// Send all vertices to hardware
for (pt=pl->pts.f2d ; num_pts>0 ; num_pts--, pt++) {

send_xcoord_to_hardware(pt->x);
send_ycoord_to_hardware(pt->y);

}
}

}

270 XGL Device Pipeline Porting Guide—May 1996

10

The next example shows how to access facet data for 3D surfaces. This example
assumes that xgl_multi_simple_polygon() has been called with facet
colors and that lighting is enabled. This requires that the device pipeline send
down a color for each facet, as well as a normal for each vertex.

void XglDpCtx3dSample::li1MultiSimplePolygon(
Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bbox,
Xg_usgn32 num_pt_lists,
Xgl_pt_list pl);

{
// NOTE: This example assumes a point type of
// Xgl_pt_normal_f3d and a facet type of Xgl_color_facet

int num_pts;
Xgl_color *fc=facets->facet.color_facets;

// Loop through all the point lists
for (; num_pt_lists>0 ; num_pt_lists--, pl++ , fc++) {

// Check for at least 3 vertices per point list
if ((num_pts = pl->num_pts) < 3)

continue;

// Set the color for the next facet
send_rcolor_to_hardware(fc->color.rgb.r);
send_gcolor_to_hardware(fc->color.rgb.g);
send_bcolor_to_hardware(fc->color.rgb.b);

// Send all vertices and normals to hardware
for (pt=pl->pts.normal_f3d ; num_pts>0 ; num_pts--,

 pt++) {

send_xnorm_to_hardware(pt->normal.x);
send_ynorm_to_hardware(pt->normal.y);
send_znorm_to_hardware(pt->normal.z);

send_xcoord_to_hardware(pt->x);
send_ycoord_to_hardware(pt->y);
send_zcoord_to_hardware(pt->z);

}
}

}

LI-1 Loadable Interfaces 271

10

Data Access for DMA Devices

The following example shows how a device that uses direct memory access
(DMA) might access data. Devices that use DMA to transfer data require only
a starting point from which to copy the data and the size of the data block
(together, perhaps, with some header block that describes the type of data).

The geometric information pointed to by the Xgl_pt_list structure is guaranteed
to always be contiguous. This is true even if a device pipeline is called by the
software pipeline. Thus, this interface is appropriate for devices that use DMA
to communicate data to their hardware or copy it across from the host as do
the two previous examples.

Point Lists with Data Mapping Values

Devices that use DMA to transfer data to the hardware may need information
on point size. The size of a point is the size of its data type. For example, the
API point type Xgl_pt_color_normal_f3d has geometry, color, and normal
information and is defined as:

void XglDpCtx2dDmaExample::li1MultiPolyline(
Xgl_bbox* bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list* pl);

{
// NOTE: This example assumes a point type of Xgl_pt_f2d
// Loop through the point lists.
for (; num_pt_lists>0 ; num_pt_lists--, pl++) {

//
// Check for at least 2 vertices per point list
//
if (pl->num_pts < 2)

continue;
// Send all vertices to hardware
//
wait_for_outstanding_dma_to_finish();
send_dma_ptlist_to_hardware(pl->pts.f2d,

pl->num_pts*sizeof(Xgl_pt_f2d));
}

}

272 XGL Device Pipeline Porting Guide—May 1996

10

struct Xgl_pt_color_normal_f3d {
float x, y, z;
Xgl_color color;
Xgl_pt_f3d normal;

};

The point might look like this:

The point size is the size of the entire point, except when data-mapping values
are present. When data-mapping values are present in the point list, the point
size is equal to the sum of the sizes of all of the fields as mentioned above, but
only one of the data values is accounted for. For instance, if the point type is
Xgl_pt_data_f3d, and there are three data values per point, then the point size is
16 (x,y,z = 12 bytes, plus 4 bytes for the first data value). To calculate the
correct point size the following equation must be used:

true_point_size = point_size + (num_data_values - 1)*sizeof(float)

The number of data values is recorded in a field of Xgl_pt_list. The reason this
extra calculation is necessary is that some primitives (like multisimple
polygon) take an array of point lists as an argument. The number of data
values per vertex in each list can be different; thus, the point size can be
different for each list.

Note – Be sure to calculate the correct point type size for LI-1 markers and
polylines if the point type contains data even though the data information is
not used.

x y z r g b nx ny nz

Point size

Geom Color Normal

LI-1 Loadable Interfaces 273

10

API Primitive Calls Mapped to LI-1 Functions

Table 10-4 shows the mapping of the 2D API primitives to the 2D LI-1
functions.

Table 10-5 shows the mapping of the 3D API primitives to the 3D LI-1
functions.

Table 10-4 Mapping of 2D Primitives to 2D LI-1 Functions

2D Primitives LI-1 Functions

xgl_annotation_text() li1AnnotationText()

xgl_context_display_gcache() li1DisplayGcache()

xgl_multiarc() li1MultiArc()

xgl_multicircle() li1MultiCircle()

xgl_multimarker() li1MultiMarker()

xgl_multipolyline() li1MultiPolyline()

xgl_multirectangle() li1MultiRectangle()

xgl_multi_simple_polygon() li1MultiSimplePolygon()

xgl_nurbs_curve() li1NurbsCurve()

xgl_polygon() li1Polygon()

xgl_stroke_text() li1StrokeText()

Table 10-5 Mapping of 3D API Primitives to 3D LI-1 Functions

3D Primitives LI-1 Functions

xgl_annotation_text() li1AnnotationText()

xgl_context_display_gcache() li1DisplayGcache()

xgl_multiarc() li1MultiArc()

xgl_multicircle() li1MultiCircle()

xgl_multi_elliptical_arc() li1MultiEllipticalArc()

xgl_multimarker() li1MultiMarker()

xgl_multipolyline() li1MultiPolyline()

xgl_multirectangle() li1MultiRectangle()

274 XGL Device Pipeline Porting Guide—May 1996

10

Table 10-6 shows the mapping of the API raster and pixel operators to the LI-1
functions.

xgl_multi_simple_polygon() li1MultiSimplePolygon()

xgl_nurbs_curve() li1NurbsCurve()

xgl_nurbs_surface() li1NurbsSurf()

xgl_polygon() li1Polygon()

xgl_quadrilateral_mesh() li1QuadrilateralMesh()

xgl_stroke_text() li1StrokeText()

xgl_triangle_list() li1TriangleList()

xgl_triangle_strip() li1TriangleStrip()

Table 10-6 Mapping of API Utility Functions to LI-1 Functions

XGL Utility Functions LI-1 Functions

xgl_context_accumulate() li1Accumulate()

xgl_context_clear_accumulation() li1ClearAccumulation()

xgl_context_new_frame() li1NewFrame()

xgl_context_copy_buffer() li1CopyBuffer()

xgl_context_flush() li1Flush()

xgl_context_get_pick_identifiers() li1PickBufferFlush()

xgl_context_get_pixel() li1GetPixel()

xgl_image() li1Image()

xgl_context_set_multi_pixel() li1SetMultiPixel()

xgl_context_set_pixel() li1SetPixel()

xgl_context_set_pixel_row() li1SetPixelRow()

Table 10-5 Mapping of 3D API Primitives to 3D LI-1 Functions (Continued)

3D Primitives LI-1 Functions

LI-1 Loadable Interfaces 275

10

LI-1 Interfaces

li1AnnotationText() - 2D/3D

li1AnnotationText() renders text on a plane parallel to the display surface.
See the xgl_annotation_text man page for information on functionality
that the device pipeline needs to handle. The device pipeline must account for
some or all of the attributes listed in the man page.

Syntax
[2D]void XglDpCtx2d::li1AnnotationText(

void* string,
Xgl_pt_f2d* ref_pos,
Xgl_pt_f2d* ann_pos);

[3D]void XglDpCtx3d::li1AnnotationText(
void* string,
Xgl_pt_f3d* ref_pos,
Xgl_pt_f3d* ann_pos);

Input Parameters

string A NULL-terminated C-style list of characters if the character
encoding is single-string encoding, or a pointer to an XGL
Xgl_mono_text_list structure if the character encoding is
multi-string encoding.

ref_pos The reference point for the text string.

ann_pos ann_pos is added to the transformed reference position to
obtain the annotation point.

Software Pipeline Return Calls

The software pipeline li1AnnotationText() translates the input string into
points in a multipolyline point list and calls the opsVec[] array entry for
li1MultiPolyline() .

276 XGL Device Pipeline Porting Guide—May 1996

10

li1DisplayGcache() - 2D/3D

The li1DisplayGcache() function renders the geometry stored in the XGL
device-indepedent Gcache object. The li1DisplayGcache() operator is
different from other LI-1 functions because the Gcache object is an object that
can contain any of a number of different primitives. See the Solaris XGL
Reference Manual for information on Gcache functions and attributes.

The main parameter to li1DisplayGcache() is a pointer to an XGL Gcache
object. This object is the implementation of the API Gcache functions, so it has
member functions for getting and setting attributes and functions for caching
incoming primitives. The pipeline does not need to use these functions.

The pipeline’s task is to determine what type of primitive the Gcache contains,
and then access the data for that primitive and display it. However, there is
relatively little advantage for a pipeline to supply its own
li1DisplayGcache() function because the software pipeline handles all the
work of determining the primitive, casting the data structures to the correct
primitive, and calling the LI-1 function for that primitive. For example, if a text
string is stored in a Gcache, the text is converted into polylines. When
xgl_display_gcache() is called, the device pipeline can use the software
pipeline’s li1DisplayGcache() function to access the data for the polylines
and then call the li1MultiPolyline() function (which the device pipeline
may or may not be support). Note that the software pipeline calls LI-1
functions for each of the Gcache primitives.

A device pipeline would want to implement li1DisplayGcache() for one of
two reasons:

• If for some reason the performance gain is such that the device pipeline can
access the stored data faster than the XGL core can, and if the applications
that the device pipeline developer wants to support will be using Gcaches
extensively, it may be worth the effort to implement
li1DisplayGcache() .

• The XGL architecture provides a mechanism for the device pipeline to store
device-dependent data within the Gcache. The device pipeline may be able
to access the device-dependent data more efficiently than if device-
independent Gcache data is used. Alternately, the device pipeline may
choose to store the data on the device and then keep a pointer to the data in
the Gcache; this approach would cut down on data transport to the device.

LI-1 Loadable Interfaces 277

10

Information on the mechanism for storing device-dependent data in the
Gcache is provided below.

Syntax
Xgl_cache_display XglDpCtx{2,3d}::li1DisplayGcache(

XglGcache* gcache
Xgl_boolean test,
Xgl_boolean display);

Input Parameters

gcache Pointer to an XGL Gcache object.

test Boolean value that determines whether the saved state of
the Gcache (attribute settings) is compared with the current
state in the Context. For more information, see the
xgl_context_display_gcache() man page.

display Boolean value that determines whether the Gcache is
rendered. See the xgl_context_display_gcache()
man page for more information.

What You Need to Know to Implement li1DisplayGcache()

A device pipeline implementation of li1DisplayGcache() must use the
Gcache object in XglGcache.h as well as any one of a number of other objects
that are defined as XglGcachePrim objects in XglGcachePrim*.h . The Gcache
primitive objects are:

XGL_GCACHE_PRIM_MARKER Markers
XGL_GCACHE_PRIM_MPLINE Multipolylines
XGL_GCACHE_PRIM_PGON Polygons
XGL_GCACHE_PRIM_MSPG Multisimple polygons
XGL_GCACHE_PRIM_NURBS_CURVE NURBS curves
XGL_GCACHE_PRIM_NURBS_SURF NURBS surfaces
XGL_GCACHE_PRIM_MELLA Multi elliptical arcs
XGL_GCACHE_PRIM_TEXT Stroke text
XGL_GCACHE_PRIM_TLIST Triangle lists
XGL_GCACHE_PRIM_TSTRIP Triangle strips

278 XGL Device Pipeline Porting Guide—May 1996

10

The li1DisplayGcache() function does the following: First, it processes the
arguments test and display appropriately. Second, it calls the Gcache object
getOrigPrimType() function, and, depending on the original primitive type,
li1DisplayGcache() uses the Gcache object getGcachePrim() function to
get a pointer to the object representing the cached geometry. The pointer must be
cast to the object for that primitive type. A device pipeline implementation of
li1DisplayGcache() must handle the attributes for each primitive that may
be called to render the geometry in the Gcache.

The following excerpt from the software pipeline 3D li1DisplayGcache()
function illustrates the sequence of events in rendering for two of the Gcache
primitive types. See Appendix D on page 435 for the complete software pipeline
li1DisplayGcache() routine.

XglSwpCtx3dDef::li1DisplayGcache(Xgl_gcache gcache_obj,
 Xgl_boolean test,
 Xgl_boolean display,
 Xgl_boolean do_retained)
{
 XglGcache* gcache;
 XglGcachePrim* prim;
 Xgl_cache_display ret_val;
 Xgl_boolean do_display;
 Xgl_usgn32 num_model_clip_planes;

 gcache = (XglGcache*) gcache_obj;

 prim = gcache->getGcachePrim();
 if (prim == NULL) {
 return (XGL_CACHE_NOT_CHECKED);
 }

...
 switch (gcache->getOrigPrimType()) {
 case XGL_PRIM_STROKE_TEXT:

{
 XglGcachePrimText*gp_text = (XglGcachePrimText *)

 gcache->getGcachePrim();
 Xgl_geom_status status;

 if (gp_text->getDisplayPtListList()->num_pt_lists < 1)
return ret_val;

 xgl_context_check_bbox(ctx,XGL_PRIM_MULTIPOLYLINE,
 gp_text->getPlm()->get_pll_bbox(),&status);

LI-1 Loadable Interfaces 279

10

XglGcache Functions Relevant to the Pipeline

The XglGcache.h functions relevant to the pipeline are listed in Table 10-7.

 if ((status & XGL_GEOM_STATUS_VIEW_REJECT) ||
(status & XGL_GEOM_STATUS_MODEL_REJECT)) return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*, Xgl_boolean),
 (NULL, gp_text->getDisplayPtListList()->num_pt_lists,
 gp_text->getDisplayPtListList()->pt_lists, FALSE))

}
break;

 case XGL_PRIM_MULTIMARKER:
{
 XglGcachePrimMarker*gp_marker = (XglGcachePrimMarker

 *)gcache->getGcachePrim();
 Xgl_pt_list_list* pll = gp_marker

 ->getDisplayPtListList();

 if (pll->num_pt_lists < 1)
 return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (pll->pt_lists, FALSE))

}
break;

 ...
}

Table 10-7 Gcache Interfaces

Function Description

getOrigPrimType() Returns the type of theoriginal primitive.

getGcachePrim() Returns the type of the cached primitive.

getPlm() Returns a point list manager object. See
PlManager.h .

getFlm() Returns a facet list manager object. See
FlManager.h .

280 XGL Device Pipeline Porting Guide—May 1996

10

Device-Dependent Gcache

The device-dependent (DD) Gcache facility allows the device pipeline to store
device-dependent information with the Gcache. This device-dependent
information may allow the device pipeline to render the Gcache more
efficiently than the XGL core can; however, the device-independent part of the
Gcache remains, and it is available for the device to use. This allows the device
to fall back to the software pipeline for the display of the Gcache.

The API interface to the Gcache object does not change. The application will
not know about the device-dependent part of a Gcache. The validation of a
Gcache is still done by the XGL core; only the display of the Gcache is device
dependent.

The approach for device-dependent Gcache information is that the device
pipeline translates the DI Gcache primitive information into its own format.
The device pipeline then associates this translation with the DI Gcache. There
is a protocol between the DI Gcache and the device pipeline to manage the life
cycle of the translation.

Semantics of Device-Dependent Gcache
There is no explicit function to create a DD Gcache. When the device pipeline’s
li1DisplayGcache() function is called, it can implicitly create a DD
translation. It is then up to the device pipeline to associate this translation with
the DI Gcache. Once the association is made, the DI Gcache and the device
must tell each other to remove the DD translation for the DI Gcache. The
following actions cause the DD translation to be removed from the DI Gcache:

• The device is destroyed (where device is a DpCtx, DpDev, DpMgr, or DpLib).

• The device decides the translation is no longer valid (that is, out of resource,
attributes changed, etc).

• The DI Gcache is destroyed.

• The DI Gcache gets a new primitive.

The DI Gcache and the device use a translation identifier to refer to the DD
translation. This ID must be an address that is unique within the XGL system;
using the address of a DpCtx, DpDev, DpMgr, or DpLib object is suggested.
This allows the device to choose the scope of the DD translation; that is, the

LI-1 Loadable Interfaces 281

10

translation could be valid for just a DpCtx or for all DpCtx’s associated with a
DpMgr. Thus, the ID is the address of an object already under the control of the
device pipeline.

The same ID is used for all Gcaches. Thus, for example, for every Gcache, the
pipeline can use the address of the DpCtx object as the identifier to show that
this DD translation belongs to this DpCtx object. The ID of a DD translation is
the same for all the translations under the control of the device pipeline.
(Remember that for each unique Context and Device pair, there is a unique
DpCtx object, so if there are two Contexts associated with a Device, there is a
unique DpCtx object for each Context.)

XglGcache Functions for Managing a DD Translation
The functions listed in Table 10-8 allow a device to manage a DD translation.

Table 10-8 XglGcache DD Gcache Methods

Function Description

Xgl_boolean
addDdTranslation
 (XgliDdGcacheTranslation*
 dd_trans)

The device pipeline tells the DI Gcache to add a new translation.
The new object is added to the DI Gcache’s store of translations.
TRUE is returned if the operation was successful, and FALSE is
returned otherwise. It is up to the device pipeline to delete dd_trans
if the addition fails. It is not guaranteed that a DI Gcache will
accept a DD translation. The device must ask the Gcache object
whether it will accept the translation. Therefore, you should write
code to anticipate the case in which a DD translation is not
accepted. Currently, a Gcache can store only one DD translation. If
more than one DD translation is added, the second translation is
not allowed.

XgliDdGcacheTranslation*
lookUpTranslation
 (void* dd_trans_id,

Xgl_boolean* room_for_more)

The device pipeline uses this function to look up a dd_trans_id to
see if this Gcache has a dd_trans for this pipeline. If the look up
fails, NULL is returned. In this case, the room_for_more boolean
indicates if the DI Gcache will accept new translations. If it is
FALSE, the pipeline should not build a new translation or call
addDdTranslation() .

282 XGL Device Pipeline Porting Guide—May 1996

10

DD Translation Object
The class XgliDdGcacheTranslation in the file DdGcacheTranslation.h acts
as a wrapper for the DD translation. This class provides a standard way of
handling DD translations. Devices should derive this class for their own use
and then add specific data for the DD Gcache.

Thus, to create a DD translation object, the pipeline derives the
XgliDdGcacheTranslation class, creates an object of the subclass, and returns a
pointer to the object and casts the pointer as an XgliDdGcacheTranslation
pointer.

Example for Device-Dependent Gcache
The following pseudo-code is an example device pipeline
li1DisplayGcache() function. The example shows how the Gcache object
functions are used to manage the DD translations.

In this example, the call to lookUpDdTranslation() returns a pointer to the
DD translation object, thus getting the ID for the DD translation. In addition, a
pointer to a Boolean value that indicates whether there is room for a
translation is returned. If dd_trans is NULL and room_for_more is TRUE, then a
DD Gcache object does not already exist, so the pipeline can build its own.
When the DD Gcache is built, the function addDdTranslation() stores it in
the Gcache, and it can then be displayed.

void
removeDdTranslation
 (void* dd_trans_id)

This function is invoked by the pipeline to tell the DI Gcache to
remove the DD translation with the given ID. The XGL core does
not delete the translation. This function enables the device to clean
up its database of DD translations before deleting the DD
translation object. This is easier to do with an explicit destroy
function (which is only called by the DI Gcache) than by having the
XGL core delete the translation. The DI Gcache will call the destroy
function, and then the DD code should clean up the translation and
delete the object.

Table 10-8 XglGcache DD Gcache Methods

Function Description

LI-1 Loadable Interfaces 283

10

It is up to the device pipeline to determine whether dd_trans is valid for one
context, one device, one particular XglDpMgr object (which would include all
windows on a frame buffer), etc. This is a device-dependent decision. Most
applications use one context and one device.

Whenever the device pipeline object that is managing the DD Gcache is
destroyed, as part of the clean up sequence the device pipeline must destroy
the DD translations.

// DpCtx Li1DisplayGcache
// This is where dd translations are build.
//

DpCtx::Li1DisplayGcache(.., di_gcache, ..)
{

Xgl_boolean room_for_more;
XgliDdGcacheTranslation* dd_tran;

dd_tran = di_gcache->lookUpDdTranslation(tran_id,
 &room_for_more);

if ((dd_tran == NULL) && room_for_more) {
// build dd_tran

dd_tran = build_my_dd_gcache();
if (di_gcache->addDdTranslation(dd_tran) == FALSE) {

delete dd_tran;
 dd_tran = NULL;

 }
}

if (dd_tran != NULL) {
my_display_dd_gcache(dd_tran);

}
}

//
// Dp Object (DpCtx, DpDev, DpMgr, DpLib) which has Gcache
// translation is destroyed:

Dp::destroy_translations()
{

// DI Gcache removes translations given translation ID
 // assuming that the pipeline has a list of DD translations

284 XGL Device Pipeline Porting Guide—May 1996

10

 // if one translation is destroyed, manage the list

 foreach dd_trans in list of translations {
 dd_trans->getDiGcache()->removeDdTranslation(trans_id);

 // clean up next/prev pointers
delete dd_trans;
}

}
// Sample XgliDdGcacheTranlation destroy function
void
XgliDdGcacheTranlation::destroy()
{

// unlink this dd translation from lists
// do device-dependent operations to release resources
// and clean up data structures

delete this;
}

LI-1 Loadable Interfaces 285

10

li1MultiArc() - 2D

This function draws a list of arcs in the plane of the view surface. See the
xgl_multiarc() man page for a description of the input data structure and a
description of the functionality that the device pipeline needs to handle. The
device pipeline must handle some or all of the attributes listed in the man
page.

Syntax
void XglDpCtx2d::li1MultiArc(

Xgl_arc_list *arc_list);

Input Parameters

arc_list A pointer to the list of arcs to draw.

Software Pipeline Return Calls

The software pipeline 2D li1MultiArc() function transforms a list of
circular arcs in model coordinates into a list of elliptical arcs described in
device coordinates. For each elliptical arc that needs to be clipped, or if picking
is enabled, the elliptical arc is broken up into a list of:

• Polylines (for open arcs). The polylines are passed to the opsVec entry for
li1MultiPolyline() .

• Polygons (for filled arcs). The polygons are passed to the opsVec entry for
li1Polygon() .

Elliptical arcs that do not need clipping or do not have picking enabled are
passed to li2MultiEllipticalArc() .

286 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiArc() - 3D

This function draws a list of arcs in the plane described by two direction
vectors provided with the arc. See the xgl_multiarc() man page for a
description of the input data structure and for a description of the functionality
that the device pipeline needs to handle. The device pipeline must handle
some or all of the attributes listed in the xgl_multiarc() man page.

Syntax
void XglDpCtx3d::li1MultiArc(

Xgl_arc_list *arc_list);

Input Parameters

arc_list Pointer to the list of arcs to draw.

Software Pipeline Return Calls

The software pipeline 3D li1MultiArc() function processes regular 3D arcs
and 3D annotation arcs. If the data type of the input parameter arc_list is
XGL_MULTIARC_F3D or XGL_MULTIARC_D3D (the arcs are regular), the
function tessellates the arcs and calls the the opsVec entries for these routines:

• For open regular arcs, the function calls li1MultiPolyline() .
• For closed regular arcs, the function calls li1MultiSimplePolygon() .

If the data type of the input parameter arc_list is XGL_MULTIARC_AF3D or
XGL_MULTIARC_AD3D (the arcs are annotated), the function tessellates the arcs
in DC, view transforms and clips the arcs, depth cues the arcs, and calls the
opsVec entries for these routines:

• For open annotated arcs, the function calls li2MultiPolyline() .
• For closed annotated arcs, the function calls li2GeneralPolygon() .

LI-1 Loadable Interfaces 287

10

li1MultiCircle() - 2D

This function draws a list of circles in the plane of the view surface. See the
xgl_multicircle () man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.
The device pipeline must handle some or all of the attributes listed in the
xgl_multicircle() man page.

Syntax
void XglDpCtx2d::li1MultiCircle(

Xgl_circle_list *circle_list);

Input Parameters

circle_list Pointer to the list of circles to render.

Software Pipeline Return Calls

The software pipeline 2D li1MultiCircle() function transforms a list of
circles in model coordinates into a list of ellipses in device coordinates. For
each circle that needs to be clipped, the circle is decomposed into a polygon
and passed to the opsVec entry for li1Polygon() .

Circles that do not need clipping are passed to the opsVec entry for
li2MultiEllipse() .

288 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiCircle() - 3D

This function draws a list of circles in a plane described by the two direction
vectors provided with each circle. See the xgl_multicircle() man page for
a description of the input data structure and a description of the functionality
that the device pipeline needs to handle. The device pipeline must handle
some or all of the attributes listed in the man page.

Syntax
void XglDpCtx3d::li1MultiCircle(

Xgl_circle_list *circle_list);

Input Parameters

circle_list Pointer to a list of circles to render.

Software Pipeline Return Calls

The li1MultiCircle() function processes regular 3D circles and 3D
annotation circles. If the data type of the input parameter circle_list is
XGL_MULTICIRCLE_F3D or XGL_MULTICIRCLE_D3D (the circles are regular),
the function tessellates the circles by projecting the circle onto the plane in MC
described by the two direction vectors provided with the circle. It then calls the
opsVec entry for the li1MultiSimplePolygon() routine.

If the data type of the input parameter circle_list is XGL_MULTICIRCLE_AF3D
or XGL_MULTICIRCLE_AD3D (the circles are annotated), the function
tessellates the circles in DC, view transforms and clips the circles, depth cues
the circles, and calls the opsVec entry for the li2GeneralPolygon()
routine.

LI-1 Loadable Interfaces 289

10

li1MultiEllipticalArc() - 3D

This function draws a list of 3D elliptical arcs in the plane described by two
direction vectors provided with each arc. See the
xgl_multi_elliptical_arc() man page for a description of the input data
structure and a description of the functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx3d::li1MultiEllipticalArc(

Xgl_ell_list *ell_list);

Input Parameters

ell_list Pointer to a list of elliptical arcs.

Software Pipeline Return Calls

The li1MultiEllipticalArc() function processes regular 3D elliptical arcs
and 3D annotation elliptical arcs. If the data type of the input parameter ell_list
is XGL_MULTIELLARC_F3D or XGL_MULTIELLARC_D3D (the elliptical arcs are
not annotated), this function tessellates each of the arcs specified in ell_list and
calls the opsVec entry for these routines:

• For open non-annotated arcs, the function calls li1MultiPolyline() .
• For closed non-annotated arcs, it calls li1MultiSimplePolygon() .

If the data type of the input parameter ell_list is XGL_MULTIELLARC_AF3D or
XGL_MULTIELLARC_AD3D (the arcs are annotated), the function tessellates the
arc in DC, view transforms and clips the arcs, and depth cues the arcs. Then it
calls the the opsVec entry for these routines:

• For annotated open arcs, the function calls li2MultiPolyline()
• For annotated closed arcs, the function calls li2GeneralPolygon() .

290 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiMarker() - 2D

This function draws a marker at each point in a list of points. See the
xgl_multimarker() man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.
The device pipeline must handle some or all of the attributes listed in the man
page.

Syntax
void XglDpCtx2d::li1MultiMarker(

Xgl_pt_list *point_list);

Input Parameters

point_list Pointer to a list of points, optionally with colors associated.

Software Pipeline Return Calls

The software pipeline routine transforms a list of points to DC. If picking is
enabled, the points are checked against the pick aperture. If a pick hit is
detected, the function records the information and immediately returns;
otherwise, the function returns after all the points have been checked.

If picking is not enabled, the software pipeline calls these routines:

• If the current marker type is xgl_marker_dot , the list of clipped points is
passed to the opsVec entry for li2MultiDot() .

• For all other marker types (predefined or user-defined), a point list is
constructed that describes the marker as a series of strokes centered on each
of the clipped points. The point lists are passed to the opsVec entry for
li1MultiPolyline() .

LI-1 Loadable Interfaces 291

10

li1MultiMarker() - 3D

This function draws a marker at each point in a list of points. See the
xgl_multimarker() man page for a description of the input data structure
and a description of the functionality that the device pipeline needs to handle.
The device pipeline must handle some or all of the attributes listed in the man
page.

Syntax
void XglDpCtx3d::li1MultiMarker(

Xgl_point_list *point_list);

Input Parameters

point_list Pointer to a list of 3D points, optionally with colors
(normals are ignored).

Software Pipeline Return Calls

The software pipeline transforms the list of points to DC. If picking is enabled
and Z-buffering is not enabled, the points are checked against the pick volume,
and the routine returns after determining whether the pick was successful.

If both picking and Z-buffering are enabled, points that are inside the pick
volume are passed to the opsVec entry for the li2MultiDot() routine for Z
comparisons to confirm a pick hit.

If picking is not enabled, the marker points are optionally depth cued, and the
software pipeline calls the opsVec entry for these routines:

• If the current marker type is xgl_marker_dot , then the list of clipped
points is passed to li2MultiDot() .

• For all other marker types (predefined or user-defined), a point list is
constructed that describes the marker as a series of strokes centered on each
of the clipped points. The point lists are passed to li1MultiPolyline() .

292 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiPolyline() - 2D

This function draws a list of unconnected polylines. See the man page
xgl_multipolyline() for a description of the input data structures and a
description of the functionality that the device pipeline needs to handle. The
device pipeline must handle some or all the attributes listed in the man page.

Syntax
void XglDpCtx2d::li1MultiPolyline(

Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_point_list *point_list);

Input Parameters

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in each polyline.

num_pt_lists The number of point lists passed to the primitive.

point_list Pointer to an array of point lists. There may be colors
and/or flags associated with the points, and the line width
may be greater than 1.

Note – The device pipeline is responsible for checking the number of vertices
for each polyline. When the number of vertices for a polyline is 0 or 1, the
pipeline must handle this case appropriately.

Software Pipeline Return Calls

The software pipeline li1MultiPolyline() function transforms the array of
point lists to DC. If picking is enabled, the multipolyline function either
returns as soon as a pick hit is found, or returns after checking the list of
vectors.

If picking is not enabled, the software pipeline calls the opsVec entry for
li2MultiPolyline() .

LI-1 Loadable Interfaces 293

10

li1MultiPolyline() - 3D

This function draws a list of unconnected polylines from an input array of
point lists. See the xgl_multipolyline() man page for a description of the
input data structures and a description of the functionality that the device
pipeline needs to handle. The device pipeline must handle some or all of the
attributes listed in the man page.

Syntax
void XglDpCtx2d::li1MultiPolyline(

Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_point_list *point_list);

Input Parameters

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in each polyline.

num_pt_lists The number of point lists passed to the primitive.

point_list Pointer to an array of point lists.

Note – The device pipeline is responsible for checking the number of vertices
for each polyline. When the number of vertices for a polyline is 0 or 1, the
pipeline must handle this case appropriately.

Software Pipeline Return Calls

The software pipeline 3D li1MultiPolyline() function transforms the
points in the polyline to DC. If picking is enabled and Z-buffering is enabled,
the polylines are passed to the opsVec entry for the li2MultiPolyline()
routine to do Z-buffer comparisons to confirm any pick hits.

If picking is enabled and Z-buffering is not enabled, the polylines are picked
by determining whether they pass through the 3D pick volume. If any single
piece of any of the polylines meets this criteria, then the entire list is deemed to
have been picked, and the routine returns.

294 XGL Device Pipeline Porting Guide—May 1996

10

If picking is not enabled, the software pipeline optinally depth cues the
polylines and calls the opsVec entry for li2MultiPolyline() .

LI-1 Loadable Interfaces 295

10

li1MultiRectangle() - 2D

The li1MultiRectangle() function draws a list of rectangles. See the
xgl_multirectangle() man page for a description of the input data
structure and a description of the functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx2d::li1MultiRectangle(

Xgl_rect_list *rect_list);

Input Parameters

rect_list Pointer to a list of rectangles.

Software Pipeline Return Calls

The point information in the Xgl_rect_list structure is copied into an Xgl_pt_list
structure as a list of 4-sided polygons. The function sets the facet flags to
4-sided and convex and calls the opsVec entry for
li1MultiSimplePolygon() .

296 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiRectangle() - 3D

The li1MultiRectangle() function draws a list of rectangles. See the
xgl_multirectangle() man page for a description of the input data
structure and a description of the functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx3d::li1MultiRectangle(

Xgl_rect_list *rect_list);

Input Parameters

rect_list Pointer to a list of rectangles.

Software Pipeline Return Calls

The li1MultiRectangle() function processes regular 3D rectangles and 3D
annotation rectangles. If the data type of the input parameter rect_list is
XGL_MULTIRECT_F3D or XGL_MULTIRECT_D3D (the rectangles are not
annotated), this function projects each of the rectangles specified in rect_list
onto a plane in MC and calls the opsVec entry for the
li1MultiSimplePolygon() routine.

If the data type of the input parameter rect_list is XGL_MULTIRECT_AF3D or
XGL_MULTIRECT_AD3D (the rectangles are annotated), this function transforms
the reference points of the multirectangles from MC to DC, view transforms
and clips the rectangles, depth cues the rectangles, and calls the opsVec entry
for the li2GeneralPolygon() routine.

LI-1 Loadable Interfaces 297

10

li1MultiSimplePolygon() - 2D

The li1MultiSimplePolygon() function draws a list of separate, single-
bounded polygons. The polygons can be self-intersecting. See the
xgl_multi_simple_polygon() man page for a description of the input data
structures and a description of the functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx2d::li1MultiSimplePolygon(

Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters

flags Structure specifying the kind of polygons being rendered.

facets Pointer to a structure defining facet data for the polygons.

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in the point list.

num_pt_lists The number of point lists.

point_list Pointer to an array of point lists for the polygons.

Software Pipeline Return Calls

The software pipeline 2D li1MultiSimplePolygon() function calls the
opsVec entry for li1Polygon() to process each polygon in the list of
polygons.

298 XGL Device Pipeline Porting Guide—May 1996

10

li1MultiSimplePolygon() - 3D

The li1MultiSimplePolygon() function draws a list of separate, single-
bounded polygons. See the xgl_multi_simple_polygon() man page for a
description of the input data structures and a description of the functionality
that the device pipeline needs to handle. The device pipeline must handle
some or all of the attributes listed in the man page.

Syntax
void XglDpCtx2d::li1MultiSimplePolygon(

Xgl_facet_flags flags,
Xgl_facet_list *facets,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters

flags Structure specifying the kind of polygons being rendered.

facets Pointer to a structure defining facet data for the polygons.

bounding_box Pointer to a bounding box structure that defines a
bounding box for all the points in the point list.

num_pt_lists The number of point lists.

point_list Pointer to an array of point lists for the polygons.

Software Pipeline Return Calls

The performance of the software pipeline li1MultiSimplePolygon()
routine is optimized if facet flags are set to convex, 3-sided, or 4-sided and
convex, and there is no picking, no model clipping, and no silhoutte edges, and
the view clip is only done for plus w values. If any one of these conditions is
not satisfied (for example, picking is enabled), the software pipeline calls its
own li1Polygon() for each polygon. For polygons that meet the conditions,
the software pipeline calls the opsVec entry for li2MultiSimplePolygon()
for each polygon.

LI-1 Loadable Interfaces 299

10

li1NurbsCurve() - 2D/3D

The li1NurbsCurve() function draws a NURBS curve of a specified order
based on a list of knots in parameter space, a list of control points, and the
parameteric range. See the xgl_nurbs_curve() man page for a description
of the input data structures and a description of the functionality that the
device pipeline must handle. The device pipeline must handle some or all of
the attributes listed in the man page.

Syntax
void XglDpCtx2/3d::li1NurbsCurve(

Xgl_nurbs_curve *curve,
Xgl_bounds_f1d *range,
Xgl_curve_color_spline *color_spline,
void *gcache_rep);

Input Parameters

curve Pointer to a structure defining the geometry of the curve.

range Pointer to a structure defining the parametric limits of the
curve.

color_spline Pointer to a structure defining the color distribution of the
curve’s geometry. This argument is only supported in 3D.

gcache_rep An optional pointer to the device-dependent Gcache
representation.

Software Pipeline Return Calls

The software pipeline li1NurbsCurve() function is a common entry point
for both the regular NURBS curve primitive (xgl_nurbs_curve()) the
Gcache’d NURBS curve (xgl_gcache_nurbs_curve()).

Nurbs Primitive
For the regular NURBS primitive, the void* is set to NULL. If the order of the
geometry data is 1, the software pipeline sends the list of control points to the
the opsVec entry for the li1MultiMarker() routine.

300 XGL Device Pipeline Porting Guide—May 1996

10

Otherwise, the software pipeline tessellates the geometry data to a list of points
in DC for 2D or LC (Lighting Coordinates) for 3D. For 3D, vertex colors are
present in the point list if a color spline is non-NULL. The software pipeline
calls the li1MultiPolyline() routine with the current coordinate system set
to DC or LC as appropriate.

Gcache Nurbs Primitive
If the input is from a Gcache containing a NURBS curve,
li1DisplayGcache() calls li1NurbsCurve() (if the order of the API
geometry is greater then 1) with the void pointer set to the device-dependent
Gcache storage, and the other three arguments are ignored. For COMBINED and
STATIC Gcaches, a list of points is generated in MC, and the software pipeline
calls the opsVec entry for li1MultiPolyline() . For DYNAMIC Gcaches, the
points are generated in DC for 2D or LC for 3D, and the software pipeline calls
the opsVec entry for li1MultiPolyline() .

See page 276 for a description of device-dependent Gcache. A device pipeline
can choose to support both the regular and the Gcache primitives in the same
li1NurbsCurve() function, or support the regular primitive only and let the
li1DisplayGcache() handle Gcache cases, or call the software pipeline in
both cases.

Note – For information on how the software pipeline implements NURBS, see
the list of references in Appendix E, “Accelerating NURBS Primitives.”

LI-1 Loadable Interfaces 301

10

li1NurbsSurf() - 3D

The li1NurbsSurf() function draws a NURBS surface of a specified order
based on a list of knots in parameter space, a list of control points, and
trimming information. See the xgl_nurbs_surface() man page for a
description of the input data structures and a description of the functionality
that the device pipeline needs to handle. The device pipeline must handle
some or all of the attributes listed in the man page.

Syntax
void XglDpCtx3d::li1NurbsSurf(

Xgl_nurbs_surf *surface,
Xgl_trim_loop_list *trim_list,
Xgl_nurbs_surf_simple_geom *hints,
Xgl_surf_color_spline *color_spline,
Xgl_surf_data_spline_list *data_splines,
void *gcache_rep);

Input Parameters

nurbs_surf Pointer to a structure defining the geometry of the surface.

trim_list Pointer to a structure defining the trimmed portion of the
surface.

hints Pointer to a structure containing hints about the shape of
the surface.

color_spline Pointer to a structure describing the color distribution over
the surface.

data_splines Not currently implemented.

gcache_rep An optional pointer to the device-specific Gcache
representation.

Software Pipeline Return Calls

The software pipeline li1NurbsSurf() function is a common entry point for
both the regular NURBS surface primitive (xgl_nurbs_surface()) and the
Gcache’d NURBS surface (xgl_gcache_nurbs_surface()).

302 XGL Device Pipeline Porting Guide—May 1996

10

Nurbs Surface Primitive
For the regular NURBS surface primitive, the void* is set to NULL. If the order
of the geometry data is 1, the software pipeline sends the list of control points
to the opsVec entry for li1MultiMarker() .

Otherwise, the routine tessellates the data to triangle lists, quadmeshes, or
polylines (if an isoparametric curve is present). Vertices are generated in
lighting coordinates. Vertex colors are present in the point lists for triangle lists
and quad meshes if a color spline is non-NULL. The software pipeline calls the
appropriate routine with current coordinate system set to LC:

• li1TriangleList()
• li1QuadrilateralMesh()
• li1MultiPolyline()

Gcache Nurbs Surface Primitive
If the input is from a Gcache and the Gcache contains a NURBS surface,
li1DisplayGcache() calls li1NurbsSurf() (if the order of the API
geometry is greater then 1) with the void pointer set to the device-dependent
Gcache storage, and the other three arguments are ignored. In the case of
COMBINED and STATIC Gcaches, a list of points is generated in MC, and the
opsVec entry for one of these routines is called:

• li1TriangleList()
• li1QuadrilateralMesh()
• li1MultiPolyline()

For a DYNAMIC Gcache, the points are generated in LC, the push/pop of the
coordinate systems is done like a regular NURBS surface primitive, and one of
the routines listed above is called. See page 276 for a description of device-
dependent Gcache.

A device pipeline can choose to support both the regular and the Gcache
primitives in the same li1NurbsSurf() function, or support the regular
primitive only and let the li1DisplayGcache() handle Gcache cases, or call
the software pipeline in both cases.

Note – For information on how the software pipeline implements NURBS, see
the list of references in Appendix E, “Accelerating NURBS Primitives.”

LI-1 Loadable Interfaces 303

10

li1Polygon() - 2D

The li1Polygon() function draws a single polygon that may, optionally,
have several bounds. See the xgl_polygon() man page for a description of
the input data structures and a description of the functionality that the device
pipeline needs to handle. The device pipeline must handle some or all of the
attributes listed in the man page.

Syntax
void XglDpCtx2d::li1Polygon(

Xgl_facet_type facet_type,
Xgl_facet *facet,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters

facet_type Data type of the facets in the list.

facet Pointer to a structure defining the facet data.

bounding_box Pointer to a structure defining the bounding box around all
the points in the array of point lists.

num_pt_lists Number of point lists in the array of point lists.

point_list Pointer to an array of point lists.

Software Pipeline Return Calls

The software pipeline li1Polygon() function transforms the list of point lists
to DC. Each list can describe a boundary of a possibly multi-bounded polygon
(in other words, “holes” are permitted).

If picking is enabled, the polygon is checked against the pick aperture, and the
routine exits. If picking is not enabled, the software pipeline calls the opsVec
entry for the li2GeneralPolygon() routine.

304 XGL Device Pipeline Porting Guide—May 1996

10

li1Polygon() - 3D

The li1Polygon() function draws a single polygon that may, optionally,
have several bounds. See the xgl_polygon() man page for a description of
the functionality that the device pipeline needs to handle. The device pipeline
must handle some or all of the attributes listed in the man page.

Syntax
void XglDpCtx2d::li1Polygon(

Xgl_facet_type facet_type,
Xgl_facet *facet,
Xgl_bbox *bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list *point_list);

Input Parameters

facet_type Data type of the facets in the list.

facet Pointer to a structure defining the facet data.

bounding_box Pointer to a structure defining the bounding box around all
the points in the array of point lists.

num_pt_lists Number of point lists in the array of point lists.

point_list Pointer to an array of point lists.

Software Pipeline Return Calls

The software pipeline 3D li1Polygon() routine takes an array of point lists,
each of which defines a boundary of the polygon. If picking is enabled, it is
done in a manner similar to markers and polylines. If Z-buffering is enabled,
li2GeneralPolygon() is called to perform the Z comparisons necessary to
verify a pick hit. Otherwise, the polygon boundaries are checked to determine
whether any of them pass through the pick volume, and the software pipeline
sends the polygon is to the opsVec entry for li2GeneralPolygon() .

LI-1 Loadable Interfaces 305

10

li1QuadrilateralMesh() - 3D

The li1QuadrilateralMesh() function draws a quadrilateral mesh. See the
man page xgl_quadrilateral_mesh() for a description on the input data
structures and for information on functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx3d::li1QuadrilateralMesh(

Xgl_usgn32 row_dim,
Xgl_usgn32 col_dim,
Xgl_facet_list *facet_list,
Xgl_point_list *point_list);

Input Parameters

row_dim The number of rows of points defining the mesh.

col_dim The number of columns of points defining the mesh.

facet_list Pointer to a structure defining the facets.

point_list Pointer to geometry data for the quad mesh.

Software Pipeline Return Calls

The software pipeline LI-1 quadrilateral mesh function breaks up the input
quad mesh into triangle strips, one for each row of the original mesh. The
routine then calls the opsVec entry for the li1TriangleStrip() function
for each triangle strip.

The points that are passed to li1TriangleStrip() are identical to those
input to the quad mesh function with the exception that flags are introduced to
mark edges that fall along the diagonals of each quad. If the interior style is
hollow, or if edges are enabled, then these diagonals are not drawn. Quad
mesh edges are drawn by the li1TriangleStrip() routine, and the edge
pattern is restarted for every new row of the mesh.

306 XGL Device Pipeline Porting Guide—May 1996

10

li1StrokeText() - 2D/3D

The li1StrokeText() function renders characters defined as a collection of
lines. See the xgl_stroke_text() man page for information on functionality
that the device pipeline needs to handle. The device pipeline must account for
some or all of the attributes listed in the man page.

Syntax
[2D]void XglDpCtx2d::li1StrokeText(

void *string,
Xgl_pt_f2d *pos,
Xgl_pt_f3d *dir);

[3D]void XglDpCtx3d::li1StrokeText(
void *string,
Xgl_pt_f3d *pos,
Xgl_pt_f3d *dir);

Input Parameters

string A NULL-terminated C-style list of characters if the character
encoding is single-string encoding, or a pointer to an XGL
Xgl_mono_text_list structure if the character encoding is
multi-string encoding.

pos The reference point for the position of the string and the
origin of the text plane.

dir An array containing the two direction vectors used for the
orientation of the 2D plane on which the text sits. Used for
3D Contexts only.

Software Pipeline Return Calls

The software pipeline li1StrokeText() function takes as input a single
point, which is the starting position for the string. If the point is inside the
window boundaries, this function converts the string to multipolylines. It calls
the opsVec entry for li1MultiPolyline() to render the lines.

LI-1 Loadable Interfaces 307

10

li1TriangleList() - 3D

The li1TriangleList() function draws a triangle list, which is a set of
points that form a triangle strip, a triangle star, or a group of unconnected
triangles. See the xgl_triangle_list() man page for a description of the
input data structures and for information on functionality that the device
pipeline needs to handle. The device pipeline must handle some or all of the
attributes listed in the man page.

Syntax
void XglDpCtx3d::li1TriangleList(

Xgl_facet_list *facet_list,
Xgl_pt_list *point_list,
Xgl_tlist_flags flags);

Input Parameters

facet_list Pointer to a structure defining the facet information for the
triangle list.

point_list Pointer to the point list defining the vertices of the
triangles in the triangle list.

flags A word containing information on the overall
characteristics of the triangle list.

Software Pipeline Return Calls

The software pipeline li1TriangleList() function provides general
purpose triangle rendering. This routine is more flexible than the
li1TriangleStrip() primitive because it enables rendering of triangle stars
and independent triangles in addition to triangle strips. However, the
operations performed by this call are similar to those of the
li1TriangleStrip() function.

The first step is to branch to one of four different internal routines based on the
value of the global triangle list flags parameter in the API call. This parameter
specifies whether the input point list describes a triangle strip, a triangle list, a

308 XGL Device Pipeline Porting Guide—May 1996

10

set of independent triangles, or a set of triangles that is composed of a
combination of strips, stars and independent triangles. The points in the point
list are interpreted differently based on what the triangle list defines.

Within each of these four routines, the processing steps are similar. Once
processing is complete on a point list, the list is ready to either be picked or
rendered. If picking is enabled and Z-buffering is enabled, the appropriate
routine is called:

• li2TriangleStrip()
• li2TriangleList()

For non-Z-buffered picking, a simple geometry test is performed on the points
to determine whether they lie within the pick aperture. If picking is not
enabled, the points are passed down to:

• li2TriangleStrip()
• li2TriangleList()

From within li2TriangleList() or li2TriangleStrip() , the software
pipeline draws edges on triangle lists by calling the li2MultiPolyline()
routine for each triangle separately. The edge pattern is restarted for each new
triangle.

Note – If a triangle within the list is clipped, then li2GeneralPolygon() is
called to render it. This is because li2TriangleStrip() and
li2TriangleList() require points that are in strip or list format. A clipped
triangle may not be in this format.

LI-1 Loadable Interfaces 309

10

li1TriangleStrip() - 3D

The li1TriangleStrip() function draws a triangle strip. See the
xgl_triangle_strip() man page for a description of the input data
structures and for information on functionality that the device pipeline needs
to handle. The device pipeline must handle some or all of the attributes listed
in the man page.

Syntax
void XglDpCtx3d::li1TriangleStrip(

Xgl_facet_list *facet_list,
Xgl_pt_list *point_list);

Input Parameters

facet_list Pointer to a structure containing facet normals and/or
colors for the triangles in the strip.

point_list Pointer to a structure defining the point list.

Software Pipeline Return Calls

The input to this routine is a single point list defining the vertices of the
triangles in the strip. The original strip is broken down into sub-strips that are
visible in MC. Once processing is complete on a sub-strip, if picking is enabled,
then either li2TriangleStrip() is called for Z buffered picking, or a simple
geometry test is performed on the points to determine whether they lie within
the aperture. If picking is not enabled, the points are passed to
li2TriangleStrip() for rendering.

From within li2TriangleStrip() , edges are drawn on triangle strip by
calling the li2MultiPolyline() function for each triangle separately. The
edge pattern is restarted for each new triangle.

Note – If a triangle within the strip is clipped, li2GeneralPolygon() is
called to render it. This is because li2TriangleStrip() requires points that
are in strip format. A clipped triangle may not be in this format.

310 XGL Device Pipeline Porting Guide—May 1996

10

li1Accumulate() - 3D

The li1Accumulate() function accumulates images from one buffer to
another. See the xgl_context_accumulate() man page for information on
functionality that the device pipeline needs to handle. The device pipeline
must handle the attributes listed in the man page.

Syntax
void XglDpCtx3d::li1Accumulate(

Xgl_bounds_i2d* rectangle,
Xgl_pt_i2d* position,
float src_wt,
float accum_wt,
Xgl_buffer_set copy_buf);

Input Parameters

rectangle Source area of the draw buffer of the raster. If rectangle is
NULL, the maximum area of the source buffer is assigned to
the value by the XGL core

position The position in the destination buffer to be used as the
starting position. If position is NULL, the top left corner of
the destination buffer is assigned to the value by the XGL
core.

src_wt The weight to be used as the source weight in the
accumulation calculation.

accum_wt The weight to be used as the accumulation weight in the
accumulation calculation.

copy_buf The buffer to copy the accumulated image to.

Note – Although the application can specify NULL values for rectangle and
postion, the XGL core assigns valid values to these parameters before passing
them to the device pipeline; thus, the pipeline does not have to test for this but
can assume the values for these parameters are valid.

LI-1 Loadable Interfaces 311

10

What You Need to Know to Implement li1Accumulate

Accumulation buffers must be either 32- or 48-bits. Indexed colors are not
supported. The accumulation buffer must be BBGGRR or XBGR.

Software Pipeline Return Calls

The software pipeline li1Accumulate() function allocates two buffers
draw_buf and accum_buf of type XglPixRectMemAllocated. The software
pipeline calls li3CopyFromDpBuffer to copy the raster’s draw buffer to the
allocated buffer’s draw_buf. It makes another call to li3CopyFromDpBuffer
to copy the contents of the buffer specified by XGL_3D_CTX_ACCUM_OP_DEST
to the allocated buffer accum_buf. The accumulation takes place, and the result
is written to accum_buf. The software pipeline then calls li3CopyToDpBuffer
to write the values to the buffer specified by XGL_3D_CTX_ACCUM_OP_DEST.
In addition, there may also be another call to li3CopyToDpBuffer to copy
the contents of the accum_buf to copy_buf in the xgl_context_accumulate()
call.

312 XGL Device Pipeline Porting Guide—May 1996

10

li1ClearAccumulation() - 3D

The li1ClearAccumulation() function clears the accumulation buffer. See
the xgl_context_clear_accumulation() man page for information on
functionality that the device pipeline needs to handle. The device pipeline
must handle the attribute listed in the man page.

Syntax
void XglDpCtx3d::li1ClearAccumulation(

Xgl_color* color);

Input Parameters

color Color value.

What You Need to Know to Implement li1ClearAccumulation

Accumulation buffers must be either 32- or 48-bits. Indexed colors are not
supported. Format XBGR pixels are accessed as words. BBGGRR pixels are
normally accessed as arrays of three Xgl_usgn16 structures, but because the
SPARC architecture is big-endian, the BBGGRR pixels are stored one word at a
time as well. This software implementation is for the SPARC architecture only.

Software Pipeline Return Calls

The software pipeline li1ClearAccumulation() function allocates a buffer
of type XglPixRectMemAllocated the size, width, and height of the raster, and
sets the entire buffer to the specified color. It then calls the LI-3 routine
li3CopyToDpBuffer to copy the buffer to the buffer specified by the attribute
XGL_3D_CTX_ACCUM_OP_DEST.

LI-1 Loadable Interfaces 313

10

li1CopyBuffer() - 2D/3D

The li1CopyBuffer() function copies a block of pixels from one buffer to
another. See the xgl_context_copy_buffer() man page for information on
functionality that the device pipeline needs to handle. The device pipeline
must handle some or all of the attributes listed in the man page.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1CopyBuffer(

Xgl_bounds_i2d* rectangle,
Xgl_pt_i2d* position,
XglRaster* source_ras);

Input Parameters

rectangle Area that is copied in the source buffer. If rectangle is NULL,
the maximum area of the source buffer is assigned to the
value by the XGL core. The source rectangle cannot have
negative components; that is, xmin, xmax, ymin, and ymax
cannot be less than zero, and xmin and ymin cannot be
greater than xmax and ymax respectively.

position Position in the destination buffer where the copy begins. If
position is NULL, the top left corner is assigned to the value
by the XGL core.

source_ras The buffer to be used as the source for the copy.

Note – Although the application can specify NULL values for rectangle and
postion, the XGL core assigns valid values to these parameters before passing
them to the device pipeline; thus, the pipeline does not have to test for this but
can assume the values for these parameters are valid.

314 XGL Device Pipeline Porting Guide—May 1996

10

What You Need to Know to Implement li1CopyBuffer

Copy buffer copies a block of pixels from a buffer in system memory to the
frame buffer or from the frame buffer to system memory. The direction of the
copy (that is, memory to frame buffer or vice versa) is reflected in the XGL core
as follows:

• If the copy is from a memory raster to the frame buffer, li1CopyBuffer()
is used for the copy operation. In this case, a memory raster is the source
buffer, and the device associated with the Context in the
xgl_context_copy_buffer() call is a window raster device.

• If the copy is from the frame buffer to a memory raster, the source buffer is
a window raster device, and the device associated with the Context in the
xgl_context_copy_buffer() call is a memory raster. In this case, the
XglDpDev::copyBuffer() function is called to do the copy operation.
Note that when copying from device to memory, the device object must
perform the copy between winLock() and winUnLock() calls.

The XGL core determines which type of device the application is requesting for
the source raster and the destination raster, and then calls the appropriate copy
buffer routine.

If your pipeline implements li1CopyBuffer() for the case of copying from
memory to a window raster, it must take into account different color models
and different underlying representations of memory. The memory raster can be
indexed or RGB color type. Note that XGL makes a distinction between the real
color type, which is the actual memory organization for the data in the device,
and the color type of the XGL Device that the application works with. For
copying from memory to a window raster, the li1CopyBuffer() function
must handle all the cases of the various combinations of Device color type and
real color type. However, the pipeline may want to optimize some cases, such
as the straight-forward copy from an indexed memory raster to an indexed
device.

Since the XglDpDev copy buffer function is device-dependent and since the
software pipeline does not currently implement li1CopyBuffer() , the
device pipeline must implement both the li1CopyBuffer() function and the
XglDpDev::copyBuffer() function. However, XGL provides utility
functions that perform copy operations with all the color conversion and fill
styles.

LI-1 Loadable Interfaces 315

10

Using XGL Utilities for Copy Buffer Operations
CopyBuffer.h defines the data structures and interfaces for two copy buffer
utility functions: XgliUtCopyBuffer() and
XgliUtFbToMemCopyBuffer() . XgliUtCopyBuffer() is a general routine
that copies from one buffer to another; it can be used for either the memory to
frame buffer copy or the frame buffer to memory copy.

XgliUtFbToMemCopyBuffer() is a wrapper on XgliUtCopyBuffer() that
is easier to use for the frame buffer to memory copy. These copy buffer utilities
use the PixRect object to represent the raster memory for the copy. For
information on these utilities, see Chapter 12. For information on PixRects, see
page 214.

The RefDpCtx utility provides an li1CopyBufferMemToFB() function that
the pipeline can use to implement the memory to frame buffer case of copy
buffer. Note that none of the XGL-provided utilites for copying buffers are
optimized, so it may be advisable for the pipeline to implement at least the
more straight-forward copy operations.

In summary, here’s what you need to do to implement copy buffer at LI-1:

1. Implement XglDpCtx::li1CopyBuffer() . You can use the RefDpCtx
utility li1CopyBufferMemToFB to do this.

2. Implement XglDpDev::CopyBuffer() . You can use the utility
XgliUtFbToMemCopyBuffer() to do this.

Note – You must also implement the LI-3 versions of copying to and from
buffers, but you can use the RefDpCtx utilities li3CopyToDpBuffer() and
li3CopyFromDpBuffer() . See page 189 for more information on LI-3 copy
buffer functions.

Software Pipeline Return Calls

The software pipeline does not implement this function.

316 XGL Device Pipeline Porting Guide—May 1996

10

li1Flush() - 2D/3D

The li1Flush() function causes pending or asynchronous processing to
complete. See the xgl_context_flush() man page for information on
functionality that the device pipeline needs to handle. The device pipeline
must handle the attributes listed in the man page.

Syntax
void XglDpCtx{2,3}d::li1Flush(

Xgl_usgn32 flush_action);

Input Parameters

flush_action The type of flushing that the function performs. See the
man page for the options.

Software Pipeline Return Calls

The software pipeline does not implement this function.

LI-1 Loadable Interfaces 317

10

li1GetPixel() - 2D/3D

The li1GetPixel() function gets the color value of a specified pixel. See the
xgl_context_get_pixel() man page for information on functionality that
the device pipeline needs to handle. The device pipeline must handle some or
all of the attributes listed in the man page.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1GetPixel(

Xgl_pt_i2d* position,
Xgl_color* value,
Xgl_boolean* obscured);

Input Parameters

position Location of the pixel.

value Location where the retrieved color value is stored.

obscured TRUE if the window is covered at that pixel position.

Calling the Software Pipeline

The software pipeline does not implement this function.

318 XGL Device Pipeline Porting Guide—May 1996

10

li1Image() - 2D/3D

The li1Image() function displays a block of pixels from a raster. See the
xgl_image() man page for information on functionality that the device
pipeline needs to handle. The device pipeline must handle some or all of the
attributes listed in the man page.

Syntax
[2D] void XglDpCtx::li1Image(

Xgl_pt_f2d* position,
Xgl_bounds_i2d* image,
XglRaster* src_ras);

[3D] void XglDpCtx::li1Image(
Xgl_pt_f3d* position,
Xgl_bounds_i2d* image,
XglRaster* src_ras);

Input Parameters

position The position in the destination Context where the copy
starts. The position must be a valid point in the Context’s
model space.

image The rectangular area in the source raster to be copied. If
image is NULL, the maximum area of the source Raster is
assigned to the value by the XGL core

src_ras The source memory raster.

Note – Note that although the application can specify a NULL value for image,
the XGL core assigns a valid value to this parameter before passing it to the
device pipeline; thus, the pipeline does not have to test for this but can assume
the value is valid.

LI-1 Loadable Interfaces 319

10

Software Pipeline Return Calls

The software pipeline li1Image() function transforms the position point
from model coordinates to device coordinates, clips the rectangle against the
src_ras boundaries and the DC bounds, verifies that the render buffer is the
draw buffer, sets up the copy information, and calls the opsVec entry for the
li3CopyToDpBuffer() routine to do the copying.

320 XGL Device Pipeline Porting Guide—May 1996

10

li1NewFrame() - 2D/3D

This function clears the device coordinate viewport and, for 3D Contexts, the
Z-buffer. See the xgl_context_new_frame() man page for information on
functionality that the device pipeline needs to handle. The device pipeline
must handle some or all of the attributes listed in the man page. See also
page 265 for information on clearing the Z buffer.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1NewFrame();

What You Need to Know to Implement li1NewFrame

In the case of indexed color, the plane mask during a new frame operation is
different from the plane mask used for rendering. The new frame plane mask
prepares the surface based on a pixel mapping offset. To simplify the
processing of the new frame plane mask, the XGL core provides the inline
function getNewFramePlaneMask() . This function can be called regardless of
the color type of the device. The following example shows the use of
getNewFramePlaneMask() .

Software Pipeline Return Calls

The software pipeline does not implement this function.

if (action & XGL_CTX_NEW_FRAME_CLEAR) {
Xgl_booleanchange_flag = FALSE;

Xgl_usgn32new_frame_plane_mask;
new_frame_plane_mask = baseCtx->getNewFramePlaneMask();
if (cached_plane_mask != new_frame_plane_mask) {
 change_flag = TRUE;
 //set the new frame plane mask
}

// Perform the clear operation
if (change_flag) {
 // Restore the original plane mask
}

}

LI-1 Loadable Interfaces 321

10

li1PickBufferFlush() - 2D/3D

This function requires a device pipeline to empty its device pick buffer, if any,
into the XGL core pick buffer. This is useful for asynchronous devices that
buffer pick events. The function is called when the API function
xgl_get_pick_identifiers() is called. It also is called to synchronize the
device’s pick buffer and the XGL core pick buffer before each call to the
software picking code. See the xgl_get_pick_identifiers() man page for
information on functionality. There are no required attributes for this function.

Syntax
void XglDpCtx{2,3}d::li1PickBufferFlush();

What You Need to Know to Implement li1PickBufferFlush

This function provides synchronization between a device’s pick buffer and the
pick buffer maintained by XGL’s device-independent code. The device-
independent picking routines call this function whenever the software pipeline
detects a pick (if a pipeline has fallen back to the software pipeline to pick a
particular primitive, for instance) or when the application explicitly requests to
see the contents of the pick buffer (via xgl_pick_get_identifiers()).

To implement this function, device pipelines check the hardware pick buffer (if
applicable) and then add the identifiers of the pick events to the XGL core pick
buffer using the DI function ctx->addPickToBuffer(Xgl_usgn32
pick_id1, Xgl_usgn32 pick_id2) . If a device does not support picking,
then this function need not be implemented.

The Context class includes the function checkLastPick() , which compares
the last recorded pick IDs with the current pick IDs and returns TRUE if they
are identical. This function is an optimization that allows the device pipeline to
return to the application immediately if nothing new has been picked. Note
that for devices caching pick events, checkLastPick() does not call
li1PickBufferFlush() . This means that the last recorded pick event might
not be the last actual pick event if the pipeline’s cached pick events have not
been flushed in the XGL core pick buffer.

li1PickBufferFlush() takes no arguments and is only called by the
software pipeline and the XGL core. A device pipeline need not call this
function itself. This function is not implemented by the software pipeline.

322 XGL Device Pipeline Porting Guide—May 1996

10

li1SetMultiPixel() – 2D/3D

The li1SetMultiPixel() function sets the color values for a list of pixel
locations. Since this routine operates on individual pixels, rather than
geometry, all coordinates are device coordinates, and the 2D and 3D versions
of this routine are identical. See the xgl_context_set_multi_pixel() man
page for information on the functionality that the device pipeline needs to
handle. The device pipeline must handle some or all of the attributes listed in
the man page.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetMultiPixel(

Xgl_usgn32 count,
Xgl_pt_i2d *pt,
Xgl_color *color);

Input Parameters

count Number of pixels to write.

pt Array of screen locations to write to. The array should
contain at least count valid entries.

color Array of pixel colors to write (in one-to-one
correspondence with the location array).

Software Pipeline Return Calls

The software pipeline li1SetMultiPixel() function writes a set of pixels
into the locations specified by the pt array argument. Each pixel color is
determined by taking successive values from the color argument. For each
pixel, the function calls the opsVec entry for li1SetPixel().

LI-1 Loadable Interfaces 323

10

li1SetPixel() - 2D/3D

The li1SetPixel() function sets the color value for a specified pixel. See the
xgl_context_set_pixel() man page for information on functionality that
the device pipeline needs to handle. The device pipeline must handle some or
all of the attributes listed in the man page.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetPixel(

Xgl_pt_i2d *position,
Xgl_color *color);

Input Parameters

position Location of the pixel value to be set.

color The color value of the pixel that is set.

Software Pipeline Return Calls

The software pipeline does not implement this function.

324 XGL Device Pipeline Porting Guide—May 1996

10

li1SetPixelRow() - 2D/3D

The li1SetPixelRow() function sets the color value for a row of pixels.
Since this routine operates on individual pixels rather than geometry, all
coordinates are device coordinates, and the 2D and 3D versions of the routine
are identical. See the xgl_context_set_pixel_row() man page for
information on functionality. The device pipeline must handle some or all of
the attributes listed in the man page.

Syntax
[2D and 3D]
void XglDpCtx{2,3}d::li1SetPixelRow(

Xgl_usgn32 start_col,
Xgl_usgn32 row,
Xgl_usgn32 count,
Xgl_color *color);

Input Parameters

start_col First x-coordinate of pixel row.

row y-coordinate of all pixels in pixel row.

count Number of pixels to write.

color Array of pixel colors to write. The array should contain at
least count entries.

Software Pipeline Return Calls

The software pipeline li1SetPixelRow() function writes a series
contiguous, horizontal pixels along the y-position supplied by row, starting at
the x-position in start_col, and continuing in the direction of increasing x
values. The pixel colors along the row are determined by taking successive
values from the color argument. For each pixel, the function calls the opsVec
entry for li1SetPixel() .

325

Error Handling 11

This chapter provides directions on adding error processing to a device
pipeline. The following topics are covered:

• Information on using XGL error macros to handle error conditions

• Instructions on creating a device pipeline error message file

As you read this chapter, you will find it helpful to have access to the
following header files:

• SysState.h

• Error.h

• ErrorMacros.h

.h

326 XGL Device Pipeline Porting Guide—May 1996

11

Error Reporting for XGL Device Pipelines
XGL provides an error-reporting mechanism that is used when an error is
detected during the execution of an XGL application. If you want an error to be
reported to the application, you must explicitly add code to the device pipeline
to handle error conditions.

Error-Handling Mechanism

When XGL detects an error, it calls an internal error handling function. For
device-independent error handling, this function assigns values to error
attributes, searches an internal look-up table for the error message, and
retrieves the appropriate error message string. For device-dependent error
handling, the error handling function assigns values to error attributes,
searches for the error file that contains localized error messages, and retrieves
the appropriate error message string. When the error message string is
retrieved, the error handling function calls the application-settable error
notification function for further processing of the error.

Error processing is handled centrally in a device-independent manner by the
System State object. For maintainability, however, most error-specific attributes
and methods are defined in a separate Error class. The System State class
defines the API interface functions used for error processing and contains error
attributes exposed at the API. The Error class contains the default error
notification function, functions that initialize the path to the error file, and a
function used for error notification when System State creation fails. The Error
class also defines the error attributes for the System State object. Other
attributes in the Error class define state information that is saved when an error
occurs. These are shown in Table 11-1.

Table 11-1 State Information Saved in an Error Object

Information Description

Type RECOVERABLE or NON-RECOVERABLE

Category SYSTEM, CONFIGURATION, RESOURCE, ARITHMETIC,
USER

ID An error number in the form: <pipeline abbrev.>-##

Message An error message string

Error Handling 327

11

If error checking is on (the application has set
XGL_SYS_ST_ERROR_DETECTION to TRUE), XGL will check for a set of error
conditions, such as a NULL input point list. For the list of errors, see the XGL
Programmer’s Guide. Other errors must be handled by the pipeline.

Note – The XGL device-independent code is not responsible for some kinds of
errors, such as the validity of primitive arguments or errors in input data. The
device pipeline can check for these errors and implement error handling for
them.

Error Message Files

Binary-encoded files containing versions of error message strings are located
in:

{ path }/{ LANG}/LC_MESSAGES/file.mo

where { path } is $XGLHOME/lib/locale if $XGLHOME is set, or
/opt/SUNWits/Graphics-sw/xgl/lib/locale if $XGLHOME is not set.
{LANG} is en_US for English language messages. Error message files that have
been localized to the native language of the user are found in other {LANG}
directories. Files named xgl <company abbrev><pipeline abbrev>.mo contain
messages for errors that only occur within a specific pipeline.

In order to determine what error messages exist in the error files, English clear-
text (ASCII) versions of the files are located in the following directories:

• For device-independent error messages –
{path}/include/xgl/xgl_errors_di.po

• For pipeline error message files –
{path}/src /<pipeline>/include/xgl_errors_ <pipeline>.po

Operator XGL API operator in use when the error occurred

Object XGL object in use when the error occurred

Operands Two operands of error notification

Table 11-1 State Information Saved in an Error Object

Information Description

328 XGL Device Pipeline Porting Guide—May 1996

11

The pipeline *.po files are of the form:

msgid“Key String” (same as the error_id string)

msgstr“Translatable error message string”

The UNIX utility msgfmt encodes the *.po ASCII files to create the *.mo
binary-encoded versions, which must be placed in the locale directory
described above.

Error Reporting Macros

The recommended way to call the XGL internal error-handling function from
within the pipeline code is to use the error-reporting macros XGLI_ERROR and
XGLI_DI_ERROR, These macros are defined in the file
<xgl_dirs>/src/include/xgli/ErrorMacros.h .

The XGLI_ERROR macro can be used to call the error-reporting function for
errors that are defined in the pipeline *.mo files. The interface for XGLI_ERROR
is defined:

XGLI_ERROR(sys_state, type, category, error_id, object, op1, op2)
 XglSysState* sys_state Pointer to current system

state; can be NULL; if NULL,
then internalfunction will
first get system state pointer
from global state

 Xgl_error_type type Error type for the particular
error

 Xgl_error_categorycategory Error category for the error
 char* error_id Identification string for the

error
 Xgl_obj_type object Object type of currently active

object
 char* op1 Optional operand for this error
 char* op2 Optional operand for this error

Error Handling 329

11

XGLI_DI_ERROR is used to report device-independent errors defined in XGL’s
internal error look-up table. The interface for XGLI_DI_ERROR is defined as:

The specific error message used by the error-handling function is identified by
the error_id parameter passed to these macros. The error_id is a character string
of one of the following forms, where ## is the error number specified in either
the internal look-up table or the localized error message file:

• di-## – For error messages from the device-independent error look-up
table

• <pipeline abbrev>-##– For error messages from pipeline .mo files associated
with the originally supported SunSoft/SMCC frame buffers

• xgl <company abbrev><pipeline abbrev>-##– For error messages from
independent hardware vendor (IHV) pipeline .mo files

The operand values (op1 and op2) may be used to add useful non-
internationalized information (such as numbers or XGL attribute names) to the
error report. Other parameters passed to the error macros are self-explanatory.
For more information on error types and categories, see the XGL Architecture
Guide or the XGL Programmer’s Guide.

Note – The macros XGLI_ERROR and XGLI_DI_ERROR use the current
operator set by the XGL core wrappers during error reporting. A device
pipeline should never set the current operator in the pipeline.

XGLI_DI_ERROR(sys_state, error_id, object, op1, op2)
 XglSysState* sys_state Pointer to current system state;

can be NULL; if NULL, then internal
function will first get system
state pointer from global state

 char* error_id Identification string for the
error

 Xgl_obj_type object Object type of currently
active object

 char* op1 Optional operand for this error
 char* op2 Optional operand for this error

330 XGL Device Pipeline Porting Guide—May 1996

11

Example of Error Reporting Using the Error Macros

Suppose you want to check for a malloc error in your pipeline code. The
following steps describe how to do this.

1. Search the ASCII clear-text version of the device-independent and
pipeline error files for an error message corresponding to the error
condition for which you are checking.
In the case of a malloc error, the following error message is defined in
xgl_errors_di.po :

msgid “di-1: malloc or new failed: out of memory”

msgstr “di-1: malloc or new failed: out of memory”

Note that the error message format for pipeline error messages is slightly
different. See the GX error message file xgl_errors_cg6.po for an
example.

2. Add the following #include to your source code module:

#include “xgli/SysState.h”

3. Add a call to one of the two error-reporting macros where you detect the
error in your code.
The following code fragment shows an example.

 if (!(pts = (Foo *)malloc(bar * sizeof(Foo)))) {
 XGLI_DI_ERROR (system_state, “di-1”, XGL_3D_CTX, NULL, NULL);
 return (-1);
 }

If the handle to the System State object is not known, you can call the macro
using a NULL value for the System State parameter as shown below:

XGLI_DI_ERROR ((XglSysState *)NULL, “di-1”, XGL_3D_CTX,
NULL, NULL);

For device-independent errors, the error-handling function searches the
internal look-up table for the error message string corresponding to the error_id
passed by the user, assigns values to internal error attributes, and calls an error
notification function (either the default or one set by the XGL application). The

Error Handling 331

11

default error notification function prints an error message to stderr . For
example, in the case of the malloc error above, the following message is
printed:

Creating a Pipeline Error Message File

You can create a new error message file for your pipeline and add error
messages to it. Error messages in this file must be specific to the pipeline and
should not duplicate error messages that are already available in the device-
independent error message file. Follow these steps to create a new error
message file.

1. Use the template named xgl_errors_Skeleton.po in
SUNWddk/ddk_2.5.1/xgl/src/dd/skeleton/include .

2. Change all occurrences of <company abbrev> and <pipeline abbrev> to
correspond to your company abbreviation and pipeline (device)
abbreviation.
For example, in the skeleton template, change SYMBOLskeleton-1 to your
company name and abbreviation.

3. Add error messages at the end of the file.
Two lines are required for each error message: a msgid line and a msgstr
line. Examine the xgl_errors_Skeleton.po file for an example.

A clear-text error message .po file is automatically converted to the binary-
encoded version when you do make extract . Use the XGLI_ERROR macro
described above to call the error handler with the error messages you define in
your .po file.

Error number di-1: malloc or new failed: out of memory
Operator: xgl_polygon
Object: XGL_3D_CTX

332 XGL Device Pipeline Porting Guide—May 1996

11

333

Utilities 12

This chapter provides information on XGL utilities. XGL utilities are designed
to perform specific operations and are useful for special case processing. Utility
classes have Ut in the name, for example XgliUtFooBar. The utilities are part of
the core XGL library; they are not in a separately loaded library.

Most XGL utilities are found in these header files:

• CheckBbox.h

• CopyBuffer.h

• PgonClass.h

• Utils3d.h

• utils.h

Note – The RefDpCtx object is a set of utilities that provide a non-optimized
implementation of LI-3 functions and several LI-1 pixel functions. Device
pipelines can use the RefDpCtx utilities to ease the implementation of the LI-3
layer on their device. For more information on RefDpCtx, see the header files
RefDpCtx.h,RefDpCtx2d.h , and RefDpCtx3d.h , and refer to “RefDpCtx”
on page 207.

.h

334 XGL Device Pipeline Porting Guide—May 1996

12

3D Utilities
XGL utilities for 3D operations are in the header file Utils3d.h .

XgliUtAccumulate
void XgliUtAccumulate(

const XglPixRectMem* src_buf ,
const Xgl_bounds_i2d* rect ,
float src_wt ,
float dst_wt ,
XglPixRectMem* dst_buf ,
const Xgl_pt_i2d* dst_pos)

Accumulates from the source buffer src_buf to the destination buffer dst_buf.
rect and src_wt apply to the source buffer. pos and dst_wt apply to the
destination buffer.

Input Parameters
src_buf The source buffer used in the accumulation operation. The

source buffer should be a 32-bit PixRect.

rect The rectangle in the source buffer that needs to be
accumulated.

src_wt The source weight in the accumulation operation.

dst_wt The destination weight in the accumulation operation.

dst_pos The position in the destination buffer to be used as starting
position.

Output Parameter
dst_buf The destination buffer in the accumulation operation. The

destination buffer is either a 32-bit or 48-bit PixRect.

Utilities 335

12

XgliUtCdAnnCircleApprox
Xgl_sgn32 XgliUtCdAnnCircleApprox(

XglContext3d * ctx ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate an annotation circle
when the value of the attribute XGL_CTX_NURBS_CURVE_APPROX is one of the
following:

XGL_CURVE_METRIC_WC
XGL_CURVE_METRIC_VDC
XGL_CURVE_METRIC_DC
XGL_CURVE_CHORDAL_DEVIATION_WC
XGL_CURVE_CHORDAL_DEVIATION_VDC
XGL_CURVE_CHORDAL_DEVIATION_DC

Input Parameters
ctx Pointer to a 3D Context.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation circle.

XgliUtAnnCircleApprox
Xgl_sgn32 XgliUtAnnCircleApprox(

XglContext3d * ctx ,
Xgl_circle_list * circle_list)

See XgliUtCdAnnCircleApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D Context.

circle_list Pointer to a list of circles.

336 XGL Device Pipeline Porting Guide—May 1996

12

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation circle.

XgliUtAnnArcApprox
Xgl_sgn32 XgliUtAnnArcApprox(

XglContext3d * ctx ,
Xgl_arc_list * arc_list)

See XgliUtAnnArcApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D Context.

arc_list Pointer to a list of arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation arc.

XgliUtCdAnnEllArcApprox
Xgl_sgn32 XgliUtCdAnnEllArcApprox(

XglContext3d * ctx ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an annotation ellipse
when the value of the attribute XGL_CTX_NURBS_CURVE_APPROX is one of the
following:

XGL_CURVE_METRIC_WC
XGL_CURVE_METRIC_VDC
XGL_CURVE_METRIC_DC

Utilities 337

12

XGL_CURVE_CHORDAL_DEVIATION_WC
XGL_CURVE_CHORDAL_DEVIATION_VDC
XGL_CURVE_CHORDAL_DEVIATION_DC

Input Parameters
ctx Pointer to a 3D context.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation ellipse.

XgliUtAnnEllArcApprox
Xgl_sgn32 XgliUtAnnEllArcApprox(

XglContext3d * ctx ,
Xgl_ell_list * ell_list)

See XgliUtAnnEllArcApprox for a description of the functionality.

Input Parameters
ctx Pointer to a 3D context.

ell_list Pointer to a list of ellipses.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an annotation ellipse.

338 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtCalcDcueIndex
void XgliUtCalcDcueIndex(

XglContext3d* ctx3d ,
XglViewGrp3dItf* view_itf ,
Xgl_color* color_in ,
float z ,
Xgl_color* color_out)

Used when the color type is XGL_COLOR_INDEX and thus expects colors in the
INDEX format. The function depth cues a input color color_in given the Z value
(in DC) at which to depth cue the color.

Input Parameters
ctx3d The Context used in rendering the primitive.

view_itf The view group interface from which the depth cue planes
in DC and the DC viewport is used in calculating the depth
cue color.

color_in The color to be depth cued

z The Z value (in DC) at which to depth cue.

Output Parameter
color_out The depth cued color

Utilities 339

12

XgliUtCalcDcueRgb
void XgliUtCalcDcueRgb(

XglContext3d* ctx3d ,
XglViewGrp3dItf* view_itf ,
Xgl_color* color_in ,
float z,
Xgl_color* color_out)

Used when the color type is XGL_COLOR_RGB and thus expects colors in the
RGB format. The function depth cues a input color color_in given the Z value
(in DC) at which to depth cue the color.

Input Parameters
ctx3d The Context used in rendering the primitive.

view_itf The view group interface from which the depth cue planes
in DC and the DC viewport is used in calculating the depth
cue color.

color_in The color to be depth cued.

z The Z value in DC at which to depth cue.

Output Parameter
color_out The depth cued color

XgliUtCalcDoubleCircle
void XgliUtCalcDoubleCircle(

float * mem,
Xgl_sgn32 n_steps ,
float d_angle)

Calculates the points (x, y) on the unit circle that subdivide the unit circle into
(n_steps - 1) segments. The calculated points (x,y) are stored twice in the
array mem. The first copy of the points (x,y) is stored in:

(mem[0], mem[2*n_steps]), (mem[1], mem[2*n_steps+1]), ... ,
(mem[n_steps-2],mem[3*n_steps-2]),(mem[n_steps-1],mem[3*n_steps -1])

340 XGL Device Pipeline Porting Guide—May 1996

12

The second copy of the points is stored in:

(mem[n_steps], mem[3*n_steps]), (mem[n_steps+1], mem[3*n_steps+1]),... ,
(mem[2*n_steps-2], mem[4*n_steps-2]), (mem[2*n_steps-1], mem[4*n_steps-1])

Input Parameters
n_steps An integer indicating that the unit circle is subdivided into

(n_steps - 1) segments.

d_angle The angle in radian formed by two consecutive subdivision
points on the unit circle with the center of the unit circle.

Output Parameter
mem An array of floats allocated by the caller. The size of the

array is 4*n_steps . This array will hold the points
calculated by this utility.

XgliUtCalcLightingCompRgb
void XgliUtCalcLightingCompRgb(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_itf ,
 Xgl_pt_f3d* normal ,
 Xgl_pt_f3d* point ,
 const Xgli_surf_attr_3d* surf ,
 Xgl_boolean front_flag ,
 Xgl_color* comp_A,
 Xgl_color* comp_B)

This routine takes an input point and normal and calculates the two color
components necessary for texture mapping at that point. Consult the texture
mapping documentation for more details regarding the color components and
their use. This routine can only be used if the XGL color type is
XGL_COLOR_RGB.

Input Parameters
ctx Context containing light sources and lighting parameters.

view_itf View group interface used to obtain transformed light
positions/directions.

Utilities 341

12

normal Input facet or vertex normal (depending on whether the
illumination is per_vertex, or per_facet, respectively).

point Input 3D point.

surf Surface attributes, either front or back.

front_flag Flag indicating whether the normal is front facing.

Output Parameters
comp_A; comp_B Lighting components to be used during scan conversion by

the texture mapping code. comp_A is the color scale factor;
comp_B is the offset.

XgliUtCalcLighting Utilities

The XGL DDK provides a set of 34 utilities that apply light sources and
lighting parameters to a 3D point or a list of 3D points and return a lit color or
list of colors. The XgliUtCalcLightingRgb and
XgliUtCalcLightingIndex return a single lit color and are described below.
The remaining lighting utilities are listed and described on page 342.

XgliUtCalcLightingRgb and XgliUtCalcLightingIndex
void XgliUtCalcLighting{Rgb,Index}(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_itf ,
 Xgl_color* color_in ,
 Xgl_pt_f3d* normal ,
 Xgl_pt_f3d* point ,
 const Xgli_surf_attr_3d* surf ,
 Xgl_boolean front_flag ,
 Xgl_color* color_out)

These routines apply the current light sources and lighting parameters to the
input color, normal, and 3D point, and returns a new, calculated color.
XgliUtCalcLightingRgb can only be used if the XGL color type is
XGL_COLOR_RGB. The corresponding utility XgliUtCalcLightingIndex is
used for XGL_COLOR_INDEX.

342 XGL Device Pipeline Porting Guide—May 1996

12

Input Parameters
ctx XGL Context containing light sources and lighting

parameters.

view_itf View group interface used to obtain transformed light
positions/directions.

color_in Input color.

normal Input facet or vertex normal (depending on whether the
illumination is per_vertex, or per_facet, respectively).

point Input 3D point.

surf Surface attributes, either front or back.

front_flag Flag indicating whether the normal is front facing.

Output Parameter
color_out The output color, adjusted for the Context lighting values.

XgliUtCalcLighting{Rgb,Index}{...}
void XgliUtCalcLighting{Rgb,Index}{Front,Back}{Persp,Parallel}
{--,Cc}{--,Noniso}(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_itf ,
 Xgl_color* color_in ,
 Xgl_usgn32 inclr_step ,
 Xgl_pt_f3d* normal ,
 Xgl_usgn32 nrm_step ,
 Xgl_pt_f3d* geom_ptr ,
 Xgl_usgn32 geom_step ,
 Xgl_usgn32 num_points ,
 const Xgli_surf_attr_3d* surf ,
 const float table ,
 Xgl_color* color_out,
 Xgl_usgn32 outclr_step)

These utilities apply the current light sources and lighting parameters to a list
of points and return a list of lit colors. There are a set of 32 routines for the five
different possible combinations of characteristics. The key word for each of the
characteristics is defined in Table 12-1 on page 343.

Utilities 343

12

The utilities are listed here, and their input and output parameters are
described below.

Table 12-1 Lighting Utilities for Point Lists

Key Word Values Description

Color type Rbg / Index Specifies whether the color type is RGB or Index.

Flip normal Back - normals flipped
Front - normals not flipped

Specifies whether the normal is be flipped before
lighting.

Perspective Persp / Parallel Specifies whether the view is perspective or parallel.

Constant color Cc / -- Specifies whether the color changes for each point, or
the same color is used for every point in the lighting
calculations.

Non-isotropic Noniso / -- Specifies whether the McToWc matrix is not isotropic.
For a definition of an isotropic or angle preserving
matrix, refer to the section on
XGL_TRANS_MEMBER_ANGLE_PRESERV in the
xgl_transform_write_specific() man page.

XgliUtCalcLightingRgbFrontPersp XgliUtCalcLightingIndexFrontPersp

XgliUtCalcLightingRgbFrontPerspCc XgliUtCalcLightingIndexFrontPerspCc

XgliUtCalcLightingRgbFrontParallel XgliUtCalcLightingIndexFrontParallel

XgliUtCalcLightingRgbFrontParallelCc XgliUtCalcLightingIndexFrontParallelCc

XgliUtCalcLightingRgbFrontPerspNoniso XgliUtCalcLightingIndexFrontPerspNoniso

XgliUtCalcLightingRgbFrontPerspCcNoniso XgliUtCalcLightingIndexFrontPerspCcNoniso

XgliUtCalcLightingRgbFrontParallelNoniso XgliUtCalcLightingIndexFrontParallelNoniso

XgliUtCalcLightingRgbFrontParallelCcNoniso XgliUtCalcLightingIndexFrontParallelCcNoniso

XgliUtCalcLightingRgbBackPersp XgliUtCalcLightingIndexBackPersp

XgliUtCalcLightingRgbBackPerspCc XgliUtCalcLightingIndexBackPerspCc

XgliUtCalcLightingRgbBackParallel XgliUtCalcLightingIndexBackParallel

XgliUtCalcLightingRgbBackParallelCc XgliUtCalcLightingIndexBackParallelCc

XgliUtCalcLightingRgbBackPerspNoniso XgliUtCalcLightingIndexBackPerspNoniso

344 XGL Device Pipeline Porting Guide—May 1996

12

Input Parameters
ctx XGL Context containing light sources and lighting

parameters.

view_itf View group interface used to obtain transformed light
positions/directions.

color_in Input color.

inclr_step Step size by which color_in should be incremented to access
the color of the next point. This field is unused for constant
color routines.

normal Pointer to a list of input normals.

nrm_step Step size by which normal should be incremented to access
the normal of the next point.

geom_ptr Pointer to a list of 3D points.

geom_step Step size by which the geometry should be incremented to
access the normal of the next point.

num_pts Number of points in geom_ptr list. The lighting values are
computed for this many points.

surf Surface attributes, either front or back.

table Pointer to a table for computing the power function to use
for computing specular exponents. This table is an array of
257 values corresponding to the current specular exponent
(front or back depending on surf). The array index to use is
computed by multiplying the dot value in the lighting
equation with 256 and trucating it to a integer.

outclr_step Step size by which color_out should be incremented to
access the color of the next point.

Output Parameter
color_out The output color, adjusted for the Context lighting values.

XgliUtCalcLightingRgbBackPerspCcNoniso XgliUtCalcLightingIndexBackPerspCcNoniso

XgliUtCalcLightingRgbBackParallelNoniso XgliUtCalcLightingIndexBackParallelNoniso

XgliUtCalcLightingRgbBackParallelCcNoniso XgliUtCalcLightingIndexBackParallelCcNoniso

Utilities 345

12

XgliUtCalcSingleCircle
void XgliUtCalcSingleCircle(

float * mem,
Xgl_sgn32 n_steps)

Calculates the points (x,y) on the unit circle which subdivides the unit circle
into (n_steps - 1) equal segments. The calculated points (x,y) are stored in
the array mem in the following way:

(mem[0], mem[n_steps]), (mem[1], mem[n_steps+1]), ...,
(mem[n_steps-2],mem[2*n_steps-2]),(mem[n_steps-1],mem[2*n_steps-1])

Input Parameters
n_steps An integer indicating that the unit circle is subdivided into

(n_steps - 1) segments.

Output Parameter
 mem An array of floats allocated by the caller. The size of the

array is 2*n_steps . This array will hold the points
calculated by this utility.

XgliUtCalcTexturedColor
void XgliUtCalcTexturedColor(
 XglContext3d* ctx ,
 const XgliUvSpanInfo3d* data_info ,
 Xgl_color* obj_clr ,
 Xgl_boolean do_lighting ,
 Xgl_usgn32 z,
 Xgl_color* color_out)

void XgliUtCalcTexturedColor(
 XglContext3d* ctx ,
 const XgliUvSpanInfo3d* data_info ,
 Xgl_color* obj_clr ,
 Xgl_boolean do_lighting ,
 Xgl_usgn32 z,
 float alpha_in ,
 Xgl_color* color_out ,
 float* alpha_out)

346 XGL Device Pipeline Porting Guide—May 1996

12

These routines apply the texture maps in the current ctx. do lighting and depth
cueing, and return the textured pixel. The caller passes as input the texture
coordinate (u, v) of the pixel and the lighting components at the pixel (these
are encapsulated in data_info). Thus, this utility does texture lookup and
interpolation based on the (u, v) value, followed by color composition of the
texel with the object color obj_clr to obtain the textured color. It also does
lighting and depth cueing if applicable. These routines are the same except that
the second routine also handles alpha values.

Input Parameters
ctx Context whose textures are applied.

data_info Contains the texture coordinate (u, v) (before the divide by
1/w) as well as the lighting components at that pixel.

obj_clr Pixel color before the texturing operation. This is the
intrinsic color of the pixel.

do_lighting If TRUE, lighting is performed.

z Z value in DC of the pixel, used for depth cueing.

alpha_in Input alpha value.

Output Parameter
color_out The output color after textures have been applied and

lighting and depth cueing have been performed.

alpha_out Output alpha value.

XgliUtCalc3dTriOrientation
int XgliUtCalc3dTriOrientation(

Xgl_pt_f3d* v1 ,
Xgl_pt_f3d* v2 ,
Xgl_pt_f3d* v3 ,
Xgl_pt_f3d* fn)

Provides the winding of the points of a triangle given its three vertices and the
facet normal.

Utilities 347

12

Input Parameters
v1 Coordinates of vertex 1.

v2 Coordinates of vertex 2.

v3 Coordinates of vertex 3.

fn Facet normal of the face.

Output Parameter
None

Return Value
Returns the orientation, which can be either XGLI_PGON_ORIENT_CW or
XGLI_PGON_ORIENT_CCW.

XgliUtComputeColorComp
void XgliUtComputeColorComp(

Xgli_acolor* tex_clr ,
Xgl_color* obj_clr ,
Xgl_texture_desc* tex_desc ,
Xgl_color* out_clr)

Takes an incoming color obj_clr and combines it with the texel tex_clr in a
manner described in the tex_desc. The result of this color composing is returned
in out_clr.

Input Parameters
tex_clr The texel value that should be used in color composition.

obj_clr The object color that should be combined with the texel.

tex_desc The texture descriptor that contains the color composition
method to use.

Output Parameter
out_clr The output color after color composition.

348 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtComputeColorInterp
void XgliUtComputeColorInterp(

Xgli_pt_uv_info* pdata ,
Xgl_texture_desc* tex_desc ,
Xgli_acolor* texel)

Takes as input the texture coordinate (u, v) and the MipMap level (in which
this pixel is located) encapsulated in pdata and the texture descriptor tex_desc
that should be used to do the texture lookup and interpolation to obtain the
texture value.

Input Parameters
pdata Contains the texture coordinate (u, v) and the MipMap

level of the pixel.

tex_desc The texture descriptor that should be used for lookup and
interpolation.

Output Parameter
texel The output color after applying lookup and interpolation.

Note that the type is Xgli_acolor, thus the returned value
will have an alpha value as well.

XgliUtComputeDiffuseColor
void XgliUtComputeDiffuseColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

Takes the intrinsic color in_clr and applies the texture maps that apply to the
diffuse component. This involves texture lookup and interpolation to obtain
the texture value, composing the in_clr with the texture color to obtain the
out_clr.

Input Parameters
pdata This structure contains the texture maps that are active and

the associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the
intrinsic color of the pixel.

Utilities 349

12

Output Parameter
out_clr The output color (diffuse color) after applying the textures

that affect the diffuse component of the rendering pipeline.

XgliUtComputeFinalColor
void XgliUtComputeFinalColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

void XgliUtComputeFinalColor(
Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
float in_alpha ,
Xgl_color* out_clr ,
float* out_alpha)

Both of these routines take the depth cued color in_clr and in_alpha and applies
the texture maps that apply to the final (after depth cueing) component. This
involves texture lookup and interpolation to obtain the texture value,
composing the in_clr with the texture color to obtain the out_clr. These routines
are the same except that the second routine handles alpha values.

Input Parameters
pdata Contains the texture maps that are active and the

associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the depth
cued color of the pixel.

in_alpha Alpha value.

Output Parameter
out_clr The output color after applying the textures that affect the

final component of the rendering pipeline.

out_alpha Output alpha value.

350 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtComputeFn
int XgliUtComputeFn(

Xgl_operator op,
Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 row_dim ,
Xgl_usgn32 col_dim ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* pl ,
Xgl_pt_f3d* facet_normal)

Computes the facet normal and returns the normals. For surfaces other than
quadrilateral mesh, the row_dim and col_dim are ignored. The utility provides
the option for normalizing.

Input Parameters
op Type of operator.

geom_normal Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

row_dim Number of rows when op is
XGL_OP_XGL_QUADRILATERAL_MESH. This parameter is
ignored for other ops.

col_dim Number of columns when op is
XGL_OP_XGL_QUADRILATERAL_MESH. This parameter is
ignored for other ops.

num_pt_lists Number of point lists in pl. For triangle strip and
quadmesh, num_pt_lists is assumed to be 1, so its value is
ignored.

pl Geometry information describing the primitive.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated by the caller depends
on the primitive:

Multisimple polygon = num_pt_lists *
sizeof(Xgl_pt_f3d)

Utilities 351

12

Triangle strip = (pl[0].num_pts - 2)
*sizeof(Xgl_pt_f3d)

Quadmesh = (row_dim - 1)*(col_dim-1) *
sizeof(Xgl_pt_f3d)

Polygon = sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeFnReverse
int XgliUtComputeFnReverse(

Xgl_facet_list* fl ,
Xgl_usgn32 num_facets ,
Xgl_pt_f3d* fn)

Reverses the facet normals using the normals in fl.

Input Parameters
fl Input from which the facet normals should be reversed.

num_facets Number of facets or number of facet normals.

Output Parameter
fn Caller allocated structure in which to return the facet

normals. The memory to be allocated is:
num_facets * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the function is successful; otherwise, returns a 0.

352 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtComputeIndepTriFn
int XgliUtComputeIndepTriFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* pl ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a set of independent triangles (a subset
of the triangle list primitive) from the point list and returns the computed
normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

pl Data from which the normal should be calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeIndepTriFnPl
int XgliUtComputeIndepTriFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* pl ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a set of independent triangles (a subset
of the triangle list primitive) from an input point list provided by the user and
returns the computed normals.

Utilities 353

12

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

pl Vertex data.

tlist_flags Global triangle list flags which were passed into the
xgl_triangle_list() primitive.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeMspFn
int XgliUtComputeMspFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normals of the simple polygon in a multisimple polygon call
from the point_list and returns the computed normal.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

num_pt_lists Number of point lists in point_list.

point_list Data from which the normal should be calculated.

354 XGL Device Pipeline Porting Guide—May 1996

12

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
num_pt_lists * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputePolygonFn
int XgliUtComputePolygonFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the polygon from the point list. The first non-
degenerate boundary of the polygon is used in the normal computation.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

num_pt_lists Number of point lists in point_list.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is
sizeof (Xgl_pt_f3d) .

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

Utilities 355

12

XgliUtComputeQuadMeshFn
int XgliUtComputeQuadMeshFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_usgn32 row_dim ,
Xgl_usgn32 col_dim ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the quadrilateral mesh from the point
data in point_list and returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is: (row_dim - 1)
* (col_dim - 1) * sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeReflectedColor
void XgliUtComputeReflectedColor(

Xgli_pixel_data_info* pdata ,
Xgl_color* in_clr ,
Xgl_color* out_clr)

Takes the diffuse color in_clr and applies the texture maps that apply to the
reflected component (after lighting). Applying the texture maps involves
texture lookup and interpolation to obtain the texture value, composing the
in_clr with the texture color to obtain the out_clr.

356 XGL Device Pipeline Porting Guide—May 1996

12

Input Parameters
pdata Contains the texture maps that are active and the

associated texture coordinates (u, v).

in_clr Pixel color before the texturing operation. This is the lit
color of the pixel.

Output Parameter
out_clr The output color after applying the textures that affect the

reflected component of the rendering pipeline.

XgliUtComputeTstripFn
int XgliUtComputeTstripFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the triangle strip.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

Utilities 357

12

XgliUtComputeTstripFnPl
int XgliUtComputeTstripFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a triangle strip from an input point list
and returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Vertex data.

tlist_flags Global triangle list flags that were passed into the
xgl_triangle_list() primitive.

 Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

358 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtComputeTstarFn
int XgliUtComputeTstarFn(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in the triangle star from the point_list and
returns the computed normals.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL

normalize If TRUE, normalizes the normal.

point_list Data from which the normal is calculated.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof(Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeTstarFnPl
int XgliUtComputeTstarFnPl(

Xgl_geom_normal geom_normal ,
Xgl_boolean normalize ,
Xgl_pt_list* point_list ,
Xgl_pt_list* saved_pl ,
Xgl_tlist_flags tlist_flags ,
Xgl_pt_f3d* facet_normal)

Computes the normal for the facets in a triangle star (a subset of the triangle
list primitive) from two input point lists provided by the user and returns the
computed normals. Two input point lists are necessary in case the triangle star

Utilities 359

12

vertex data is non-contiguous. The first vertex in the saved_pl point list points
to the first vertex in the triangle star. All other vertices in the triangle star are
in point_list beginning with the second location in point_list.

Input Parameters
geom_normal Geometry normal format as defined by the API attribute

XGL_3D_CTX_SURF_GEOM_NORMAL.

normalize If TRUE, normalizes the normal.

point_list Vertex data for the second point through the last point in
the triangle star.

saved_pl Vertex data for the first point in the triangle star.

tlist_flags Global triangle list flags that were passed into the
xgl_triangle_list() primitive.

Output Parameter
facet_normal Caller allocated structure in which to return the computed

normals. The memory to be allocated is:
(pl[0].num_pts - 2) * sizeof (Xgl_pt_f3d)

Return Value
Returns a 1 if the normal was computed successfully; otherwise, returns a 0.

XgliUtComputeVnReverse
int XgliUtComputeVnReverse(

Xgl_usgn32 num_pt_lists ,
Xgl_pt_list* point_list ,
Xgl_pt_f3d* vn)

This utility reverses the vertex normals in point_list.

Input Parameters
num_pt_lists Number of point lists in point_list.

point_list Input from which the vertex normals should be reversed. .

360 XGL Device Pipeline Porting Guide—May 1996

12

Output Parameter
vn Caller allocated structure in which to return the reversed

vertex normals. The memory to be allocated is:
tot_num_pts * sizeof(Xgl_pt_f3d)

where tot_num_pts is initially zero and for each point in
the list tot_num_pts += pl[i].num_pts

Return Value
Returns a 1 if the function is successful; otherwise, returns a 0.

XgliUtComputeZTolerance
void XgliUtComputeZTolerance(

const Xgli_point_list* pl ,
float* z_offset)

Computes the z_offset using the input point list pl. Used either when drawing
edges or when the API attribute XGL_3D_CTX_SURF_DC_OFFSET is TRUE. The
output value is added to the Z values of the points when drawing edges so
that edges appear on top of the rendered surface. This value is also subtracted
from the points of a surface primitive if the API attribute
XGL_3D_CTX_SURF_DC_OFFSET is TRUE.

Input Parameters
pl Point list from which to calculate the Z offset.

Output Parameter
z_offset The value of the computed Z offset.

XgliUtCdDcCircleApprox
Xgl_sgn32 XgliUtCdDcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Utilities 361

12

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtDcCircleApprox
Xgl_sgn32 XgliUtDcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

362 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtDcArcApprox
Xgl_sgn32 XgliUtDcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdDcEllArcApprox
Xgl_sgn32 XgliUtCdDcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Utilities 363

12

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtDcEllArcApprox
Xgl_sgn32 XgliUtDcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_DC or XGL_CURVE_CHORDAL_DEVIATION_DC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtFaceDistinguish
const Xgli_surf_attr_3d* XgliUtFaceDistinguish(

XglContext3d* ctx ,
Xgl_pt_f3d* normal ,
Xgl_pt_f3d* pt ,
XglViewGrp3dItf* view_itf)

Identifies a face to be either front-facing or back-facing.

364 XGL Device Pipeline Porting Guide—May 1996

12

Input Parameters
ctx Context used in rendering the primitive.

normal The facet normal of the face that is being distinguished.

pt A point on the face that is being distinguished.

view_itf The view group from which the eye vector is used in
determining front versus back facing.

Output Parameter
None

Return Value
Returns either the front or back face attributes as a pointer to the
Xgli_surf_attr_3d structure.

XgliUtGetExponentTable
const float* XgliUtGetExponentTable(
 float* exp)

Finds the table of values corresponding to the closest exponent to the specified
exponent exp.

Input Parameter
exp The exponent for which the table of values is desired.

Output Parameter
None

Return Value
A constant pointer to a table of 257 values.

Utilities 365

12

XgliUtGetZCompFunc
void XgliUtGetZCompFunc(

Xgl_z_comp_method method ,
Xgl_boolean (** func)(Xgl_usgn32, Xgl_usgn32))

Returns the Z-comparision function func based on the Z-comparision method.

Input Parameter
method Z-comparison method for the function.

Output Parameter
func The Z-comparison function.

XgliUtIsScreenDoor
Xgl_boolean XgliUtIsScreenDoorTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether a surface is screen door transparent; ignores the blending
attributes.

Input Parameters
ctx Context from which attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent; otherwise, returns FALSE.

366 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtIsScreenDoorTransparent
Xgl_boolean XgliUtIsScreenDoorTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether the surface has blended transparency.

Input Parameters
ctx Context from which attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent; otherwise, returns FALSE.

XgliUtIsTransparent
Xgl_boolean XgliUtIsTransparent(

XglContext3d * ctx ,
Xgl_boolean front)

Determines whether a surface is transparent.

Input Parameters
ctx Context from which the attributes are obtained.

front If front is TRUE, the surface front attributes are checked;
otherwise, the back attributes are checked.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

Utilities 367

12

XgliUtIsTransparent
Xgl_boolean XgliUtIsTransparent(

float transparency ,
Xgl_transp_method transp_method ,
Xgl_blend_eq blend_eq)

This function is similar to the other XgliUtIsTransparent utility except that
it gets the API transparency attributes as arguments to the function.

Input Parameters
transparency Value of the attribute XGL_3D_CTX_FRONT_TRANSP or

XGL_3D_CTX_BACK_TRANSP. If face distinguishing is
FALSE, then transparency is front.

transp_method Value of XGL_3D_CTX_SURF_TRANSP_METHOD.

blend_eq Value of XGL_3D_CTX_SURF_TRANSP_BLEND_EQ.

Output Parameter
None

Return Value
Returns TRUE if the surface is transparent and FALSE otherwise.

XgliUtMeanWg
void XgliUtMeanWg(

Xgli_acolor* vector ,
Xgl_usgn32 siz ,
float* wg,
Xgl_usgn32 num_channel ,
Xgli_acolor* out_clr)

Accumulates the result of the product of the individual fields of vector array
with the corresponding entries in the wg array for as many entries as given by
siz. The number of channels in the vector array (and therefore in the out_clr) is
specified by num_channel.

Input Parameters
vector The vector array that is weighted and accumulated.

368 XGL Device Pipeline Porting Guide—May 1996

12

siz Number of entries in the vector array.

wg The weights by which the vector array should be
multiplied.

num_channel Number of channels of useful information (maximum of 4)
in the vector array.

Output Parameter
out_clr Output color.

XgliUtMellaToPline
Xgl_sgn32 XgliUtMellaToPline(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list ,
Xgl_pt_list ** point_list ,
Xgl_facet_list ** facet_list)

Tessellates the 3D multielliptical arcs stored in ell_list.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameters
point_list Point lists of the tessellated elliptical arcs. Any space that is

required for the point lists is allocated by this routine.

facet_list Facet list of the tessellated elliptical arcs. Any space that is
required for the facet list is allocated by this routine. The
value of *facet_list on return will always be NULL if
XGL_CTX_ARC_FILL_STYLE is XGL_ARC_OPEN.

Return Value
Returns 1 if the elliptical arcs are successfully tessellated; otherwise, returns 0.

Utilities 369

12

XgliUtModelClipMarker
Xgl_sgn32 XgliUtModelClipMarker(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out)

Takes a single point list stored in pl_in and model clips the points against the
current model clipping planes. Note that only the center points of the markers
are clipped; the individual marker shapes themselves are not clipped.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

pl_in Input point list. This argument is the point list passed to
li1MultiPolyline() .

Output Parameter
pl_out List of points containing only those that are within the

clipping planes.

Return Value
Returns the number of points in the output list. It is the responsibility of the
caller to free the memory that this routine allocates to hold the clipped points.

XgliUtModelClipMpline
Xgl_sgn32 XgliUtModelClipMpline(

XglContext3d* ctx ,
XglViewGrp3dItf* view_itf ,
Xgl_usgn32 num_plines ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out)

Model clips a list of polylines against the current model clipping planes.

Input Parameters
ctx Context from which attributes are obtained.

370 XGL Device Pipeline Porting Guide—May 1996

12

view_itf View group from which model clip planes are obtained.

num_plines Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

Output Parameter
pl_out Clipped output polyline(s). Any space that is required for

the polylines is allocated by this routine. It is the
responsibility of the caller to free any memory allocated by
this routine.

Return Value
Returns the number of point lists in the output. A return value of 0 indicates
that the entire multipolyline was trivially rejected.

XgliUtModelClipMspg
Xgl_sgn32 XgliUtModelClipMspg(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_sgn32 num_pl ,
Xgl_pt_list* pl_in ,
Xgl_pt_list** pl_out ,
Xgl_facet_list* fl_in ,
Xgl_facet_list** fl_clipped)

This function is used to model clip lists of individual polygons, such as might
be specified by a call to xgl_multi_simple_polygon() . The function
handles multiple facets correctly, removing from the output list those that
correspond to polygons that are trivially rejected.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

num_pl Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

Utilities 371

12

fl_in Input facet list.

Output Parameters
pl_out A list of point lists defining the clipped polygon.

fl_clipped Facet list for the clipped polygon.

Return Value
Returns the number of clipped bounds. The number of output bounds is
always less than or equal to the number of input bounds – extra point lists are
not introduced. The caller must free any memory allocated by this routine.

XgliUtModelClipPgon
Xgl_sgn32 XgliUtModelClipPgon(

XglContext3d* ctx ,
XglViewGrp3dItf* view_grp ,
Xgl_sgn32 num_pl ,
Xgl_pl_list* pl_in ,
Xgl_pl_list* * pl_out)

Model-clips an optionally multi-bounded polygon specified as a list of point
lists in the pl_in structure, against the current model clipping planes.

Note – This function is only appropriate for individual polygons. If more than
one point list is passed in then it is assumed that the polygon is multi-
bounded. Calling this routine with multi, separate bounded polygons may
result in incorrect data.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

num_pl Number of point lists in pl_in.

pl_in Input point lists. This argument is the point list passed to
li1MultiPolyline() .

372 XGL Device Pipeline Porting Guide—May 1996

12

Output Parameter
pl_out A list of point lists defining the clipped polygon.

Return Value
Returns the number of clipped bounds. The number of output bounds is
always less than or equal to the number of input bounds – extra point lists are
not introduced. The caller must free any memory allocated by this routine.

XgliUtModelClipPoint
Xgl_boolean XgliUtModelClipPoint(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_grp ,
 Xgl_pt_f3d* pt)

Model clips the 3D model-coordinate point pt against the current model
clipping planes specified by the Context and the view group interface object.

Input Parameters
ctx Context from which attributes are obtained.

view_grp View group from which model clip planes are obtained.

pt Point to be model clipped.

Output Parameter
None

Return Value
If the point is determined to be inside the clipping planes, then the function
returns TRUE, otherwise it returns FALSE.

Utilities 373

12

XgliUtModelClipTstrip
Xgl_sgn32 XgliUtModelClipTstrip(
 XglContext3d* ctx ,
 XglViewGrp3dItf* view_grp ,
 Xgl_pt_list* pl_in ,
 Xgl_facet_list* fl_in ,
 Xgl_pt_list** pl_out ,
 Xgl_facet_list** fl_out)

Takes as input a single point list, and optionally a facet list, and model clips
them against the current model clipping planes. The output is a list of point
lists defining triangle strips that may have been created by model clipping the
original input list. In practice there is usually only one such list as the clipper
makes every attempt to keep everything together in one piece by introducing
degenerate triangles where appropriate to link strips together. It is not
impossible, however, for there to be more than one list under some
circumstances, so applications that use this utility are advised to assume that
there can multiple output strips.

Input Parameters
ctx Context from which attributes are obtained.

view_itf View group from which model clip planes are obtained.

pl_in Input point list. This argument is the point list passed to
li1MultiPolyline() .

fl_in Input facet list.

Output Parameters
pl_out A list of point lists defining triangle strips that may have

been created by model clipping the original input list.

fl_out Facet list for pl_out.

Return Value
Returns the number of triangle strips in the clipped output. The caller must
free any memory allocated by this routine.

374 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtPixRect48to32
void XgliUtPixRect48to32(

XglPixRectMem* dst_buf ,
const Xgl_bounds_i2d* rect ,
const XglPixRectMem* src_buf ,
const Xgl_pt_i2d* pos)

Copies a region of a 48-bit PixRect src_buf to a 32-bit PixRect dst_buf. The
function is designed to do the copy-back of the accumulation buffer to an
image buffer. rect applies to the source buffer and pos to the destination buffer.

Input Parameters
src_buf The source buffer used in the copy operation. The source

buffer should be a 48-bit PixRect.

rect The rectangle in the source buffer that should be copied.

pos The position in the destination buffer to be used as the
starting position.

Output Parameter
dst_buf The destination buffer in the copy operation. The

destination buffer is a 32-bit PixRect.

XgliUtPower
float XgliUtPower (
 float x,
 Xgl_usgn32 n)

Raises x to a positive integer power n. This routine is faster than the routine
pow in the standard math library, but it only accepts integer exponents. Refer
to The Art of Computer Programming by Donald E. Knuth, Volume 2, 2nd.
edition, Addison-Wesley, 1981.

Input Parameters
x Input value.

n Integer exponent value.

Utilities 375

12

Output Parameter
None

Return Value
Returns a floating point value.

XgliUtProcessTxCoords
void XgliUtProcessTxCoords(
 XglViewGrp3dItf* view_itf ,
 Xgl_usgn32 np,
 Xgli_point_list* ipl ,
 Xgli_facet_list* ifl ,
 Xgl_usgn32 num_tm,
 XglTmap** tmap ,
 Xgl_boolean* tswitch)

This routine allocates memory for texture coordinates, processes of texture
coordinates based on texture map attributes (XGL_TMAP_PARAM_TYPE,
XGL_TMAP_COORD_SOURCE, and XGL_TMAP_T0/1_INDEX), and and stores one
set of {u,v} coordinate for each texture map. Thus, this routine allocates 2 *
num_tm amount of floats for storing texture coordinates. The num_data_vals ,
data_ptr and pt_type fields of the point list ipl are accordingly modified.
If a particular tswitch is FALSE (that is the texture map is not active), then the
data values corresponding to these two entries in the array is uninitialized. The
caller is responsible for freeing the allocated space once the values are no
longer used.

Input Parameters
view_itf Pointer to a 3D view group interface.

np Number of points for which texture coordinates needs to
be processed.

ipl Input point list from which the old data values are gotten.
The input point list data pointer is overwritten with the
processed data values.

ifl Input facet list. The facet list is used if facet normals are
used in generating u,v coordinates.

376 XGL Device Pipeline Porting Guide—May 1996

12

num_tm Number of texture map objects as specified at the API
level.

tmap A pointer to the list of texture map objects.

tswitch The list of texture map switches.

Output Parameters
The ipl->num_data_vals , ipl->data_ptr.base_ptr ,
ipl->data_ptr.step_size , and ipl->pt_type are modified to reflect the
newly generated texture coordinates.

XgliUtTxBoundary
int XgliUtTxBoundary(
 Xgl_texture_general_desc* desc ,
 float& u,
 float& v,
 Xgli_acolor * texel)

Applies the boundary condition, and if necessary, the hierarchy of boundary
condition as defined in the man page XGL_TMAP_DESCRIPTOR.

Input Parameters
desc The texture descriptor from which the boundary condition

values are used.

u The u texture coordinate.

v The v texture coordinate.

Output Parameter
texel The texel value if it is computed.

Return Value
Returns 0 if transparent, 1 if the texel is computed from boundary conditions,
and 2 otherwise (u or v may be modified).

Utilities 377

12

XgliUtTxGetUv
void XgliUtTxGetUv(
 XglTmap *tmap,
 Xgl_pt_f3d *pt,
 Xgl_pt_f3d *norm,
 XglViewGrp3dItf *view_itf,
 float& u,
 float& v)

This routine generates the {u,v} texture coordinates for environment texture
mapping based on the texture map tmap attributes XGL_TMAP_PARAM_TYPE,
XGL_TMAP_COORD_SOURCE, and XGL_TMAP_PARAM_INFO.

Input Parameters
tmap Texture map based on whose attributes the texture values

are generated.

pt The point for which the texture values are generated.

norm The normal at the point at which the texture values are
desired

view_itf Pointer to a 3D view group interface.

Output Parameters
u,v The output texture coordinates.

XgliUtVertexFrontFacing
Xgl_boolean XgliUtVertexFrontFacing(

Xgl_pt_f3d* position ,
Xgl_pt_f3d* normal ,
XglViewGrp3dItf* viewGrp ,
Xgl_boolean flipNormal)

Determines if a given vertex is front facing. See the
XGL_3D_CTX_SURF_NORMAL_FLIP man page.

Input Parameters
position Vertex position in MC.

378 XGL Device Pipeline Porting Guide—May 1996

12

normal Normal at vertex

viewGrp Pointer to a view group interface object

flipNormal Value of the Context attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameter
None

Return Value
Returns TRUE if the vertex is front facing and FALSE otherwise.

XgliUtVertexOrientation
Xgl_boolean XgliUtVertexOrientation(

Xgl_pt_list* pl ,
XglViewGrp3dItf* viewGrp ,
Xgl_boolean* vrtxFrontFacing ,
Xgl_boolean flipNormal)

Determines, for each point in a given point list, if it is front or back facing. It
also determines whether the point list contains a silhouette edge. See the
XGL_3D_CTX_SURF_NORMAL_FLIP man page.

Input Parameters
pl Point list

viewGrp View group interface object

flipNormal Context attribute XGL_3D_CTX_SURF_NORMAL_FLIP

Output Parameter
vrtxFrontFacing For each array index i , TRUE if point i of the point list is

front facing and FALSE if it is back facing.

Return Value
Returns TRUE if the point list contains a silhouette edge and FALSE otherwise.

Utilities 379

12

XgliUtCdVdcCircleApprox
Xgl_sgn32 XgliUtCdVdcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtVdcCircleApprox
Xgl_sgn32 XgliUtVdcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles.

380 XGL Device Pipeline Porting Guide—May 1996

12

Output Parameter
None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtVdcArcApprox
Xgl_sgn32 XgliUtVdcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdVdcEllArcApprox
Xgl_sgn32 XgliUtCdVdcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Utilities 381

12

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtVdcEllArcApprox
Xgl_sgn32 XgliUtVdcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_VDC or XGL_CURVE_CHORDAL_DEVIATION_VDC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

382 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtCdWcCircleApprox
Xgl_sgn32 XgliUtCdWcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to an XglConicList3d object containing a list of
circles or circular arcs.

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtWcCircleApprox
Xgl_sgn32 XgliUtWcCircleApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_circle_list * circle_list)

Evaluates the number of points to be used to approximate a circle when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

circle_list Pointer to a list of circles.

Utilities 383

12

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate a circle.

XgliUtWcArcApprox
Xgl_sgn32 XgliUtWcArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_arc_list * arc_list)

Evaluates the number of points to be used to approximate an arc when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D context.

viewGrpItf Pointer to a 3D view group interface.

arc_list Pointer to a list of circular arcs.

Output Parameter
 None

Return Value
Returns the number of points to be used to approximate an arc.

XgliUtCdWcEllArcApprox
Xgl_sgn32 XgliUtCdWcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
XglConicList3d * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

384 XGL Device Pipeline Porting Guide—May 1996

12

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to an XglConicList3d object containing a list of
elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

XgliUtWcEllArcApprox
Xgl_sgn32 XgliUtWcEllArcApprox(

XglContext3d * ctx ,
XglViewGrp3dItf * viewGrpItf ,
Xgl_ell_list * ell_list)

Evaluates the number of points to be used to approximate an ellipse when the
value of the attribute XGL_CTX_NURBS_CURVE_APPROX is
XGL_CURVE_METRIC_WC or XGL_CURVE_CHORDAL_DEVIATION_WC.

Input Parameters
ctx Pointer to a 3D Context.

viewGrpItf Pointer to a 3D view group interface.

ell_list Pointer to a list of elliptical arcs.

Output Parameter
None

Return Value
Returns the number of points to be used to approximate an ellipse.

Utilities 385

12

Bounding Box Utilities
XGL utilities for checking for bounding boxes are in the file CheckBbox.h .

XgliUt2dCheckBbox
Xgl_geom_status XgliUt2dCheckBbox(

XglContext2d* ctx ,
Xgl_primitive_type prim_type ,
Xgl_bbox* bbox ,
XglViewGrp2dItf* view_grp_itf)

Performs a bounding box check against the 2D clip volume and returns the
geometry status of the bounding box. For more information, see the
xgl_context_check_bbox() man page.

Input Parameters
ctx Pointer to a 2D Context.

prim_type The bounding box primitive type.

bbox Pointer to a bounding box which can be an Xgl_bbox_i2d,
Xgl_bbox_f2d, or Xgl_bbox_d2d structure.

 view_grp_itf Pointer to a 2D view group interface.

Output Parameter
None

Return Value
This utility returns a geometry status which is either
XGL_GEOM_STATUS_VIEW_REJECT (outside the clipping volume) or 0
(clipped).

386 XGL Device Pipeline Porting Guide—May 1996

12

XgliUt3dCheckBbox
Xgl_geom_status XgliUt3dCheckBbox(

XglContext3d* ctx ,
Xgl_primitive_type prim_type ,
Xgl_bbox* bbox ,
XglViewGrp3dItf* view_grp_itf)

Performs a bounding box check against the 3D clip volume and returns the
geometry status of the bounding box. For more information, see the
xgl_context_check_bbox() man page.

Input Parameters
ctx Pointer to a 3D Context.

prim_type The bounding box primitive type.

bbox Pointer to a bounding box which can be an Xgl_bbox_f3d or
Xgl_bbox_d3d structure.

view_grp_itf Pointer to a 3D view group interface.

Output Parameter
None

Return Value
Returns a geometry status which is a combination of the following flags:

XGL_GEOM_STATUS_VIEW_ACCEPT
XGL_GEOM_STATUS_VIEW_REJECT
XGL_GEOM_STATUS_VIEW_SMALL
XGL_GEOM_STATUS_MODEL_ACCEPT
XGL_GEOM_STATUS_MODEL_REJECT

Utilities 387

12

Copy Buffer Utilities
XGL utilities for copy buffer operations are in the file CopyBuffer.h .

XgliUtAdjustRectPos
extern int XgliUtAdjustRectPos(

XglRaster* src_dev ,
Xgl_bounds_i2d* src_rect ,
Xgl_bounds_i2d* adj_src_rect ,
XglRaster* dest_dev ,
Xgl_pt_i2d* dest_pos ,
Xgl_pt_i2d* adj_dest_pos);

Computes a new rectangle and position whose coordinates are valid as input
to the XgliUtCopyBuffer utility. The new or adjusted rectangle and position
are based upon the original rectangle and position and the size of the source
and destination device.

Input Parameters
src_dev Source device.

src_rect Source rectangle in src_dev’s coordinate space.

adj_src_rect Adjusted source rectangle; the new, valid rectangle.

dest_dev Destination device.

dest_pos Destination position in dest_dev’s coordinate space.

adj_dest_pos Adjusted destination position.

Output Parameter
None

Return Value
Returns 1 if successful or 0 if the input data is inconsistent.

388 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtCopyBuffer
extern int XgliUtCopyBuffer(

XglPixRect* dest_pr ,
const Xgl_pt_i2d* dest_pos ,
const Xgl_color* dest_fg_color ,
const Xgl_color* dest_bg_color ,
XglPixRectMem* dest_clip_mask ,
XglPixRect* src_pr ,
const Xgl_bounds_i2d* src_rect ,
XglPixRectMem* src_clip_mask ,
Xgli_cb_color_info* color_info ,
Xgli_cb_mask_and_rop_info* rop_info ,
Xgli_cb_fill_info* fill_info ,
Xgli_cb_z_buffer_info* z_buffer_info)

Implements the xgl_copy_buffer() function using PixRects. It copies a
rectangular block of pixels from a source raster to a destination raster and, in
addition, may convert from one color type to another, clip, fill with a pattern,
or perform the copy based upon Z-buffer values. The caller must ensure that
the device is locked (in other words, call WIN_LOCK when necessary).

Input Parameters
dest_pr PixRect representing the destination raster.

dest_pos Destination position.

dest_fg_color Foreground color from destination Context. Can be NULL if
the fill style does not require color.

dest_bg_color Background color from destination Context. Can be NULL if
the fill style does not require color.

dest_clip_mask Per-pixel clip mask represented as a PixRect for the
destination. Can be NULL if there is no per-pixel clip mask,
or if the whole area of the window or memory is visible so
that the pipeline does not need to do a per-pixel clip.

src_pr PixRect representing the source raster.

src_rect Rectangle of pixels which get copied to destination.

src_clip_mask Per-pixel clip mask represented as a PixRect for the source.
Can be NULL if there is no per-pixel clip mask, or if the
whole area of the window or memory is visible so that the
pipeline does not need to do a per-pixel clip.

Utilities 389

12

color_info Color info for source and destination raster. This structure
specifies the color space of the data. Color Map objects are
needed to do the copy and color conversion. This may be
NULL if copy does not involve color.

rop_info Plane mask and rop function. If the raster fill style is
XGL_RAS_FILL_COPY (see the man page for
XGL_CTX_RASTER_FILL_STYLE), the fill_info structure
must be filled in with the fill style; otherwise, the fill_info
structure can be NULL. If there is a raster fill pattern or a
stipple raster, the PixRect object must be supplied, and the
stipple position and color must be supplied. May be NULL
if the device does not want plane mask or raster operations
to be done in software.

fill_info Information from destination Context for filling with
patterns or stipples; may be NULL if not using patterned
fill.

z_buffer_info Information for copying from one Z-buffer to another;
should be NULL if not copying Z-buffer data. If this utility is
used for xgl_image() , this structure must be filled in.

Output Parameter
None

Return Value
Returns 1 if the function succeeds or 0 otherwise.

390 XGL Device Pipeline Porting Guide—May 1996

12

XgliUtFbToMemCopyBuffer
int XgliUtFbToMemCopyBuffer(

XglContext* dest_ctx ,
Xgl_bounds_i2d* rect ,
Xgl_pt_i2d* pos ,
XglRaster* src_dev ,
XglPixRect* src_image_pr ,
XglPixRect* src_zbuffer_pr ,
XglPixRectMem* src_clip_mask);

A high-level utility that implements xgl_copy_buffer() when copying from
a Device’s frame buffer to a Memory Raster. This function calls
XgliUtCopyBuffer(). The caller must ensure that the device is locked (in other
words, WIN_LOCK is called if needed).

Input Parameters
dest_ctx Destination Context object

rect Rectangle from API

pos Position from API

src_dev Source device

src_image_pr PixRect for source device’s image buffer.

src_zbuffer_pr PixRect for source device’s Z buffer

src_clip_mask PixRect for source device’s clip mask

Output Parameter
None

Return Value
Returns 1 if the function succeeds or 0 for nonsuccess.

Utilities 391

12

XgliUtGetMaskAndRopFunc
extern void XgliUtGetMaskAndRopFunc(

Xgl_rop_mode rop ,
Xgl_usgn32 (** func)(Xgl_usgn32 s, Xgl_usgn32 d, Xgl_usgn32 p))

Returns a pointer to a function that implements the given ROP value.

Input Parameter
rop ROP mode that is implemented by the returned function.

Output Parameter
func Pointer to a function which returns the ROP’ed and

masked pixel; it takes the following parameters: the source
pixel s, the destination pixel, d, and the plane mask p.

392 XGL Device Pipeline Porting Guide—May 1996

12

Polygon Classification Utilities
XGL utilities for polygon classification are in the file PgonClass.h .

XgliUtClassifyMsp
int XgliUtClassifyMsp(

Xgl_usgn32 num_pt_list s
Xgl_pt_list* point_list
Xgl_pt_f3d* points
Xgli_polygon_class* pgon_class

Classifies polygons sent to the primitive xgl_multi_simple_polygon() .
The classification consists of checking the number of points in each polygon
and testing for convexity. The information obtained can be used to decrease
rendering time. For example, if a classified polygon has the
XGL_PGON_TRISTAR bit set then a triangle star renderer can be used rather
than a generic polygon scan converter.

Input Parameters
num_pt_lists Number of point lists in point_list.

point_list Pointer to the data to be classified.

points Pointer to the polygon’s facet normal list. This list must be
of type XGL_FACET_NORMAL or
XGL_FACET_COLOR_NORMAL. If calling with a 2D point list,
this parameter is ignored.

Output Parameter
pgon_class A pointer to a bit vector. The bit vector must be allocated in

the calling routine to num_pt_lists in size. The bit vector
array is returned with at least one of the bits set. See the
return value for XgliUtClassifyPgon for the possible
values.

Return Value
Returns 0 if the classification finished successfully and 1 if the classification
was aborted. An attempt is made to classify a 3D multisimple polygon list
without the facet normal list.

Utilities 393

12

XgliUtClassifyPgon
Xgli_polygon_class XgliUtClassifyPgon(

Xgl_usgn32 num_pt_lists
Xgl_pt_list* pl
Xgl_pt_f3d* facet_normal)

Classifies polygons sent to the primitive xgl_polygon() . The classification
consists of checking the number of points in the polygon, checking the number
of bounds, and testing for convexity. The information obtained can be used to
decrease rendering time. For example, if a classified polygon has the
XGL_PGON_TRISTAR bit set, a triangle star renderer can be used rather than a
generic polygon scan converter.

Input Parameters
num_pt_lists Number of point lists in pl.

pl Pointer to the data to be classified.

facet_normal Pointer to the polygon’s facet normal. This must point to a
facet of type Xgl_normal_facet or Xgl_color_normal_facet. If
calling with a 2D point list, this parameter is ignored.

Output Parameter
None

Return Value
Returns a bit vector with at least one of the following set:

• XGL_PGON_DEGENERATE – The polygon has less than three points in its
point list.

• XGL_PGON_SIDES_ARE_3 – The polygon has three points in its point list.
No testing is done for degenerate data.

• XGL_PGON_SIDES_ARE_4 – The polygon has four points in its point list. No
testing is done for degenerate or self-intersecting data.

• XGL_PGON_SIDES_UNSPECIFIED – The polygon has more than four points
in its point list. No testing is done for degenerate data nor for a self
intersecting point list.

394 XGL Device Pipeline Porting Guide—May 1996

12

• XGL_PGON_TRISTAR – The polygon can be rendered using a triangle star
starting from the first vertex in the point list.

• XGL_PGON_CONV_ONEBOUND – The polygon is convex (can be rendered as a
triangle star from any vertex) and is single bounded (there are no holes in
the polygon).

• XGL_PGON_COMPLEX – No information was found about the polygon.

Polygon Decomposition Utilities
XGL provides utilities to decompose polygons into triangles in the file
utils.h .

XgliUtDecomposePgon
int XgliUtDecomposePgon(

Xgl_facet_type facet_type ,
Xgl_facet* facet ,
Xgl_usgn32 num_in_pt_lists ,
Xgl_pt_list* in_pl ,
Xgl_usgn32* num_out_pt_lists ,
Xgl_pt_list** out_pl ,
Xgl_color_type color_type ,
Xgl_pt_f3d* d_c_normal ,
Xgl_geom_normal geom_normal_type ,
Xgl_boolean normal_flip);

Decomposes one complex polygon facet into strips of triangle stars, which are
returned via the output parameter out_pl. The utility allocates the memory for
the output point lists of triangle stars, so it’s the caller’s responsibility to free
the memory when the output point lists are no longer needed.

Input Parameters
facet_type Facet type of input polygon

facet Facet information

num_in_pt_lists Number of point lists (i.e. bounds) in input polygon.

in_pl Array of point lists for input polygon.

color_type Color type (index or RGB).

d_c_normal Normalized facet normal of input polygon.

Utilities 395

12

geom_normal_type Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normal_flip Specifies whether vertex and facet normals are flipped, as
defined by the attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameters
num_out_pt_lists Number of output point lists of triangle stars.

out_pl Pointer to output point lists of triangle stars.

Return Value
Returns 1 if the polygon is successfully decomposed and 0 if memory
allocation fails.

XgliUtDecomposeNsiPgon
int XgliUtDecomposeNsiPgon(

Xgl_facet_type facet_type ,
Xgl_facet* facet ,
Xgl_usgn32 num_in_pt_lists ,
Xgl_pt_list* in_pl ,
Xgl_usgn32* num_out_pt_lists ,
Xgl_pt_list** out_pl ,
Xgl_color_type color_type ,
Xgl_pt_f3d* d_c_normal ,
Xgl_geom_normal geom_normal_type ,
Xgl_boolean normal_flip);

Decomposes one non-self-intersecting polygon facet into strips of triangle
stars, which are returned via the output parameter out_pl. The utility allocates
the memory for the output point lists of triangle stars, so it’s the caller’s
responsibility to free the memory when the output point lists are no longer
needed.

Input Parameters
facet_type Facet type of input polygon.

facet Facet information.

num_in_pt_lists Number of point lists (i.e. bounds) in input polygon.

396 XGL Device Pipeline Porting Guide—May 1996

12

in_pl Array of point lists for input polygon.

color_type Color type (index or RGB).

d_c_normal Normalized facet normal of input polygon.

geom_normal_type Geometry normal format as defined by the API attribute
XGL_3D_CTX_SURF_GEOM_NORMAL.

normal_flip Specifies whether vertex and facet normals are flipped, as
defined by the API attribute
XGL_3D_CTX_SURF_NORMAL_FLIP.

Output Parameters
num_out_pt_lists Number of output point lists of triangle stars.

out_pl Pointer to output point lists of triangle stars.

Return Value
Returns 1 if the polygon is successfully decomposed and 0 if memory
allocation fails.

397

Performance Tuning A

This appendix presents information about performance tuning. Tuning code
for performance can be broken down into two distinct parts: finding the
performance critical paths and tuning those paths.

This appendix details methodologies for finding performance problems and
describes both high-level and low-level techniques for alleviating them. The
following topics are covered:

• Finding the performance critical paths

• Selecting good benchmarks

• Tuning the performance critical paths

• Tips and techniques for faster code

398 XGL Device Pipeline Porting Guide—May 1996

A

Finding the Performance Critical Paths
Being able to find the performance critical paths is as important as tuning
them. However, finding these paths is not always easy. Your intuition about
where the performance problems lie can mislead you. Unless you are
personally familiar with a particular section of code, it is best to approach this
process with no preconceptions and to gather profile information from an
application to direct your investigation.

There are currently three ways you can gather profile information. These
methods are introduced here and described more fully in “Tuning Performance
Critical Paths” on page 403.

1. Build profile libraries.

Libraries built with the -pg option produce gprof output. This output
gives you a very close approximation of how much time was spent in each
function of the library, an exact count of how many times each function was
executed, and a function call graph.

The disadvantages of profile libraries are that they must be compiled using
special flags, they must be built statically (this restriction may be removed at
a later time), they don’t measure system time, they require re-linking the
application with -pg , and they don’t provide any information about the
memory system (for example, page faults).

Although profile libraries have disadvantages, they are currently the only
standard mechanism capable of providing function call counts and the
function call graph. These capabilities make profile libraries a very attractive
analysis tool for in-depth performance tuning.

2. Use the performance collector and analyzer tools included in ProWorks.

The collector is used from the debugger to gather information about a
program while it is running, and the analyzer is a user interface that sorts
and displays that information in various ways.

This tool has the benefit of being able to measure any code that hasn’t been
stripped. No special compile flags are needed, and it doesn’t matter whether
libraries are dynamically or statically linked or even dlopen ’d. It also is
aware of page faults.

Performance Tuning 399

A

One attractive feature of the analyzer is that it shows you the total amount
of time spent in each shared library. This is useful for doing a overall
analysis of your program. For example, if you’re spending a lot of time in
libc, you are probably doing a lot of malloc ,free , or signal handling. Even
though the analyzer can’t show you what routine is calling these routines,
you as a library developer may immediately know where to start looking.

However, this tool is not able to show the function call graphs or counts on
the number of times a function was executed.

3. Use the Shared Library Interposer.

The Shared Library Interposer (SLI) installs hooks to trap function calls,
which is a Sun OS 5.x special feature. However, it can’t catch C++ virtual
functions or static functions. The SLI can work on any number of shared
libraries at the same time.

A disadvantage of SLI is that it requires additional interposing libraries to
work. If you’re just interested in measuring the performance of your API
without the details of the code underneath, then these interposing libraries
can be constructed once and easily be referenced later on. If you want the
details of all the internal functions that were called, then you need to point
SLI at your source tree and construct a new interposing library any time
functions are created, destroyed or renamed (but not if just the body of
functions were changed). This rebuilding takes approximately ten minutes
for large libraries.

Unlike all of the above options, SLI gets exact time for each function. It does
this by bracketing each function call with gethrtime() . All the other
schemes interrupt the process every 10 milliseconds or so and note which
function they are in. Therefore, all of the non-SLI schemes only generate
statistical approximations to how much time was spent in each function.
Assuming your application runs for at least a few seconds, this statistical
approximation is quite close to reality. SLI does not work with static
libraries or applications, nor does it know about the memory system.

SLI has a GUI to allow easy interpretation of the gathered data. SLI also has
the ability to log all the API calls and their arguments made during a session
for later playback. The functionality has to be coded into SLI; therefore, it
only works on a small number of libraries.

400 XGL Device Pipeline Porting Guide—May 1996

A

At-a-Glance Comparison of Performance Tools

Table A-1 compares the different performance tools used to gather profile
information.

1. If functions are created/destroyed/renamed, then the new interposing libraries need to be created for SLI.
This does not take a tremendous amount of time, but it is an additional step.

2. Only a handful of libraries support this feature.

Table A-1 Comparing Applications Used to Gather Profile Information

Features -pg Collector SLI

Time spent in each function Y Y Y

Call counts for each function Y Y

Function call graph Y Y

Measures system time Y

Page fault aware Y

Library can be dynamic Y Y

Library can be static Y Y

Handles multiple libraries Y Y Y

Does not need special compile flags Y Y

No recompilation/linking of application
needed

Y Y

Works on dlopen() ’d libraries Y Y

Has a GUI for display Y Y

Needs no additional libraries Y Y

Internal library functions measured Y Y Y1

Virtual/static functions profiled Y Y

Supports playback of library calls Y2

Performance Tuning 401

A

Recommendations for Performance Tools

Choosing a performance analysis method is a matter of individual preference.
This section provides recommendations, and you can determine which
methods you are most comfortable with.

If you are interested in giving one or two areas a boost in performance, but the
areas are not critical, use the collector and see if it can give you the information
you need. If you’re going to be spending a lot of time tuning code or if the
collector does not meet your needs, then it’s worth the effort to build a profile
library.

SLI is not recommended for library developers because SLI’s strength is in
logging the library API calls for statistical analysis of how the library is used.
As such, it is more useful for tuning the application to use the library more
efficiently than it is for tuning the library itself.

For serious performance tuning, the profile library is recommended over the
collector tool. This is because the collector does not produce the function call
graphs or function call counts which are crucial for finding and tuning your
critical paths.

All of the above schemes work at a functional level. If you are interested in
finding out how many times a line of code is executed within a function, see
the tcov man pages.

Selecting Good Benchmarks
When searching for performance bottlenecks, it is important to use the right
benchmarks. It is often easy to find and fix a bottleneck that makes benchmarks
run faster, while the performance of real customer applications remains
unchanged. In an ideal world, all performance tuning would be guided by real
customer workload. In our less than ideal world, we must use approximations
to real customer workload.

It is becoming more and more of a requirement for vendors to run a customer’s
application as part of the sales process. Improving your marketing-oriented
benchmarks undoubtedly catches the customer’s eye. However, improving
your customer-oriented benchmarks will help close the sale and generate
future business from your satisfied customers. In today’s market, both types of

402 XGL Device Pipeline Porting Guide—May 1996

A

benchmarks need to be used to maximize your company’s profit. The
advantages and disadvantages of the three types of benchmarks are discussed
below.

• Shared Library Interposer – Customer oriented

The Shared Library Interposer (SLI) is an excellent tool for logging and
playing back library calls from real customer applications. Not only will SLI
help you find exactly what needs to be tuned for a given application, it will
allow you to give feedback to the application writers on how to use your
library more effectively. Unfortunately, there is currently no industry
standard way of reporting performance of real customer applications.

• Raw primitive benchmarks – Marketing oriented

Be cautious about using raw primitive benchmarks to guide tuning efforts.
Although these benchmarks are good tools to measure peak performance,
they produce results that are the least likely to match real customer
workloads. However, reporting peak performance numbers is still the most
common way for vendors to market their products. These benchmarks are
well-suited for tuning the inner loops of a particular primitive’s rendering
code, and they can help identify library overhead for poorly-batched
primitives (like single vector polylines).

• GPC Picture Level Benchmark – Customer and marketing oriented

The GPC Picture Level Benchmark’s (PLB) exploits the strengths of real
customer applications and raw primitive benchmarks. It is currently the
closest industry standard benchmark to real customer applications. Because
it’s a standard, it allows you to compare your product against the
competition. Improved results will translate well to customer-visible
performance improvements.

Performance Tuning 403

A

Tuning Performance Critical Paths
Performance tuning can occur on three different levels. The first level involves
looking for a central body of code, in which the application spends most of its
time. The second level of performance tuning consists of algorithmic
improvement, and the third level involves tuning assembly language.

Locating the Central Body of Code

The first level of performance tuning involves looking at your profile output
and checking for any obvious problems. For example, there might be a
transform evaluation on every primitive, or new and delete might be called
for every primitive. Fixing these types of problems usually requires little work.
A simple yet extremely useful performance technique for this is to cache values
in software for later use. You may also need to add an if test in several places
and restructure the code, but the basic algorithm can remain intact. The
difficult part in fixing these bugs is finding them. If a lot of time is spent in
some functions that you know shouldn’t be called frequently, then the collector
will point you to the problem. If this isn’t the case, then you may need to use
the profile libraries so that you get the count and call graph information.
Finally, gprof output may show you that you are calling a function many
more times than you expected.

Changing the Underlying Algorithm

The next level of performance tuning involves changing the underlying
algorithm. Some examples of this are speeding up the special cases of a general
algorithm, using fixed point arithmetic instead of floating point, using software
caching schemes, and reducing the number of malloc /free calls from many
to one. This type of tuning is frequently needed when a feature of the library
that was previously deemed unimportant turns out to be useful to customers.
Because the feature had a low priority, not much time was originally spent
implementing it efficiently. Now it’s necessary to go back and perform an in-
depth analysis to make it run fast.

Coming up with a new algorithm requires designers to have a clear
understanding of what is fast and what is slow on the current hardware. Some
performance techniques are widely known (square root is slower than
addition, hash tables speed up linked list searches, multiplication is faster than

404 XGL Device Pipeline Porting Guide—May 1996

A

division, and so on), but there are dozens of techniques that you can used to
make algorithms more efficient. See “Tips and Techniques for Faster Code” for
a discussion of these techniques.

Tuning at the Assembly Language Level

To really tune a chunk of code well, you must look at the assembly language
output of the compiler1. At some point, the algorithm you’re working on must
be turned into machine readable format. You need to ensure that all the effort
you’ve put into avoiding expensive operations isn’t being overshadowed by
some unintelligent process the compiler is doing. This type of tuning should be
reserved for performance critical paths. Spending time tuning your code to
produce near-optimal assembly output isn’t free. Reality dictates that you
spend your time using the most cost-effective philosophy. It is good practice to
frequently look at the assembly output. As you gain experience, looking at this
information can become part of your development process, and it becomes a
good way to verify your design.

Tips and Techniques for Faster Code
As you read through the suggested techniques in this section, you will note
that a knowledge of assembly language can be useful. Many of the techniques
presented here can be applied without inspecting the assembly output, but a
knowledge of assembly language becomes more essential as you progress
through the tuning techniques suggested here.

Tune the Innermost Loops First

Once you have identified your performance critical paths, you need a starting
point to begin your tuning. The way to get the most cost-effective performance
is to tune the innermost loops first. These loops are executed many times
(potentially hundreds of times) for every iteration of an outer loop. Once the

1. There is a big difference between reading the assembly output from the compiler and writing assembly
language routines. It’s very similar to being able to read a foreign language versus being able to speak it. If
you’re not totally familiar with a particular instruction, you can make an educated guess at what it is or look
it up in a manual. This is much easier than creating an assembly language routine from scratch.

Performance Tuning 405

A

absolute innermost loop has been tuned, start expanding your view outward to
the next innermost loops. Time permitting, continue out to your library entry
points.

By tuning your innermost loops first, you can substantially increase the
performance of your moderately and highly batched cases. The performance of
your poorly batched cases may improve slightly, but not by much. The
performance of poorly batched cases tend to be limited by start up costs and
has little to do with the inner loops. Improving the performance of poorly
batched cases is a more difficult task than tuning highly batched performance,
and it requires applying virtually all of the tips in this appendix. If you are
interested in tuning for poorly batched cases, assume that every loop is
executed once and start counting CPU cycles in your assembler output. You
will need to look all the way from your library entry point down to the lowest
level function.

A simple source code transformation to improve inner loops is moving loop
invariant code outward. Suppose you want to construct the vertices of a
sphere. The straightforward implementation of this is as follows:

This could easily be changed to:

for (theta=0.0 ; theta<2.0*PI ; theta+=theta_step) {
for (omega=-0.5*PI ; omega<0.5*PI ; omega+=omega_step) {

pt->x = cos(theta)*cos(omega);
pt->y = sin(theta)*cos(omega);
pt->z = sin(omega);
pt++;

}
}

for (theta=0.0 ; theta<2.0*PI ; theta+=theta_step) {
cos_theta = cos(theta);
sin_theta = sin(theta);
for (omega=-0.5*PI ; omega<0.5*PI ; omega+=omega_step) {

cos_omega = cos(omega);
pt->x = cos_theta*cos_omega;
pt->y = sin_theta*cos_omega;
pt->z = sin(omega);
pt++;

}
}

406 XGL Device Pipeline Porting Guide—May 1996

A

You have reduced the number of calls to cos() and sin() in our inner loop from
5 to 2. Assuming that omega_step is small enough that the inner loop
executes a large number of times relative to the outer loop, you should see a
performance increase by a factor of 2.5. You could try exploiting the
relationship cos2 + sin2 = 1, but that would depend on the relative speeds of
cos /sin and sqrt . If the hardware supports sqrt , use it.

The above example was a fairly simple one. Less obvious cases are more
prevalent. Below is an example for copying one string to another. Assume the
string structure has a length field and a character array with sufficient space to
hold the string:

Since you are operating through pointers, the compiler cannot assume that
src->length isn’t changed during each iteration of the loop. To get around
this, keep the string length in a local variable as shown below:

On the SPARC architecture, the upper loop takes six instructions per iteration
while the bottom loop takes four instructions. This simple example shows us
the most important lesson that can be learned about performance tuning and
that is, don’t trust the compiler. No matter how efficient the compiler gets, it
cannot surpass a knowledgeable programmer.

As you move loop invariant code outward, you’ll notice a proliferation of local
variables. This is perfectly acceptable. These local variables can be thought of
as a cache of values created by the programmer. While there are cases where
too many local variables hurt performance, they are rare and their penalties are
low in comparison to the much more likely gains they offer. It is quite common
for local variables to map directly to hardware registers and never get stored to
memory. One way to help the compiler to realize this is to declare local
variables within the smallest scope they will be used in.

dest->length = src->length;
for (i=0 ; i<src->length ; i++) {

dest->string[i] = src->string[i];
}

length = dest->length = src->length;
for (; length>=0 ; length--) {

 dest->string[length] = src->string[length];
}

Performance Tuning 407

A

Don’t Optimize Uncommon Cases at the Expense of Common Cases

Although this rule is intuitively obvious, it is perhaps the easiest to forget. It is
often quite tempting to add code that makes a seldom used operation run
faster. At times you will need to add a little logic someplace else to make this
optimization work. Note how this affects your common cases, and if it does,
make sure that the performance trade-offs you are making are good ones.

This rule could also be called a “keep it simple” rule. To a first approximation,
the more complicated and convoluted the code, the slower it will run. If you’re
just getting started in performance tuning, then go for simplicity. After you’ve
had a chance to get familiar with the types of trade-offs that are made in the
name of performance, you’ll be in a better position to estimate the
consequences of additional complexity.

Special-Case the Common Cases

Most libraries have a set of attributes that can be changed by the user. Libraries
will need to switch on the attribute or employ a hierarchical set of if tests to
decode the attribute. In either case, it can be worthwhile to special case a small
number of the most frequently set attributes (like line color). By having an if
test that succeeds most of the time, you can decrease the average amount of
time spent setting attributes for most applications. Certainly an application
that never sets the line color will run slower, but the difference is likely to be
quite small since attributes will have to go through the full decode cycle.

Choose Your Software Layers Carefully

You need to define software layers that don’t limit performance. An example is
when A calls B(X). The function A knows some property of X which B does
not, so B spends time checking for the property, or it simply does things more
generally (and less efficiently). Either A and B should be in the same software
layer, or perhaps a special case version of B can be written which assumes the
knowledge of the properties for X.

An example is memcpy() , which assumes only character-aligned data. If you
are copying word-aligned data (or double-word aligned data), you can copy
faster than memcpy() with a simple loop.

408 XGL Device Pipeline Porting Guide—May 1996

A

Move If Tests Outward

Although if tests are certainly necessary for programming, it is advantageous
to remove as many of them as possible from your performance critical paths. In
today’s high clock rate, super-scalar RISC chips, each branch in the code carries
along with it the possibility of dozens of wasted CPU cycles.

Removing if tests can often mean replicating code. A simple example of this is
shown below for drawing a polyline on a hardware device where the first
vertex must be handled differently from all subsequent vertices:

This code can be restructured as:

By replicating the code which sends the vertex information to the hardware, an
if test on every vertex was removed.

The above example was a simple one because it dealt with a very small and
manageable portion of code. As you expand your focus outward from the
innermost loops, it gets more and more difficult to replicate code. You start to

first_vertex = 1;
for (i=0 ; i<num_pts ; i++) {

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
pt++;
if (!first_vertex) {

// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;

}
first_vertex = 0;

}

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;

}

Performance Tuning 409

A

have huge chunks of code, each of which does basically the same thing. This
becomes a maintenance problem. One technique for overcoming this is to have
source code files with #ifdefs that are included by other files. Suppose you
wanted to augment the above line renderer to handle polylines with color at
each vertex. The straightforward way to do this is with an if test inside the
inner loop:

This keeps your maintenance costs down but at the expense of performance. If
things like line patterning, homogeneous coordinates, or vertex flags are
added, you will end up with a large number of if tests performed for every
vertex. Fortunately, you can keep the maintenance costs down and still have
optimal performance by keeping the code below in a separate file called
PolylinesProto.h :

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
if (pt_type & VERTEX_COLOR) {

vertex_registers[R_OFFSET] = pt->color.r;
vertex_registers[G_OFFSET] = pt->color.g;
vertex_registers[B_OFFSET] = pt->color.b;

}
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE);

}

410 XGL Device Pipeline Porting Guide—May 1996

A

The PolylinesProto.h file is included in another file as shown below:

Thus, whenever a bug is filed, you fix it once for all polyline renderers. Unlike
embedding if(constant_expression)’s in a macro definition, this
technique allows the debugger to step through the #include ’d code. This
technique was used for the Sun XGL GX pipeline, which has nearly one
hundred special purpose polyline renderers.

{
// setup code here (probably with #ifdef’s in it)

vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;
for (i=1 ; i<num_pts ; i++) {

pt++;
vertex_registers[X_OFFSET] = pt->x;
vertex_registers[Y_OFFSET] = pt->y;
vertex_registers[Z_OFFSET] = pt->z;

ifdef(VERTEX_COLOR)
 vertex_registers[R_OFFSET] = pt->color.r;
 vertex_registers[G_OFFSET] = pt->color.g;
 vertex_registers[B_OFFSET] = pt->color.b;

endif
// wait for DRAW operation to finish
while(vertex_registers[DRAW_STATUS] != ALL_DONE) ;
}

}

#define FUNCNAME PolylinesXyz
#undef VERTEX_COLOR
#include PolylinesProto.h
#undef FUNCNAME

#define FUNCNAME PolylinesXyzRgb
#define VERTEX_COLOR
#include PolylinesProto.h
#undef FUNCNAME

Performance Tuning 411

A

Unroll Loops Where Appropriate

It was shown above that it is worthwhile to minimize the number of if tests
on your performance critical paths. This rule applies to loops as well. If you
have some knowledge about how your loop is going to be used, then you can
exploit that knowledge to reduce the number of branches in your code along
with your loop overhead. Just like the examples in the preceding section, this
means replicating code. Unlike the preceding section, loop unrolling is only
effective inside loop constructs and, therefore, is really only applicable in your
innermost loops.

One example of where this can be used is in an
xgl_multi_simple_polygon() rendering routine. You could have a
specialized renderer which handles the case where the SIDES_ARE_3 flag is
set. Instead of having an outer loop for each polygon and an inner loop for
each vertex, the inner loop can be completely unrolled to send down three
vertices at a time. This way, you have reduced the number of if tests per
polygon from four to one and saved other per loop-iteration overhead such as
incrementing loop variables. A similar optimization could be used for
SIDES_ARE_4 (possibly be used in conjunction with
XGL_FACET_FLAG_SHAPE_CONVEX).

Another common area for loop unrolling is in memory copy operations. The
canonical copy operation shown below takes six instructions to copy each
word of data when compiled at -O2 on SPARC (-O4 does some loop unrolling
for you). Of these six instructions, only two are actually useful (the loading of
the src value and the storing of that value to dst). The other four instructions
are purely loop overhead (testing size, incrementing dst , incrementing src ,
and decreasing size).

By unrolling the loop once, you can get the loop to use nine instructions to
copy two words of data. The example of unrolling the loop once is as follows:

for (; size>0 ; size--) {
*dst++ = *src++;

}

412 XGL Device Pipeline Porting Guide—May 1996

A

Unrolling the loop again produces 13 instructions to handle four words of
data. Remembering that two instructions per word is the least possible, the
efficiency has improved from 33% (2/6) to 61% (8/13). The example of
unrolling the loop again is as follows:

for (; size>1 ; size-=2) {
dst[0] = src[0];
dst[1] = src[1];
dst += 2;
src += 2;

}
if (size) {

*dst = *src; // in case “size” is odd
}

for (; size>3 ; size-=4) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst += 4;
src += 4;

}
if (size<2) {

if (size==1) {
dst[0] = src[0];

}
} else {

if (size==2) {
dst[0] = src[0];
dst[1] = src[1];

} else {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];

}
}

Performance Tuning 413

A

Unfortunately, as the loop gets more and more unrolled, the cleanup code after
the loop gets more and more complicated. For massively unrolled loops, the
cleanup code might best be handled with a switch statement:

You will need to keep in mind just how the code will be used. If you plan to
copy large amounts of data (like on the order of Kwords), then it’s perfectly
reasonable to unroll your loops 16 or 32 times. If you plan to only copy a
handful of words, then extreme loop unrolling can actually hurt your
performance. The loop should only be unrolled to the extent that a typical
use will execute at least a few iterations.

Reduce the Cost of Multiple Clause If Tests

In C/C++, if tests treat the logical operations && and || specially when
performing expression evaluation. The compiler produces code that will only
continue to evaluate the expression as long as the result is not known. For
example, the code below tests for b==3 which will only occur if a==1 . If a!=1 ,
then the expression cannot possibly be true regardless of what b is.

for (; size>15 ; size-=16) {
dst[0] = src[0];
dst[1] = src[1];
...
dst[15] = src[15];
dst += 16;
src += 16;

}
switch(size) {

case 15: dst[14] = src[14];
case 14: dst[13] = src[13];
...
case 1: dst[0] = src[0];

}

if ((a==1) && (b==3)) {
/* do something */

}

414 XGL Device Pipeline Porting Guide—May 1996

A

To the compiler, the code above looks like:

Likewise, the following code:

looks to the compiler as follows:

So when using &&, you should put the sub-expression most likely to fail at the
beginning of the expression. When using || , put the sub-expression most
likely to succeed at the beginning. This will reduce the average number of if
tests your code executes.

Sometimes you will have a long list of && separated == expressions which you
think will frequently succeed. This commonly happens when you are checking
current state versus cached state. By avoiding the use of &&, you can reduce the
number of if tests by using integer math. For example, the following code:

if ((v1->a == v2->a) && (v1->b == v2->b) && ...)

can be transformed to:

if (!((v1->a - v2->a) | (v1->b - v2->b) | ...))

It’s worth noting that the recommended code will be slower than the original
code if, for example, v1->a != v2->a . This technique should only be used
when all clauses are expected to frequently be true.

Similar techniques can be used with || separated if tests. For example, the
following code:

if ((v1->a != v2->a) || (v1->b != v2->b) || ...)

if (a==1) {
if (b==3) {

/* do something */
}

}

if ((a==1) || (b==3)) {
/* do something */

}

if (a==1) {
/* do something */

} else if (b==3) {
/* do something */

}

Performance Tuning 415

A

can be transformed to:

if ((v1->a - v2->a) | (v1->b - v2->b) | ...)

Using fast greater-than or less-than operators takes a bit more effort but is still
useful. For example, the following code:

if ((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax))

can be transformed to:

This takes advantage of the sign bit from the subtractions to do branch free
comparisons. Again, these techniques should only be used when all clauses of
an if test are likely to be evaluated.

Optimize for the Common Code Path

When you write code, there are often many places where optional cases or
error conditions are tested for. Whenever possible, try to make the common
case the main path, as this causes fewer branches to be taken. Straight-line
code has a better cache hit rate and also helps processors prefetch and execute
more useful instructions in a given number of clock cycles. The disadvantage is
that the code can sometimes be harder to read because the test and the action
for each exception is separated. A simple example is shown below; note that
more benefit is gained when multiple options and error conditions are being
handled.

if (!(((x-xmin) |
(xmax-x) |
(y-ymin) |
(ymax-y)) >> 31))

or:
if (!(((x-xmin) |

(xmax-x) |
(y-ymin) |
(ymax-y)) & 0x80000000))

/* do something */
if (special case)

/* handle special case */
else

/* handle typical case */
return

416 XGL Device Pipeline Porting Guide—May 1996

A

This code can be rewritten as:

Avoid Using Malloc/Free and New/Delete

Allocating and freeing memory is an expensive operation. If a section of code
on a performance critical path requires its own temporary space, try to either
allocate it on the stack or cache it somewhere.

Allocating space on the stack is easiest when you know in advance how much
space you will need and the amount is reasonably small (like space for a
handful of 4x4 transforms). If you don’t know how much space you will need
at compile time, but you do know that it’s small, you can try using alloca()
instead of malloc() . The alloca() function gives you an amount of memory
by bumping the stack pointer. This method of memory allocation should be
used with caution since it will fail if you exceed the stack limit1. Since this
method of allocation uses the stack, there is an implicit free when you leave the
calling function.

If you need to malloc /new space, try to cache a pointer to that space in
whatever structure is both handy and likely to be around the next time
through the code. You will need to check each time that you have enough
space (and if you don’t, free the old space and allocate a bigger chunk), but this
is very cheap when compared to the costs of memory allocation.

Sometimes neither of these schemes is appropriate. If this is the case, try to
minimize the number of allocations you do. Calculate the total size you will
need, allocate one big chunk, and set your pointers to the appropriate offsets.
It’s worth noting that this performance recommendation is in direct opposition
with object-oriented design principles. You will need to decide before you
begin which is more important to you.

1. Not only is alloca()’s behavior on failure undefined, the man page strongly discourages its use.

/* do something */
if (!special case)

/* handle typical case */
return

else
/* handle special case */

return

Performance Tuning 417

A

Cache Whatever You Need

Another basic technique is caching values that you need. If you think it’s likely
for the same path to be taken through the code many times in a row, then look
for calculated or constructed values that can be cached for future use. This
applies particularly to requests that involve context switching (for example,
system calls or Xlib inquires). Although caching is a useful technique, you need
to keep in mind the complexity of invalidating your caches. Don’t leave this
crucial aspect out of your design phase.

Preserve Batching

When a library is handed data from the application, it is almost always a bad
idea for the library to break it into smaller pieces. Not only does breaking up
data make the library code more complicated and harder to understand, it is
virtually guaranteed to reduce performance1. The only way to increase the
batching factor beyond what the application gives you is to go through a copy
operation. A low-level routine should not have to perform a copy just because
a high-level routine broke up data.

Keep Parallelism As High As Possible

In an immediate mode accelerated graphics environment, it is critical to
consider the parallelism between the CPU and the accelerator to get anywhere
near maximum performance. Some accelerator attributes will require the
hardware pipeline to be empty while other attributes will not. You must look
closely at the attributes that require the pipeline to be empty. As soon as one of
these attributes come down, flush any outstanding data to the accelerator.
Attempt to delay sending the attribute as long as possible. That may mean you
should return to the application after setting some state to indicate that an
attribute change is pending. On the next call to your library, wait for the
accelerator to become idle, send the attribute, and finally process whatever the
current call was.

1. An exception to this rule is if you have a multiprocessor system. In this case, it may be best to hand
whatever data you’ve got to an idle processor. Even in cases such as this, before and after measurements
should take place to ensure that the performance does actually go up.

418 XGL Device Pipeline Porting Guide—May 1996

A

Avoid Using Global Variables

Because this is the age of dynamic libraries, all code must be relocatable. This
also applies to global variables (local variables are kept on the stack and are
therefore easy to locate). This need forces global variables to be referenced via
a table indirection. Depending on whether your library is compiled -pic or -
PIC , this will either be a single level or double level indirection. In a multi-
threaded environment, global variables have the additional overhead of
needing protection via locks. If you must use global variables, minimize their
usage by creating local variables that point to the globals. The following code:

would run faster as:

In the second case, the indirection is only performed once per function instead
of every time the global data is referenced.

Reduce Function Call Depth

Depending on your hardware, function calls can be relatively cheap or
expensive. Regardless, they are never free. An effort should be made to keep
the function call depth to a reasonable limit. Not only can this result in less
instructions executed, but it will reduce the number of code pages you touch so
that your working set will be smaller. However, it is not recommended that
you have complicated functions in order to reduce the number of code pages.
As you are designing your code, just bear in mind the cost of function calls.

SPARC is optimized around register windows. Programs that are well-behaved
in their function call depth will benefit from this and those that are not will
suffer when their register windows frequently spill to memory.

int pt_size = global_data.pt_size;
...
float *pt = global_data.pt;
 ...
float *colors = global_data.vertex_colors;

gd *lgd = &global_data;
int pt_size = lgd->pt_size;
...
float *pt = lgd->pt;
...
float *colors = lgd->vertex_colors;

Performance Tuning 419

A

x86 has relatively expensive function calls. Even ignoring the issues of pushing
and popping parameters from the stack, the instructions call , leave , and
ret take 3, 5, and 5 cycles, respectively on a 486 (the cycles are 7, 4 and 10
on a 386).1

Use Fixed Point Arithmetic

Depending on the following listed criteria, it may be advantageous to convert
your floating point data to fixed point. These criteria are as follows:

• Relative speeds of integer and floating point code on your hardware

• Whether your hardware uses super-scalar technology

• How much precision you need

This is particularly true if you are walking scanlines and you would like to
avoid a floating point to integer cast for every pixel. Addition and subtraction
are the two most common operations on fixed point numbers (since floating
point multiplication/division is usually faster than integer
multiplication/division).

Exploit the Math That Your Hardware Does Well

If you know which specific platform your code will be running on, you can
exploit the hardware to its fullest. If your code needs to run well on a variety
of hardware, you may be forced to use the lowest common denominator. If this
is the case, avoid using square root, integer
multiplication/division/remainder, and to a lesser extent, floating point
division. It is safe to assume that you will have fast addition and subtraction of
both integer and floating point data. In addition, floating point multiplication
is fast.

Some examples of things you can do are the following:

• Avoid using square root if you don’t need to. For example, don’t normalize
vectors if you only need them for backface culling. Put an if test in your
vector code to normalize only when necessary.

1. Cycle counts from Microsoft’s 80386/80486 Programming Guide, Ross P. Nelson, 1991.

420 XGL Device Pipeline Porting Guide—May 1996

A

• If a variable will be used to divide two or more other variables, calculate its
reciprocal once and use that to multiply with the other variables. Sometimes
you can avoid both integer and floating point division of variables by
multiplying other variables. For example:

if (a/10 >= b) and if (a/10.0 >= b)

can be replaced with:

if (a >= b*10) and if (a >= b*10.0)

Notice that the integer technique works with “>=” but not with “>”.

• If you know something about one of the operands of an integer
multiplication, you may be able to use shifts and adds to get the result. For
example, if you know that one operand will always be between 0 and 15,
then use a switch with 16 cases that multiplies the other operand by a
constant. Be sure to check to make sure the compiler turns this into a series
of shifts and adds.

• The only kind of fast integer division and remainder is when the divisor is a
power of 2. If you have such a divisor, then code using either shifts and
ands, or verify that the compiler is smart enough to notice.

Use Single Precision Floating Point Constants

ANSI C/C++ dictates that floating point constants by default are double
precision. This affects your code in several ways:

• Two words of data are loaded from memory instead of one for every
floating point constant.

• Variables and temporary values may undergo a conversion to double
precision (for example, more instructions).

• Fewer floating point registers are available because you have double
precision copies of single precision data.

• Expression evaluation is done using double precision instructions, which are
potentially slower than single precision instructions.

Fortunately ANSI allows you to keep all your floating point constants in single
precision by adding an f suffix. For example, change:

if (val < 0.0)

to:

Performance Tuning 421

A

if (val < 0.0f)

to get 0.0 to be single precision. Note that if you are using cc , you will also
need to apply the -fsingle compile line option to get single precision
expression evaluation. You can think of the f suffix as merely registering with
the compiler that the constant’s data type is float and not double .

Avoid Careless Use of the Stack

Use the stack sparingly. RISC CPUs tend to have an abundance of general
purpose registers that are quite effective in increasing performance. Keeping
your function’s local variables in these registers can dramatically increase the
speed of your code. On SPARC, look for references to the frame pointer (%fp)
in your performance critical functions. Pay close attention to the references
inside your inner loops. For the most performance-critical functions, it is an
achievable goal to have absolutely no references to %fp .

Removing references to %fp is not easy. You may find that you need to break
up a function into many smaller, specialized functions. Frequently, however,
you will be able to tune the code so that it can be easily processed by the
compiler. Creating new local variables can be used to move %fp references
outside of a loop.

Be advised that declaring variables to be of type register does not guarantee
that they will actually be in a register. The register keyword is only a hint to
the compiler. Different compilers (and even different versions of the same
compiler) will consider this keyword differently. It is perfectly legal for a
compiler to completely ignore this hint.

Experiment with changing the code to see just what it is that your compiler
needs. This level of tuning requires looking at the assembly output of your
compiler. Every compiler has its quirks, and your task is to figure out these
quirks.

Optimized Leaf Functions

CPUs with register windows typically have a much lower function call cost
than CPUs that don’t have register windows. Above and beyond this, register
windows support an even faster kind of mini-function called an optimized leaf
function. The idea is that if a function only uses windowed out registers (no
local or floating point registers, and no stack or frame pointers), and calls no

422 XGL Device Pipeline Porting Guide—May 1996

A

other functions, then the function can operate using the caller’s register
window and stack frame. The benefits of optimized leaf procedures is a
savings of one or two instructions per call plus the possibility of not
overflowing the register windows.

Try to Minimize Loads

On high-clock rate RISC machines, loads are much more expensive than stores.
This is because loads require a round trip message. First, the request is made
by the CPU for some data, and at some later time the data is given to the CPU.
Stores are faster because the CPU simply issues a request for the data to be
stored, and the memory subsystem worries about the rest. Loads can also be
slower because they may have to wait for the store buffer to drain (see “Cluster
Loads and Cluster Stores” on page 423). CPU caches exist to alleviate the
problems associated with loads, but the cache will never get a 100% hit rate,
nor will it help with uncachable data like a device’s registers. The penalty for a
cache miss is high enough to factor it into a design. As CPU speed continues to
go up, this penalty will get higher.

Techniques for minimizing loads have already been brought up, but it is worth
repeating here. Make sure that loops have local variables that directly reference
the data you are interested in. Don’t have code like:

This should be changed as follows:

Also keep pointers to global variables around if possible. Look for stack
references and minimize their number. Loading data from across a bus is
particularly expensive, so you should try to limit this process as much as
possible.

for (i=0 ; i<size ; i++) {
...
sum += a->b[i];
...

}

bptr = a->b;
for (i=0 ; i<size ; i++) {

...
sum += bptr[i];
...

}

Performance Tuning 423

A

Cluster Loads and Cluster Stores

Current RISC hardware handles back-to-back loads and back-to-back stores
well, but does not handle load-store-load-stores well. This is partly due to the
cache. Every time you store a new value into the cache, you run the risk of
invalidating some data that you’re about to load. As caches get more
associative, this risk goes down, but it never goes away.

Most processors also have what is known as a store buffer. This is typically a
small FIFO queue that fills up with data to store if the memory subsystem is
busy. A CPU may need to wait for the store buffer to empty before a load can
be issued. The problem here is basically parallelism. The ideal is to have your
CPU and memory subsystem doing productive work at all times.

If you were to rewrite the body of the 4-way unrolled copy loop below:

to cluster loads and cluster stores, it would look like:

This compiles to the same number of assembly instructions, but the loads and
stores are handled in blocks rather than interleaved for every word copied. As
tends to happen, this code uses more local variables (and also more registers)
to force the compiler to do what you want in the order you want. Even though

for (; size>3 ; size-=4) {
 dst[0] = src[0];
 dst[1] = src[1];
 dst[2] = src[2];
 dst[3] = src[3];
 dst += 4;
 src += 4;

}

for (; size>3 ; size-=4) {
t0 = src[0];
t1 = src[1];
t2 = src[2];
t3 = src[3];
dst[0] = t0;
dst[1] = t1;
dst[2] = t2;
dst[3] = t3;
dst += 4;
src += 4;

}

424 XGL Device Pipeline Porting Guide—May 1996

A

you are programming in C, the source code compiles almost line for line to
assembly code, and the local variables tend to map one to one with hardware
registers.

Use Double Word Loads and Stores

SPARC supports the concept of 64-bit quantities through C and C++. This can
be advantageous for setting and moving blocks of data. Each double word
load/store instruction takes the place of two single word load/stores.
Depending on the characteristics of the memory subsystem, you may be able to
achieve an almost perfect 2:1 speedup (going over an I/O bus is such a case).

Double word load/stores can only be used on double word-aligned data. For
setting or clearing a block of data, this is easily handled by testing the starting
address and possibly writing out a single word of data before entering the
main double word loop. For copy operations, there is the additional
complexity of the source address being double-aligned, but the destination
address is not (and vice versa). In general, there is no way in C to exploit
double word load/stores in this situation. You would need to have an
assembly language routine to do it. However, if you are writing data to a
device input buffer, you may be able to write a one word NO_OP directive to
get the source and destination address alignments synchronized.

To convert the body of our unrolled loop to use double word load/stores
requires casting things properly, as shown below:

Of course, you should have your src and dst declared to be double (or long)
to improve the code readability. Also, the ProWorks compiler needs to have the
-dalign flag to use double word load/stores.

for (; size>3 ; size-=4) {
d0 = *(double*)(src+0);
d1 = *(double*)(src+2);
(double)(dst+0) = d0;
(double)(dst+2) = d1;
dst += 4;
src += 4;

}

Performance Tuning 425

A

Be Cache-Aware

Certain types of algorithms need to take into account the hardware caches
present in the systems they will run on. If you are writing code that accesses
large amounts of data (memory rasters, Z-buffers, texture maps), you should
bear in mind how the hardware cache will affect the performance of your code.
Try to keep your data references bounded within small local regions. Also,
when allocating space for data structures, try to keep adjacent data from
mapping to the same cache line. For example, if you need 1024-byte scanlines,
allocate 1152 bytes per scanline so that pixel X,Y doesn’t map to the same cache
line as pixel X,Y+1.

Compiler Options

A general recommendation is to know the optimizations that your compiler
supports. Although compiler options will vary depending on your code and
the system, some possible options are listed below. Check your reference pages
for more information.

Table A-2 Compiler Options

cc CC

-xcgXX -cgXX

-dalign -dalign

-fast -fast

-fsingle

-ispace vs -ispeed

-xlibmil -libmil

-native -native

-xO -O

-K pic vs -K PIC -pic vs -PIC

-Qoption fbe -cgXX

-xunroll

426 XGL Device Pipeline Porting Guide—May 1996

A

427

Changes to the Graphics Porting
Interface at GPI 4.1 B

This appendix provides information on the differences between the 4.1 XGL
graphics porting interface (GPI) and the 4.0 XGL GPI. It lists and briefly
describes additions, changes, and deletions to the GPI. For current information
on XGL operators, attributes, and data structures, see the XGL Reference
Manual.

Additions to the GPI
The following interfaces have been added to Drawable.h at this release.

Table B-1 Additions to Drawable.h

Name Description

getDrawType() Returns the Drawable type, which can be
DGA_DRAW_WINDOW, DGA_DRAW_PIXMAP, or
DGA_DRAW_OVERLAY.

modifChanged() Returns the cached modIf flag, which is set to
TRUE if the shared memory data structure
changed since this routine was last called.

devInfoChanged() Returns the cached devinfoFlag flag, which is
set to TRUE if the device-specific area in the
shared memory data structure changed since this
routine was last called.

428 XGL Device Pipeline Porting Guide—May 1996

B

The following utilities have been added:

• XgliUtCalcLighting{Rgb,Index},{Front,Back},
{Persp,Parallel},{--,Cc},{--,Noniso}

• XgliUtPower

• XgliUtGetExponentTable

• XgliUtComputeFinalColor

• XgliUtCalcTexturedColor

• XgliUtTxBoundary

• XgliUtProcessTxCoords

• XgliUtTxGetUv

Changes to the GPI
The following change has occurred:

• The li3CopyToDpGBuffer() structure Xgli_copy_to_dp_info includes
a do_fill_style flag that was always set to FALSE at previous releases.
At this release, this flag may be set to TRUE to indicate that the pipeline
must handle XGL_CTX_RASTER_FILL_STYLE attribute values. See the
XGL_CTX_RASTER_FILL_STYLE man page for information. See
Li3Structs.h for comments about Xgli_copy_to_dp_info .

429

Changes to the XGL Graphics
Porting Interface at GPI 4.0 C

This appendix provides information on the differences between the 4.0 XGL
graphics porting interface (GPI) and the 3.2 XGL GPI. It lists and briefly
describes additions, changes, and deletions to the GPI. For more information in
the device-independent changes, see the XGL Architecture Guide. For current
information on XGL operators, attributes, and data structures, see the XGL
Reference Manual.

Optimization of Device-Independent Operations
The XGL 4.0 release of the XGL GPI includes a number of changes aimed at
improving XGL’s low batching factor performance. The two main goals for the
optimization effort were to minimize the device-independent overhead for
each graphics primitive call and to simplify the interface between the device
pipelines and the device-independent code.

XGL’s architecture was changed to implement the performance improvements.
The new architecture differs from the previous architecture in two major ways:

• Device-independent code uses function pointers to call the device pipeline
renderers directly from the API wrapper rather than through the interface
manager. The functionality provided by the interface manager in the
previous releases is implemented in other ways at this release, and the
interface manager object is no longer present.

430 XGL Device Pipeline Porting Guide—May 1996

C

• Device-independent code notifies the device pipeline of Context attribute
changes immediately (non-lazily) except for transform changes (which are
still lazy evaluated). As a result, the update table objects are no longer
present.

Changes in Rendering Architecture
This section lists changes to the rendering architecture.

Interface Manager Removed

To simplify the interactions between the device pipeline and the device-
independent code, the interface manager object has been removed from the
XGL architecture. Pipeline renderers are now called via function pointers in the
opsVec[] array, which is defined in the XglDpCtx object. The pipeline must
set up a pipeline-specific version of the opsVec[] array to point to the
rendering functions for the primitives that it accelerates. If the device pipeline
does not implement a function, the opsVec[] value for that function will call
the software pipeline by default. See page 44 in Chapter 3, “Pipeline Interface
Classes” for information on setting up the opsVec[] array. Be sure to remove
the interface manager header files from your pipelines.

Because the interface manager has been removed, the device pipelines no
longer call the the interface manager to access other primitives from within a
given primitive. Therefore, note the following about calling the software
pipeline or another LI primitive.

• Device pipelines call the software pipeline directly. Previously, the device
pipeline called the software pipeline through the interface manager in these
cases:
• If the device pipeline had not implemented a renderer, it returned a value

of 0 to a rendering call.
• The device pipeline could call the interface manager with a return value of

0 in certain cases within an implemented primitive.
• The device pipeline could call the software pipeline for partial processing

of data by calling the interface manager LI function with the software
override flag set to TRUE.

Changes to the XGL Graphics Porting Interface at GPI 4.0 431

C

A pipeline return value of 0 or a pipeline call to the interface manager with
the software override flag set to TRUE caused the interface manager to call
the software pipeline.

At this release, the device pipeline is responsible for calling the software
pipeline directly, as:

swp->li1MultiPolyline(api_bbox, api_num_plists, api_pt_list);

• Device pipelines call other LI functions through the opsVec[] array, or they
can call their own renderers directly. Previously, if a pipeline created a
Gcache from within li1MultiSimplePolygon() to handle certain
polygon cases, the pipeline called itfMgr->li1DisplayGcache(gcache)
to render the polygons. Now, any call of itfMgr->{primitiveCall}
should be changed to a call through the opsVec[] array or a direct call.

In general, you would want to use the opsVec[] array to call other
primitives, since this architecture has been set up to be advantageous to
subsequent primitive calls. In some device-dependent cases, calling a
primitive directly might be faster. For example, for rendering polygons with
edges, calling li1MultiPolyline() directly to draw the edges may be
faster for some devices than using the opsVec[] array.

Note that when calling another XglDpCtx primitive through the opsVec[]
array, the call should include an extra parameter, gen_punt = FALSE , in
order for backing store to work correctly.

For instructions on setting opsVec pointers in the XglDpCtx object, see
Chapter 3, “Pipeline Interface Classes”.

Primitive Return Types Changed

At this release, primitives are no longer virtual functions, and LI-1 and LI-2
primitive calls no longer return values. Thus, for example,

virtual int XglDpCtx3d::li1MultiArc(XglConicData* arc_data)

has become:

void XglDpCtx3d::li1MultiArc(Xgl_arc_list* arc_list)

Note that LI-3 functions have not changed.

432 XGL Device Pipeline Porting Guide—May 1996

C

Primitive Arguments Changed at LI-1

The arguments to LI-1 primitives have been changed to pass the API data
directly to the device pipeline rather than through the XglPrimData object.
Each primitive function is called directly with the application data. For
example, the application calls xgl_multipolyline() as:

xgl_multipolyline(Xgl_ctx ctx, Xgl_bbox* bbox,
Xgl_usgn32 numPtLists,Xgl_pt_list pl[])

The corresponding call to the device pipeline was previously:

li1MultiPolyline(XglPrimData *pd);

It now is this:

li1MultiPolyline(Xgl_bbox* bbox, Xgl_usgn32 numPtLists,
 Xgl_pt_list* pl)

See Chapter 3, “Pipeline Interface Classes” for the current LI-1 primitive
arguments.

Constructor Change

The XglDpCtx constructor calling parameters have changed. Previously, its
calling parameters were:

XglDpCtx{2,3}d(context)

At this release, the calling parameters are:

XglDpCtx{2,3}d(dp_dev->getDevice(), context)

Changes in State Handling
As with the interface manager object, the update tables have been removed to
optimize the internal architecture. In place of the update tables, the pipeline
should create the following two functions and insert pointers to them in the
opsVec[] array:

• objectSet() – Function that passes information on Context attribute
changes to the device pipeline when changes occur.

• messageReceive() – Function that passes the device pipeline information
on attributes changes in objects other than the Context.

Changes to the XGL Graphics Porting Interface at GPI 4.0 433

C

You can copy these functions from the GX sample pipeline and update the XGL
Context types in the switch statement with the Context types appropriate for
your hardware.

As an alternative, the pipeline can retrieve Context attributes every time it
renders. However, for optimized performance, the objectSet() architecture
is recommended for LI-1 primitives.

Be sure to remove the update table header files from your existing renderers. In
addition, remove all references to update table masks. For information on
Context state handling at this release, see Chapter 4, “Handling Changes to
Object State”.

Derived Data Change

Derived data has the same interface at this release except for the
updateTableChanged() function. Previously, a device pipeline called the
udTable.updateTableChanged() function to determine whether changes to
derived data occurred. Because the update tables have been removed, the view
group function changedComposite() has been modified to incorporate the
quick test for derived data changes that the update table provided. Therefore,
viewGrpItf->changedComposite() is now the first indication that derived
data may have changed. For information on the derived data mechanism, see
Chapter 6, “View Model Derived Data”.

Application Data Passed Directly to Pipelines
As mentioned above, the XglPrimData object is no longer used to process data
from the application at LI-1. LI-1 primitive functions now receive actual API
data instead of the preformatted data in the XglPrimData objects. Because of
this, arguments for LI-1 primitive functions have changed. Be sure to remove
all references to XglPrimData from LI-1 primitives.

434 XGL Device Pipeline Porting Guide—May 1996

C

Utility Arguments Changed

The calling arguments for the utilities that took XglPrimData objects as an
argument have changed. Table C-1 lists the changed utilities. These utilities
now take the API data in place of XglPrimData object data.

Table C-1 Changed Utilities for XGL 3.1

Changed Utilities

XgliUtComputeFn

XgliUtComputeFnReverse

XgliUtComputeIndepTriFn

XgliUtComputeIndepTriFnPl

XgliUtComputeMspFn

XgliUtComputePolygonFn

XgliUtComputeQuadMeshFn

XgliUtComputeTstripFn

XgliUtComputeTstripFnPl

XgliUtComputeTstarFn

XgliUtComputeTstarFnPl

XgliUtComputeVnReverse

XgliUtMellaToPline

XgliUtModelClipMarker

XgliUtModelClipMpline

XgliUtModelClipMspg

XgliUtPdModelClipPgon

XgliUtModelClipTstrip

XgliUtVertexOrientation

XgliUtClassifyMsp

XgliUtClassifyPgon

435

Software Pipeline li1DisplayGcache D

The following code from the software pipeline 3D li1DisplayGcache()
function illustrates the sequence of events in rendering for each of the 3D Gcache
primitive types. You can copy or modify this source code sample as long as the
resulting code is used to create a loadable pipeline for XGL.

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Xgl_cache_display
XglSwpCtx3dDef::li1DisplayGcache(Xgl_gcache gcache_obj,
 Xgl_boolean test,
 Xgl_boolean display,

 Xgl_booleando_retained)
{
 XglGcache* gcache;
 XglGcachePrim* prim;
 Xgl_cache_display ret_val;
 Xgl_boolean do_display;
 Xgl_usgn32 num_model_clip_planes;

 gcache = (XglGcache*) gcache_obj;

 prim = gcache->getGcachePrim();
 if (prim == NULL) {
 return (XGL_CACHE_NOT_CHECKED);
 }

 if ((prim->getDisplayPrimType() != XGL_PRIM_NONE) &&
 !prim->getSavedCtxIs3d()) {

436 XGL Device Pipeline Porting Guide—May 1996

D

 return(XGL_CACHE_NOT_CHECKED); /* ctx dims don’t match;
 best fit */
 }

 if (test) {
 if ((prim->getDisplayPrimType() != XGL_PRIM_NONE) &&
 (prim->validate(ctx))) {
 do_display = display;
 ret_val = XGL_CACHE_DISPLAY_OK;
 }
 else {
 do_display = FALSE;
 ret_val = XGL_CACHE_ATTR_STATE_DIFFERENT;
 }
 }
 else {
 do_display = display;
 ret_val = XGL_CACHE_NOT_CHECKED;
 }
 if ((prim->getDisplayPrimType() == XGL_PRIM_NONE) ||
 !do_display)
 return ret_val;

 if (prim->wasModelClipped() &&
 ((ret_val == XGL_CACHE_DISPLAY_OK) ||
 gcache->getBypassModelClip())) {
 num_model_clip_planes = ctx->getModelClipPlaneNum();
 xgl_object_set(ctx, XGL_3D_CTX_MODEL_CLIP_PLANE_NUM, 0, 0);
 }
 else
 num_model_clip_planes = 0;

 switch (gcache->getOrigPrimType()) {
 case XGL_PRIM_STROKE_TEXT:

{
 XglGcachePrimText*gp_text = (XglGcachePrimText *)

 gcache->getGcachePrim();
 Xgl_geom_status status;

 if (gp_text->getDisplayPtListList()->num_pt_lists < 1)
 return ret_val;

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 437

D

xgl_context_check_bbox(ctx,XGL_PRIM_MULTIPOLYLINE,
 gp_text->getPlm()->get_pll_bbox(),&status);

if ((status & XGL_GEOM_STATUS_VIEW_REJECT) ||
(status & XGL_GEOM_STATUS_MODEL_REJECT)) return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*, Xgl_boolean),
 (NULL, gp_text->getDisplayPtListList()->num_pt_lists,
 gp_text->getDisplayPtListList()->pt_lists, FALSE))

 }
 break;

 case XGL_PRIM_NURBS_SURFACE:
 {
 XglGcachePrimNSurf* gp_nsurf = (XglGcachePrimNSurf*)

 gcache->getGcachePrim();

 void* cache_data = gp_nsurf->getCacheData();
 if(cache_data == NULL){

XglNurbsSurfData* apiData = gp_nsurf->getApiData();
if(apiData->surface->order_u == 1 ||

 apiData->surface->order_v == 1) {
 Xgl_pt_list plist;

 plist.pt_type = apiData->surface->ctrl_pts.pt_type;
 plist.num_pts = apiData->surface->ctrl_pts.num_pts;
 plist.bbox = NULL;

 plist.pts.f3d = apiData->surface->ctrl_pts.pts.f3d;

 ctx->assignCurStrokeAsMarker();

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (&plist, FALSE))

ctx->assignCurStrokeAsLine();
 break;
 }

else {
 XglSwpNurbs nurbs(ctx, viewGrpItf, TRUE);

 cache_data = nurbs.setUsrData(gp_nsurf->getApiData(),
 gp_nsurf->getGcacheMode(), TRUE);

Code Example D-1 Software Pipeline 3D li1DisplayGcache

438 XGL Device Pipeline Porting Guide—May 1996

D

 gp_nsurf->setCacheData(cache_data);
 }
 }

XGLI_3D_DP(void, XGLI_LI1_NURBS_SURFACE,
 (Xgl_nurbs_surf*, Xgl_trim_loop_list*,
 Xgl_nurbs_surf_simple_geom*,
 Xgl_surf_color_spline*,
 Xgl_surf_data_spline_list*, void*,
 Xgl_boolean),
 (NULL, NULL, NULL, NULL, NULL,
 cache_data, FALSE))

 }
 break;

 case XGL_PRIM_NURBS_CURVE:
 {
 XglGcachePrimNCurve*gp_ncurve =

 (XglGcachePrimNCurve *)gcache->getGcachePrim();

 void* cache_data = gp_ncurve->getCacheData();
 if(cache_data == NULL){
 XglNurbsCurveData* apiData =
 gp_ncurve->getApiData();
 if(apiData->curve->order == 1) {

 Xgl_pt_list plist;

 plist.pt_type = apiData->curve->ctrl_pts.pt_type;
 plist.num_pts = apiData->curve->ctrl_pts.num_pts;
 plist.bbox = NULL;

 plist.pts.f3d = apiData->curve->ctrl_pts.pts.f3d;

 ctx->assignCurStrokeAsMarker();

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,
 (Xgl_pt_list*, Xgl_boolean),
 (&plist, FALSE))

 ctx->assignCurStrokeAsLine();
 break;

 }
 else {
 XglSwpNurbs nurbs(ctx, viewGrpItf, TRUE);

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 439

D

 cache_data = nurbs.setUsrData(gp_ncurve->getApiData(),
 gp_ncurve->getGcacheMode(), TRUE);

 gp_ncurve->setCacheData(cache_data);
}

 }
 ctx->assignCurStrokeAsLine();

 XGLI_3D_DP(void, XGLI_LI1_NURBS_CURVE,
 (Xgl_nurbs_curve*, Xgl_bounds_f1d*,
 Xgl_curve_color_spline*, void*,
 Xgl_boolean),
 (NULL, NULL, NULL, cache_data, FALSE))

 }
 break;

 case XGL_PRIM_TRIANGLE_LIST:
 {
 XglGcachePrimTlist* gp_tlist = (XglGcachePrimTlist*)

 gcache->getGcachePrim();

 register int i;
 register Xgl_pt_list_list* display_pll =

 gp_tlist->getDisplayPtListList();
 register Xgl_facet_list_list* display_fll =

 gp_tlist->getDisplayFacetListList();
 register Xgl_tlist_flags display_tlflags =

 gp_tlist->getDisplayTlistFlags();

 for (i = 0; i < display_pll->num_pt_lists; i++) {
 XGLI_3D_DP(void, XGLI_LI1_TRIANGLE_LIST,

(Xgl_facet_list*, Xgl_pt_list*,
 Xgl_tlist_flags, Xgl_boolean),
(NULL, &(display_pll->pt_lists[i]),
display_tlflags, FALSE))

 }
 }
 break;

 case XGL_PRIM_TRIANGLE_STRIP:
 {

Code Example D-1 Software Pipeline 3D li1DisplayGcache

440 XGL Device Pipeline Porting Guide—May 1996

D

 XglGcachePrimTstrip*gp_tstrip =
 (XglGcachePrimTstrip*)gcache->getGcachePrim();

 register int i;
 register Xgl_pt_list_list* display_pll =

 gp_tstrip->getDisplayPtListList();
 register Xgl_facet_list_list*display_fll =

 gp_tstrip->getDisplayFacetListList();

 for (i = 0; i < display_fll->num_facet_lists; i++) {
 XGLI_3D_DP(void, XGLI_LI1_TRIANGLE_STRIP,

(Xgl_facet_list*, Xgl_pt_list*, Xgl_boolean),
(&(display_fll->facet_lists[i]),
&(display_pll->pt_lists[i]), FALSE))

 }
 }
 break;

 case XGL_PRIM_POLYGON:
 {
 Xgl_boolean do_orig_pgon;
 Xgl_boolean edges;
 XglGcachePrimPgon* gp_pgon = (XglGcachePrimPgon*)

 gcache->getGcachePrim();

 do_orig_pgon = FALSE;

 if ((gcache->getDisplayPrimType() ==
 XGL_PRIM_MULTI_SIMPLE_POLYGON) &&

 (gcache->getDoPolygonDecomp())) {

 /* The pgon has been decomposed into a list
 of triangle stars */

Xgl_surf_fill_style fill_style;
Xgl_pt_list_list* decomp_pll;
Xgl_pt_list_list* display_pll;
Xgl_facet_list* decomp_fl;
Xgl_boolean front_facing = TRUE;
Xgl_pt_f3d* normal;
Xgl_boolean do_silhouette = FALSE;
Xgl_boolean use_front_attributes,

use_back_attributes;
Xgl_surf_fill_style front_style;

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 441

D

 Xgl_surf_fill_style back_style;
Xgl_boolean distinguish;
Xgl_surf_cull_mode cull_mode;

decomp_pll = gp_pgon->getDecompPtListList();
display_pll = gp_pgon->getDisplayPtListList();
decomp_fl = gp_pgon->getDecompFacetList();

front_style = ctx->getSurfFrontFillStyle();
back_style = ctx->getSurfBackFillStyle();
cull_mode = ctx->getSurfFaceCull();
distinguish = ctx->getSurfFaceDistinguish();

/* find out what attributes will be used */
if (distinguish) {

 switch (cull_mode) {
 case XGL_CULL_OFF:

 use_front_attributes = TRUE;
 use_back_attributes = TRUE;
 break;

 case XGL_CULL_BACK:
 use_front_attributes = TRUE;
 use_back_attributes = FALSE;
 break;

 case XGL_CULL_FRONT:
 use_front_attributes = FALSE;
 use_back_attributes = TRUE;
 break;

 }
}
else {

 use_front_attributes = TRUE;
 use_back_attributes = FALSE;
 }

if (use_front_attributes)
 fill_style = front_style;

else
 fill_style = back_style;

Code Example D-1 Software Pipeline 3D li1DisplayGcache

442 XGL Device Pipeline Porting Guide—May 1996

D

 /* see if orig pgon data must be used to */
/* avoid seeing the tessalation */

if (distinguish) {
if (cull_mode == XGL_CULL_FRONT &&

back_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

else if (cull_mode == XGL_CULL_BACK &&
front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

}
else if (front_style == XGL_SURF_FILL_HOLLOW)

do_orig_pgon = TRUE;

/* see if we need to determine the pgon */
/* facing */
if (!do_orig_pgon &&

use_front_attributes && use_back_attributes &&
front_style != back_style &&
(front_style == XGL_SURF_FILL_HOLLOW ||
back_style == XGL_SURF_FILL_HOLLOW)) {

/* determine if pgon is front or back facing */
switch (decomp_fl->facet_type) {

case XGL_FACET_NORMAL:
normal = &(decomp_fl->facets.normal_facets->normal);
break;

case XGL_FACET_COLOR_NORMAL:
normal = &(decomp_fl->facets.

color_normal_facets->normal);
break;

}

/* if culled were done */
front_facing = (XgliUtFaceDistinguish(ctx, normal,

display_pll->pt_lists->pts.f3d, viewGrpItf) ==
ctx->getSurfFrontAttr3d());

if (front_facing && (cull_mode == XGL_CULL_FRONT))
return ret_val;

if (!front_facing && (cull_mode == XGL_CULL_BACK))
return ret_val ;

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 443

D

if (front_facing)
fill_style = front_style;

else
fill_style = back_style;

}
do_silhouette = ctx->getSurfSilhouetteEdgeFlag();

if (!gcache->getShowDecompEdges() &&
!(do_silhouette &&
fill_style == XGL_SURF_FILL_EMPTY &&
ctx->getSurfEdgeFlag() == FALSE) &&
fill_style == XGL_SURF_FILL_HOLLOW)

do_orig_pgon = TRUE;

if (!do_orig_pgon) {
if (gp_pgon->getPgonConvex()) {

 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,
(Xgl_facet_flags, Xgl_facet_list*,
Xgl_bbox*,
Xgl_usgn32, Xgl_pt_list*,
Xgl_boolean),
(gp_pgon->getMspgFlags(), decomp_fl,
display_pll->bbox, 1,
display_pll->pt_lists, FALSE))

}
else {

edges = ctx->getSurfEdgeFlag();

if (edges && !gcache->getShowDecompEdges())
 xgl_object_set(ctx, XGL_CTX_SURF_EDGE_FLAG,
 FALSE, 0);

/* pgon was decomposed into an msp list */
decomp_pll = gp_pgon->getDecompPtListList();

if(decomp_pll->num_pt_lists){
 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,

(Xgl_facet_flags, Xgl_facet_list*,
Xgl_bbox*, Xgl_usgn32, Xgl_pt_list*,
Xgl_boolean),
(gp_pgon->getMspgFlags(),
gp_pgon->getDisplayFacetListList()

->facet_lists,

Code Example D-1 Software Pipeline 3D li1DisplayGcache

444 XGL Device Pipeline Porting Guide—May 1996

D

decomp_pll->bbox,
decomp_pll->num_pt_lists,
decomp_pll->pt_lists,
FALSE))

}
}

/* turn edges on and render orig polygon as empty */
if (edges && !gcache->getShowDecompEdges()

&& !gp_pgon->getPgonConvex()) {
 xgl_object_set(ctx, XGL_CTX_SURF_EDGE_FLAG,
 TRUE, 0);

if (front_facing)
 xgl_object_set(ctx,
 XGL_CTX_SURF_FRONT_FILL_STYLE,

 XGL_SURF_FILL_EMPTY,
 0);

else
 xgl_object_set(ctx,
 XGL_3D_CTX_SURF_BACK_FILL_STYLE,
 XGL_SURF_FILL_EMPTY,
 0);

Xgl_pt_list_list* pgon_pll =
gp_pgon->getPgonPtListList();

if (pgon_pll->num_pt_lists == 0) {
return ret_val;

}

if(pgon_pll->num_pt_lists){
 XGLI_3D_DP(void, XGLI_LI1_POLYGON,

(Xgl_facet_type, Xgl_facet*,
Xgl_bbox*, Xgl_usgn32,
Xgl_pt_list*, Xgl_boolean),
(gp_pgon->getPgonFacetType(),
gp_pgon->getPgonFacetPtr(),
pgon_pll->bbox,
pgon_pll->num_pt_lists,
pgon_pll->pt_lists, FALSE))

}

/* restore fill style */

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 445

D

if (front_facing)
 xgl_object_set(ctx,
 XGL_CTX_SURF_FRONT_FILL_STYLE, fill_style,
 0);

else
 xgl_object_set(ctx,
 XGL_3D_CTX_SURF_BACK_FILL_STYLE,
 fill_style,
 0);

}
}

}

if (gcache->getDisplayPrimType() == XGL_PRIM_POLYGON ||
do_orig_pgon) {

if (gcache->getUseApplGeom()) {
Xgl_pt_list_list* appl_pll =

gp_pgon->getApplPtListList();

if(appl_pll->num_pt_lists == 0)
return ret_val;

XGLI_3D_DP(void, XGLI_LI1_POLYGON,
(Xgl_facet_type, Xgl_facet*,
Xgl_bbox*, Xgl_usgn32,
Xgl_pt_list*, Xgl_boolean),
(gp_pgon->getPgonFacetType(),
gp_pgon->getPgonFacetPtr(),
appl_pll->bbox,
appl_pll->num_pt_lists,
appl_pll->pt_lists, FALSE))

}
else {

Xgl_pt_list_list*pgon_pll =
gp_pgon->getPgonPtListList();

if (pgon_pll->num_pt_lists == 0) {
return ret_val;

}
XGLI_3D_DP(void, XGLI_LI1_POLYGON,

(Xgl_facet_type, Xgl_facet*,
Xgl_bbox*, Xgl_usgn32,
Xgl_pt_list*, Xgl_boolean),
(gp_pgon->getPgonFacetType(),

Code Example D-1 Software Pipeline 3D li1DisplayGcache

446 XGL Device Pipeline Porting Guide—May 1996

D

gp_pgon->getPgonFacetPtr(),
pgon_pll->bbox,
pgon_pll->num_pt_lists,
pgon_pll->pt_lists, FALSE))

}
}

}
break;

case XGL_PRIM_ELLIPTICAL_ARC:
{

XglGcachePrimMella* gp_mella =
(XglGcachePrimMella *)gcache->getGcachePrim();

if(gp_mella->getDisplayPtListList()->num_pt_lists < 1)
return ret_val;

if (gcache->getDisplayPrimType() ==
 XGL_PRIM_MULTIPOLYLINE) {

XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
(Xgl_bbox*,Xgl_usgn32,
Xgl_pt_list*, Xgl_boolean),
(NULL, gp_mella->getDisplayPtListList()

->num_pt_lists,
gp_mella->getDisplayPtListList()->pt_lists,
FALSE))

}
else if (gcache->getDisplayPrimType() ==

XGL_PRIM_MULTI_SIMPLE_POLYGON) {
XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,

(Xgl_facet_flags, Xgl_facet_list*,
Xgl_bbox*, Xgl_usgn32,
Xgl_pt_list*, Xgl_boolean),
(XGL_FACET_FLAG_SHAPE_CONVEX,

 gp_mella->getDisplayFacetListList()->facet_lists,
NULL,
gp_mella->getDisplayPtListList()->num_pt_lists,
gp_mella->getDisplayPtListList()->pt_lists,
FALSE))

}
}
break;

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 447

D

case XGL_PRIM_MULTI_SIMPLE_POLYGON:
{

Xgl_boolean do_orig_pgon;
Xgl_boolean edges;
XglGcachePrimMspg*gp_mspg = (XglGcachePrimMspg *)

gcache->getGcachePrim();
 Xgl_pt_list_list* pll;
 Xgl_facet_list_list* fll;
 Xgl_usgn32 mspg_flags;

Xgl_usgn32 npl;

do_orig_pgon = FALSE;
edges = ctx->getSurfEdgeFlag();

Xgl_surf_fill_style front_style;
Xgl_surf_fill_style back_style;
Xgl_boolean distinguish;
Xgl_surf_cull_mode cull_mode;

front_style = ctx->getSurfFrontFillStyle();
back_style = ctx->getSurfBackFillStyle();
cull_mode = ctx->getSurfFaceCull();
distinguish = ctx->getSurfFaceDistinguish();

if (!distinguish && front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

else if (cull_mode == XGL_CULL_OFF &&
(front_style == XGL_SURF_FILL_HOLLOW ||
(back_style == XGL_SURF_FILL_HOLLOW && distinguish)))
do_orig_pgon = TRUE;

else if (cull_mode == XGL_CULL_FRONT &&
(distinguish && back_style == XGL_SURF_FILL_HOLLOW))
do_orig_pgon = TRUE;

else if (cull_mode == XGL_CULL_BACK &&
front_style == XGL_SURF_FILL_HOLLOW)
do_orig_pgon = TRUE;

if (do_orig_pgon || edges) {
if (gcache->getUseApplGeom()) {

if(npl = gp_mspg->getApplPtListList()
->num_pt_lists) {

 mspg_flags = gp_mspg->getApplMspgFlags();

Code Example D-1 Software Pipeline 3D li1DisplayGcache

448 XGL Device Pipeline Porting Guide—May 1996

D

 pll = gp_mspg->getApplPtListList();
 fll = gp_mspg->getApplFacetListList();
 }

}
else {

if(npl = gp_mspg->getDisplayPtListList()
->num_pt_lists) {

 mspg_flags = gp_mspg->getApplMspgFlags();
 pll = gp_mspg->getDisplayPtListList();
 fll = gp_mspg->getDisplayFacetListList();
 }

}
}
else {

if(npl = gp_mspg->getDisplayPtListList()->num_pt_lists)
{

 mspg_flags = gp_mspg->getMspgFlags();
 pll = gp_mspg->getDisplayPtListList();
 fll = gp_mspg->getDisplayFacetListList();
 }

}

if(npl) {
 XGLI_3D_DP(void, XGLI_LI1_MULTI_SIMPLE_POLYGON,

(Xgl_facet_flags, Xgl_facet_list*, Xgl_bbox*,
Xgl_usgn32, Xgl_pt_list*,
Xgl_boolean),
(mspg_flags, fll->facet_lists, NULL, npl,
pll->pt_lists, FALSE))

 }
}
break;

 case XGL_PRIM_MULTIMARKER:
{

XglGcachePrimMarker*gp_marker =
(XglGcachePrimMarker *)gcache->getGcachePrim();

Xgl_pt_list_list* pll = gp_marker->getDisplayPtListList();

 if (pll->num_pt_lists < 1)
 return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIMARKER,

Code Example D-1 Software Pipeline 3D li1DisplayGcache

Software Pipeline li1DisplayGcache 449

D

 (Xgl_pt_list*, Xgl_boolean),
 (pll->pt_lists, FALSE))

}
break;

 case XGL_PRIM_MULTIPOLYLINE:
{

XglGcachePrimMpline*gp_mpline =
(XglGcachePrimMpline *)gcache->getGcachePrim();

 Xgl_pt_list_list* pll = gp_mpline->getDisplayPtListList();

 if (pll->num_pt_lists < 1)
 return ret_val;

 XGLI_3D_DP(void, XGLI_LI1_MULTIPOLYLINE,
(Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*, Xgl_boolean),
(NULL, pll->num_pt_lists, pll->pt_lists, FALSE))

}

 default:
break;

} /* end switch */

 if (num_model_clip_planes > 0)
 xgl_object_set(ctx, XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
 num_model_clip_planes, 0);

 return ret_val;
}

Code Example D-1 Software Pipeline 3D li1DisplayGcache

450 XGL Device Pipeline Porting Guide—May 1996

D

451

Accelerating NURBS Primitives E

If you are interested in accelerating part of the NURBS curve or surface, or in
the algorithms, refer to the following papers. Be aware that the coordinate
system changes in different situations.

• Abi-Ezzi, Salim. “The Graphical Processing of B-splines in a Highly
Dynamic Environment,” Rensselaer Polytechnic Institute, RDRC-TR 89001,
Troy, New York, May 1989.

• Abi-Ezzi, Salim and Leon Shirman. “The Tessellation of Curved Surfaces
Under Highly Varying Transformations,” in Proc. Eurographics 1991, F. H.
Post and W. Barth, eds., Eurographics Association, Elsevier Science
Publishers B.V. North Holland, 1991.

• Abi-Ezzi, Salim and Leon Shirman. “The Scaling Behavior of a Viewing
Transformation,” accepted for publication in IEEE Computer Graphics and
Applications, 1992.

• Abi-Ezzi, Salim and Michael Wozny. “Factoring a Homogeneous
Transformation for a More Efficient Graphics Pipeline,” in Computer Graphics
Forum, Vol. 9, 1990.

• Abi-Ezzi, Salim, and Srikanth Subramaniam. “Compilation for Fast
Dynamic Tesselation of Trimmed NURBS Surfaces,” Unpublished, 1993.

• Farin, Gerald. Curves and Surfaces for Computer Aided Geometric Design,
Second Edition, Academic Press, Inc., San Diego, CA, 1990.

• Garey, M., D. Johnson, F. Preparata, and R. Tarjan. “Triangulating a Simple
Polygon,” in Information Processing Letters, Vol. 7, No. 4, June 1978.

452 XGL Device Pipeline Porting Guide—May 1996

E

• International Standard ISO/IEC 9592-4, Information Processing Systems –
Computer Graphics – Programmer’s Hierarchical Interactive Graphics
System (PHIGS), Part 4 – Plus Lumiere Und Surfaces, February 1991.

• Solaris XGL 3.0.1 Programmer’s Guide, part number 801-4120-10, Sun
Microsystems, Inc.

• Rockwood, Alyn, Kurt Heaton, and Tom Davis. “Real-Time Rendering of
Trimmed Surfaces,” in Computer Graphics. Proceedings of Siggraph 1989, Vol.
23, No. 3, July 1989.

• Shirman, Leon and Salim Abi-Ezzi. “The Cone of Normals for Fast
Processing of Curved Patches,” Submitted for publication, 1992.

453

Index

A
accumulation buffer

depth, 62
software, 58, 62, 64, 311

addPickToBuffer(), 101
antialiasing

stroke primitives, 60
using the software pipeline, 268
vectors, 200

architecture overview, 8
assignCurStrokeAsEdge(), 102
assignCurStrokeAsLine(), 102
assignCurStrokeAsMarker(), 102
assignCurStrokeAsSurfBack(), 103
assignCurStrokeAsSurfFront(), 102
assignCurStrokeAsText(), 102
asynchronous devices, 164
attributes

derived data, 81
design issues in attribute

handling, 90
device changes, 74
getAttrTypeListAll(), 74
getting attribute values, 72
messageReceive(), 75
object changes, 75
objectSet(), 72

B
backing store

backing store devices, 59
clipping status, 57
device pipeline support, 57
double buffering, 59
overview, 11

C
changedComposite(), 138
checkchangedComposite(), 81
checkLastPick(), 102
clearComposite(), 139
clearZBuffer(), 213
clip lists, 61, 160, 162, 165
clipChanged(), 171
cmapChanged(), 211, 213
color

color type, 62, 314
device color map, 63
in LI-3 pipelines, 185
RefDpCtx object, 211
updating hardware color map, 109

color map object interfaces, 120
color map, hardware, 109
Context object

454 XGL Device Pipeline Porting Guide—May 1996

getting attribute values, 97
internal interfaces, 101
object messages, 76

context switching, 10, 90
coordinate systems, 128, 142, 154

See also derived data
copyBuffer(), 41
copyConvert(), 117
createDpCtx(), 41
createDpDev(), 37

D
data input to device pipeline

at LI-2, 230
at LI-3, 186

data mapping, 104
data storage

conic data, 236
facet data, 270
level data, 232
pixel data, 214 to 218
point data at LI-2, 230
rectangle data, 236

dbDisplayComplete(), 171
dbDisplayWait(), 171
dbGetWid(), 171
dbGrab, 174
dbUnGrab(), 177
DC offset values, 88
DDK (Device Driver’s Kit), xxiii
deallocate(), 218
Denizen test suite, 19
depth cue reference planes, 149
derived data

boundaries, 144
changes of derived items, 138
coordinate systems, 128
depth cue reference planes, 149
design goals, 125
example, 149
eye vector, 130, 147
lights, 130, 146

message passing mechanism, 81
model clip planes, 148
transforms, 128, 143
view cache object, 131
view clip bounds, 130, 144
view concern object, 132
view group configuration object, 131
view group interface object, 132
view model, 124

Device Driver’s Kit (DDK), xxiii
device maximum Z coordinate, 60
Device object, 25

initialization, 42
internal interfaces, 105

device orientation, 60
device pipeline

adding member data to a class, 56
attribute lists, 74
backing store, 57
calling the software pipeline, 50
clip list changes, 160
current coordinate system, 154
default renderers, 46
depth cue reference planes, 149
device changes, 81
error reporting, 326
eye vector, 147
getting attribute values, 94
hardware initialization, 36
invalid data input, 263
lights, 146
loadable interfaces

LI-1 interfaces, 256
LI-2 interfaces, 220
LI-3 interfaces, 182

locking the window for
rendering, 160

model clip planes, 148
multiple frame buffers, 33, 35
multiple windows, 39
naming conventions, 27
overriding loadable interfaces, 43
performance, 78
performance critical renderers, 47
pipeline context class, 43

Index 455

pipeline device class, 39
pipeline initialization, 42, 162
pipeline library class, 32
pipeline loading, 52
pipeline manager class, 36
point data at LI-2, 230
rendering, 43
required classes, 26
sharing physical resources, 36
summary of virtual functions, 66
synchronization protocol, 164
transforms, 143
use of stroke groups, 83
version numbers, 28
versioning, 31
view clip bounds, 144
window system resources, 168
XglDpCtx object, 43
XglDpDev, 39
XglDpLib object, 31
XglDpMgr, 36

device-dependent Gcache, 280
devInfoChanged, 172
DGA

multiple processes, 55
OpenWindows environment, 11
synchronizing window access, 162
updating hardware color map, 109
winBboxinfop(), 178
winDbInfop(), 179
XglDrawable, 158

DGA transparent overlay, 53
dga_cm_write(), 109
dithering

lookUpDitherValue(), 120
lookUpInternalDitherAddress(), 120
lookUpInternalDitherValue(), 120
using the software pipeline, 268

dlsym(), 31
DMA devices, 271
double buffering, in hardware, 168
Drawable

interfaces, 161
window locking, 163

XglDrawable, 158
dynamic linking, 2, 31

E
error handling

error handling mechanism, 326
error macros, 328
error message files, 327
error notification function, 326
example, 330

external files, 23
eye vectors, 130, 147

F
fast clear sets, 174
fillRectangle(), 217
flag information

expected flag value, 87, 247
flag mask, 87, 247

fonts
stroke font object interfaces, 110

frame buffers, multiple, 35, 36, 54

G
gamma value, 60
gamma values, 105
Gcache

device-dependent Gcache, 280
generalGroupChanged(), 211, 213
getAccumBufferDepth(), 62
getAccumBufferPixRect(), 110
getActualData(), 106
getActualDataSize(), 106
getActualDescription(), 107
getActualOffset(), 107
getAttrTypeListAll(), 74
getBackTexturing(), 104
getBbox(), 237
getCenterPtr(), 237
getClass(), 177

456 XGL Device Pipeline Porting Guide—May 1996

getClipStat(), 172
getCmap(), 119
getCmapDrawable(), 120
getColorTable(), 120
getConicDataType(), 237
getConicType(), 237
getCosAngle2(), 106
getCreationOK, 54
getCreationOK(), 34
getCurCoordSys(), 154
getCurrentLevel(), 234, 237
getCurrentLevelData(), 234, 237
getCurrentStroke(), 102, 103
getDcOrientation(), 60, 105
getDepth()

in XglDpDevWinRas, 62
in XglPixRect, 216

getDescriptor(), 177
getDescriptors(), 104, 108
getDevFd(), 172
getDevice(), 172
getDeviceName(), 172
getDevinfo, 179
getDoPixelMapping(), 108
getDpDev(), 105
getDpMgr(), 33
getDrawable(), 105
getDrawType, 54
getElement(), 107
getExpectedFlagValue(), 88
getFaceAttrs(), 234
getFacetList(), 234
getFlag(), 111, 116
getFlagMask(), 88
getFlagPtr(), 237
getFrontTexturing(), 103
getGammaInversePowerTable(), 105
getGammaPowerTable(), 105
getGammaValue(), 60, 105
getHeight(), 216

getImageBufferPixRect(), 109
getImgBufLineBytes(), 110
getInverseMapperHasBeenSet(), 121
getIsFontLoaded(), 110
getIsotropicScale(), 117
getLength(), 107
getLevelData(), 234, 237
getLineBytes(), 217
getLockType(), 177
getMajorAxisPtr(), 237
getMapperHasBeenSet(), 121
getMatrix(), 117
getMatrixDouble(), 117
getMatrixFloat(), 116
getMatrixInt(), 117
getMaxZ(), 60
getMemberRecord(), 112, 116
getMemoryAddress(), 217
getMergeClipList(), 172
getMergeClipListCount(), 172
getMergeClipMask(), 173
getMinorAxisPtr(), 237
getNegDirection(), 106
getNewFramePlaneMask(), 101
getNorm(), 117
getNormInverse(), 117
getNumConics(), 237
getNumPointLists(), 234
getNumRects(), 238
getParallelProj(), 145
getPipeName(), 177
getPlaneMaskMask(), 120
getPointLists(), 234
getProcessFlags(), 234
getRadiusPtr(), 237
getRealColorType(), 62, 173
getRealPlaneMask(), 101
getRealRenderBuffer(), 101
getRenderFlags(), 234
getRotAnglePtr(), 237

Index 457

getSfontData(), 110
getSfontInst(), 110
getStartAnglePtr(), 237
getStartPointPtr(), 238
getStartSeg(), 107
getStartSegRemain(), 107
getStopAnglePtr(), 238
getStopPointPtr(), 238
getSurfAttr(), 101
getSurfBackAttr3d(), 103
getSurfBackFaceAttr(), 103
getSurfBackFaceAttr3d(), 103
getSurfFrontAttr3d(), 103
getSurfFrontFaceAttr(), 101
getSurfFrontFaceAttr3d(), 103
getSwAccumBuffer(), 64, 109
getSwp(), 102
getSwZBuffer(), 64, 109
getTlistEdgeFlag(), 104
getType(), 177
getUserClipList(), 173
getUserClipListCount(), 173
getValue(), 216
getValueByPointer(), 217
getViewCanonical(), 145
getViewGrp(), 102
getWid(), 173
getWidth(), 216
getWindowDepth(), 173
getWindowHeight(), 173
getWindowWidth(), 173
getWindowX(), 173
getWindowY(), 173
getWrapOriginX(), 216
getWrapOriginY(), 216
getWrappedValue(), 216
getWsClipList(), 173
getWsClipListCount(), 173
getZBufferPixRect(), 109
global state object, 33, 52

grabDrawable(), 177
grabFCS(), 174
grabRetainedWindow(), 177
grabStereo(), 174
grabWids(), 174
grabZbuf(), 174

H
hardware color map, 109

I
inquire(), 37
invalid data, 263
isMemory(), 216

L
li1Accumulate(), 310
li1AnnotationText(), 275
li1ClearAccumulation(), 312
li1CopyBuffer(), 313
li1DisplayGcache(), 276
li1Flush(), 316
li1GetPixel(), 317
li1Image(), 318
li1MultiArc(), 285, 286
li1MultiCircle(), 287, 288
li1MultiEllipticalArc(), 289
li1MultiMarker(), 290, 291
li1MultiPolyline(), 292, 293
li1MultiRectangle(), 295, 296
li1MultiSimplePolygon(), 297, 298
li1NewFrame(), 320
li1NurbsCurve(), 299
li1NurbsSurf(), 301
li1PickBufferFlush(), 321
li1Polygon(), 303, 304
li1QuadrilateralMesh(), 305
li1SetMultiPixel(), 322
li1SetPixel(), 323

458 XGL Device Pipeline Porting Guide—May 1996

li1SetPixelRow(), 324
li1StrokeText(), 306
li1TriangleList(), 307
li1TriangleStrip(), 309
li2GeneralPolygon(), 241
li2MultiDot(), 242
li2MultiEllipse(), 243
li2MultiEllipticalArc(), 244
li2MultiPolyline(), 246, 248
li2MultiRect(), 250
li2MultiSimplePolygon(), 251, 252
li2TriangleList(), 253
li2TriangleStrip(), 254
li3Begin(), 188
li3CopyFromDpBuffer(), 189
li3CopyToDpBuffer(), 190, 191
li3End(), 188
li3GetDotControl(), 194
li3GetSpanControl(), 201, 204
li3GetVectorControl(), 196, 199
li3MultiDot(), 193, 194
li3MultiSpan(), 201, 203
li3SetDotControl(), 194
li3SetSpanControl(), 201, 204
li3SetVectorControl(), 196, 199
li3Vector(), 196, 198
LIB_NAME, 27
light object

internal interfaces, 106
object messages, 76

lights, 130, 146
line bytes, 66
line pattern object

internal interfaces, 106
object messages, 76

line patterns
retrieving line pattern data, 106

line-specific attributes, 82
linking, dynamic, 2
loadable interfaces

in XglDpCtx, 43

list of LI-1 interfaces, 257
list of LI-2 interfaces, 221
list of LI-3 control functions, 184
list of LI-3 interfaces, 182

lookUpDitherValue(), 120
lookUpInternalDitherAddress(), 120
lookUpInternalDitherValue(), 120

M
make

makefile template, 21
options, 21

marker object
internal interfaces, 107
object messages, 76

matchDesc(), 177
matrices

getMatrix(), 117
getMatrixDouble(), 117
getMatrixFloat(), 116
getMatrixInt(), 117

memory raster object
internal interfaces, 109

messageReceive(), 75, 81
mipmap texture object

internal interfaces, 107
model clip planes, 148
modifChanged, 174
multiple UNIX processes, 163
multipolylines

expected flag value, 87
flag mask, 87
primitives rendering as, 82
stroke types, 82

N
naming conventions

device pipeline, 27
internal attributes, 95

needRtnDevice(), 64
normals, 117

Index 459

O
object messages

overview, 75
table of, 76
XGLI_MSG_DEV_COLOR, 78
XGLI_MSG_DEV_DIM, 78
XGLI_MSG_DEV_

MULTIBUFFER, 77
XGLI_MSG_DEV_OTHER, 78
XGLI_MSG_STANDARD, 76
XGLI_MSG_TEXTURE_DESC, 77
XGLI_MSG_VIEW_COORD_SYS, 76
XGLI_MSG_VIEW_CTX_ATTR, 76
XglMsg, 75

objectSet(), 72, 86, 97
OpenWindows environment, 11
opsVec function array, 44, 46
opsVecDiDefault function array, 49

P
performance tuning

benchmarks, 401
performance critical paths, 398, 403
performance tools, 400
techniques, 404

PEX server, 158
picked parameter, 186
picking

addPickToBuffer(), 101
checkLastPick(), 102
in LI-1 pipelines, 264
in LI-2 pipelines, 225
in LI-3 pipelines, 186

pipeline, See device pipeline or software
pipeline

pixel data
LI-3 rendering with RefDpCtx, 207
overview, 214
XglPixRect, 214

pixel mapping, 64
PixRect

class hierarchy, 214
depth, 214

interfaces, 216
memory based, 215
non-memory based, 215
overview, 214
RefDpCtx, 214

point lists with data mapping values, 272
popCurCoordSys(), 154
porting

choosing an interface layer, 12
implementing an LI-1 primitive, 15
testing the implementation, 19

possible(), 178
processes, multiple, 163
pushCurCoordSys(), 154

Q
querying device functionality, 37

R
raster object

internal interfaces, 108
object messages, 77

reallocate(), 218
reassign(), 218
receive(), 102
RefDpCtx

attribute changes, 211
example, 210
LI-1 interfaces, 212, 262
LI-3 interfaces, 212
memory-mapped buffers, 207
overview, 207
PixRect objects, 207
texture mapping, 207

rendering
opsVec array, 46
overview, 44
using the software pipeline, 46

resize()
in XglDpDevWinRas, 62
in XglDrawble, 178

460 XGL Device Pipeline Porting Guide—May 1996

S
setAccumBufferPixRect(), 212
setBackingStore(), 63
setBufDisplay(), 63
setBufDraw(), 63
setBuffersRequested(), 63
setBufMinDelay(), 63
setClipMaskPixRect(), 213
setCmap()

in XglDpDevMemRas, 65
in XglDpDevWinRas, 63

setComposite(), 139
setCurCoordSys(), 154
setCursorRopFunc(), 175
setDgaCmapPutFunc(), 109
setDisplayBuffer(), 175
setDoMaskAndRop(), 213
setDoPixelMapping(), 108
setImageBufferAddr(), 65
setImagePixRect(), 212
setLineBytes(), 66
setNumConics(), 237
setNumRects(), 238
setPixelMapping(), 64
setReadBuffer(), 176
setRectList(), 61, 178
setRectNum(), 61, 178
setSourceBuffer(), 61
setStereoMode(), 64
setSwAccumBuffer(), 62
setSwZBuffer(), 61
setValue(), 216
setValueByPointer(), 217
setWrapOriginX(), 216
setWrapOriginY(), 216
setWriteBuffer(), 176
setZBufferAddr(), 65
setZbufferPixRect(), 212
shared memory, 162, 178
software cursors, 170, 175

software pipeline, 8
calling LI-3 functions, 185
color, 227
depth cueing, 227
derived data, 124
level data, 230
LI-1 calls to device pipeline, 258, 259
LI-2 calls to device pipeline, 222
lighting, 227
point data, 230
rendering with, 46, 50

state changes
derived data, 81
design issues in attribute

handling, 90
device changes, 74, 81
mechanism, 72
messageReceive(), 75
object changes, 75
object messages, 75
objectSet(), 72
overview, 72
stroke groups, 82

stereo imaging, 168
stereo mode, 64
stroke font object

internal interfaces, 110
object messages, 77

stroke group
attributes, 86, 100
DC offset, 88
example, 85
expected flag value, 87
flag mask, 87
introduction, 82

stroke pointer, 85
syncClipMask(), 213
syncRtnDevice(), 62, 110

T
texture map object

internal interfaces, 108
object messages, 77

Index 461

texture mapping
at LI-1, 267
at LI-3, 187
internal interfaces, 104
LI-3 utilities, 205
lighting coefficients, 236
RefDpCtx, 207

Transform object
getting object handle, 99

transform object
flag data, 111
internal interfaces, 116
matrices, 117
member record, 111
object messages, 77

transforms, 128, 143
See also derived data

transNormal(), 118
transparent overlay windows, 53

creating an overlay window, 53
transparent surfaces

hints for rendering, 265
transPt(), 117
transPtList(), 118
transUnitNormal(), 118
transUnitNormalDouble(), 118

U
unGrabDrawable(), 178
unGrabRetainedWindow(), 178
utilities

3D utilities, 334
bounding box utilities, 385
copy buffer utilities, 387
polygon classification utilities, 392
polygon decomposition utilities, 394
RefDpCtx, 207

V
versioning

API version number, 28
major version number, 28

minor version number, 28
rules, 28
xglGetDdkVersion(), 29

view clip bounds, 130, 144
view concern objects, 133
view model, 124

See also derived data
virtual functions

described, 60
VIS_GETIDENTIFIER ioctl, 52

W
WIN_LOCK(), 163, 165, 171
WIN_UNLOCK(), 163, 171
winBboxinfop(), 178
winDbInfop(), 179
window locking

around RefDpCtx calls, 210
asynchronous devices, 164
at LI-1, 263
at LI-2, 224
at LI-3, 186, 188
immediate-rendering hardware, 163
limitations, 161
performance implications, 165

window raster object
internal interfaces, 109
object messages, 77

window system
See also XglDrawable
clip list, 163
clip list updates, 162
creation of the XglDrawable, 159
fast clear sets, 178
locking the window, 160, 163
window ID, 171, 173

windowIsClipped(), 176
windowIsObscured(), 176
winLock(), 163, 170
winUnLock(), 163, 171

462 XGL Device Pipeline Porting Guide—May 1996

X
XGL architecture

and the device pipelines, 8
overview, 8

XGL_AA_GAMMA_VALUE, 60
XGL_CORE, 95
XGL_INTERNAL, 95
XglCmap

getColorTable(), 120
getPlaneMaskMask(), 120
lookUpDitherValue(), 120
lookUpInternalDitherAddress(), 120

XglConicData
getCurrentLevel(), 237
getCurrentLevelData(), 237
getLevelData(), 237

XglContext
addPickToBuffer(), 101
checkLastPick(), 102
getNewFramePlaneMask(), 101
getRealPlaneMask(), 101
getRealRenderBuffer(), 101
getSurfAttr(), 101
getSurfFrontFaceAttr(), 101

XglContext2d
assignCurStrokeAs...(), 102
getCurrentStroke(), 102
getViewGrp(), 102

XglContext3d
assignCurStrokeAs...(), 103
getBackTexturing(), 104
getCurrentStroke(), 103
getFrontTexturing(), 103
getSurfBackFaceAttr(), 103
getSurfBackFaceAttr3d(), 103
getSurfFrontFaceAttr3d(), 103
getTlistEdgeFlag(), 104

XglDevice
getCmap(), 119
getDcOrientation(), 105
getDpDev(), 105
getDrawable(), 105
getGammaInversePowerTable(), 105
getGammaPowerTable(), 105

getGammaValue(), 105
XglDmapTexture

getDescriptors(), 104
XglDpCtx

default renderers, 46
getting Context attribute values, 97
loadable interfaces

LI-1 interfaces, 255
LI-2 interfaces, 219
LI-3 interfaces, 181

opsVec array, 44
overriding loadble interfaces, 43
overview of functionality, 43
rendering, 44

XglDpDev
accessing the Device object, 119
and the XglDrawable, 160
copyBuffer(), 41
createDpCtx(), 41
device class hierarchy, 40
device-dependent virtual

functions, 42
getDcOrientation(), 60
getGammaValue(), 60
getMaxZ(), 60
overview of functionality, 39
virtual functions, 41

XglDpDevMemRas
getAccumBufferDepth(), 65
getAccumBufferPixRect(), 65
getImageBufferPixRect(), 65
getZBufferPixRect(), 65
setCmap(), 65
setImageBufferAddr(), 65
setLineBytes(), 66
setZBufferAddr(), 65

XglDpDevRaster
setRectList(), 61
setRectNum(), 61
setSourceBuffer(), 61
setSwAccumBuffer(), 62
setSwZBuffer(), 61
syncRtnDevice(), 62

XglDpDevWinRas
getAccumBufferDepth(), 62

Index 463

getDepth(), 62
getRealColorType(), 62
getSwAccumBuffer(), 64
getSwZBuffer(), 64
need RtnDevice(), 64
resize(), 62
setBackingStore(), 63
setBufDisplay(), 63
setBufDraw(), 63
setBuffersRequested(), 63
setBufMinDelay(), 63
setCmap(), 63
setPixelMapping(), 64
setStereoMode(), 64

XglDpLib
creating, 31
getCreationOK(), 34
getDpMgr(), 33
overview of functionality, 32
status of hardware resources, 34
virtual function, 33
xgli_create_PipeLib(), 31
XglListOfDpMgr, 34

XglDpMgr
and the XglDrawable, 160
backing store, 59
createDpDev(), 37
hardware initialization, 36
inquire(), 37
overview of functionality, 36

XglDrawable
clipChanged(), 171
creation, 159
dbDisplayComplete(), 171
dbGetWid(), 171
dbUnGrab(), 177
dpDisplayWait(), 171
getClass(), 177
getClipStat(), 172
getDescriptor(), 177
getDevFd(), 172
getDevice(), 172
getDeviceName(), 172
getLockType(), 177
getMergeClipList(), 172

getMergeClipListCount(), 172
getMergeClipMask(), 173
getPipeName(), 177
getRealColorType(), 173
getType(), 177
getUserClipList(), 173
getUserClipListCount(), 173
getWid(), 173
getWindowDepth(), 173
getWindowHeight(), 173
getWindowWidth(), 173
getWindowX(), 173
getWindowY(), 173
getWsClipList(), 173
getWsClipListCount(), 173
grabDrawable(), 177
grabFCS(), 174
grabRetainedWindow(), 177
grabStereo(), 174
grabWids, 174
grabZbuf(), 174
matchDesc(), 177
overview of functionality, 158
possible(), 178
rendering, 160
resize(), 178
services provided, 159
setCursorRopFunc(), 175
setDisplayBuffer(), 175
setReadBuffer(), 176
setRectList(), 178
setRectNum(), 178
setWriteBuffer(), 176
software cursors, 170
subclasses, 158
synchonizing window access, 162
unGrabDrawable(), 178
unGrabRetainedWindow(), 178
WIN_LOCK(), 171
WIN_UNLOCK(), 171
windowIsClipped(), 176
windowIsObscured(), 176
winLock(), 170
winUnLock(), 171

XglError, 326

464 XGL Device Pipeline Porting Guide—May 1996

xglGetDdkVersion(), 29
XGLHOME environment variable, 23
xgli_create_PipeLib(), 31
XGLI_DC_OFFSET_BACK, 89
XGLI_DC_OFFSET_FRONT, 89
XGLI_DC_OFFSET_NONE, 88
XGLI_DDK_MAJOR_VERSION, 28
XGLI_DDK_MINOR_VERSION, 28
XGLI_DI_ERROR, 328
XGLI_ERROR, 328
Xgli_fixed_xy, 205
XGLI_LI_MSG_RCV, 75
XGLI_LI_OBJ_SET, 72
XGLI_MSG_DEV_COLOR, 78
XGLI_MSG_DEV_DIM, 78
XGLI_MSG_DEV_MULTIBUFFER, 77
XGLI_MSG_DEV_OTHER, 78
XGLI_MSG_RAS_CLIP, 78
XGLI_MSG_STANDARD, 76
XGLI_MSG_TEXTURE_DESC, 77
XGLI_MSG_VIEW_COORD_SYS, 76
XGLI_MSG_VIEW_CTX_ATTR, 76
XGLI_PIPELINE_CHECK_

VERSION(), 31
Xgli_span_3d, 205
XGLI_TRANS_INVERSE_VALID, 111
XGLI_TRANS_SINGULAR, 111
XgliUt2dCheckBbox, 385
XgliUt3dCheckBbox, 386
XgliUtAccumulate, 334
XgliUtAdjustRectPos, 387
XgliUtAnnArcApprox, 336
XgliUtAnnCircleApprox, 335
XgliUtAnnEllArcApprox, 337
XgliUtCalc3dTriOrientation, 346
XgliUtCalcDcueIndex, 338
XgliUtCalcDcueRgb, 339
XgliUtCalcDoubleCircle, 339
XgliUtCalcLightingCompRgb, 340
XgliUtCalcLightingIndex, 341

XgliUtCalcLightingRgb, 341, 342
XgliUtCalcSingleCircle, 345
XgliUtCalcTexturedColor, 345
XgliUtCdAnnCircleApprox, 335
XgliUtCdAnnEllArcApprox, 336
XgliUtCdDcCircleApprox, 360
XgliUtCdDcEllArcApprox, 362
XgliUtCdVdcCircleApprox, 379
XgliUtCdVdcEllArcApprox, 380
XgliUtCdWcCircleApprox, 382
XgliUtCdWcEllArcApprox, 383
XgliUtClassifyMsp, 392
XgliUtClassifyPgon, 393
XgliUtComputeColorComp, 347
XgliUtComputeColorInterp, 348
XgliUtComputeDiffuseColor, 348
XgliUtComputeFinalColor, 349
XgliUtComputeFn, 350
XgliUtComputeFnReverse, 351
XgliUtComputeIndepTriFn, 352
XgliUtComputeIndepTriFnPl, 352
XgliUtComputeMspFn, 353
XgliUtComputePolygonFn, 354
XgliUtComputeQuadMeshFn, 355
XgliUtComputeReflectedColor, 355
XgliUtComputeTstarFn, 358
XgliUtComputeTstarFnPl, 358
XgliUtComputeTstripFn, 356
XgliUtComputeTstripFnPl, 357
XgliUtComputeVnReverse, 359
XgliUtComputeZTolerance, 360
XgliUtCopyBuffer, 388
XgliUtDcArcApprox, 362
XgliUtDcCircleApprox, 361
XgliUtDcEllArcApprox, 363
XgliUtDecomposeNsiPgon, 395
XgliUtDecomposePgon, 394
XgliUtFaceDistinguish, 363
XgliUtFbToMemCopyBuffer, 390
XgliUtGetMaskAndRopFunc, 391

Index 465

XgliUtGetZCompFunc, 365
XgliUtIsScreenDoor, 365
XgliUtIsScreenDoorTransparent, 366
XgliUtIsTransparent, 366
XgliUtMeanWg, 367
XgliUtMellaToPline, 368
XgliUtModelClipMarker, 369
XgliUtModelClipMpline, 369
XgliUtModelClipMspg, 370
XgliUtModelClipPgon, 371
XgliUtModelClipPoint, 372
XgliUtModelClipTstrip, 373
XgliUtPixRect48to32, 374
XgliUtVdcArcApprox, 380
XgliUtVdcCircleApprox, 379
XgliUtVdcEllArcApprox, 381
XgliUtVertexFrontFacing, 377
XgliUtVertexOrientation, 378
XgliUtWcArcApprox, 383
XgliUtWcCircleApprox, 382
XgliUtWcEllArcApprox, 384
XglLevel

getFaceAttrs(), 234
getFacetList(), 234
getNumPointLists(), 234
getPointLists(), 234
getRenderFlags(), 234

XglLight
getCosAngle2, 106
getNegDirection(), 106

XglLinePattern
getActualData(), 106
getActualDataSize(), 106
getActualOffset(), 107
getLength(), 107
getStartSeg(), 107
getStartSegRemain(), 107

XglListOfDpMgr, 34
XglMarker

getActualDescription(), 107
XglMipMapTexture

getElement(), 107

XglMsg, 75
XglPixRect, 214 to 218
XglPrimData

getCurrentLevel(), 234
getCurrentLevelData(), 234
getLevelData(), 234
getProcessFlags(), 234

XglRaster
getDoPixelMapping(), 108
setDoPixelMapping(), 108

XglRasterMem
getAccumBufferPixRect(), 110
getImageBufferPixRect(), 109
getImgBufLineBytes(), 110
getZBufferPixRect(), 109

XglRasterWin
getSwAccumBuffer(), 109
getSwZBuffer(), 109
setDgaCmapPutFunc(), 109

XglSfont
getIsFontLoaded(), 110
getSfontData(), 110
getSfontInst(), 110

XglTmap
getDescriptors(), 108

XglTransform
getFlag(), 116
getIsoTropicScale(), 117
getMatrix(), 117
getMatrixDouble(), 117
getMatrixFloat(), 116
getMatrixInt(), 117
getMemberRecord(), 116
getNorm(), 117
getNormInverse(), 117
transNormal(), 118
transPt(), 117
transPtList(), 118
transUnitNormal(), 118
transUnitNormalDouble(), 118

XglViewCache2d, 131
XglViewCache3d, 131
XglViewConcern2d, 131
XglViewConcern3d, 131

466 XGL Device Pipeline Porting Guide—May 1996

XglViewGrp2dConfig, 131
XglViewGrp2dItf, 131
XglViewGrp3dConfig, 131
XglViewGrp3dItf, 131

Z
Z-buffers

hardware, 168
software, 58, 61, 64

Index 467

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A.Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, et XGL sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis
et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

