Platform Notes: Using luxadm
Software

Solaris 2.5.1 Hardware: 8/97

Sun™ Enterprise Network Array™
SPARCstorage™ Array
Contents

Preface xi

1. Using the luxadm Command 1
 The luxadm Command 1
 Synopsis 1
 Addressing 2
 Addressing a Sun Enterprise Network Array 2
 Addressing a SPARCstorage Array 3
 Subcommand Support Matrix 4

2. Common Subcommands 5
 Displaying Subsystem Information 5
 Displaying Enclosure or Device Specific Data 5
 Displaying inquiry Information 8
 Disk LEDs 9
 Displaying the Current State of a Disk LED 9
 Turning Off a Disk LED 9
 Disk Operations 11
 Reserving Disks 11
 Releasing Disks 11
Other Operations 12

 Downloading Firmware 12
 Setting the Boot Device Variable 13
 Powering Off an Enclosure or Disk Drive 14

3. Subcommands for the Sun Enterprise Network Array 15

 Hotplugging 15
 Removing Devices 15
 Inserting Devices 17
 Downloading Code 18
 Downloading fcode 18
 Other Operations 19
 Powering On Enclosures or Disk Drives 19
 Probing for Sun Enterprise Network Arrays 20
 Renaming a Sun Enterprise Network Array 21
 Setting a Disk LED to the Blink Mode 21
 Expert Mode Subcommands 23
 Reading Link Error Status Blocks 23
 Reinitializing a Link 25

4. Subcommands for the SPARCstorage Array 27

 NVRAM Operations 27
 Enabling and Disabling Fast Writes 27
 Displaying Fast Write Data 28
 Purging Fast Write Data from NVRAM 28
 Flushing NVRAM 29
 Enclosure Services Card 29
 Displaying Environmental Information 30
 Disabling the Alarm 30
Enabling the Alarm 31
Setting the Alarm 31
Other Operations 32
 Downloading fcode 32
 Collecting Performance Statistics 33
 Changing the World Wide Name 33
 Starting Disks 34
 Stopping Disks 34
 Turning On a Disk LED 35

5. Hotplugging in the Sun Enterprise Network Array 37
 Hotplugging Sun Enterprise Network Arrays 37
 Hotplugging Disks 37
 Overview 38
 Adding a Disk Drive 38
 Replacing a Disk Drive 41
 Removing a Disk Drive 52
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1-1</td>
<td>Addressing a Sun Enterprise Network Array by Enclosure Name</td>
<td>3</td>
</tr>
<tr>
<td>TABLE 1-2</td>
<td>Subcommand Support</td>
<td>4</td>
</tr>
<tr>
<td>TABLE 2-1</td>
<td>display Options and Arguments</td>
<td>5</td>
</tr>
<tr>
<td>TABLE 2-2</td>
<td>inquiry Options and Arguments</td>
<td>8</td>
</tr>
<tr>
<td>TABLE 2-3</td>
<td>led Options and Arguments</td>
<td>9</td>
</tr>
<tr>
<td>TABLE 2-4</td>
<td>led_off Options and Arguments</td>
<td>10</td>
</tr>
<tr>
<td>TABLE 2-5</td>
<td>reserve Options and Arguments</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 2-6</td>
<td>release Options and Arguments</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 2-7</td>
<td>download Options and Arguments</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 2-8</td>
<td>set_boot_dev Options and Arguments</td>
<td>13</td>
</tr>
<tr>
<td>TABLE 2-9</td>
<td>power_off Options and Arguments</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 3-1</td>
<td>remove_device Options and Arguments</td>
<td>16</td>
</tr>
<tr>
<td>TABLE 3-2</td>
<td>insert_device Options and Arguments</td>
<td>18</td>
</tr>
<tr>
<td>TABLE 3-3</td>
<td>fcal_s_download Options</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 3-4</td>
<td>power_on Options and Arguments</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 3-5</td>
<td>probe Options</td>
<td>20</td>
</tr>
<tr>
<td>TABLE 3-6</td>
<td>enclosure_name Options and Arguments</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 3-7</td>
<td>led_blink Options and Arguments</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 3-8</td>
<td>rdls Options and Arguments</td>
<td>23</td>
</tr>
</tbody>
</table>
TABLE 3-9 forcelip Options and Arguments 25
TABLE 4-1 fast_write Options and Arguments 27
TABLE 4-2 nvram_data Options and Arguments 28
TABLE 4-3 purge Options and Arguments 28
TABLE 4-4 sync_cache Options and Arguments 29
TABLE 4-5 env_display Options and Arguments 30
TABLE 4-6 alarm_off Options and Arguments 30
TABLE 4-7 alarm_on Options and Arguments 31
TABLE 4-8 alarm_set Options and Arguments 31
TABLE 4-9 fc_s_download Options 32
TABLE 4-10 perf_statistics Options and Arguments 33
TABLE 4-11 download Options and Arguments 33
TABLE 4-12 start Options and Arguments 34
TABLE 4-13 stop Options and Arguments 34
TABLE 4-14 led_off Options and Arguments 35
Preface

Platform Notes: Using luxadm Software contains information about the luxadm administrative program for the Sun™ Enterprise Network Array™ and the SPARCstorage™ Array. These instructions are designed for an experienced system administrator.

Using UNIX Commands

This document does not contain information on basic UNIX® commands and procedures such as shutting down the system or booting the system.

See one or more of the following for this information:

- *Solaris 2.x Handbook for SMCC Peripherals*
- AnswerBook™ online documentation for the Solaris™ 2.x software environment
- Other software documentation that you received with your system
Typographic Conventions

TABLE P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output.</td>
<td>Edit your .login file. Use ls -a to list all files. % You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output.</td>
<td>% su Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized. Command-line variable; replace with a real name or value.</td>
<td>Read Chapter 6 in the User’s Guide. These are called class options. You must be root to do this. To delete a file, type rm filename.</td>
</tr>
</tbody>
</table>

Ordering Sun Documents

SunDocsSM is a distribution program for Sun Microsystems technical documentation. Contact SunExpress for easy ordering and quick delivery. You can find a listing of available Sun documentation on the World Wide Web.

TABLE P-2 SunExpress Contact Information

<table>
<thead>
<tr>
<th>Country</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>02-720-09-09</td>
<td>02-725-88-50</td>
</tr>
<tr>
<td>Canada</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
<tr>
<td>France</td>
<td>0800-90-61-57</td>
<td>0800-90-61-58</td>
</tr>
<tr>
<td>Germany</td>
<td>01-30-81-61-91</td>
<td>01-30-81-61-92</td>
</tr>
<tr>
<td>Holland</td>
<td>06-022-34-45</td>
<td>06-022-34-46</td>
</tr>
<tr>
<td>Japan</td>
<td>0120-33-9096</td>
<td>0120-33-9097</td>
</tr>
</tbody>
</table>
Sun Welcomes Your Comments

Please use the Reader Comment Card that accompanies this document. We are interested in improving our documentation and welcome your comments and suggestions.

If a card is not available, you can email or fax your comments to us. Please include the part number of your document in the subject line of your email or fax message.

- Email: smcc-docs@sun.com
- Fax: SMCC Document Feedback 1-415-786-6443

TABLE P-2 SunExpress Contact Information

<table>
<thead>
<tr>
<th>Location</th>
<th>Phone 1</th>
<th>Phone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luxembourg</td>
<td>32-2-720-09-09</td>
<td>32-2-725-88-50</td>
</tr>
<tr>
<td>Sweden</td>
<td>020-79-57-26</td>
<td>020-79-57-27</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0800-55-19-26</td>
<td>0800-55-19-27</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0800-89-88-88</td>
<td>0800-89-88-87</td>
</tr>
<tr>
<td>United States</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
</tbody>
</table>

The luxadm Command

The luxadm program is an administrative command that manages both the Sun Enterprise Network Array and SPARCstorage Array subsystems. luxadm performs a variety of control and query tasks, depending on the command line arguments and options used.

Synopsis

The command line must contain a subcommand.

```
luxadm [options] subcommand [options] {enclosure[,dev]... | pathname...}
```

You may also enter options, usually at least one enclosure name or pathname, and other parameters depending on the subcommand. You specify a device by entering a physical path name, or a logical path name. See “Addressing” on page 2”.

You only need to enter as many characters as are required to uniquely identify a subcommand. For example, to run the display subcommand on an enclosure named box1, you could enter:

```
#luxadm disp box1
```
Addressing

Addressing a Sun Enterprise Network Array

Pathname

Either a complete physical path name or a complete logical path name may be entered to specify the device or controller. A typical physical path name for a Sun Enterprise Network Array device is:

```
/devices/sbus@1f,0/SUNW,socal01,0/sf@0,0/
ssd@w2200002037000f96,0:a,raw
```

or

```
/devices/io-unit@f,e0200000/sbi@0,0/SUNW,socal02,0/sf@0,0/
ssd@34,0:a,raw
```

For all Sun Enterprise Network Array IBs (Interface Boards) on the system, a logical link to the physical paths is kept in the directory /dev/es. An example of a logical link is /dev/es/ses0.

Enclosure

For the Sun Enterprise Network Array subsystem, the WWN may be used in place of the pathname to select a device or the Sun Enterprise Network Array subsystem Interface Board. The WWN is a unique 16 digit hexadecimal value that specifies either the port used to access the device or the device itself. A typical WWN value is: 2200002037000f96.

Or you can specify the name of the Sun Enterprise Network Array enclosure and an identifier for the particular device in the enclosure. A device in a Sun Enterprise Network Array enclosure is identified as follows:

```
BOX_NAME,[f|r]slot_number
```
where:

<table>
<thead>
<tr>
<th>Options/Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX_NAME</td>
<td>is the name of the Sun Enterprise Network Array enclosure, as specified by the enclosure_name subcommand</td>
</tr>
<tr>
<td>f or r</td>
<td>specifies the front or rear slots in the Sun Enterprise Network Array enclosure</td>
</tr>
<tr>
<td>slot_number</td>
<td>is the slot number in the Sun Enterprise Network Array enclosure, 0-6 or 0-10</td>
</tr>
</tbody>
</table>

When addressing the Sun Enterprise Network Array subsystem the pathname or enclosure name specifies the Sun Enterprise Network Array Interface Board (IB).

Addressing a SPARCstorage Array

When addressing the SPARCstorage Array, the pathname specifies the SPARCstorage Array controller or a disk in the SPARCstorage Array. The controller name is specified by its physical name, for example

```
/devices/.../SUNW,soc@3,0/SUNW,pln@axxxxxxx,xxxxxxxx:ctlr
```

or by a name of the form cN, where N is the logical controller number. luxadm uses the cN name to find an entry in the /dev/rdisk directory of a disk that is attached to the SPARCstorage Array controller. The /dev/rdisk entry is then used to determine the physical name of the SPARCstorage Array controller. A disk in the SPARCstorage Array is specified by its logical or physical device name, for example:

```
/dev/rdsk/c1t0d0s2
```

or

```
/dev/rdsk/c1t0d0s2 or /devices/.../SUNW,soc@3,0/SUNW,pln@axxxxxxx,xxxxxxxx/ssd@0,0:c,raw.
```

See the disks(1M) and devlinks(1M) manpages for more information on logical names for disks and subsystems.
Subcommand Support Matrix

The following table lists the subcommands that are supported on both the Sun Enterprise Network Array and the SPARCstorage Array, subcommands that are supported on the Sun Enterprise Network Array only, and subcommands that are supported on the SPARCstorage Array only.

<table>
<thead>
<tr>
<th>Supports on Sun Enterprise Network Array and SPARCstorage Array</th>
<th>Supported on Sun Enterprise Network Array Only</th>
<th>Supported on SPARCstorage Array Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>display</td>
<td>enclosure_name</td>
<td>alarm</td>
</tr>
<tr>
<td>download</td>
<td>fcal_s_download</td>
<td>alarm_off</td>
</tr>
<tr>
<td>inquiry</td>
<td>forcelip</td>
<td>alarm_on</td>
</tr>
<tr>
<td>led</td>
<td>insert_device</td>
<td>alarm_set</td>
</tr>
<tr>
<td>led_off</td>
<td>led_blink</td>
<td>env_display</td>
</tr>
<tr>
<td>power_off</td>
<td>power_on</td>
<td>fast_write</td>
</tr>
<tr>
<td>release</td>
<td>probe</td>
<td>fc_s_download</td>
</tr>
<tr>
<td>reserve</td>
<td>rdls</td>
<td>led_on</td>
</tr>
<tr>
<td>set_boot_dev</td>
<td>remove_device</td>
<td>nvram_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perf_statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>purge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sync_cache</td>
</tr>
</tbody>
</table>
CHAPTER 2

Common Subcommands

Displaying Subsystem Information

Displaying Enclosure or Device Specific Data

Use the `display` subcommand to display enclosure specific or device specific data.

Enclosure data consists of enclosure environmental sense information and status for all subsystem devices including disks.

Device data consists of inquiry, capacity, and configuration information.

```
luxadm [ -v ] display enclosure[,dev]... | pathname...
```

<table>
<thead>
<tr>
<th>TABLE 2-1 display Options and Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option/Argument</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td><code>-v</code></td>
</tr>
<tr>
<td><code>enclosure</code></td>
</tr>
<tr>
<td><code>dev</code></td>
</tr>
<tr>
<td><code>pathname</code></td>
</tr>
</tbody>
</table>
TABLE 2-1 display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>displays performance information for the specified device or subsystem</td>
</tr>
<tr>
<td>-r</td>
<td>displays error information for the specified device or subsystem</td>
</tr>
</tbody>
</table>

1See “Addressing” on page 2.

Example:

```
# luxadm display dogbert
(luxadm version: 1.23 97/05/22)

SEN

<table>
<thead>
<tr>
<th>SLOT</th>
<th>FRONT DISKS</th>
<th>(Node WWN)</th>
<th>REAR DISKS</th>
<th>(Node WWN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On (O.K.)</td>
<td>20000020370412ec</td>
<td>On (O.K.)</td>
<td>200000203704141d</td>
</tr>
<tr>
<td>1</td>
<td>On (O.K.)</td>
<td>20000020370412e7</td>
<td>On (O.K.)</td>
<td>2000002037041375</td>
</tr>
<tr>
<td>2</td>
<td>On (O.K.)</td>
<td>2000002037041397</td>
<td>On (O.K.)</td>
<td>20000020370412be</td>
</tr>
<tr>
<td>3</td>
<td>On (O.K.)</td>
<td>200000203704139f</td>
<td>On (O.K.)</td>
<td>2000002037041433</td>
</tr>
<tr>
<td>4</td>
<td>On (O.K.)</td>
<td>2000002037041418</td>
<td>On (O.K.)</td>
<td>2000002037041348</td>
</tr>
<tr>
<td>5</td>
<td>On (O.K.)</td>
<td>200000203704140f</td>
<td>On (O.K.)</td>
<td>2000002037041333</td>
</tr>
<tr>
<td>6</td>
<td>On (O.K.)</td>
<td>200000203704143d</td>
<td>On (O.K.)</td>
<td>2000002037041382</td>
</tr>
</tbody>
</table>

SUBSYSTEM STATUS

Revision Level: 0.16  Node WWN: 1234123412341234 Enclosure Name: dogbert
Power Supplies (0,2 in front, 1 in rear)
  0 O.K.(REV 0) 1 O.K.(REV 0) 2 O.K.(REV 0)
Fans (0 in front, 1 in rear)
  0 O.K.(REV 0) 1 O.K.(REV 0)
ESI Interface board(IB) (A top, B bottom)
  A: O.K. (mmm)
  GBIC module (1 on left, 0 on right in IB)
  0 Not Installed 1 O.K.(MODn)
  B: Not Installed
Disk backplane (0 in front, 1 in rear)
  Temperature sensors (on front backplane)
    0:42°C 1:42°C 2:40°C 3:39°C 4:40°C 5:40°C 6:42°C (All temperatures are NORMAL.)
  Temperature sensors (on rear backplane)
    0:43°C 1:42°C 2:42°C 3:40°C 4:42°C 5:42°C 6:43°C (All temperatures are NORMAL.)
Loop configuration The loop is configured as a single loop.
Language USA English
```
Example:

```
# luxadm display -r dogbert

    (luxadm version: 1.23 97/05/22)

SENA
    Information for FC Loop on port 0 of SOC+ Host Adapter
    at path: /devices/sbus@3,0/SUNW,socal@0,0:0

Version Resets  Req_Q_Intrpts  Qfulls Requests Sol_Resps Unsol_Resps Lips
  1         2         0          0        0        0         0         1
Els_sent  Els_rcvd  Abts  Abts_ok  Offlines Onlines Online_loops
  0         0         0          0        0        0         0         1

Information from sf driver:
Version  Lip_count  Lip_fail  Alloc_fail  #_cmds  Throttle_limit  Pool_size
  1         0         0          0        0      1024         1

TARGET ERROR INFORMATION:
AL_PA  Els_fail  Timouts  Abts_fail  Tsk_m_fail  Data_ro_mis  Dl_len_mis  Logouts
  9e      0         0          0           0            0            0        0
  b2      0         0          0           0            0            0        0
  bl      0         0          0           0            0            0        0
  ae      0         0          0           0            0            0        0
  ad      0         0          0           0            0            0        0
  ac      0         0          0           0            0            0        0
  ab      0         0          0           0            0            0        0
  aa      0         0          0           0            0            0        0
  l       0         0          0           0            0            0        0
  75      0         0          0           0            0            0        0
  98      0         0          0           0            0            0        0
  97      0         0          0           0            0            0        0
  90      0         0          0           0            0            0        0
  8f      0         0          0           0            0            0        0
  88      0         0          0           0            0            0        0
  84      0         0          0           0            0            0        0
  82      0         0          0           0            0            0        0

#```
Displaying inquiry Information

Use the inquiry subcommand to display inquiry information for a specific disk.

```
luxadm [-v] inquiry { enclosure[,dev]... | pathname...}
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1See “Addressing” on page 2.

Example:

```
luxadm inquiry dogbert

INQUIRY:
 Physical path:
 /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ses@w1234123412341235,0:0
Vendor: SUN
Product: SENA
Revision: 0.16
Device type: 0xd (Enclosure services device)
Removable media: no
Medium Changer Element: no
ISO version: 0
ECMA version: 0
ANSI version: 3 (Device complies to SCSI-3)
Terminate task: no
Response data format: 2
Additional length: 0x7b
Command queueing: no

VENDOR-SPECIFIC PARAMETERS

<table>
<thead>
<tr>
<th>Byte#</th>
<th>Hex Value</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12 34 12 34 12 34 12 34 00 00 00 00 00 00 00 00 00 00 00</td>
<td>.4.4.4.4........</td>
</tr>
<tr>
<td></td>
<td>00 00 00 00</td>
<td>....</td>
</tr>
<tr>
<td>95</td>
<td>64 6f 67 62 65 72 74 00 00 00 00 00 00 00 00 00 00 00 00</td>
<td>dogbert.........</td>
</tr>
<tr>
<td></td>
<td>00 00</td>
<td>.................</td>
</tr>
</tbody>
</table>
```

Disk LEDs

Displaying the Current State of a Disk LED

Use the `led` subcommand to display the current state of the yellow LED associated with a specific disk.

Example:

```
luxadm [-v] led { enclosure,dev... | pathname... }
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array(^1).</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\)See “Addressing” on page 2”.

Example:

```
luxadm led /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/

ssd@w21000020370412ec,0:c,raw

LED state is OFF for device in location: front,slot 0
```

Turning Off a Disk LED

Use the `led_off` subcommand to turn off the yellow LED associated with a specific disk.

Example:

```
luxadm [-v] led_off { enclosure,dev... | pathname... }
```

### TABLE 2-4  led_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a specific disk in an array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2.

**Note** – On a Sun Enterprise Network Array this may or may not cause the yellow LED to turn off or stop blinking depending on the state of the Sun Enterprise Network Array. Refer to *Sun Enterprise Network Array Installation and Service Manual* for details.

Example:

```bash
luxadm led_off /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ssd@w21000020370412ec,0:c,raw
LED state is OFF for device in location: front,slot 0
#```

Disk Operations

Reserving Disks

Use the `reserve` subcommand to reserve the specified disk(s) for exclusive use by the host from which the subcommand was issued.

```
luxadm [-v] reserve { enclosure[,dev]... | pathname...}
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

Releasing Disks

Use the `release` subcommand to release one or more disk drives from reservation.

```
luxadm [-v] release { enclosure[,dev]... | pathname...}
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.
Other Operations

Downloading Firmware

Use the `download` subcommand to download a prom image to the FEPROMs on a Sun Enterprise Network Array Interface Board or on a SPARCstorage Array controller board.

In a Sun Enterprise Network Array, when the download is complete, the Sun Enterprise Network Array subsystem will be reset and the downloaded code will be executed.

In a SPARCstorage Array, when the download is complete, you must reset the SPARCstorage Array to execute the downloaded code.

```
luxadm [ -v ] download [-s] [-f filename-path ]
```

Caution — When using the `-s` option the download modifies the FEPROM in the Sun Enterprise Network Array and should be used with CAUTION.
Note – The -s option does not apply to the SPARCstorage Array controller as it always writes the downloaded firmware into the FEPROM.

TABLE 2-7 download Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>saves the downloaded firmware in the FEPROM in a Sun Enterprise Network Array. If -s is not specified the downloaded firmware will not be saved across power cycles.</td>
</tr>
<tr>
<td>-f filename</td>
<td>downloads the prom image in filename. If you do not specify a filename, the default prom image will be used.</td>
</tr>
<tr>
<td>-w WWN</td>
<td>This option is for the SPARCstorage Array only. See “Changing the World Wide Name” on page 33”.</td>
</tr>
</tbody>
</table>

The default prom image in a Sun Enterprise Network Array is in the directory `/usr/lib/locale/C/LC_MESSAGES` and is named `ibfirmware`. The default prom image in a SPARCstorage Array is in the directory `/usr/lib/firmware/ssa` and is named `ssafirmware`.

1 See “Addressing” on page 2”.

Setting the Boot Device Variable

Use the `set_boot_dev` subcommand to set the boot-device variable in the system PROM to physical device name. The `set_boot_device` subcommand normally runs interactively; it requests confirmation for setting the default boot-device in the PROM.

```
luxadm [ -v ] set_boot_dev [ -y ] pathname
```

TABLE 2-8 set_boot_dev Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a block special device or a mount-point¹.</td>
</tr>
<tr>
<td>-y</td>
<td>runs non-interactively; no confirmation is requested or required.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2”.

Chapter 2 Common Subcommands 13
Powering Off an Enclosure or Disk Drive

Use the `power_off` subcommand to set an enclosure to the power-save mode.

Note – The Sun Enterprise Network Array disk drives are not available when in the power-save mode.

When an Enclosure Services card in a SPARCstorage Array is addressed, the RSM tray is powered off.

When a disk drive in a Sun Enterprise Network Array is addressed, the drive is set to the drive off/unmated state. When set to the drive off/unmated state, the drive is spun down (stopped) and put in the bypass mode.

```bash
luxadm [ -v ] power_off { enclosure[,dev]... | pathname...}
```

TABLE 2-9 power_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2.”
Subcommands for the Sun Enterprise Network Array

Hotplugging

This section describes two of the luxadm subcommands that are used in hotplugging devices in a Sun Enterprise Network Array. See Chapter 5, “Hotplugging in the Sun Enterprise Network Array” for more information.

Removing Devices

Use the remove_device subcommand to hot remove a device or a chain of devices.

The remove_device subcommand interactively guides you through the hot removal of one or more devices. The remove_device subcommand:

- Offlines the device (this fails if the disk is open).
- Informs you when device(s) can be safely removed.
- Informs you which device to remove by blinking the activity LED on the enclosure.
- Requests confirmation that the list(s) is/are as expected.
- Removes the logical device(s) names for the device that was removed.

```
luxadm [-v] remove_device { enclosure, dev... | pathname... }
```
TABLE 3-1 remove_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a Sun Enterprise Network Array” on page 2.

Example:

```bash
# luxadm remove_device macs3,r1

WARNING!!! Please ensure that no filesystems are mounted on these device(s).
All data on these devices should have been backed up.

The list of devices which will be removed is:

1: Box Name "macs3" rear slot 1

Please enter 'q' to Quit OR <Return> to Continue:

offlining: Drive in "macs3" rear slot 1

Hit any key after inserting/removing drives:
```
You must physically remove the disk drive at this point.

```
Drive in Box Name "macs3" rear slot 1
Removing Logical Nodes:
  Removing /dev/dsk/clt81d0s0
  Removing /dev/rdsk/clt81d0s0
  Removing /dev/dsk/clt81d0s1
  Removing /dev/rdsk/clt81d0s1
  Removing /dev/dsk/clt81d0s2
  Removing /dev/rdsk/clt81d0s2
  Removing /dev/dsk/clt81d0s3
  Removing /dev/rdsk/clt81d0s3
  Removing /dev/dsk/clt81d0s4
  Removing /dev/rdsk/clt81d0s4
  Removing /dev/dsk/clt81d0s5
  Removing /dev/rdsk/clt81d0s5
  Removing /dev/dsk/clt81d0s6
  Removing /dev/rdsk/clt81d0s6
  Removing /dev/dsk/clt81d0s7
  Removing /dev/rdsk/clt81d0s7
```

Inserting Devices

Use the `insert_device` subcommand for hot insertion of a new device or a chain of new devices. If you specify more than one enclosure, you can perform concurrent hot insertions on multiple busses.

The `insert_device` subcommand interactively guides you through the hot insertion of one or more devices. The `insert_device` subcommand:

- Informs you when the device(s) can be safely inserted.
- Requests confirmation that the list(s) is/are as expected.
- Creates the logical device names for the new devices.
- Displays the logical path name for the devices.

```
luxadm [ -v ] insert_device enclosure, dev...
```
TABLE 3-2 insert_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array(^1).</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a Sun Enterprise Network Array” on page 2.

Example:

```
# luxadm insert_device
Please hit <enter> when you have finished adding device(s):
```

You must physically install the disk drive at this point.

```
Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk:
  c1t8d0s0
  c1t8d0s1
  c1t8d0s2
  c1t8d0s3
  c1t8d0s4
  c1t8d0s5
  c1t8d0s6
  c1t8d0s7
#
```

Downloading Code

Downloading fcode

Use the `fcal_s_download` subcommand to download new fcode into ALL the FC100/S Sbus Cards or to display the current version of the fcode in each FC100/S Sbus card.

When downloading new fcode, the `fcal_s_download` subcommand is interactive and expects user confirmation before downloading the fcode.
Caution – Ensure that you download the correct file: `usr/lib/firmware/fc_s/fcal_s_fcode`.

```
luxadm [-v] fcal_s_download [-f fcode-file]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f fcode-file</code></td>
<td>fcode-file is the name of the file that has the new fcode. If you invoke the <code>fcal_s_download</code> subcommand without the <code>-f fcode-file</code> option, the current version of the fcode in each FC100/S Sbus card is displayed. The version of the FC100/S Sbus Cards fcode released with this operating system is kept in the directory <code>usr/lib/firmware/fc_s</code> and is named <code>fcal_s_fcode</code>.</td>
</tr>
</tbody>
</table>

Other Operations

Powering On Enclosures or Disk Drives

Use the `power_on` subcommand to set a drive to its normal power on state. If you specify a Sun Enterprise Network Array disk drive, the `power_on` subcommand sets the specified disks to the normal start-up state.

```
luxadm [-v] power_on { enclosure [,dev]... | pathname... }
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a Sun Enterprise Network Array or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a Sun Enterprise Network Array” on page 2.”
Probing for Sun Enterprise Network Arrays

Use the `probe` subcommand to display information about all attached Sun Enterprise Network Array. Information displayed includes the logical pathnames, the WWNs, and the enclosure names:

```
luxadm [ -v ] probe [-p]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-p</code></td>
<td>also displays the physical pathname.</td>
</tr>
</tbody>
</table>

Example:

```
# luxadm probe
Found
SENA Name:dogbert  Node WWN:1234123412341234
   Logical Path:/dev/es/ses0
   Logical Path:/dev/es/ses1
#
```

Example:

```
# luxadm probe -p
Found
SENA Name:dogbert  Node WWN:1234123412341234
   Logical Path:/dev/es/ses0
   Physical Path:/devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ses@w1234123412341235,0:0
   Logical Path:/dev/es/ses1
   Physical Path:/devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ses@w1234123412341236,0:0
#
```
Renaming a Sun Enterprise Network Array

Use the `enclosure_name new_name` subcommand to change the enclosure name of one or more Sun Enterprise Network Arrays. The new name must be 16 or less characters. The only allowed characters are alphabetic or numeric digits.

```
luxadm [ -v ] enclosure_name #### enclosure... | pathname...
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>####</td>
<td>is the new enclosure name.</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a Sun Enterprise Network Array” on page 22.

Setting a Disk LED to the Blink Mode

Use the `led_blink` subcommand to start blinking (flashing) the yellow LED associated with a specific disk. The `led_blink` subcommand only applies to subsystems that support this functionality.

```
luxadm [ -v ] led_blink { enclosure, dev... | pathname...}
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a Sun Enterprise Network Array” on page 22.
Example:

```
# luxadm led_blink /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
    ssd@w21000020370412ec,0:c,raw
LED state is BLINKING for device in location: front,slot 0
#
```
Expert Mode Subcommands

Reading Link Error Status Blocks

Caution – The `rdls` subcommand is for expert use only. It should only be used by users who are knowledgeable about the Sun Enterprise Network Array subsystem and Fiber Channel Loops.

Use the `rdls` subcommand to read the link error status block from a specified device. The `rdls` subcommand also displays the link error status information for the Host Adapter associated with the specified device, if available.

```
luxadm -e [-v] rdls { enclosure[,dev]... | pathname...}
```

<table>
<thead>
<tr>
<th>TABLE 3-8</th>
<th>rdls Options and Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option/Argument</td>
<td>Description</td>
</tr>
<tr>
<td>-e</td>
<td>The <code>-e</code> option (expert mode) is required for this subcommand.</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array(^1).</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array or a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a Sun Enterprise Network Array” on page 2.
Example

```bash
# luxadm -e rdls BOX

Link Error Status information for Device:
BOX
(AL_PA=0x9e)
Link Failures:0
Loss of sync.:1159869698

Link Error Status information for the Host Adapter:
(AL_PA=0xef)
Link Failures:123456
Loss of sync.:7866121
Loss of signal.:7867562
Primitive sequence protocol errors:4750704
Invalid transmission words:8675309
CRC errors:123456
NOTE: These LESB counts are not cleared by a reset, only power cycles.
These counts must be compared to previously read counts.
#
```
Reinitializing a Link

Caution – The *forcelip* subcommand is for expert use only and should be used with CAUTION. It will reset all ports on the loop and may cause the device addresses to change.

Use the *forcelip* subcommand to force the link to reinitialize using the Loop Initialize Primitive (LIP) sequence. You can specify any device on the loop.

```
luxadm -e [ -v ] forcelip { enclosure [,dev]... | pathname... }
```

TABLE 3-9 forcelip Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-e</code></td>
<td>The <code>-e</code> option (expert mode) is required for this subcommand.</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a Sun Enterprise Network Array or a specific disk in an array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a Sun Enterprise Network Array” on page 2".
Subcommands for the SPARCstorage Array

NVRAM Operations

Enabling and Disabling Fast Writes

Use the `fast_write` subcommand to enable or disable the use of the NVRAM to enhance the performance of writes in the SPARCstorage Array.

```
luxadm [ -v ] fast_write [-s] -c pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>pathname is a SPARCstorage Array controller or an individual disk.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>causes the SPARCstorage Array to save the change so it will persist across power-cycles.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>enables fast writes for synchronous writes only.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>enables fast writes.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>disables fast writes.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.”
Displaying Fast Write Data

Use the `nvram_data` subcommand to display the amount of fast write data in the NVRAM for a specific disk. This command can only be used for an individual disk.

```
luxadm [ -v ] nvram_data pathname
```

TABLE 4-2 `nvram_data` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>pathname is a SPARCstorage Array controller or an individual disk.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

Purging Fast Write Data from NVRAM

Caution – The `purge` subcommand should be used with caution, usually only when a drive has failed.

Use the `purge` subcommand to purge any fast write data from NVRAM for one or more disks.

```
luxadm [ -v ] purge pathname
```

TABLE 4-3 `purge` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, fast write data for all disks associated with that controller will be purged.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3."
Flushing NVRAM

Use the `sync_cache` subcommand to flush all outstanding writes for one or more disks from NVRAM to the media.

```
luxadm [-v] sync_cache pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, outstanding writes for all disks associated with that controller will be flushed.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.”

Enclosure Services Card

The `env_display` and `alarm` subcommands apply only to an Enclosure Services Card (SES) in a RSM tray in a SPARCstorage Array. The RSM tray is addressed by using the logical or physical path of the SES device or by specifying the controller followed by the tray number. The controller is addressed by cN or the physical path to the SSA’s controller.
Displaying Environmental Information

Use the `env_display` subcommand to display the environmental information for a SPARCstorage Array.

```
luxadm [-v] env_display pathname | controller tray-number
```

TABLE 4-5 env_display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device(^1).</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller(^1).</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

\(^1\)See “Addressing a SPARCstorage Array” on page 3”.

Disabling the Alarm

Use the `alarm_off` subcommand to disable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

```
luxadm [-v] alarm_off pathname | controller tray-number
```

TABLE 4-6 alarm_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device(^1).</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller(^1).</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

\(^1\)See “Addressing a SPARCstorage Array” on page 3”.
Enabling the Alarm

Use the `alarm_on` subcommand to enable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

```
luxadm [ -v ] alarm_on pathname | controller tray-number
```

TABLE 4-7 `alarm_on` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device.</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

Setting the Alarm

Use the `alarm_set` subcommand to set the duration of the audible alarm to a specified number of seconds.

```
luxadm [ -v ] alarm_set controller-pathname | controller tray-number [seconds]
```

TABLE 4-8 `alarm_set` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device.</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>is the number of seconds.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.”
Other Operations

Downloading fcode

Use the fc_s_download subcommand to download new fcode into all the FC/S Sbus Cards.

The fc_s_download subcommand is interactive and expects user confirmation before downloading the fcode.

The version of the FC/S Sbus Cards fcode that was released with this version of the Operating System is kept in the directory /usr/lib/firmware/fc_s and is named fc_s_fcode.

Caution – Ensure that you download the correct file: /usr/lib/firmware/fc_s/fc_s_fcode.

Note – The fc_s_download subcommand should be used only in single user mode; otherwise the FC/S card could be reset.

luxadm [-v] fc_s_download [-F] [-f fcode-file]

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-F</td>
<td>Forcibly downloads the fcode. The subcommand still expects user confirmation before the download.</td>
</tr>
<tr>
<td>-f fcode-file</td>
<td>is the name of the file that has the new fcode. When the fc_s_download subcommand is invoked without the [-f fcode-file] option, the current version of the fcode in each FC/S Sbus card is printed.</td>
</tr>
</tbody>
</table>
Collecting Performance Statistics

Use the `perf_statistics` subcommand to enable or disable the accumulation of performance statistics for a specific SPARCstorage Array controller.

Note – The accumulation of performance statistics must be enabled before using the `display -p` subcommand.

```
luxadm [ -v ] perf_statistics [ -e ] pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Enable the accumulation of performance statistics.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller</td>
</tr>
<tr>
<td><code>-w WWN</code></td>
<td>changes the SPARCstorage Array’s World Wide Name. WWN is a twelve-digit hex number; leading zeros are required. The new SPARCstorage Array controller’s image will have the least significant 6 bytes of the 8-byte World Wide Name modified to WWN.</td>
</tr>
</tbody>
</table>

Changing the World Wide Name

Use the `download` subcommand to change the World Wide Name of a SPARCstorage Array controller board.

```
luxadm [ -v ] download [-s] [-w WWN] pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller</td>
</tr>
<tr>
<td><code>-w WWN</code></td>
<td>changes the SPARCstorage Array’s World Wide Name. WWN is a twelve-digit hex number; leading zeros are required. The new SPARCstorage Array controller’s image will have the least significant 6 bytes of the 8-byte World Wide Name modified to WWN.</td>
</tr>
</tbody>
</table>
Starting Disks

Use the `start` subcommand to spin up one or more disks.

```
luxadm [ -v ] start [ -t tray-number ] pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t tray-number</code></td>
<td>spins up all disks in the tray. <code>pathname</code> must specify the SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array.¹</td>
</tr>
</tbody>
</table>

¹ See “Addressing a SPARCstorage Array” on page 3.

Stopping Disks

Use the `stop` subcommand to spin down one or more disks.

```
luxadm [ -v ] stop [ -t tray-number ] pathname
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t tray-number</code></td>
<td>spins down all disks in the tray. <code>pathname</code> must specify the SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array.¹</td>
</tr>
</tbody>
</table>

¹ See “Addressing a SPARCstorage Array” on page 3.
Turning On a Disk LED

Use the `led_on` subcommand to turn on the yellow LED associated with a specific disk.

```
luxadm [ -v ] led_on pathname
```

TABLE 4-14

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.
Hotplugging in the Sun Enterprise Network Array

Hotplugging Sun Enterprise Network Arrays

The procedure for hotplugging whole Sun Enterprise Network Array enclosures is very similar to the procedure for removing and replacing individual disk drives. Instead of specifying an `enclosure,dev` you only need to specify the `enclosure`.

For hotplugging Sun Enterprise Network Arrays, use the procedures in “Adding a Disk Drive” on page 38, “Replacing a Disk Drive” on page 41, and “Removing a Disk Drive” on page 52 except do not specify a device (`dev`). You only need to specify the `enclosure`.

Hotplugging Disks

Caution – As with other high-RAS products, drives should not be pulled out randomly. The Sun Enterprise Network Array design provides support to replace failed drives in redundant (mirrored or RAID) configurations. If the drive is active, you must stop that activity before removing it. This can be done without bringing down the operating system or powering down the unit. The Sun Enterprise Network
Array hardware fully supports hot-plugging, but there are software considerations that must be taken into account. Follow the procedures in this section when removing, replacing, and adding drives.

While there is no Solaris™ system software that provides hot-plug functionality to shield the operating system from the physical removal and replacement of a disk drive, there are several scenarios where a disk drive may be safely removed or added to the enclosure as long as the software framework managing the disk drives in the enclosure is taken into account.

Overview

Hot-plug reconfiguration or hot-plug operations cannot be performed on an active disk drive. All disk access activity must be stopped prior to a disk drive being removed or replaced.

In general, hot-plug reconfiguration operations involve three stages:

1. Preparing for hot-plug reconfiguration
2. Adding, replacing, or removing a disk drive
3. Reconfiguring the operating environment.

Three specific cases exist where the hot-plug feature is useful.

- Adding a disk drive to a system to increase storage capacity
- Replacing a faulty disk drive while the system is running:
- Removing a drive from a system that no longer needs it

Adding a Disk Drive

This section contains information on how to configure your system when you add a disk drive while the power is on and the operating system is running.

The way you add a disk drive depends on the application you are using. Each application requires that you decide where to install the new disk drive, add the drive, and then reconfigure the operating environment. Each application is different.

In all cases, you must select a slot, install the disk drive, and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.
Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Selecting a Slot for the New Disk Drive

Select any available slot in the Sun Enterprise Network Array for the new disk drive. For reference when you configure the software environment, make a note of which enclosure and slot you chose.

Configuring the Solaris Environment

A new device entry needs to be created for the drive in the /devices and /dev/dsk and /dev/rdsk hierarchy. The new drive is assigned a name associated with the slot into which the drive was installed.

1. Use the `luxadm insert_device` command to add the new device.
 This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

   ```
   # luxadm insert_device
   Please hit <enter> when you have finished adding the device(s):
   
   Waiting for Loop Initialization to complete...
   New Logical Nodes under /dev/es:
   New Logical Nodes under /dev/dsk and /dev/rdsk:
   clt3d0s0
   clt3d0s1
   clt3d0s2
   clt3d0s3
   clt3d0s4
   clt3d0s5
   clt3d0s6
   clt3d0s7
   #
   ``

   The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.
Configuring the New Disk Drive for a Unix File System (UFS)

Use the following procedure to configure a slice (single physical partition) on a disk to be used with a UFS file system. For instructions about adding a file system to a Volume Manager logical disk, refer to the documentation that came with your application.

1. Verify that the device label meets your requirements.
   You can use the `prtvtoc` command to inspect the label for your disk. To modify the label, use the `format` command. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

2. Once you have selected a disk slice for your UFS file system, create a file system on the slice:

   ```
 # newfs /dev/rdsk/cwtxdysz
   ```

   Refer to the `newfs(1M)` man page for more information.

3. If necessary, create a mountpoint for the new file system:

   ```
 # mkdir mount_point
   ```

   where: `mount_point` is a fully qualified pathname. Refer to the `mount(1M)` man page for more information.

4. After the file system and mountpoint have been created, modify the `/etc/vfstab` file to reflect the new file system.

   See the `vfstab(4)` man page for more details.

5. Mount the new file system using the `mount` command:

   ```
 # mount mount_point
   ```

   where: `mount_point` is the directory you created.

   The file system is ready to be used.
Adding the New Device to a Sun Enterprise Volume Manager Disk Group

Use the following procedure to configure the new device to be used with a new or existing Volume Manager disk group.

1. Configure the Volume Manager to recognize the disk drive.
   
   ```bash
 # vxdctl enable
   ```

2. Add the new disk to a new or existing Volume Manager disk group:
   
   ```bash
 # vxdiskadd cwtxdysz
   ```
   where: `cwtxdysz` is the new disk.

   Refer to the `vxdiskadd(1M)` man page for further details.

   The disk is now ready for use with Volume Manager: as part of a new volume, added to an existing volume as a plex, or to increase an existing volume. Refer to your `Sun Enterprise Volume Manager User’s Guide` for more information.

Replacing a Disk Drive

This chapter contains information on configuring your system to replace a disk drive while the power is on and the operating system is running.

The way you replace a faulty disk drive depends on the application you are using. Each application is different, but requires that you

1. Determine which disk drive is failing or has failed
2. Remove the disk
3. Add the replacement drive
4. Reconfigure the operating environment.

In all cases you must stop any activity on the disk; physically remove the old drive and install the new one; and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.
Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Identifying the Faulty Disk Drive

Different applications provide various levels of error logging. In general, you can find messages about failing or failed disks in your system console window. The information is also logged in the /usr/adm/messages file(s). See the documentation that came with your application for more information.

UNIX File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive can result in data loss.

Preparing to Replace the Disk Drive

1. Stop any application processes on the file systems to be unconfigured.
2. Back up your system.
3. Determine what file system(s) are on the disk:

   # mount | grep cwtxdysz

   For example, if the device to be removed is c1t3d0, enter the following:

   # mount | grep c1t3d0
   /export/home (/dev/dsk/c1t3d0s7 ): 98892 blocks 142713 files
   /export/home2 (/dev/dsk/c1t3d0s5 ): 153424 blocks 112107 files

4. Determine and save the partition table for the disk.
If the replacement disk is the same type as the faulty disk, you can use the `format` command to save the partition table of the disk. Use the `save` command in `format` to save a copy of the partition table to the `/etc/format.dat` file. This will allow you to configure the replacement disk so that its layout matches the current disk.

Refer to the `format(1M)` man page for more information.

5. **Unmount any file systems on the disk.**

   **Note** – If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to reboot the system.

   For each file system from Step 3 returned, type:

   ```
 # umount filesystem
 # umount /export/home
 # umount /export/home2
   ```

   where `filesystem` is the first field for each line returned in Step 3.

   For example:

6. **Using the `df` command, verify that the file system has been unmounted.**
Removing the Disk Drive

1. **Use the `luxadm remove_device` command to remove the disk.**

   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
 # luxadm remove_device /dev/rdsk/c1t3d0

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:

 1: Box Name "macs3" rear slot 1

 Please enter 'q' to Quit OR <Return> to Continue:

 offlining: Drive in "macs3" rear slot 1

 Hit any key after inserting/removing drives:
   ```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

```
Drive in Box Name "macs3" rear slot 1
Removing Logical Nodes:
 Removing /dev/dsk/clt3d0s0
 Removing /dev/rdsk/clt3d0s0
 Removing /dev/dsk/clt3d0s1
 Removing /dev/rdsk/clt3d0s1
 Removing /dev/dsk/clt3d0s2
 Removing /dev/rdsk/clt3d0s2
 Removing /dev/dsk/clt3d0s3
 Removing /dev/rdsk/clt3d0s3
 Removing /dev/dsk/clt3d0s4
 Removing /dev/rdsk/clt3d0s4
 Removing /dev/dsk/clt3d0s5
 Removing /dev/rdsk/clt3d0s5
 Removing /dev/dsk/clt3d0s6
 Removing /dev/rdsk/clt3d0s6
 Removing /dev/dsk/clt3d0s7
 Removing /dev/rdsk/clt3d0s7
```

**Installing the New Disk Drive**

1. **Use the luxadm insert_device command to add the new device.**
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

```
luxadm insert_device
Please hit <enter> when you have finished adding the device(s):
```
2. You must physically insert the disk drive at this time. After the drive is installed, 
hit Return. The following is displayed:

Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk:
c1t3d0s0
   c1t3d0s1
   c1t3d0s2
   c1t3d0s3
   c1t3d0s4
   c1t3d0s5
   c1t3d0s6
   c1t3d0s7
#

The new disk drive is now available for use as a block or character device. Refer to 
the sd(7) man pages for further details.

Restoring the UFS File System

Use the following procedure to configure a slice on a disk to be used with the UFS 
file system.

1. Verify that the device label meets your requirements.

   You can use the prtvtoc command to inspect the label for your disk. To modify the 
   label, use the format command. See the prtvtoc(1M) and format(1M) man 
   pages for more information.

2. Verify that the device's partition table satisfies the requirements of the file 
   system(s) you intend to re-create.

   You can use the prtvtoc command to inspect the label for your device. If you need 
   to modify the label, use the format command. Refer to the prtvtoc(1M) and 
   format(1M) man pages for more information.
   For example:

   
   # prtvtoc /dev/rdsk/cwtxdysz

   If you have saved a disk partition table using the format utility and the replacement 
disk type matches the old disk type, then you can use the format utility's partition 
section to configure the partition table of the replacement disk. See the select 
and label commands in the partition section.
If the replacement disk is of a different type than the disk it replaced, you can use the partition size information from the previous disk to set the partition table for the replacement disk. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

3. Once you have selected a disk slice for your UFS file system, create a file system on the slice:

```
newfs /dev/rdsk/cwtxdysz
```

4. Mount the new file system using the `mount` command:

```
mount mount_point
```

where: `mount_point` is the directory on which the faulty disk was mounted.

The new disk is ready to be used. You can now restore data from your backups.

**Sun Enterprise Volume Manager**

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

---

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

---

**Preparing to Replace the Disk Drive**

1. **Back up your system.**

   Refer to the documentation that came with your system for backup details.

2. **Identify the disk media name for the disk you intend to replace.**

```
vxdisk list | grep cwtxdysz
```
For example, if the disk to be removed is \texttt{c0t3d0}, enter:

\begin{verbatim}
# vxdisk list | grep c0t3d0
  c0t3d0s2   sliced    disk01      rootdg       online
\end{verbatim}

The disk media name is the third field in the output above: \texttt{disk01}.
You can use the \texttt{vxdiskadm} utility to prepare the disk for replacement.

3. **Type \texttt{vxdiskadm} in a shell.**
   For example:

\begin{verbatim}
# vxdiskadm
\end{verbatim}

This operation is interactive and requires user confirmation of the operation.

4. **Select the “Remove a disk for replacement” option.**
   When prompted for a disk name to replace, type the disk media name from Step 2.
   \texttt{vxdiskadm} marks the disk for replacement and saves the subdisk information to be rebuilt on the replacement disk.
   Redundant data is automatically recovered after the replacement disk has been reattached to Volume Manager. Non-redundant data is identified as unusable and must be recreated from backups.
   Refer to the \texttt{vxdiskadm(1M)} man page for further details.

5. **Quit the \texttt{vxdiskadm} utility.**
Removing the Disk Drive

1. **Use the** `luxadm remove_device` **command to remove the disk.**
   
   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
 # luxadm remove_device /dev/rdsk/c1t3d0

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:

 1: Box Name "macs3" rear slot 1

 Please enter 'q' to Quit OR <Return> to Continue:

 offlining: Drive in "macs3" rear slot 1

 Hit any key after inserting/removing drives:

   ```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

```
Drive in Box Name "macs3" rear slot 1
 Removing Logical Nodes:
 Removing /dev/dsk/clt3d0s0
 Removing /dev/rdsk/clt3d0s0
 Removing /dev/dsk/clt3d0s1
 Removing /dev/rdsk/clt3d0s1
 Removing /dev/dsk/clt3d0s2
 Removing /dev/rdsk/clt3d0s2
 Removing /dev/dsk/clt3d0s3
 Removing /dev/rdsk/clt3d0s3
 Removing /dev/dsk/clt3d0s4
 Removing /dev/rdsk/clt3d0s4
 Removing /dev/dsk/clt3d0s5
 Removing /dev/rdsk/clt3d0s5
 Removing /dev/dsk/clt3d0s6
 Removing /dev/rdsk/clt3d0s6
 Removing /dev/dsk/clt3d0s7
 Removing /dev/rdsk/clt3d0s7
```

**Installing the Disk Drive**

1. **Use the luxadm insert_device command to add the new device.**
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

```
luxadm insert_device
Please hit <enter> when you have finished adding device(s):
```
2. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

```
Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk :
 c1t3d0s0
 c1t3d0s1
 c1t3d0s2
 c1t3d0s3
 c1t3d0s4
 c1t3d0s5
 c1t3d0s6
 c1t3d0s7
```

The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.

Recreating a Volume Manager Configuration on the New Drive

To recreate the replaced disk on the new drive:

1. Configure the Volume Manager to recognize the disk drive.

```
vxdctl enable
```

2. Use the `vxdiskadm` utility to replace the failed disk.

Select the “Replace a failed or removed disk” option.

This operation requires user confirmation. When prompted for a disk name to replace, use the disk media name from Step 2 of “Preparing to Replace the Disk Drive” on page 47.

`vxdiskadm` supplies a list of available disks to be used as replacements.

3. Select the replacement drive.

`vxdiskadm` automatically configures the replacement drive to match the failed drive.

Redundant data is recovered automatically. Space for non-redundant data is created and identified. Non-redundant data must be recovered from backing store.

See the `vxdiskadm` man pages for further details.
You have now completed the replacement of the failed drive.

Removing a Disk Drive

This chapter contains information on how to configure your system to remove a disk drive while the power is on and the operating system is running. Use the procedures in this chapter if you do not intend to replace the disk drive.

The way in which you prepare to remove a disk drive depends on the application you are using. Each application is different, but requires that you

1. Select the disk drive
2. Remove the disk
3. Reconfigure the operating environment.

In all cases you must select the disk and stop any activity or applications on it, unmount it, physically remove the drive, and configure the Solaris environment to recognize that the drive is no longer there. Then you must configure your application to operate without this device in place.

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Unix File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

1. Stop any application processes on the file systems to be unconfigured.
2. Back up your system.
3. Determine what file system(s) are on the disk:

```
mount | grep ctwxdysz
```
For example, if the device to be removed is clt3d0, enter the following:

```
mount | grep clt3d0
/export/home (/dev/dsk/clt3d0s7): 98892 blocks 142713 files
/export/home2 (/dev/dsk/clt3d0s5): 153424 blocks 112107 files
```

4. Unmount any file systems on the disk.

**Note** – If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to restart the system.

For each file system returned, type:

```
umount filesystem
```

where: `filesystem` is the first field for each line returned in Step 3.

For example:

```
umount /export/home
umount /export/home2
```
Removing the Disk Drive

1. **Use the luxadm remove_device command to remove the disk.**

   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```
 # luxadm remove_device /dev/rdsk/c1t3d0

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:

 1: Box Name "macs3" rear slot 1

 Please enter 'q' to Quit OR <Return> to Continue:

 offlining: Drive in "macs3" rear slot 1

 Hit any key after inserting/removing drives:
   ```

2. **You must physically remove the disk drive at this time. After the drive is removed, hit any key.** The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

Sun Enterprise Volume Manager

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

Preparing to Remove the Disk Drive

1. Back up your system.

2. Identify the disk media name for the disk you intend to remove.

```bash
vxdisk list | grep cwtxdysZ
```
For example, if the disk to be removed is c0t3d0, enter:

```bash
vxdisk list | grep c0t3d0
 c0t3d0s2 sliced disk01 rootdg online
```

The disk media name is the third field in the output above: disk01.

You can use the `vxdiskadm` utility to prepare the disk for removal.

3. Type `vxdiskadm` in a shell.

   For example:

   ```bash
 # vxdiskadm
   ```

   This operation is interactive and requires user confirmation of the operation.

4. Select the “Remove a disk” option.

   When prompted for a disk name to remove, type the disk media name from Step 2.

   `vxdiskadm` marks the disk to be removed.

   Refer to the `vxdiskadm(1M)` man page for further details.
Removing the Disk Drive

1. **Use the luxadm remove_device command to remove the disk.**

   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
 # luxadm remove_device /dev/rdsk/c1t3d0

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:

 1: Box Name "macs3" rear slot 1

 Please enter 'q' to Quit OR <Return> to Continue:

 offlining: Drive in "macs3" rear slot 1

 Hit any key after inserting/removing drives:

 2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

<table>
<thead>
<tr>
<th>Drive in Box Name "macs3" rear slot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing Logical Nodes:</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s7</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Index

A
addressing
 SPARCstorage Arrays, 3
 Sun Enterprise Network Arrays, 2
alarm_off subcommand, 30
alarm_on subcommand, 31
alarm_set subcommand, 31

B
boot device, 13

C
changing the WWN in a SPARCstorage Array, 33

D
display subcommand, 5
displaying
device data, 5
enclosure data, 5
environmental information, Enclosure Services Card, 30
fast write data, 28
inquiry data, 8
led state, 9
link error status, 23
download subcommand, 12, 33
downloading
fcode, 18, 32
firmware, 12

E
Enclosure Services Card subcommands
 alarm_off, 30, 31
 alarm_set, 31
 env_display, 30
 enclosure_name subcommand, 21
 env_display subcommand, 30
Expert Mode subcommands
 forcelip, 25
 rdls, 23

F
fast_write subcommand, 27
fc_s_download subcommand, 32
fcal_s_download subcommand, 18
fcode, downloading, 18, 32
firmware, downloading, 12
forcelip subcommand, 25

H
hotplugging, 37
I
inquiry subcommand, 8
insert_device subcommand, 17

L
led subcommand, 9
led_blink subcommand, 21
led_off subcommand, 9, 35

N
NVRAM
displaying fast write data, 28
enabling/disabling fast writes, 27
flushing outstanding write data, 29
purging fast write data, 28
nvram_data subcommand, 28

P
perf_statistics subcommand, 33
power_off subcommand, 14
power_on subcommand, 19
probe subcommand, 20
purge subcommand, 28

R
rdls subcommand, 23
release subcommand, 11
remove_device subcommand, 15
renaming a Sun Enterprise Network Array, 21
reserve subcommand, 11

S
set_boot_dev subcommand, 13
start subcommand, 34
stop subcommand, 34
sync_cache subcommand, 29

W
WWN, changing in a SPARCstorage Array, 33